20#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21#define LLVM_ANALYSIS_SCALAREVOLUTION_H
46class OverflowingBinaryOperator;
62class TargetLibraryInfo;
188 return ID ==
X.FastID;
192 return X.FastID.ComputeHash();
266 return ID ==
X.FastID;
271 return X.FastID.ComputeHash();
355 "Invalid flags value!");
372 "Invalid flags value!");
481 return TestFlags ==
maskFlags(Flags, TestFlags);
541 std::optional<SCEV::NoWrapFlags>
582 unsigned Depth = 0) {
588 unsigned Depth = 0) {
597 unsigned Depth = 0) {
603 unsigned Depth = 0) {
624 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
646 bool Sequential =
false);
648 bool Sequential =
false);
745 bool Sequential =
false);
750 bool Sequential =
false);
839 const SCEV *ExitCount);
998 return getRangeRef(S, HINT_RANGE_UNSIGNED);
1014 return getRangeRef(S, HINT_RANGE_SIGNED);
1019 return getRangeRef(S, HINT_RANGE_SIGNED).
getSignedMin();
1024 return getRangeRef(S, HINT_RANGE_SIGNED).
getSignedMax();
1045 bool OrNegative =
false);
1168 bool ExitIfTrue,
bool ControlsOnlyExit,
1169 bool AllowPredicates =
false);
1186 std::optional<MonotonicPredicateType>
1202 std::optional<LoopInvariantPredicate>
1212 std::optional<LoopInvariantPredicate>
1217 const SCEV *MaxIter);
1219 std::optional<LoopInvariantPredicate>
1311 bool PreserveNUW =
false;
1312 bool PreserveNSW =
false;
1324 unsigned Depth = 0);
1330 static void collectFromPHI(
1354 return getLoopProperties(L).HasNoAbnormalExits;
1375 const SCEV *
Op =
nullptr;
1376 const Type *Ty =
nullptr;
1390 reinterpret_cast<uintptr_t
>(Ty)));
1394 return std::tie(
Op, Ty, C) == std::tie(
RHS.Op,
RHS.Ty,
RHS.C);
1401 class SCEVCallbackVH final :
public CallbackVH {
1404 void deleted()
override;
1405 void allUsesReplacedWith(
Value *New)
override;
1439 std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1481 bool WalkingBEDominatingConds =
false;
1485 bool ProvingSplitPredicate =
false;
1494 APInt getConstantMultipleImpl(
const SCEV *S);
1498 struct ExitNotTakenInfo {
1500 const SCEV *ExactNotTaken;
1501 const SCEV *ConstantMaxNotTaken;
1502 const SCEV *SymbolicMaxNotTaken;
1506 const SCEV *ExactNotTaken,
1507 const SCEV *ConstantMaxNotTaken,
1508 const SCEV *SymbolicMaxNotTaken,
1510 : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1511 ConstantMaxNotTaken(ConstantMaxNotTaken),
1512 SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1514 bool hasAlwaysTruePredicate()
const {
1515 return Predicates.
