LLVM 22.0.0git
SelectionDAGNodes.h
Go to the documentation of this file.
1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DebugLoc.h"
38#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Metadata.h"
41#include "llvm/IR/Operator.h"
48#include <algorithm>
49#include <cassert>
50#include <climits>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <iterator>
55#include <string>
56#include <tuple>
57#include <utility>
58
59namespace llvm {
60
61class APInt;
62class Constant;
63class GlobalValue;
66class MCSymbol;
67class raw_ostream;
68class SDNode;
69class SelectionDAG;
70class Type;
71class Value;
72
73LLVM_ABI void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
74 bool force = false);
75
76/// This represents a list of ValueType's that has been intern'd by
77/// a SelectionDAG. Instances of this simple value class are returned by
78/// SelectionDAG::getVTList(...).
79///
80struct SDVTList {
81 const EVT *VTs;
82 unsigned int NumVTs;
83};
84
85namespace ISD {
86
87 /// Node predicates
88
89/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
90/// same constant or undefined, return true and return the constant value in
91/// \p SplatValue.
92LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
93
94/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
95/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
96/// true, it only checks BUILD_VECTOR.
98 bool BuildVectorOnly = false);
99
100/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
101/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
102/// only checks BUILD_VECTOR.
104 bool BuildVectorOnly = false);
105
106/// Return true if the specified node is a BUILD_VECTOR where all of the
107/// elements are ~0 or undef.
109
110/// Return true if the specified node is a BUILD_VECTOR where all of the
111/// elements are 0 or undef.
113
114/// Return true if the specified node is a BUILD_VECTOR node of all
115/// ConstantSDNode or undef.
117
118/// Return true if the specified node is a BUILD_VECTOR node of all
119/// ConstantFPSDNode or undef.
121
122/// Returns true if the specified node is a vector where all elements can
123/// be truncated to the specified element size without a loss in meaning.
124LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
125 bool Signed);
126
127/// Return true if the node has at least one operand and all operands of the
128/// specified node are ISD::UNDEF.
129LLVM_ABI bool allOperandsUndef(const SDNode *N);
130
131/// Return true if the specified node is FREEZE(UNDEF).
133
134} // end namespace ISD
135
136//===----------------------------------------------------------------------===//
137/// Unlike LLVM values, Selection DAG nodes may return multiple
138/// values as the result of a computation. Many nodes return multiple values,
139/// from loads (which define a token and a return value) to ADDC (which returns
140/// a result and a carry value), to calls (which may return an arbitrary number
141/// of values).
142///
143/// As such, each use of a SelectionDAG computation must indicate the node that
144/// computes it as well as which return value to use from that node. This pair
145/// of information is represented with the SDValue value type.
146///
147class SDValue {
148 friend struct DenseMapInfo<SDValue>;
149
150 SDNode *Node = nullptr; // The node defining the value we are using.
151 unsigned ResNo = 0; // Which return value of the node we are using.
152
153public:
154 SDValue() = default;
155 SDValue(SDNode *node, unsigned resno);
156
157 /// get the index which selects a specific result in the SDNode
158 unsigned getResNo() const { return ResNo; }
159
160 /// get the SDNode which holds the desired result
161 SDNode *getNode() const { return Node; }
162
163 /// set the SDNode
164 void setNode(SDNode *N) { Node = N; }
165
166 inline SDNode *operator->() const { return Node; }
167
168 bool operator==(const SDValue &O) const {
169 return Node == O.Node && ResNo == O.ResNo;
170 }
171 bool operator!=(const SDValue &O) const {
172 return !operator==(O);
173 }
174 bool operator<(const SDValue &O) const {
175 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
176 }
177 explicit operator bool() const {
178 return Node != nullptr;
179 }
180
181 SDValue getValue(unsigned R) const {
182 return SDValue(Node, R);
183 }
184
185 /// Return true if the referenced return value is an operand of N.
186 LLVM_ABI bool isOperandOf(const SDNode *N) const;
187
188 /// Return the ValueType of the referenced return value.
189 inline EVT getValueType() const;
190
191 /// Return the simple ValueType of the referenced return value.
193 return getValueType().getSimpleVT();
194 }
195
196 /// Returns the size of the value in bits.
197 ///
198 /// If the value type is a scalable vector type, the scalable property will
199 /// be set and the runtime size will be a positive integer multiple of the
200 /// base size.
202 return getValueType().getSizeInBits();
203 }
204
208
209 // Forwarding methods - These forward to the corresponding methods in SDNode.
210 inline unsigned getOpcode() const;
211 inline unsigned getNumOperands() const;
212 inline const SDValue &getOperand(unsigned i) const;
213 inline uint64_t getConstantOperandVal(unsigned i) const;
214 inline const APInt &getConstantOperandAPInt(unsigned i) const;
215 inline bool isTargetOpcode() const;
216 inline bool isMachineOpcode() const;
217 inline bool isUndef() const;
218 inline bool isAnyAdd() const;
219 inline unsigned getMachineOpcode() const;
220 inline const DebugLoc &getDebugLoc() const;
221 inline void dump() const;
222 inline void dump(const SelectionDAG *G) const;
223 inline void dumpr() const;
224 inline void dumpr(const SelectionDAG *G) const;
225
226 /// Return true if this operand (which must be a chain) reaches the
227 /// specified operand without crossing any side-effecting instructions.
228 /// In practice, this looks through token factors and non-volatile loads.
229 /// In order to remain efficient, this only
230 /// looks a couple of nodes in, it does not do an exhaustive search.
232 unsigned Depth = 2) const;
233
234 /// Return true if there are no nodes using value ResNo of Node.
235 inline bool use_empty() const;
236
237 /// Return true if there is exactly one node using value ResNo of Node.
238 inline bool hasOneUse() const;
239};
240
241template<> struct DenseMapInfo<SDValue> {
242 static inline SDValue getEmptyKey() {
243 SDValue V;
244 V.ResNo = -1U;
245 return V;
246 }
247
248 static inline SDValue getTombstoneKey() {
249 SDValue V;
250 V.ResNo = -2U;
251 return V;
252 }
253
254 static unsigned getHashValue(const SDValue &Val) {
255 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
256 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
257 }
258
259 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
260 return LHS == RHS;
261 }
262};
263
264/// Allow casting operators to work directly on
265/// SDValues as if they were SDNode*'s.
266template<> struct simplify_type<SDValue> {
268
270 return Val.getNode();
271 }
272};
273template<> struct simplify_type<const SDValue> {
274 using SimpleType = /*const*/ SDNode *;
275
277 return Val.getNode();
278 }
279};
280
281/// Represents a use of a SDNode. This class holds an SDValue,
282/// which records the SDNode being used and the result number, a
283/// pointer to the SDNode using the value, and Next and Prev pointers,
284/// which link together all the uses of an SDNode.
285///
286class SDUse {
287 /// Val - The value being used.
288 SDValue Val;
289 /// User - The user of this value.
290 SDNode *User = nullptr;
291 /// Prev, Next - Pointers to the uses list of the SDNode referred by
292 /// this operand.
293 SDUse **Prev = nullptr;
294 SDUse *Next = nullptr;
295
296public:
297 SDUse() = default;
298 SDUse(const SDUse &U) = delete;
299 SDUse &operator=(const SDUse &) = delete;
300
301 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
302 operator const SDValue&() const { return Val; }
303
304 /// If implicit conversion to SDValue doesn't work, the get() method returns
305 /// the SDValue.
306 const SDValue &get() const { return Val; }
307
308 /// This returns the SDNode that contains this Use.
309 SDNode *getUser() { return User; }
310 const SDNode *getUser() const { return User; }
311
312 /// Get the next SDUse in the use list.
313 SDUse *getNext() const { return Next; }
314
315 /// Return the operand # of this use in its user.
316 inline unsigned getOperandNo() const;
317
318 /// Convenience function for get().getNode().
319 SDNode *getNode() const { return Val.getNode(); }
320 /// Convenience function for get().getResNo().
321 unsigned getResNo() const { return Val.getResNo(); }
322 /// Convenience function for get().getValueType().
323 EVT getValueType() const { return Val.getValueType(); }
324
325 /// Convenience function for get().operator==
326 bool operator==(const SDValue &V) const {
327 return Val == V;
328 }
329
330 /// Convenience function for get().operator!=
331 bool operator!=(const SDValue &V) const {
332 return Val != V;
333 }
334
335 /// Convenience function for get().operator<
336 bool operator<(const SDValue &V) const {
337 return Val < V;
338 }
339
340private:
341 friend class SelectionDAG;
342 friend class SDNode;
343 // TODO: unfriend HandleSDNode once we fix its operand handling.
344 friend class HandleSDNode;
345
346 void setUser(SDNode *p) { User = p; }
347
348 /// Remove this use from its existing use list, assign it the
349 /// given value, and add it to the new value's node's use list.
350 inline void set(const SDValue &V);
351 /// Like set, but only supports initializing a newly-allocated
352 /// SDUse with a non-null value.
353 inline void setInitial(const SDValue &V);
354 /// Like set, but only sets the Node portion of the value,
355 /// leaving the ResNo portion unmodified.
356 inline void setNode(SDNode *N);
357
358 void addToList(SDUse **List) {
359 Next = *List;
360 if (Next) Next->Prev = &Next;
361 Prev = List;
362 *List = this;
363 }
364
365 void removeFromList() {
366 *Prev = Next;
367 if (Next) Next->Prev = Prev;
368 }
369};
370
371/// simplify_type specializations - Allow casting operators to work directly on
372/// SDValues as if they were SDNode*'s.
373template<> struct simplify_type<SDUse> {
375
377 return Val.getNode();
378 }
379};
380
381/// These are IR-level optimization flags that may be propagated to SDNodes.
382/// TODO: This data structure should be shared by the IR optimizer and the
383/// the backend.
385private:
386 friend class SDNode;
387
388 unsigned Flags = 0;
389
390 template <unsigned Flag> void setFlag(bool B) {
391 Flags = (Flags & ~Flag) | (B ? Flag : 0);
392 }
393
394public:
395 enum : unsigned {
396 None = 0,
398 NoSignedWrap = 1 << 1,
400 Exact = 1 << 2,
401 Disjoint = 1 << 3,
402 NonNeg = 1 << 4,
403 NoNaNs = 1 << 5,
404 NoInfs = 1 << 6,
410
411 // We assume instructions do not raise floating-point exceptions by default,
412 // and only those marked explicitly may do so. We could choose to represent
413 // this via a positive "FPExcept" flags like on the MI level, but having a
414 // negative "NoFPExcept" flag here makes the flag intersection logic more
415 // straightforward.
416 NoFPExcept = 1 << 12,
417 // Instructions with attached 'unpredictable' metadata on IR level.
418 Unpredictable = 1 << 13,
419 // Compare instructions which may carry the samesign flag.
420 SameSign = 1 << 14,
421 // ISD::PTRADD operations that remain in bounds, i.e., the left operand is
422 // an address in a memory object in which the result of the operation also
423 // lies. WARNING: Since SDAG generally uses integers instead of pointer
424 // types, a PTRADD's pointer operand is effectively the result of an
425 // implicit inttoptr cast. Therefore, when an inbounds PTRADD uses a
426 // pointer P, transformations cannot assume that P has the provenance
427 // implied by its producer as, e.g, operations between producer and PTRADD
428 // that affect the provenance may have been optimized away.
429 InBounds = 1 << 15,
430
431 // NOTE: Please update LargestValue in LLVM_DECLARE_ENUM_AS_BITMASK below
432 // the class definition when adding new flags.
433
438 };
439
440 /// Default constructor turns off all optimization flags.
441 SDNodeFlags(unsigned Flags = SDNodeFlags::None) : Flags(Flags) {}
442
443 /// Propagate the fast-math-flags from an IR FPMathOperator.
453
454 // These are mutators for each flag.
455 void setNoUnsignedWrap(bool b) { setFlag<NoUnsignedWrap>(b); }
456 void setNoSignedWrap(bool b) { setFlag<NoSignedWrap>(b); }
457 void setExact(bool b) { setFlag<Exact>(b); }
458 void setDisjoint(bool b) { setFlag<Disjoint>(b); }
459 void setSameSign(bool b) { setFlag<SameSign>(b); }
460 void setNonNeg(bool b) { setFlag<NonNeg>(b); }
461 void setNoNaNs(bool b) { setFlag<NoNaNs>(b); }
462 void setNoInfs(bool b) { setFlag<NoInfs>(b); }
463 void setNoSignedZeros(bool b) { setFlag<NoSignedZeros>(b); }
464 void setAllowReciprocal(bool b) { setFlag<AllowReciprocal>(b); }
465 void setAllowContract(bool b) { setFlag<AllowContract>(b); }
466 void setApproximateFuncs(bool b) { setFlag<ApproximateFuncs>(b); }
467 void setAllowReassociation(bool b) { setFlag<AllowReassociation>(b); }
468 void setNoFPExcept(bool b) { setFlag<NoFPExcept>(b); }
469 void setUnpredictable(bool b) { setFlag<Unpredictable>(b); }
470 void setInBounds(bool b) { setFlag<InBounds>(b); }
471
472 // These are accessors for each flag.
473 bool hasNoUnsignedWrap() const { return Flags & NoUnsignedWrap; }
474 bool hasNoSignedWrap() const { return Flags & NoSignedWrap; }
475 bool hasExact() const { return Flags & Exact; }
476 bool hasDisjoint() const { return Flags & Disjoint; }
477 bool hasSameSign() const { return Flags & SameSign; }
478 bool hasNonNeg() const { return Flags & NonNeg; }
479 bool hasNoNaNs() const { return Flags & NoNaNs; }
480 bool hasNoInfs() const { return Flags & NoInfs; }
481 bool hasNoSignedZeros() const { return Flags & NoSignedZeros; }
482 bool hasAllowReciprocal() const { return Flags & AllowReciprocal; }
483 bool hasAllowContract() const { return Flags & AllowContract; }
484 bool hasApproximateFuncs() const { return Flags & ApproximateFuncs; }
485 bool hasAllowReassociation() const { return Flags & AllowReassociation; }
486 bool hasNoFPExcept() const { return Flags & NoFPExcept; }
487 bool hasUnpredictable() const { return Flags & Unpredictable; }
488 bool hasInBounds() const { return Flags & InBounds; }
489
490 bool operator==(const SDNodeFlags &Other) const {
491 return Flags == Other.Flags;
492 }
493 void operator&=(const SDNodeFlags &OtherFlags) { Flags &= OtherFlags.Flags; }
494 void operator|=(const SDNodeFlags &OtherFlags) { Flags |= OtherFlags.Flags; }
495};
496
499
501 LHS |= RHS;
502 return LHS;
503}
504
506 LHS &= RHS;
507 return LHS;
508}
509
510/// Represents one node in the SelectionDAG.
511///
512class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
513private:
514 /// The operation that this node performs.
515 int32_t NodeType;
516
517 SDNodeFlags Flags;
518
519protected:
520 // We define a set of mini-helper classes to help us interpret the bits in our
521 // SubclassData. These are designed to fit within a uint16_t so they pack
522 // with SDNodeFlags.
523
524#if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
525// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
526// and give the `pack` pragma push semantics.
527#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
528#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
529#else
530#define BEGIN_TWO_BYTE_PACK()
531#define END_TWO_BYTE_PACK()
532#endif
533
536 friend class SDNode;
537 friend class MemIntrinsicSDNode;
538 friend class MemSDNode;
539 friend class SelectionDAG;
540
541 uint16_t HasDebugValue : 1;
542 uint16_t IsMemIntrinsic : 1;
543 uint16_t IsDivergent : 1;
544 };
545 enum { NumSDNodeBits = 3 };
546
548 friend class ConstantSDNode;
549
551
552 uint16_t IsOpaque : 1;
553 };
554
556 friend class MemSDNode;
557 friend class MemIntrinsicSDNode;
558 friend class AtomicSDNode;
559
561
562 uint16_t IsVolatile : 1;
563 uint16_t IsNonTemporal : 1;
564 uint16_t IsDereferenceable : 1;
565 uint16_t IsInvariant : 1;
566 };
568
570 friend class LSBaseSDNode;
576
578
579 // This storage is shared between disparate class hierarchies to hold an
580 // enumeration specific to the class hierarchy in use.
