72#define DEBUG_TYPE "loop-accesses"
76 cl::desc(
"Sets the SIMD width. Zero is autoselect."),
82 cl::desc(
"Sets the vectorization interleave count. "
83 "Zero is autoselect."),
90 cl::desc(
"When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
98 cl::desc(
"Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
108 cl::desc(
"Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
125 cl::desc(
"Enable symbolic stride memory access versioning"));
130 "store-to-load-forwarding-conflict-detection",
cl::Hidden,
131 cl::desc(
"Enable conflict detection in loop-access analysis"),
136 cl::desc(
"Maximum recursion depth when finding forked SCEVs (default = 5)"),
141 cl::desc(
"Speculate that non-constant strides are unit in LAA"),
147 "Hoist inner loop runtime memory checks to outer loop if possible"),
152 return ::VectorizationInterleave.getNumOccurrences() > 0;
179 <<
" by: " << *Expr <<
"\n");
185 :
High(RtCheck.Pointers[Index].End),
Low(RtCheck.Pointers[Index].Start),
217 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
223 bool CheckForNonNull, CheckForFreed;
224 Value *StartPtrV = StartPtr->getValue();
226 DL, CheckForNonNull, CheckForFreed);
228 if (DerefBytes && (CheckForNonNull || CheckForFreed))
238 StartPtrV, {Attribute::Dereferenceable}, *AC,
239 L->getLoopPredecessor()->getTerminator(), DT);
246 if (DerefBytesSCEV->
isZero())
266 const SCEV *OffsetAtLastIter =
268 if (!OffsetAtLastIter) {
278 if (!OffsetAtLastIter)
287 if (IsKnownNonNegative) {
310 DenseMap<std::pair<const SCEV *, Type *>,
313 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
314 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
317 {{PtrExpr, AccessTy},
321 PtrBoundsPair = &Iter->second;
331 ScStart = ScEnd = PtrExpr;
333 ScStart = AR->getStart();
339 ScEnd = AR->evaluateAtIteration(BTC, *SE);
349 DT, AC, LoopGuards)) {
350 ScEnd = AR->evaluateAtIteration(MaxBTC, *SE);
355 ConstantInt::get(EltSizeSCEV->
getType(), -1), AR->getType())));
358 const SCEV *Step = AR->getStepRecurrence(*SE);
363 if (CStep->getValue()->isNegative())
381 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
383 *PtrBoundsPair = Res;
390 Type *AccessTy,
bool WritePtr,
391 unsigned DepSetId,
unsigned ASId,
397 Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC, PSE.
getSE(),
398 &DC.getPointerBounds(), DC.getDT(), DC.getAC(), LoopGuards);
401 "must be able to compute both start and end expressions");
402 Pointers.emplace_back(
Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
406bool RuntimePointerChecking::tryToCreateDiffCheck(
429 if (AccSrc.
size() != 1 || AccSink.
size() != 1)
433 if (AccSink[0] < AccSrc[0])
437 const SCEV *SrcStart;
438 const SCEV *SinkStart;
440 if (!
match(Src->Expr,
459 std::max(
DL.getTypeAllocSize(SrcTy),
DL.getTypeAllocSize(DstTy));
489 const Loop *StartARLoop = SrcStartAR->getLoop();
490 if (StartARLoop == SinkStartAR->getLoop() &&
495 SrcStartAR->getStepRecurrence(*SE) !=
496 SinkStartAR->getStepRecurrence(*SE)) {
497 LLVM_DEBUG(
dbgs() <<
"LAA: Not creating diff runtime check, since these "
498 "cannot be hoisted out of the outer loop\n");
504 <<
"SrcStart: " << *SrcStartInt <<
'\n'
505 <<
"SinkStartInt: " << *SinkStartInt <<
'\n');
506 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
507 Src->NeedsFreeze ||
Sink->NeedsFreeze);
512 SmallVector<RuntimePointerCheck, 4> Checks;
520 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
521 Checks.emplace_back(&CGI, &CGJ);
530 assert(Checks.empty() &&
"Checks is not empty");
531 groupChecks(DepCands, UseDependencies);
537 for (
const auto &
I : M.Members)
538 for (
const auto &J :
N.Members)
551 return Diff->isNegative() ? J :
I;
558 RtCheck.
Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
559 RtCheck.
Pointers[Index].NeedsFreeze, *RtCheck.SE);
563 const SCEV *End,
unsigned AS,
567 "all pointers in a checking group must be in the same address space");
593void RuntimePointerChecking::groupChecks(
639 if (!UseDependencies) {
645 unsigned TotalComparisons = 0;
648 for (
unsigned Index = 0; Index <
Pointers.size(); ++Index)
649 PositionMap[
Pointers[Index].PointerValue].push_back(Index);
675 auto PointerI = PositionMap.
find(M.getPointer());
678 if (PointerI == PositionMap.