empty();
1522 class BackedgeTakenInfo {
1523 friend class ScalarEvolution;
1527 SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1532 const SCEV *ConstantMax =
nullptr;
1536 bool IsComplete =
false;
1540 const SCEV *SymbolicMax =
nullptr;
1543 bool MaxOrZero =
false;
1545 bool isComplete()
const {
return IsComplete; }
1546 const SCEV *getConstantMax()
const {
return ConstantMax; }
1548 const ExitNotTakenInfo *getExitNotTaken(
1549 const BasicBlock *ExitingBlock,
1550 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const;
1553 BackedgeTakenInfo() =
default;
1554 BackedgeTakenInfo(BackedgeTakenInfo &&) =
default;
1555 BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) =
default;
1557 using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1560 BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts,
bool IsComplete,
1561 const SCEV *ConstantMax,
bool MaxOrZero);
1565 bool hasAnyInfo()
const {
1566 return !ExitNotTaken.empty() ||
1567 !isa<SCEVCouldNotCompute>(getConstantMax());
1571 bool hasFullInfo()
const {
return isComplete(); }
1591 const SCEV *getExact(
1592 const Loop *L, ScalarEvolution *SE,
1593 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const;
1600 const SCEV *getExact(
1601 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1602 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const {
1603 if (
auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1604 return ENT->ExactNotTaken;
1606 return SE->getCouldNotCompute();
1610 const SCEV *getConstantMax(
1611 ScalarEvolution *SE,
1612 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const;
1615 const SCEV *getConstantMax(
1616 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1617 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const {
1618 if (
auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1619 return ENT->ConstantMaxNotTaken;
1621 return SE->getCouldNotCompute();
1625 const SCEV *getSymbolicMax(
1626 const Loop *L, ScalarEvolution *SE,
1627 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr);
1630 const SCEV *getSymbolicMax(
1631 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1632 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const {
1633 if (
auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1634 return ENT->SymbolicMaxNotTaken;
1636 return SE->getCouldNotCompute();
1641 bool isConstantMaxOrZero(ScalarEvolution *SE)
const;
1646 DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1650 DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1653 DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1660 DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1665 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1670 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1671 ValuesAtScopesUsers;
1674 DenseMap<
const SCEV *,
1675 SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1678 struct LoopProperties {
1684 bool HasNoAbnormalExits;
1688 bool HasNoSideEffects;
1692 DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1695 LoopProperties getLoopProperties(
const Loop *L);
1697 bool loopHasNoSideEffects(
const Loop *L) {
1698 return getLoopProperties(L).HasNoSideEffects;
1707 SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1711 BlockDisposition computeBlockDisposition(
const SCEV *S,
const BasicBlock *BB);
1714 DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1717 DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1720 DenseMap<const SCEV *, ConstantRange> SignedRanges;
1723 enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1726 const ConstantRange &setRange(
const SCEV *S, RangeSignHint Hint,
1728 DenseMap<const SCEV *, ConstantRange> &Cache =
1729 Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1731 auto Pair = Cache.insert_or_assign(S, std::move(CR));
1732 return Pair.first->second;
1738 const ConstantRange &getRangeRef(
const SCEV *S, RangeSignHint Hint,
1739 unsigned Depth = 0);
1743 const ConstantRange &getRangeRefIter(
const SCEV *S, RangeSignHint Hint);
1747 ConstantRange getRangeForAffineAR(
const SCEV *Start,
const SCEV *Step,
1748 const APInt &MaxBECount);
1752 ConstantRange getRangeForAffineNoSelfWrappingAR(