581 // LSBaseSDNode => enum ISD::MemIndexedMode
582 // VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode
583 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
584 // VPGatherScatterSDNode => enum ISD::MemIndexType
585 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
586 // MaskedHistogramSDNode => enum ISD::MemIndexType
587 uint16_t AddressingMode : 3;
588 };
590
592 friend class LoadSDNode;
593 friend class AtomicSDNode;
594 friend class VPLoadSDNode;
596 friend class MaskedLoadSDNode;
597 friend class MaskedGatherSDNode;
598 friend class VPGatherSDNode;
600
602
603 uint16_t ExtTy : 2; // enum ISD::LoadExtType
604 uint16_t IsExpanding : 1;
605 };
606
608 friend class StoreSDNode;
609 friend class VPStoreSDNode;
611 friend class MaskedStoreSDNode;
613 friend class VPScatterSDNode;
614
616
617 uint16_t IsTruncating : 1;
618 uint16_t IsCompressing : 1;
619 };
620
621 union {
622 char RawSDNodeBits[sizeof(uint16_t)];
629 };
631#undef BEGIN_TWO_BYTE_PACK
632#undef END_TWO_BYTE_PACK
633
634 // RawSDNodeBits must cover the entirety of the union. This means that all of
635 // the union's members must have size <= RawSDNodeBits. We write the RHS as
636 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
637 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
638 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
639 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
640 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
641 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
642 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
643
644public:
645 /// Unique and persistent id per SDNode in the DAG. Used for debug printing.
646 /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS`
647 /// intentionally because it adds unneeded complexity without noticeable
648 /// benefits (see discussion with @thakis in D120714). Currently, there are
649 /// two padding bytes after this field.
651
652private:
653 friend class SelectionDAG;
654 // TODO: unfriend HandleSDNode once we fix its operand handling.
655 friend class HandleSDNode;
656
657 /// Unique id per SDNode in the DAG.
658 int NodeId = -1;
659
660 /// The values that are used by this operation.
661 SDUse *OperandList = nullptr;
662
663 /// The types of the values this node defines. SDNode's may
664 /// define multiple values simultaneously.
665 const EVT *ValueList;
666
667 /// List of uses for this SDNode.
668 SDUse *UseList = nullptr;
669
670 /// The number of entries in the Operand/Value list.
671 unsigned short NumOperands = 0;
672 unsigned short NumValues;
673
674 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
675 // original LLVM instructions.
676 // This is used for turning off scheduling, because we'll forgo
677 // the normal scheduling algorithms and output the instructions according to
678 // this ordering.
679 unsigned IROrder;
680
681 /// Source line information.
682 DebugLoc debugLoc;
683
684 /// Return a pointer to the specified value type.
685 LLVM_ABI static const EVT *getValueTypeList(MVT VT);
686
687 /// Index in worklist of DAGCombiner, or negative if the node is not in the
688 /// worklist. -1 = not in worklist; -2 = not in worklist, but has already been
689 /// combined at least once.
690 int CombinerWorklistIndex = -1;
691
692 uint32_t CFIType = 0;
693
694public:
695 //===--------------------------------------------------------------------===//
696 // Accessors
697 //
698
699 /// Return the SelectionDAG opcode value for this node. For
700 /// pre-isel nodes (those for which isMachineOpcode returns false), these
701 /// are the opcode values in the ISD and <target>ISD namespaces. For
702 /// post-isel opcodes, see getMachineOpcode.
703 unsigned getOpcode() const { return (unsigned)NodeType; }
704
705 /// Test if this node has a target-specific opcode (in the
706 /// <target>ISD namespace).
707 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
708
709 /// Returns true if the node type is UNDEF or POISON.
710 bool isUndef() const {
711 return NodeType == ISD::UNDEF || NodeType == ISD::POISON;
712 }
713
714 /// Returns true if the node type is ADD or PTRADD.
715 bool isAnyAdd() const {
716 return NodeType == ISD::ADD || NodeType == ISD::PTRADD;
717 }
718
719 /// Test if this node is a memory intrinsic (with valid pointer information).
720 bool isMemIntrinsic() const { return SDNodeBits.IsMemIntrinsic; }
721
722 /// Test if this node is a strict floating point pseudo-op.
724 switch (NodeType) {
725 default:
726 return false;
727 case ISD::STRICT_FP16_TO_FP:
728 case ISD::STRICT_FP_TO_FP16:
729 case ISD::STRICT_BF16_TO_FP:
730 case ISD::STRICT_FP_TO_BF16:
731#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
732 case ISD::STRICT_##DAGN:
733#include "llvm/IR/ConstrainedOps.def"
734 return true;
735 }
736 }
737
738 /// Test if this node is an assert operation.
739 bool isAssert() const {
740 switch (NodeType) {
741 default:
742 return false;
743 case ISD::AssertAlign:
745 case ISD::AssertSext:
746 case ISD::AssertZext:
747 return true;
748 }
749 }
750
751 /// Test if this node is a vector predication operation.
752 bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); }
753
754 /// Test if this node has a post-isel opcode, directly
755 /// corresponding to a MachineInstr opcode.
756 bool isMachineOpcode() const { return NodeType < 0; }
757
758 /// This may only be called if isMachineOpcode returns
759 /// true. It returns the MachineInstr opcode value that the node's opcode
760 /// corresponds to.
761 unsigned getMachineOpcode() const {
762 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
763 return ~NodeType;
764 }
765
766 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
767 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
768
769 bool isDivergent() const { return SDNodeBits.IsDivergent; }
770
771 /// Return true if there are no uses of this node.
772 bool use_empty() const { return UseList == nullptr; }
773
774 /// Return true if there is exactly one use of this node.
775 bool hasOneUse() const { return hasSingleElement(uses()); }
776
777 /// Return the number of uses of this node. This method takes
778 /// time proportional to the number of uses.
779 size_t use_size() const { return std::distance(use_begin(), use_end()); }
780
781 /// Return the unique node id.
782 int getNodeId() const { return NodeId; }
783
784 /// Set unique node id.
785 void setNodeId(int Id) { NodeId = Id; }
786
787 /// Get worklist index for DAGCombiner
788 int getCombinerWorklistIndex() const { return CombinerWorklistIndex; }
789
790 /// Set worklist index for DAGCombiner
791 void setCombinerWorklistIndex(int Index) { CombinerWorklistIndex = Index; }
792
793 /// Return the node ordering.
794 unsigned getIROrder() const { return IROrder; }
795
796 /// Set the node ordering.
797 void setIROrder(unsigned Order) { IROrder = Order; }
798
799 /// Return the source location info.
800 const DebugLoc &getDebugLoc() const { return debugLoc; }
801
802 /// Set source location info. Try to avoid this, putting
803 /// it in the constructor is preferable.
804 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
805
806 /// This class provides iterator support for SDUse
807 /// operands that use a specific SDNode.
808 class use_iterator {
809 friend class SDNode;
810
811 SDUse *Op = nullptr;
812
813 explicit use_iterator(SDUse *op) : Op(op) {}
814
815 public:
816 using iterator_category = std::forward_iterator_tag;
818 using difference_type = std::ptrdiff_t;
821
822 use_iterator() = default;
823 use_iterator(const use_iterator &I) = default;
824 use_iterator &operator=(const use_iterator &) = default;
825
826 bool operator==(const use_iterator &x) const { return Op == x.Op; }
827 bool operator!=(const use_iterator &x) const {
828 return !operator==(x);
829 }
830
831 // Iterator traversal: forward iteration only.
832 use_iterator &operator++() { // Preincrement
833 assert(Op && "Cannot increment end iterator!");
834 Op = Op->getNext();
835 return *this;
836 }
837
838 use_iterator operator++(int) { // Postincrement
839 use_iterator tmp = *this; ++*this; return tmp;
840 }
841
842 /// Retrieve a pointer to the current user node.
843 SDUse &operator*() const {
844 assert(Op && "Cannot dereference end iterator!");
845 return *Op;
846 }
847
848 SDUse *operator->() const { return &operator*(); }
849 };
850
851 class user_iterator {
852 friend class SDNode;
853 use_iterator UI;
854
855 explicit user_iterator(SDUse *op) : UI(op) {};
856
857 public:
858 using iterator_category = std::forward_iterator_tag;
860 using difference_type = std::ptrdiff_t;
863
864 user_iterator() = default;
865
866 bool operator==(const user_iterator &x) const { return UI == x.UI; }
867 bool operator!=(const user_iterator &x) const { return !operator==(x); }
868
869 user_iterator &operator++() { // Preincrement
870 ++UI;
871 return *this;
872 }
873
874 user_iterator operator++(int) { // Postincrement
875 auto tmp = *this;
876 ++*this;
877 return tmp;
878 }
879
880 // Retrieve a pointer to the current User.
881 SDNode *operator*() const { return UI->getUser(); }
882
883 SDNode *operator->() const { return operator*(); }
884
885 SDUse &getUse() const { return *UI; }
886 };
887
888 /// Provide iteration support to walk over all uses of an SDNode.
890 return use_iterator(UseList);
891 }
892
893 static use_iterator use_end() { return use_iterator(nullptr); }
894
899 return make_range(use_begin(), use_end());
900 }
901
902 /// Provide iteration support to walk over all users of an SDNode.
903 user_iterator user_begin() const { return user_iterator(UseList); }
904
905 static user_iterator user_end() { return user_iterator(nullptr); }
906
911 return make_range(user_begin(), user_end());
912 }
913
914 /// Return true if there are exactly NUSES uses of the indicated value.
915 /// This method ignores uses of other values defined by this operation.
916 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const {
917 assert(Value < getNumValues() && "Bad value!");
918
919 // TODO: Only iterate over uses of a given value of the node
920 for (SDUse &U : uses()) {
921 if (U.getResNo() == Value) {
922 if (NUses == 0)
923 return false;
924 --NUses;
925 }
926 }
927
928 // Found exactly the right number of uses?
929 return NUses == 0;
930 }
931
932 /// Return true if there are any use of the indicated value.
933 /// This method ignores uses of other values defined by this operation.
934 LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const;
935
936 /// Return true if this node is the only use of N.
937 LLVM_ABI bool isOnlyUserOf(const SDNode *N) const;
938
939 /// Return true if this node is an operand of N.
940 LLVM_ABI bool isOperandOf(const SDNode *N) const;
941
942 /// Return true if this node is a predecessor of N.
943 /// NOTE: Implemented on top of hasPredecessor and every bit as
944 /// expensive. Use carefully.
945 bool isPredecessorOf(const SDNode *N) const {
946 return N->hasPredecessor(this);
947 }
948
949 /// Return true if N is a predecessor of this node.
950 /// N is either an operand of this node, or can be reached by recursively
951 /// traversing up the operands.
952 /// NOTE: This is an expensive method. Use it carefully.
953 LLVM_ABI bool hasPredecessor(const SDNode *N) const;
954
955 /// Returns true if N is a predecessor of any node in Worklist. This
956 /// helper keeps Visited and Worklist sets externally to allow unions
957 /// searches to be performed in parallel, caching of results across
958 /// queries and incremental addition to Worklist. Stops early if N is
959 /// found but will resume. Remember to clear Visited and Worklists
960 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
961 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
962 /// topologically ordered (Operands have strictly smaller node id) and search
963 /// can be pruned leveraging this.
964 static bool hasPredecessorHelper(const SDNode *N,
967 unsigned int MaxSteps = 0,
968 bool TopologicalPrune = false) {
969 if (Visited.count(N))
970 return true;
971
972 SmallVector<const SDNode *, 8> DeferredNodes;
973 // Node Id's are assigned in three places: As a topological
974 // ordering (> 0), during legalization (results in values set to
975 // 0), new nodes (set to -1). If N has a topolgical id then we
976 // know that all nodes with ids smaller than it cannot be
977 // successors and we need not check them. Filter out all node
978 // that can't be matches. We add them to the worklist before exit
979 // in case of multiple calls. Note that during selection the topological id
980 // may be violated if a node's predecessor is selected before it. We mark
981 // this at selection negating the id of unselected successors and
982 // restricting topological pruning to positive ids.
983
984 int NId = N->getNodeId();
985 // If we Invalidated the Id, reconstruct original NId.
986 if (NId < -1)
987 NId = -(NId + 1);
988
989 bool Found = false;
990 while (!Worklist.empty()) {
991 const SDNode *M = Worklist.pop_back_val();
992 int MId = M->getNodeId();
993 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
994 (MId > 0) && (MId < NId)) {
995 DeferredNodes.push_back(M);
996 continue;
997 }
998 for (const SDValue &OpV : M->op_values()) {
999 SDNode *Op = OpV.getNode();
1000 if (Visited.insert(Op).second)
1001 Worklist.push_back(Op);
1002 if (Op == N)
1003 Found = true;
1004 }
1005 if (Found)
1006 break;
1007 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
1008 break;
1009 }
1010 // Push deferred nodes back on worklist.
1011 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
1012 // If we bailed early, conservatively return found.
1013 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
1014 return true;
1015 return Found;
1016 }
1017
1018 /// Return true if all the users of N are contained in Nodes.
1019 /// NOTE: Requires at least one match, but doesn't require them all.
1021 const SDNode *N);
1022
1023 /// Return the number of values used by this operation.
1024 unsigned getNumOperands() const { return NumOperands; }
1025
1026 /// Return the maximum number of operands that a SDNode can hold.
1027 static constexpr size_t getMaxNumOperands() {
1028 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
1029 }
1030
1031 /// Helper method returns the integer value of a ConstantSDNode operand.
1032 inline uint64_t getConstantOperandVal(unsigned Num) const;
1033
1034 /// Helper method returns the zero-extended integer value of a ConstantSDNode.
1035 inline uint64_t getAsZExtVal() const;
1036
1037 /// Helper method returns the APInt of a ConstantSDNode operand.
1038 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
1039
1040 /// Helper method returns the APInt value of a ConstantSDNode.
1041 inline const APInt &getAsAPIntVal() const;
1042
1043 inline std::optional<APInt> bitcastToAPInt() const;
1044
1045 const SDValue &getOperand(unsigned Num) const {
1046 assert(Num < NumOperands && "Invalid child # of SDNode!");
1047 return OperandList[Num];
1048 }
1049
1051
1052 op_iterator op_begin() const { return OperandList; }
1053 op_iterator op_end() const { return OperandList+NumOperands; }
1054 ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); }
1055
1056 /// Iterator for directly iterating over the operand SDValue's.
1058 : iterator_adaptor_base<value_op_iterator, op_iterator,
1059 std::random_access_iterator_tag, SDValue,
1060 ptrdiff_t, value_op_iterator *,
1061 value_op_iterator *> {
1062 explicit value_op_iterator(SDUse *U = nullptr)
1063 : iterator_adaptor_base(U) {}
1064
1065 const SDValue &operator*() const { return I->get(); }
1066 };
1067
1072
1074 SDVTList X = { ValueList, NumValues };
1075 return X;
1076 }
1077
1078 /// If this node has a glue operand, return the node
1079 /// to which the glue operand points. Otherwise return NULL.
1081 if (getNumOperands() != 0 &&
1082 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
1083 return getOperand(getNumOperands()-1).getNode();
1084 return nullptr;
1085 }
1086
1087 /// If this node has a glue value with a user, return
1088 /// the user (there is at most one). Otherwise return NULL.
