LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.setAllConflict();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_COMPRESS: {
3484 SDValue Vec = Op.getOperand(0);
3485 SDValue PassThru = Op.getOperand(2);
3486 Known = computeKnownBits(PassThru, DemandedElts, Depth + 1);
3487 // If we don't know any bits, early out.
3488 if (Known.isUnknown())
3489 break;
3490 Known2 = computeKnownBits(Vec, Depth + 1);
3491 Known = Known.intersectWith(Known2);
3492 break;
3493 }
3494 case ISD::VECTOR_SHUFFLE: {
3495 assert(!Op.getValueType().isScalableVector());
3496 // Collect the known bits that are shared by every vector element referenced
3497 // by the shuffle.
3498 APInt DemandedLHS, DemandedRHS;
3500 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3501 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3502 DemandedLHS, DemandedRHS))
3503 break;
3504
3505 // Known bits are the values that are shared by every demanded element.
3506 Known.setAllConflict();
3507 if (!!DemandedLHS) {
3508 SDValue LHS = Op.getOperand(0);
3509 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3510 Known = Known.intersectWith(Known2);
3511 }
3512 // If we don't know any bits, early out.
3513 if (Known.isUnknown())
3514 break;
3515 if (!!DemandedRHS) {
3516 SDValue RHS = Op.getOperand(1);
3517 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3518 Known = Known.intersectWith(Known2);
3519 }
3520 break;
3521 }
3522 case ISD::VSCALE: {
3524 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3525 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3526 break;
3527 }
3528 case ISD::CONCAT_VECTORS: {
3529 if (Op.getValueType().isScalableVector())
3530 break;
3531 // Split DemandedElts and test each of the demanded subvectors.
3532 Known.setAllConflict();
3533 EVT SubVectorVT = Op.getOperand(0).getValueType();
3534 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3535 unsigned NumSubVectors = Op.getNumOperands();
3536 for (unsigned i = 0; i != NumSubVectors; ++i) {
3537 APInt DemandedSub =
3538 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3540 SDValue Sub = Op.getOperand(i);
3541 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3542 Known = Known.intersectWith(Known2);
3543 }
3544 // If we don't know any bits, early out.
3545 if (Known.isUnknown())
3546 break;
3547 }
3548 break;
3549 }
3550 case ISD::INSERT_SUBVECTOR: {
3551 if (Op.getValueType().isScalableVector())
3552 break;
3553 // Demand any elements from the subvector and the remainder from the src its
3554 // inserted into.
3555 SDValue Src = Op.getOperand(0);
3556 SDValue Sub = Op.getOperand(1);
3557 uint64_t Idx = Op.getConstantOperandVal(2);
3558 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3559 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3562
3563 Known.setAllConflict();
3564 if (!!DemandedSubElts) {
3565 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3566 if (Known.isUnknown())
3567 break; // early-out.
3568 }
3569 if (!!DemandedSrcElts) {
3570 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3571 Known = Known.intersectWith(Known2);
3572 }
3573 break;
3574 }
3576 // Offset the demanded elts by the subvector index.
3577 SDValue Src = Op.getOperand(0);
3578 // Bail until we can represent demanded elements for scalable vectors.
3579 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3580 break;
3581 uint64_t Idx = Op.getConstantOperandVal(1);
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3584 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3585 break;
3586 }
3587 case ISD::SCALAR_TO_VECTOR: {
3588 if (Op.getValueType().isScalableVector())
3589 break;
3590 // We know about scalar_to_vector as much as we know about it source,
3591 // which becomes the first element of otherwise unknown vector.
3592 if (DemandedElts != 1)
3593 break;
3594
3595 SDValue N0 = Op.getOperand(0);
3596 Known = computeKnownBits(N0, Depth + 1);
3597 if (N0.getValueSizeInBits() != BitWidth)
3598 Known = Known.trunc(BitWidth);
3599
3600 break;
3601 }
3602 case ISD::BITCAST: {
3603 if (Op.getValueType().isScalableVector())
3604 break;
3605
3606 SDValue N0 = Op.getOperand(0);
3607 EVT SubVT = N0.getValueType();
3608 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3609
3610 // Ignore bitcasts from unsupported types.
3611 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3612 break;
3613
3614 // Fast handling of 'identity' bitcasts.
3615 if (BitWidth == SubBitWidth) {
3616 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3617 break;
3618 }
3619
3620 bool IsLE = getDataLayout().isLittleEndian();
3621
3622 // Bitcast 'small element' vector to 'large element' scalar/vector.
3623 if ((BitWidth % SubBitWidth) == 0) {
3624 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3625
3626 // Collect known bits for the (larger) output by collecting the known
3627 // bits from each set of sub elements and shift these into place.
3628 // We need to separately call computeKnownBits for each set of
3629 // sub elements as the knownbits for each is likely to be different.
3630 unsigned SubScale = BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.setBit(i * SubScale);
3635
3636 for (unsigned i = 0; i != SubScale; ++i) {
3637 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3638 Depth + 1);
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.insertBits(Known2, SubBitWidth * Shifts);
3641 }
3642 }
3643
3644 // Bitcast 'large element' scalar/vector to 'small element' vector.
3645 if ((SubBitWidth % BitWidth) == 0) {
3646 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3647
3648 // Collect known bits for the (smaller) output by collecting the known
3649 // bits from the overlapping larger input elements and extracting the
3650 // sub sections we actually care about.
3651 unsigned SubScale = SubBitWidth / BitWidth;
3652 APInt SubDemandedElts =
3653 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3654 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3655
3656 Known.setAllConflict();
3657 for (unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3660 unsigned Offset = (Shifts % SubScale) * BitWidth;
3661 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3662 // If we don't know any bits, early out.
3663 if (Known.isUnknown())
3664 break;
3665 }
3666 }
3667 break;
3668 }
3669 case ISD::AND:
3670 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3671 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3672
3673 Known &= Known2;
3674 break;
3675 case ISD::OR:
3676 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3677 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3678
3679 Known |= Known2;
3680 break;
3681 case ISD::XOR:
3682 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3683 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3684
3685 Known ^= Known2;
3686 break;
3687 case ISD::MUL: {
3688 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3689 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3690 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3691 // TODO: SelfMultiply can be poison, but not undef.
3692 if (SelfMultiply)
3693 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3694 Op.getOperand(0), DemandedElts, false, Depth + 1);
3695 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3696
3697 // If the multiplication is known not to overflow, the product of a number
3698 // with itself is non-negative. Only do this if we didn't already computed
3699 // the opposite value for the sign bit.
3700 if (Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) == Op.getOperand(1) &&
3702 !Known.isNegative())
3703 Known.makeNonNegative();
3704 break;
3705 }
3706 case ISD::MULHU: {
3707 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3708 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3709 Known = KnownBits::mulhu(Known, Known2);
3710 break;
3711 }
3712 case ISD::MULHS: {
3713 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3714 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3715 Known = KnownBits::mulhs(Known, Known2);
3716 break;
3717 }
3718 case ISD::ABDU: {
3719 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3721 Known = KnownBits::abdu(Known, Known2);
3722 break;
3723 }
3724 case ISD::ABDS: {
3725 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3726 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3727 Known = KnownBits::abds(Known, Known2);
3728 unsigned SignBits1 =
3729 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 if (SignBits1 == 1)
3731 break;
3732 unsigned SignBits0 =
3733 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3734 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3735 break;
3736 }
3737 case ISD::UMUL_LOHI: {
3738 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3739 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3740 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3741 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3742 if (Op.getResNo() == 0)
3743 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3744 else
3745 Known = KnownBits::mulhu(Known, Known2);
3746 break;
3747 }
3748 case ISD::SMUL_LOHI: {
3749 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3750 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3752 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3753 if (Op.getResNo() == 0)
3754 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3755 else
3756 Known = KnownBits::mulhs(Known, Known2);
3757 break;
3758 }
3759 case ISD::AVGFLOORU: {
3760 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3761 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3762 Known = KnownBits::avgFloorU(Known, Known2);
3763 break;
3764 }
3765 case ISD::AVGCEILU: {
3766 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3767 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3768 Known = KnownBits::avgCeilU(Known, Known2);
3769 break;
3770 }
3771 case ISD::AVGFLOORS: {
3772 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3773 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3774 Known = KnownBits::avgFloorS(Known, Known2);
3775 break;
3776 }
3777 case ISD::AVGCEILS: {
3778 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3780 Known = KnownBits::avgCeilS(Known, Known2);
3781 break;
3782 }
3783 case ISD::SELECT:
3784 case ISD::VSELECT:
3785 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SELECT_CC:
3795 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3796 // If we don't know any bits, early out.
3797 if (Known.isUnknown())
3798 break;
3799 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3800
3801 // Only known if known in both the LHS and RHS.
3802 Known = Known.intersectWith(Known2);
3803 break;
3804 case ISD::SMULO:
3805 case ISD::UMULO:
3806 if (Op.getResNo() != 1)
3807 break;
3808 // The boolean result conforms to getBooleanContents.
3809 // If we know the result of a setcc has the top bits zero, use this info.
3810 // We know that we have an integer-based boolean since these operations
3811 // are only available for integer.
3812 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3814 BitWidth > 1)
3815 Known.Zero.setBitsFrom(1);
3816 break;
3817 case ISD::SETCC:
3818 case ISD::SETCCCARRY:
3819 case ISD::STRICT_FSETCC:
3820 case ISD::STRICT_FSETCCS: {
3821 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3822 // If we know the result of a setcc has the top bits zero, use this info.
3823 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3825 BitWidth > 1)
3826 Known.Zero.setBitsFrom(1);
3827 break;
3828 }
3829 case ISD::SHL: {
3830 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3832
3833 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW = Op->getFlags().hasNoSignedWrap();
3835
3836 bool ShAmtNonZero = Known2.isNonZero();
3837
3838 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3839
3840 // Minimum shift low bits are known zero.
3841 if (std::optional<unsigned> ShMinAmt =
3842 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3843 Known.Zero.setLowBits(*ShMinAmt);
3844 break;
3845 }
3846 case ISD::SRL:
3847 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3848 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3849 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3850 Op->getFlags().hasExact());
3851
3852 // Minimum shift high bits are known zero.
3853 if (std::optional<unsigned> ShMinAmt =
3854 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3855 Known.Zero.setHighBits(*ShMinAmt);
3856 break;
3857 case ISD::SRA:
3858 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3859 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3860 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3861 Op->getFlags().hasExact());
3862 break;
3863 case ISD::ROTL:
3864 case ISD::ROTR:
3865 if (ConstantSDNode *C =
3866 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3867 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3868
3869 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3870
3871 // Canonicalize to ROTR.
3872 if (Opcode == ISD::ROTL && Amt != 0)
3873 Amt = BitWidth - Amt;
3874
3875 Known.Zero = Known.Zero.rotr(Amt);
3876 Known.One = Known.One.rotr(Amt);
3877 }
3878 break;
3879 case ISD::FSHL:
3880 case ISD::FSHR:
3881 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3882 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3883
3884 // For fshl, 0-shift returns the 1st arg.
3885 // For fshr, 0-shift returns the 2nd arg.
3886 if (Amt == 0) {
3887 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3888 DemandedElts, Depth + 1);
3889 break;
3890 }
3891
3892 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3893 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3894 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3895 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3896 if (Opcode == ISD::FSHL) {
3897 Known <<= Amt;
3898 Known2 >>= BitWidth - Amt;
3899 } else {
3900 Known <<= BitWidth - Amt;
3901 Known2 >>= Amt;
3902 }
3903 Known = Known.unionWith(Known2);
3904 }
3905 break;
3906 case ISD::SHL_PARTS:
3907 case ISD::SRA_PARTS:
3908 case ISD::SRL_PARTS: {
3909 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3910
3911 // Collect lo/hi source values and concatenate.
3912 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3914 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3915 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3916 Known = Known2.concat(Known);
3917
3918 // Collect shift amount.
3919 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3920
3921 if (Opcode == ISD::SHL_PARTS)
3922 Known = KnownBits::shl(Known, Known2);
3923 else if (Opcode == ISD::SRA_PARTS)
3924 Known = KnownBits::ashr(Known, Known2);
3925 else // if (Opcode == ISD::SRL_PARTS)
3926 Known = KnownBits::lshr(Known, Known2);
3927
3928 // TODO: Minimum shift low/high bits are known zero.
3929
3930 if (Op.getResNo() == 0)
3931 Known = Known.extractBits(LoBits, 0);
3932 else
3933 Known = Known.extractBits(HiBits, LoBits);
3934 break;
3935 }
3937 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3938 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3939 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3940 break;
3941 }
3942 case ISD::CTTZ:
3943 case ISD::CTTZ_ZERO_UNDEF: {
3944 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3945 // If we have a known 1, its position is our upper bound.
3946 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3947 unsigned LowBits = llvm::bit_width(PossibleTZ);
3948 Known.Zero.setBitsFrom(LowBits);
3949 break;
3950 }
3951 case ISD::CTLZ:
3952 case ISD::CTLZ_ZERO_UNDEF: {
3953 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3954 // If we have a known 1, its position is our upper bound.
3955 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3956 unsigned LowBits = llvm::bit_width(PossibleLZ);
3957 Known.Zero.setBitsFrom(LowBits);
3958 break;
3959 }
3960 case ISD::CTPOP: {
3961 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3962 // If we know some of the bits are zero, they can't be one.
