LLVM 20.0.0git
VectorUtils.cpp
Go to the documentation of this file.
1//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines vectorizer utilities.
10//
11//===----------------------------------------------------------------------===//
12
23#include "llvm/IR/Constants.h"
25#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Value.h"
30
31#define DEBUG_TYPE "vectorutils"
32
33using namespace llvm;
34using namespace llvm::PatternMatch;
35
36/// Maximum factor for an interleaved memory access.
38 "max-interleave-group-factor", cl::Hidden,
39 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
40 cl::init(8));
41
42/// Return true if all of the intrinsic's arguments and return type are scalars
43/// for the scalar form of the intrinsic, and vectors for the vector form of the
44/// intrinsic (except operands that are marked as always being scalar by
45/// isVectorIntrinsicWithScalarOpAtArg).
47 switch (ID) {
48 case Intrinsic::abs: // Begin integer bit-manipulation.
49 case Intrinsic::bswap:
50 case Intrinsic::bitreverse:
51 case Intrinsic::ctpop:
52 case Intrinsic::ctlz:
53 case Intrinsic::cttz:
54 case Intrinsic::fshl:
55 case Intrinsic::fshr:
56 case Intrinsic::smax:
57 case Intrinsic::smin:
58 case Intrinsic::umax:
59 case Intrinsic::umin:
60 case Intrinsic::sadd_sat:
61 case Intrinsic::ssub_sat:
62 case Intrinsic::uadd_sat:
63 case Intrinsic::usub_sat:
64 case Intrinsic::smul_fix:
65 case Intrinsic::smul_fix_sat:
66 case Intrinsic::umul_fix:
67 case Intrinsic::umul_fix_sat:
68 case Intrinsic::sqrt: // Begin floating-point.
69 case Intrinsic::asin:
70 case Intrinsic::acos:
71 case Intrinsic::atan:
72 case Intrinsic::atan2:
73 case Intrinsic::sin:
74 case Intrinsic::cos:
75 case Intrinsic::tan:
76 case Intrinsic::sinh:
77 case Intrinsic::cosh:
78 case Intrinsic::tanh:
79 case Intrinsic::exp:
80 case Intrinsic::exp10:
81 case Intrinsic::exp2:
82 case Intrinsic::log:
83 case Intrinsic::log10:
84 case Intrinsic::log2:
85 case Intrinsic::fabs:
86 case Intrinsic::minnum:
87 case Intrinsic::maxnum:
88 case Intrinsic::minimum:
89 case Intrinsic::maximum:
90 case Intrinsic::copysign:
91 case Intrinsic::floor:
92 case Intrinsic::ceil:
93 case Intrinsic::trunc:
94 case Intrinsic::rint:
95 case Intrinsic::nearbyint:
96 case Intrinsic::round:
97 case Intrinsic::roundeven:
98 case Intrinsic::pow:
99 case Intrinsic::fma:
100 case Intrinsic::fmuladd:
101 case Intrinsic::is_fpclass:
102 case Intrinsic::powi:
103 case Intrinsic::canonicalize:
104 case Intrinsic::fptosi_sat:
105 case Intrinsic::fptoui_sat:
106 case Intrinsic::lrint:
107 case Intrinsic::llrint:
108 case Intrinsic::ucmp:
109 case Intrinsic::scmp:
110 return true;
111 default:
112 return false;
113 }
114}
115
117 const TargetTransformInfo *TTI) {
119 return true;
120
123
124 // TODO: Move frexp to isTriviallyVectorizable.
125 // https://github.com/llvm/llvm-project/issues/112408
126 switch (ID) {
127 case Intrinsic::frexp:
128 return true;
129 }
130 return false;
131}
132
133/// Identifies if the vector form of the intrinsic has a scalar operand.
135 unsigned ScalarOpdIdx,
136 const TargetTransformInfo *TTI) {
137
139 return TTI->isTargetIntrinsicWithScalarOpAtArg(ID, ScalarOpdIdx);
140
141 switch (ID) {
142 case Intrinsic::abs:
143 case Intrinsic::vp_abs:
144 case Intrinsic::ctlz:
145 case Intrinsic::vp_ctlz:
146 case Intrinsic::cttz:
147 case Intrinsic::vp_cttz:
148 case Intrinsic::is_fpclass:
149 case Intrinsic::vp_is_fpclass:
150 case Intrinsic::powi:
151 return (ScalarOpdIdx == 1);
152 case Intrinsic::smul_fix:
153 case Intrinsic::smul_fix_sat:
154 case Intrinsic::umul_fix:
155 case Intrinsic::umul_fix_sat:
156 return (ScalarOpdIdx == 2);
157 default:
158 return false;
159 }
160}
161
163 Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI) {
164 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!");
165
168
170 return OpdIdx == -1 || OpdIdx == 0;
171
172 switch (ID) {
173 case Intrinsic::fptosi_sat:
174 case Intrinsic::fptoui_sat:
175 case Intrinsic::lrint:
176 case Intrinsic::llrint:
177 case Intrinsic::vp_lrint:
178 case Intrinsic::vp_llrint:
179 case Intrinsic::ucmp:
180 case Intrinsic::scmp:
181 return OpdIdx == -1 || OpdIdx == 0;
182 case Intrinsic::is_fpclass:
183 case Intrinsic::vp_is_fpclass:
184 return OpdIdx == 0;
185 case Intrinsic::powi:
186 return OpdIdx == -1 || OpdIdx == 1;
187 default:
188 return OpdIdx == -1;
189 }
190}
191
193 Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI) {
194
197
198 switch (ID) {
199 case Intrinsic::frexp:
200 return RetIdx == 0 || RetIdx == 1;
201 default:
202 return RetIdx == 0;
203 }
204}
205
206/// Returns intrinsic ID for call.
207/// For the input call instruction it finds mapping intrinsic and returns
208/// its ID, in case it does not found it return not_intrinsic.
210 const TargetLibraryInfo *TLI) {
214
215 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
216 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
217 ID == Intrinsic::experimental_noalias_scope_decl ||
218 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
219 return ID;
221}
222
223/// Given a vector and an element number, see if the scalar value is
224/// already around as a register, for example if it were inserted then extracted
225/// from the vector.
226Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
227 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
228 VectorType *VTy = cast<VectorType>(V->getType());
229 // For fixed-length vector, return poison for out of range access.
230 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
231 unsigned Width = FVTy->getNumElements();
232 if (EltNo >= Width)
233 return PoisonValue::get(FVTy->getElementType());
234 }
235
236 if (Constant *C = dyn_cast<Constant>(V))
237 return C->getAggregateElement(EltNo);
238
239 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
240 // If this is an insert to a variable element, we don't know what it is.
241 if (!isa<ConstantInt>(III->getOperand(2)))
242 return nullptr;
243 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
244
245 // If this is an insert to the element we are looking for, return the
246 // inserted value.
247 if (EltNo == IIElt)
248 return III->getOperand(1);
249
250 // Guard against infinite loop on malformed, unreachable IR.
251 if (III == III->getOperand(0))
252 return nullptr;
253
254 // Otherwise, the insertelement doesn't modify the value, recurse on its
255 // vector input.