1090 for (SDUse &U : uses())
1091 if (U.getValueType() == MVT::Glue)
1092 return U.getUser();
1093 return nullptr;
1094 }
1095
1096 SDNodeFlags getFlags() const { return Flags; }
1097 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
1098 void dropFlags(unsigned Mask) { Flags &= ~Mask; }
1099
1100 /// Clear any flags in this node that aren't also set in Flags.
1101 /// If Flags is not in a defined state then this has no effect.
1102 LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags);
1103
1105 return Flags.Flags & SDNodeFlags::PoisonGeneratingFlags;
1106 }
1107
1108 void setCFIType(uint32_t Type) { CFIType = Type; }
1109 uint32_t getCFIType() const { return CFIType; }
1110
1111 /// Return the number of values defined/returned by this operator.
1112 unsigned getNumValues() const { return NumValues; }
1113
1114 /// Return the type of a specified result.
1115 EVT getValueType(unsigned ResNo) const {
1116 assert(ResNo < NumValues && "Illegal result number!");
1117 return ValueList[ResNo];
1118 }
1119
1120 /// Return the type of a specified result as a simple type.
1121 MVT getSimpleValueType(unsigned ResNo) const {
1122 return getValueType(ResNo).getSimpleVT();
1123 }
1124
1125 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1126 ///
1127 /// If the value type is a scalable vector type, the scalable property will
1128 /// be set and the runtime size will be a positive integer multiple of the
1129 /// base size.
1130 TypeSize getValueSizeInBits(unsigned ResNo) const {
1131 return getValueType(ResNo).getSizeInBits();
1132 }
1133
1134 using value_iterator = const EVT *;
1135
1136 value_iterator value_begin() const { return ValueList; }
1137 value_iterator value_end() const { return ValueList+NumValues; }
1141
1142 /// Return the opcode of this operation for printing.
1143 LLVM_ABI std::string getOperationName(const SelectionDAG *G = nullptr) const;
1144 LLVM_ABI static const char *getIndexedModeName(ISD::MemIndexedMode AM);
1145 LLVM_ABI void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1146 LLVM_ABI void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1147 LLVM_ABI void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1148 LLVM_ABI void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1149
1150 /// Print a SelectionDAG node and all children down to
1151 /// the leaves. The given SelectionDAG allows target-specific nodes
1152 /// to be printed in human-readable form. Unlike printr, this will
1153 /// print the whole DAG, including children that appear multiple
1154 /// times.
1155 ///
1157 const SelectionDAG *G = nullptr) const;
1158
1159 /// Print a SelectionDAG node and children up to
1160 /// depth "depth." The given SelectionDAG allows target-specific
1161 /// nodes to be printed in human-readable form. Unlike printr, this
1162 /// will print children that appear multiple times wherever they are
1163 /// used.
1164 ///
1165 LLVM_ABI void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1166 unsigned depth = 100) const;
1167
1168 /// Dump this node, for debugging.
1169 LLVM_ABI void dump() const;
1170
1171 /// Dump (recursively) this node and its use-def subgraph.
1172 LLVM_ABI void dumpr() const;
1173
1174 /// Dump this node, for debugging.
1175 /// The given SelectionDAG allows target-specific nodes to be printed
1176 /// in human-readable form.
1177 LLVM_ABI void dump(const SelectionDAG *G) const;
1178
1179 /// Dump (recursively) this node and its use-def subgraph.
1180 /// The given SelectionDAG allows target-specific nodes to be printed
1181 /// in human-readable form.
1182 LLVM_ABI void dumpr(const SelectionDAG *G) const;
1183
1184 /// printrFull to dbgs(). The given SelectionDAG allows
1185 /// target-specific nodes to be printed in human-readable form.
1186 /// Unlike dumpr, this will print the whole DAG, including children
1187 /// that appear multiple times.
1188 LLVM_ABI void dumprFull(const SelectionDAG *G = nullptr) const;
1189
1190 /// printrWithDepth to dbgs(). The given
1191 /// SelectionDAG allows target-specific nodes to be printed in
1192 /// human-readable form. Unlike dumpr, this will print children
1193 /// that appear multiple times wherever they are used.
1194 ///
1195 LLVM_ABI void dumprWithDepth(const SelectionDAG *G = nullptr,
1196 unsigned depth = 100) const;
1197
1198 /// Gather unique data for the node.
1199 LLVM_ABI void Profile(FoldingSetNodeID &ID) const;
1200
1201 /// This method should only be used by the SDUse class.
1202 void addUse(SDUse &U) { U.addToList(&UseList); }
1203
1204protected:
1206 SDVTList Ret = { getValueTypeList(VT), 1 };
1207 return Ret;
1208 }
1209
1210 /// Create an SDNode.
1211 ///
1212 /// SDNodes are created without any operands, and never own the operand
1213 /// storage. To add operands, see SelectionDAG::createOperands.
1214 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1215 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1216 IROrder(Order), debugLoc(std::move(dl)) {
1217 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1218 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1219 assert(NumValues == VTs.NumVTs &&
1220 "NumValues wasn't wide enough for its operands!");
1221 }
1222
1223 /// Release the operands and set this node to have zero operands.
1224 LLVM_ABI void DropOperands();
1225};
1226
1227/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1228/// into SDNode creation functions.
1229/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1230/// from the original Instruction, and IROrder is the ordinal position of
1231/// the instruction.
1232/// When an SDNode is created after the DAG is being built, both DebugLoc and
1233/// the IROrder are propagated from the original SDNode.
1234/// So SDLoc class provides two constructors besides the default one, one to
1235/// be used by the DAGBuilder, the other to be used by others.
1236class SDLoc {
1237private:
1238 DebugLoc DL;
1239 int IROrder = 0;
1240
1241public:
1242 SDLoc() = default;
1243 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1244 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1245 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1246 assert(Order >= 0 && "bad IROrder");
1247 if (I)
1248 DL = I->getDebugLoc();
1249 }
1250
1251 unsigned getIROrder() const { return IROrder; }
1252 const DebugLoc &getDebugLoc() const { return DL; }
1253};
1254
1255// Define inline functions from the SDValue class.
1256
1257inline SDValue::SDValue(SDNode *node, unsigned resno)
1258 : Node(node), ResNo(resno) {
1259 // Explicitly check for !ResNo to avoid use-after-free, because there are
1260 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1261 // combines.
1262 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1263 "Invalid result number for the given node!");
1264 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1265}
1266
1267inline unsigned SDValue::getOpcode() const {
1268 return Node->getOpcode();
1269}
1270
1272 return Node->getValueType(ResNo);
1273}
1274
1275inline unsigned SDValue::getNumOperands() const {
1276 return Node->getNumOperands();
1277}
1278
1279inline const SDValue &SDValue::getOperand(unsigned i) const {
1280 return Node->getOperand(i);
1281}
1282
1284 return Node->getConstantOperandVal(i);
1285}
1286
1287inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1288 return Node->getConstantOperandAPInt(i);
1289}
1290
1291inline bool SDValue::isTargetOpcode() const {
1292 return Node->isTargetOpcode();
1293}
1294
1295inline bool SDValue::isMachineOpcode() const {
1296 return Node->isMachineOpcode();
1297}
1298
1299inline unsigned SDValue::getMachineOpcode() const {
1300 return Node->getMachineOpcode();
1301}
1302
1303inline bool SDValue::isUndef() const {
1304 return Node->isUndef();
1305}
1306
1307inline bool SDValue::isAnyAdd() const { return Node->isAnyAdd(); }
1308
1309inline bool SDValue::use_empty() const {
1310 return !Node->hasAnyUseOfValue(ResNo);
1311}
1312
1313inline bool SDValue::hasOneUse() const {
1314 return Node->hasNUsesOfValue(1, ResNo);
1315}
1316
1317inline const DebugLoc &SDValue::getDebugLoc() const {
1318 return Node->getDebugLoc();
1319}
1320
1321inline void SDValue::dump() const {
1322 return Node->dump();
1323}
1324
1325inline void SDValue::dump(const SelectionDAG *G) const {
1326 return Node->dump(G);
1327}
1328
1329inline void SDValue::dumpr() const {
1330 return Node->dumpr();
1331}
1332
1333inline void SDValue::dumpr(const SelectionDAG *G) const {
1334 return Node->dumpr(G);
1335}
1336
1337// Define inline functions from the SDUse class.
1338inline unsigned SDUse::getOperandNo() const {
1339 return this - getUser()->op_begin();
1340}
1341
1342inline void SDUse::set(const SDValue &V) {
1343 if (Val.getNode()) removeFromList();
1344 Val = V;
1345 if (V.getNode())
1346 V->addUse(*this);
1347}
1348
1349inline void SDUse::setInitial(const SDValue &V) {
1350 Val = V;
1351 V->addUse(*this);
1352}
1353
1354inline void SDUse::setNode(SDNode *N) {
1355 if (Val.getNode()) removeFromList();
1356 Val.setNode(N);
1357 if (N) N->addUse(*this);
1358}
1359
1360/// This class is used to form a handle around another node that
1361/// is persistent and is updated across invocations of replaceAllUsesWith on its
1362/// operand. This node should be directly created by end-users and not added to
1363/// the AllNodes list.
1364class HandleSDNode : public SDNode {
1365 SDUse Op;
1366
1367public:
1369 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1370 // HandleSDNodes are never inserted into the DAG, so they won't be
1371 // auto-numbered. Use ID 65535 as a sentinel.
1372 PersistentId = 0xffff;
1373
1374 // Manually set up the operand list. This node type is special in that it's
1375 // always stack allocated and SelectionDAG does not manage its operands.
1376 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1377 // be so special.
1378 Op.setUser(this);
1379 Op.setInitial(X);
1380 NumOperands = 1;
1381 OperandList = &Op;
1382 }
1384
1385 const SDValue &getValue() const { return Op; }
1386};
1387
1389private:
1390 unsigned SrcAddrSpace;
1391 unsigned DestAddrSpace;
1392
1393public:
1394 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1395 unsigned SrcAS, unsigned DestAS)
1396 : SDNode(ISD::ADDRSPACECAST, Order, dl, VTs), SrcAddrSpace(SrcAS),
1397 DestAddrSpace(DestAS) {}
1398
1399 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1400 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1401
1402 static bool classof(const SDNode *N) {
1403 return N->getOpcode() == ISD::ADDRSPACECAST;
1404 }
1405};
1406
1407/// This is an abstract virtual class for memory operations.
1408class MemSDNode : public SDNode {
1409private:
1410 // VT of in-memory value.
1411 EVT MemoryVT;
1412
1413protected:
1414 /// Memory reference information.
1416
1417public:
1418 LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1419 SDVTList VTs, EVT memvt, MachineMemOperand *MMO);
1420
1421 bool readMem() const { return MMO->isLoad(); }
1422 bool writeMem() const { return MMO->isStore(); }
1423
1424 /// Returns alignment and volatility of the memory access
1425 Align getBaseAlign() const { return MMO->getBaseAlign(); }
1426 Align getAlign() const { return MMO->getAlign(); }
1427
1428 /// Return the SubclassData value, without HasDebugValue. This contains an
1429 /// encoding of the volatile flag, as well as bits used by subclasses. This
1430 /// function should only be used to compute a FoldingSetNodeID value.
1431 /// The HasDebugValue bit is masked out because CSE map needs to match
1432 /// nodes with debug info with nodes without debug info. Same is about
1433 /// isDivergent bit.
1434 unsigned getRawSubclassData() const {
1435 uint16_t Data;
1436 union {
1437 char RawSDNodeBits[sizeof(uint16_t)];
1439 };
1440 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1441 SDNodeBits.HasDebugValue = 0;
1442 SDNodeBits.IsDivergent = false;
1443 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1444 return Data;
1445 }
1446
1447 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1448 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1449 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1450 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1451
1452 // Returns the offset from the location of the access.
1453 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1454
1455 /// Returns the AA info that describes the dereference.
1456 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1457
1458 /// Returns the Ranges that describes the dereference.
1459 const MDNode *getRanges() const { return MMO->getRanges(); }
1460
1461 /// Returns the synchronization scope ID for this memory operation.
1462 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1463
1464 /// Return the atomic ordering requirements for this memory operation. For
1465 /// cmpxchg atomic operations, return the atomic ordering requirements when
1466 /// store occurs.
1468 return MMO->getSuccessOrdering();
1469 }
1470
1471 /// Return a single atomic ordering that is at least as strong as both the
1472 /// success and failure orderings for an atomic operation. (For operations
1473 /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1474 AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1475
1476 /// Return true if the memory operation ordering is Unordered or higher.
1477 bool isAtomic() const { return MMO->isAtomic(); }
1478
1479 /// Returns true if the memory operation doesn't imply any ordering
1480 /// constraints on surrounding memory operations beyond the normal memory
1481 /// aliasing rules.
1482 bool isUnordered() const { return MMO->isUnordered(); }
1483
1484 /// Returns true if the memory operation is neither atomic or volatile.
1485 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1486
1487 /// Return the type of the in-memory value.
1488 EVT getMemoryVT() const { return MemoryVT; }
1489
1490 /// Return a MachineMemOperand object describing the memory
1491 /// reference performed by operation.
1493
1495 return MMO->getPointerInfo();
1496 }
1497
1498 /// Return the address space for the associated pointer
1499 unsigned getAddressSpace() const {
1500 return getPointerInfo().getAddrSpace();
1501 }
1502
1503 /// Update this MemSDNode's MachineMemOperand information
1504 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1505 /// This must only be used when the new alignment applies to all users of
1506 /// this MachineMemOperand.
1508 MMO->refineAlignment(NewMMO);
1509 }
1510
1511 void refineRanges(const MachineMemOperand *NewMMO) {
1512 // If this node has range metadata that is different than NewMMO, clear the
1513 // range metadata.
1514 // FIXME: Union the ranges instead?
1515 if (getRanges() && getRanges() != NewMMO->getRanges())
1516 MMO->clearRanges();
1517 }
1518
1519 const SDValue &getChain() const { return getOperand(0); }
1520
1521 const SDValue &getBasePtr() const {
1522 switch (getOpcode()) {
1523 case ISD::STORE:
1524 case ISD::ATOMIC_STORE:
1525 case ISD::VP_STORE:
1526 case ISD::MSTORE:
1527 case ISD::VP_SCATTER:
1528 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1529 return getOperand(2);
1530 case ISD::MGATHER:
1531 case ISD::MSCATTER:
1532 case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM:
1533 return getOperand(3);
1534 default:
1535 return getOperand(1);
1536 }
1537 }
1538
1539 // Methods to support isa and dyn_cast
1540 static bool classof(const SDNode *N) {
1541 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1542 // with either an intrinsic or a target opcode.
1543 switch (N->getOpcode()) {
1544 case ISD::LOAD:
1545 case ISD::STORE:
1546 case ISD::ATOMIC_CMP_SWAP:
1547 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1548 case ISD::ATOMIC_SWAP:
1549 case ISD::ATOMIC_LOAD_ADD:
1550 case ISD::ATOMIC_LOAD_SUB:
1551 case ISD::ATOMIC_LOAD_AND:
1552 case ISD::ATOMIC_LOAD_CLR:
1553 case ISD::ATOMIC_LOAD_OR:
1554 case ISD::ATOMIC_LOAD_XOR:
1555 case ISD::ATOMIC_LOAD_NAND:
1556 case ISD::ATOMIC_LOAD_MIN:
1557 case ISD::ATOMIC_LOAD_MAX:
1558 case ISD::ATOMIC_LOAD_UMIN:
1559 case ISD::ATOMIC_LOAD_UMAX:
1560 case ISD::ATOMIC_LOAD_FADD:
1561 case ISD::ATOMIC_LOAD_FSUB:
1562 case ISD::ATOMIC_LOAD_FMAX:
1563 case ISD::ATOMIC_LOAD_FMIN:
1564 case ISD::ATOMIC_LOAD_FMAXIMUM:
1565 case ISD::ATOMIC_LOAD_FMINIMUM:
1566 case ISD::ATOMIC_LOAD_UINC_WRAP:
1567 case ISD::ATOMIC_LOAD_UDEC_WRAP:
1568 case ISD::ATOMIC_LOAD_USUB_COND:
1569 case ISD::ATOMIC_LOAD_USUB_SAT:
1570 case ISD::ATOMIC_LOAD:
1571 case ISD::ATOMIC_STORE:
1572 case ISD::MLOAD:
1573 case ISD::MSTORE:
1574 case ISD::MGATHER:
1575 case ISD::MSCATTER:
1576 case ISD::VP_LOAD:
1577 case ISD::VP_STORE:
1578 case ISD::VP_GATHER:
1579 case ISD::VP_SCATTER:
1580 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
1581 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1582 case ISD::GET_FPENV_MEM:
1583 case ISD::SET_FPENV_MEM:
1584 case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM:
1585 return true;
1586 default:
1587 return N->isMemIntrinsic();
1588 }
1589 }
1590};
1591
1592/// This is an SDNode representing atomic operations.