3963 unsigned PossibleOnes = Known2.countMaxPopulation();
3964 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3965 break;
3966 }
3967 case ISD::PARITY: {
3968 // Parity returns 0 everywhere but the LSB.
3969 Known.Zero.setBitsFrom(1);
3970 break;
3971 }
3972 case ISD::MGATHER:
3973 case ISD::MLOAD: {
3974 ISD::LoadExtType ETy =
3975 (Opcode == ISD::MGATHER)
3976 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3977 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3978 if (ETy == ISD::ZEXTLOAD) {
3979 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3980 KnownBits Known0(MemVT.getScalarSizeInBits());
3981 return Known0.zext(BitWidth);
3982 }
3983 break;
3984 }
3985 case ISD::LOAD: {
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3988 if (ISD::isNON_EXTLoad(LD) && Cst) {
3989 // Determine any common known bits from the loaded constant pool value.
3990 Type *CstTy = Cst->getType();
3991 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3992 !Op.getValueType().isScalableVector()) {
3993 // If its a vector splat, then we can (quickly) reuse the scalar path.
3994 // NOTE: We assume all elements match and none are UNDEF.
3995 if (CstTy->isVectorTy()) {
3996 if (const Constant *Splat = Cst->getSplatValue()) {
3997 Cst = Splat;
3998 CstTy = Cst->getType();
3999 }
4000 }
4001 // TODO - do we need to handle different bitwidths?
4002 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
4003 // Iterate across all vector elements finding common known bits.
4004 Known.setAllConflict();
4005 for (unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4007 continue;
4008 if (Constant *Elt = Cst->getAggregateElement(i)) {
4009 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4010 const APInt &Value = CInt->getValue();
4011 Known.One &= Value;
4012 Known.Zero &= ~Value;
4013 continue;
4014 }
4015 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4017 Known.One &= Value;
4018 Known.Zero &= ~Value;
4019 continue;
4020 }
4021 }
4022 Known.One.clearAllBits();
4023 Known.Zero.clearAllBits();
4024 break;
4025 }
4026 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4027 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4028 Known = KnownBits::makeConstant(CInt->getValue());
4029 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4030 Known =
4031 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4032 }
4033 }
4034 }
4035 } else if (Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (const MDNode *MD = LD->getRanges())
4039 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4040
4041 // Extend the Known bits from memory to the size of the scalar result.
4042 if (ISD::isZEXTLoad(Op.getNode()))
4043 Known = KnownScalarMemory.zext(BitWidth);
4044 else if (ISD::isSEXTLoad(Op.getNode()))
4045 Known = KnownScalarMemory.sext(BitWidth);
4046 else if (ISD::isEXTLoad(Op.getNode()))
4047 Known = KnownScalarMemory.anyext(BitWidth);
4048 else
4049 Known = KnownScalarMemory;
4050 assert(Known.getBitWidth() == BitWidth);
4051 return Known;
4052 }
4053 break;
4054 }
4056 if (Op.getValueType().isScalableVector())
4057 break;
4058 EVT InVT = Op.getOperand(0).getValueType();
4059 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4060 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4061 Known = Known.zext(BitWidth);
4062 break;
4063 }
4064 case ISD::ZERO_EXTEND: {
4065 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4066 Known = Known.zext(BitWidth);
4067 break;
4068 }
4070 if (Op.getValueType().isScalableVector())
4071 break;
4072 EVT InVT = Op.getOperand(0).getValueType();
4073 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4074 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4075 // If the sign bit is known to be zero or one, then sext will extend
4076 // it to the top bits, else it will just zext.
4077 Known = Known.sext(BitWidth);
4078 break;
4079 }
4080 case ISD::SIGN_EXTEND: {
4081 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4082 // If the sign bit is known to be zero or one, then sext will extend
4083 // it to the top bits, else it will just zext.
4084 Known = Known.sext(BitWidth);
4085 break;
4086 }
4088 if (Op.getValueType().isScalableVector())
4089 break;
4090 EVT InVT = Op.getOperand(0).getValueType();
4091 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4092 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4093 Known = Known.anyext(BitWidth);
4094 break;
4095 }
4096 case ISD::ANY_EXTEND: {
4097 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4098 Known = Known.anyext(BitWidth);
4099 break;
4100 }
4101 case ISD::TRUNCATE: {
4102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4103 Known = Known.trunc(BitWidth);
4104 break;
4105 }
4106 case ISD::AssertZext: {
4107 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4109 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110 Known.Zero |= (~InMask);
4111 Known.One &= (~Known.Zero);
4112 break;
4113 }
4114 case ISD::AssertAlign: {
4115 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4116 assert(LogOfAlign != 0);
4117
4118 // TODO: Should use maximum with source
4119 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4120 // well as clearing one bits.
4121 Known.Zero.setLowBits(LogOfAlign);
4122 Known.One.clearLowBits(LogOfAlign);
4123 break;
4124 }
4125 case ISD::FGETSIGN:
4126 // All bits are zero except the low bit.
4127 Known.Zero.setBitsFrom(1);
4128 break;
4129 case ISD::ADD:
4130 case ISD::SUB: {
4131 SDNodeFlags Flags = Op.getNode()->getFlags();
4132 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4133 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4135 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4137 break;
4138 }
4139 case ISD::USUBO:
4140 case ISD::SSUBO:
4141 case ISD::USUBO_CARRY:
4142 case ISD::SSUBO_CARRY:
4143 if (Op.getResNo() == 1) {
4144 // If we know the result of a setcc has the top bits zero, use this info.
4145 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4147 BitWidth > 1)
4148 Known.Zero.setBitsFrom(1);
4149 break;
4150 }
4151 [[fallthrough]];
4152 case ISD::SUBC: {
4153 assert(Op.getResNo() == 0 &&
4154 "We only compute knownbits for the difference here.");
4155
4156 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4157 KnownBits Borrow(1);
4158 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4159 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4160 // Borrow has bit width 1
4161 Borrow = Borrow.trunc(1);
4162 } else {
4163 Borrow.setAllZero();
4164 }
4165
4166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4168 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4169 break;
4170 }
4171 case ISD::UADDO:
4172 case ISD::SADDO:
4173 case ISD::UADDO_CARRY:
4174 case ISD::SADDO_CARRY:
4175 if (Op.getResNo() == 1) {
4176 // If we know the result of a setcc has the top bits zero, use this info.
4177 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4179 BitWidth > 1)
4180 Known.Zero.setBitsFrom(1);
4181 break;
4182 }
4183 [[fallthrough]];
4184 case ISD::ADDC:
4185 case ISD::ADDE: {
4186 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4187
4188 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4189 KnownBits Carry(1);
4190 if (Opcode == ISD::ADDE)
4191 // Can't track carry from glue, set carry to unknown.
4192 Carry.resetAll();
4193 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4194 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4195 // Carry has bit width 1
4196 Carry = Carry.trunc(1);
4197 } else {
4198 Carry.setAllZero();
4199 }
4200
4201 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4202 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4203 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4204 break;
4205 }
4206 case ISD::UDIV: {
4207 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4208 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4209 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4210 break;
4211 }
4212 case ISD::SDIV: {
4213 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4214 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4215 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4216 break;
4217 }
4218 case ISD::SREM: {
4219 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4221 Known = KnownBits::srem(Known, Known2);
4222 break;
4223 }
4224 case ISD::UREM: {
4225 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4226 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4227 Known = KnownBits::urem(Known, Known2);
4228 break;
4229 }
4230 case ISD::EXTRACT_ELEMENT: {
4231 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4232 const unsigned Index = Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth = Op.getValueSizeInBits();
4234
4235 // Remove low part of known bits mask
4236 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4237 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4238
4239 // Remove high part of known bit mask
4240 Known = Known.trunc(EltBitWidth);
4241 break;
4242 }
4244 SDValue InVec = Op.getOperand(0);
4245 SDValue EltNo = Op.getOperand(1);
4246 EVT VecVT = InVec.getValueType();
4247 // computeKnownBits not yet implemented for scalable vectors.
4248 if (VecVT.isScalableVector())
4249 break;
4250 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4251 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4252
4253 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4254 // anything about the extended bits.
4255 if (BitWidth > EltBitWidth)
4256 Known = Known.trunc(EltBitWidth);
4257
4258 // If we know the element index, just demand that vector element, else for
4259 // an unknown element index, ignore DemandedElts and demand them all.
4260 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4261 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4263 DemandedSrcElts =
4264 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4265
4266 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4267 if (BitWidth > EltBitWidth)
4268 Known = Known.anyext(BitWidth);
4269 break;
4270 }
4272 if (Op.getValueType().isScalableVector())
4273 break;
4274
4275 // If we know the element index, split the demand between the
4276 // source vector and the inserted element, otherwise assume we need
4277 // the original demanded vector elements and the value.
4278 SDValue InVec = Op.getOperand(0);
4279 SDValue InVal = Op.getOperand(1);
4280 SDValue EltNo = Op.getOperand(2);
4281 bool DemandedVal = true;
4282 APInt DemandedVecElts = DemandedElts;
4283 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4287 DemandedVecElts.clearBit(EltIdx);
4288 }
4289 Known.setAllConflict();
4290 if (DemandedVal) {
4291 Known2 = computeKnownBits(InVal, Depth + 1);
4292 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4293 }
4294 if (!!DemandedVecElts) {
4295 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4296 Known = Known.intersectWith(Known2);
4297 }
4298 break;
4299 }
4300 case ISD::BITREVERSE: {
4301 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4302 Known = Known2.reverseBits();
4303 break;
4304 }
4305 case ISD::BSWAP: {
4306 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4307 Known = Known2.byteSwap();
4308 break;
4309 }
4310 case ISD::ABS: {
4311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4312 Known = Known2.abs();
4313 Known.Zero.setHighBits(
4314 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4315 break;
4316 }
4317 case ISD::USUBSAT: {
4318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4319 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4320 Known = KnownBits::usub_sat(Known, Known2);
4321 break;
4322 }
4323 case ISD::UMIN: {
4324 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4325 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4326 Known = KnownBits::umin(Known, Known2);
4327 break;
4328 }
4329 case ISD::UMAX: {
4330 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4331 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4332 Known = KnownBits::umax(Known, Known2);
4333 break;
4334 }
4335 case ISD::SMIN:
4336 case ISD::SMAX: {
4337 // If we have a clamp pattern, we know that the number of sign bits will be
4338 // the minimum of the clamp min/max range.
4339 bool IsMax = (Opcode == ISD::SMAX);
4340 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4341 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4342 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4343 CstHigh =
4344 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4345 if (CstLow && CstHigh) {
4346 if (!IsMax)
4347 std::swap(CstLow, CstHigh);
4348
4349 const APInt &ValueLow = CstLow->getAPIntValue();
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.sle(ValueHigh)) {
4352 unsigned LowSignBits = ValueLow.getNumSignBits();
4353 unsigned HighSignBits = ValueHigh.getNumSignBits();
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4355 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4356 Known.One.setHighBits(MinSignBits);
4357 break;
4358 }
4359 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4360 Known.Zero.setHighBits(MinSignBits);
4361 break;
4362 }
4363 }
4364 }
4365
4366 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4367 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4368 if (IsMax)
4369 Known = KnownBits::smax(Known, Known2);
4370 else
4371 Known = KnownBits::smin(Known, Known2);
4372
4373 // For SMAX, if CstLow is non-negative we know the result will be
4374 // non-negative and thus all sign bits are 0.
4375 // TODO: There's an equivalent of this for smin with negative constant for
4376 // known ones.
4377 if (IsMax && CstLow) {
4378 const APInt &ValueLow = CstLow->getAPIntValue();
4379 if (ValueLow.isNonNegative()) {
4380 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4381 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4382 }
4383 }
4384
4385 break;
4386 }
4387 case ISD::UINT_TO_FP: {
4388 Known.makeNonNegative();
4389 break;
4390 }
4391 case ISD::SINT_TO_FP: {
4392 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4393 if (Known2.isNonNegative())
4394 Known.makeNonNegative();
4395 else if (Known2.isNegative())
4396 Known.makeNegative();
4397 break;
4398 }
4399 case ISD::FP_TO_UINT_SAT: {
4400 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4401 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4403 break;
4404 }
4405 case ISD::ATOMIC_LOAD: {
4406 // If we are looking at the loaded value.
4407 if (Op.getResNo() == 0) {
4408 auto *AT = cast<AtomicSDNode>(Op);
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (const MDNode *MD = AT->getRanges())
4412 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4413
4414 switch (AT->getExtensionType()) {
4415 case ISD::ZEXTLOAD:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SEXTLOAD:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 case ISD::EXTLOAD:
4422 switch (TLI->getExtendForAtomicOps()) {
4423 case ISD::ZERO_EXTEND:
4424 Known = KnownScalarMemory.zext(BitWidth);
4425 break;
4426 case ISD::SIGN_EXTEND:
4427 Known = KnownScalarMemory.sext(BitWidth);
4428 break;
4429 default:
4430 Known = KnownScalarMemory.anyext(BitWidth);
4431 break;
4432 }
4433 break;
4434 case ISD::NON_EXTLOAD:
4435 Known = KnownScalarMemory;
4436 break;
4437 }
4438 assert(Known.getBitWidth() == BitWidth);
4439 }
4440 break;
4441 }
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (Op.getResNo() == 1) {
4444 // The boolean result conforms to getBooleanContents.