end())
680 for (
unsigned Pointer : PointerI->second) {
697 if (Group.addPointer(Pointer, *
this)) {
707 Groups.emplace_back(Pointer, *
this);
720 return (PtrToPartition[PtrIdx1] != -1 &&
721 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
744 for (
const auto &[Idx, CG] :
enumerate(CheckingGroups))
745 PtrIndices[&CG] = Idx;
751 unsigned Depth)
const {
754 for (
const auto &[Check1, Check2] : Checks) {
755 const auto &
First = Check1->Members, &Second = Check2->Members;
757 OS.
indent(
Depth + 2) <<
"Comparing group GRP" << PtrIndices.at(Check1)
759 for (
unsigned K :
First)
761 OS.
indent(
Depth + 2) <<
"Against group GRP" << PtrIndices.at(Check2)
763 for (
unsigned K : Second)
776 OS.
indent(
Depth + 2) <<
"Group GRP" << PtrIndices.at(&CG) <<
":\n";
777 OS.
indent(
Depth + 4) <<
"(Low: " << *CG.Low <<
" High: " << *CG.High
779 for (
unsigned Member : CG.Members) {
791class AccessAnalysis {
801 : TheLoop(TheLoop), BAA(*
AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
802 LoopAliasScopes(LoopAliasScopes) {
804 BAA.enableCrossIterationMode();
810 AST.add(adjustLoc(
Loc));
811 Accesses[MemAccessInfo(
Ptr,
false)].insert(AccessTy);
813 ReadOnlyPtr.insert(
Ptr);
817 void addStore(
const MemoryLocation &Loc,
Type *AccessTy) {
819 AST.add(adjustLoc(Loc));
820 Accesses[MemAccessInfo(
Ptr,
true)].insert(AccessTy);
830 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
832 const DenseMap<Value *, const SCEV *> &Strides,
833 DenseMap<Value *, unsigned> &DepSetId,
834 Loop *TheLoop,
unsigned &RunningDepId,
835 unsigned ASId,
bool Assume);
845 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, Loop *TheLoop,
846 const DenseMap<Value *, const SCEV *> &Strides,
847 Value *&UncomputablePtr,
bool AllowPartial);
851 void buildDependenceSets() {
852 processMemAccesses();
860 bool isDependencyCheckNeeded()
const {
return !CheckDeps.empty(); }
863 void resetDepChecks(MemoryDepChecker &DepChecker) {
868 const MemAccessInfoList &getDependenciesToCheck()
const {
return CheckDeps; }
871 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
875 MemoryLocation adjustLoc(MemoryLocation Loc)
const {
885 MDNode *adjustAliasScopeList(MDNode *ScopeList)
const {
892 return LoopAliasScopes.contains(cast<MDNode>(Scope));
901 void processMemAccesses();
911 MemAccessInfoList CheckDeps;
914 SmallPtrSet<Value*, 16> ReadOnlyPtr;
938 bool IsRTCheckAnalysisNeeded =
false;
941 PredicatedScalarEvolution &PSE;
943 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
947 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
954static std::optional<int64_t>
958 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Scalable object: " << *AccessTy
966 dbgs() <<
"LAA: Bad stride - Not striding over innermost loop ";
970 dbgs() <<
"SCEV: " << *AR <<
"\n";
979 const APInt *APStepVal;
982 dbgs() <<
"LAA: Bad stride - Not a constant strided ";
985 dbgs() <<
"SCEV: " << *AR <<
"\n";
991 TypeSize AllocSize =
DL.getTypeAllocSize(AccessTy);
995 std::optional<int64_t> StepVal = APStepVal->
trySExtValue();
1000 return *StepVal %
Size ? std::nullopt : std::make_optional(*StepVal /
Size);
1007 std::optional<int64_t> Stride = std::nullopt) {
1021 GEP &&
GEP->hasNoUnsignedSignedWrap())
1032 (Stride == 1 || Stride == -1))
1036 if (
Ptr && Assume) {
1039 <<
"LAA: Pointer: " << *
Ptr <<
"\n"
1040 <<
"LAA: SCEV: " << *AR <<
"\n"
1041 <<
"LAA: Added an overflow assumption\n");
1054 while (!WorkList.
empty()) {
1062 if (PN && InnermostLoop.
contains(PN->getParent()) &&
1063 PN->getParent() != InnermostLoop.
getHeader()) {
1108 auto GetBinOpExpr = [&SE](
unsigned Opcode,
const SCEV *L,
const SCEV *R) {
1110 case Instruction::Add:
1112 case Instruction::Sub:
1120 unsigned Opcode =
I->getOpcode();
1122 case Instruction::GetElementPtr: {
1124 Type *SourceTy =
GEP->getSourceElementType();
1127 if (
I->getNumOperands() != 2 || SourceTy->
isVectorTy()) {
1137 bool NeedsFreeze =
any_of(BaseScevs, UndefPoisonCheck) ||
1138 any_of(OffsetScevs, UndefPoisonCheck);
1143 if (OffsetScevs.
size() == 2 && BaseScevs.
size() == 1)
1145 else if (BaseScevs.
size() == 2 && OffsetScevs.
size() == 1)
1148 ScevList.emplace_back(Scev, NeedsFreeze);
1159 for (
auto [
B, O] :
zip(BaseScevs, OffsetScevs)) {
1170 case Instruction::Select: {
1177 if (ChildScevs.
size() == 2)
1183 case Instruction::PHI: {
1188 if (
I->getNumOperands() == 2) {
1192 if (ChildScevs.
size() == 2)
1198 case Instruction::Add:
1199 case Instruction::Sub: {
1207 any_of(LScevs, UndefPoisonCheck) ||
any_of(RScevs, UndefPoisonCheck);
1212 if (LScevs.
size() == 2 && RScevs.
size() == 1)
1214 else if (RScevs.
size() == 2 && LScevs.
size() == 1)
1217 ScevList.emplace_back(Scev, NeedsFreeze);
1221 for (
auto [L, R] :
zip(LScevs, RScevs))
1222 ScevList.emplace_back(GetBinOpExpr(Opcode,
get<0>(L),
get<0>(R)),
1228 LLVM_DEBUG(
dbgs() <<
"ForkedPtr unhandled instruction: " << *
I <<
"\n");
1234bool AccessAnalysis::createCheckForAccess(
1238 unsigned &RunningDepId,
unsigned ASId,
bool Assume) {
1246 "Must have some runtime-check pointer candidates");
1250 auto IsLoopInvariantOrAR =
1255 if (RTCheckPtrs.
size() == 2 &&
all_of(RTCheckPtrs, IsLoopInvariantOrAR)) {
1258 <<
"\t(" << Idx <<
") " << *Q.getPointer() <<
"\n");
1265 for (
auto &
P : RTCheckPtrs) {
1278 if (RTCheckPtrs.size() == 1) {
1284 if (!
isNoWrap(PSE, AR, RTCheckPtrs.size() == 1 ?