256 return findScalarElement(III->getOperand(0), EltNo);
257 }
258
259 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
260 // Restrict the following transformation to fixed-length vector.
261 if (SVI && isa<FixedVectorType>(SVI->getType())) {
262 unsigned LHSWidth =
263 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
264 int InEl = SVI->getMaskValue(EltNo);
265 if (InEl < 0)
266 return PoisonValue::get(VTy->getElementType());
267 if (InEl < (int)LHSWidth)
268 return findScalarElement(SVI->getOperand(0), InEl);
269 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
270 }
271
272 // Extract a value from a vector add operation with a constant zero.
273 // TODO: Use getBinOpIdentity() to generalize this.
274 Value *Val; Constant *C;
275 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
276 if (Constant *Elt = C->getAggregateElement(EltNo))
277 if (Elt->isNullValue())
278 return findScalarElement(Val, EltNo);
279
280 // If the vector is a splat then we can trivially find the scalar element.
281 if (isa<ScalableVectorType>(VTy))
282 if (Value *Splat = getSplatValue(V))
283 if (EltNo < VTy->getElementCount().getKnownMinValue())
284 return Splat;
285
286 // Otherwise, we don't know.
287 return nullptr;
288}
289
291 int SplatIndex = -1;
292 for (int M : Mask) {
293 // Ignore invalid (undefined) mask elements.
294 if (M < 0)
295 continue;
296
297 // There can be only 1 non-negative mask element value if this is a splat.
298 if (SplatIndex != -1 && SplatIndex != M)
299 return -1;
300
301 // Initialize the splat index to the 1st non-negative mask element.
302 SplatIndex = M;
303 }
304 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
305 return SplatIndex;
306}
307
308/// Get splat value if the input is a splat vector or return nullptr.
309/// This function is not fully general. It checks only 2 cases:
310/// the input value is (1) a splat constant vector or (2) a sequence
311/// of instructions that broadcasts a scalar at element 0.
313 if (isa<VectorType>(V->getType()))
314 if (auto *C = dyn_cast<Constant>(V))
315 return C->getSplatValue();
316
317 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
318 Value *Splat;
319 if (match(V,
321 m_Value(), m_ZeroMask())))
322 return Splat;
323
324 return nullptr;
325}
326
327bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
328 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
329
330 if (isa<VectorType>(V->getType())) {
331 if (isa<UndefValue>(V))
332 return true;
333 // FIXME: We can allow undefs, but if Index was specified, we may want to
334 // check that the constant is defined at that index.
335 if (auto *C = dyn_cast<Constant>(V))
336 return C->getSplatValue() != nullptr;
337 }
338
339 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
340 // FIXME: We can safely allow undefs here. If Index was specified, we will
341 // check that the mask elt is defined at the required index.
342 if (!all_equal(Shuf->getShuffleMask()))
343 return false;
344
345 // Match any index.
346 if (Index == -1)
347 return true;
348
349 // Match a specific element. The mask should be defined at and match the
350 // specified index.
351 return Shuf->getMaskValue(Index) == Index;
352 }
353
354 // The remaining tests are all recursive, so bail out if we hit the limit.
356 return false;
357
358 // If both operands of a binop are splats, the result is a splat.
359 Value *X, *Y, *Z;
360 if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
361 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
362
363 // If all operands of a select are splats, the result is a splat.
364 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
365 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
366 isSplatValue(Z, Index, Depth);
367
368 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
369
370 return false;
371}
372
374 const APInt &DemandedElts, APInt &DemandedLHS,
375 APInt &DemandedRHS, bool AllowUndefElts) {
376 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
377
378 // Early out if we don't demand any elements.
379 if (DemandedElts.isZero())
380 return true;
381
382 // Simple case of a shuffle with zeroinitializer.
383 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
384 DemandedLHS.setBit(0);
385 return true;
386 }
387
388 for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
389 int M = Mask[I];
390 assert((-1 <= M) && (M < (SrcWidth * 2)) &&
391 "Invalid shuffle mask constant");
392
393 if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
394 continue;
395
396 // For undef elements, we don't know anything about the common state of
397 // the shuffle result.
398 if (M < 0)
399 return false;
400
401 if (M < SrcWidth)
402 DemandedLHS.setBit(M);
403 else
404 DemandedRHS.setBit(M - SrcWidth);
405 }
406
407 return true;
408}
409
411 SmallVectorImpl<int> &ScaledMask) {
412 assert(Scale > 0 && "Unexpected scaling factor");
413
414 // Fast-path: if no scaling, then it is just a copy.
415 if (Scale == 1) {
416 ScaledMask.assign(Mask.begin(), Mask.end());
417 return;
418 }
419
420 ScaledMask.clear();
421 for (int MaskElt : Mask) {
422 if (MaskElt >= 0) {
423 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
424 "Overflowed 32-bits");
425 }
426 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
427 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
428 }
429}
430
432 SmallVectorImpl<int> &ScaledMask) {
433 assert(Scale > 0 && "Unexpected scaling factor");
434
435 // Fast-path: if no scaling, then it is just a copy.
436 if (Scale == 1) {
437 ScaledMask.assign(Mask.begin(), Mask.end());
438 return true;
439 }
440
441 // We must map the original elements down evenly to a type with less elements.
442 int NumElts = Mask.size();
443 if (NumElts % Scale != 0)
444 return false;
445
446 ScaledMask.clear();
447 ScaledMask.reserve(NumElts / Scale);
448
449 // Step through the input mask by splitting into Scale-sized slices.
450 do {
451 ArrayRef<int> MaskSlice = Mask.take_front(Scale);
452 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
453
454 // The first element of the slice determines how we evaluate this slice.
455 int SliceFront = MaskSlice.front();
456 if (SliceFront < 0) {
457 // Negative values (undef or other "sentinel" values) must be equal across
458 // the entire slice.
459 if (!all_equal(MaskSlice))
460 return false;
461 ScaledMask.push_back(SliceFront);
462 } else {
463 // A positive mask element must be cleanly divisible.
464 if (SliceFront % Scale != 0)
465 return false;
466 // Elements of the slice must be consecutive.
467 for (int i = 1; i < Scale; ++i)
468 if (MaskSlice[i] != SliceFront + i)
469 return false;
470 ScaledMask.push_back(SliceFront / Scale);
471 }
472 Mask = Mask.drop_front(Scale);
473 } while (!Mask.empty());
474
475 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
476
477 // All elements of the original mask can be scaled down to map to the elements
478 // of a mask with wider elements.
479 return true;
480}
481
483 SmallVectorImpl<int> &NewMask) {
484 unsigned NumElts = M.size();
485 if (NumElts % 2 != 0)
486 return false;
487
488 NewMask.clear();
489 for (unsigned i = 0; i < NumElts; i += 2) {
490 int M0 = M[i];
491 int M1 = M[i + 1];
492
493 // If both elements are undef, new mask is undef too.