4445 // If we know the result of a setcc has the top bits zero, use this info.
4446 // We know that we have an integer-based boolean since these operations
4447 // are only available for integer.
4448 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4450 BitWidth > 1)
4451 Known.Zero.setBitsFrom(1);
4452 break;
4453 }
4454 [[fallthrough]];
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4468 // If we are looking at the loaded value.
4469 if (Op.getResNo() == 0) {
4470 auto *AT = cast<AtomicSDNode>(Op);
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4472
4473 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4474 Known.Zero.setBitsFrom(MemBits);
4475 }
4476 break;
4477 }
4478 case ISD::FrameIndex:
4480 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4481 Known, getMachineFunction());
4482 break;
4483
4484 default:
4485 if (Opcode < ISD::BUILTIN_OP_END)
4486 break;
4487 [[fallthrough]];
4491 // TODO: Probably okay to remove after audit; here to reduce change size
4492 // in initial enablement patch for scalable vectors
4493 if (Op.getValueType().isScalableVector())
4494 break;
4495
4496 // Allow the target to implement this method for its nodes.
4497 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4498 break;
4499 }
4500
4501 return Known;
4502}
4503
4504/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4517
4520 // X + 0 never overflow
4521 if (isNullConstant(N1))
4522 return OFK_Never;
4523
4524 // If both operands each have at least two sign bits, the addition
4525 // cannot overflow.
4526 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4527 return OFK_Never;
4528
4529 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4530 return OFK_Sometime;
4531}
4532
4535 // X + 0 never overflow
4536 if (isNullConstant(N1))
4537 return OFK_Never;
4538
4539 // mulhi + 1 never overflow
4540 KnownBits N1Known = computeKnownBits(N1);
4541 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4542 N1Known.getMaxValue().ult(2))
4543 return OFK_Never;
4544
4545 KnownBits N0Known = computeKnownBits(N0);
4546 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4547 N0Known.getMaxValue().ult(2))
4548 return OFK_Never;
4549
4550 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4551 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4552 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4553 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4554}
4555
4558 // X - 0 never overflow
4559 if (isNullConstant(N1))
4560 return OFK_Never;
4561
4562 // If both operands each have at least two sign bits, the subtraction
4563 // cannot overflow.
4564 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4565 return OFK_Never;
4566
4567 KnownBits N0Known = computeKnownBits(N0);
4568 KnownBits N1Known = computeKnownBits(N1);
4569 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4570 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4571 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4572}
4573
4576 // X - 0 never overflow
4577 if (isNullConstant(N1))
4578 return OFK_Never;
4579
4580 KnownBits N0Known = computeKnownBits(N0);
4581 KnownBits N1Known = computeKnownBits(N1);
4582 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4583 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4584 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4585}
4586
4589 // X * 0 and X * 1 never overflow.
4590 if (isNullConstant(N1) || isOneConstant(N1))
4591 return OFK_Never;
4592
4593 KnownBits N0Known = computeKnownBits(N0);
4594 KnownBits N1Known = computeKnownBits(N1);
4595 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4596 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4597 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4598}
4599
4602 // X * 0 and X * 1 never overflow.
4603 if (isNullConstant(N1) || isOneConstant(N1))
4604 return OFK_Never;
4605
4606 // Get the size of the result.
4607 unsigned BitWidth = N0.getScalarValueSizeInBits();
4608
4609 // Sum of the sign bits.
4610 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4611
4612 // If we have enough sign bits, then there's no overflow.
4613 if (SignBits > BitWidth + 1)
4614 return OFK_Never;
4615
4616 if (SignBits == BitWidth + 1) {
4617 // The overflow occurs when the true multiplication of the
4618 // the operands is the minimum negative number.
4619 KnownBits N0Known = computeKnownBits(N0);
4620 KnownBits N1Known = computeKnownBits(N1);
4621 // If one of the operands is non-negative, then there's no
4622 // overflow.
4623 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4624 return OFK_Never;
4625 }
4626
4627 return OFK_Sometime;
4628}
4629
4631 if (Depth >= MaxRecursionDepth)
4632 return false; // Limit search depth.
4633
4634 EVT OpVT = Val.getValueType();
4635 unsigned BitWidth = OpVT.getScalarSizeInBits();
4636
4637 // Is the constant a known power of 2?
4639 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4640 }))
4641 return true;
4642
4643 // A left-shift of a constant one will have exactly one bit set because
4644 // shifting the bit off the end is undefined.
4645 if (Val.getOpcode() == ISD::SHL) {
4646 auto *C = isConstOrConstSplat(Val.getOperand(0));
4647 if (C && C->getAPIntValue() == 1)
4648 return true;
4649 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4650 isKnownNeverZero(Val, Depth);
4651 }
4652
4653 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4654 // one bit set.
4655 if (Val.getOpcode() == ISD::SRL) {
4656 auto *C = isConstOrConstSplat(Val.getOperand(0));
4657 if (C && C->getAPIntValue().isSignMask())
4658 return true;
4659 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4660 isKnownNeverZero(Val, Depth);
4661 }
4662
4663 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4664 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4665
4666 // Are all operands of a build vector constant powers of two?
4667 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4668 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4671 return false;
4672 }))
4673 return true;
4674
4675 // Is the operand of a splat vector a constant power of two?
4676 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4678 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4679 return true;
4680
4681 // vscale(power-of-two) is a power-of-two for some targets
4682 if (Val.getOpcode() == ISD::VSCALE &&
4683 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4685 return true;
4686
4687 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4688 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4689 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4691
4692 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4693 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4695
4696 // Looking for `x & -x` pattern:
4697 // If x == 0:
4698 // x & -x -> 0
4699 // If x != 0:
4700 // x & -x -> non-zero pow2
4701 // so if we find the pattern return whether we know `x` is non-zero.
4702 SDValue X;
4703 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4704 return isKnownNeverZero(X, Depth);
4705
4706 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4707 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4708
4709 // More could be done here, though the above checks are enough
4710 // to handle some common cases.
4711 return false;
4712}
4713
4715 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4717
4718 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4719 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4720
4721 return false;
4722}
4723
4725 EVT VT = Op.getValueType();
4726
4727 // Since the number of lanes in a scalable vector is unknown at compile time,
4728 // we track one bit which is implicitly broadcast to all lanes. This means
4729 // that all lanes in a scalable vector are considered demanded.
4730 APInt DemandedElts = VT.isFixedLengthVector()
4732 : APInt(1, 1);
4733 return ComputeNumSignBits(Op, DemandedElts, Depth);
4734}
4735
4736unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4737 unsigned Depth) const {
4738 EVT VT = Op.getValueType();
4739 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4740 unsigned VTBits = VT.getScalarSizeInBits();
4741 unsigned NumElts = DemandedElts.getBitWidth();
4742 unsigned Tmp, Tmp2;
4743 unsigned FirstAnswer = 1;
4744
4745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4746 const APInt &Val = C->getAPIntValue();
4747 return Val.getNumSignBits();
4748 }
4749
4750 if (Depth >= MaxRecursionDepth)
4751 return 1; // Limit search depth.
4752
4753 if (!DemandedElts)
4754 return 1; // No demanded elts, better to assume we don't know anything.
4755
4756 unsigned Opcode = Op.getOpcode();
4757 switch (Opcode) {
4758 default: break;
4759 case ISD::AssertSext:
4760 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4761 return VTBits-Tmp+1;
4762 case ISD::AssertZext:
4763 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4764 return VTBits-Tmp;
4765 case ISD::FREEZE:
4766 if (isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
4767 /*PoisonOnly=*/false))
4768 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4769 break;
4770 case ISD::MERGE_VALUES:
4771 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4772 Depth + 1);
4773 case ISD::SPLAT_VECTOR: {
4774 // Check if the sign bits of source go down as far as the truncated value.
4775 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4776 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4777 if (NumSrcSignBits > (NumSrcBits - VTBits))
4778 return NumSrcSignBits - (NumSrcBits - VTBits);
4779 break;
4780 }
4781 case ISD::BUILD_VECTOR:
4782 assert(!VT.isScalableVector());
4783 Tmp = VTBits;
4784 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4785 if (!DemandedElts[i])
4786 continue;
4787
4788 SDValue SrcOp = Op.getOperand(i);
4789 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4790 // for constant nodes to ensure we only look at the sign bits.
4792 APInt T = C->getAPIntValue().trunc(VTBits);
4793 Tmp2 = T.getNumSignBits();
4794 } else {
4795 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4796
4797 if (SrcOp.getValueSizeInBits() != VTBits) {
4798 assert(SrcOp.getValueSizeInBits() > VTBits &&
4799 "Expected BUILD_VECTOR implicit truncation");
4800 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4801 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4802 }
4803 }
4804 Tmp = std::min(Tmp, Tmp2);
4805 }
4806 return Tmp;
4807
4808 case ISD::VECTOR_COMPRESS: {
4809 SDValue Vec = Op.getOperand(0);
4810 SDValue PassThru = Op.getOperand(2);
4811 Tmp = ComputeNumSignBits(PassThru, DemandedElts, Depth + 1);
4812 if (Tmp == 1)
4813 return 1;
4814 Tmp2 = ComputeNumSignBits(Vec, Depth + 1);
4815 Tmp = std::min(Tmp, Tmp2);
4816 return Tmp;
4817 }
4818
4819 case ISD::VECTOR_SHUFFLE: {
4820 // Collect the minimum number of sign bits that are shared by every vector
4821 // element referenced by the shuffle.
4822 APInt DemandedLHS, DemandedRHS;
4824 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4825 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4826 DemandedLHS, DemandedRHS))
4827 return 1;
4828
4829 Tmp = std::numeric_limits<unsigned>::max();
4830 if (!!DemandedLHS)
4831 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4832 if (!!DemandedRHS) {
4833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4834 Tmp = std::min(Tmp, Tmp2);
4835 }
4836 // If we don't know anything, early out and try computeKnownBits fall-back.
4837 if (Tmp == 1)
4838 break;
4839 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4840 return Tmp;
4841 }
4842
4843 case ISD::BITCAST: {
4844 if (VT.isScalableVector())
4845 break;
4846 SDValue N0 = Op.getOperand(0);
4847 EVT SrcVT = N0.getValueType();
4848 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4849
4850 // Ignore bitcasts from unsupported types..
4851 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4852 break;
4853
4854 // Fast handling of 'identity' bitcasts.
4855 if (VTBits == SrcBits)
4856 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4857
4858 bool IsLE = getDataLayout().isLittleEndian();
4859
4860 // Bitcast 'large element' scalar/vector to 'small element' vector.
4861 if ((SrcBits % VTBits) == 0) {
4862 assert(VT.isVector() && "Expected bitcast to vector");
4863
4864 unsigned Scale = SrcBits / VTBits;
4865 APInt SrcDemandedElts =
4866 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4867
4868 // Fast case - sign splat can be simply split across the small elements.
4869 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4870 if (Tmp == SrcBits)
4871 return VTBits;
4872
4873 // Slow case - determine how far the sign extends into each sub-element.
4874 Tmp2 = VTBits;
4875 for (unsigned i = 0; i != NumElts; ++i)
4876 if (DemandedElts[i]) {
4877 unsigned SubOffset = i % Scale;
4878 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4879 SubOffset = SubOffset * VTBits;
4880 if (Tmp <= SubOffset)
4881 return 1;
4882 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4883 }
4884 return Tmp2;
4885 }
4886 break;
4887 }
4888
4890 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4891 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4892 return VTBits - Tmp + 1;
4893 case ISD::SIGN_EXTEND:
4894 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4895 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4897 // Max of the input and what this extends.
4898 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4899 Tmp = VTBits-Tmp+1;
4900 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4901 return std::max(Tmp, Tmp2);
4903 if (VT.isScalableVector())
4904 break;
4905 SDValue Src = Op.getOperand(0);
4906 EVT SrcVT = Src.getValueType();
4907 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4908 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4909 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4910 }
4911 case ISD::SRA:
4912 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4913 // SRA X, C -> adds C sign bits.
4914 if (std::optional<unsigned> ShAmt =
4915 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4916 Tmp = std::min(Tmp + *ShAmt, VTBits);
4917 return Tmp;
4918 case ISD::SHL:
4919 if (std::optional<ConstantRange> ShAmtRange =
4920 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4921 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4922 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4923 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4924 // shifted out, then we can compute the number of sign bits for the
4925 // operand being extended. A future improvement could be to pass along the
4926 // "shifted left by" information in the recursive calls to
4927 // ComputeKnownSignBits. Allowing us to handle this more generically.
4928 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4929 SDValue Ext = Op.getOperand(0);
4930 EVT ExtVT = Ext.getValueType();
4931 SDValue Extendee = Ext.getOperand(0);
4932 EVT ExtendeeVT = Extendee.getValueType();
4933 unsigned SizeDifference =
4934 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4935 if (SizeDifference <= MinShAmt) {
4936 Tmp = SizeDifference +
4937 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4938 if (MaxShAmt < Tmp)
4939 return Tmp - MaxShAmt;
4940 }
4941 }
4942 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4943 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4944 if (MaxShAmt < Tmp)
4945 return Tmp - MaxShAmt;
4946 }
4947 break;
4948 case ISD::AND:
4949 case ISD::OR:
4950 case ISD::XOR: // NOT is handled here.
4951 // Logical binary ops preserve the number of sign bits at the worst.