1593class AtomicSDNode : public MemSDNode {
1594public:
1595 AtomicSDNode(unsigned Order, const DebugLoc &dl, unsigned Opc, SDVTList VTL,
1597 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1598 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1599 MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1600 assert((Opc == ISD::ATOMIC_LOAD || ETy == ISD::NON_EXTLOAD) &&
1601 "Only atomic load uses ExtTy");
1602 LoadSDNodeBits.ExtTy = ETy;
1603 }
1604
1606 assert(getOpcode() == ISD::ATOMIC_LOAD && "Only used for atomic loads.");
1607 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
1608 }
1609
1610 const SDValue &getBasePtr() const {
1611 return getOpcode() == ISD::ATOMIC_STORE ? getOperand(2) : getOperand(1);
1612 }
1613 const SDValue &getVal() const {
1614 return getOpcode() == ISD::ATOMIC_STORE ? getOperand(1) : getOperand(2);
1615 }
1616
1617 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1618 /// otherwise.
1619 bool isCompareAndSwap() const {
1620 unsigned Op = getOpcode();
1621 return Op == ISD::ATOMIC_CMP_SWAP ||
1622 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1623 }
1624
1625 /// For cmpxchg atomic operations, return the atomic ordering requirements
1626 /// when store does not occur.
1628 assert(isCompareAndSwap() && "Must be cmpxchg operation");
1629 return MMO->getFailureOrdering();
1630 }
1631
1632 // Methods to support isa and dyn_cast
1633 static bool classof(const SDNode *N) {
1634 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1635 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1636 N->getOpcode() == ISD::ATOMIC_SWAP ||
1637 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1638 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1639 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1640 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1641 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1642 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1643 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1644 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1645 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1646 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1647 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1648 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1649 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1650 N->getOpcode() == ISD::ATOMIC_LOAD_FMAX ||
1651 N->getOpcode() == ISD::ATOMIC_LOAD_FMIN ||
1652 N->getOpcode() == ISD::ATOMIC_LOAD_FMAXIMUM ||
1653 N->getOpcode() == ISD::ATOMIC_LOAD_FMINIMUM ||
1654 N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP ||
1655 N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP ||
1656 N->getOpcode() == ISD::ATOMIC_LOAD_USUB_COND ||
1657 N->getOpcode() == ISD::ATOMIC_LOAD_USUB_SAT ||
1658 N->getOpcode() == ISD::ATOMIC_LOAD ||
1659 N->getOpcode() == ISD::ATOMIC_STORE;
1660 }
1661};
1662
1663/// This SDNode is used for target intrinsics that touch memory and need
1664/// an associated MachineMemOperand. Its opcode may be INTRINSIC_VOID,
1665/// INTRINSIC_W_CHAIN, PREFETCH, or a target-specific memory-referencing
1666/// opcode (see `SelectionDAGTargetInfo::isTargetMemoryOpcode`).
1668public:
1669 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1670 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1671 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1672 SDNodeBits.IsMemIntrinsic = true;
1673 }
1674
1675 // Methods to support isa and dyn_cast
1676 static bool classof(const SDNode *N) {
1677 // We lower some target intrinsics to their target opcode
1678 // early a node with a target opcode can be of this class
1679 return N->isMemIntrinsic();
1680 }
1681};
1682
1683/// This SDNode is used to implement the code generator
1684/// support for the llvm IR shufflevector instruction. It combines elements
1685/// from two input vectors into a new input vector, with the selection and
1686/// ordering of elements determined by an array of integers, referred to as
1687/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1688/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1689/// An index of -1 is treated as undef, such that the code generator may put
1690/// any value in the corresponding element of the result.
1692 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1693 // is freed when the SelectionDAG object is destroyed.
1694 const int *Mask;
1695
1696protected:
1697 friend class SelectionDAG;
1698
1699 ShuffleVectorSDNode(SDVTList VTs, unsigned Order, const DebugLoc &dl,
1700 const int *M)
1701 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, VTs), Mask(M) {}
1702
1703public:
1705 EVT VT = getValueType(0);
1706 return ArrayRef(Mask, VT.getVectorNumElements());
1707 }
1708
1709 int getMaskElt(unsigned Idx) const {
1710 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1711 return Mask[Idx];
1712 }
1713
1714 bool isSplat() const { return isSplatMask(getMask()); }
1715
1716 int getSplatIndex() const { return getSplatMaskIndex(getMask()); }
1717
1718 LLVM_ABI static bool isSplatMask(ArrayRef<int> Mask);
1719
1721 assert(isSplatMask(Mask) && "Cannot get splat index for non-splat!");
1722 for (int Elem : Mask)
1723 if (Elem >= 0)
1724 return Elem;
1725
1726 // We can choose any index value here and be correct because all elements
1727 // are undefined. Return 0 for better potential for callers to simplify.
1728 return 0;
1729 }
1730
1731 /// Change values in a shuffle permute mask assuming
1732 /// the two vector operands have swapped position.
1734 unsigned NumElems = Mask.size();
1735 for (unsigned i = 0; i != NumElems; ++i) {
1736 int idx = Mask[i];
1737 if (idx < 0)
1738 continue;
1739 else if (idx < (int)NumElems)
1740 Mask[i] = idx + NumElems;
1741 else
1742 Mask[i] = idx - NumElems;
1743 }
1744 }
1745
1746 static bool classof(const SDNode *N) {
1747 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1748 }
1749};
1750
1751class ConstantSDNode : public SDNode {
1752 friend class SelectionDAG;
1753
1754 const ConstantInt *Value;
1755
1756 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
1757 SDVTList VTs)
1758 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1759 VTs),
1760 Value(val) {
1761 assert(!isa<VectorType>(val->getType()) && "Unexpected vector type!");
1762 ConstantSDNodeBits.IsOpaque = isOpaque;
1763 }
1764
1765public:
1766 const ConstantInt *getConstantIntValue() const { return Value; }
1767 const APInt &getAPIntValue() const { return Value->getValue(); }
1768 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1769 int64_t getSExtValue() const { return Value->getSExtValue(); }
1771 return Value->getLimitedValue(Limit);
1772 }
1773 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1774 Align getAlignValue() const { return Value->getAlignValue(); }
1775
1776 bool isOne() const { return Value->isOne(); }
1777 bool isZero() const { return Value->isZero(); }
1778 bool isAllOnes() const { return Value->isMinusOne(); }
1779 bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1780 bool isMinSignedValue() const { return Value->isMinValue(true); }
1781
1782 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1783
1784 static bool classof(const SDNode *N) {
1785 return N->getOpcode() == ISD::Constant ||
1786 N->getOpcode() == ISD::TargetConstant;
1787 }
1788};
1789
1791 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1792}
1793
1795 return cast<ConstantSDNode>(this)->getZExtValue();
1796}
1797
1798const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1799 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1800}
1801
1803 return cast<ConstantSDNode>(this)->getAPIntValue();
1804}
1805
1806class ConstantFPSDNode : public SDNode {
1807 friend class SelectionDAG;
1808
1809 const ConstantFP *Value;
1810
1811 ConstantFPSDNode(bool isTarget, const ConstantFP *val, SDVTList VTs)
1812 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1813 DebugLoc(), VTs),
1814 Value(val) {
1815 assert(!isa<VectorType>(val->getType()) && "Unexpected vector type!");
1816 }
1817
1818public:
1819 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1820 const ConstantFP *getConstantFPValue() const { return Value; }
1821
1822 /// Return true if the value is positive or negative zero.
1823 bool isZero() const { return Value->isZero(); }
1824
1825 /// Return true if the value is a NaN.
1826 bool isNaN() const { return Value->isNaN(); }
1827
1828 /// Return true if the value is an infinity
1829 bool isInfinity() const { return Value->isInfinity(); }
1830
1831 /// Return true if the value is negative.
1832 bool isNegative() const { return Value->isNegative(); }
1833
1834 /// We don't rely on operator== working on double values, as
1835 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1836 /// As such, this method can be used to do an exact bit-for-bit comparison of
1837 /// two floating point values.
1838
1839 /// We leave the version with the double argument here because it's just so
1840 /// convenient to write "2.0" and the like. Without this function we'd
1841 /// have to duplicate its logic everywhere it's called.
1842 bool isExactlyValue(double V) const {
1843 return Value->getValueAPF().isExactlyValue(V);
1844 }
1845 LLVM_ABI bool isExactlyValue(const APFloat &V) const;
1846
1847 LLVM_ABI static bool isValueValidForType(EVT VT, const APFloat &Val);
1848
1849 static bool classof(const SDNode *N) {
1850 return N->getOpcode() == ISD::ConstantFP ||
1851 N->getOpcode() == ISD::TargetConstantFP;
1852 }
1853};
1854
1855std::optional<APInt> SDNode::bitcastToAPInt() const {
1856 if (auto *CN = dyn_cast<ConstantSDNode>(this))
1857 return CN->getAPIntValue();
1858 if (auto *CFPN = dyn_cast<ConstantFPSDNode>(this))
1859 return CFPN->getValueAPF().bitcastToAPInt();
1860 return std::nullopt;
1861}
1862
1863/// Returns true if \p V is a constant integer zero.
1865
1866/// Returns true if \p V is a constant integer zero or an UNDEF node.
1868
1869/// Returns true if \p V is an FP constant with a value of positive zero.
1871
1872/// Returns true if \p V is an integer constant with all bits set.
1874
1875/// Returns true if \p V is a constant integer one.
1877
1878/// Returns true if \p V is a constant min signed integer value.
1880
1881/// Returns true if \p V is a neutral element of Opc with Flags.
1882/// When OperandNo is 0, it checks that V is a left identity. Otherwise, it
1883/// checks that V is a right identity.
1884LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V,
1885 unsigned OperandNo);
1886
1887/// Return the non-bitcasted source operand of \p V if it exists.
1888/// If \p V is not a bitcasted value, it is returned as-is.
1890
1891/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1892/// If \p V is not a bitcasted one-use value, it is returned as-is.
1894
1895/// Return the non-extracted vector source operand of \p V if it exists.
1896/// If \p V is not an extracted subvector, it is returned as-is.
1898
1899/// Recursively peek through INSERT_VECTOR_ELT nodes, returning the source
1900/// vector operand of \p V, as long as \p V is an INSERT_VECTOR_ELT operation
1901/// that do not insert into any of the demanded vector elts.
1903 const APInt &DemandedElts);
1904
1905/// Return the non-truncated source operand of \p V if it exists.
1906/// If \p V is not a truncation, it is returned as-is.
1908
1909/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1910/// constant is canonicalized to be operand 1.
1911LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1912
1913/// If \p V is a bitwise not, returns the inverted operand. Otherwise returns
1914/// an empty SDValue. Only bits set in \p Mask are required to be inverted,
1915/// other bits may be arbitrary.
1917 bool AllowUndefs);
1918
1919/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1921 bool AllowUndefs = false,
1922 bool AllowTruncation = false);
1923
1924/// Returns the SDNode if it is a demanded constant splat BuildVector or
1925/// constant int.
1927 const APInt &DemandedElts,
1928 bool AllowUndefs = false,
1929 bool AllowTruncation = false);
1930
1931/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1933 bool AllowUndefs = false);
1934
1935/// Returns the SDNode if it is a demanded constant splat BuildVector or
1936/// constant float.
1938 const APInt &DemandedElts,
1939 bool AllowUndefs = false);
1940
1941/// Return true if the value is a constant 0 integer or a splatted vector of
1942/// a constant 0 integer (with no undefs by default).
1943/// Build vector implicit truncation is not an issue for null values.
1944LLVM_ABI bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1945
1946/// Return true if the value is a constant 1 integer or a splatted vector of a
1947/// constant 1 integer (with no undefs).
1948/// Build vector implicit truncation is allowed, but the truncated bits need to
1949/// be zero.
1950LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1951
1952/// Return true if the value is a constant floating-point value, or a splatted
1953/// vector of a constant floating-point value, of 1.0 (with no undefs).
1954LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs = false);
1955
1956/// Return true if the value is a constant -1 integer or a splatted vector of a
1957/// constant -1 integer (with no undefs).
1958/// Does not permit build vector implicit truncation.
1959LLVM_ABI bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1960
1961/// Return true if the value is a constant 1 integer or a splatted vector of a
1962/// constant 1 integer (with no undefs).
1963/// Does not permit build vector implicit truncation.
1964LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs = false);
1965
1966/// Return true if the value is a constant 0 integer or a splatted vector of a
1967/// constant 0 integer (with no undefs).
1968/// Build vector implicit truncation is allowed.
1969LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs = false);
1970
1971/// Return true if the value is a constant (+/-)0.0 floating-point value or a
1972/// splatted vector thereof (with no undefs).
1973LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs = false);
1974
1975/// Return true if \p V is either a integer or FP constant.
1978}
1979
1980class GlobalAddressSDNode : public SDNode {
1981 friend class SelectionDAG;
1982
1983 const GlobalValue *TheGlobal;
1984 int64_t Offset;
1985 unsigned TargetFlags;
1986
1987 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1988 const GlobalValue *GA, SDVTList VTs, int64_t o,
1989 unsigned TF)
1990 : SDNode(Opc, Order, DL, VTs), TheGlobal(GA), Offset(o), TargetFlags(TF) {
1991 }
1992
1993public:
1994 const GlobalValue *getGlobal() const { return TheGlobal; }
1995 int64_t getOffset() const { return Offset; }
1996 unsigned getTargetFlags() const { return TargetFlags; }
1997 // Return the address space this GlobalAddress belongs to.
1998 LLVM_ABI unsigned getAddressSpace() const;
1999
2000 static bool classof(const SDNode *N) {
2001 return N->getOpcode() == ISD::GlobalAddress ||
2002 N->getOpcode() == ISD::TargetGlobalAddress ||
2003 N->getOpcode() == ISD::GlobalTLSAddress ||
2004 N->getOpcode() == ISD::TargetGlobalTLSAddress;
2005 }
2006};
2007
2008class FrameIndexSDNode : public SDNode {
2009 friend class SelectionDAG;
2010
2011 int FI;
2012
2013 FrameIndexSDNode(int fi, SDVTList VTs, bool isTarg)
2014 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, 0, DebugLoc(),
2015 VTs),
2016 FI(fi) {}
2017
2018public:
2019 int getIndex() const { return FI; }
2020
2021 static bool classof(const SDNode *N) {
2022 return N->getOpcode() == ISD::FrameIndex ||
2023 N->getOpcode() == ISD::TargetFrameIndex;
2024 }
2025};
2026
2027/// This SDNode is used for LIFETIME_START/LIFETIME_END values.