494 if (M0 == -1 && M1 == -1) {
495 NewMask.push_back(-1);
496 continue;
497 }
498
499 if (M0 == -1 && M1 != -1 && (M1 % 2) == 1) {
500 NewMask.push_back(M1 / 2);
501 continue;
502 }
503
504 if (M0 != -1 && (M0 % 2) == 0 && ((M0 + 1) == M1 || M1 == -1)) {
505 NewMask.push_back(M0 / 2);
506 continue;
507 }
508
509 NewMask.clear();
510 return false;
511 }
512
513 assert(NewMask.size() == NumElts / 2 && "Incorrect size for mask!");
514 return true;
515}
516
517bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask,
518 SmallVectorImpl<int> &ScaledMask) {
519 unsigned NumSrcElts = Mask.size();
520 assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor");
521
522 // Fast-path: if no scaling, then it is just a copy.
523 if (NumSrcElts == NumDstElts) {
524 ScaledMask.assign(Mask.begin(), Mask.end());
525 return true;
526 }
527
528 // Ensure we can find a whole scale factor.
529 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) &&
530 "Unexpected scaling factor");
531
532 if (NumSrcElts > NumDstElts) {
533 int Scale = NumSrcElts / NumDstElts;
534 return widenShuffleMaskElts(Scale, Mask, ScaledMask);
535 }
536
537 int Scale = NumDstElts / NumSrcElts;
538 narrowShuffleMaskElts(Scale, Mask, ScaledMask);
539 return true;
540}
541
543 SmallVectorImpl<int> &ScaledMask) {
544 std::array<SmallVector<int, 16>, 2> TmpMasks;
545 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
546 ArrayRef<int> InputMask = Mask;
547 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
548 while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
549 InputMask = *Output;
550 std::swap(Output, Tmp);
551 }
552 }
553 ScaledMask.assign(InputMask.begin(), InputMask.end());
554}
555
557 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
558 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
559 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
560 function_ref<void(ArrayRef<int>, unsigned, unsigned, bool)>
561 ManyInputsAction) {
562 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
563 // Try to perform better estimation of the permutation.
564 // 1. Split the source/destination vectors into real registers.
565 // 2. Do the mask analysis to identify which real registers are
566 // permuted.
567 int Sz = Mask.size();
568 unsigned SzDest = Sz / NumOfDestRegs;
569 unsigned SzSrc = Sz / NumOfSrcRegs;
570 for (unsigned I = 0; I < NumOfDestRegs; ++I) {
571 auto &RegMasks = Res[I];
572 RegMasks.assign(2 * NumOfSrcRegs, {});
573 // Check that the values in dest registers are in the one src
574 // register.
575 for (unsigned K = 0; K < SzDest; ++K) {
576 int Idx = I * SzDest + K;
577 if (Idx == Sz)
578 break;
579 if (Mask[Idx] >= 2 * Sz || Mask[Idx] == PoisonMaskElem)
580 continue;
581 int MaskIdx = Mask[Idx] % Sz;
582 int SrcRegIdx = MaskIdx / SzSrc + (Mask[Idx] >= Sz ? NumOfSrcRegs : 0);
583 // Add a cost of PermuteTwoSrc for each new source register permute,
584 // if we have more than one source registers.
585 if (RegMasks[SrcRegIdx].empty())
586 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem);
587 RegMasks[SrcRegIdx][K] = MaskIdx % SzSrc;
588 }
589 }
590 // Process split mask.
591 for (unsigned I : seq<unsigned>(NumOfUsedRegs)) {
592 auto &Dest = Res[I];
593 int NumSrcRegs =
594 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
595 switch (NumSrcRegs) {
596 case 0:
597 // No input vectors were used!
598 NoInputAction();
599 break;
600 case 1: {
601 // Find the only mask with at least single undef mask elem.
602 auto *It =
603 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
604 unsigned SrcReg = std::distance(Dest.begin(), It);
605 SingleInputAction(*It, SrcReg, I);
606 break;
607 }
608 default: {
609 // The first mask is a permutation of a single register. Since we have >2
610 // input registers to shuffle, we merge the masks for 2 first registers
611 // and generate a shuffle of 2 registers rather than the reordering of the
612 // first register and then shuffle with the second register. Next,
613 // generate the shuffles of the resulting register + the remaining
614 // registers from the list.
615 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
616 ArrayRef<int> SecondMask) {
617 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
618 if (SecondMask[Idx] != PoisonMaskElem) {
619 assert(FirstMask[Idx] == PoisonMaskElem &&
620 "Expected undefined mask element.");
621 FirstMask[Idx] = SecondMask[Idx] + VF;
622 }
623 }
624 };
625 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
626 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
627 if (Mask[Idx] != PoisonMaskElem)
628 Mask[Idx] = Idx;
629 }
630 };
631 int SecondIdx;
632 bool NewReg = true;
633 do {
634 int FirstIdx = -1;
635 SecondIdx = -1;
636 MutableArrayRef<int> FirstMask, SecondMask;
637 for (unsigned I : seq<unsigned>(2 * NumOfSrcRegs)) {
638 SmallVectorImpl<int> &RegMask = Dest[I];
639 if (RegMask.empty())
640 continue;
641
642 if (FirstIdx == SecondIdx) {
643 FirstIdx = I;
644 FirstMask = RegMask;
645 continue;
646 }
647 SecondIdx = I;
648 SecondMask = RegMask;
649 CombineMasks(FirstMask, SecondMask);
650 ManyInputsAction(FirstMask, FirstIdx, SecondIdx, NewReg);
651 NewReg = false;
652 NormalizeMask(FirstMask);
653 RegMask.clear();
654 SecondMask = FirstMask;
655 SecondIdx = FirstIdx;
656 }
657 if (FirstIdx != SecondIdx && SecondIdx >= 0) {
658 CombineMasks(SecondMask, FirstMask);
659 ManyInputsAction(SecondMask, SecondIdx, FirstIdx, NewReg);
660 NewReg = false;
661 Dest[FirstIdx].clear();
662 NormalizeMask(SecondMask);
663 }
664 } while (SecondIdx >= 0);
665 break;
666 }
667 }
668 }
669}
670
671void llvm::getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth,
672 const APInt &DemandedElts,
673 APInt &DemandedLHS,
674 APInt &DemandedRHS) {
675 assert(VectorBitWidth >= 128 && "Vectors smaller than 128 bit not supported");
676 int NumLanes = VectorBitWidth / 128;
677 int NumElts = DemandedElts.getBitWidth();
678 int NumEltsPerLane = NumElts / NumLanes;
679 int HalfEltsPerLane = NumEltsPerLane / 2;
680
681 DemandedLHS = APInt::getZero(NumElts);
682 DemandedRHS = APInt::getZero(NumElts);
683
684 // Map DemandedElts to the horizontal operands.
685 for (int Idx = 0; Idx != NumElts; ++Idx) {
686 if (!DemandedElts[Idx])
687 continue;
688 int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane;
689 int LocalIdx = Idx % NumEltsPerLane;
690 if (LocalIdx < HalfEltsPerLane) {
691 DemandedLHS.setBit(LaneIdx + 2 * LocalIdx);
692 } else {
693 LocalIdx -= HalfEltsPerLane;
694 DemandedRHS.setBit(LaneIdx + 2 * LocalIdx);
695 }
696 }
697}
698
701 const TargetTransformInfo *TTI) {
702
703 // DemandedBits will give us every value's live-out bits. But we want
704 // to ensure no extra casts would need to be inserted, so every DAG
705 // of connected values must have the same minimum bitwidth.