4952 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4953 if (Tmp != 1) {
4954 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4955 FirstAnswer = std::min(Tmp, Tmp2);
4956 // We computed what we know about the sign bits as our first
4957 // answer. Now proceed to the generic code that uses
4958 // computeKnownBits, and pick whichever answer is better.
4959 }
4960 break;
4961
4962 case ISD::SELECT:
4963 case ISD::VSELECT:
4964 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4965 if (Tmp == 1) return 1; // Early out.
4966 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4967 return std::min(Tmp, Tmp2);
4968 case ISD::SELECT_CC:
4969 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4970 if (Tmp == 1) return 1; // Early out.
4971 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4972 return std::min(Tmp, Tmp2);
4973
4974 case ISD::SMIN:
4975 case ISD::SMAX: {
4976 // If we have a clamp pattern, we know that the number of sign bits will be
4977 // the minimum of the clamp min/max range.
4978 bool IsMax = (Opcode == ISD::SMAX);
4979 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4980 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4981 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4982 CstHigh =
4983 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4984 if (CstLow && CstHigh) {
4985 if (!IsMax)
4986 std::swap(CstLow, CstHigh);
4987 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4988 Tmp = CstLow->getAPIntValue().getNumSignBits();
4989 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4990 return std::min(Tmp, Tmp2);
4991 }
4992 }
4993
4994 // Fallback - just get the minimum number of sign bits of the operands.
4995 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4996 if (Tmp == 1)
4997 return 1; // Early out.
4998 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4999 return std::min(Tmp, Tmp2);
5000 }
5001 case ISD::UMIN:
5002 case ISD::UMAX:
5003 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5004 if (Tmp == 1)
5005 return 1; // Early out.
5006 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5007 return std::min(Tmp, Tmp2);
5008 case ISD::SSUBO_CARRY:
5009 case ISD::USUBO_CARRY:
5010 // sub_carry(x,x,c) -> 0/-1 (sext carry)
5011 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
5012 return VTBits;
5013 [[fallthrough]];
5014 case ISD::SADDO:
5015 case ISD::UADDO:
5016 case ISD::SADDO_CARRY:
5017 case ISD::UADDO_CARRY:
5018 case ISD::SSUBO:
5019 case ISD::USUBO:
5020 case ISD::SMULO:
5021 case ISD::UMULO:
5022 if (Op.getResNo() != 1)
5023 break;
5024 // The boolean result conforms to getBooleanContents. Fall through.
5025 // If setcc returns 0/-1, all bits are sign bits.
5026 // We know that we have an integer-based boolean since these operations
5027 // are only available for integer.
5028 if (TLI->getBooleanContents(VT.isVector(), false) ==
5030 return VTBits;
5031 break;
5032 case ISD::SETCC:
5033 case ISD::SETCCCARRY:
5034 case ISD::STRICT_FSETCC:
5035 case ISD::STRICT_FSETCCS: {
5036 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5037 // If setcc returns 0/-1, all bits are sign bits.
5038 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5040 return VTBits;
5041 break;
5042 }
5043 case ISD::ROTL:
5044 case ISD::ROTR:
5045 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5046
5047 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5048 if (Tmp == VTBits)
5049 return VTBits;
5050
5051 if (ConstantSDNode *C =
5052 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5053 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5054
5055 // Handle rotate right by N like a rotate left by 32-N.
5056 if (Opcode == ISD::ROTR)
5057 RotAmt = (VTBits - RotAmt) % VTBits;
5058
5059 // If we aren't rotating out all of the known-in sign bits, return the
5060 // number that are left. This handles rotl(sext(x), 1) for example.
5061 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5062 }
5063 break;
5064 case ISD::ADD:
5065 case ISD::ADDC:
5066 // TODO: Move Operand 1 check before Operand 0 check
5067 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5068 if (Tmp == 1) return 1; // Early out.
5069
5070 // Special case decrementing a value (ADD X, -1):
5071 if (ConstantSDNode *CRHS =
5072 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5073 if (CRHS->isAllOnes()) {
5074 KnownBits Known =
5075 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5076
5077 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5078 // sign bits set.
5079 if ((Known.Zero | 1).isAllOnes())
5080 return VTBits;
5081
5082 // If we are subtracting one from a positive number, there is no carry
5083 // out of the result.
5084 if (Known.isNonNegative())
5085 return Tmp;
5086 }
5087
5088 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5089 if (Tmp2 == 1) return 1; // Early out.
5090
5091 // Add can have at most one carry bit. Thus we know that the output
5092 // is, at worst, one more bit than the inputs.
5093 return std::min(Tmp, Tmp2) - 1;
5094 case ISD::SUB:
5095 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5096 if (Tmp2 == 1) return 1; // Early out.
5097
5098 // Handle NEG.
5099 if (ConstantSDNode *CLHS =
5100 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5101 if (CLHS->isZero()) {
5102 KnownBits Known =
5103 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5104 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5105 // sign bits set.
5106 if ((Known.Zero | 1).isAllOnes())
5107 return VTBits;
5108
5109 // If the input is known to be positive (the sign bit is known clear),
5110 // the output of the NEG has the same number of sign bits as the input.
5111 if (Known.isNonNegative())
5112 return Tmp2;
5113
5114 // Otherwise, we treat this like a SUB.
5115 }
5116
5117 // Sub can have at most one carry bit. Thus we know that the output
5118 // is, at worst, one more bit than the inputs.
5119 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5120 if (Tmp == 1) return 1; // Early out.
5121 return std::min(Tmp, Tmp2) - 1;
5122 case ISD::MUL: {
5123 // The output of the Mul can be at most twice the valid bits in the inputs.
5124 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5125 if (SignBitsOp0 == 1)
5126 break;
5127 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5128 if (SignBitsOp1 == 1)
5129 break;
5130 unsigned OutValidBits =
5131 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5132 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5133 }
5134 case ISD::AVGCEILS:
5135 case ISD::AVGFLOORS:
5136 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5137 if (Tmp == 1)
5138 return 1; // Early out.
5139 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5140 return std::min(Tmp, Tmp2);
5141 case ISD::SREM:
5142 // The sign bit is the LHS's sign bit, except when the result of the
5143 // remainder is zero. The magnitude of the result should be less than or
5144 // equal to the magnitude of the LHS. Therefore, the result should have
5145 // at least as many sign bits as the left hand side.
5146 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5147 case ISD::TRUNCATE: {
5148 // Check if the sign bits of source go down as far as the truncated value.
5149 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5150 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5151 if (NumSrcSignBits > (NumSrcBits - VTBits))
5152 return NumSrcSignBits - (NumSrcBits - VTBits);
5153 break;
5154 }
5155 case ISD::EXTRACT_ELEMENT: {
5156 if (VT.isScalableVector())
5157 break;
5158 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5159 const int BitWidth = Op.getValueSizeInBits();
5160 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5161
5162 // Get reverse index (starting from 1), Op1 value indexes elements from
5163 // little end. Sign starts at big end.
5164 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5165
5166 // If the sign portion ends in our element the subtraction gives correct
5167 // result. Otherwise it gives either negative or > bitwidth result
5168 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5169 }
5171 if (VT.isScalableVector())
5172 break;
5173 // If we know the element index, split the demand between the
5174 // source vector and the inserted element, otherwise assume we need
5175 // the original demanded vector elements and the value.
5176 SDValue InVec = Op.getOperand(0);
5177 SDValue InVal = Op.getOperand(1);
5178 SDValue EltNo = Op.getOperand(2);
5179 bool DemandedVal = true;
5180 APInt DemandedVecElts = DemandedElts;
5181 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5182 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5183 unsigned EltIdx = CEltNo->getZExtValue();
5184 DemandedVal = !!DemandedElts[EltIdx];
5185 DemandedVecElts.clearBit(EltIdx);
5186 }
5187 Tmp = std::numeric_limits<unsigned>::max();
5188 if (DemandedVal) {
5189 // TODO - handle implicit truncation of inserted elements.
5190 if (InVal.getScalarValueSizeInBits() != VTBits)
5191 break;
5192 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5193 Tmp = std::min(Tmp, Tmp2);
5194 }
5195 if (!!DemandedVecElts) {
5196 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5197 Tmp = std::min(Tmp, Tmp2);
5198 }
5199 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5200 return Tmp;
5201 }
5203 assert(!VT.isScalableVector());
5204 SDValue InVec = Op.getOperand(0);
5205 SDValue EltNo = Op.getOperand(1);
5206 EVT VecVT = InVec.getValueType();
5207 // ComputeNumSignBits not yet implemented for scalable vectors.
5208 if (VecVT.isScalableVector())
5209 break;
5210 const unsigned BitWidth = Op.getValueSizeInBits();
5211 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5212 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5213
5214 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5215 // anything about sign bits. But if the sizes match we can derive knowledge
5216 // about sign bits from the vector operand.
5217 if (BitWidth != EltBitWidth)
5218 break;
5219
5220 // If we know the element index, just demand that vector element, else for
5221 // an unknown element index, ignore DemandedElts and demand them all.
5222 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5223 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5224 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5225 DemandedSrcElts =
5226 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5227
5228 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5229 }
5231 // Offset the demanded elts by the subvector index.
5232 SDValue Src = Op.getOperand(0);
5233 // Bail until we can represent demanded elements for scalable vectors.
5234 if (Src.getValueType().isScalableVector())
5235 break;
5236 uint64_t Idx = Op.getConstantOperandVal(1);
5237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5238 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5239 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5240 }
5241 case ISD::CONCAT_VECTORS: {
5242 if (VT.isScalableVector())
5243 break;
5244 // Determine the minimum number of sign bits across all demanded
5245 // elts of the input vectors. Early out if the result is already 1.
5246 Tmp = std::numeric_limits<unsigned>::max();
5247 EVT SubVectorVT = Op.getOperand(0).getValueType();
5248 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5249 unsigned NumSubVectors = Op.getNumOperands();
5250 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5251 APInt DemandedSub =
5252 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5253 if (!DemandedSub)
5254 continue;
5255 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5256 Tmp = std::min(Tmp, Tmp2);
5257 }
5258 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5259 return Tmp;
5260 }
5261 case ISD::INSERT_SUBVECTOR: {
5262 if (VT.isScalableVector())
5263 break;
5264 // Demand any elements from the subvector and the remainder from the src its
5265 // inserted into.
5266 SDValue Src = Op.getOperand(0);
5267 SDValue Sub = Op.getOperand(1);
5268 uint64_t Idx = Op.getConstantOperandVal(2);
5269 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5270 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5271 APInt DemandedSrcElts = DemandedElts;
5272 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5273
5274 Tmp = std::numeric_limits<unsigned>::max();
5275 if (!!DemandedSubElts) {
5276 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5277 if (Tmp == 1)
5278 return 1; // early-out
5279 }
5280 if (!!DemandedSrcElts) {
5281 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5282 Tmp = std::min(Tmp, Tmp2);
5283 }
5284 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5285 return Tmp;
5286 }
5287 case ISD::LOAD: {
5289 if (const MDNode *Ranges = LD->getRanges()) {
5290 if (DemandedElts != 1)
5291 break;
5292
5294 if (VTBits > CR.getBitWidth()) {
5295 switch (LD->getExtensionType()) {
5296 case ISD::SEXTLOAD:
5297 CR = CR.signExtend(VTBits);
5298 break;
5299 case ISD::ZEXTLOAD:
5300 CR = CR.zeroExtend(VTBits);
5301 break;
5302 default:
5303 break;
5304 }
5305 }
5306
5307 if (VTBits != CR.getBitWidth())
5308 break;
5309 return std::min(CR.getSignedMin().getNumSignBits(),
5311 }
5312
5313 break;
5314 }
5315 case ISD::ATOMIC_CMP_SWAP:
5316 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5317 case ISD::ATOMIC_SWAP:
5318 case ISD::ATOMIC_LOAD_ADD:
5319 case ISD::ATOMIC_LOAD_SUB:
5320 case ISD::ATOMIC_LOAD_AND:
5321 case ISD::ATOMIC_LOAD_CLR:
5322 case ISD::ATOMIC_LOAD_OR:
5323 case ISD::ATOMIC_LOAD_XOR:
5324 case ISD::ATOMIC_LOAD_NAND:
5325 case ISD::ATOMIC_LOAD_MIN:
5326 case ISD::ATOMIC_LOAD_MAX:
5327 case ISD::ATOMIC_LOAD_UMIN:
5328 case ISD::ATOMIC_LOAD_UMAX:
5329 case ISD::ATOMIC_LOAD: {
5330 auto *AT = cast<AtomicSDNode>(Op);
5331 // If we are looking at the loaded value.
5332 if (Op.getResNo() == 0) {
5333 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5334 if (Tmp == VTBits)
5335 return 1; // early-out
5336
5337 // For atomic_load, prefer to use the extension type.
5338 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5339 switch (AT->getExtensionType()) {
5340 default:
5341 break;
5342 case ISD::SEXTLOAD:
5343 return VTBits - Tmp + 1;
5344 case ISD::ZEXTLOAD:
5345 return VTBits - Tmp;
5346 }
5347 }
5348
5349 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5350 return VTBits - Tmp + 1;
5351 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5352 return VTBits - Tmp;
5353 }
5354 break;
5355 }
5356 }
5357
5358 // If we are looking at the loaded value of the SDNode.