2028class LifetimeSDNode : public SDNode {
2029 friend class SelectionDAG;
2030
2031 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
2032 SDVTList VTs)
2033 : SDNode(Opcode, Order, dl, VTs) {}
2034
2035public:
2036 int64_t getFrameIndex() const {
2037 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
2038 }
2039
2040 // Methods to support isa and dyn_cast
2041 static bool classof(const SDNode *N) {
2042 return N->getOpcode() == ISD::LIFETIME_START ||
2043 N->getOpcode() == ISD::LIFETIME_END;
2044 }
2045};
2046
2047/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
2048/// the index of the basic block being probed. A pseudo probe serves as a place
2049/// holder and will be removed at the end of compilation. It does not have any
2050/// operand because we do not want the instruction selection to deal with any.
2051class PseudoProbeSDNode : public SDNode {
2052 friend class SelectionDAG;
2053 uint64_t Guid;
2054 uint64_t Index;
2055 uint32_t Attributes;
2056
2057 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
2058 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
2059 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
2060 Attributes(Attr) {}
2061
2062public:
2063 uint64_t getGuid() const { return Guid; }
2064 uint64_t getIndex() const { return Index; }
2065 uint32_t getAttributes() const { return Attributes; }
2066
2067 // Methods to support isa and dyn_cast
2068 static bool classof(const SDNode *N) {
2069 return N->getOpcode() == ISD::PSEUDO_PROBE;
2070 }
2071};
2072
2073class JumpTableSDNode : public SDNode {
2074 friend class SelectionDAG;
2075
2076 int JTI;
2077 unsigned TargetFlags;
2078
2079 JumpTableSDNode(int jti, SDVTList VTs, bool isTarg, unsigned TF)
2080 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, 0, DebugLoc(),
2081 VTs),
2082 JTI(jti), TargetFlags(TF) {}
2083
2084public:
2085 int getIndex() const { return JTI; }
2086 unsigned getTargetFlags() const { return TargetFlags; }
2087
2088 static bool classof(const SDNode *N) {
2089 return N->getOpcode() == ISD::JumpTable ||
2090 N->getOpcode() == ISD::TargetJumpTable;
2091 }
2092};
2093
2094class ConstantPoolSDNode : public SDNode {
2095 friend class SelectionDAG;
2096
2097 union {
2100 } Val;
2101 int Offset; // It's a MachineConstantPoolValue if top bit is set.
2102 Align Alignment; // Minimum alignment requirement of CP.
2103 unsigned TargetFlags;
2104
2105 ConstantPoolSDNode(bool isTarget, const Constant *c, SDVTList VTs, int o,
2106 Align Alignment, unsigned TF)
2107 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
2108 DebugLoc(), VTs),
2109 Offset(o), Alignment(Alignment), TargetFlags(TF) {
2110 assert(Offset >= 0 && "Offset is too large");
2111 Val.ConstVal = c;
2112 }
2113
2114 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, SDVTList VTs,
2115 int o, Align Alignment, unsigned TF)
2116 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
2117 DebugLoc(), VTs),
2118 Offset(o), Alignment(Alignment), TargetFlags(TF) {
2119 assert(Offset >= 0 && "Offset is too large");
2120 Val.MachineCPVal = v;
2121 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
2122 }
2123
2124public:
2126 return Offset < 0;
2127 }
2128
2129 const Constant *getConstVal() const {
2130 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
2131 return Val.ConstVal;
2132 }
2133
2135 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
2136 return Val.MachineCPVal;
2137 }
2138
2139 int getOffset() const {
2140 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
2141 }
2142
2143 // Return the alignment of this constant pool object, which is either 0 (for
2144 // default alignment) or the desired value.
2145 Align getAlign() const { return Alignment; }
2146 unsigned getTargetFlags() const { return TargetFlags; }
2147
2148 LLVM_ABI Type *getType() const;
2149
2150 static bool classof(const SDNode *N) {
2151 return N->getOpcode() == ISD::ConstantPool ||
2152 N->getOpcode() == ISD::TargetConstantPool;
2153 }
2154};
2155
2156/// Completely target-dependent object reference.
2158 friend class SelectionDAG;
2159
2160 unsigned TargetFlags;
2161 int Index;
2162 int64_t Offset;
2163
2164public:
2165 TargetIndexSDNode(int Idx, SDVTList VTs, int64_t Ofs, unsigned TF)
2166 : SDNode(ISD::TargetIndex, 0, DebugLoc(), VTs), TargetFlags(TF),
2167 Index(Idx), Offset(Ofs) {}
2168
2169 unsigned getTargetFlags() const { return TargetFlags; }
2170 int getIndex() const { return Index; }
2171 int64_t getOffset() const { return Offset; }
2172
2173 static bool classof(const SDNode *N) {
2174 return N->getOpcode() == ISD::TargetIndex;
2175 }
2176};
2177
2178class BasicBlockSDNode : public SDNode {
2179 friend class SelectionDAG;
2180
2181 MachineBasicBlock *MBB;
2182
2183 /// Debug info is meaningful and potentially useful here, but we create
2184 /// blocks out of order when they're jumped to, which makes it a bit
2185 /// harder. Let's see if we need it first.
2186 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
2187 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
2188 {}
2189
2190public:
2191 MachineBasicBlock *getBasicBlock() const { return MBB; }
2192
2193 static bool classof(const SDNode *N) {
2194 return N->getOpcode() == ISD::BasicBlock;
2195 }
2196};
2197
2198/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
2200public:
2201 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
2202 explicit BuildVectorSDNode() = delete;
2203
2204 /// Check if this is a constant splat, and if so, find the
2205 /// smallest element size that splats the vector. If MinSplatBits is
2206 /// nonzero, the element size must be at least that large. Note that the
2207 /// splat element may be the entire vector (i.e., a one element vector).
2208 /// Returns the splat element value in SplatValue. Any undefined bits in
2209 /// that value are zero, and the corresponding bits in the SplatUndef mask
2210 /// are set. The SplatBitSize value is set to the splat element size in
2211 /// bits. HasAnyUndefs is set to true if any bits in the vector are
2212 /// undefined. isBigEndian describes the endianness of the target.
2213 LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
2214 unsigned &SplatBitSize, bool &HasAnyUndefs,
2215 unsigned MinSplatBits = 0,
2216 bool isBigEndian = false) const;
2217
2218 /// Returns the demanded splatted value or a null value if this is not a
2219 /// splat.
2220 ///
2221 /// The DemandedElts mask indicates the elements that must be in the splat.
2222 /// If passed a non-null UndefElements bitvector, it will resize it to match
2223 /// the vector width and set the bits where elements are undef.
2224 LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts,
2225 BitVector *UndefElements = nullptr) const;
2226
2227 /// Returns the splatted value or a null value if this is not a splat.
2228 ///
2229 /// If passed a non-null UndefElements bitvector, it will resize it to match
2230 /// the vector width and set the bits where elements are undef.
2231 LLVM_ABI SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
2232
2233 /// Find the shortest repeating sequence of values in the build vector.
2234 ///
2235 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2236 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
2237 ///
2238 /// Currently this must be a power-of-2 build vector.
2239 /// The DemandedElts mask indicates the elements that must be present,
2240 /// undemanded elements in Sequence may be null (SDValue()). If passed a
2241 /// non-null UndefElements bitvector, it will resize it to match the original
2242 /// vector width and set the bits where elements are undef. If result is
2243 /// false, Sequence will be empty.
2244 LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts,
2245 SmallVectorImpl<SDValue> &Sequence,
2246 BitVector *UndefElements = nullptr) const;
2247
2248 /// Find the shortest repeating sequence of values in the build vector.
2249 ///
2250 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2251 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
2252 ///
2253 /// Currently this must be a power-of-2 build vector.
2254 /// If passed a non-null UndefElements bitvector, it will resize it to match
2255 /// the original vector width and set the bits where elements are undef.
2256 /// If result is false, Sequence will be empty.
2258 BitVector *UndefElements = nullptr) const;
2259
2260 /// Returns the demanded splatted constant or null if this is not a constant
2261 /// splat.
2262 ///
2263 /// The DemandedElts mask indicates the elements that must be in the splat.
2264 /// If passed a non-null UndefElements bitvector, it will resize it to match
2265 /// the vector width and set the bits where elements are undef.
2267 getConstantSplatNode(const APInt &DemandedElts,
2268 BitVector *UndefElements = nullptr) const;
2269
2270 /// Returns the splatted constant or null if this is not a constant
2271 /// splat.
2272 ///
2273 /// If passed a non-null UndefElements bitvector, it will resize it to match
2274 /// the vector width and set the bits where elements are undef.
2276 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2277
2278 /// Returns the demanded splatted constant FP or null if this is not a
2279 /// constant FP splat.
2280 ///
2281 /// The DemandedElts mask indicates the elements that must be in the splat.
2282 /// If passed a non-null UndefElements bitvector, it will resize it to match
2283 /// the vector width and set the bits where elements are undef.
2285 getConstantFPSplatNode(const APInt &DemandedElts,
2286 BitVector *UndefElements = nullptr) const;
2287
2288 /// Returns the splatted constant FP or null if this is not a constant
2289 /// FP splat.
2290 ///
2291 /// If passed a non-null UndefElements bitvector, it will resize it to match
2292 /// the vector width and set the bits where elements are undef.
2294 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2295
2296 /// If this is a constant FP splat and the splatted constant FP is an
2297 /// exact power or 2, return the log base 2 integer value. Otherwise,
2298 /// return -1.
2299 ///
2300 /// The BitWidth specifies the necessary bit precision.
2301 LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2302 uint32_t BitWidth) const;
2303
2304 /// Extract the raw bit data from a build vector of Undef, Constant or
2305 /// ConstantFP node elements. Each raw bit element will be \p
2306 /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely
2307 /// undefined elements are flagged in \p UndefElements.
2308 LLVM_ABI bool getConstantRawBits(bool IsLittleEndian,
2309 unsigned DstEltSizeInBits,
2310 SmallVectorImpl<APInt> &RawBitElements,
2311 BitVector &UndefElements) const;
2312
2313 LLVM_ABI bool isConstant() const;
2314
2315 /// If this BuildVector is constant and represents the numerical series
2316 /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer,
2317 /// the value "<a,n>" is returned.
2318 LLVM_ABI std::optional<std::pair<APInt, APInt>> isConstantSequence() const;
2319
2320 /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements.
2321 /// Undef elements are treated as zero, and entirely undefined elements are
2322 /// flagged in \p DstUndefElements.
2323 LLVM_ABI static void recastRawBits(bool IsLittleEndian,
2324 unsigned DstEltSizeInBits,
2325 SmallVectorImpl<APInt> &DstBitElements,
2326 ArrayRef<APInt> SrcBitElements,
2327 BitVector &DstUndefElements,
2328 const BitVector &SrcUndefElements);
2329
2330 static bool classof(const SDNode *N) {
2331 return N->getOpcode() == ISD::BUILD_VECTOR;
2332 }
2333};
2334
2335/// An SDNode that holds an arbitrary LLVM IR Value. This is
2336/// used when the SelectionDAG needs to make a simple reference to something
2337/// in the LLVM IR representation.
2338///
2339class SrcValueSDNode : public SDNode {
2340 friend class SelectionDAG;
2341
2342 const Value *V;
2343
2344 /// Create a SrcValue for a general value.
2345 explicit SrcValueSDNode(const Value *v)
2346 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2347
2348public:
2349 /// Return the contained Value.
2350 const Value *getValue() const { return V; }
2351
2352 static bool classof(const SDNode *N) {
2353 return N->getOpcode() == ISD::SRCVALUE;
2354 }
2355};
2356
2357class MDNodeSDNode : public SDNode {
2358 friend class SelectionDAG;
2359
2360 const MDNode *MD;
2361
2362 explicit MDNodeSDNode(const MDNode *md)
2363 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2364 {}
2365
2366public:
2367 const MDNode *getMD() const { return MD; }
2368
2369 static bool classof(const SDNode *N) {
2370 return N->getOpcode() == ISD::MDNODE_SDNODE;
2371 }
2372};
2373
2374class RegisterSDNode : public SDNode {
2375 friend class SelectionDAG;
2376
2377 Register Reg;
2378
2379 RegisterSDNode(Register reg, SDVTList VTs)
2380 : SDNode(ISD::Register, 0, DebugLoc(), VTs), Reg(reg) {}
2381
2382public:
2383 Register getReg() const { return Reg; }
2384
2385 static bool classof(const SDNode *N) {
2386 return N->getOpcode() == ISD::Register;
2387 }
2388};
2389
2390class RegisterMaskSDNode : public SDNode {
2391 friend class SelectionDAG;
2392
2393 // The memory for RegMask is not owned by the node.
2394 const uint32_t *RegMask;
2395
2396 RegisterMaskSDNode(const uint32_t *mask)
2397 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2398 RegMask(mask) {}
2399
2400public:
2401 const uint32_t *getRegMask() const { return RegMask; }
2402
2403 static bool classof(const SDNode *N) {
2404 return N->getOpcode() == ISD::RegisterMask;
2405 }
2406};
2407
2408class BlockAddressSDNode : public SDNode {
2409 friend class SelectionDAG;
2410
2411 const BlockAddress *BA;
2412 int64_t Offset;
2413 unsigned TargetFlags;
2414
2415 BlockAddressSDNode(unsigned NodeTy, SDVTList VTs, const BlockAddress *ba,
2416 int64_t o, unsigned Flags)
2417 : SDNode(NodeTy, 0, DebugLoc(), VTs), BA(ba), Offset(o),
2418 TargetFlags(Flags) {}
2419
2420public:
2421 const BlockAddress *getBlockAddress() const { return BA; }
2422 int64_t getOffset() const { return Offset; }
2423 unsigned getTargetFlags() const { return TargetFlags; }
2424
2425 static bool classof(const SDNode *N) {
2426 return N->getOpcode() == ISD::BlockAddress ||
2427 N->getOpcode() == ISD::TargetBlockAddress;
2428 }
2429};
2430
2431class LabelSDNode : public SDNode {
2432 friend class SelectionDAG;
2433
2434 MCSymbol *Label;
2435
2436 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2437 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2438 assert(LabelSDNode::classof(this) && "not a label opcode");
2439 }
2440
2441public:
2442 MCSymbol *getLabel() const { return Label; }
2443
2444 static bool classof(const SDNode *N) {
2445 return N->getOpcode() == ISD::EH_LABEL ||
2446 N->getOpcode() == ISD::ANNOTATION_LABEL;
2447 }
2448};
2449
2450class ExternalSymbolSDNode : public SDNode {
2451 friend class SelectionDAG;
2452
2453 const char *Symbol;
2454 unsigned TargetFlags;
2455
2456 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF,
2457 SDVTList VTs)
2458 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2459 DebugLoc(), VTs),
2460 Symbol(Sym), TargetFlags(TF) {}
2461
2462public:
2463 const char *getSymbol() const { return Symbol; }
2464 unsigned getTargetFlags() const { return TargetFlags; }
2465
2466 static bool classof(const SDNode *N) {
2467 return N->getOpcode() == ISD::ExternalSymbol ||
2468 N->getOpcode() == ISD::TargetExternalSymbol;
2469 }
2470};
2471
2472class MCSymbolSDNode : public SDNode {
2473 friend class SelectionDAG;
2474
2475 MCSymbol *Symbol;
2476
2477 MCSymbolSDNode(MCSymbol *Symbol, SDVTList VTs)
2478 : SDNode(ISD::MCSymbol, 0, DebugLoc(), VTs), Symbol(Symbol) {}
2479
2480public:
2481 MCSymbol *getMCSymbol() const { return Symbol; }
2482
2483 static bool classof(const SDNode *N) {
2484 return N->getOpcode() == ISD::MCSymbol;
2485 }
2486};
2487
2488class CondCodeSDNode : public SDNode {
2489 friend class SelectionDAG;
2490
2491 ISD::CondCode Condition;
2492
2493 explicit CondCodeSDNode(ISD::CondCode Cond)
2494 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2495 Condition(Cond) {}
2496
2497public:
2498 ISD::CondCode get() const { return Condition; }
2499
2500 static bool classof(const SDNode *N) {
2501 return N->getOpcode() == ISD::CONDCODE;
2502 }
2503};
2504
2505/// This class is used to represent EVT's, which are used
2506/// to parameterize some operations.