711 SmallPtrSet<Instruction *, 4> InstructionSet;
713
714 // Determine the roots. We work bottom-up, from truncs or icmps.
715 bool SeenExtFromIllegalType = false;
716 for (auto *BB : Blocks)
717 for (auto &I : *BB) {
718 InstructionSet.insert(&I);
719
720 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
721 !TTI->isTypeLegal(I.getOperand(0)->getType()))
722 SeenExtFromIllegalType = true;
723
724 // Only deal with non-vector integers up to 64-bits wide.
725 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
726 !I.getType()->isVectorTy() &&
727 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
728 // Don't make work for ourselves. If we know the loaded type is legal,
729 // don't add it to the worklist.
730 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
731 continue;
732
733 Worklist.push_back(&I);
734 Roots.insert(&I);
735 }
736 }
737 // Early exit.
738 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
739 return MinBWs;
740
741 // Now proceed breadth-first, unioning values together.
742 while (!Worklist.empty()) {
743 Value *Val = Worklist.pop_back_val();
744 Value *Leader = ECs.getOrInsertLeaderValue(Val);
745
746 if (!Visited.insert(Val).second)
747 continue;
748
749 // Non-instructions terminate a chain successfully.
750 if (!isa<Instruction>(Val))
751 continue;
752 Instruction *I = cast<Instruction>(Val);
753
754 // If we encounter a type that is larger than 64 bits, we can't represent
755 // it so bail out.
756 if (DB.getDemandedBits(I).getBitWidth() > 64)
758
759 uint64_t V = DB.getDemandedBits(I).getZExtValue();
760 DBits[Leader] |= V;
761 DBits[I] = V;
762
763 // Casts, loads and instructions outside of our range terminate a chain
764 // successfully.
765 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
766 !InstructionSet.count(I))
767 continue;
768
769 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
770 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
771 // transform anything that relies on them.
772 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
773 !I->getType()->isIntegerTy()) {
774 DBits[Leader] |= ~0ULL;
775 continue;
776 }
777
778 // We don't modify the types of PHIs. Reductions will already have been
779 // truncated if possible, and inductions' sizes will have been chosen by
780 // indvars.
781 if (isa<PHINode>(I))
782 continue;
783
784 if (DBits[Leader] == ~0ULL)
785 // All bits demanded, no point continuing.
786 continue;
787
788 for (Value *O : cast<User>(I)->operands()) {
789 ECs.unionSets(Leader, O);
790 Worklist.push_back(O);
791 }
792 }
793
794 // Now we've discovered all values, walk them to see if there are
795 // any users we didn't see. If there are, we can't optimize that
796 // chain.
797 for (auto &I : DBits)
798 for (auto *U : I.first->users())
799 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
800 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
801
802 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
803 uint64_t LeaderDemandedBits = 0;
804 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
805 LeaderDemandedBits |= DBits[M];
806
807 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits);
808 // Round up to a power of 2
809 MinBW = llvm::bit_ceil(MinBW);
810
811 // We don't modify the types of PHIs. Reductions will already have been
812 // truncated if possible, and inductions' sizes will have been chosen by
813 // indvars.
814 // If we are required to shrink a PHI, abandon this entire equivalence class.
815 bool Abort = false;
816 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
817 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
818 Abort = true;
819 break;
820 }
821 if (Abort)
822 continue;
823
824 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
825 auto *MI = dyn_cast<Instruction>(M);
826 if (!MI)
827 continue;
828 Type *Ty = M->getType();
829 if (Roots.count(M))
830 Ty = MI->getOperand(0)->getType();
831
832 if (MinBW >= Ty->getScalarSizeInBits())
833 continue;
834
835 // If any of M's operands demand more bits than MinBW then M cannot be
836 // performed safely in MinBW.
837 if (any_of(MI->operands(), [&DB, MinBW](Use &U) {
838 auto *CI = dyn_cast<ConstantInt>(U);
839 // For constants shift amounts, check if the shift would result in
840 // poison.
841 if (CI &&
842 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
843 U.getOperandNo() == 1)
844 return CI->uge(MinBW);
845 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue());
846 return bit_ceil(BW) > MinBW;
847 }))
848 continue;
849
850 MinBWs[MI] = MinBW;
851 }
852 }
853
854 return MinBWs;
855}
856
857/// Add all access groups in @p AccGroups to @p List.
858template <typename ListT>
859static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
860 // Interpret an access group as a list containing itself.
861 if (AccGroups->getNumOperands() == 0) {
862 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
863 List.insert(AccGroups);
864 return;
865 }
866
867 for (const auto &AccGroupListOp : AccGroups->operands()) {
868 auto *Item = cast<MDNode>(AccGroupListOp.get());
869 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
870 List.insert(Item);
871 }
872}
873
874MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
875 if (!AccGroups1)
876 return AccGroups2;
877 if (!AccGroups2)
878 return AccGroups1;
879 if (AccGroups1 == AccGroups2)
880 return AccGroups1;
881
883 addToAccessGroupList(Union, AccGroups1);
884 addToAccessGroupList(Union, AccGroups2);
885
886 if (Union.size() == 0)
887 return nullptr;
888 if (Union.size() == 1)
889 return cast<MDNode>(Union.front());
890
891 LLVMContext &Ctx = AccGroups1->getContext();
892 return MDNode::get(Ctx, Union.getArrayRef());
893}
894
896 const Instruction *Inst2) {
897 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
898 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
899
900 if (!MayAccessMem1 && !MayAccessMem2)
901 return nullptr;
902 if (!MayAccessMem1)
903 return Inst2->getMetadata(LLVMContext::MD_access_group);
904 if (!MayAccessMem2)
905 return Inst1->getMetadata(LLVMContext::MD_access_group);
906
907 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
908 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
909 if (!MD1 || !MD2)
910 return nullptr;
911 if (MD1 == MD2)
912 return MD1;
913
914 // Use set for scalable 'contains' check.
915 SmallPtrSet<Metadata *, 4> AccGroupSet2;
916 addToAccessGroupList(AccGroupSet2, MD2);
917
918 SmallVector<Metadata *, 4> Intersection;
919 if (MD1->getNumOperands() == 0) {
920 assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
921 if (AccGroupSet2.count(MD1))
922 Intersection.push_back(MD1);
923 } else {
924 for (const MDOperand &Node : MD1->operands()) {
925 auto *Item = cast<MDNode>(Node.get());
926 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
927 if (AccGroupSet2.count(Item))
928 Intersection.push_back(Item);
929 }
930 }
931
932 if (Intersection.size() == 0)
933 return nullptr;
934 if (Intersection.size() == 1)
935 return cast<MDNode>(Intersection.front());
936
937 LLVMContext &Ctx = Inst1->getContext();
938 return MDNode::get(Ctx, Intersection);
939}
940
941/// \returns \p I after propagating metadata from \p VL.