5359 if (Op.getResNo() == 0) {
5360 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5361 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5362 unsigned ExtType = LD->getExtensionType();
5363 switch (ExtType) {
5364 default: break;
5365 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5366 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5367 return VTBits - Tmp + 1;
5368 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5369 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5370 return VTBits - Tmp;
5371 case ISD::NON_EXTLOAD:
5372 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5373 // We only need to handle vectors - computeKnownBits should handle
5374 // scalar cases.
5375 Type *CstTy = Cst->getType();
5376 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5377 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5378 VTBits == CstTy->getScalarSizeInBits()) {
5379 Tmp = VTBits;
5380 for (unsigned i = 0; i != NumElts; ++i) {
5381 if (!DemandedElts[i])
5382 continue;
5383 if (Constant *Elt = Cst->getAggregateElement(i)) {
5384 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5385 const APInt &Value = CInt->getValue();
5386 Tmp = std::min(Tmp, Value.getNumSignBits());
5387 continue;
5388 }
5389 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5390 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5391 Tmp = std::min(Tmp, Value.getNumSignBits());
5392 continue;
5393 }
5394 }
5395 // Unknown type. Conservatively assume no bits match sign bit.
5396 return 1;
5397 }
5398 return Tmp;
5399 }
5400 }
5401 break;
5402 }
5403 }
5404 }
5405
5406 // Allow the target to implement this method for its nodes.
5407 if (Opcode >= ISD::BUILTIN_OP_END ||
5408 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5409 Opcode == ISD::INTRINSIC_W_CHAIN ||
5410 Opcode == ISD::INTRINSIC_VOID) {
5411 // TODO: This can probably be removed once target code is audited. This
5412 // is here purely to reduce patch size and review complexity.
5413 if (!VT.isScalableVector()) {
5414 unsigned NumBits =
5415 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5416 if (NumBits > 1)
5417 FirstAnswer = std::max(FirstAnswer, NumBits);
5418 }
5419 }
5420
5421 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5422 // use this information.
5423 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5424 return std::max(FirstAnswer, Known.countMinSignBits());
5425}
5426
5428 unsigned Depth) const {
5429 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5430 return Op.getScalarValueSizeInBits() - SignBits + 1;
5431}
5432
5434 const APInt &DemandedElts,
5435 unsigned Depth) const {
5436 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5437 return Op.getScalarValueSizeInBits() - SignBits + 1;
5438}
5439
5441 unsigned Depth) const {
5442 // Early out for FREEZE.
5443 if (Op.getOpcode() == ISD::FREEZE)
5444 return true;
5445
5446 EVT VT = Op.getValueType();
5447 APInt DemandedElts = VT.isFixedLengthVector()
5449 : APInt(1, 1);
5450 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5451}
5452
5454 const APInt &DemandedElts,
5455 bool PoisonOnly,
5456 unsigned Depth) const {
5457 unsigned Opcode = Op.getOpcode();
5458
5459 // Early out for FREEZE.
5460 if (Opcode == ISD::FREEZE)
5461 return true;
5462
5463 if (Depth >= MaxRecursionDepth)
5464 return false; // Limit search depth.
5465
5466 if (isIntOrFPConstant(Op))
5467 return true;
5468
5469 switch (Opcode) {
5470 case ISD::CONDCODE:
5471 case ISD::VALUETYPE:
5472 case ISD::FrameIndex:
5474 case ISD::CopyFromReg:
5475 return true;
5476
5477 case ISD::POISON:
5478 return false;
5479
5480 case ISD::UNDEF:
5481 return PoisonOnly;
5482
5483 case ISD::BUILD_VECTOR:
5484 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5485 // this shouldn't affect the result.
5486 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5487 if (!DemandedElts[i])
5488 continue;
5490 Depth + 1))
5491 return false;
5492 }
5493 return true;
5494
5496 SDValue Src = Op.getOperand(0);
5497 if (Src.getValueType().isScalableVector())
5498 break;
5499 uint64_t Idx = Op.getConstantOperandVal(1);
5500 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5501 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5502 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5503 Depth + 1);
5504 }
5505
5506 case ISD::INSERT_SUBVECTOR: {
5507 if (Op.getValueType().isScalableVector())
5508 break;
5509 SDValue Src = Op.getOperand(0);
5510 SDValue Sub = Op.getOperand(1);
5511 uint64_t Idx = Op.getConstantOperandVal(2);
5512 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5513 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5514 APInt DemandedSrcElts = DemandedElts;
5515 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5516
5517 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5518 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5519 return false;
5520 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5521 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5522 return false;
5523 return true;
5524 }
5525
5527 SDValue Src = Op.getOperand(0);
5528 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5529 EVT SrcVT = Src.getValueType();
5530 if (SrcVT.isFixedLengthVector() && IndexC &&
5531 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5532 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5533 IndexC->getZExtValue());
5534 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5535 Depth + 1);
5536 }
5537 break;
5538 }
5539
5541 SDValue InVec = Op.getOperand(0);
5542 SDValue InVal = Op.getOperand(1);
5543 SDValue EltNo = Op.getOperand(2);
5544 EVT VT = InVec.getValueType();
5545 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5546 if (IndexC && VT.isFixedLengthVector() &&
5547 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5548 if (DemandedElts[IndexC->getZExtValue()] &&
5550 return false;
5551 APInt InVecDemandedElts = DemandedElts;
5552 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5553 if (!!InVecDemandedElts &&
5555 peekThroughInsertVectorElt(InVec, InVecDemandedElts),
5556 InVecDemandedElts, PoisonOnly, Depth + 1))
5557 return false;
5558 return true;
5559 }
5560 break;
5561 }
5562
5564 // Check upper (known undef) elements.
5565 if (DemandedElts.ugt(1) && !PoisonOnly)
5566 return false;
5567 // Check element zero.
5568 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5569 Op.getOperand(0), PoisonOnly, Depth + 1))
5570 return false;
5571 return true;
5572
5573 case ISD::SPLAT_VECTOR:
5574 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5575 Depth + 1);
5576
5577 case ISD::VECTOR_SHUFFLE: {
5578 APInt DemandedLHS, DemandedRHS;
5579 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5580 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5581 DemandedElts, DemandedLHS, DemandedRHS,
5582 /*AllowUndefElts=*/false))
5583 return false;
5584 if (!DemandedLHS.isZero() &&
5585 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5586 PoisonOnly, Depth + 1))
5587 return false;
5588 if (!DemandedRHS.isZero() &&
5589 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5590 PoisonOnly, Depth + 1))
5591 return false;
5592 return true;
5593 }
5594
5595 case ISD::SHL:
5596 case ISD::SRL:
5597 case ISD::SRA:
5598 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5599 // enough to check operand 0 if Op can't create undef/poison.
5600 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5601 /*ConsiderFlags*/ true, Depth) &&
5602 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5603 PoisonOnly, Depth + 1);
5604
5605 case ISD::BSWAP:
5606 case ISD::CTPOP:
5607 case ISD::BITREVERSE:
5608 case ISD::AND:
5609 case ISD::OR:
5610 case ISD::XOR:
5611 case ISD::ADD:
5612 case ISD::SUB:
5613 case ISD::MUL:
5614 case ISD::SADDSAT:
5615 case ISD::UADDSAT:
5616 case ISD::SSUBSAT:
5617 case ISD::USUBSAT:
5618 case ISD::SSHLSAT:
5619 case ISD::USHLSAT:
5620 case ISD::SMIN:
5621 case ISD::SMAX:
5622 case ISD::UMIN:
5623 case ISD::UMAX:
5624 case ISD::ZERO_EXTEND:
5625 case ISD::SIGN_EXTEND:
5626 case ISD::ANY_EXTEND:
5627 case ISD::TRUNCATE:
5628 case ISD::VSELECT: {
5629 // If Op can't create undef/poison and none of its operands are undef/poison
5630 // then Op is never undef/poison. A difference from the more common check
5631 // below, outside the switch, is that we handle elementwise operations for
5632 // which the DemandedElts mask is valid for all operands here.
5633 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5634 /*ConsiderFlags*/ true, Depth) &&
5635 all_of(Op->ops(), [&](SDValue V) {
5636 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5637 PoisonOnly, Depth + 1);
5638 });
5639 }
5640
5641 // TODO: Search for noundef attributes from library functions.
5642
5643 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5644
5645 default:
5646 // Allow the target to implement this method for its nodes.
5647 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5648 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5649 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5650 Op, DemandedElts, *this, PoisonOnly, Depth);
5651 break;
5652 }
5653
5654 // If Op can't create undef/poison and none of its operands are undef/poison
5655 // then Op is never undef/poison.
5656 // NOTE: TargetNodes can handle this in themselves in
5657 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5658 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5659 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5660 Depth) &&
5661 all_of(Op->ops(), [&](SDValue V) {
5662 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5663 });
5664}
5665
5667 bool ConsiderFlags,
5668 unsigned Depth) const {
5669 EVT VT = Op.getValueType();
5670 APInt DemandedElts = VT.isFixedLengthVector()
5672 : APInt(1, 1);
5673 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5674 Depth);
5675}
5676
5678 bool PoisonOnly, bool ConsiderFlags,
5679 unsigned Depth) const {
5680 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5681 return true;
5682
5683 unsigned Opcode = Op.getOpcode();
5684 switch (Opcode) {
5685 case ISD::AssertSext:
5686 case ISD::AssertZext:
5687 case ISD::AssertAlign:
5689 // Assertion nodes can create poison if the assertion fails.
5690 return true;
5691
5692 case ISD::FREEZE:
5696 case ISD::SADDSAT:
5697 case ISD::UADDSAT:
5698 case ISD::SSUBSAT:
5699 case ISD::USUBSAT:
5700 case ISD::MULHU:
5701 case ISD::MULHS:
5702 case ISD::AVGFLOORS:
5703 case ISD::AVGFLOORU:
5704 case ISD::AVGCEILS:
5705 case ISD::AVGCEILU:
5706 case ISD::ABDU:
5707 case ISD::ABDS:
5708 case ISD::SMIN:
5709 case ISD::SMAX:
5710 case ISD::SCMP:
5711 case ISD::UMIN:
5712 case ISD::UMAX:
5713 case ISD::UCMP:
5714 case ISD::AND:
5715 case ISD::XOR:
5716 case ISD::ROTL:
5717 case ISD::ROTR:
5718 case ISD::FSHL:
5719 case ISD::FSHR:
5720 case ISD::BSWAP:
5721 case ISD::CTTZ:
5722 case ISD::CTLZ:
5723 case ISD::CTPOP:
5724 case ISD::BITREVERSE:
5725 case ISD::PARITY:
5726 case ISD::SIGN_EXTEND:
5727 case ISD::TRUNCATE:
5731 case ISD::BITCAST:
5732 case ISD::BUILD_VECTOR:
5733 case ISD::BUILD_PAIR:
5734 case ISD::SPLAT_VECTOR:
5735 case ISD::FABS:
5736 return false;
5737
5738 case ISD::ABS:
5739 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5740 // Different to Intrinsic::abs.
5741 return false;
5742
5743 case ISD::ADDC:
5744 case ISD::SUBC:
5745 case ISD::ADDE:
5746 case ISD::SUBE:
5747 case ISD::SADDO:
5748 case ISD::SSUBO:
5749 case ISD::SMULO:
5750 case ISD::SADDO_CARRY:
5751 case ISD::SSUBO_CARRY:
5752 case ISD::UADDO:
5753 case ISD::USUBO:
5754 case ISD::UMULO:
5755 case ISD::UADDO_CARRY:
5756 case ISD::USUBO_CARRY:
5757 // No poison on result or overflow flags.
5758 return false;
5759
5760 case ISD::SELECT_CC:
5761 case ISD::SETCC: {
5762 // Integer setcc cannot create undef or poison.
5763 if (Op.getOperand(0).getValueType().isInteger())
5764 return false;
5765
5766 // FP compares are more complicated. They can create poison for nan/infinity
5767 // based on options and flags. The options and flags also cause special
5768 // nonan condition codes to be used. Those condition codes may be preserved
5769 // even if the nonan flag is dropped somewhere.
5770 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5771 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5772 return (unsigned)CCCode & 0x10U;
5773 }
5774
5775 case ISD::OR:
5776 case ISD::ZERO_EXTEND:
5777 case ISD::SELECT:
5778 case ISD::VSELECT:
5779 case ISD::ADD:
5780 case ISD::SUB:
5781 case ISD::MUL:
5782 case ISD::FNEG:
5783 case ISD::FADD:
5784 case ISD::FSUB:
5785 case ISD::FMUL:
5786 case ISD::FDIV:
5787 case ISD::FREM:
5788 case ISD::FCOPYSIGN:
5789 case ISD::FMA:
5790 case ISD::FMAD:
5791 case ISD::FMULADD:
5792 case ISD::FP_EXTEND:
5795 // No poison except from flags (which is handled above)
5796 return false;
5797
5798 case ISD::SHL:
5799 case ISD::SRL:
5800 case ISD::SRA:
5801 // If the max shift amount isn't in range, then the shift can
5802 // create poison.
5803 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5804
5807 // If the amount is zero then the result will be poison.
5808 // TODO: Add isKnownNeverZero DemandedElts handling.
5809 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5810
5812 // Check if we demand any upper (undef) elements.
5813 return !PoisonOnly && DemandedElts.ugt(1);
5814
5817 // Ensure that the element index is in bounds.