2507class VTSDNode : public SDNode {
2508 friend class SelectionDAG;
2509
2510 EVT ValueType;
2511
2512 explicit VTSDNode(EVT VT)
2513 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2514 ValueType(VT) {}
2515
2516public:
2517 EVT getVT() const { return ValueType; }
2518
2519 static bool classof(const SDNode *N) {
2520 return N->getOpcode() == ISD::VALUETYPE;
2521 }
2522};
2523
2524/// Base class for LoadSDNode and StoreSDNode
2525class LSBaseSDNode : public MemSDNode {
2526public:
2527 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2528 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2530 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2531 LSBaseSDNodeBits.AddressingMode = AM;
2532 assert(getAddressingMode() == AM && "Value truncated");
2533 }
2534
2535 const SDValue &getOffset() const {
2536 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2537 }
2538
2539 /// Return the addressing mode for this load or store:
2540 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2542 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2543 }
2544
2545 /// Return true if this is a pre/post inc/dec load/store.
2546 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2547
2548 /// Return true if this is NOT a pre/post inc/dec load/store.
2549 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2550
2551 static bool classof(const SDNode *N) {
2552 return N->getOpcode() == ISD::LOAD ||
2553 N->getOpcode() == ISD::STORE;
2554 }
2555};
2556
2557/// This class is used to represent ISD::LOAD nodes.
2558class LoadSDNode : public LSBaseSDNode {
2559 friend class SelectionDAG;
2560
2561 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2564 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2565 LoadSDNodeBits.ExtTy = ETy;
2566 assert(readMem() && "Load MachineMemOperand is not a load!");
2567 assert(!writeMem() && "Load MachineMemOperand is a store!");
2568 }
2569
2570public:
2571 /// Return whether this is a plain node,
2572 /// or one of the varieties of value-extending loads.
2574 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2575 }
2576
2577 const SDValue &getBasePtr() const { return getOperand(1); }
2578 const SDValue &getOffset() const { return getOperand(2); }
2579
2580 static bool classof(const SDNode *N) {
2581 return N->getOpcode() == ISD::LOAD;
2582 }
2583};
2584
2585/// This class is used to represent ISD::STORE nodes.
2586class StoreSDNode : public LSBaseSDNode {
2587 friend class SelectionDAG;
2588
2589 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2590 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2592 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2593 StoreSDNodeBits.IsTruncating = isTrunc;
2594 assert(!readMem() && "Store MachineMemOperand is a load!");
2595 assert(writeMem() && "Store MachineMemOperand is not a store!");
2596 }
2597
2598public:
2599 /// Return true if the op does a truncation before store.
2600 /// For integers this is the same as doing a TRUNCATE and storing the result.
2601 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2602 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2603
2604 const SDValue &getValue() const { return getOperand(1); }
2605 const SDValue &getBasePtr() const { return getOperand(2); }
2606 const SDValue &getOffset() const { return getOperand(3); }
2607
2608 static bool classof(const SDNode *N) {
2609 return N->getOpcode() == ISD::STORE;
2610 }
2611};
2612
2613/// This base class is used to represent VP_LOAD, VP_STORE,
2614/// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes
2616public:
2617 friend class SelectionDAG;
2618
2619 VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2620 const DebugLoc &DL, SDVTList VTs,
2621 ISD::MemIndexedMode AM, EVT MemVT,
2623 : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) {
2624 LSBaseSDNodeBits.AddressingMode = AM;
2625 assert(getAddressingMode() == AM && "Value truncated");
2626 }
2627
2628 // VPStridedStoreSDNode (Chain, Data, Ptr, Offset, Stride, Mask, EVL)
2629 // VPStoreSDNode (Chain, Data, Ptr, Offset, Mask, EVL)
2630 // VPStridedLoadSDNode (Chain, Ptr, Offset, Stride, Mask, EVL)
2631 // VPLoadSDNode (Chain, Ptr, Offset, Mask, EVL)
2632 // Mask is a vector of i1 elements;
2633 // the type of EVL is TLI.getVPExplicitVectorLengthTy().
2634 const SDValue &getOffset() const {
2635 return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2636 getOpcode() == ISD::VP_LOAD)
2637 ? 2
2638 : 3);
2639 }
2640 const SDValue &getBasePtr() const {
2641 return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2642 getOpcode() == ISD::VP_LOAD)
2643 ? 1
2644 : 2);
2645 }
2646 const SDValue &getMask() const {
2647 switch (getOpcode()) {
2648 default:
2649 llvm_unreachable("Invalid opcode");
2650 case ISD::VP_LOAD:
2651 return getOperand(3);
2652 case ISD::VP_STORE:
2653 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2654 return getOperand(4);
2655 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2656 return getOperand(5);
2657 }
2658 }
2659 const SDValue &getVectorLength() const {
2660 switch (getOpcode()) {
2661 default:
2662 llvm_unreachable("Invalid opcode");
2663 case ISD::VP_LOAD:
2664 return getOperand(4);
2665 case ISD::VP_STORE:
2666 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2667 return getOperand(5);
2668 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2669 return getOperand(6);
2670 }
2671 }
2672
2673 /// Return the addressing mode for this load or store:
2674 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2676 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2677 }
2678
2679 /// Return true if this is a pre/post inc/dec load/store.
2680 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2681
2682 /// Return true if this is NOT a pre/post inc/dec load/store.
2683 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2684
2685 static bool classof(const SDNode *N) {
2686 return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2687 N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE ||
2688 N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE;
2689 }
2690};
2691
2692/// This class is used to represent a VP_LOAD node
2694public:
2695 friend class SelectionDAG;
2696
2697 VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2698 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding,
2699 EVT MemVT, MachineMemOperand *MMO)
2700 : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2701 LoadSDNodeBits.ExtTy = ETy;
2702 LoadSDNodeBits.IsExpanding = isExpanding;
2703 }
2704
2706 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2707 }
2708
2709 const SDValue &getBasePtr() const { return getOperand(1); }
2710 const SDValue &getOffset() const { return getOperand(2); }
2711 const SDValue &getMask() const { return getOperand(3); }
2712 const SDValue &getVectorLength() const { return getOperand(4); }
2713
2714 static bool classof(const SDNode *N) {
2715 return N->getOpcode() == ISD::VP_LOAD;
2716 }
2717 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2718};
2719
2720/// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
2722public:
2723 friend class SelectionDAG;
2724
2725 VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2727 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2728 : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs,
2729 AM, MemVT, MMO) {
2730 LoadSDNodeBits.ExtTy = ETy;
2731 LoadSDNodeBits.IsExpanding = IsExpanding;
2732 }
2733
2735 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2736 }
2737
2738 const SDValue &getBasePtr() const { return getOperand(1); }
2739 const SDValue &getOffset() const { return getOperand(2); }
2740 const SDValue &getStride() const { return getOperand(3); }
2741 const SDValue &getMask() const { return getOperand(4); }
2742 const SDValue &getVectorLength() const { return getOperand(5); }
2743
2744 static bool classof(const SDNode *N) {
2745 return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD;
2746 }
2747 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2748};
2749
2750/// This class is used to represent a VP_STORE node
2752public:
2753 friend class SelectionDAG;
2754
2755 VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2756 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2757 EVT MemVT, MachineMemOperand *MMO)
2758 : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) {
2759 StoreSDNodeBits.IsTruncating = isTrunc;
2760 StoreSDNodeBits.IsCompressing = isCompressing;
2761 }
2762
2763 /// Return true if this is a truncating store.
2764 /// For integers this is the same as doing a TRUNCATE and storing the result.
2765 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2766 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2767
2768 /// Returns true if the op does a compression to the vector before storing.
2769 /// The node contiguously stores the active elements (integers or floats)
2770 /// in src (those with their respective bit set in writemask k) to unaligned
2771 /// memory at base_addr.
2772 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2773
2774 const SDValue &getValue() const { return getOperand(1); }
2775 const SDValue &getBasePtr() const { return getOperand(2); }
2776 const SDValue &getOffset() const { return getOperand(3); }
2777 const SDValue &getMask() const { return getOperand(4); }
2778 const SDValue &getVectorLength() const { return getOperand(5); }
2779
2780 static bool classof(const SDNode *N) {
2781 return N->getOpcode() == ISD::VP_STORE;
2782 }
2783};
2784
2785/// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
2787public:
2788 friend class SelectionDAG;
2789
2790 VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2791 ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing,
2792 EVT MemVT, MachineMemOperand *MMO)
2793 : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL,
2794 VTs, AM, MemVT, MMO) {
2795 StoreSDNodeBits.IsTruncating = IsTrunc;
2796 StoreSDNodeBits.IsCompressing = IsCompressing;
2797 }
2798
2799 /// Return true if this is a truncating store.
2800 /// For integers this is the same as doing a TRUNCATE and storing the result.
2801 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2802 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2803
2804 /// Returns true if the op does a compression to the vector before storing.
2805 /// The node contiguously stores the active elements (integers or floats)
2806 /// in src (those with their respective bit set in writemask k) to unaligned
2807 /// memory at base_addr.
2808 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2809
2810 const SDValue &getValue() const { return getOperand(1); }
2811 const SDValue &getBasePtr() const { return getOperand(2); }
2812 const SDValue &getOffset() const { return getOperand(3); }
2813 const SDValue &getStride() const { return getOperand(4); }
2814 const SDValue &getMask() const { return getOperand(5); }
2815 const SDValue &getVectorLength() const { return getOperand(6); }
2816
2817 static bool classof(const SDNode *N) {
2818 return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE;
2819 }
2820};
2821
2822/// This base class is used to represent MLOAD and MSTORE nodes
2824public:
2825 friend class SelectionDAG;
2826
2827 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2828 const DebugLoc &dl, SDVTList VTs,
2829 ISD::MemIndexedMode AM, EVT MemVT,
2831 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2832 LSBaseSDNodeBits.AddressingMode = AM;
2833 assert(getAddressingMode() == AM && "Value truncated");
2834 }
2835
2836 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2837 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2838 // Mask is a vector of i1 elements
2839 const SDValue &getOffset() const {
2840 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2841 }
2842 const SDValue &getMask() const {
2843 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2844 }
2845
2846 /// Return the addressing mode for this load or store:
2847 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2849 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2850 }
2851
2852 /// Return true if this is a pre/post inc/dec load/store.
2853 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2854
2855 /// Return true if this is NOT a pre/post inc/dec load/store.
2856 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2857
2858 static bool classof(const SDNode *N) {
2859 return N->getOpcode() == ISD::MLOAD ||
2860 N->getOpcode() == ISD::MSTORE;
2861 }
2862};
2863
2864/// This class is used to represent an MLOAD node
2866public:
2867 friend class SelectionDAG;
2868
2869 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2871 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2872 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2873 LoadSDNodeBits.ExtTy = ETy;
2874 LoadSDNodeBits.IsExpanding = IsExpanding;
2875 }
2876
2878 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2879 }
2880
2881 const SDValue &getBasePtr() const { return getOperand(1); }
2882 const SDValue &getOffset() const { return getOperand(2); }
2883 const SDValue &getMask() const { return getOperand(3); }
2884 const SDValue &getPassThru() const { return getOperand(4); }
2885
2886 static bool classof(const SDNode *N) {
2887 return N->getOpcode() == ISD::MLOAD;
2888 }
2889
2890 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2891};
2892
2893/// This class is used to represent an MSTORE node
2895public:
2896 friend class SelectionDAG;
2897
2898 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2899 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2900 EVT MemVT, MachineMemOperand *MMO)
2901 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2902 StoreSDNodeBits.IsTruncating = isTrunc;
2903 StoreSDNodeBits.IsCompressing = isCompressing;
2904 }
2905
2906 /// Return true if the op does a truncation before store.
2907 /// For integers this is the same as doing a TRUNCATE and storing the result.
2908 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2909 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2910
2911 /// Returns true if the op does a compression to the vector before storing.
2912 /// The node contiguously stores the active elements (integers or floats)
2913 /// in src (those with their respective bit set in writemask k) to unaligned
2914 /// memory at base_addr.
2915 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2916
2917 const SDValue &getValue() const { return getOperand(1); }
2918 const SDValue &getBasePtr() const { return getOperand(2); }
2919 const SDValue &getOffset() const { return getOperand(3); }
2920 const SDValue &getMask() const { return getOperand(4); }
2921
2922 static bool classof(const SDNode *N) {
2923 return N->getOpcode() == ISD::MSTORE;
2924 }
2925};
2926
2927/// This is a base class used to represent
2928/// VP_GATHER and VP_SCATTER nodes
2929///
2931public:
2932 friend class SelectionDAG;
2933
2934 VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2935 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2937 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2938 LSBaseSDNodeBits.AddressingMode = IndexType;
2939 assert(getIndexType() == IndexType && "Value truncated");
2940 }
2941
2942 /// How is Index applied to BasePtr when computing addresses.
2944 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2945 }
2946 bool isIndexScaled() const {
2947 return !cast<ConstantSDNode>(getScale())->isOne();
2948 }
2949 bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2950
2951 // In the both nodes address is Op1, mask is Op2:
2952 // VPGatherSDNode (Chain, base, index, scale, mask, vlen)
2953 // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen)
2954 // Mask is a vector of i1 elements
2955 const SDValue &getBasePtr() const {
2956 return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2);
2957 }
2958 const SDValue &getIndex() const {
2959 return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3);
2960 }
2961 const SDValue &getScale() const {
2962 return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4);
2963 }
2964 const SDValue &getMask() const {
2965 return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5);
2966 }
2967 const SDValue &getVectorLength() const {
2968 return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6);
2969 }
2970
2971 static bool classof(const SDNode *N) {
2972 return N->getOpcode() == ISD::VP_GATHER ||
2973 N->getOpcode() == ISD::VP_SCATTER;
2974 }
2975};
2976
2977/// This class is used to represent an VP_GATHER node
2978///
2980public:
2981 friend class SelectionDAG;
2982
2983 VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2985 : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO,
2986 IndexType) {}
2987
2988 static bool classof(const SDNode *N) {
2989 return N->getOpcode() == ISD::VP_GATHER;
2990 }
2991};
2992
2993/// This class is used to represent an VP_SCATTER node
2994///
2996public:
2997 friend class SelectionDAG;
2998
2999 VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
3001 : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO,
3002 IndexType) {}
3003
3004 const SDValue &getValue() const { return getOperand(1); }
3005
3006 static bool classof(const SDNode *N) {
3007 return N->getOpcode() == ISD::VP_SCATTER;
3008 }
3009};
3010
3011/// This is a base class used to represent
3012/// MGATHER and MSCATTER nodes
3013///
3015public:
3016 friend class SelectionDAG;
3017
3019 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
3021 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
3022 LSBaseSDNodeBits.AddressingMode = IndexType;
3023 assert(getIndexType() == IndexType && "Value truncated");
3024 }
3025
3026 /// How is Index applied to BasePtr when computing addresses.