943 if (VL.empty())
944 return Inst;
945 Instruction *I0 = cast<Instruction>(VL[0]);
948
949 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
950 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
951 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
952 LLVMContext::MD_access_group, LLVMContext::MD_mmra}) {
953 MDNode *MD = I0->getMetadata(Kind);
954 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
955 const Instruction *IJ = cast<Instruction>(VL[J]);
956 MDNode *IMD = IJ->getMetadata(Kind);
957
958 switch (Kind) {
959 case LLVMContext::MD_mmra: {
960 MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD);
961 break;
962 }
963 case LLVMContext::MD_tbaa:
964 MD = MDNode::getMostGenericTBAA(MD, IMD);
965 break;
966 case LLVMContext::MD_alias_scope:
968 break;
969 case LLVMContext::MD_fpmath:
970 MD = MDNode::getMostGenericFPMath(MD, IMD);
971 break;
972 case LLVMContext::MD_noalias:
973 case LLVMContext::MD_nontemporal:
974 case LLVMContext::MD_invariant_load:
975 MD = MDNode::intersect(MD, IMD);
976 break;
977 case LLVMContext::MD_access_group:
978 MD = intersectAccessGroups(Inst, IJ);
979 break;
980 default:
981 llvm_unreachable("unhandled metadata");
982 }
983 }
984
985 Inst->setMetadata(Kind, MD);
986 }
987
988 return Inst;
989}
990
991Constant *
993 const InterleaveGroup<Instruction> &Group) {
994 // All 1's means mask is not needed.
995 if (Group.getNumMembers() == Group.getFactor())
996 return nullptr;
997
998 // TODO: support reversed access.
999 assert(!Group.isReverse() && "Reversed group not supported.");
1000
1002 for (unsigned i = 0; i < VF; i++)
1003 for (unsigned j = 0; j < Group.getFactor(); ++j) {
1004 unsigned HasMember = Group.getMember(j) ? 1 : 0;
1005 Mask.push_back(Builder.getInt1(HasMember));
1006 }
1007
1008 return ConstantVector::get(Mask);
1009}
1010
1012llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
1013 SmallVector<int, 16> MaskVec;
1014 for (unsigned i = 0; i < VF; i++)
1015 for (unsigned j = 0; j < ReplicationFactor; j++)
1016 MaskVec.push_back(i);
1017
1018 return MaskVec;
1019}
1020
1022 unsigned NumVecs) {
1024 for (unsigned i = 0; i < VF; i++)
1025 for (unsigned j = 0; j < NumVecs; j++)
1026 Mask.push_back(j * VF + i);
1027
1028 return Mask;
1029}
1030
1032llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
1034 for (unsigned i = 0; i < VF; i++)
1035 Mask.push_back(Start + i * Stride);
1036
1037 return Mask;
1038}
1039
1041 unsigned NumInts,
1042 unsigned NumUndefs) {
1044 for (unsigned i = 0; i < NumInts; i++)
1045 Mask.push_back(Start + i);
1046
1047 for (unsigned i = 0; i < NumUndefs; i++)
1048 Mask.push_back(-1);
1049
1050 return Mask;
1051}
1052
1054 unsigned NumElts) {
1055 // Avoid casts in the loop and make sure we have a reasonable number.
1056 int NumEltsSigned = NumElts;
1057 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
1058
1059 // If the mask chooses an element from operand 1, reduce it to choose from the
1060 // corresponding element of operand 0. Undef mask elements are unchanged.
1061 SmallVector<int, 16> UnaryMask;
1062 for (int MaskElt : Mask) {
1063 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
1064 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
1065 UnaryMask.push_back(UnaryElt);
1066 }
1067 return UnaryMask;
1068}
1069
1070/// A helper function for concatenating vectors. This function concatenates two
1071/// vectors having the same element type. If the second vector has fewer
1072/// elements than the first, it is padded with undefs.
1074 Value *V2) {
1075 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
1076 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
1077 assert(VecTy1 && VecTy2 &&
1078 VecTy1->getScalarType() == VecTy2->getScalarType() &&
1079 "Expect two vectors with the same element type");
1080
1081 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
1082 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
1083 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
1084
1085 if (NumElts1 > NumElts2) {
1086 // Extend with UNDEFs.
1087 V2 = Builder.CreateShuffleVector(
1088 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
1089 }
1090
1091 return Builder.CreateShuffleVector(
1092 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
1093}
1094
1096 ArrayRef<Value *> Vecs) {
1097 unsigned NumVecs = Vecs.size();
1098 assert(NumVecs > 1 && "Should be at least two vectors");
1099
1101 ResList.append(Vecs.begin(), Vecs.end());
1102 do {
1104 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
1105 Value *V0 = ResList[i], *V1 = ResList[i + 1];
1106 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
1107 "Only the last vector may have a different type");
1108
1109 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
1110 }
1111
1112 // Push the last vector if the total number of vectors is odd.
1113 if (NumVecs % 2 != 0)
1114 TmpList.push_back(ResList[NumVecs - 1]);
1115
1116 ResList = TmpList;
1117 NumVecs = ResList.size();
1118 } while (NumVecs > 1);
1119
1120 return ResList[0];
1121}
1122
1124 assert(isa<VectorType>(Mask->getType()) &&
1125 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1126 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1127 1 &&
1128 "Mask must be a vector of i1");
1129
1130 auto *ConstMask = dyn_cast<Constant>(Mask);
1131 if (!ConstMask)
1132 return false;
1133 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1134 return true;
1135 if (isa<ScalableVectorType>(ConstMask->getType()))
1136 return false;
1137 for (unsigned
1138 I = 0,
1139 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1140 I != E; ++I) {
1141 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1142 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1143 continue;
1144 return false;
1145 }
1146 return true;
1147}
1148
1150 assert(isa<VectorType>(Mask->getType()) &&
1151 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1152 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1153 1 &&
1154 "Mask must be a vector of i1");
1155
1156 auto *ConstMask = dyn_cast<Constant>(Mask);
1157 if (!ConstMask)
1158 return false;
1159 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1160 return true;
1161 if (isa<ScalableVectorType>(ConstMask->getType()))
1162 return false;
1163 for (unsigned
1164 I = 0,
1165 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1166 I != E; ++I) {
1167 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1168 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1169 continue;
1170 return false;
1171 }
1172 return true;
1173}
1174
1176 assert(isa<VectorType>(Mask->getType()) &&
1177 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1178 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1179 1 &&
1180 "Mask must be a vector of i1");
1181
1182 auto *ConstMask = dyn_cast<Constant>(Mask);
1183 if (!ConstMask)
1184 return false;
1185 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1186 return true;
1187 if (isa<ScalableVectorType>(ConstMask->getType()))
1188 return false;
1189 for (unsigned
1190 I = 0,
1191 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1192 I != E; ++I) {
1193 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1194 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1195 return true;
1196 }
1197 return false;
1198}
1199
1200/// TODO: This is a lot like known bits, but for
1201/// vectors. Is there something we can common this with?