5818 EVT VecVT = Op.getOperand(0).getValueType();
5819 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5820 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5821 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5822 }
5823
5824 case ISD::VECTOR_SHUFFLE: {
5825 // Check for any demanded shuffle element that is undef.
5826 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5827 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5828 if (Elt < 0 && DemandedElts[Idx])
5829 return true;
5830 return false;
5831 }
5832
5833 default:
5834 // Allow the target to implement this method for its nodes.
5835 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5836 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5837 return TLI->canCreateUndefOrPoisonForTargetNode(
5838 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5839 break;
5840 }
5841
5842 // Be conservative and return true.
5843 return true;
5844}
5845
5846bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5847 unsigned Opcode = Op.getOpcode();
5848 if (Opcode == ISD::OR)
5849 return Op->getFlags().hasDisjoint() ||
5850 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5851 if (Opcode == ISD::XOR)
5852 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5853 return false;
5854}
5855
5857 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5858 (Op.isAnyAdd() || isADDLike(Op));
5859}
5860
5862 unsigned Depth) const {
5863 EVT VT = Op.getValueType();
5864
5865 // Since the number of lanes in a scalable vector is unknown at compile time,
5866 // we track one bit which is implicitly broadcast to all lanes. This means
5867 // that all lanes in a scalable vector are considered demanded.
5868 APInt DemandedElts = VT.isFixedLengthVector()
5870 : APInt(1, 1);
5871
5872 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5873}
5874
5876 bool SNaN, unsigned Depth) const {
5877 assert(!DemandedElts.isZero() && "No demanded elements");
5878
5879 // If we're told that NaNs won't happen, assume they won't.
5880 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5881 return true;
5882
5883 if (Depth >= MaxRecursionDepth)
5884 return false; // Limit search depth.
5885
5886 // If the value is a constant, we can obviously see if it is a NaN or not.
5888 return !C->getValueAPF().isNaN() ||
5889 (SNaN && !C->getValueAPF().isSignaling());
5890 }
5891
5892 unsigned Opcode = Op.getOpcode();
5893 switch (Opcode) {
5894 case ISD::FADD:
5895 case ISD::FSUB:
5896 case ISD::FMUL:
5897 case ISD::FDIV:
5898 case ISD::FREM:
5899 case ISD::FSIN:
5900 case ISD::FCOS:
5901 case ISD::FTAN:
5902 case ISD::FASIN:
5903 case ISD::FACOS:
5904 case ISD::FATAN:
5905 case ISD::FATAN2:
5906 case ISD::FSINH:
5907 case ISD::FCOSH:
5908 case ISD::FTANH:
5909 case ISD::FMA:
5910 case ISD::FMULADD:
5911 case ISD::FMAD: {
5912 if (SNaN)
5913 return true;
5914 // TODO: Need isKnownNeverInfinity
5915 return false;
5916 }
5917 case ISD::FCANONICALIZE:
5918 case ISD::FEXP:
5919 case ISD::FEXP2:
5920 case ISD::FEXP10:
5921 case ISD::FTRUNC:
5922 case ISD::FFLOOR:
5923 case ISD::FCEIL:
5924 case ISD::FROUND:
5925 case ISD::FROUNDEVEN:
5926 case ISD::LROUND:
5927 case ISD::LLROUND:
5928 case ISD::FRINT:
5929 case ISD::LRINT:
5930 case ISD::LLRINT:
5931 case ISD::FNEARBYINT:
5932 case ISD::FLDEXP: {
5933 if (SNaN)
5934 return true;
5935 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5936 }
5937 case ISD::FABS:
5938 case ISD::FNEG:
5939 case ISD::FCOPYSIGN: {
5940 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5941 }
5942 case ISD::SELECT:
5943 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5944 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5945 case ISD::FP_EXTEND:
5946 case ISD::FP_ROUND: {
5947 if (SNaN)
5948 return true;
5949 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5950 }
5951 case ISD::SINT_TO_FP:
5952 case ISD::UINT_TO_FP:
5953 return true;
5954 case ISD::FSQRT: // Need is known positive
5955 case ISD::FLOG:
5956 case ISD::FLOG2:
5957 case ISD::FLOG10:
5958 case ISD::FPOWI:
5959 case ISD::FPOW: {
5960 if (SNaN)
5961 return true;
5962 // TODO: Refine on operand
5963 return false;
5964 }
5965 case ISD::FMINNUM:
5966 case ISD::FMAXNUM:
5967 case ISD::FMINIMUMNUM:
5968 case ISD::FMAXIMUMNUM: {
5969 // Only one needs to be known not-nan, since it will be returned if the
5970 // other ends up being one.
5971 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5972 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5973 }
5974 case ISD::FMINNUM_IEEE:
5975 case ISD::FMAXNUM_IEEE: {
5976 if (SNaN)
5977 return true;
5978 // This can return a NaN if either operand is an sNaN, or if both operands
5979 // are NaN.
5980 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5981 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5982 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5983 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5984 }
5985 case ISD::FMINIMUM:
5986 case ISD::FMAXIMUM: {
5987 // TODO: Does this quiet or return the origina NaN as-is?
5988 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5989 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5990 }
5992 SDValue Src = Op.getOperand(0);
5993 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5994 EVT SrcVT = Src.getValueType();
5995 if (SrcVT.isFixedLengthVector() && Idx &&
5996 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5997 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5998 Idx->getZExtValue());
5999 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
6000 }
6001 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6002 }
6004 SDValue Src = Op.getOperand(0);
6005 if (Src.getValueType().isFixedLengthVector()) {
6006 unsigned Idx = Op.getConstantOperandVal(1);
6007 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6008 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
6009 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
6010 }
6011 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6012 }
6013 case ISD::INSERT_SUBVECTOR: {
6014 SDValue BaseVector = Op.getOperand(0);
6015 SDValue SubVector = Op.getOperand(1);
6016 EVT BaseVectorVT = BaseVector.getValueType();
6017 if (BaseVectorVT.isFixedLengthVector()) {
6018 unsigned Idx = Op.getConstantOperandVal(2);
6019 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
6020 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
6021
6022 // Clear/Extract the bits at the position where the subvector will be
6023 // inserted.
6024 APInt DemandedMask =
6025 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6026 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6027 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6028
6029 bool NeverNaN = true;
6030 if (!DemandedSrcElts.isZero())
6031 NeverNaN &=
6032 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6033 if (NeverNaN && !DemandedSubElts.isZero())
6034 NeverNaN &=
6035 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6036 return NeverNaN;
6037 }
6038 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6039 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6040 }
6041 case ISD::BUILD_VECTOR: {
6042 unsigned NumElts = Op.getNumOperands();
6043 for (unsigned I = 0; I != NumElts; ++I)
6044 if (DemandedElts[I] &&
6045 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6046 return false;
6047 return true;
6048 }
6049 case ISD::AssertNoFPClass: {
6050 FPClassTest NoFPClass =
6051 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6052 if ((NoFPClass & fcNan) == fcNan)
6053 return true;
6054 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6055 return true;
6056 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6057 }
6058 default:
6059 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6060 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6061 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6062 Depth);
6063 }
6064
6065 return false;
6066 }
6067}
6068
6070 assert(Op.getValueType().isFloatingPoint() &&
6071 "Floating point type expected");
6072
6073 // If the value is a constant, we can obviously see if it is a zero or not.
6075 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6076}
6077
6079 if (Depth >= MaxRecursionDepth)
6080 return false; // Limit search depth.
6081
6082 assert(!Op.getValueType().isFloatingPoint() &&
6083 "Floating point types unsupported - use isKnownNeverZeroFloat");
6084
6085 // If the value is a constant, we can obviously see if it is a zero or not.
6087 [](ConstantSDNode *C) { return !C->isZero(); }))
6088 return true;
6089
6090 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6091 // some degree.
6092 switch (Op.getOpcode()) {
6093 default:
6094 break;
6095
6096 case ISD::OR:
6097 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6098 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6099
6100 case ISD::VSELECT:
6101 case ISD::SELECT:
6102 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6103 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6104
6105 case ISD::SHL: {
6106 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6107 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6108 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6109 // 1 << X is never zero.
6110 if (ValKnown.One[0])
6111 return true;
6112 // If max shift cnt of known ones is non-zero, result is non-zero.
6113 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6114 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6115 !ValKnown.One.shl(MaxCnt).isZero())
6116 return true;
6117 break;
6118 }
6119 case ISD::UADDSAT:
6120 case ISD::UMAX:
6121 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6122 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6123
6124 // For smin/smax: If either operand is known negative/positive
6125 // respectively we don't need the other to be known at all.
6126 case ISD::SMAX: {
6127 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6128 if (Op1.isStrictlyPositive())
6129 return true;
6130
6131 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6132 if (Op0.isStrictlyPositive())
6133 return true;
6134
6135 if (Op1.isNonZero() && Op0.isNonZero())
6136 return true;
6137
6138 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6139 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6140 }
6141 case ISD::SMIN: {
6142 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6143 if (Op1.isNegative())
6144 return true;
6145
6146 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6147 if (Op0.isNegative())
6148 return true;
6149
6150 if (Op1.isNonZero() && Op0.isNonZero())
6151 return true;
6152
6153 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6154 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6155 }
6156 case ISD::UMIN:
6157 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6158 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6159
6160 case ISD::ROTL:
6161 case ISD::ROTR:
6162 case ISD::BITREVERSE:
6163 case ISD::BSWAP:
6164 case ISD::CTPOP:
6165 case ISD::ABS:
6166 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6167
6168 case ISD::SRA:
6169 case ISD::SRL: {
6170 if (Op->getFlags().hasExact())
6171 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6172 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6173 if (ValKnown.isNegative())
6174 return true;
6175 // If max shift cnt of known ones is non-zero, result is non-zero.
6176 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6177 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6178 !ValKnown.One.lshr(MaxCnt).isZero())
6179 return true;
6180 break;
6181 }
6182 case ISD::UDIV:
6183 case ISD::SDIV:
6184 // div exact can only produce a zero if the dividend is zero.
6185 // TODO: For udiv this is also true if Op1 u<= Op0
6186 if (Op->getFlags().hasExact())
6187 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6188 break;
6189
6190 case ISD::ADD:
6191 if (Op->getFlags().hasNoUnsignedWrap())
6192 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6193 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6194 return true;
6195 // TODO: There are a lot more cases we can prove for add.
6196 break;
6197
6198 case ISD::SUB: {
6199 if (isNullConstant(Op.getOperand(0)))
6200 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6201
6202 std::optional<bool> ne =
6203 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6204 computeKnownBits(Op.getOperand(1), Depth + 1));
6205 return ne && *ne;
6206 }
6207
6208 case ISD::MUL:
6209 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6210 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6211 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6212 return true;
6213 break;
6214
6215 case ISD::ZERO_EXTEND:
6216 case ISD::SIGN_EXTEND:
6217 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6218 case ISD::VSCALE: {
6220 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6221 ConstantRange CR =
6222 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6223 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6224 return true;
6225 break;
6226 }
6227 }
6228
6230}
6231
6233 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6234 return !C1->isNegative();
6235
6236 return Op.getOpcode() == ISD::FABS;
6237}
6238
6240 // Check the obvious case.
6241 if (A == B) return true;
6242
6243 // For negative and positive zero.
6246 if (CA->isZero() && CB->isZero()) return true;
6247
6248 // Otherwise they may not be equal.
6249 return false;
6250}
6251
6252// Only bits set in Mask must be negated, other bits may be arbitrary.
6254 if (isBitwiseNot(V, AllowUndefs))
6255 return V.getOperand(0);
6256
6257 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6258 // bits in the non-extended part.
6259 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6260 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6261 return SDValue();
6262 SDValue ExtArg = V.getOperand(0);
6263 if (ExtArg.getScalarValueSizeInBits() >=
6264 MaskC->getAPIntValue().getActiveBits() &&
6265 isBitwiseNot(ExtArg, AllowUndefs) &&
6266 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6267 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6268 return ExtArg.getOperand(0).getOperand(0);
6269 return SDValue();
6270}
6271
6273 // Match masked merge pattern (X & ~M) op (Y & M)
6274 // Including degenerate case (X & ~M) op M
6275 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6276 SDValue Other) {
6277 if (SDValue NotOperand =
6278 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6279 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6280 NotOperand->getOpcode() == ISD::TRUNCATE)
6281 NotOperand = NotOperand->getOperand(0);
6282
6283 if (Other == NotOperand)
6284 return true;
6285 if (Other->getOpcode() == ISD::AND)
6286 return NotOperand == Other->getOperand(0) ||
6287 NotOperand == Other->getOperand(1);
6288 }
6289 return false;
6290 };
6291
6292 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6293 A = A->getOperand(0);
6294
6295 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6296 B = B->getOperand(0);
6297
6298 if (A->getOpcode() == ISD::AND)
6299 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6300 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6301 return false;
6302}
6303
6304// FIXME: unify with llvm::haveNoCommonBitsSet.
6306 assert(A.getValueType() == B.getValueType() &&
6307 "Values must have the same type");
6310 return true;
6313}
6314
6315static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6316 SelectionDAG &DAG) {
6317 if (cast<ConstantSDNode>(Step)->isZero())
6318 return DAG.getConstant(0, DL, VT);
6319
6320 return SDValue();
6321}
6322
6325 SelectionDAG &DAG) {
6326 int NumOps = Ops.size();
6327 assert(NumOps != 0 && "Can't build an empty vector!");
6328 assert(!VT.isScalableVector() &&
6329 "BUILD_VECTOR cannot be used with scalable types");
6330 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6331 "Incorrect element count in BUILD_VECTOR!");
6332
6333 // BUILD_VECTOR of UNDEFs is UNDEF.