Ptr :
nullptr, AccessTy,
1289 for (
const auto &[PtrExpr, NeedsFreeze] : RTCheckPtrs) {
1293 if (isDependencyCheckNeeded()) {
1295 unsigned &LeaderId = DepSetId[Leader];
1297 LeaderId = RunningDepId++;
1301 DepId = RunningDepId++;
1303 bool IsWrite =
Access.getInt();
1304 RtCheck.
insert(TheLoop,
Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1312bool AccessAnalysis::canCheckPtrAtRT(
1315 bool AllowPartial) {
1318 bool CanDoRT =
true;
1320 bool MayNeedRTCheck =
false;
1321 if (!IsRTCheckAnalysisNeeded)
return true;
1323 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1328 for (
const auto &AS : AST) {
1329 int NumReadPtrChecks = 0;
1330 int NumWritePtrChecks = 0;
1331 bool CanDoAliasSetRT =
true;
1333 auto ASPointers = AS.getPointers();
1337 unsigned RunningDepId = 1;
1345 for (
const Value *ConstPtr : ASPointers) {
1347 bool IsWrite =
Accesses.contains(MemAccessInfo(
Ptr,
true));
1349 ++NumWritePtrChecks;
1357 if (NumWritePtrChecks == 0 ||
1358 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1359 assert((ASPointers.size() <= 1 ||
1362 MemAccessInfo AccessWrite(
const_cast<Value *
>(
Ptr),
1364 return !DepCands.
contains(AccessWrite);
1366 "Can only skip updating CanDoRT below, if all entries in AS "
1367 "are reads or there is at most 1 entry");
1371 for (
auto &
Access : AccessInfos) {
1373 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1374 DepSetId, TheLoop, RunningDepId, ASId,
1377 << *
Access.getPointer() <<
'\n');
1379 CanDoAliasSetRT =
false;
1393 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.
empty();
1397 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1401 CanDoAliasSetRT =
true;
1402 for (
const auto &[
Access, AccessTy] : Retries) {
1403 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1404 DepSetId, TheLoop, RunningDepId, ASId,
1406 CanDoAliasSetRT =
false;
1407 UncomputablePtr =
Access.getPointer();
1414 CanDoRT &= CanDoAliasSetRT;
1415 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1424 unsigned NumPointers = RtCheck.
Pointers.size();
1425 for (
unsigned i = 0; i < NumPointers; ++i) {
1426 for (
unsigned j = i + 1;
j < NumPointers; ++
j) {
1428 if (RtCheck.
Pointers[i].DependencySetId ==
1429 RtCheck.
Pointers[j].DependencySetId)
1442 dbgs() <<
"LAA: Runtime check would require comparison between"
1443 " different address spaces\n");
1449 if (MayNeedRTCheck && (CanDoRT || AllowPartial))
1453 <<
" pointer comparisons.\n");
1460 bool CanDoRTIfNeeded = !RtCheck.
Need || CanDoRT;
1461 assert(CanDoRTIfNeeded == (CanDoRT || !MayNeedRTCheck) &&
1462 "CanDoRTIfNeeded depends on RtCheck.Need");
1463 if (!CanDoRTIfNeeded && !AllowPartial)
1465 return CanDoRTIfNeeded;
1468void AccessAnalysis::processMemAccesses() {
1478 dbgs() <<
"\t" << *
A.getPointer() <<
" ("
1481 : (ReadOnlyPtr.contains(
A.getPointer()) ?
"read-only"
1490 for (
const auto &AS : AST) {
1494 auto ASPointers = AS.getPointers();
1496 bool SetHasWrite =
false;
1501 UnderlyingObjToAccessMap;
1502 UnderlyingObjToAccessMap ObjToLastAccess;
1505 PtrAccessMap DeferredAccesses;
1509 for (
int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1510 bool UseDeferred = SetIteration > 0;
1511 PtrAccessMap &S = UseDeferred ? DeferredAccesses :
Accesses;
1513 for (
const Value *ConstPtr : ASPointers) {
1518 for (
const auto &[AC,
_] : S) {
1519 if (AC.getPointer() !=
Ptr)
1522 bool IsWrite = AC.getInt();
1526 bool IsReadOnlyPtr = ReadOnlyPtr.contains(
Ptr) && !IsWrite;
1527 if (UseDeferred && !IsReadOnlyPtr)
1531 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1532 S.contains(MemAccessInfo(
Ptr,
false))) &&
1533 "Alias-set pointer not in the access set?");
1543 if (!UseDeferred && IsReadOnlyPtr) {
1546 DeferredAccesses.insert({
Access, {}});
1554 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1555 CheckDeps.push_back(
Access);
1556 IsRTCheckAnalysisNeeded =
true;
1568 <<
"Underlying objects for pointer " << *
Ptr <<
"\n");
1569 for (
const Value *UnderlyingObj : UOs) {
1578 auto [It,
Inserted] = ObjToLastAccess.try_emplace(
1596std::optional<int64_t>
1600 bool Assume,
bool ShouldCheckWrap) {
1605 assert(
Ptr->getType()->isPointerTy() &&
"Unexpected non-ptr");
1613 <<
" SCEV: " << *PtrScev <<
"\n");
1614 return std::nullopt;
1617 std::optional<int64_t> Stride =
1619 if (!ShouldCheckWrap || !Stride)
1622 if (
isNoWrap(PSE, AR,
Ptr, AccessTy, Lp, Assume, Stride))
1626 dbgs() <<
"LAA: Bad stride - Pointer may wrap in the address space "
1627 << *
Ptr <<
" SCEV: " << *AR <<
"\n");
1628 return std::nullopt;
1636 assert(PtrA && PtrB &&
"Expected non-nullptr pointers.");
1644 return std::nullopt;
1651 return std::nullopt;
1652 unsigned IdxWidth =
DL.getIndexSizeInBits(ASA);
1654 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1660 std::optional<int64_t> Val;
1661 if (PtrA1 == PtrB1) {
1668 return std::nullopt;
1670 IdxWidth =
DL.getIndexSizeInBits(ASA);
1671 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1680 std::optional<APInt> Diff =