1203 assert(isa<FixedVectorType>(Mask->getType()) &&
1204 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1205 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1206 1 &&
1207 "Mask must be a fixed width vector of i1");
1208
1209 const unsigned VWidth =
1210 cast<FixedVectorType>(Mask->getType())->getNumElements();
1211 APInt DemandedElts = APInt::getAllOnes(VWidth);
1212 if (auto *CV = dyn_cast<ConstantVector>(Mask))
1213 for (unsigned i = 0; i < VWidth; i++)
1214 if (CV->getAggregateElement(i)->isNullValue())
1215 DemandedElts.clearBit(i);
1216 return DemandedElts;
1217}
1218
1219bool InterleavedAccessInfo::isStrided(int Stride) {
1220 unsigned Factor = std::abs(Stride);
1221 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1222}
1223
1224void InterleavedAccessInfo::collectConstStrideAccesses(
1226 const DenseMap<Value*, const SCEV*> &Strides) {
1227 auto &DL = TheLoop->getHeader()->getDataLayout();
1228
1229 // Since it's desired that the load/store instructions be maintained in
1230 // "program order" for the interleaved access analysis, we have to visit the
1231 // blocks in the loop in reverse postorder (i.e., in a topological order).
1232 // Such an ordering will ensure that any load/store that may be executed
1233 // before a second load/store will precede the second load/store in
1234 // AccessStrideInfo.
1235 LoopBlocksDFS DFS(TheLoop);
1236 DFS.perform(LI);
1237 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1238 for (auto &I : *BB) {
1240 if (!Ptr)
1241 continue;
1242 Type *ElementTy = getLoadStoreType(&I);
1243
1244 // Currently, codegen doesn't support cases where the type size doesn't
1245 // match the alloc size. Skip them for now.
1246 uint64_t Size = DL.getTypeAllocSize(ElementTy);
1247 if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1248 continue;
1249
1250 // We don't check wrapping here because we don't know yet if Ptr will be
1251 // part of a full group or a group with gaps. Checking wrapping for all
1252 // pointers (even those that end up in groups with no gaps) will be overly
1253 // conservative. For full groups, wrapping should be ok since if we would
1254 // wrap around the address space we would do a memory access at nullptr
1255 // even without the transformation. The wrapping checks are therefore
1256 // deferred until after we've formed the interleaved groups.
1257 int64_t Stride =
1258 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1259 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1260
1261 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1262 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1264 }
1265}
1266
1267// Analyze interleaved accesses and collect them into interleaved load and
1268// store groups.
1269//
1270// When generating code for an interleaved load group, we effectively hoist all
1271// loads in the group to the location of the first load in program order. When
1272// generating code for an interleaved store group, we sink all stores to the
1273// location of the last store. This code motion can change the order of load
1274// and store instructions and may break dependences.
1275//
1276// The code generation strategy mentioned above ensures that we won't violate
1277// any write-after-read (WAR) dependences.
1278//
1279// E.g., for the WAR dependence: a = A[i]; // (1)
1280// A[i] = b; // (2)
1281//
1282// The store group of (2) is always inserted at or below (2), and the load
1283// group of (1) is always inserted at or above (1). Thus, the instructions will
1284// never be reordered. All other dependences are checked to ensure the
1285// correctness of the instruction reordering.
1286//
1287// The algorithm visits all memory accesses in the loop in bottom-up program
1288// order. Program order is established by traversing the blocks in the loop in
1289// reverse postorder when collecting the accesses.
1290//
1291// We visit the memory accesses in bottom-up order because it can simplify the
1292// construction of store groups in the presence of write-after-write (WAW)
1293// dependences.
1294//
1295// E.g., for the WAW dependence: A[i] = a; // (1)
1296// A[i] = b; // (2)
1297// A[i + 1] = c; // (3)
1298//
1299// We will first create a store group with (3) and (2). (1) can't be added to
1300// this group because it and (2) are dependent. However, (1) can be grouped
1301// with other accesses that may precede it in program order. Note that a
1302// bottom-up order does not imply that WAW dependences should not be checked.
1304 bool EnablePredicatedInterleavedMemAccesses) {
1305 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1306 const auto &Strides = LAI->getSymbolicStrides();
1307
1308 // Holds all accesses with a constant stride.
1310 collectConstStrideAccesses(AccessStrideInfo, Strides);
1311
1312 if (AccessStrideInfo.empty())
1313 return;
1314
1315 // Collect the dependences in the loop.
1316 collectDependences();
1317
1318 // Holds all interleaved store groups temporarily.
1320 // Holds all interleaved load groups temporarily.
1322 // Groups added to this set cannot have new members added.
1323 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups;
1324
1325 // Search in bottom-up program order for pairs of accesses (A and B) that can
1326 // form interleaved load or store groups. In the algorithm below, access A
1327 // precedes access B in program order. We initialize a group for B in the
1328 // outer loop of the algorithm, and then in the inner loop, we attempt to
1329 // insert each A into B's group if:
1330 //
1331 // 1. A and B have the same stride,
1332 // 2. A and B have the same memory object size, and
1333 // 3. A belongs in B's group according to its distance from B.
1334 //
1335 // Special care is taken to ensure group formation will not break any
1336 // dependences.
1337 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1338 BI != E; ++BI) {
1339 Instruction *B = BI->first;
1340 StrideDescriptor DesB = BI->second;
1341
1342 // Initialize a group for B if it has an allowable stride. Even if we don't
1343 // create a group for B, we continue with the bottom-up algorithm to ensure
1344 // we don't break any of B's dependences.
1345 InterleaveGroup<Instruction> *GroupB = nullptr;
1346 if (isStrided(DesB.Stride) &&
1347 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1348 GroupB = getInterleaveGroup(B);
1349 if (!GroupB) {
1350 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1351 << '\n');
1352 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1353 if (B->mayWriteToMemory())
1354 StoreGroups.insert(GroupB);
1355 else
1356 LoadGroups.insert(GroupB);
1357 }
1358 }
1359
1360 for (auto AI = std::next(BI); AI != E; ++AI) {
1361 Instruction *A = AI->first;
1362 StrideDescriptor DesA = AI->second;
1363
1364 // Our code motion strategy implies that we can't have dependences
1365 // between accesses in an interleaved group and other accesses located
1366 // between the first and last member of the group. Note that this also
1367 // means that a group can't have more than one member at a given offset.
1368 // The accesses in a group can have dependences with other accesses, but
1369 // we must ensure we don't extend the boundaries of the group such that
1370 // we encompass those dependent accesses.
1371 //
1372 // For example, assume we have the sequence of accesses shown below in a
1373 // stride-2 loop:
1374 //
1375 // (1, 2) is a group | A[i] = a; // (1)
1376 // | A[i-1] = b; // (2) |
1377 // A[i-3] = c; // (3)
1378 // A[i] = d; // (4) | (2, 4) is not a group
1379 //
1380 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1381 // but not with (4). If we did, the dependent access (3) would be within
1382 // the boundaries of the (2, 4) group.
1383 auto DependentMember = [&](InterleaveGroup<Instruction> *Group,
1384 StrideEntry *A) -> Instruction * {
1385 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) {
1386 Instruction *MemberOfGroupB = Group->getMember(Index);
1387 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1388 A, &*AccessStrideInfo.find(MemberOfGroupB)))
1389 return MemberOfGroupB;
1390 }
1391 return nullptr;
1392 };
1393
1394 auto GroupA = getInterleaveGroup(A);
1395 // If A is a load, dependencies are tolerable, there's nothing to do here.
1396 // If both A and B belong to the same (store) group, they are independent,
1397 // even if dependencies have not been recorded.