6334 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6335 return DAG.getUNDEF(VT);
6336
6337 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6338 SDValue IdentitySrc;
6339 bool IsIdentity = true;
6340 for (int i = 0; i != NumOps; ++i) {
6342 Ops[i].getOperand(0).getValueType() != VT ||
6343 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6344 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6345 Ops[i].getConstantOperandAPInt(1) != i) {
6346 IsIdentity = false;
6347 break;
6348 }
6349 IdentitySrc = Ops[i].getOperand(0);
6350 }
6351 if (IsIdentity)
6352 return IdentitySrc;
6353
6354 return SDValue();
6355}
6356
6357/// Try to simplify vector concatenation to an input value, undef, or build
6358/// vector.
6361 SelectionDAG &DAG) {
6362 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6364 [Ops](SDValue Op) {
6365 return Ops[0].getValueType() == Op.getValueType();
6366 }) &&
6367 "Concatenation of vectors with inconsistent value types!");
6368 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6369 VT.getVectorElementCount() &&
6370 "Incorrect element count in vector concatenation!");
6371
6372 if (Ops.size() == 1)
6373 return Ops[0];
6374
6375 // Concat of UNDEFs is UNDEF.
6376 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6377 return DAG.getUNDEF(VT);
6378
6379 // Scan the operands and look for extract operations from a single source
6380 // that correspond to insertion at the same location via this concatenation:
6381 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6382 SDValue IdentitySrc;
6383 bool IsIdentity = true;
6384 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6385 SDValue Op = Ops[i];
6386 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6387 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6388 Op.getOperand(0).getValueType() != VT ||
6389 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6390 Op.getConstantOperandVal(1) != IdentityIndex) {
6391 IsIdentity = false;
6392 break;
6393 }
6394 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6395 "Unexpected identity source vector for concat of extracts");
6396 IdentitySrc = Op.getOperand(0);
6397 }
6398 if (IsIdentity) {
6399 assert(IdentitySrc && "Failed to set source vector of extracts");
6400 return IdentitySrc;
6401 }
6402
6403 // The code below this point is only designed to work for fixed width
6404 // vectors, so we bail out for now.
6405 if (VT.isScalableVector())
6406 return SDValue();
6407
6408 // A CONCAT_VECTOR of scalar sources, such as UNDEF, BUILD_VECTOR and
6409 // single-element INSERT_VECTOR_ELT operands can be simplified to one big
6410 // BUILD_VECTOR.
6411 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6412 EVT SVT = VT.getScalarType();
6414 for (SDValue Op : Ops) {
6415 EVT OpVT = Op.getValueType();
6416 if (Op.isUndef())
6417 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6418 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6419 Elts.append(Op->op_begin(), Op->op_end());
6420 else if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
6421 OpVT.getVectorNumElements() == 1 &&
6422 isNullConstant(Op.getOperand(2)))
6423 Elts.push_back(Op.getOperand(1));
6424 else
6425 return SDValue();
6426 }
6427
6428 // BUILD_VECTOR requires all inputs to be of the same type, find the
6429 // maximum type and extend them all.
6430 for (SDValue Op : Elts)
6431 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6432
6433 if (SVT.bitsGT(VT.getScalarType())) {
6434 for (SDValue &Op : Elts) {
6435 if (Op.isUndef())
6436 Op = DAG.getUNDEF(SVT);
6437 else
6438 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6439 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6440 : DAG.getSExtOrTrunc(Op, DL, SVT);
6441 }
6442 }
6443
6444 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6445 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6446 return V;
6447}
6448
6449/// Gets or creates the specified node.
6450SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6451 SDVTList VTs = getVTList(VT);
6453 AddNodeIDNode(ID, Opcode, VTs, {});
6454 void *IP = nullptr;
6455 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6456 return SDValue(E, 0);
6457
6458 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6459 CSEMap.InsertNode(N, IP);
6460
6461 InsertNode(N);
6462 SDValue V = SDValue(N, 0);
6463 NewSDValueDbgMsg(V, "Creating new node: ", this);
6464 return V;
6465}
6466
6467SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6468 SDValue N1) {
6469 SDNodeFlags Flags;
6470 if (Inserter)
6471 Flags = Inserter->getFlags();
6472 return getNode(Opcode, DL, VT, N1, Flags);
6473}
6474
6475SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6476 SDValue N1, const SDNodeFlags Flags) {
6477 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6478
6479 // Constant fold unary operations with a vector integer or float operand.
6480 switch (Opcode) {
6481 default:
6482 // FIXME: Entirely reasonable to perform folding of other unary
6483 // operations here as the need arises.
6484 break;
6485 case ISD::FNEG:
6486 case ISD::FABS:
6487 case ISD::FCEIL:
6488 case ISD::FTRUNC:
6489 case ISD::FFLOOR:
6490 case ISD::FP_EXTEND:
6491 case ISD::FP_TO_SINT:
6492 case ISD::FP_TO_UINT:
6493 case ISD::FP_TO_FP16:
6494 case ISD::FP_TO_BF16:
6495 case ISD::TRUNCATE:
6496 case ISD::ANY_EXTEND:
6497 case ISD::ZERO_EXTEND:
6498 case ISD::SIGN_EXTEND:
6499 case ISD::UINT_TO_FP:
6500 case ISD::SINT_TO_FP:
6501 case ISD::FP16_TO_FP:
6502 case ISD::BF16_TO_FP:
6503 case ISD::BITCAST:
6504 case ISD::ABS:
6505 case ISD::BITREVERSE:
6506 case ISD::BSWAP:
6507 case ISD::CTLZ:
6509 case ISD::CTTZ:
6511 case ISD::CTPOP:
6512 case ISD::STEP_VECTOR: {
6513 SDValue Ops = {N1};
6514 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6515 return Fold;
6516 }
6517 }
6518
6519 unsigned OpOpcode = N1.getNode()->getOpcode();
6520 switch (Opcode) {
6521 case ISD::STEP_VECTOR:
6522 assert(VT.isScalableVector() &&
6523 "STEP_VECTOR can only be used with scalable types");
6524 assert(OpOpcode == ISD::TargetConstant &&
6525 VT.getVectorElementType() == N1.getValueType() &&
6526 "Unexpected step operand");
6527 break;
6528 case ISD::FREEZE:
6529 assert(VT == N1.getValueType() && "Unexpected VT!");
6530 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6531 return N1;
6532 break;
6533 case ISD::TokenFactor:
6534 case ISD::MERGE_VALUES:
6536 return N1; // Factor, merge or concat of one node? No need.
6537 case ISD::BUILD_VECTOR: {
6538 // Attempt to simplify BUILD_VECTOR.
6539 SDValue Ops[] = {N1};
6540 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6541 return V;
6542 break;
6543 }
6544 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6545 case ISD::FP_EXTEND:
6547 "Invalid FP cast!");
6548 if (N1.getValueType() == VT) return N1; // noop conversion.
6549 assert((!VT.isVector() || VT.getVectorElementCount() ==
6551 "Vector element count mismatch!");
6552 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6553 if (N1.isUndef())
6554 return getUNDEF(VT);
6555 break;
6556 case ISD::FP_TO_SINT:
6557 case ISD::FP_TO_UINT:
6558 if (N1.isUndef())
6559 return getUNDEF(VT);
6560 break;
6561 case ISD::SINT_TO_FP:
6562 case ISD::UINT_TO_FP:
6563 // [us]itofp(undef) = 0, because the result value is bounded.
6564 if (N1.isUndef())
6565 return getConstantFP(0.0, DL, VT);
6566 break;
6567 case ISD::SIGN_EXTEND:
6568 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6569 "Invalid SIGN_EXTEND!");
6570 assert(VT.isVector() == N1.getValueType().isVector() &&
6571 "SIGN_EXTEND result type type should be vector iff the operand "
6572 "type is vector!");
6573 if (N1.getValueType() == VT) return N1; // noop extension
6574 assert((!VT.isVector() || VT.getVectorElementCount() ==
6576 "Vector element count mismatch!");
6577 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6578 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6579 SDNodeFlags Flags;
6580 if (OpOpcode == ISD::ZERO_EXTEND)
6581 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6582 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6583 transferDbgValues(N1, NewVal);
6584 return NewVal;
6585 }
6586
6587 if (OpOpcode == ISD::POISON)
6588 return getPOISON(VT);
6589
6590 if (N1.isUndef())
6591 // sext(undef) = 0, because the top bits will all be the same.
6592 return getConstant(0, DL, VT);
6593
6594 // Skip unnecessary sext_inreg pattern:
6595 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6596 if (OpOpcode == ISD::TRUNCATE) {
6597 SDValue OpOp = N1.getOperand(0);
6598 if (OpOp.getValueType() == VT) {
6599 unsigned NumSignExtBits =
6601 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6602 transferDbgValues(N1, OpOp);
6603 return OpOp;
6604 }
6605 }
6606 }
6607 break;
6608 case ISD::ZERO_EXTEND:
6609 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6610 "Invalid ZERO_EXTEND!");
6611 assert(VT.isVector() == N1.getValueType().isVector() &&
6612 "ZERO_EXTEND result type type should be vector iff the operand "
6613 "type is vector!");
6614 if (N1.getValueType() == VT) return N1; // noop extension
6615 assert((!VT.isVector() || VT.getVectorElementCount() ==
6617 "Vector element count mismatch!");
6618 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6619 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6620 SDNodeFlags Flags;
6621 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6622 SDValue NewVal =
6623 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6624 transferDbgValues(N1, NewVal);
6625 return NewVal;
6626 }
6627
6628 if (OpOpcode == ISD::POISON)
6629 return getPOISON(VT);
6630
6631 if (N1.isUndef())
6632 // zext(undef) = 0, because the top bits will be zero.
6633 return getConstant(0, DL, VT);
6634
6635 // Skip unnecessary zext_inreg pattern:
6636 // (zext (trunc x)) -> x iff the upper bits are known zero.
6637 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6638 // use to recognise zext_inreg patterns.
6639 if (OpOpcode == ISD::TRUNCATE) {
6640 SDValue OpOp = N1.getOperand(0);
6641 if (OpOp.getValueType() == VT) {
6642 if (OpOp.getOpcode() != ISD::AND) {
6645 if (MaskedValueIsZero(OpOp, HiBits)) {
6646 transferDbgValues(N1, OpOp);
6647 return OpOp;
6648 }
6649 }
6650 }
6651 }
6652 break;
6653 case ISD::ANY_EXTEND:
6654 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6655 "Invalid ANY_EXTEND!");
6656 assert(VT.isVector() == N1.getValueType().isVector() &&
6657 "ANY_EXTEND result type type should be vector iff the operand "
6658 "type is vector!");
6659 if (N1.getValueType() == VT) return N1; // noop extension
6660 assert((!VT.isVector() || VT.getVectorElementCount() ==
6662 "Vector element count mismatch!");
6663 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6664
6665 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6666 OpOpcode == ISD::ANY_EXTEND) {
6667 SDNodeFlags Flags;
6668 if (OpOpcode == ISD::ZERO_EXTEND)
6669 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6670 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6671 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6672 }
6673 if (N1.isUndef())
6674 return getUNDEF(VT);
6675
6676 // (ext (trunc x)) -> x
6677 if (OpOpcode == ISD::TRUNCATE) {
6678 SDValue OpOp = N1.getOperand(0);
6679 if (OpOp.getValueType() == VT) {
6680 transferDbgValues(N1, OpOp);
6681 return OpOp;
6682 }
6683 }
6684 break;
6685 case ISD::TRUNCATE:
6686 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6687 "Invalid TRUNCATE!");
6688 assert(VT.isVector() == N1.getValueType().isVector() &&
6689 "TRUNCATE result type type should be vector iff the operand "
6690 "type is vector!");
6691 if (N1.getValueType() == VT) return N1; // noop truncate
6692 assert((!VT.isVector() || VT.getVectorElementCount() ==
6694 "Vector element count mismatch!");
6695 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6696 if (OpOpcode == ISD::TRUNCATE)
6697 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6698 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6699 OpOpcode == ISD::ANY_EXTEND) {
6700 // If the source is smaller than the dest, we still need an extend.
6702 VT.getScalarType())) {
6703 SDNodeFlags Flags;
6704 if (OpOpcode == ISD::ZERO_EXTEND)
6705 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6706 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6707 }
6708 if (N1.getOperand(0).getValueType().bitsGT(VT))
6709 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6710 return N1.getOperand(0);
6711 }
6712 if (N1.isUndef())
6713 return getUNDEF(VT);
6714 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6715 return getVScale(DL, VT,
6717 break;
6721 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6722 assert(N1.getValueType().bitsLE(VT) &&
6723 "The input must be the same size or smaller than the result.");
6726 "The destination vector type must have fewer lanes than the input.");
6727 break;
6728 case ISD::ABS:
6729 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6730 if (N1.isUndef())
6731 return getConstant(0, DL, VT);
6732 break;
6733 case ISD::BSWAP:
6734 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6735 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6736 "BSWAP types must be a multiple of 16 bits!");
6737 if (N1.isUndef())
6738 return getUNDEF(VT);
6739 // bswap(bswap(X)) -> X.
