47#include "llvm/IR/IntrinsicsNVPTX.h"
70#define DEBUG_TYPE "nvptx-lower"
82 cl::desc(
"NVPTX Specific: FMA contraction (0: don't do it"
83 " 1: do it 2: do it aggressively"),
88 cl::desc(
"NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
89 " IEEE Compliant F32 div.rnd if available."),
94 cl::desc(
"NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
98 "nvptx-force-min-byval-param-align",
cl::Hidden,
99 cl::desc(
"NVPTX Specific: force 4-byte minimal alignment for byval"
100 " params of device functions."),
172static std::optional<std::pair<unsigned int, EVT>>
201 return std::pair(NumElts, EltVT);
219 return std::pair(NumElts / NPerWord,
245 Offsets->push_back(StartingOffset + 0);
246 Offsets->push_back(StartingOffset + 8);
253 if (
StructType *STy = dyn_cast<StructType>(Ty)) {
254 auto const *SL =
DL.getStructLayout(STy);
256 for(
auto *EI : STy->elements()) {
258 StartingOffset + SL->getElementOffset(ElementNum));
265 for (
unsigned i = 0, e = TempVTs.
size(); i != e; ++i) {
301 NumElts = (NumElts + 3) / 4;
302 }
else if (EltVT.
getSimpleVT() == MVT::i8 && NumElts == 2) {
307 for (
unsigned j = 0; j != NumElts; ++j) {
315 Offsets->push_back(Off);
330 "Promotion is not suitable for scalars of size larger than 64-bits");
332 *PromotedVT = MVT::i1;
337 *PromotedVT = MVT::i8;
340 *PromotedVT = MVT::i16;
343 *PromotedVT = MVT::i32;
346 *PromotedVT = MVT::i64;
349 return EVT(*PromotedVT) != VT;
369 if (ParamAlignment < AccessSize)
372 if (Offsets[
Idx] & (AccessSize - 1))
375 EVT EltVT = ValueVTs[
Idx];
379 if (EltSize >= AccessSize)
382 unsigned NumElts = AccessSize / EltSize;
384 if (AccessSize != EltSize * NumElts)
388 if (
Idx + NumElts > ValueVTs.
size())
392 if (NumElts != 4 && NumElts != 2)
395 for (
unsigned j =
Idx + 1; j <
Idx + NumElts; ++j) {
397 if (ValueVTs[j] != EltVT)
401 if (Offsets[j] - Offsets[j - 1] != EltSize)
429 Align ParamAlignment,
bool IsVAArg =
false) {
439 for (
int I = 0, E = ValueVTs.
size();
I != E; ++
I) {
442 for (
unsigned AccessSize : {16, 8, 4, 2}) {
444 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
453 assert(
I + 1 < E &&
"Not enough elements.");
459 assert(
I + 3 < E &&
"Not enough elements.");
477 if (
Value->getValueType(0) == VT)
558 Op, VT, IsOpSupported ? Action : NoBF16Action);
563 bool IsOpSupported =
false;
649 for (
MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
650 MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16, MVT::v4i8,
651 MVT::i32, MVT::i64}) {
676 {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
775 for (
const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
857 const bool IsFP16FP16x2NegAvailable = STI.
getSmVersion() >= 53 &&
860 for (
const auto &VT : {MVT::f16, MVT::v2f16})
885 for (
MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
894 for (
MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
923 for (
const auto &
Op :
957 bool SupportsF32MinMaxNaN =
985#define MAKE_CASE(V) \
1073 bool Reciprocal)
const {
1094 if (Reciprocal || ExtraSteps > 0) {
1096 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1097 : Intrinsic::nvvm_rsqrt_approx_f);
1098 else if (VT == MVT::f64)
1099 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1104 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1105 : Intrinsic::nvvm_sqrt_approx_f);
1113 DAG.
getConstant(Intrinsic::nvvm_rcp_approx_ftz_d,
DL, MVT::i32),
1114 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1136 std::optional<std::pair<unsigned, const APInt &>> VAInfo,
1137 const CallBase &CB,
unsigned UniqueCallSite)
const {
1141 assert(isABI &&
"Non-ABI compilation is not supported");
1145 std::string Prototype;
1147 O <<
"prototype_" << UniqueCallSite <<
" : .callprototype ";
1156 if (
auto *ITy = dyn_cast<IntegerType>(retTy)) {
1157 size = ITy->getBitWidth();
1160 "Floating point type expected here");
1168 O <<
".param .b" <<
size <<
" _";
1169 }
else if (isa<PointerType>(retTy)) {
1170 O <<
".param .b" << PtrVT.getSizeInBits() <<
" _";
1172 O <<
".param .align " << (retAlignment ? retAlignment->value() : 0)
1173 <<
" .b8 _[" <<
DL.getTypeAllocSize(retTy) <<
"]";
1183 unsigned NumArgs = VAInfo ? VAInfo->first : Args.size();
1184 for (
unsigned i = 0, OIdx = 0; i != NumArgs; ++i, ++OIdx) {
1185 Type *Ty = Args[i].Ty;
1191 if (!Outs[OIdx].Flags.isByVal()) {
1195 O <<
".param .align " << ParamAlign.
value() <<
" .b8 ";
1197 O <<
"[" <<
DL.getTypeAllocSize(Ty) <<
"]";
1201 if (
unsigned len = vtparts.
size())
1207 (
getValueType(
DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1208 "type mismatch between callee prototype and arguments");
1211 if (isa<IntegerType>(Ty)) {
1212 sz = cast<IntegerType>(Ty)->getBitWidth();
1214 }
else if (isa<PointerType>(Ty)) {
1215 sz = PtrVT.getSizeInBits();
1219 O <<
".param .b" << sz <<
" ";
1226 Type *ETy = Args[i].IndirectType;
1227 Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1228 Align ParamByValAlign =
1231 O <<
".param .align " << ParamByValAlign.
value() <<
" .b8 ";
1233 O <<
"[" << Outs[OIdx].Flags.getByValSize() <<
"]";
1237 O << (first ?
"" :
",") <<
" .param .align " << VAInfo->second
1257 return DL.getABITypeAlign(Ty);
1262 if (!DirectCallee) {
1267 if (
const auto *CI = dyn_cast<CallInst>(CB)) {
1270 return StackAlign.value();
1281 return DL.getABITypeAlign(Ty);
1285 switch (ElementType.getSimpleVT().SimpleTy) {
1290 ElementType = MVT::i16;
1295 ElementType = MVT::i32;
1298 ElementType = MVT::i64;
1310 unsigned ArgID,
const SDLoc &dl) {
1317 for (
unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
1343 EVT MergedType = ElementType;
1350 for (
unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
1377 if (ElementType != MergedType)
1387 if (
auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal()))
1397 "Support for variadic functions (unsized array parameter) introduced "
1398 "in PTX ISA version 6.0 and requires target sm_30.");
1414 assert(isABI &&
"Non-ABI compilation is not supported");
1436 unsigned VAOffset = 0;
1443 unsigned ParamCount = 0;
1456 for (
unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1457 EVT VT = Outs[OIdx].VT;
1458 Type *Ty = Args[i].Ty;
1460 bool IsByVal = Outs[OIdx].Flags.isByVal();
1465 assert((!IsByVal || Args[i].IndirectType) &&
1466 "byval arg must have indirect type");
1467 Type *ETy = (IsByVal ? Args[i].IndirectType : Ty);
1475 Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1479 VAOffset =
alignTo(VAOffset, ArgAlign);
1481 ArgAlign = getArgumentAlignment(CB, Ty, ParamCount + 1,
DL);
1485 (IsByVal ? Outs[OIdx].Flags.getByValSize() :
DL.getTypeAllocSize(Ty));
1491 if (ParamCount == FirstVAArg) {
1497 DeclareParamVTs, DeclareParamOps);
1499 NeedAlign = PassAsArray;
1500 }
else if (PassAsArray) {
1517 SDValue DeclareScalarParamOps[] = {
1522 DeclareScalarParamOps);
1531 bool ExtendIntegerParam =
1536 for (
unsigned j = 0, je = VTs.