1683 return std::nullopt;
1684 Val = Diff->trySExtValue();
1688 return std::nullopt;
1690 int64_t
Size =
DL.getTypeStoreSize(ElemTyA);
1691 int64_t Dist = *Val /
Size;
1695 if (!StrictCheck || Dist *
Size == Val)
1697 return std::nullopt;
1704 VL, [](
const Value *V) {
return V->getType()->isPointerTy(); }) &&
1705 "Expected list of pointer operands.");
1708 Value *Ptr0 = VL[0];
1710 using DistOrdPair = std::pair<int64_t, unsigned>;
1712 std::set<DistOrdPair,
decltype(Compare)> Offsets(Compare);
1713 Offsets.emplace(0, 0);
1714 bool IsConsecutive =
true;
1716 std::optional<int64_t> Diff =
1724 auto [It, IsInserted] = Offsets.emplace(
Offset, Idx);
1728 IsConsecutive &= std::next(It) == Offsets.end();
1730 SortedIndices.
clear();
1731 if (!IsConsecutive) {
1734 for (
auto [Idx, Off] :
enumerate(Offsets))
1735 SortedIndices[Idx] = Off.second;
1749 std::optional<int64_t> Diff =
1758 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1759 InstMap.push_back(SI);
1767 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1768 InstMap.push_back(LI);
1830bool MemoryDepChecker::couldPreventStoreLoadForward(
uint64_t Distance,
1832 unsigned CommonStride) {
1845 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1847 uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 =
1849 MaxStoreLoadForwardSafeDistanceInBits);
1852 for (
uint64_t VF = 2 * TypeByteSize;
1853 VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
1856 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1857 MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
1862 if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
1864 dbgs() <<
"LAA: Distance " << Distance
1865 <<
" that could cause a store-load forwarding conflict\n");
1870 MaxVFWithoutSLForwardIssuesPowerOf2 <
1871 MaxStoreLoadForwardSafeDistanceInBits &&
1872 MaxVFWithoutSLForwardIssuesPowerOf2 !=
1875 bit_floor(MaxVFWithoutSLForwardIssuesPowerOf2 / CommonStride);
1876 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1877 MaxStoreLoadForwardSafeDistanceInBits =
1878 std::min(MaxStoreLoadForwardSafeDistanceInBits, MaxVFInBits);
1901 const SCEV &MaxBTC,
const SCEV &Dist,
1924 const SCEV *CastedDist = &Dist;
1925 const SCEV *CastedProduct = Product;
1932 if (DistTypeSizeBits > ProductTypeSizeBits)
1957 assert(Stride > 1 &&
"The stride must be greater than 1");
1958 assert(TypeByteSize > 0 &&
"The type size in byte must be non-zero");
1959 assert(Distance > 0 &&
"The distance must be non-zero");
1962 if (Distance % TypeByteSize)
1981 return Distance % Stride;
1984bool MemoryDepChecker::areAccessesCompletelyBeforeOrAfter(
const SCEV *Src,
1988 const SCEV *BTC = PSE.getBackedgeTakenCount();
1989 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
1990 ScalarEvolution &SE = *PSE.getSE();
1991 const auto &[SrcStart_, SrcEnd_] =
1993 &SE, &PointerBounds, DT, AC, LoopGuards);
1997 const auto &[SinkStart_, SinkEnd_] =
1999 &SE, &PointerBounds, DT, AC, LoopGuards);
2018 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
2019MemoryDepChecker::getDependenceDistanceStrideAndSize(
2020 const AccessAnalysis::MemAccessInfo &
A, Instruction *AInst,
2021 const AccessAnalysis::MemAccessInfo &
B, Instruction *BInst) {
2022 const auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2023 auto &SE = *PSE.getSE();
2024 const auto &[APtr, AIsWrite] =
A;
2025 const auto &[BPtr, BIsWrite] =
B;
2028 if (!AIsWrite && !BIsWrite)
2035 if (APtr->getType()->getPointerAddressSpace() !=
2036 BPtr->getType()->getPointerAddressSpace())
2039 std::optional<int64_t> StrideAPtr =
2040 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides,
true,
true);
2041 std::optional<int64_t> StrideBPtr =
2042 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides,
true,
true);
2044 const SCEV *Src = PSE.getSCEV(APtr);
2045 const SCEV *
Sink = PSE.getSCEV(BPtr);
2050 if (StrideAPtr && *StrideAPtr < 0) {
2059 LLVM_DEBUG(
dbgs() <<
"LAA: Src Scev: " << *Src <<
"Sink Scev: " << *Sink
2061 LLVM_DEBUG(
dbgs() <<
"LAA: Distance for " << *AInst <<
" to " << *BInst
2062 <<
": " << *Dist <<
"\n");
2071 if (!StrideAPtr || !StrideBPtr) {
2072 LLVM_DEBUG(
dbgs() <<
"Pointer access with non-constant stride\n");
2076 int64_t StrideAPtrInt = *StrideAPtr;
2077 int64_t StrideBPtrInt = *StrideBPtr;
2078 LLVM_DEBUG(
dbgs() <<
"LAA: Src induction step: " << StrideAPtrInt
2079 <<
" Sink induction step: " << StrideBPtrInt <<
"\n");
2082 if (!StrideAPtrInt || !StrideBPtrInt)
2087 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
2089 dbgs() <<
"Pointer access with strides in different directions\n");
2093 TypeSize AStoreSz =
DL.getTypeStoreSize(ATy);
2094 TypeSize BStoreSz =
DL.getTypeStoreSize(BTy);
2098 uint64_t ASz =
DL.getTypeAllocSize(ATy);
2099 uint64_t BSz =
DL.getTypeAllocSize(BTy);
2100 uint64_t TypeByteSize = (AStoreSz == BStoreSz) ? BSz : 0;
2102 uint64_t StrideAScaled = std::abs(StrideAPtrInt) * ASz;