const SCEVAddRecExpr *AddRec,
1753 const SCEV *MaxBECount,
1755 RangeSignHint SignHint);
1760 ConstantRange getRangeViaFactoring(
const SCEV *Start,
const SCEV *Step,
1761 const APInt &MaxBECount);
1767 ConstantRange getRangeForUnknownRecurrence(
const SCEVUnknown *U);
1771 const SCEV *createSCEV(Value *V);
1775 const SCEV *createSCEVIter(Value *V);
1779 const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1783 const SCEV *createNodeForPHIWithIdenticalOperands(PHINode *PN);
1786 const SCEV *createNodeForPHI(PHINode *PN);
1789 const SCEV *createAddRecFromPHI(PHINode *PN);
1792 const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1793 Value *StartValueV);
1796 const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1802 std::optional<const SCEV *>
1803 createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *
Cond,
1804 Value *TrueVal, Value *FalseVal);
1807 const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *
I, Value *
Cond,
1815 const SCEV *createNodeForSelectOrPHI(Value *V, Value *
Cond, Value *TrueVal,
1819 const SCEV *createNodeForGEP(GEPOperator *
GEP);
1823 const SCEV *computeSCEVAtScope(
const SCEV *S,
const Loop *L);
1828 BackedgeTakenInfo &getBackedgeTakenInfo(
const Loop *L);
1832 BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(
const Loop *L);
1837 BackedgeTakenInfo computeBackedgeTakenCount(
const Loop *L,
1838 bool AllowPredicates =
false);
1844 ExitLimit computeExitLimit(
const Loop *L, BasicBlock *ExitingBlock,
1845 bool IsOnlyExit,
bool AllowPredicates =
false);
1850 class ExitLimitCache {
1856 SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1860 bool AllowPredicates;
1863 ExitLimitCache(
const Loop *L,
bool ExitIfTrue,
bool AllowPredicates)
1864 :
L(
L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1866 std::optional<ExitLimit>
find(
const Loop *L, Value *ExitCond,
1867 bool ExitIfTrue,
bool ControlsOnlyExit,
1868 bool AllowPredicates);
1870 void insert(
const Loop *L, Value *ExitCond,
bool ExitIfTrue,
1871 bool ControlsOnlyExit,
bool AllowPredicates,
1872 const ExitLimit &EL);
1875 using ExitLimitCacheTy = ExitLimitCache;
1877 ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1878 const Loop *L, Value *ExitCond,
1880 bool ControlsOnlyExit,
1881 bool AllowPredicates);
1882 ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache,
const Loop *L,
1883 Value *ExitCond,
bool ExitIfTrue,
1884 bool ControlsOnlyExit,
1885 bool AllowPredicates);
1886 std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1887 ExitLimitCacheTy &Cache,
const Loop *L, Value *ExitCond,
bool ExitIfTrue,
1888 bool ControlsOnlyExit,
bool AllowPredicates);
1895 ExitLimit computeExitLimitFromICmp(
const Loop *L, ICmpInst *ExitCond,
1898 bool AllowPredicates =
false);
1904 ExitLimit computeExitLimitFromICmp(
const Loop *L, CmpPredicate Pred,
1905 const SCEV *
LHS,
const SCEV *
RHS,
1907 bool AllowPredicates =
false);
1912 ExitLimit computeExitLimitFromSingleExitSwitch(
const Loop *L,
1914 BasicBlock *ExitingBB,
1924 ExitLimit computeShiftCompareExitLimit(Value *
LHS, Value *
RHS,
const Loop *L,
1932 const SCEV *computeExitCountExhaustively(
const Loop *L, Value *
Cond,
1939 ExitLimit howFarToZero(
const SCEV *V,
const Loop *L,
bool IsSubExpr,
1940 bool AllowPredicates =
false);
1945 ExitLimit howFarToNonZero(
const SCEV *V,
const Loop *L);
1959 ExitLimit howManyLessThans(
const SCEV *
LHS,
const SCEV *
RHS,
const Loop *L,
1960 bool isSigned,
bool ControlsOnlyExit,
1961 bool AllowPredicates =
false);
1963 ExitLimit howManyGreaterThans(
const SCEV *
LHS,
const SCEV *
RHS,
const Loop *L,
1965 bool AllowPredicates =
false);
1970 std::pair<const BasicBlock *, const BasicBlock *>
1971 getPredecessorWithUniqueSuccessorForBB(
const BasicBlock *BB)
const;
1977 bool isImpliedCond(CmpPredicate Pred,
const SCEV *
LHS,
const SCEV *
RHS,
1978 const Value *FoundCondValue,
bool Inverse,
1979 const Instruction *Context =
nullptr);
1985 bool isImpliedCondBalancedTypes(CmpPredicate Pred,
const SCEV *
LHS,
1986 const SCEV *
RHS, CmpPredicate FoundPred,
1987 const SCEV *FoundLHS,
const SCEV *FoundRHS,
1988 const Instruction *CtxI);