size(); j != je; ++j) {
1538 int CurOffset = Offsets[j];
1543 SDValue StVal = OutVals[OIdx];
1547 EltVT =
EVT(PromotedVT);
1552 StVal = DAG.
getNode(Ext, dl, PromotedVT, StVal);
1561 }
else if (ExtendIntegerParam) {
1562 assert(VTs.
size() == 1 &&
"Scalar can't have multiple parts.");
1566 dl, MVT::i32, StVal);
1577 if (VectorInfo[j] ==
PVF_SCALAR && !IsVAArg && PartAlign.has_value() &&
1580 assert(StoreOperands.
empty() &&
"Unfinished preceeding store.");
1582 DAG, Chain, IsByVal ? CurOffset + VAOffset : CurOffset, EltVT,
1583 StVal, InGlue, ParamCount, dl);
1594 assert(StoreOperands.
empty() &&
"Unfinished preceding store.");
1597 DAG.
getConstant(IsVAArg ? FirstVAArg : ParamCount, dl, MVT::i32));
1600 IsByVal ? CurOffset + VAOffset : (IsVAArg ? VAOffset : CurOffset),
1608 unsigned NumElts = StoreOperands.
size() - 3;
1628 EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1631 Op, dl, DAG.
getVTList(MVT::Other, MVT::Glue), StoreOperands,
1637 StoreOperands.
clear();
1641 if (!IsByVal && IsVAArg) {
1643 "Vectorization is expected to be disabled for variadics.");
1644 VAOffset +=
DL.getTypeAllocSize(
1651 assert(StoreOperands.
empty() &&
"Unfinished parameter store.");
1652 if (!IsByVal && VTs.
size() > 0)
1655 if (IsByVal && IsVAArg)
1663 if (Ins.size() > 0) {
1670 unsigned resultsz =
DL.getTypeAllocSizeInBits(
RetTy);
1681 retAlignment = getArgumentAlignment(CB,
RetTy, 0,
DL);
1682 assert(retAlignment &&
"retAlignment is guaranteed to be set");
1685 Chain, DAG.
getConstant(retAlignment->value(), dl, MVT::i32),
1703 VADeclareParam->
getVTList(), DeclareParamOps);
1715 if (isa<ExternalSymbolSDNode>(Callee)) {
1720 assert(CalleeFunc !=
nullptr &&
"Libcall callee must be set.");
1724 CalleeFunc->
addFnAttr(
"nvptx-libcall-callee",
"true");
1737 DL,
RetTy, Args, Outs, retAlignment,
1739 ? std::optional<std::pair<unsigned, const APInt &>>(std::make_pair(
1742 *CB, UniqueCallSite);
1755 Chain, DAG.
getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InGlue
1762 Chain = DAG.
getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1765 if (ConvertToIndirectCall) {
1768 EVT DestVT = Callee.getValueType();
1779 SDValue CallVoidOps[] = { Chain, Callee, InGlue };
1785 SDValue CallArgBeginOps[] = { Chain, InGlue };
1790 for (
unsigned i = 0, e = std::min(CLI.
NumFixedArgs + 1, ParamCount); i != e;
1800 Chain = DAG.
getNode(opcode, dl, CallArgVTs, CallArgOps);
1804 SDValue CallArgEndOps[] = { Chain,
1813 Chain, DAG.
getConstant(UniqueCallSite, dl, MVT::i32), InGlue};
1830 if (Ins.size() > 0) {
1834 assert(VTs.
size() == Ins.size() &&
"Bad value decomposition");
1836 Align RetAlign = getArgumentAlignment(CB,
RetTy, 0,
DL);
1845 bool ExtendIntegerRetVal =
1846 RetTy->isIntegerTy() &&
DL.getTypeAllocSizeInBits(
RetTy) < 32;
1848 for (
unsigned i = 0, e = VTs.
size(); i != e; ++i) {
1849 bool needTruncate =
false;
1850 EVT TheLoadType = VTs[i];
1851 EVT EltType = Ins[i].VT;
1856 TheLoadType =
EVT(PromotedVT);
1857 EltType =
EVT(PromotedVT);
1858 needTruncate =
true;
1861 if (ExtendIntegerRetVal) {
1862 TheLoadType = MVT::i32;
1864 needTruncate =
true;
1866 if (VTs[i].isInteger())
1867 needTruncate =
true;
1874 EltAlign <
DL.getABITypeAlign(
1876 assert(VecIdx == -1 && LoadVTs.
empty() &&
"Orphaned operand list.");
1878 DAG, Chain, Offsets[i], TheLoadType, InGlue, TempProxyRegOps, dl);
1880 ProxyRegTruncates.
push_back(std::optional<MVT>());
1889 assert(VecIdx == -1 && LoadVTs.
empty() &&
"Orphaned operand list.");
1896 unsigned NumElts = LoadVTs.
size();
1916 DAG.
getConstant(Offsets[VecIdx], dl, MVT::i32), InGlue};
1918 Op, dl, DAG.
getVTList(LoadVTs), LoadOperands, TheLoadType,
1922 for (
unsigned j = 0; j < NumElts; ++j) {
1926 ProxyRegTruncates.
push_back(std::optional<MVT>(Ins[VecIdx + j].VT));
1928 ProxyRegTruncates.
push_back(std::optional<MVT>());
1932 InGlue = RetVal.
getValue(NumElts + 1);
1942 DAG.
getCALLSEQ_END(Chain, UniqueCallSite, UniqueCallSite + 1, InGlue, dl);
1948 for (
unsigned i = 0; i < ProxyRegOps.
size(); ++i) {
1949 if (i < RetElts.
size() && RetElts[i]) {
1956 DAG.
getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1957 { Chain, ProxyRegOps[i], InGlue }