2103 uint64_t StrideBScaled = std::abs(StrideBPtrInt) * BSz;
2105 uint64_t MaxStride = std::max(StrideAScaled, StrideBScaled);
2107 std::optional<uint64_t> CommonStride;
2108 if (StrideAScaled == StrideBScaled)
2109 CommonStride = StrideAScaled;
2114 ShouldRetryWithRuntimeChecks |= StrideAPtrInt == StrideBPtrInt;
2122 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2123 TypeByteSize, AIsWrite, BIsWrite);
2127MemoryDepChecker::isDependent(
const MemAccessInfo &
A,
unsigned AIdx,
2129 assert(AIdx < BIdx &&
"Must pass arguments in program order");
2134 auto CheckCompletelyBeforeOrAfter = [&]() {
2135 auto *APtr =
A.getPointer();
2136 auto *BPtr =
B.getPointer();
2139 const SCEV *Src = PSE.getSCEV(APtr);
2140 const SCEV *
Sink = PSE.getSCEV(BPtr);
2141 return areAccessesCompletelyBeforeOrAfter(Src, ATy, Sink, BTy);
2147 getDependenceDistanceStrideAndSize(
A, InstMap[AIdx],
B, InstMap[BIdx]);
2148 if (std::holds_alternative<Dependence::DepType>(Res)) {
2150 CheckCompletelyBeforeOrAfter())
2152 return std::get<Dependence::DepType>(Res);
2155 auto &[Dist, MaxStride, CommonStride, TypeByteSize, AIsWrite, BIsWrite] =
2156 std::get<DepDistanceStrideAndSizeInfo>(Res);
2157 bool HasSameSize = TypeByteSize > 0;
2159 ScalarEvolution &SE = *PSE.getSE();
2160 auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2169 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), *Dist, MaxStride))
2174 const APInt *APDist =
nullptr;
2175 uint64_t ConstDist =
2182 if (ConstDist > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2201 LLVM_DEBUG(
dbgs() <<
"LAA: possibly zero dependence difference but "
2202 "different type sizes\n");
2206 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2221 couldPreventStoreLoadForward(ConstDist, TypeByteSize)) {
2223 dbgs() <<
"LAA: Forward but may prevent st->ld forwarding\n");
2234 if (MinDistance <= 0) {
2240 if (CheckCompletelyBeforeOrAfter())
2242 LLVM_DEBUG(
dbgs() <<
"LAA: ReadWrite-Write positive dependency with "
2243 "different type sizes\n");
2252 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2287 uint64_t MinDistanceNeeded = MaxStride * (MinNumIter - 1) + TypeByteSize;
2288 if (MinDistanceNeeded >
static_cast<uint64_t
>(MinDistance)) {
2297 LLVM_DEBUG(
dbgs() <<
"LAA: Failure because of positive minimum distance "
2298 << MinDistance <<
'\n');
2304 if (MinDistanceNeeded > MinDepDistBytes) {
2306 << MinDistanceNeeded <<
" size in bytes\n");
2311 std::min(
static_cast<uint64_t
>(MinDistance), MinDepDistBytes);
2313 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2315 couldPreventStoreLoadForward(MinDistance, TypeByteSize, *CommonStride))
2318 uint64_t MaxVF = MinDepDistBytes / MaxStride;
2319 LLVM_DEBUG(
dbgs() <<
"LAA: Positive min distance " << MinDistance
2320 <<
" with max VF = " << MaxVF <<
'\n');
2322 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2323 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2332 if (CheckCompletelyBeforeOrAfter())
2335 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2342 MinDepDistBytes = -1;
2357 bool AIIsWrite = AI->getInt();
2361 (AIIsWrite ? AI : std::next(AI));
2364 auto &Acc = Accesses[*AI];
2365 for (std::vector<unsigned>::iterator I1 = Acc.begin(), I1E = Acc.end();
2369 for (std::vector<unsigned>::iterator
2370 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2371 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2373 auto A = std::make_pair(&*AI, *I1);
2374 auto B = std::make_pair(&*OI, *I2);
2381 isDependent(*
A.first,
A.second, *
B.first,
B.second);
2388 if (RecordDependences) {
2390 Dependences.emplace_back(
A.second,
B.second,
Type);
2393 RecordDependences =
false;
2394 Dependences.clear();
2396 <<
"Too many dependences, stopped recording\n");
2408 LLVM_DEBUG(
dbgs() <<
"Total Dependences: " << Dependences.size() <<
"\n");
2415 auto I = Accesses.find(
Access);
2417 if (
I != Accesses.end()) {
2418 transform(
I->second, std::back_inserter(Insts),
2419 [&](
unsigned Idx) { return this->InstMap[Idx]; });
2430 "ForwardButPreventsForwarding",
2432 "BackwardVectorizable",
2433 "BackwardVectorizableButPreventsForwarding"};
2443bool LoopAccessInfo::canAnalyzeLoop() {
2452 recordAnalysis(
"NotInnerMostLoop") <<
"loop is not the innermost loop";
2459 dbgs() <<
"LAA: loop control flow is not understood by analyzer\n");
2460 recordAnalysis(
"CFGNotUnderstood")
2461 <<
"loop control flow is not understood by analyzer";
2470 recordAnalysis(
"CantComputeNumberOfIterations")
2471 <<
"could not determine number of loop iterations";
2472 LLVM_DEBUG(
dbgs() <<
"LAA: SCEV could not compute the loop exit count.\n");
2481bool LoopAccessInfo::analyzeLoop(AAResults *AA,
const LoopInfo *LI,
2482 const TargetLibraryInfo *TLI,
2483 DominatorTree *DT) {
2487 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2490 unsigned NumReads = 0;
2491 unsigned NumReadWrites = 0;
2493 bool HasComplexMemInst =
false;
2496 HasConvergentOp =
false;