1398 // If both GroupA and GroupB are null, there's nothing to do here.
1399 if (A->mayWriteToMemory() && GroupA != GroupB) {
1400 Instruction *DependentInst = nullptr;
1401 // If GroupB is a load group, we have to compare AI against all
1402 // members of GroupB because if any load within GroupB has a dependency
1403 // on AI, we need to mark GroupB as complete and also release the
1404 // store GroupA (if A belongs to one). The former prevents incorrect
1405 // hoisting of load B above store A while the latter prevents incorrect
1406 // sinking of store A below load B.
1407 if (GroupB && LoadGroups.contains(GroupB))
1408 DependentInst = DependentMember(GroupB, &*AI);
1409 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1410 DependentInst = B;
1411
1412 if (DependentInst) {
1413 // A has a store dependence on B (or on some load within GroupB) and
1414 // is part of a store group. Release A's group to prevent illegal
1415 // sinking of A below B. A will then be free to form another group
1416 // with instructions that precede it.
1417 if (GroupA && StoreGroups.contains(GroupA)) {
1418 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1419 "dependence between "
1420 << *A << " and " << *DependentInst << '\n');
1421 StoreGroups.remove(GroupA);
1422 releaseGroup(GroupA);
1423 }
1424 // If B is a load and part of an interleave group, no earlier loads
1425 // can be added to B's interleave group, because this would mean the
1426 // DependentInst would move across store A. Mark the interleave group
1427 // as complete.
1428 if (GroupB && LoadGroups.contains(GroupB)) {
1429 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B
1430 << " as complete.\n");
1431 CompletedLoadGroups.insert(GroupB);
1432 }
1433 }
1434 }
1435 if (CompletedLoadGroups.contains(GroupB)) {
1436 // Skip trying to add A to B, continue to look for other conflicting A's
1437 // in groups to be released.
1438 continue;
1439 }
1440
1441 // At this point, we've checked for illegal code motion. If either A or B
1442 // isn't strided, there's nothing left to do.
1443 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1444 continue;
1445
1446 // Ignore A if it's already in a group or isn't the same kind of memory
1447 // operation as B.
1448 // Note that mayReadFromMemory() isn't mutually exclusive to
1449 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1450 // here, canVectorizeMemory() should have returned false - except for the
1451 // case we asked for optimization remarks.
1452 if (isInterleaved(A) ||
1453 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1454 (A->mayWriteToMemory() != B->mayWriteToMemory()))
1455 continue;
1456
1457 // Check rules 1 and 2. Ignore A if its stride or size is different from
1458 // that of B.
1459 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1460 continue;
1461
1462 // Ignore A if the memory object of A and B don't belong to the same
1463 // address space
1465 continue;
1466
1467 // Calculate the distance from A to B.
1468 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1469 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1470 if (!DistToB)
1471 continue;
1472 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1473
1474 // Check rule 3. Ignore A if its distance to B is not a multiple of the
1475 // size.
1476 if (DistanceToB % static_cast<int64_t>(DesB.Size))
1477 continue;
1478
1479 // All members of a predicated interleave-group must have the same predicate,
1480 // and currently must reside in the same BB.
1481 BasicBlock *BlockA = A->getParent();
1482 BasicBlock *BlockB = B->getParent();
1483 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1484 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1485 continue;
1486
1487 // The index of A is the index of B plus A's distance to B in multiples
1488 // of the size.
1489 int IndexA =
1490 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1491
1492 // Try to insert A into B's group.
1493 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) {
1494 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1495 << " into the interleave group with" << *B
1496 << '\n');
1497 InterleaveGroupMap[A] = GroupB;
1498
1499 // Set the first load in program order as the insert position.
1500 if (A->mayReadFromMemory())
1501 GroupB->setInsertPos(A);
1502 }
1503 } // Iteration over A accesses.
1504 } // Iteration over B accesses.
1505
1506 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1507 int Index,
1508 const char *FirstOrLast) -> bool {
1509 Instruction *Member = Group->getMember(Index);
1510 assert(Member && "Group member does not exist");
1511 Value *MemberPtr = getLoadStorePointerOperand(Member);
1512 Type *AccessTy = getLoadStoreType(Member);
1513 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1514 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1515 return false;
1516 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1517 << FirstOrLast
1518 << " group member potentially pointer-wrapping.\n");
1519 releaseGroup(Group);
1520 return true;
1521 };
1522
1523 // Remove interleaved groups with gaps whose memory
1524 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1525 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1526 // not check wrapping (see documentation there).
1527 // FORNOW we use Assume=false;
1528 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1529 // of runtime SCEV assumptions checks (thereby potentially failing to
1530 // vectorize altogether).
1531 // Additional optional optimizations:
1532 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1533 // wrap then we can deduce that all pointers in the group don't wrap.
1534 // This means that we can forcefully peel the loop in order to only have to
1535 // check the first pointer for no-wrap. When we'll change to use Assume=true
1536 // we'll only need at most one runtime check per interleaved group.
1537 for (auto *Group : LoadGroups) {
1538 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1539 // load would wrap around the address space we would do a memory access at
1540 // nullptr even without the transformation.
1541 if (Group->getNumMembers() == Group->getFactor())
1542 continue;
1543
1544 // Case 2: If first and last members of the group don't wrap this implies
1545 // that all the pointers in the group don't wrap.
1546 // So we check only group member 0 (which is always guaranteed to exist),
1547 // and group member Factor - 1; If the latter doesn't exist we rely on
1548 // peeling (if it is a non-reversed access -- see Case 3).
1549 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first"))
1550 continue;
1551 if (Group->getMember(Group->getFactor() - 1))
1552 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, "last");
1553 else {
1554 // Case 3: A non-reversed interleaved load group with gaps: We need
1555 // to execute at least one scalar epilogue iteration. This will ensure
1556 // we don't speculatively access memory out-of-bounds. We only need
1557 // to look for a member at index factor - 1, since every group must have
1558 // a member at index zero.
1559 if (Group->isReverse()) {
1560 LLVM_DEBUG(
1561 dbgs() << "LV: Invalidate candidate interleaved group due to "
1562 "a reverse access with gaps.\n");
1563 releaseGroup(Group);
1564 continue;
1565 }
1566 LLVM_DEBUG(
1567 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1568 RequiresScalarEpilogue = true;
1569 }
1570 }
1571
1572 for (auto *Group : StoreGroups) {
1573 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1574 // store would wrap around the address space we would do a memory access at
1575 // nullptr even without the transformation.
1576 if (Group->getNumMembers() == Group->getFactor())
1577 continue;
1578
1579 // Interleave-store-group with gaps is implemented using masked wide store.
1580 // Remove interleaved store groups with gaps if
1581 // masked-interleaved-accesses are not enabled by the target.
1582 if (!EnablePredicatedInterleavedMemAccesses) {
1583 LLVM_DEBUG(
1584 dbgs() << "LV: Invalidate candidate interleaved store group due "
1585 "to gaps.\n");
1586 releaseGroup(Group);
1587 continue;
1588 }
1589
1590 // Case 2: If first and last members of the group don't wrap this implies
1591 // that all the pointers in the group don't wrap.