1960 Chain = Ret.getValue(1);
1961 InGlue = Ret.getValue(2);
1963 if (ProxyRegTruncates[i]) {
1970 for (
SDValue &
T : TempProxyRegOps) {
1973 DAG.
getVTList(
T.getSimpleValueType(), MVT::Other, MVT::Glue),
1974 {Chain, T.getOperand(0), InGlue});
1996 "Support for dynamic alloca introduced in PTX ISA version 7.3 and "
1997 "requires target sm_52.",
2007 uint64_t Align = cast<ConstantSDNode>(
Op.getOperand(2))->getZExtValue();
2015 EVT RetTypes[] = {ValueSizeTy, MVT::Other};
2027 "Support for stackrestore requires PTX ISA version >= 7.3 and target "
2031 return Op.getOperand(0);
2050 "Support for stacksave requires PTX ISA version >= 7.3 and target >= "
2075 unsigned NumOperands = Node->getNumOperands();
2076 for (
unsigned i = 0; i < NumOperands; ++i) {
2077 SDValue SubOp = Node->getOperand(i);
2081 for (
unsigned j = 0; j < NumSubElem; ++j) {
2092 EVT FromVT =
Op->getOperand(0)->getValueType(0);
2093 if (FromVT != MVT::v2i8) {
2109 EVT ToVT =
Op->getValueType(0);
2119 EVT VT =
Op->getValueType(0);
2120 if (!(
Isv2x16VT(VT) || VT == MVT::v4i8))
2125 return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
2126 isa<ConstantFPSDNode>(Operand);
2128 if (VT != MVT::v4i8)
2145 auto PRMT__10 = GetPRMT(
Op->getOperand(0),
Op->getOperand(1),
true, 0x3340);
2146 auto PRMT__32 = GetPRMT(
Op->getOperand(2),
Op->getOperand(3),
true, 0x3340);
2147 auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32,
false, 0x5410);
2154 EVT VT =
Op->getValueType(0);
2156 return APInt(32, 0);
2158 if (VT == MVT::v2f16 || VT == MVT::v2bf16)
2159 Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt();
2160 else if (VT == MVT::v2i16 || VT == MVT::v4i8)
2166 if (VT == MVT::v4i8)
2168 return Value.zext(32);
2172 Value = GetOperand(
Op, 0) | GetOperand(
Op, 1).shl(16);
2173 }
else if (VT == MVT::v4i8) {
2174 Value = GetOperand(
Op, 0) | GetOperand(
Op, 1).shl(8) |
2175 GetOperand(
Op, 2).shl(16) | GetOperand(
Op, 3).shl(24);
2190 if (VectorVT == MVT::v4i8) {
2202 if (isa<ConstantSDNode>(
Index.getNode()))
2223 if (VectorVT != MVT::v4i8)
2227 if (
Value->isUndef())
2246 if (VectorVT != MVT::v4i8 ||
Op.getValueType() != MVT::v4i8)
2254 if (
I.value() != -1)
2255 Selector |= (
I.value() << (
I.index() * 4));
2273 EVT VT =
Op.getValueType();
2334 EVT VT =
Op.getValueType();
2388 EVT VT =
Op.getValueType();
2402 EVT VT =
Op.getValueType();
2405 return LowerFROUND32(
Op, DAG);
2408 return LowerFROUND64(
Op, DAG);
2424 EVT VT =
Op.getValueType();
2430 const unsigned SignBitMask = 0x80000000;
2433 const unsigned PointFiveInBits = 0x3F000000;
2434 SDValue PointFiveWithSignRaw =
2465 EVT VT =
Op.getValueType();
2497 if (
Op.getValueType() == MVT::bf16) {
2501 DAG.
getNode(
Op.getOpcode(), Loc, MVT::f32,
Op.getOperand(0)),
2513 if (
Op.getOperand(0).getValueType() == MVT::bf16) {
2516 Op.getOpcode(), Loc,
Op.getValueType(),
2526 EVT NarrowVT =
Op.getValueType();
2563 EVT WideVT =
Op.getValueType();
2590 if (
Op.getValueType() != MVT::v2i16)
2592 EVT EltVT =
Op.getValueType().getVectorElementType();
2594 for (
int I = 0, E =
Op.getValueType().getVectorNumElements();
I < E;
I++) {
2597 [&](
const SDUse &O) {
2598 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
2599 O.get(), DAG.getIntPtrConstant(I, DL));
2610 switch (
Op.getOpcode()) {
2620 return LowerBUILD_VECTOR(
Op, DAG);
2622 return LowerBITCAST(
Op, DAG);
2626 return LowerEXTRACT_VECTOR_ELT(
Op, DAG);
2628 return LowerINSERT_VECTOR_ELT(
Op, DAG);
2630 return LowerVECTOR_SHUFFLE(
Op, DAG);
2632 return LowerCONCAT_VECTORS(
Op, DAG);
2634 return LowerSTORE(
Op, DAG);
2636 return LowerLOAD(
Op, DAG);
2638 return LowerShiftLeftParts(
Op, DAG);
2641 return LowerShiftRightParts(
Op, DAG);
2643 return LowerSelect(
Op, DAG);
2645 return LowerFROUND(
Op, DAG);
2647 return LowerFCOPYSIGN(
Op, DAG);
2650 return LowerINT_TO_FP(
Op, DAG);
2653 return LowerFP_TO_INT(
Op, DAG);
2655 return LowerFP_ROUND(
Op, DAG);
2657 return LowerFP_EXTEND(
Op, DAG);
2659 return LowerBR_JT(
Op, DAG);
2661 return LowerVAARG(
Op, DAG);
2663 return LowerVASTART(
Op, DAG);
2683 return LowerCopyToReg_128(
Op, DAG);
2692 const auto *JT = cast<JumpTableSDNode>(
Op.getOperand(1));
2695 unsigned JId = JT->getIndex();
2731 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2732 EVT VT = Node->getValueType(0);
2734 SDValue Tmp1 = Node->getOperand(0);
2735 SDValue Tmp2 = Node->getOperand(1);
2736 const MaybeAlign MA(Node->getConstantOperandVal(3));
2774 SDValue Arg = getParamSymbol(DAG, -1, PtrVT);
2777 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
2778 return DAG.
getStore(
Op.getOperand(0),
DL, VAReg,
Op.getOperand(1),
2788 assert(
Op.getValueType() == MVT::i1 &&
"Custom lowering enabled only for i1");
2799 if (
Op.getValueType() == MVT::i1)
2800 return LowerLOADi1(
Op, DAG);
2804 EVT VT =
Op.getValueType();
2807 EVT MemVT =
Load->getMemoryVT();
2809 MemVT, *
Load->getMemOperand())) {
2829 "Custom lowering for i1 load only");
2831 LD->getBasePtr(),
LD->getPointerInfo(),
2832 MVT::i8,
LD->getAlign(),
2833 LD->getMemOperand()->getFlags());
2838 SDValue Ops[] = { result,
LD->getChain() };
2847 return LowerSTOREi1(
Op, DAG);
2851 if ((
Isv2x16VT(VT) || VT == MVT::v4i8) &&
2853 VT, *
Store->getMemOperand()))
2861 return LowerSTOREVector(
Op, DAG);
2874 if (!NumEltsAndEltVT)
2876 auto [NumElts, EltVT] = NumEltsAndEltVT.value();
2883 if (Alignment < PrefAlign) {
2895 bool NeedExt =
false;
2899 unsigned Opcode = 0;
2918 "NumElts should not increase, only decrease or stay the same.");
2927 for (
unsigned i = 0; i < NumElts; ++i) {
2930 NumEltsPerSubVector);
2935 for (
unsigned i = 0; i < NumElts; ++i) {
2945 Ops.
append(
N->op_begin() + 2,
N->op_end());
2969 DAG.
getTruncStore(Tmp1, dl, Tmp3, Tmp2,
ST->getPointerInfo(), MVT::i8,
2970 ST->getAlign(),
ST->getMemOperand()->getFlags());
2979 assert(
Op.getOperand(1).getValueType() == MVT::i128 &&
2980 "Custom lowering for 128-bit CopyToReg only");
2994 NewOps[0] =
Op->getOperand(0);
2995 NewOps[1] =
Op->getOperand(1);
2999 NewOps[4] =
Op->getOperand(3);
3004unsigned NVPTXTargetLowering::getNumRegisters(
3006 std::optional<MVT> RegisterVT = std::nullopt)
const {
3007 if (VT == MVT::i128 && RegisterVT == MVT::i128)
3012bool NVPTXTargetLowering::splitValueIntoRegisterParts(
3014 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID>
CC)
const {
3015 if (Val.