1994 bool isImpliedCond(CmpPredicate Pred,
const SCEV *
LHS,
const SCEV *
RHS,
1995 CmpPredicate FoundPred,
const SCEV *FoundLHS,
1996 const SCEV *FoundRHS,
1997 const Instruction *Context =
nullptr);
2003 bool isImpliedCondOperands(CmpPredicate Pred,
const SCEV *
LHS,
2004 const SCEV *
RHS,
const SCEV *FoundLHS,
2005 const SCEV *FoundRHS,
2006 const Instruction *Context =
nullptr);
2012 bool isImpliedViaOperations(CmpPredicate Pred,
const SCEV *
LHS,
2013 const SCEV *
RHS,
const SCEV *FoundLHS,
2014 const SCEV *FoundRHS,
unsigned Depth = 0);
2018 bool isKnownViaNonRecursiveReasoning(CmpPredicate Pred,
const SCEV *
LHS,
2024 bool isImpliedCondOperandsHelper(CmpPredicate Pred,
const SCEV *
LHS,
2025 const SCEV *
RHS,
const SCEV *FoundLHS,
2026 const SCEV *FoundRHS);
2032 bool isImpliedCondOperandsViaRanges(CmpPredicate Pred,
const SCEV *
LHS,
2033 const SCEV *
RHS, CmpPredicate FoundPred,
2034 const SCEV *FoundLHS,
2035 const SCEV *FoundRHS);
2039 bool isImpliedViaGuard(
const BasicBlock *BB, CmpPredicate Pred,
2040 const SCEV *
LHS,
const SCEV *
RHS);
2048 bool isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred,
const SCEV *
LHS,
2049 const SCEV *
RHS,
const SCEV *FoundLHS,
2050 const SCEV *FoundRHS);
2058 bool isImpliedCondOperandsViaAddRecStart(CmpPredicate Pred,
const SCEV *
LHS,
2060 const SCEV *FoundLHS,
2061 const SCEV *FoundRHS,
2062 const Instruction *CtxI);
2071 bool isImpliedViaMerge(CmpPredicate Pred,
const SCEV *
LHS,
const SCEV *
RHS,
2072 const SCEV *FoundLHS,
const SCEV *FoundRHS,
2080 bool isImpliedCondOperandsViaShift(CmpPredicate Pred,
const SCEV *
LHS,
2081 const SCEV *
RHS,
const SCEV *FoundLHS,
2082 const SCEV *FoundRHS);
2087 Constant *getConstantEvolutionLoopExitValue(PHINode *PN,
const APInt &BEs,
2092 bool isKnownPredicateViaConstantRanges(CmpPredicate Pred,
const SCEV *
LHS,
2100 bool isKnownPredicateViaNoOverflow(CmpPredicate Pred,
const SCEV *
LHS,
2105 bool isKnownPredicateViaSplitting(CmpPredicate Pred,
const SCEV *
LHS,
2109 bool splitBinaryAdd(
const SCEV *Expr,
const SCEV *&L,
const SCEV *&R,
2113 void forgetBackedgeTakenCounts(
const Loop *L,
bool Predicated);
2116 void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2119 void forgetMemoizedResultsImpl(
const SCEV *S);
2123 void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2124 SmallPtrSetImpl<Instruction *> &Visited,
2125 SmallVectorImpl<const SCEV *> &ToForget);
2128 void eraseValueFromMap(Value *V);
2131 void insertValueToMap(Value *V,
const SCEV *S);
2135 bool checkValidity(
const SCEV *S)
const;
2142 template <
typename ExtendOpTy>
2143 bool proveNoWrapByVaryingStart(
const SCEV *Start,
const SCEV *Step,
2157 std::optional<MonotonicPredicateType>
2158 getMonotonicPredicateTypeImpl(
const SCEVAddRecExpr *
LHS,
2170 const Instruction *getNonTrivialDefiningScopeBound(
const SCEV *S);
2175 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2180 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2184 bool isGuaranteedToTransferExecutionTo(
const Instruction *
A,
2185 const Instruction *
B);
2188 bool isGuaranteedNotToCauseUB(
const SCEV *
Op);
2191 static bool isGuaranteedNotToBePoison(
const SCEV *
Op);
2209 bool isSCEVExprNeverPoison(
const Instruction *
I);
2215 bool isAddRecNeverPoison(
const Instruction *
I,
const Loop *L);
2227 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2228 createAddRecFromPHIWithCastsImpl(
const SCEVUnknown *SymbolicPHI);
2239 const SCEV *computeMaxBECountForLT(
const SCEV *Start,
const SCEV *Stride,
2246 bool canIVOverflowOnLT(
const SCEV *
RHS,
const SCEV *Stride,
bool IsSigned);
2251 bool canIVOverflowOnGT(
const SCEV *
RHS,
const SCEV *Stride,
bool IsSigned);
2254 const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2258 const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2262 const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2266 const SCEV *stripInjectiveFunctions(
const SCEV *Val)
const;
2271 void getUsedLoops(
const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2275 bool matchURem(
const SCEV *Expr,
const SCEV *&
LHS,
const SCEV *&
RHS);
2279 SCEV *findExistingSCEVInCache(
SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2283 void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2288 const SCEV *getWithOperands(
const SCEV *S,
2289 SmallVectorImpl<const SCEV *> &NewOps);
2291 FoldingSet<SCEV> UniqueSCEVs;
2292 FoldingSet<SCEVPredicate> UniquePreds;
2296 DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2300 DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2301 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2302 PredicatedSCEVRewrites;
2306 SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2310 SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2353 std::unique_ptr<ScalarEvolution> SE;
2439 void updateGeneration();
2443 using RewriteEntry = std::pair<unsigned, const SCEV *>;
2463 std::unique_ptr<SCEVUnionPredicate> Preds;
2469 unsigned Generation = 0;
2472 const SCEV *BackedgeCount =
nullptr;
2475 const SCEV *SymbolicMaxBackedgeCount =
nullptr;
2478 std::optional<unsigned> SmallConstantMaxTripCount;
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
This file defines a hash set that can be used to remove duplication of nodes in a graph.
This header defines various interfaces for pass management in LLVM.
mir Rename Register Operands
This file defines the PointerIntPair class.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
Class for arbitrary precision integers.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
API to communicate dependencies between analyses during invalidation.
A container for analyses that lazily runs them and caches their results.
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Value handle with callbacks on RAUW and destruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
This class represents a range of values.
APInt getUnsignedMin() const
Return the smallest unsigned value contained in the ConstantRange.
APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Node - This class is used to maintain the singly linked bucket list in a folding set.
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
FunctionPass class - This class is used to implement most global optimizations.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
A Module instance is used to store all the information related to an LLVM module.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Value handle that poisons itself if the Value is deleted.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
This node represents a polynomial recurrence on the trip count of the specified loop.
This class represents an assumption that the expression LHS Pred RHS evaluates to true,...
const SCEV * getRHS() const
Returns the right hand side of the predicate.
ICmpInst::Predicate getPredicate() const
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
const SCEV * getLHS() const
Returns the left hand side of the predicate.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
void print(raw_ostream &OS, unsigned Depth=0) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Implementation of the SCEVPredicate interface.
This class uses information about analyze scalars to rewrite expressions in canonical form.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
SCEVPredicateKind getKind() const
virtual unsigned getComplexity() const
Returns the estimated complexity of this predicate.
SCEVPredicate & operator=(const SCEVPredicate &)=default
SCEVPredicate(const SCEVPredicate &)=default
virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const =0
Returns true if this predicate implies N.
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents a composition of other SCEV predicates, and is the class that most clients will...
void print(raw_ostream &OS, unsigned Depth) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Returns true if this predicate implies N.
unsigned getComplexity() const override
We estimate the complexity of a union predicate as the size number of predicates in the union.
bool isAlwaysTrue() const override
Implementation of the SCEVPredicate interface.
ArrayRef< const SCEVPredicate * > getPredicates() const
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an assumption made on an AddRec expression.