2498 PtrRtChecking->Pointers.
clear();
2499 PtrRtChecking->Need =
false;
2503 const bool EnableMemAccessVersioningOfLoop =
2509 LoopBlocksRPO RPOT(TheLoop);
2511 for (BasicBlock *BB : RPOT) {
2514 for (Instruction &
I : *BB) {
2517 HasConvergentOp =
true;
2522 if (HasComplexMemInst && HasConvergentOp)
2526 if (HasComplexMemInst)
2531 for (
Metadata *
Op : Decl->getScopeList()->operands())
2544 if (
I.mayReadFromMemory()) {
2545 auto hasPointerArgs = [](CallBase *CB) {
2547 return Arg->getType()->isPointerTy();
2560 recordAnalysis(
"CantVectorizeInstruction", Ld)
2561 <<
"instruction cannot be vectorized";
2562 HasComplexMemInst =
true;
2565 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2566 recordAnalysis(
"NonSimpleLoad", Ld)
2567 <<
"read with atomic ordering or volatile read";
2569 HasComplexMemInst =
true;
2575 if (EnableMemAccessVersioningOfLoop)
2576 collectStridedAccess(Ld);
2581 if (
I.mayWriteToMemory()) {
2584 recordAnalysis(
"CantVectorizeInstruction", St)
2585 <<
"instruction cannot be vectorized";
2586 HasComplexMemInst =
true;
2589 if (!St->isSimple() && !IsAnnotatedParallel) {
2590 recordAnalysis(
"NonSimpleStore", St)
2591 <<
"write with atomic ordering or volatile write";
2593 HasComplexMemInst =
true;
2599 if (EnableMemAccessVersioningOfLoop)
2600 collectStridedAccess(St);
2605 if (HasComplexMemInst)
2613 if (!Stores.
size()) {
2619 AccessAnalysis
Accesses(TheLoop, AA, LI, DepCands, *PSE, LoopAliasScopes);
2626 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2630 SmallPtrSet<Value *, 16> UniformStores;
2632 for (StoreInst *ST : Stores) {
2635 if (isInvariant(
Ptr)) {
2637 StoresToInvariantAddresses.push_back(ST);
2638 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2645 if (Seen.
insert({Ptr, AccessTy}).second) {
2652 if (blockNeedsPredication(
ST->getParent(), TheLoop, DT))
2656 [&Accesses, AccessTy, Loc](
Value *
Ptr) {
2657 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2658 Accesses.addStore(NewLoc, AccessTy);
2663 if (IsAnnotatedParallel) {
2665 dbgs() <<
"LAA: A loop annotated parallel, ignore memory dependency "
2670 for (LoadInst *LD : Loads) {
2680 bool IsReadOnlyPtr =
false;
2682 if (Seen.
insert({Ptr, AccessTy}).second ||
2685 IsReadOnlyPtr =
true;
2691 LLVM_DEBUG(
dbgs() <<
"LAA: Found an unsafe dependency between a uniform "
2692 "load and uniform store to the same address!\n");
2693 HasLoadStoreDependenceInvolvingLoopInvariantAddress =
true;
2700 if (blockNeedsPredication(
LD->getParent(), TheLoop, DT))
2704 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](
Value *
Ptr) {
2705 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2706 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2712 if (NumReadWrites == 1 && NumReads == 0) {
2719 Accesses.buildDependenceSets();
2723 Value *UncomputablePtr =
nullptr;
2724 HasCompletePtrRtChecking = Accesses.canCheckPtrAtRT(
2725 *PtrRtChecking, TheLoop, SymbolicStrides, UncomputablePtr, AllowPartial);
2726 if (!HasCompletePtrRtChecking) {
2728 recordAnalysis(
"CantIdentifyArrayBounds",
I)
2729 <<
"cannot identify array bounds";
2730 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because we can't find "
2731 <<
"the array bounds.\n");
2736 dbgs() <<
"LAA: May be able to perform a memory runtime check if needed.\n");
2738 bool DepsAreSafe =
true;
2739 if (Accesses.isDependencyCheckNeeded()) {
2742 DepChecker->
areDepsSafe(DepCands, Accesses.getDependenciesToCheck());
2748 Accesses.resetDepChecks(*DepChecker);
2750 PtrRtChecking->reset();
2751 PtrRtChecking->Need =
true;
2753 UncomputablePtr =
nullptr;
2754 HasCompletePtrRtChecking =
2755 Accesses.canCheckPtrAtRT(*PtrRtChecking, TheLoop, SymbolicStrides,
2756 UncomputablePtr, AllowPartial);
2759 if (!HasCompletePtrRtChecking) {
2761 recordAnalysis(
"CantCheckMemDepsAtRunTime",
I)
2762 <<
"cannot check memory dependencies at runtime";
2763 LLVM_DEBUG(
dbgs() <<
"LAA: Can't vectorize with memory checks\n");
2770 if (HasConvergentOp) {
2771 recordAnalysis(
"CantInsertRuntimeCheckWithConvergent")
2772 <<
"cannot add control dependency to convergent operation";
2773 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because a runtime check "
2774 "would be needed with a convergent operation\n");
2780 dbgs() <<
"LAA: No unsafe dependent memory operations in loop. We"
2781 << (PtrRtChecking->Need ?