getValueType() == MVT::i128 && NumParts == 1) {
3046 std::vector<SDValue> OutChains;
3049 assert(isABI &&
"Non-ABI compilation is not supported");
3053 std::vector<Type *> argTypes;
3054 std::vector<const Argument *> theArgs;
3056 theArgs.push_back(&
I);
3057 argTypes.push_back(
I.getType());
3068 unsigned InsIdx = 0;
3070 for (
unsigned i = 0, e = theArgs.size(); i != e; ++i, ++InsIdx) {
3071 Type *Ty = argTypes[i];
3073 if (theArgs[i]->use_empty()) {
3079 if (vtparts.
empty())
3082 for (
unsigned parti = 0, parte = vtparts.
size(); parti != parte;
3087 if (vtparts.
size() > 0)
3094 for (
unsigned parti = 0; parti < NumRegs; ++parti) {
3111 bool aggregateIsPacked =
false;
3112 if (
StructType *STy = dyn_cast<StructType>(Ty))
3113 aggregateIsPacked = STy->isPacked();
3125 SDValue Arg = getParamSymbol(DAG, i, PtrVT);
3127 for (
unsigned parti = 0, parte = VTs.
size(); parti != parte; ++parti) {
3129 assert(VecIdx == -1 &&
"Orphaned vector.");
3134 if (VectorInfo[parti] &
PVF_LAST) {
3135 unsigned NumElts = parti - VecIdx + 1;
3136 EVT EltVT = VTs[parti];
3139 if (EltVT == MVT::i1)
3141 else if (
Isv2x16VT(EltVT) || EltVT == MVT::v4i8)
3155 if (aggregateIsPacked)
3158 return std::nullopt;
3168 P.getNode()->setIROrder(i + 1);
3169 for (
unsigned j = 0; j < NumElts; ++j) {
3173 if (EltVT == MVT::i1)
3176 else if (EltVT != LoadVT)
3188 Ins[InsIdx].VT.getFixedSizeInBits() >
3192 Elt = DAG.
getNode(Extend, dl, Ins[InsIdx].VT, Elt);
3215 assert(ObjectVT == Ins[InsIdx].VT &&
3216 "Ins type did not match function type");
3217 SDValue Arg = getParamSymbol(DAG, i, PtrVT);
3220 p.getNode()->setIROrder(i + 1);
3224 if (!OutChains.empty())
3240 for (
unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
3250 DAG.
getVTList(MVT::Other), StoreOperands,
3268 assert(isABI &&
"Non-ABI compilation is not supported");
3277 assert(VTs.
size() == OutVals.
size() &&
"Bad return value decomposition");
3279 for (
unsigned i = 0, e = VTs.
size(); i != e; ++i) {
3280 SDValue PromotedOutVal = OutVals[i];
3283 VTs[i] =
EVT(PromotedVT);
3288 PromotedOutVal = DAG.
getNode(Ext, dl, PromotedVT, PromotedOutVal);
3290 PromotedOutVals.
push_back(PromotedOutVal);
3301 bool ExtendIntegerRetVal =
3302 RetTy->isIntegerTy() &&
DL.getTypeAllocSizeInBits(
RetTy) < 32;
3305 for (
unsigned i = 0, e = VTs.
size(); i != e; ++i) {
3307 SDValue RetVal = PromotedOutVals[i];
3309 if (ExtendIntegerRetVal) {
3312 dl, MVT::i32, RetVal);
3322 EVT ElementType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
3323 Align ElementTypeAlign =
3324 DL.getABITypeAlign(ElementType.getTypeForEVT(
RetTy->getContext()));
3325 Align ElementAlign =
3327 if (ElementAlign < ElementTypeAlign) {
3328 assert(StoreOperands.
empty() &&
"Orphaned operand list.");
3340 assert(StoreOperands.
empty() &&
"Orphaned operand list.");
3351 unsigned NumElts = StoreOperands.
size() - 2;
3368 EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
3370 Op, dl, DAG.
getVTList(MVT::Other), StoreOperands, TheStoreType,
3373 StoreOperands.
clear();
3383 if (Constraint.
size() > 1)
3396 switch (Intrinsic) {
3399 case Intrinsic::nvvm_match_all_sync_i32p:
3400 case Intrinsic::nvvm_match_all_sync_i64p:
3405 Info.memVT = MVT::i1;
3410 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3411 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3412 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3413 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3414 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3415 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3416 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3417 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3418 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3419 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3420 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3421 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3422 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3423 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3424 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3425 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3426 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3427 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3428 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3429 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3430 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3431 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3432 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3433 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3435 Info.memVT = MVT::v8f16;
3436 Info.ptrVal =
I.getArgOperand(0);
3442 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3443 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3444 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3445 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3446 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3447 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3448 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3449 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3450 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3451 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3452 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3453 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3454 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3455 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3456 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3457 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3458 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3459 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3460 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3461 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3462 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3463 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3464 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3465 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3467 Info.memVT = MVT::v2i32;
3468 Info.ptrVal =
I.getArgOperand(0);
3475 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3476 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3477 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3478 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3479 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3480 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3481 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3482 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3483 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3484 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3485 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3486 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3487 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3488 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3489 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3490 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3492 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3493 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3494 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3495 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3496 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3497 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3498 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3499 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3500 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3501 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3502 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3503 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3504 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3505 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3506 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3507 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
3508 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
3509 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
3511 Info.memVT = MVT::v4i32;
3512 Info.ptrVal =
I.getArgOperand(0);
3519 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3520 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3521 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3522 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3523 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3524 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3525 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3526 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3528 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3529 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3530 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3531 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3532 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3533 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3534 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3535 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3536 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3537 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3538 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3539 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3540 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3541 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3542 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3543 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3544 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3545 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3546 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3547 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
3548 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
3549 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
3551 Info.memVT = MVT::i32;
3552 Info.ptrVal =
I.getArgOperand(0);
3559 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3560 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3561 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3562 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3563 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3564 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3565 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3566 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3567 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3568 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3569 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3570 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3572 Info.memVT = MVT::v4f16;
3573 Info.ptrVal =
I.getArgOperand(0);
3580 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3581 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3582 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3583 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3584 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3585 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3586 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3587 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3588 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3589 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3590 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3591 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3592 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3593 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3594 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3595 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3597 Info.memVT = MVT::v8f32;
3598 Info.ptrVal =
I.getArgOperand(0);
3605 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3606 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3607 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3608 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3610 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3611 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3612 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3613 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3615 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3616 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3617 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3618 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3619 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3620 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3621 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3622 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3623 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3624 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3625 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3626 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3628 Info.memVT = MVT::v8i32;