3028 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
3029 }
3030 bool isIndexScaled() const {
3031 return !cast<ConstantSDNode>(getScale())->isOne();
3032 }
3033 bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
3034
3035 // In the both nodes address is Op1, mask is Op2:
3036 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
3037 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
3038 // Mask is a vector of i1 elements
3039 const SDValue &getBasePtr() const { return getOperand(3); }
3040 const SDValue &getIndex() const { return getOperand(4); }
3041 const SDValue &getMask() const { return getOperand(2); }
3042 const SDValue &getScale() const { return getOperand(5); }
3043
3044 static bool classof(const SDNode *N) {
3045 return N->getOpcode() == ISD::MGATHER || N->getOpcode() == ISD::MSCATTER ||
3046 N->getOpcode() == ISD::EXPERIMENTAL_VECTOR_HISTOGRAM;
3047 }
3048};
3049
3050/// This class is used to represent an MGATHER node
3051///
3053public:
3054 friend class SelectionDAG;
3055
3056 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
3057 EVT MemVT, MachineMemOperand *MMO,
3058 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
3059 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
3060 IndexType) {
3061 LoadSDNodeBits.ExtTy = ETy;
3062 }
3063
3064 const SDValue &getPassThru() const { return getOperand(1); }
3065
3069
3070 static bool classof(const SDNode *N) {
3071 return N->getOpcode() == ISD::MGATHER;
3072 }
3073};
3074
3075/// This class is used to represent an MSCATTER node
3076///
3078public:
3079 friend class SelectionDAG;
3080
3081 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
3082 EVT MemVT, MachineMemOperand *MMO,
3083 ISD::MemIndexType IndexType, bool IsTrunc)
3084 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
3085 IndexType) {
3086 StoreSDNodeBits.IsTruncating = IsTrunc;
3087 }
3088
3089 /// Return true if the op does a truncation before store.
3090 /// For integers this is the same as doing a TRUNCATE and storing the result.
3091 /// For floats, it is the same as doing an FP_ROUND and storing the result.
3092 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
3093
3094 const SDValue &getValue() const { return getOperand(1); }
3095
3096 static bool classof(const SDNode *N) {
3097 return N->getOpcode() == ISD::MSCATTER;
3098 }
3099};
3100
3102public:
3103 friend class SelectionDAG;
3104
3105 MaskedHistogramSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
3106 EVT MemVT, MachineMemOperand *MMO,
3107 ISD::MemIndexType IndexType)
3108 : MaskedGatherScatterSDNode(ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, Order, DL,
3109 VTs, MemVT, MMO, IndexType) {}
3110
3112 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
3113 }
3114
3115 const SDValue &getBasePtr() const { return getOperand(3); }
3116 const SDValue &getIndex() const { return getOperand(4); }
3117 const SDValue &getMask() const { return getOperand(2); }
3118 const SDValue &getScale() const { return getOperand(5); }
3119 const SDValue &getInc() const { return getOperand(1); }
3120 const SDValue &getIntID() const { return getOperand(6); }
3121
3122 static bool classof(const SDNode *N) {
3123 return N->getOpcode() == ISD::EXPERIMENTAL_VECTOR_HISTOGRAM;
3124 }
3125};
3126
3128public:
3129 friend class SelectionDAG;
3130
3131 VPLoadFFSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, EVT MemVT,
3133 : MemSDNode(ISD::VP_LOAD_FF, Order, DL, VTs, MemVT, MMO) {}
3134
3135 const SDValue &getBasePtr() const { return getOperand(1); }
3136 const SDValue &getMask() const { return getOperand(2); }
3137 const SDValue &getVectorLength() const { return getOperand(3); }
3138
3139 static bool classof(const SDNode *N) {
3140 return N->getOpcode() == ISD::VP_LOAD_FF;
3141 }
3142};
3143
3145public:
3146 friend class SelectionDAG;
3147
3148 FPStateAccessSDNode(unsigned NodeTy, unsigned Order, const DebugLoc &dl,
3149 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
3150 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
3151 assert((NodeTy == ISD::GET_FPENV_MEM || NodeTy == ISD::SET_FPENV_MEM) &&
3152 "Expected FP state access node");
3153 }
3154
3155 static bool classof(const SDNode *N) {
3156 return N->getOpcode() == ISD::GET_FPENV_MEM ||
3157 N->getOpcode() == ISD::SET_FPENV_MEM;
3158 }
3159};
3160
3161/// An SDNode that represents everything that will be needed
3162/// to construct a MachineInstr. These nodes are created during the
3163/// instruction selection proper phase.
3164///
3165/// Note that the only supported way to set the `memoperands` is by calling the
3166/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
3167/// inside the DAG rather than in the node.
3168class MachineSDNode : public SDNode {
3169private:
3170 friend class SelectionDAG;
3171
3172 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
3173 : SDNode(Opc, Order, DL, VTs) {}
3174
3175 // We use a pointer union between a single `MachineMemOperand` pointer and
3176 // a pointer to an array of `MachineMemOperand` pointers. This is null when
3177 // the number of these is zero, the single pointer variant used when the
3178 // number is one, and the array is used for larger numbers.
3179 //
3180 // The array is allocated via the `SelectionDAG`'s allocator and so will
3181 // always live until the DAG is cleaned up and doesn't require ownership here.
3182 //
3183 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
3184 // subclasses aren't managed in a conforming C++ manner. See the comments on
3185 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
3186 // constraint here is that these don't manage memory with their constructor or
3187 // destructor and can be initialized to a good state even if they start off
3188 // uninitialized.
3190
3191 // Note that this could be folded into the above `MemRefs` member if doing so
3192 // is advantageous at some point. We don't need to store this in most cases.
3193 // However, at the moment this doesn't appear to make the allocation any
3194 // smaller and makes the code somewhat simpler to read.
3195 int NumMemRefs = 0;
3196
3197public:
3199
3201 // Special case the common cases.
3202 if (NumMemRefs == 0)
3203 return {};
3204 if (NumMemRefs == 1)
3205 return ArrayRef(MemRefs.getAddrOfPtr1(), 1);
3206
3207 // Otherwise we have an actual array.
3208 return ArrayRef(cast<MachineMemOperand **>(MemRefs), NumMemRefs);
3209 }
3210 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
3211 mmo_iterator memoperands_end() const { return memoperands().end(); }
3212 bool memoperands_empty() const { return memoperands().empty(); }
3213
3214 /// Clear out the memory reference descriptor list.
3216 MemRefs = nullptr;
3217 NumMemRefs = 0;
3218 }
3219
3220 static bool classof(const SDNode *N) {
3221 return N->isMachineOpcode();
3222 }
3223};
3224
3225/// An SDNode that records if a register contains a value that is guaranteed to
3226/// be aligned accordingly.
3228 Align Alignment;
3229
3230public:
3231 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, Align A)
3232 : SDNode(ISD::AssertAlign, Order, DL, VTs), Alignment(A) {}
3233
3234 Align getAlign() const { return Alignment; }
3235
3236 static bool classof(const SDNode *N) {
3237 return N->getOpcode() == ISD::AssertAlign;
3238 }
3239};
3240
3241class SDNodeIterator {
3242 const SDNode *Node;
3243 unsigned Operand;
3244
3245 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
3246
3247public:
3248 using iterator_category = std::forward_iterator_tag;
3250 using difference_type = std::ptrdiff_t;
3253
3254 bool operator==(const SDNodeIterator& x) const {
3255 return Operand == x.Operand;
3256 }
3257 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
3258
3260 return Node->getOperand(Operand).getNode();
3261 }
3262 pointer operator->() const { return operator*(); }
3263
3264 SDNodeIterator& operator++() { // Preincrement
3265 ++Operand;
3266 return *this;
3267 }
3268 SDNodeIterator operator++(int) { // Postincrement
3269 SDNodeIterator tmp = *this; ++*this; return tmp;
3270 }
3271 size_t operator-(SDNodeIterator Other) const {
3272 assert(Node == Other.Node &&
3273 "Cannot compare iterators of two different nodes!");
3274 return Operand - Other.Operand;
3275 }
3276
3277 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
3278 static SDNodeIterator end (const SDNode *N) {
3279 return SDNodeIterator(N, N->getNumOperands());
3280 }
3281
3282 unsigned getOperand() const { return Operand; }
3283 const SDNode *getNode() const { return Node; }
3284};
3285
3286template <> struct GraphTraits<SDNode*> {
3287 using NodeRef = SDNode *;
3289
3290 static NodeRef getEntryNode(SDNode *N) { return N; }
3291
3295
3299};
3300
3301/// A representation of the largest SDNode, for use in sizeof().
3302///
3303/// This needs to be a union because the largest node differs on 32 bit systems
3304/// with 4 and 8 byte pointer alignment, respectively.
3309
3310/// The SDNode class with the greatest alignment requirement.
3312
3313namespace ISD {
3314
3315 /// Returns true if the specified node is a non-extending and unindexed load.
3316 inline bool isNormalLoad(const SDNode *N) {
3317 auto *Ld = dyn_cast<LoadSDNode>(N);
3318 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
3319 Ld->getAddressingMode() == ISD::UNINDEXED;
3320 }
3321
3322 /// Returns true if the specified node is a non-extending load.
3323 inline bool isNON_EXTLoad(const SDNode *N) {
3324 auto *Ld = dyn_cast<LoadSDNode>(N);
3325 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD;
3326 }
3327
3328 /// Returns true if the specified node is a EXTLOAD.
3329 inline bool isEXTLoad(const SDNode *N) {
3330 auto *Ld = dyn_cast<LoadSDNode>(N);
3331 return Ld && Ld->getExtensionType() == ISD::EXTLOAD;
3332 }
3333
3334 /// Returns true if the specified node is a SEXTLOAD.
3335 inline bool isSEXTLoad(const SDNode *N) {
3336 auto *Ld = dyn_cast<LoadSDNode>(N);
3337 return Ld && Ld->getExtensionType() == ISD::SEXTLOAD;
3338 }
3339
3340 /// Returns true if the specified node is a ZEXTLOAD.
3341 inline bool isZEXTLoad(const SDNode *N) {
3342 auto *Ld = dyn_cast<LoadSDNode>(N);
3343 return Ld && Ld->getExtensionType() == ISD::ZEXTLOAD;
3344 }
3345
3346 /// Returns true if the specified node is an unindexed load.
3347 inline bool isUNINDEXEDLoad(const SDNode *N) {
3348 auto *Ld = dyn_cast<LoadSDNode>(N);
3349 return Ld && Ld->getAddressingMode() == ISD::UNINDEXED;
3350 }
3351
3352 /// Returns true if the specified node is a non-truncating
3353 /// and unindexed store.
3354 inline bool isNormalStore(const SDNode *N) {
3355 auto *St = dyn_cast<StoreSDNode>(N);
3356 return St && !St->isTruncatingStore() &&
3357 St->getAddressingMode() == ISD::UNINDEXED;
3358 }
3359
3360 /// Returns true if the specified node is an unindexed store.
3361 inline bool isUNINDEXEDStore(const SDNode *N) {
3362 auto *St = dyn_cast<StoreSDNode>(N);
3363 return St && St->getAddressingMode() == ISD::UNINDEXED;
3364 }
3365
3366 /// Returns true if the specified node is a non-extending and unindexed
3367 /// masked load.
3368 inline bool isNormalMaskedLoad(const SDNode *N) {
3369 auto *Ld = dyn_cast<MaskedLoadSDNode>(N);
3370 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
3371 Ld->getAddressingMode() == ISD::UNINDEXED;
3372 }
3373
3374 /// Returns true if the specified node is a non-extending and unindexed
3375 /// masked store.
3376 inline bool isNormalMaskedStore(const SDNode *N) {
3377 auto *St = dyn_cast<MaskedStoreSDNode>(N);
3378 return St && !St->isTruncatingStore() &&
3379 St->getAddressingMode() == ISD::UNINDEXED;
3380 }
3381
3382 /// Attempt to match a unary predicate against a scalar/splat constant or
3383 /// every element of a constant BUILD_VECTOR.
3384 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3385 template <typename ConstNodeType>
3387 std::function<bool(ConstNodeType *)> Match,
3388 bool AllowUndefs = false,
3389 bool AllowTruncation = false);
3390
3391 /// Hook for matching ConstantSDNode predicate
3393 std::function<bool(ConstantSDNode *)> Match,
3394 bool AllowUndefs = false,
3395 bool AllowTruncation = false) {
3396 return matchUnaryPredicateImpl<ConstantSDNode>(Op, Match, AllowUndefs,
3397 AllowTruncation);
3398 }
3399
3400 /// Hook for matching ConstantFPSDNode predicate
3401 inline bool
3403 std::function<bool(ConstantFPSDNode *)> Match,
3404 bool AllowUndefs = false) {
3405 return matchUnaryPredicateImpl<ConstantFPSDNode>(Op, Match, AllowUndefs);
3406 }
3407
3408 /// Attempt to match a binary predicate against a pair of scalar/splat
3409 /// constants or every element of a pair of constant BUILD_VECTORs.
3410 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3411 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
3414 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
3415 bool AllowUndefs = false, bool AllowTypeMismatch = false);
3416
3417 /// Returns true if the specified value is the overflow result from one
3418 /// of the overflow intrinsic nodes.
3420 unsigned Opc = Op.getOpcode();
3421 return (Op.getResNo() == 1 &&
3422 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3423 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
3424 }
3425
3426} // end namespace ISD
3427
3428} // end namespace llvm
3429
3430#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file implements the BitVector class.
#define LLVM_DECLARE_ENUM_AS_BITMASK(Enum, LargestValue)
LLVM_DECLARE_ENUM_AS_BITMASK can be used to declare an enum type as a bit set, so that bitwise operat...
Definition BitmaskEnum.h:66
static constexpr unsigned long long mask(BlockVerifier::State S)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define LLVM_ABI
Definition Compiler.h:213
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines a hash set that can be used to remove duplication of nodes in a graph.
This file defines the little GraphTraits<X> template class that should be specialized by classes that...
#define op(i)
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Load MIR Sample Profile
This file contains the declarations for metadata subclasses.
const SmallVectorImpl< MachineOperand > & Cond
#define END_TWO_BYTE_PACK()
#define BEGIN_TWO_BYTE_PACK()
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
unsigned getSrcAddressSpace() const
AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, unsigned SrcAS, unsigned DestAS)
unsigned getDestAddressSpace() const
static bool classof(const SDNode *N)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
const_pointer const_iterator
Definition ArrayRef.h:48
static bool classof(const SDNode *N)
AssertAlignSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, Align A)
This is an SDNode representing atomic operations.
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
AtomicOrdering getFailureOrdering() const
For cmpxchg atomic operations, return the atomic ordering requirements when store does not occur.
AtomicSDNode(unsigned Order, const DebugLoc &dl, unsigned Opc, SDVTList VTL, EVT MemVT, MachineMemOperand *MMO, ISD::LoadExtType ETy)
bool isCompareAndSwap() const
Returns true if this SDNode represents cmpxchg atomic operation, false otherwise.
const SDValue & getVal() const
MachineBasicBlock * getBasicBlock() const
static bool classof(const SDNode *N)
LLVM Basic Block Representation.
Definition BasicBlock.h:62
static bool classof(const SDNode *N)
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
static bool classof(const SDNode *N)
ISD::CondCode get() const
static bool classof(const SDNode *N)
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isNaN() const
Return true if the value is a NaN.
const ConstantFP * getConstantFPValue() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isInfinity() const
Return true if the value is an infinity.
static bool classof(const SDNode *N)
bool isZero() const
Return true if the value is positive or negative zero.
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static bool classof(const SDNode *N)
MachineConstantPoolValue * getMachineCPVal() const
MachineConstantPoolValue * MachineCPVal
const Constant * getConstVal() const
LLVM_ABI Type * getType() const
MaybeAlign getMaybeAlignValue() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX)
const ConstantInt * getConstantIntValue() const
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
int64_t getSExtValue() const
static bool classof(const SDNode *N)
This is an important base class in LLVM.
Definition Constant.h:43
A debug info location.
Definition DebugLoc.h:124
const char * getSymbol() const
static bool classof(const SDNode *N)
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
bool hasAllowReassoc() const
Test if this operation may be simplified with reassociative transforms.
Definition Operator.h:297
bool hasNoNaNs() const
Test if this operation's arguments and results are assumed not-NaN.
Definition Operator.h:302
bool hasAllowReciprocal() const
Test if this operation can use reciprocal multiply instead of division.