1592 // So we check only group member 0 (which is always guaranteed to exist),
1593 // and the last group member. Case 3 (scalar epilog) is not relevant for
1594 // stores with gaps, which are implemented with masked-store (rather than
1595 // speculative access, as in loads).
1596 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first"))
1597 continue;
1598 for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1599 if (Group->getMember(Index)) {
1600 InvalidateGroupIfMemberMayWrap(Group, Index, "last");
1601 break;
1602 }
1603 }
1604}
1605
1607 // If no group had triggered the requirement to create an epilogue loop,
1608 // there is nothing to do.
1610 return;
1611
1612 // Release groups requiring scalar epilogues. Note that this also removes them
1613 // from InterleaveGroups.
1614 bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) {
1615 if (!Group->requiresScalarEpilogue())
1616 return false;
1617 LLVM_DEBUG(
1618 dbgs()
1619 << "LV: Invalidate candidate interleaved group due to gaps that "
1620 "require a scalar epilogue (not allowed under optsize) and cannot "
1621 "be masked (not enabled). \n");
1622 releaseGroupWithoutRemovingFromSet(Group);
1623 return true;
1624 });
1625 assert(ReleasedGroup && "At least one group must be invalidated, as a "
1626 "scalar epilogue was required");
1627 (void)ReleasedGroup;
1628 RequiresScalarEpilogue = false;
1629}
1630
1631template <typename InstT>
1632void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1633 llvm_unreachable("addMetadata can only be used for Instruction");
1634}
1635
1636namespace llvm {
1637template <>
1640 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1641 [](std::pair<int, Instruction *> p) { return p.second; });
1642 propagateMetadata(NewInst, VL);
1643}
1644} // namespace llvm
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
uint64_t Size
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const NodeList & List
Definition: RDFGraph.cpp:200
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static unsigned getScalarSizeInBits(Type *Ty)
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static Value * concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, Value *V2)
A helper function for concatenating vectors.
static cl::opt< unsigned > MaxInterleaveGroupFactor("max-interleave-group-factor", cl::Hidden, cl::desc("Maximum factor for an interleaved access group (default = 8)"), cl::init(8))
Maximum factor for an interleaved memory access.
static void addToAccessGroupList(ListT &List, MDNode *AccGroups)
Add all access groups in AccGroups to List.
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition: APInt.h:1407
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition: APInt.h:1330
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:380
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1468
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:200
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1542
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:171
iterator end() const
Definition: ArrayRef.h:157
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
iterator begin() const
Definition: ArrayRef.h:156
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
Definition: BasicBlock.cpp:296
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1421
This is an important base class in LLVM.
Definition: Constant.h:42
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:152
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
const ElemTy & getOrInsertLeaderValue(const ElemTy &V)
getOrInsertLeaderValue - Return the leader for the specified value that is in the set.
member_iterator member_end() const
member_iterator member_begin(iterator I) const
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:113
ConstantInt * getInt1(bool V)
Get a constant value representing either true or false.
Definition: IRBuilder.h:480
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition: IRBuilder.h:2532
This instruction inserts a single (scalar) element into a VectorType value.
bool mayReadOrWriteMemory() const
Return true if this instruction may read or write memory.
Definition: Instruction.h:763
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:390
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1679
void getAllMetadataOtherThanDebugLoc(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
This does the same thing as getAllMetadata, except that it filters out the debug location.
Definition: Instruction.h:415
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:488
uint32_t getFactor() const
Definition: VectorUtils.h:504
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
Definition: VectorUtils.h:558
uint32_t getIndex(const InstTy *Instr) const
Get the index for the given member.
Definition: VectorUtils.h:565
void setInsertPos(InstTy *Inst)
Definition: VectorUtils.h:575
bool isReverse() const
Definition: VectorUtils.h:503
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign)
Try to insert a new member Instr with index Index and alignment NewAlign.
Definition: VectorUtils.h:513
uint32_t getNumMembers() const
Definition: VectorUtils.h:506
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
Definition: VectorUtils.h:675
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
Definition: VectorUtils.h:686
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
Definition: VectorUtils.h:667
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
BlockT * getHeader() const
Store the result of a depth first search within basic blocks contained by a single loop.
Definition: LoopIterator.h:97
Metadata node.
Definition: Metadata.h:1069
static MDNode * getMostGenericAliasScope(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1141
static MDNode * getMostGenericTBAA(MDNode *A, MDNode *B)
ArrayRef< MDOperand > operands() const
Definition: Metadata.h:1428
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1545
static MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1173
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1436
static MDNode * intersect(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1128
LLVMContext & getContext() const
Definition: Metadata.h:1233
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:891
static MDNode * combine(LLVMContext &Ctx, const MMRAMetadata &A, const MMRAMetadata &B)
Combines A and B according to MMRA semantics.
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
reverse_iterator rend()
Definition: MapVector.h:76
iterator find(const KeyT &Key)
Definition: MapVector.h:167
bool empty() const
Definition: MapVector.h:79
reverse_iterator rbegin()
Definition: MapVector.h:74
Root of the metadata hierarchy.
Definition: Metadata.h:62
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:310
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
This class represents a constant integer value.
const APInt & getAPInt() const
This class represents an analyzed expression in the program.
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
bool remove(const value_type &X)
Remove an item from the set vector.
Definition: SetVector.h:188
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
Definition: SetVector.h:254
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:458
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:704
void reserve(size_type N)
Definition: SmallVector.h:663
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
Identifies if the vector form of the intrinsic has a scalar operand.
bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:228
static bool isVPCast(Intrinsic::ID ID)
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
Base class of all SIMD vector types.
Definition: DerivedTypes.h:427
Type * getElementType() const
Definition: DerivedTypes.h:460
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
bool isTargetIntrinsic(ID IID)
isTargetIntrinsic - Returns true if IID is an intrinsic specific to a certain target.
Definition: Intrinsics.cpp:617
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:599
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool isTriviallyScalarizable(Intrinsic::ID ID, const TargetTransformInfo *TTI)
Identify if the intrinsic is trivially scalarizable.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition: bit.h:317
Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition: bit.h:342
MDNode * intersectAccessGroups(const Instruction *Inst1, const Instruction *Inst2)
Compute the access-group list of access groups that Inst1 and Inst2 are both in.
unsigned M1(unsigned Val)
Definition: VE.h:376
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:44
llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
constexpr int PoisonMaskElem
bool isValidAsAccessGroup(MDNode *AccGroup)
Return whether an MDNode might represent an access group.
Definition: LoopInfo.cpp:1154
Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
bool isVectorIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
MDNode * uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2)
Compute the union of two access-group lists.
unsigned M0(unsigned Val)
Definition: VE.h:375
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
void getShuffleMaskWithWidestElts(ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Repetitively apply widenShuffleMaskElts() for as long as it succeeds, to get the shuffle mask with wi...
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
void processShuffleMasks(ArrayRef< int > Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref< void()> NoInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned)> SingleInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned, bool)> ManyInputsAction)
Splits and processes shuffle mask depending on the number of input and output registers.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition: STLExtras.h:2087
bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
Definition: VectorUtils.cpp:46
llvm::SmallVector< int, 16 > createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs)
Create a sequential shuffle mask.
bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860