3629 Info.ptrVal =
I.getArgOperand(0);
3636 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3637 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3638 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3639 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3640 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3641 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3642 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3643 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
3644 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
3645 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
3647 Info.memVT = MVT::v2i32;
3648 Info.ptrVal =
I.getArgOperand(0);
3655 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3656 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3657 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3658 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3660 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3661 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3662 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3663 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3665 Info.memVT = MVT::f64;
3666 Info.ptrVal =
I.getArgOperand(0);
3673 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3674 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3675 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3676 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3678 Info.memVT = MVT::v2f64;
3679 Info.ptrVal =
I.getArgOperand(0);
3686 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3687 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3688 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3689 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3690 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3691 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3692 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3693 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3694 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3695 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3696 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3697 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3699 Info.memVT = MVT::v4f16;
3700 Info.ptrVal =
I.getArgOperand(0);
3707 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3708 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3709 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3710 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3711 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3712 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3713 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3714 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3715 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3716 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3717 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3718 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
3719 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
3720 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
3721 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
3722 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
3724 Info.memVT = MVT::v8f32;
3725 Info.ptrVal =
I.getArgOperand(0);
3732 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3733 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3734 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3735 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3736 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3737 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3738 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3739 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3740 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3741 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3742 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3743 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3745 Info.memVT = MVT::v8i32;
3746 Info.ptrVal =
I.getArgOperand(0);
3753 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3754 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3755 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3756 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3757 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3758 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3759 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3760 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3762 Info.memVT = MVT::v2i32;
3763 Info.ptrVal =
I.getArgOperand(0);
3770 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
3771 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
3772 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
3773 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
3775 Info.memVT = MVT::v2f64;
3776 Info.ptrVal =
I.getArgOperand(0);
3783 case Intrinsic::nvvm_atomic_load_inc_32:
3784 case Intrinsic::nvvm_atomic_load_dec_32:
3786 case Intrinsic::nvvm_atomic_add_gen_f_cta:
3787 case Intrinsic::nvvm_atomic_add_gen_f_sys:
3788 case Intrinsic::nvvm_atomic_add_gen_i_cta:
3789 case Intrinsic::nvvm_atomic_add_gen_i_sys:
3790 case Intrinsic::nvvm_atomic_and_gen_i_cta:
3791 case Intrinsic::nvvm_atomic_and_gen_i_sys:
3792 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3793 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3794 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3795 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3796 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3797 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3798 case Intrinsic::nvvm_atomic_max_gen_i_cta:
3799 case Intrinsic::nvvm_atomic_max_gen_i_sys:
3800 case Intrinsic::nvvm_atomic_min_gen_i_cta:
3801 case Intrinsic::nvvm_atomic_min_gen_i_sys:
3802 case Intrinsic::nvvm_atomic_or_gen_i_cta:
3803 case Intrinsic::nvvm_atomic_or_gen_i_sys:
3804 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3805 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3806 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3807 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3808 auto &
DL =
I.getDataLayout();
3811 Info.ptrVal =
I.getArgOperand(0);
3818 case Intrinsic::nvvm_ldu_global_i:
3819 case Intrinsic::nvvm_ldu_global_f:
3820 case Intrinsic::nvvm_ldu_global_p: {
3821 auto &
DL =
I.getDataLayout();
3823 if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3825 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3829 Info.ptrVal =
I.getArgOperand(0);
3832 Info.align = cast<ConstantInt>(
I.getArgOperand(1))->getMaybeAlignValue();
3836 case Intrinsic::nvvm_tex_1d_v4f32_s32:
3837 case Intrinsic::nvvm_tex_1d_v4f32_f32:
3838 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3839 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3840 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3841 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3842 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3843 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3844 case Intrinsic::nvvm_tex_2d_v4f32_s32:
3845 case Intrinsic::nvvm_tex_2d_v4f32_f32:
3846 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3847 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3848 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3849 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3850 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3851 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3852 case Intrinsic::nvvm_tex_3d_v4f32_s32:
3853 case Intrinsic::nvvm_tex_3d_v4f32_f32:
3854 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3855 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3856 case Intrinsic::nvvm_tex_cube_v4f32_f32:
3857 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3858 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3859 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3860 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3861 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3862 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3863 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3864 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3865 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3866 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3867 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3868 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3869 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3870 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3871 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3872 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3873 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3874 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3875 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3876 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3877 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3878 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3879 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3880 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3881 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3882 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3883 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3884 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3885 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3886 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3887 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3888 case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
3889 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
3890 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3891 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3892 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3893 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3895 Info.memVT = MVT::v4f32;
3896 Info.ptrVal =
nullptr;
3902 case Intrinsic::nvvm_tex_1d_v4s32_s32:
3903 case Intrinsic::nvvm_tex_1d_v4s32_f32:
3904 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3905 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3906 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3907 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3908 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3909 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3910 case Intrinsic::nvvm_tex_2d_v4s32_s32:
3911 case Intrinsic::nvvm_tex_2d_v4s32_f32:
3912 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3913 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3914 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3915 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3916 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3917 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3918 case Intrinsic::nvvm_tex_3d_v4s32_s32:
3919 case Intrinsic::nvvm_tex_3d_v4s32_f32:
3920 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3921 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3922 case Intrinsic::nvvm_tex_cube_v4s32_f32:
3923 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3924 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3925 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3926 case Intrinsic::nvvm_tex_cube_v4u32_f32:
3927 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3928 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3929 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3930 case Intrinsic::nvvm_tex_1d_v4u32_s32:
3931 case Intrinsic::nvvm_tex_1d_v4u32_f32:
3932 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3933 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3934 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3935 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3936 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3937 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3938 case Intrinsic::nvvm_tex_2d_v4u32_s32:
3939 case Intrinsic::nvvm_tex_2d_v4u32_f32:
3940 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3941 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3942 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3943 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3944 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3945 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3946 case Intrinsic::nvvm_tex_3d_v4u32_s32:
3947 case Intrinsic::nvvm_tex_3d_v4u32_f32:
3948 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3949 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3950 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3951 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3952 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3953 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3954 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3955 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3956 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3957 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3958 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3959 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3960 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3961 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3962 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3963 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3964 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3965 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3966 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3967 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3968 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3969 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3970 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3971 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3972 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3973 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3974 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3975 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3976 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3977 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3978 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3979 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3980 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3981 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3982 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3983 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3984 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3985 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3986 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3987 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3988 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3989 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3990 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3991 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3992 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3993 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3994 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3995 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3996 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3997 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3998 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3999 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4000 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4001 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4002 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4003 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4004 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4005 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4006 case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
4007 case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
4008 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
4009 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
4010 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4011 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4012 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4013 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4014 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4015 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4016 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4017 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4019 Info.memVT = MVT::v4i32;
4020 Info.ptrVal =
nullptr;
4026 case Intrinsic::nvvm_suld_1d_i8_clamp:
4027 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4028 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4029 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4030 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4031 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4032 case Intrinsic::nvvm_suld_2d_i8_clamp:
4033 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4034 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4035 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4036 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4037 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4038 case Intrinsic::nvvm_suld_3d_i8_clamp:
4039 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4040 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4041 case Intrinsic::nvvm_suld_1d_i8_trap:
4042 case Intrinsic::nvvm_suld_1d_v2i8_trap:
4043 case Intrinsic::nvvm_suld_1d_v4i8_trap:
4044 case Intrinsic::nvvm_suld_1d_array_i8_trap:
4045 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4046 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4047 case Intrinsic::nvvm_suld_2d_i8_trap:
4048 case Intrinsic::nvvm_suld_2d_v2i8_trap:
4049 case Intrinsic::nvvm_suld_2d_v4i8_trap:
4050 case Intrinsic::nvvm_suld_2d_array_i8_trap:
4051 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4052 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4053 case Intrinsic::nvvm_suld_3d_i8_trap:
4054 case Intrinsic::nvvm_suld_3d_v2i8_trap:
4055 case Intrinsic::nvvm_suld_3d_v4i8_trap:
4056 case Intrinsic::nvvm_suld_1d_i8_zero:
4057 case Intrinsic::nvvm_suld_1d_v2i8_zero:
4058 case Intrinsic::nvvm_suld_1d_v4i8_zero:
4059 case Intrinsic::nvvm_suld_1d_array_i8_zero:
4060 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4061 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4062 case Intrinsic::nvvm_suld_2d_i8_zero:
4063 case Intrinsic::nvvm_suld_2d_v2i8_zero:
4064 case Intrinsic::nvvm_suld_2d_v4i8_zero:
4065 case Intrinsic::nvvm_suld_2d_array_i8_zero:
4066 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4067 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4068 case Intrinsic::nvvm_suld_3d_i8_zero:
4069 case Intrinsic::nvvm_suld_3d_v2i8_zero:
4070 case Intrinsic::nvvm_suld_3d_v4i8_zero:
4072 Info.memVT = MVT::i8;
4073 Info.ptrVal =
nullptr;
4079 case Intrinsic::nvvm_suld_1d_i16_clamp:
4080 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4081 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4082 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4083 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4084 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4085 case Intrinsic::nvvm_suld_2d_i16_clamp:
4086 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4087 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4088 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4089 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4090 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4091 case Intrinsic::nvvm_suld_3d_i16_clamp:
4092 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4093 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4094 case Intrinsic::nvvm_suld_1d_i16_trap:
4095 case Intrinsic::nvvm_suld_1d_v2i16_trap:
4096 case Intrinsic::nvvm_suld_1d_v4i16_trap:
4097 case Intrinsic::nvvm_suld_1d_array_i16_trap:
4098 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4099 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4100 case Intrinsic::nvvm_suld_2d_i16_trap:
4101 case Intrinsic::nvvm_suld_2d_v2i16_trap:
4102 case Intrinsic::nvvm_suld_2d_v4i16_trap:
4103 case Intrinsic::nvvm_suld_2d_array_i16_trap:
4104 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4105 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4106 case Intrinsic::nvvm_suld_3d_i16_trap:
4107 case Intrinsic::nvvm_suld_3d_v2i16_trap:
4108 case Intrinsic::nvvm_suld_3d_v4i16_trap:
4109 case Intrinsic::nvvm_suld_1d_i16_zero:
4110 case Intrinsic::nvvm_suld_1d_v2i16_zero:
4111 case Intrinsic::nvvm_suld_1d_v4i16_zero:
4112 case Intrinsic::nvvm_suld_1d_array_i16_zero:
4113 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4114 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4115 case Intrinsic::nvvm_suld_2d_i16_zero:
4116 case Intrinsic::nvvm_suld_2d_v2i16_zero:
4117 case Intrinsic::nvvm_suld_2d_v4i16_zero:
4118 case Intrinsic::nvvm_suld_2d_array_i16_zero:
4119 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4120 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4121 case Intrinsic::nvvm_suld_3d_i16_zero:
4122 case Intrinsic::nvvm_suld_3d_v2i16_zero:
4123 case Intrinsic::nvvm_suld_3d_v4i16_zero:
4125 Info.memVT = MVT::i16;
4126 Info.ptrVal =
nullptr;
4132 case Intrinsic::nvvm_suld_1d_i32_clamp:
4133 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4134 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4135 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4136 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4137 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4138 case Intrinsic::nvvm_suld_2d_i32_clamp:
4139 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4140 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4141 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4142 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4143 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4144 case Intrinsic::nvvm_suld_3d_i32_clamp:
4145 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4146 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4147 case Intrinsic::nvvm_suld_1d_i32_trap:
4148 case Intrinsic::nvvm_suld_1d_v2i32_trap:
4149 case Intrinsic::nvvm_suld_1d_v4i32_trap:
4150 case Intrinsic::nvvm_suld_1d_array_i32_trap:
4151 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4152 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4153 case Intrinsic::nvvm_suld_2d_i32_trap:
4154 case Intrinsic::nvvm_suld_2d_v2i32_trap:
4155 case Intrinsic::nvvm_suld_2d_v4i32_trap:
4156 case Intrinsic::nvvm_suld_2d_array_i32_trap:
4157 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4158 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4159 case Intrinsic::nvvm_suld_3d_i32_trap:
4160 case Intrinsic::nvvm_suld_3d_v2i32_trap:
4161 case Intrinsic::nvvm_suld_3d_v4i32_trap:
4162 case Intrinsic::nvvm_suld_1d_i32_zero:
4163 case Intrinsic::nvvm_suld_1d_v2i32_zero:
4164 case Intrinsic::nvvm_suld_1d_v4i32_zero:
4165 case Intrinsic::nvvm_suld_1d_array_i32_zero:
4166 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4167 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4168 case Intrinsic::nvvm_suld_2d_i32_zero:
4169 case Intrinsic::nvvm_suld_2d_v2i32_zero:
4170 case Intrinsic::nvvm_suld_2d_v4i32_zero:
4171 case Intrinsic::nvvm_suld_2d_array_i32_zero:
4172 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4173 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4174 case Intrinsic::nvvm_suld_3d_i32_zero:
4175 case Intrinsic::nvvm_suld_3d_v2i32_zero:
4176 case Intrinsic::nvvm_suld_3d_v4i32_zero:
4178 Info.memVT = MVT::i32;
4179 Info.ptrVal =
nullptr;
4185 case Intrinsic::nvvm_suld_1d_i64_clamp:
4186 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4187 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4188 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4189 case Intrinsic::nvvm_suld_2d_i64_clamp:
4190 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4191 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4192 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4193 case Intrinsic::nvvm_suld_3d_i64_clamp:
4194 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4195 case Intrinsic::nvvm_suld_1d_i64_trap:
4196 case Intrinsic::nvvm_suld_1d_v2i64_trap:
4197 case Intrinsic::nvvm_suld_1d_array_i64_trap:
4198 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4199 case Intrinsic::nvvm_suld_2d_i64_trap:
4200 case Intrinsic::nvvm_suld_2d_v2i64_trap:
4201 case Intrinsic::nvvm_suld_2d_array_i64_trap:
4202 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4203 case Intrinsic::nvvm_suld_3d_i64_trap:
4204 case Intrinsic::nvvm_suld_3d_v2i64_trap:
4205 case Intrinsic::nvvm_suld_1d_i64_zero:
4206 case Intrinsic::nvvm_suld_1d_v2i64_zero:
4207 case Intrinsic::nvvm_suld_1d_array_i64_zero:
4208 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4209 case Intrinsic::nvvm_suld_2d_i64_zero:
4210 case Intrinsic::nvvm_suld_2d_v2i64_zero:
4211 case Intrinsic::nvvm_suld_2d_array_i64_zero:
4212 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4213 case Intrinsic::nvvm_suld_3d_i64_zero:
4214 case Intrinsic::nvvm_suld_3d_v2i64_zero:
4216 Info.memVT = MVT::i64;
4217 Info.ptrVal =
nullptr;
4237 const Align ABITypeAlign = std::min(
Align(128),
DL.getABITypeAlign(ArgTy));
4242 if (!
F || !