IncrementWrapFlags
Similar to SCEV::NoWrapFlags, but with slightly different semantics for FlagNUSW.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Returns true if this predicate implies N.
static SCEVWrapPredicate::IncrementWrapFlags setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OnFlags)
void print(raw_ostream &OS, unsigned Depth=0) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
const SCEVAddRecExpr * getExpr() const
Implementation of the SCEVPredicate interface.
static SCEVWrapPredicate::IncrementWrapFlags clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OffFlags)
Convenient IncrementWrapFlags manipulation methods.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
static SCEVWrapPredicate::IncrementWrapFlags getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE)
Returns the set of SCEVWrapPredicate no wrap flags implied by a SCEVAddRecExpr.
IncrementWrapFlags getFlags() const
Returns the set assumed no overflow flags.
static SCEVWrapPredicate::IncrementWrapFlags maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask)
This class represents an analyzed expression in the program.
ArrayRef< const SCEV * > operands() const
Return operands of this SCEV expression.
unsigned short getExpressionSize() const
SCEV & operator=(const SCEV &)=delete
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
SCEV(const SCEV &)=delete
void dump() const
This method is used for debugging.
bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
const unsigned short ExpressionSize
void print(raw_ostream &OS) const
Print out the internal representation of this scalar to the specified stream.
SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, unsigned short ExpressionSize)
SCEVTypes getSCEVType() const
unsigned short SubclassData
This field is initialized to zero and may be used in subclasses to store miscellaneous information.
Type * getType() const
Return the LLVM type of this SCEV expression.
NoWrapFlags
NoWrapFlags are bitfield indices into SubclassData.
Analysis pass that exposes the ScalarEvolution for a function.
ScalarEvolution run(Function &F, FunctionAnalysisManager &AM)
Printer pass for the ScalarEvolutionAnalysis results.
ScalarEvolutionPrinterPass(raw_ostream &OS)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Verifier pass for the ScalarEvolutionAnalysis results.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
void print(raw_ostream &OS, const Module *=nullptr) const override
print - Print out the internal state of the pass.
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
ScalarEvolution & getSE()
void verifyAnalysis() const override
verifyAnalysis() - This member can be implemented by a analysis pass to check state of analysis infor...
ScalarEvolutionWrapperPass()
const ScalarEvolution & getSE() const
bool operator==(const FoldID &RHS) const
FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty)
unsigned computeHash() const
static LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
const SCEV * rewrite(const SCEV *Expr) const
Try to apply the collected loop guards to Expr.
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
static bool hasFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags TestFlags)
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
bool isKnownOnEveryIteration(CmpPredicate Pred, const SCEVAddRecExpr *LHS, const SCEV *RHS)
Test if the condition described by Pred, LHS, RHS is known to be true on every iteration of the loop ...
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterationsImpl(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getUDivCeilSCEV(const SCEV *N, const SCEV *D)
Compute ceil(N / D).
const SCEV * getGEPExpr(GEPOperator *GEP, const SmallVectorImpl< const SCEV * > &IndexExprs)
Returns an expression for a GEP.
std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
Type * getWiderType(Type *Ty1, Type *Ty2) const
const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
APInt getConstantMultiple(const SCEV *S)
Returns the max constant multiple of S.
bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
const SCEV * getPredicatedConstantMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getConstantMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags)
Update no-wrap flags of an AddRec.
const SCEV * getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
const SCEV * getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS)
Promote the operands to the wider of the types using zero-extension, and then perform a umax operatio...
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?...
ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
const SCEV * getZeroExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount)
Returns the largest constant divisor of the trip count as a normal unsigned value,...
uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getPredicatedBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getBackedgeTakenCount, except it will add a set of SCEV predicates to Predicates that are ...
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty)
const SCEV * getSequentialMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
const SCEV * getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth=0)
std::optional< bool > evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
const SCEV * getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
bool isBackedgeTakenCountMaxOrZero(const Loop *L)
Return true if the backedge taken count is either the value returned by getConstantMaxBackedgeTakenCo...