"" :
" don't")
2782 <<
" need runtime memory checks.\n");
2786 emitUnsafeDependenceRemark();
2790void LoopAccessInfo::emitUnsafeDependenceRemark() {
2791 const auto *Deps = getDepChecker().getDependences();
2799 if (Found == Deps->end())
2801 MemoryDepChecker::Dependence Dep = *Found;
2803 LLVM_DEBUG(
dbgs() <<
"LAA: unsafe dependent memory operations in loop\n");
2806 bool HasForcedDistribution =
false;
2807 std::optional<const MDOperand *>
Value =
2815 const std::string
Info =
2816 HasForcedDistribution
2817 ?
"unsafe dependent memory operations in loop."
2818 :
"unsafe dependent memory operations in loop. Use "
2819 "#pragma clang loop distribute(enable) to allow loop distribution "
2820 "to attempt to isolate the offending operations into a separate "
2822 OptimizationRemarkAnalysis &
R =
2831 R <<
"\nBackward loop carried data dependence.";
2834 R <<
"\nForward loop carried data dependence that prevents "
2835 "store-to-load forwarding.";
2838 R <<
"\nBackward loop carried data dependence that prevents "
2839 "store-to-load forwarding.";
2842 R <<
"\nUnsafe indirect dependence.";
2845 R <<
"\nUnknown data dependence.";
2849 if (Instruction *
I = Dep.
getSource(getDepChecker())) {
2852 SourceLoc = DD->getDebugLoc();
2854 R <<
" Memory location is the same as accessed at "
2855 <<
ore::NV(
"Location", SourceLoc);
2861 assert(TheLoop->contains(BB) &&
"Unknown block used");
2864 const BasicBlock *Latch = TheLoop->getLoopLatch();
2870 assert(!Report &&
"Multiple reports generated");
2876 CodeRegion =
I->getParent();
2879 if (
I->getDebugLoc())
2880 DL =
I->getDebugLoc();
2883 Report = std::make_unique<OptimizationRemarkAnalysis>(
DEBUG_TYPE, RemarkName,
2889 auto *SE = PSE->getSE();
2890 if (TheLoop->isLoopInvariant(V))
2907 for (
const Use &U :
GEP->operands()) {
2937 V =
C->getOperand();
2958void LoopAccessInfo::collectStridedAccess(
Value *MemAccess) {
2973 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that is a candidate for "
2978 LLVM_DEBUG(
dbgs() <<
" Chose not to due to -laa-speculate-unit-stride\n");
2995 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
3001 uint64_t StrideTypeSizeBits =
DL.getTypeSizeInBits(StrideExpr->
getType());
3002 uint64_t BETypeSizeBits =
DL.getTypeSizeInBits(MaxBTC->
getType());
3003 const SCEV *CastedStride = StrideExpr;
3004 const SCEV *CastedBECount = MaxBTC;
3005 ScalarEvolution *SE = PSE->getSE();
3006 if (BETypeSizeBits >= StrideTypeSizeBits)
3010 const SCEV *StrideMinusBETaken = SE->
getMinusSCEV(CastedStride, CastedBECount);
3016 dbgs() <<
"LAA: Stride>=TripCount; No point in versioning as the "
3017 "Stride==1 predicate will imply that the loop executes "
3021 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that we can version.\n");
3025 const SCEV *StrideBase = StrideExpr;
3027 StrideBase =
C->getOperand();
3037 PtrRtChecking(nullptr), TheLoop(L), AllowPartial(AllowPartial) {
3038 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3039 if (
TTI && !
TTI->enableScalableVectorization())
3042 MaxTargetVectorWidthInBits =
3045 DepChecker = std::make_unique<MemoryDepChecker>(
3046 *PSE, AC, DT, L, SymbolicStrides, MaxTargetVectorWidthInBits, LoopGuards);
3048 std::make_unique<RuntimePointerChecking>(*DepChecker, SE, LoopGuards);
3049 if (canAnalyzeLoop())
3050 CanVecMem = analyzeLoop(
AA, LI, TLI, DT);
3055 OS.
indent(
Depth) <<
"Memory dependences are safe";
3058 OS <<
" with a maximum safe vector width of "
3062 OS <<
", with a maximum safe store-load forward width of " << SLDist
3065 if (PtrRtChecking->Need)
3066 OS <<
" with run-time checks";
3070 if (HasConvergentOp)
3071 OS.
indent(
Depth) <<
"Has convergent operation in loop\n";
3074 OS.
indent(
Depth) <<
"Report: " << Report->getMsg() <<
"\n";
3076 if (
auto *Dependences = DepChecker->getDependences()) {
3078 for (
const auto &Dep : *Dependences) {
3079 Dep.
print(OS,
Depth + 2, DepChecker->getMemoryInstructions());