F->hasLocalLinkage() ||
4243 F->hasAddressTaken(
nullptr,
4247 return ABITypeAlign;
4250 return std::max(
Align(16), ABITypeAlign);
4257 Align ArgAlign = InitialAlign;
4272 ArgAlign = std::max(ArgAlign,
Align(4));
4282 std::string ParamName;
4287 ParamStr <<
"_vararg";
4289 ParamStr <<
"_param_" <<
Idx;
4341 if (Constraint.
size() == 1) {
4342 switch (Constraint[0]) {
4361std::pair<unsigned, const TargetRegisterClass *>
4365 if (Constraint.
size() == 1) {
4366 switch (Constraint[0]) {
4368 return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4370 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4372 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4374 return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4377 return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4381 "supported for sm_70 and higher!");
4382 return std::make_pair(0U, &NVPTX::Int128RegsRegClass);
4385 return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4387 return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4421 return F.getFnAttribute(
"unsafe-fp-math").getValueAsBool();
4425 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
4426 return Const && Const->getZExtValue() == 0;
4464 if (M->getOpcode() !=
ISD::MUL || !M.getNode()->hasOneUse())
4468 M->getOperand(0), M->getOperand(1), N1);
4470 ((ZeroOpNum == 1) ? N1 : MAD),
4471 ((ZeroOpNum == 1) ? MAD : N1));
4497 int nonAddCount = 0;
4506 int orderNo =
N->getIROrder();
4512 if (orderNo - orderNo2 < 500)
4518 bool opIsLive =
false;
4522 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4527 int orderNo3 =
User->getIROrder();
4528 if (orderNo3 > orderNo) {
4536 int orderNo3 =
User->getIROrder();
4537 if (orderNo3 > orderNo) {
4556 if (
all_of(
N->ops().drop_front(Front).drop_back(Back),
4557 [](
const SDUse &U) { return U.get()->isUndef(); }))
4560 return N->getOperand(0);
4589 if (VT.
isVector() || VT != MVT::i32)
4609 if (VT.
isVector() || !(VT == MVT::f32 || VT == MVT::f64))
4630 if (isa<ConstantSDNode>(Val)) {
4644 ConstantSDNode *BFEBits = dyn_cast<ConstantSDNode>(BFE.getOperand(0));
4656 if (MaskVal != (
uint64_t(1) << BFEBitsVal) - 1)
4676 if (MaskVal != 0xff) {
4681 MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4688 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4701 if (AExt.
getNode() !=
nullptr) {
4726 EVT VT =
N->getValueType(0);
4730 const SDValue &Num =
N->getOperand(0);
4731 const SDValue &Den =
N->getOperand(1);
4734 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4735 U->getOperand(1) == Den) {
4762 EVT OrigVT =
Op.getOperand(0).getValueType();
4768 EVT OrigVT =
Op.getOperand(0).getValueType();
4795 IsSigned = (LHSSign ==
Signed);
4799 const APInt &Val = CI->getAPIntValue();
4801 return Val.
isIntN(OptSize);
4810 return LHSSign == RHSSign;
4820 EVT MulType =
N->getValueType(0);
4821 if (MulType != MVT::i32 && MulType != MVT::i64) {
4832 if (isa<ConstantSDNode>(
LHS)) {
4861 if (MulType == MVT::i32) {
4862 DemotedVT = MVT::i16;
4864 DemotedVT = MVT::i32;
4881 return DCI.
DAG.
getNode(Opc,
DL, MulType, TruncLHS, TruncRHS);
4885 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
4886 return Const && Const->getZExtValue() == 1;
4894 return Add->getOperand(1);
4897 return Add->getOperand(0);
4936 (ConstOpNo == 1) ?
X : NewMul,
4937 (ConstOpNo == 1) ? NewMul :
X);
4948 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
4999 EVT CCType =
N->getValueType(0);
5003 EVT AType =
A.getValueType();
5004 if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
5007 if (
A.getValueType() == MVT::v2bf16 &&
SmVersion < 90)
5018 DL, DCI.
DAG.
getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
5037 VectorVT == MVT::v4i8 || VectorVT == MVT::v8i8)
5046 if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
5051 if (!Index || Index->getZExtValue() == 0)
5066 if (EltVT != EltIVT)
5069 if (EltVT !=
N->getValueType(0))
5079 if (VectorVT != MVT::v4i8)
5090 for (
int I = 0;
I < 4; ++
I) {
5109 auto VT =
N->getValueType(0);
5113 auto Op0 =
N->getOperand(0);
5114 auto Op1 =
N->getOperand(1);
5121 std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes},
5127 for (
auto &[
Op, OpBytes] : OpData) {
5130 *
Op =
Op->getOperand(0);
5133 Op->getOperand(0).getValueType() == MVT::i32))
5138 if (!
Op->hasOneUse())
5141 *
Op =
Op->getOperand(0);
5145 if (
Op->getOpcode() ==
ISD::SRL && isa<ConstantSDNode>(
Op->getOperand(1))) {
5146 if (cast<ConstantSDNode>(
Op->getOperand(1))->getZExtValue() == 16) {
5149 assert((*OpBytes == 0x10 || *OpBytes == 0x54) &&
5150 "PRMT selector values out of range");
5152 *
Op =
Op->getOperand(0);
5158 auto &DAG = DCI.
DAG;
5162 {Op0, Op1, DAG.
getConstant((Op1Bytes << 8) | Op0Bytes,
DL, MVT::i32),
5168 DAGCombinerInfo &DCI)
const {
5170 switch (
N->getOpcode()) {
5210 EVT ToVT =
Op->getValueType(0);
5211 if (ToVT != MVT::v2i8) {
5230 EVT ResVT =
N->getValueType(0);
5236 if (!NumEltsAndEltVT)
5238 auto [NumElts, EltVT] = NumEltsAndEltVT.value();
5242 Align Alignment = LD->getAlign();
5246 if (Alignment < PrefAlign) {
5258 bool NeedTrunc =
false;
5264 unsigned Opcode = 0;
5272 LdResVTs = DAG.
getVTList(EltVT, EltVT, MVT::Other);
5276 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5291 LD->getMemOperand());
5295 "NumElts should not increase, only decrease or stay the same.");
5303 for (
unsigned i = 0; i < NumElts; ++i) {
5308 for (
unsigned i = 0; i < NumElts; ++i) {
5335 case Intrinsic::nvvm_ldu_global_i:
5336 case Intrinsic::nvvm_ldu_global_f:
5337 case Intrinsic::nvvm_ldu_global_p: {
5338 EVT ResVT =
N->getValueType(0);
5350 bool NeedTrunc =
false;
5356 unsigned Opcode = 0;
5364 LdResVTs = DAG.
getVTList(EltVT, EltVT, MVT::Other);
5368 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5381 OtherOps.
append(
N->op_begin() + 2,
N->op_end());
5391 for (
unsigned i = 0; i < NumElts; ++i) {
5409 "Custom handling of non-i8 ldu/ldg?");
5442 assert(Reg.getValueType() == MVT::i128 &&
5443 "Custom lowering for CopyFromReg with 128-bit reg only");
5445 N->getValueType(2)};
5457void NVPTXTargetLowering::ReplaceNodeResults(
5459 switch (
N->getOpcode()) {
5498 auto ITy = cast<llvm::IntegerType>(Ty);
5507 switch (ITy->getBitWidth()) {
5526 switch (ITy->getBitWidth()) {
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombineWithOperands - Try DAG combinations for an ADD with operands N0 and N1.
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformBUILD_VECTORCombine - Target-specific dag combine xforms for ISD::BUILD_VECTOR.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file contains the declarations of entities that describe floating point environment and related ...
Module.h This file contains the declarations for the Module class.