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
APInt getUnsignedRangeMin(const SCEV *S)
Determine the min of the unsigned range for a particular SCEV.
bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth=0)
Simplify LHS and RHS in a comparison with predicate Pred.
const SCEV * getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo)
Return an expression for offsetof on the given field with type IntTy.
LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
bool containsAddRecurrence(const SCEV *S)
Return true if the SCEV is a scAddRecExpr or it contains scAddRecExpr.
const SCEV * getSignExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
bool hasOperand(const SCEV *S, const SCEV *Op) const
Test whether the given SCEV has Op as a direct or indirect operand.
const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getAddRecExpr(const SmallVectorImpl< const SCEV * > &Operands, const Loop *L, SCEV::NoWrapFlags Flags)
const SCEVPredicate * getComparePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
const SCEV * getNotSCEV(const SCEV *V)
Return the SCEV object corresponding to ~V.
std::optional< LoopInvariantPredicate > getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI=nullptr)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L, return a LoopInvaria...
bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B)
Return true if there exists a point in the program at which both A and B could be operands to the sam...
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
uint32_t getMinTrailingZeros(const SCEV *S)
Determine the minimum number of zero bits that S is guaranteed to end in (at every loop iteration).
void print(raw_ostream &OS) const
const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
const SCEV * getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock, SmallVectorImpl< const SCEVPredicate * > *Predicates, ExitCountKind Kind=Exact)
Same as above except this uses the predicated backedge taken info and may require predicates.
static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags)
void forgetTopmostLoop(const Loop *L)
friend class ScalarEvolutionsTest
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
const SCEV * getNoopOrAnyExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
MonotonicPredicateType
A predicate is said to be monotonically increasing if may go from being false to being true as the lo...
@ MonotonicallyDecreasing
@ MonotonicallyIncreasing
const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
const SCEVPredicate * getWrapPredicate(const SCEVAddRecExpr *AR, SCEVWrapPredicate::IncrementWrapFlags AddedFlags)
bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether the backedge of the loop is protected by a conditional between LHS and RHS.
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
APInt getNonZeroConstantMultiple(const SCEV *S)
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags)
bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB)
Return the "disposition" of the given SCEV with respect to the given block.
const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
bool loopIsFiniteByAssumption(const Loop *L)
Return true if this loop is finite by assumption.
const SCEV * getExistingSCEV(Value *V)
Return an existing SCEV for V if there is one, otherwise return nullptr.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopComputable
The SCEV varies predictably with the loop.
@ LoopVariant
The SCEV is loop-variant (unknown).
@ LoopInvariant
The SCEV is loop-invariant.
friend class SCEVCallbackVH
const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)
getAnyExtendExpr - Return a SCEV for the given operand extended with unspecified bits out to the give...
bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero=false, bool OrNegative=false)
Test if the given expression is known to be a power of 2.
std::optional< SCEV::NoWrapFlags > getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO)
Parse NSW/NUW flags from add/sub/mul IR binary operation Op into SCEV no-wrap flags,...
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
bool containsUndefs(const SCEV *S) const
Return true if the SCEV expression contains an undef value.
std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
const SCEV * getCouldNotCompute()
bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
BlockDisposition
An enum describing the relationship between a SCEV and a basic block.
@ DominatesBlock
The SCEV dominates the block.
@ ProperlyDominatesBlock
The SCEV properly dominates the block.
@ DoesNotDominateBlock
The SCEV does not dominate the block.
const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
void getPoisonGeneratingValues(SmallPtrSetImpl< const Value * > &Result, const SCEV *S)
Return the set of Values that, if poison, will definitively result in S being poison as well.
void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
const SCEV * getVScale(Type *Ty)
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
Return true if the given SCEV changes value in a known way in the specified loop.
const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
const SCEV * getPowerOfTwo(Type *Ty, unsigned Power)
Return a SCEV for the constant Power of two.
const SCEV * getMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
bool dominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV dominate the specified basic block.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
ExitCountKind
The terms "backedge taken count" and "exit count" are used interchangeably to refer to the number of ...