3083 OS.
indent(
Depth) <<
"Too many dependences, not recorded\n";
3086 PtrRtChecking->print(OS,
Depth);
3087 if (PtrRtChecking->Need && !HasCompletePtrRtChecking)
3088 OS.
indent(
Depth) <<
"Generated run-time checks are incomplete\n";
3092 <<
"Non vectorizable stores to invariant address were "
3093 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3094 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3097 <<
"found in loop.\n";
3100 PSE->getPredicate().print(OS,
Depth);
3105 PSE->print(OS,
Depth);
3109 bool AllowPartial) {
3110 const auto &[It, Inserted] = LoopAccessInfoMap.try_emplace(&L);
3114 if (Inserted || It->second->hasAllowPartial() != AllowPartial)
3115 It->second = std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT,
3116 &LI, AC, AllowPartial);
3125 for (
const auto &[L, LAI] : LoopAccessInfoMap) {
3126 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3127 LAI->getPSE().getPredicate().isAlwaysTrue())
3129 LoopAccessInfoMap.erase(L);
3135 FunctionAnalysisManager::Invalidator &Inv) {
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
This header defines various interfaces for pass management in LLVM.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize, ScalarEvolution &SE, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Return true, if evaluating AR at MaxBTC cannot wrap, because AR at MaxBTC is guaranteed inbounds of t...
static std::optional< int64_t > getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy, Value *Ptr, PredicatedScalarEvolution &PSE)
Try to compute a constant stride for AR.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static DenseMap< const RuntimeCheckingPtrGroup *, unsigned > getPtrToIdxMap(ArrayRef< RuntimeCheckingPtrGroup > CheckingGroups)
Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrap(PredicatedScalarEvolution &PSE, const SCEVAddRecExpr *AR, Value *Ptr, Type *AccessTy, const Loop *L, bool Assume, std::optional< int64_t > Stride=std::nullopt)
Check whether AR is a non-wrapping AddRec.
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static const SCEV * mulSCEVOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A * B, if it is guaranteed not to unsigned wrap.
static Value * getLoopVariantGEPOperand(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If Ptr is a GEP, which has a loop-variant operand, return that operand.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
static const SCEV * addSCEVNoOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A + B, if it is guaranteed not to unsigned wrap.
This header provides classes for managing per-loop analyses.
This file provides utility analysis objects describing memory locations.
FunctionAnalysisManager FAM
This file defines the PointerIntPair class.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
uint64_t getZExtValue() const
Get zero extended value.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
int64_t getSExtValue() const
Get sign extended value.
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isConvergent() const
Determine if the invoke is convergent.
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
A parsed version of the target data layout string in and methods for querying it.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
iterator_range< member_iterator > members(const ECValue &ECV) const
bool contains(const ElemTy &V) const
Returns true if V is contained an equivalence class.
const ECValue & insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
member_iterator findLeader(const ElemTy &V) const
findLeader - Given a value in the set, return a member iterator for the equivalence class it is in.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
PointerType * getType() const
Global values are always pointers.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
LLVM_ABI Result run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const LoopAccessInfo & getInfo(Loop &L, bool AllowPartial=false)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
LLVM_ABI bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
LLVM_ABI LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI, AssumptionCache *AC, bool AllowPartial=false)
static LLVM_ABI bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Represents a single loop in the control flow graph.
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
ArrayRef< MDOperand > operands() const
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyStoreLoadForwardDistances() const
Return true if there are no store-load forwarding dependencies.
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
LLVM_ABI bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe, and records the dependence information ...
EquivalenceClasses< MemAccessInfo > DepCandidates
Set of potential dependent memory accesses.
bool shouldRetryWithRuntimeChecks() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
SmallVector< MemAccessInfo, 8 > MemAccessInfoList
LLVM_ABI SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
@ PossiblySafeWithRtChecks
LLVM_ABI void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
uint64_t getStoreLoadForwardSafeDistanceInBits() const
Return safe power-of-2 number of elements, which do not prevent store-load forwarding,...
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
PointerIntPair - This class implements a pair of a pointer and small integer.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
LLVM_ABI void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
LLVM_ABI bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
LLVM_ABI void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
friend struct RuntimeCheckingPtrGroup
static LLVM_ABI bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
LLVM_ABI void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const Loop * getLoop() const
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
bool contains(const T &V) const
Check if the SmallSet contains the given element.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
class_match< const SCEVConstant > m_SCEVConstant()
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, bool > hasa(Y &&MD)
Check whether Metadata has a Value.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
LLVM_ABI std::optional< int64_t > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
LLVM_ABI bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC, const SCEV *MaxBTC, ScalarEvolution *SE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > *PointerBounds, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Calculate Start and End points of memory access using exact backedge taken count BTC if computable or...
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * TBAA
The tag for type-based alias analysis.
MDNode * NoAlias
The tag specifying the noalias scope.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
unsigned Destination
Index of the destination of the dependence in the InstMap vector.
LLVM_ABI bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
LLVM_ABI bool isForward() const
Lexically forward dependence.
LLVM_ABI bool isBackward() const
Lexically backward dependence.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
unsigned Source
Index of the source of the dependence in the InstMap vector.
DepType
The type of the dependence.
@ BackwardVectorizableButPreventsForwarding
@ ForwardButPreventsForwarding
static LLVM_ABI const char * DepName[]
String version of the types.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
Represent one information held inside an operand bundle of an llvm.assume.
unsigned AddressSpace
Address space of the involved pointers.
LLVM_ABI bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
LLVM_ABI RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI unsigned VectorizationFactor
VF as overridden by the user.
static LLVM_ABI unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static LLVM_ABI bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...