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
unsigned const TargetRegisterInfo * TRI
NVPTX address space definition.
static bool shouldConvertToIndirectCall(const CallBase *CB, const GlobalAddressSDNode *Func)
static cl::opt< bool > sched4reg("nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false))
static SDValue PerformEXTRACTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isConstOne(const SDValue &Operand)
static cl::opt< unsigned > FMAContractLevelOpt("nvptx-fma-level", cl::Hidden, cl::desc("NVPTX Specific: FMA contraction (0: don't do it" " 1: do it 2: do it aggressively"), cl::init(2))
static bool IsPTXVectorType(MVT VT)
static cl::opt< int > UsePrecDivF32("nvptx-prec-divf32", cl::Hidden, cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" " IEEE Compliant F32 div.rnd if available."), cl::init(2))
static SDValue PerformStoreParamCombine(SDNode *N)
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static bool Is16bitsType(MVT VT)
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static bool IsTypePassedAsArray(const Type *Ty)
static SmallVector< ParamVectorizationFlags, 16 > VectorizePTXValueVTs(const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< uint64_t > &Offsets, Align ParamAlignment, bool IsVAArg=false)
static unsigned CanMergeParamLoadStoresStartingAt(unsigned Idx, uint32_t AccessSize, const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< uint64_t > &Offsets, Align ParamAlignment)
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static bool isConstZero(const SDValue &Operand)
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG)
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > *Offsets=nullptr, uint64_t StartingOffset=0)
ComputePTXValueVTs - For the given Type Ty, returns the set of primitive EVTs that compose it.
static bool IsMulWideOperandDemotable(SDValue Op, unsigned OptSize, OperandSignedness &S)
IsMulWideOperandDemotable - Checks if the provided DAG node is an operand that can be demoted to OptS...
static SDValue LowerUnalignedStoreParam(SelectionDAG &DAG, SDValue Chain, uint64_t Offset, EVT ElementType, SDValue StVal, SDValue &InGlue, unsigned ArgID, const SDLoc &dl)
static SDValue PerformREMCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static std::optional< std::pair< unsigned int, EVT > > getVectorLoweringShape(EVT VectorVT)
static SDValue PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI)
static SDValue PerformStoreRetvalCombine(SDNode *N)
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, unsigned OptSize, bool &IsSigned)
AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can be demoted to OptSize bits...
static SDValue PerformStoreCombineHelper(SDNode *N, std::size_t Front, std::size_t Back)
static bool adjustElementType(EVT &ElementType)
static SDValue TryMULWIDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply of M/2 bits that produces...
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue matchMADConstOnePattern(SDValue Add)
static SDValue MaybeBitcast(SelectionDAG &DAG, SDLoc DL, EVT VT, SDValue Value)
static cl::opt< bool > UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden, cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), cl::init(true))
static SDValue LowerUnalignedStoreRet(SelectionDAG &DAG, SDValue Chain, uint64_t Offset, EVT ElementType, SDValue RetVal, const SDLoc &dl)
static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT)
PromoteScalarIntegerPTX Used to make sure the arguments/returns are suitable for passing and promote ...
static SDValue PerformSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned int SmVersion)
static SDValue LowerUnalignedLoadRetParam(SelectionDAG &DAG, SDValue &Chain, uint64_t Offset, EVT ElementType, SDValue &InGlue, SmallVectorImpl< SDValue > &TempProxyRegOps, const SDLoc &dl)
static std::atomic< unsigned > GlobalUniqueCallSite
static cl::opt< bool > ForceMinByValParamAlign("nvptx-force-min-byval-param-align", cl::Hidden, cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" " params of device functions."), cl::init(false))
static SDValue PerformSHLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool slt(const APInt &RHS) const
Signed less than comparison.
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
an instruction that atomically reads a memory location, combines it with another value,...
@ Min
*p = old <signed v ? old : v
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
bool isFloatingPointOperation() const
BinOp getOperation() const
bool hasParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the attribute exists for the given argument.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
FunctionType * getFunctionType() const
This class represents a function call, abstracting a target machine's calling convention.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Diagnostic information for unsupported feature in backend.
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Type * getReturnType() const
Returns the type of the ret val.
unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
This is an important class for using LLVM in a threaded context.
void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
MCSection * getDataSection() const
Instances of this class represent a uniqued identifier for a section in the current translation unit.
StringRef getName() const
getName - Get the symbol name.
unsigned getVectorNumElements() const
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto integer_valuetypes()
static auto fixedlen_vector_valuetypes()
static MVT getVectorVT(MVT VT, unsigned NumElements)
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
const std::vector< MachineJumpTableEntry > & getJumpTables() const
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
EVT getMemoryVT() const
Return the type of the in-memory value.
unsigned getMaxRequiredAlignment() const
bool hasAtomMinMax64() const
bool hasAtomAddF64() const
const NVPTXTargetLowering * getTargetLowering() const override
unsigned getPTXVersion() const
const NVPTXRegisterInfo * getRegisterInfo() const override
unsigned int getSmVersion() const
bool hasAtomBitwise64() const
bool allowFP16Math() const
bool hasAtomCas16() const
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
const NVPTXTargetMachine * nvTM
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
NVPTXTargetLowering(const NVPTXTargetMachine &TM, const NVPTXSubtarget &STI)
bool useF32FTZ(const MachineFunction &MF) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
Align getFunctionArgumentAlignment(const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const
std::string getParamName(const Function *F, int Idx) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
std::string getPrototype(const DataLayout &DL, Type *, const ArgListTy &, const SmallVectorImpl< ISD::OutputArg > &, MaybeAlign retAlignment, std::optional< std::pair< unsigned, const APInt & > > VAInfo, const CallBase &CB, unsigned UniqueCallSite) const
Align getFunctionParamOptimizedAlign(const Function *F, Type *ArgTy, const DataLayout &DL) const
getFunctionParamOptimizedAlign - since function arguments are passed via .param space,...
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getFunctionByValParamAlign(const Function *F, Type *ArgTy, Align InitialAlign, const DataLayout &DL) const
Helper for computing alignment of a device function byval parameter.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool allowFMA(MachineFunction &MF, CodeGenOptLevel OptLevel) const
bool usePrecSqrtF32() const
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool allowUnsafeFPMath(MachineFunction &MF) const
int getDivF32Level() const
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
UniqueStringSaver & getStrPool() const
MCSection * SelectSectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const override
~NVPTXTargetObjectFile() override
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumOperands() const
Return the number of values used by this operation.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Return true if the type of the node type undefined.
iterator_range< user_iterator > users()
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SectionKind - This is a simple POD value that classifies the properties of a section.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
const TargetLowering & getTargetLoweringInfo() const
SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getBasicBlock(MachineBasicBlock *MBB)
SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
MachineFunction & getMachineFunction() const
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=0, const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrNegativeOneBooleanContent
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
std::vector< ArgListEntry > ArgListTy
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
MCSymbol * getSymbol(const GlobalValue *GV) const
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
FPOpFusion::FPOpFusionMode AllowFPOpFusion
AllowFPOpFusion - This flag is set by the -fp-contract=xxx option.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
@ VoidTyID
type with no size
bool isAggregateType() const
Return true if the type is an aggregate type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
StringRef save(const char *S)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SIGN_EXTEND
Conversion operators.
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
@ Bitcast
Perform the operation on a different, but equivalently sized type.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
static bool isIndirectCall(const MachineInstr &MI)
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
MaybeAlign getAlign(const Function &F, unsigned Index)
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
unsigned promoteScalarArgumentSize(unsigned size)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
CodeGenOptLevel
Code generation optimization level.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
constexpr unsigned BitWidth
bool isKernelFunction(const Function &F)
Function * getMaybeBitcastedCallee(const CallBase *CB)
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static const fltSemantics & IEEEsingle() LLVM_READNONE
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isAfterLegalizeDAG() const
SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)