@ SymbolicMaximum
An expression which provides an upper bound on the exact trip count.
@ ConstantMaximum
A constant which provides an upper bound on the exact trip count.
@ Exact
An expression exactly describing the number of times the backedge has executed when a loop is exited.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
const SCEVAddRecExpr * convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Preds)
Tries to convert the S expression to an AddRec expression, adding additional predicates to Preds as r...
const SCEV * getElementSize(Instruction *Inst)
Return the size of an element read or written by Inst.
const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
std::optional< bool > evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Check whether the condition described by Pred, LHS, and RHS is true or false.
const SCEV * getUnknown(Value *V)
std::optional< std::pair< const SCEV *, SmallVector< const SCEVPredicate *, 3 > > > createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI)
Checks if SymbolicPHI can be rewritten as an AddRecExpr under some Predicates.
const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getElementCount(Type *Ty, ElementCount EC)
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
const SCEV * getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
const SCEV * rewriteUsingPredicate(const SCEV *S, const Loop *L, const SCEVPredicate &A)
Re-writes the SCEV according to the Predicates in A.
std::pair< const SCEV *, const SCEV * > SplitIntoInitAndPostInc(const Loop *L, const SCEV *S)
Splits SCEV expression S into two SCEVs.
bool canReuseInstruction(const SCEV *S, Instruction *I, SmallVectorImpl< Instruction * > &DropPoisonGeneratingInsts)
Check whether it is poison-safe to represent the expression S using the instruction I.
bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getPredicatedSymbolicMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
const SCEV * getUDivExactExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
void registerUser(const SCEV *User, ArrayRef< const SCEV * > Ops)
Notify this ScalarEvolution that User directly uses SCEVs in Ops.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the basic block is protected by a conditional between LHS and RHS.
const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool containsErasedValue(const SCEV *S) const
Return true if the SCEV expression contains a Value that has been optimised out and is now a nullptr.
bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
We'd like to check the predicate on every iteration of the most dominated loop between loops used in ...
const SCEV * getSymbolicMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEV that is greater than or equal to (i.e.
APInt getSignedRangeMax(const SCEV *S)
Determine the max of the signed range for a particular SCEV.
LLVMContext & getContext() const
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM Value Representation.
This class implements an extremely fast bulk output stream that can only output to a stream.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ BasicBlock
Various leaf nodes.
unsigned combineHashValue(unsigned a, unsigned b)
Simplistic combination of 32-bit hash values into 32-bit hash values.
This is an optimization pass for GlobalISel generic memory operations.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
constexpr unsigned BitWidth
A CRTP mix-in that provides informational APIs needed for analysis passes.
A special type used by analysis passes to provide an address that identifies that particular analysis...
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
static unsigned getHashValue(const ScalarEvolution::FoldID &Val)
static ScalarEvolution::FoldID getTombstoneKey()
static ScalarEvolution::FoldID getEmptyKey()
static bool isEqual(const ScalarEvolution::FoldID &LHS, const ScalarEvolution::FoldID &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID)
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEVPredicate &X, FoldingSetNodeID &TempID)
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID)
static void Profile(const SCEV &X, FoldingSetNodeID &ID)
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
A CRTP mix-in to automatically provide informational APIs needed for passes.
An object of this class is returned by queries that could not be answered.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
Information about the number of loop iterations for which a loop exit's branch condition evaluates to...
bool hasAnyInfo() const
Test whether this ExitLimit contains any computed information, or whether it's all SCEVCouldNotComput...
const SCEV * ExactNotTaken
const SCEV * SymbolicMaxNotTaken
SmallVector< const SCEVPredicate *, 4 > Predicates
A vector of predicate guards for this ExitLimit.
bool hasFullInfo() const
Test whether this ExitLimit contains all information.
const SCEV * ConstantMaxNotTaken
LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)