Definition Operator.h:317
bool hasNoSignedZeros() const
Test if this operation can ignore the sign of zero.
Definition Operator.h:312
bool hasAllowContract() const
Test if this operation can be floating-point contracted (FMA).
Definition Operator.h:322
bool hasNoInfs() const
Test if this operation's arguments and results are assumed not-infinite.
Definition Operator.h:307
bool hasApproxFunc() const
Test if this operation allows approximations of math library functions or intrinsics.
Definition Operator.h:328
static bool classof(const SDNode *N)
FPStateAccessSDNode(unsigned NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
static bool classof(const SDNode *N)
LLVM_ABI unsigned getAddressSpace() const
static bool classof(const SDNode *N)
const GlobalValue * getGlobal() const
const SDValue & getValue() const
static bool classof(const SDNode *N)
unsigned getTargetFlags() const
LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO)
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
const SDValue & getOffset() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
static bool classof(const SDNode *N)
MCSymbol * getLabel() const
static bool classof(const SDNode *N)
int64_t getFrameIndex() const
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
friend class SelectionDAG
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
static bool classof(const SDNode *N)
MCSymbol * getMCSymbol() const
static bool classof(const SDNode *N)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
static bool classof(const SDNode *N)
const MDNode * getMD() const
Metadata node.
Definition Metadata.h:1078
Machine Value Type.
Abstract base class for all machine specific constantpool value subclasses.
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
ArrayRef< MachineMemOperand * > memoperands() const
void clearMemRefs()
Clear out the memory reference descriptor list.
mmo_iterator memoperands_begin() const
static bool classof(const SDNode *N)
ArrayRef< MachineMemOperand * >::const_iterator mmo_iterator
mmo_iterator memoperands_end() const
static bool classof(const SDNode *N)
MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
const SDValue & getPassThru() const
ISD::LoadExtType getExtensionType() const
static bool classof(const SDNode *N)
MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
const SDValue & getBasePtr() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
const SDValue & getInc() const
MaskedHistogramSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
const SDValue & getScale() const
static bool classof(const SDNode *N)
const SDValue & getMask() const
const SDValue & getIntID() const
const SDValue & getIndex() const
const SDValue & getBasePtr() const
ISD::MemIndexType getIndexType() const
MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
const SDValue & getMask() const
const SDValue & getPassThru() const
static bool classof(const SDNode *N)
const SDValue & getOffset() const
const SDValue & getMask() const
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO)
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
static bool classof(const SDNode *N)
const SDValue & getOffset() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTrunc)
const SDValue & getValue() const
static bool classof(const SDNode *N)
bool isTruncatingStore() const
Return true if the op does a truncation before store.
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getOffset() const
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
static bool classof(const SDNode *N)
MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
static bool classof(const SDNode *N)
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getBaseAlign() const
Returns alignment and volatility of the memory access.
const MDNode * getRanges() const
Returns the Ranges that describes the dereference.
void refineRanges(const MachineMemOperand *NewMMO)
Align getAlign() const
bool isVolatile() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID for this memory operation.
int64_t getSrcValueOffset() const
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
AtomicOrdering getSuccessOrdering() const
Return the atomic ordering requirements for this memory operation.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getBasePtr() const
void refineAlignment(const MachineMemOperand *NewMMO)
Update this MemSDNode's MachineMemOperand information to reflect the alignment of NewMMO,...
const MachinePointerInfo & getPointerInfo() const
AtomicOrdering getMergedOrdering() const
Return a single atomic ordering that is at least as strong as both the success and failure orderings ...
const SDValue & getChain() const
bool isNonTemporal() const
bool isInvariant() const
bool isDereferenceable() const
bool isUnordered() const
Returns true if the memory operation doesn't imply any ordering constraints on surrounding memory ope...
bool isAtomic() const
Return true if the memory operation ordering is Unordered or higher.
static bool classof(const SDNode *N)
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
LLVM_ABI void dump() const
User-friendly dump.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
A discriminated union of two or more pointer types, with the discriminator in the low bit of the poin...
This SDNode is used for PSEUDO_PROBE values, which are the function guid and the index of the basic b...
static bool classof(const SDNode *N)
const uint32_t * getRegMask() const
static bool classof(const SDNode *N)
static bool classof(const SDNode *N)
Wrapper class representing virtual and physical registers.
Definition Register.h:20
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
SDLoc(const SDValue V)
SDLoc()=default
SDLoc(const SDNode *N)
SDLoc(const Instruction *I, int Order)
static SDNodeIterator end(const SDNode *N)
size_t operator-(SDNodeIterator Other) const
SDNodeIterator operator++(int)
std::ptrdiff_t difference_type
std::forward_iterator_tag iterator_category
unsigned getOperand() const
SDNodeIterator & operator++()
bool operator==(const SDNodeIterator &x) const
const SDNode * getNode() const
static SDNodeIterator begin(const SDNode *N)
bool operator!=(const SDNodeIterator &x) const
This class provides iterator support for SDUse operands that use a specific SDNode.
bool operator!=(const use_iterator &x) const
use_iterator & operator=(const use_iterator &)=default
std::forward_iterator_tag iterator_category
bool operator==(const use_iterator &x) const
SDUse & operator*() const
Retrieve a pointer to the current user node.
use_iterator(const use_iterator &I)=default
std::forward_iterator_tag iterator_category
bool operator!=(const user_iterator &x) const
bool operator==(const user_iterator &x) const
Represents one node in the SelectionDAG.
void setDebugLoc(DebugLoc dl)
Set source location info.
uint32_t getCFIType() const
void setIROrder(unsigned Order)
Set the node ordering.
bool isStrictFPOpcode()
Test if this node is a strict floating point pseudo-op.
ArrayRef< SDUse > ops() const
char RawSDNodeBits[sizeof(uint16_t)]
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
int getNodeId() const
Return the unique node id.
LLVM_ABI void dump() const
Dump this node, for debugging.
iterator_range< value_iterator > values() const
iterator_range< use_iterator > uses() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
SDNode * getGluedUser() const
If this node has a glue value with a user, return the user (there is at most one).
bool isDivergent() const
bool hasOneUse() const
Return true if there is exactly one use of this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
static LLVM_ABI const char * getIndexedModeName(ISD::MemIndexedMode AM)
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
LoadSDNodeBitfields LoadSDNodeBits
void dropFlags(unsigned Mask)
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
int getCombinerWorklistIndex() const
Get worklist index for DAGCombiner.
value_iterator value_end() const
void setHasDebugValue(bool b)
LSBaseSDNodeBitfields LSBaseSDNodeBits
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
bool getHasDebugValue() const
LLVM_ABI void dumpr() const
Dump (recursively) this node and its use-def subgraph.
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI std::string getOperationName(const SelectionDAG *G=nullptr) const
Return the opcode of this operation for printing.
LLVM_ABI void printrFull(raw_ostream &O, const SelectionDAG *G=nullptr) const
Print a SelectionDAG node and all children down to the leaves.
size_t use_size() const
Return the number of uses of this node.
friend class SelectionDAG
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
LLVM_ABI void printr(raw_ostream &OS, const SelectionDAG *G=nullptr) const
const EVT * value_iterator
StoreSDNodeBitfields StoreSDNodeBits
static SDVTList getSDVTList(MVT VT)
TypeSize getValueSizeInBits(unsigned ResNo) const
Returns MVT::getSizeInBits(getValueType(ResNo)).
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
bool isMemIntrinsic() const
Test if this node is a memory intrinsic (with valid pointer information).
void setCombinerWorklistIndex(int Index)
Set worklist index for DAGCombiner.
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
Return true if there are exactly NUSES uses of the indicated value.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
LLVM_ABI void print(raw_ostream &OS, const SelectionDAG *G=nullptr) const
const DebugLoc & getDebugLoc() const
Return the source location info.
friend class HandleSDNode
LLVM_ABI void printrWithDepth(raw_ostream &O, const SelectionDAG *G=nullptr, unsigned depth=100) const
Print a SelectionDAG node and children up to depth "depth." The given SelectionDAG allows target-spec...
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
uint16_t PersistentId
Unique and persistent id per SDNode in the DAG.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI void dumprWithDepth(const SelectionDAG *G=nullptr, unsigned depth=100) const
printrWithDepth to dbgs().
static user_iterator user_end()
bool isPredecessorOf(const SDNode *N) const
Return true if this node is a predecessor of N.
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
void addUse(SDUse &U)
This method should only be used by the SDUse class.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
LLVM_ABI void print_details(raw_ostream &OS, const SelectionDAG *G) const
void setCFIType(uint32_t Type)
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
LLVM_ABI void print_types(raw_ostream &OS, const SelectionDAG *G) const
iterator_range< user_iterator > users()
iterator_range< user_iterator > users() const
bool isVPOpcode() const
Test if this node is a vector predication operation.
bool hasPoisonGeneratingFlags() const
void setFlags(SDNodeFlags NewFlags)
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
SDNode * getGluedNode() const
If this node has a glue operand, return the node to which the glue operand points.
bool isTargetOpcode() const
Test if this node has a target-specific opcode (in the <target>ISD namespace).
op_iterator op_end() const
ConstantSDNodeBitfields ConstantSDNodeBits
bool isAnyAdd() const
Returns true if the node type is ADD or PTRADD.
value_iterator value_begin() const
bool isAssert() const
Test if this node is an assert operation.
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
SDNodeBitfields SDNodeBits
Represents a use of a SDNode.
const SDNode * getUser() const
SDUse & operator=(const SDUse &)=delete
EVT getValueType() const
Convenience function for get().getValueType().
friend class SDNode
const SDValue & get() const
If implicit conversion to SDValue doesn't work, the get() method returns the SDValue.
SDUse * getNext() const
Get the next SDUse in the use list.
SDNode * getNode() const
Convenience function for get().getNode().
friend class SelectionDAG
bool operator!=(const SDValue &V) const
Convenience function for get().operator!=.
SDUse()=default
SDUse(const SDUse &U)=delete
friend class HandleSDNode
unsigned getResNo() const
Convenience function for get().getResNo().
bool operator==(const SDValue &V) const
Convenience function for get().operator==.
unsigned getOperandNo() const
Return the operand # of this use in its user.
bool operator<(const SDValue &V) const
Convenience function for get().operator<.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
bool operator!=(const SDValue &O) const
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isTargetOpcode() const
bool isMachineOpcode() const
bool isAnyAdd() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const DebugLoc & getDebugLoc() const
SDNode * operator->() const
bool operator==(const SDValue &O) const
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
bool operator<(const SDValue &O) const
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
void setNode(SDNode *N)
set the SDNode
unsigned getMachineOpcode() const
unsigned getOpcode() const
unsigned getNumOperands() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
int getMaskElt(unsigned Idx) const
static int getSplatMaskIndex(ArrayRef< int > Mask)
ShuffleVectorSDNode(SDVTList VTs, unsigned Order, const DebugLoc &dl, const int *M)
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static bool classof(const SDNode *N)
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
const Value * getValue() const
Return the contained Value.
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
static bool classof(const SDNode *N)
Completely target-dependent object reference.
TargetIndexSDNode(int Idx, SDVTList VTs, int64_t Ofs, unsigned TF)
static bool classof(const SDNode *N)
unsigned getTargetFlags() const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
const SDValue & getMask() const
static bool classof(const SDNode *N)
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &DL, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getOffset() const
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
const SDValue & getVectorLength() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
const SDValue & getBasePtr() const
VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
static bool classof(const SDNode *N)
const SDValue & getScale() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
const SDValue & getVectorLength() const
const SDValue & getIndex() const
VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
const SDValue & getBasePtr() const
static bool classof(const SDNode *N)
const SDValue & getMask() const
const SDValue & getMask() const
const SDValue & getBasePtr() const
VPLoadFFSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
static bool classof(const SDNode *N)
const SDValue & getVectorLength() const
const SDValue & getOffset() const
const SDValue & getVectorLength() const
ISD::LoadExtType getExtensionType() const
const SDValue & getMask() const
VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getBasePtr() const
static bool classof(const SDNode *N)
static bool classof(const SDNode *N)
VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
const SDValue & getValue() const
const SDValue & getMask() const
VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, EVT MemVT, MachineMemOperand *MMO)
static bool classof(const SDNode *N)
const SDValue & getVectorLength() const
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
const SDValue & getOffset() const
bool isTruncatingStore() const
Return true if this is a truncating store.
const SDValue & getBasePtr() const
const SDValue & getValue() const
const SDValue & getMask() const
ISD::LoadExtType getExtensionType() const
const SDValue & getStride() const
const SDValue & getOffset() const
const SDValue & getVectorLength() const
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if this is a truncating store.
VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getOffset() const
const SDValue & getVectorLength() const
static bool classof(const SDNode *N)
const SDValue & getStride() const
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
friend class SelectionDAG
static bool classof(const SDNode *N)
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
This file defines the ilist_node class template, which is a convenient base class for creating classe...
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define UINT64_MAX
Definition DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNormalMaskedLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed masked load.
bool isNormalMaskedStore(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed masked store.
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ GlobalAddress
Definition ISDOpcodes.h:88
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
bool isOverflowIntrOpRes(SDValue Op)
Returns true if the specified value is the overflow result from one of the overflow intrinsic nodes.
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
bool isUNINDEXEDLoad(const SDNode *N)
Returns true if the specified node is an unindexed load.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool isUNINDEXEDStore(const SDNode *N)
Returns true if the specified node is an unindexed store.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
This is an optimization pass for GlobalISel generic memory operations.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
@ Offset
Definition DWP.cpp:532
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1606
APInt operator&(APInt a, const APInt &b)
Definition APInt.h:2124
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
FoldingSetBase::Node FoldingSetNode
Definition FoldingSet.h:408
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1588
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
AlignedCharArrayUnion< AtomicSDNode, TargetIndexSDNode, BlockAddressSDNode, GlobalAddressSDNode, PseudoProbeSDNode > LargestSDNode
A representation of the largest SDNode, for use in sizeof().
GlobalAddressSDNode MostAlignedSDNode
The SDNode class with the greatest alignment requirement.
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Other
Any other memory.
Definition ModRef.h:68
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1867
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant (+/-)0.0 floating-point value or a splatted vector thereof (wi...
APInt operator|(APInt a, const APInt &b)
Definition APInt.h:2144
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:867
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A suitably aligned and sized character array member which can hold elements of any type.
Definition AlignOf.h:22
static unsigned getHashValue(const SDValue &Val)
static bool isEqual(const SDValue &LHS, const SDValue &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
static ChildIteratorType child_begin(NodeRef N)
static ChildIteratorType child_end(NodeRef N)
static NodeRef getEntryNode(SDNode *N)
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setNoFPExcept(bool b)
void setAllowContract(bool b)
void setNoSignedZeros(bool b)
bool hasNoFPExcept() const
bool operator==(const SDNodeFlags &Other) const
void operator&=(const SDNodeFlags &OtherFlags)
void operator|=(const SDNodeFlags &OtherFlags)
bool hasNoUnsignedWrap() const
void setAllowReassociation(bool b)
void setUnpredictable(bool b)
void setAllowReciprocal(bool b)
bool hasAllowContract() const
bool hasNoSignedZeros() const
bool hasApproximateFuncs() const
bool hasUnpredictable() const
void setApproximateFuncs(bool b)
bool hasNoSignedWrap() const
SDNodeFlags(unsigned Flags=SDNodeFlags::None)
Default constructor turns off all optimization flags.
bool hasAllowReciprocal() const
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
Iterator for directly iterating over the operand SDValue's.
const SDValue & operator*() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
static SimpleType getSimplifiedValue(SDUse &Val)
static SimpleType getSimplifiedValue(SDValue &Val)
static SimpleType getSimplifiedValue(const SDValue &Val)
Define a template that can be specialized by smart pointers to reflect the fact that they are automat...
Definition Casting.h:34