6740 if (OpOpcode == ISD::BSWAP)
6741 return N1.getOperand(0);
6742 break;
6743 case ISD::BITREVERSE:
6744 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6745 if (N1.isUndef())
6746 return getUNDEF(VT);
6747 break;
6748 case ISD::BITCAST:
6750 "Cannot BITCAST between types of different sizes!");
6751 if (VT == N1.getValueType()) return N1; // noop conversion.
6752 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6753 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6754 if (N1.isUndef())
6755 return getUNDEF(VT);
6756 break;
6758 assert(VT.isVector() && !N1.getValueType().isVector() &&
6759 (VT.getVectorElementType() == N1.getValueType() ||
6761 N1.getValueType().isInteger() &&
6763 "Illegal SCALAR_TO_VECTOR node!");
6764 if (N1.isUndef())
6765 return getUNDEF(VT);
6766 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6767 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6769 N1.getConstantOperandVal(1) == 0 &&
6770 N1.getOperand(0).getValueType() == VT)
6771 return N1.getOperand(0);
6772 break;
6773 case ISD::FNEG:
6774 // Negation of an unknown bag of bits is still completely undefined.
6775 if (N1.isUndef())
6776 return getUNDEF(VT);
6777
6778 if (OpOpcode == ISD::FNEG) // --X -> X
6779 return N1.getOperand(0);
6780 break;
6781 case ISD::FABS:
6782 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6783 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6784 break;
6785 case ISD::VSCALE:
6786 assert(VT == N1.getValueType() && "Unexpected VT!");
6787 break;
6788 case ISD::CTPOP:
6789 if (N1.getValueType().getScalarType() == MVT::i1)
6790 return N1;
6791 break;
6792 case ISD::CTLZ:
6793 case ISD::CTTZ:
6794 if (N1.getValueType().getScalarType() == MVT::i1)
6795 return getNOT(DL, N1, N1.getValueType());
6796 break;
6797 case ISD::VECREDUCE_ADD:
6798 if (N1.getValueType().getScalarType() == MVT::i1)
6799 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6800 break;
6801 case ISD::VECREDUCE_SMIN:
6802 case ISD::VECREDUCE_UMAX:
6803 if (N1.getValueType().getScalarType() == MVT::i1)
6804 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6805 break;
6806 case ISD::VECREDUCE_SMAX:
6807 case ISD::VECREDUCE_UMIN:
6808 if (N1.getValueType().getScalarType() == MVT::i1)
6809 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6810 break;
6811 case ISD::SPLAT_VECTOR:
6812 assert(VT.isVector() && "Wrong return type!");
6813 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6814 // that for now.
6816 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6818 N1.getValueType().isInteger() &&
6820 "Wrong operand type!");
6821 break;
6822 }
6823
6824 SDNode *N;
6825 SDVTList VTs = getVTList(VT);
6826 SDValue Ops[] = {N1};
6827 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6829 AddNodeIDNode(ID, Opcode, VTs, Ops);
6830 void *IP = nullptr;
6831 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6832 E->intersectFlagsWith(Flags);
6833 return SDValue(E, 0);
6834 }
6835
6836 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6837 N->setFlags(Flags);
6838 createOperands(N, Ops);
6839 CSEMap.InsertNode(N, IP);
6840 } else {
6841 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6842 createOperands(N, Ops);
6843 }
6844
6845 InsertNode(N);
6846 SDValue V = SDValue(N, 0);
6847 NewSDValueDbgMsg(V, "Creating new node: ", this);
6848 return V;
6849}
6850
6851static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6852 const APInt &C2) {
6853 switch (Opcode) {
6854 case ISD::ADD: return C1 + C2;
6855 case ISD::SUB: return C1 - C2;
6856 case ISD::MUL: return C1 * C2;
6857 case ISD::AND: return C1 & C2;
6858 case ISD::OR: return C1 | C2;
6859 case ISD::XOR: return C1 ^ C2;
6860 case ISD::SHL: return C1 << C2;
6861 case ISD::SRL: return C1.lshr(C2);
6862 case ISD::SRA: return C1.ashr(C2);
6863 case ISD::ROTL: return C1.rotl(C2);
6864 case ISD::ROTR: return C1.rotr(C2);
6865 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6866 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6867 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6868 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6869 case ISD::SADDSAT: return C1.sadd_sat(C2);
6870 case ISD::UADDSAT: return C1.uadd_sat(C2);
6871 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6872 case ISD::USUBSAT: return C1.usub_sat(C2);
6873 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6874 case ISD::USHLSAT: return C1.ushl_sat(C2);
6875 case ISD::UDIV:
6876 if (!C2.getBoolValue())
6877 break;
6878 return C1.udiv(C2);
6879 case ISD::UREM:
6880 if (!C2.getBoolValue())
6881 break;
6882 return C1.urem(C2);
6883 case ISD::SDIV:
6884 if (!C2.getBoolValue())
6885 break;
6886 return C1.sdiv(C2);
6887 case ISD::SREM:
6888 if (!C2.getBoolValue())
6889 break;
6890 return C1.srem(C2);
6891 case ISD::AVGFLOORS:
6892 return APIntOps::avgFloorS(C1, C2);
6893 case ISD::AVGFLOORU:
6894 return APIntOps::avgFloorU(C1, C2);
6895 case ISD::AVGCEILS:
6896 return APIntOps::avgCeilS(C1, C2);
6897 case ISD::AVGCEILU:
6898 return APIntOps::avgCeilU(C1, C2);
6899 case ISD::ABDS:
6900 return APIntOps::abds(C1, C2);
6901 case ISD::ABDU:
6902 return APIntOps::abdu(C1, C2);
6903 case ISD::MULHS:
6904 return APIntOps::mulhs(C1, C2);
6905 case ISD::MULHU:
6906 return APIntOps::mulhu(C1, C2);
6907 }
6908 return std::nullopt;
6909}
6910// Handle constant folding with UNDEF.
6911// TODO: Handle more cases.
6912static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6913 bool IsUndef1, const APInt &C2,
6914 bool IsUndef2) {
6915 if (!(IsUndef1 || IsUndef2))
6916 return FoldValue(Opcode, C1, C2);
6917
6918 // Fold and(x, undef) -> 0
6919 // Fold mul(x, undef) -> 0
6920 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6921 return APInt::getZero(C1.getBitWidth());
6922
6923 return std::nullopt;
6924}
6925
6927 const GlobalAddressSDNode *GA,
6928 const SDNode *N2) {
6929 if (GA->getOpcode() != ISD::GlobalAddress)
6930 return SDValue();
6931 if (!TLI->isOffsetFoldingLegal(GA))
6932 return SDValue();
6933 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6934 if (!C2)
6935 return SDValue();
6936 int64_t Offset = C2->getSExtValue();
6937 switch (Opcode) {
6938 case ISD::ADD:
6939 case ISD::PTRADD:
6940 break;
6941 case ISD::SUB: Offset = -uint64_t(Offset); break;
6942 default: return SDValue();
6943 }
6944 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6945 GA->getOffset() + uint64_t(Offset));
6946}
6947
6949 switch (Opcode) {
6950 case ISD::SDIV:
6951 case ISD::UDIV:
6952 case ISD::SREM:
6953 case ISD::UREM: {
6954 // If a divisor is zero/undef or any element of a divisor vector is
6955 // zero/undef, the whole op is undef.
6956 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6957 SDValue Divisor = Ops[1];
6958 if (Divisor.isUndef() || isNullConstant(Divisor))
6959 return true;
6960
6961 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6962 llvm::any_of(Divisor->op_values(),
6963 [](SDValue V) { return V.isUndef() ||
6964 isNullConstant(V); });
6965 // TODO: Handle signed overflow.
6966 }
6967 // TODO: Handle oversized shifts.
6968 default:
6969 return false;
6970 }
6971}
6972
6975 SDNodeFlags Flags) {
6976 // If the opcode is a target-specific ISD node, there's nothing we can
6977 // do here and the operand rules may not line up with the below, so
6978 // bail early.
6979 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6980 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6981 // foldCONCAT_VECTORS in getNode before this is called.
6982 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6983 return SDValue();
6984
6985 unsigned NumOps = Ops.size();
6986 if (NumOps == 0)
6987 return SDValue();
6988
6989 if (isUndef(Opcode, Ops))
6990 return getUNDEF(VT);
6991
6992 // Handle unary special cases.
6993 if (NumOps == 1) {
6994 SDValue N1 = Ops[0];
6995
6996 // Constant fold unary operations with an integer constant operand. Even
6997 // opaque constant will be folded, because the folding of unary operations
6998 // doesn't create new constants with different values. Nevertheless, the
6999 // opaque flag is preserved during folding to prevent future folding with
7000 // other constants.
7001 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
7002 const APInt &Val = C->getAPIntValue();
7003 switch (Opcode) {
7004 case ISD::SIGN_EXTEND:
7005 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
7006 C->isTargetOpcode(), C->isOpaque());
7007 case ISD::TRUNCATE:
7008 if (C->isOpaque())
7009 break;
7010 [[fallthrough]];
7011 case ISD::ZERO_EXTEND:
7012 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7013 C->isTargetOpcode(), C->isOpaque());
7014 case ISD::ANY_EXTEND:
7015 // Some targets like RISCV prefer to sign extend some types.
7016 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
7017 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
7018 C->isTargetOpcode(), C->isOpaque());
7019 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7020 C->isTargetOpcode(), C->isOpaque());
7021 case ISD::ABS:
7022 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
7023 C->isOpaque());
7024 case ISD::BITREVERSE:
7025 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
7026 C->isOpaque());
7027 case ISD::BSWAP:
7028 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
7029 C->isOpaque());
7030 case ISD::CTPOP:
7031 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7032 C->isOpaque());
7033 case ISD::CTLZ:
7035 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7036 C->isOpaque());
7037 case ISD::CTTZ:
7039 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7040 C->isOpaque());
7041 case ISD::UINT_TO_FP:
7042 case ISD::SINT_TO_FP: {
7044 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7046 return getConstantFP(FPV, DL, VT);
7047 }
7048 case ISD::FP16_TO_FP:
7049 case ISD::BF16_TO_FP: {
7050 bool Ignored;
7051 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7052 : APFloat::BFloat(),
7053 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7054
7055 // This can return overflow, underflow, or inexact; we don't care.
7056 // FIXME need to be more flexible about rounding mode.
7058 &Ignored);
7059 return getConstantFP(FPV, DL, VT);
7060 }
7061 case ISD::STEP_VECTOR:
7062 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7063 return V;
7064 break;
7065 case ISD::BITCAST:
7066 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7067 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7068 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7069 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7070 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7071 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7072 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7073 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7074 break;
7075 }
7076 }
7077
7078 // Constant fold unary operations with a floating point constant operand.
7079 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7080 APFloat V = C->getValueAPF(); // make copy
7081 switch (Opcode) {
7082 case ISD::FNEG:
7083 V.changeSign();
7084 return getConstantFP(V, DL, VT);
7085 case ISD::FABS:
7086 V.clearSign();
7087 return getConstantFP(V, DL, VT);
7088 case ISD::FCEIL: {
7089 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7091 return getConstantFP(V, DL, VT);
7092 return SDValue();
7093 }
7094 case ISD::FTRUNC: {
7095 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7097 return getConstantFP(V, DL, VT);
7098 return SDValue();
7099 }
7100 case ISD::FFLOOR: {
7101 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7103 return getConstantFP(V, DL, VT);
7104 return SDValue();
7105 }
7106 case ISD::FP_EXTEND: {
7107 bool ignored;
7108 // This can return overflow, underflow, or inexact; we don't care.
7109 // FIXME need to be more flexible about rounding mode.
7110 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7111 &ignored);
7112 return getConstantFP(V, DL, VT);
7113 }
7114 case ISD::FP_TO_SINT:
7115 case ISD::FP_TO_UINT: {
7116 bool ignored;
7117 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7118 // FIXME need to be more flexible about rounding mode.
7120 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7121 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7122 break;
7123 return getConstant(IntVal, DL, VT);
7124 }
7125 case ISD::FP_TO_FP16:
7126 case ISD::FP_TO_BF16: {
7127 bool Ignored;
7128 // This can return overflow, underflow, or inexact; we don't care.
7129 // FIXME need to be more flexible about rounding mode.
7130 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7131 : APFloat::BFloat(),
7133 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7134 }
7135 case ISD::BITCAST:
7136 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7137 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7138 VT);
7139 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7140 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7141 VT);
7142 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7143 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7144 VT);
7145 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7146 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7147 break;
7148 }
7149 }
7150
7151 // Early-out if we failed to constant fold a bitcast.
7152 if (Opcode == ISD::BITCAST)
7153 return SDValue();
7154 }
7155
7156 // Handle binops special cases.
7157 if (NumOps == 2) {
7158 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7159 return CFP;
7160
7161 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7162 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7163 if (C1->isOpaque() || C2->isOpaque())
7164 return SDValue();
7165
7166 std::optional<APInt> FoldAttempt =
7167 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7168 if (!FoldAttempt)
7169 return SDValue();
7170
7171 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7172 assert((!Folded || !VT.isVector()) &&
7173 "Can't fold vectors ops with scalar operands");
7174 return Folded;
7175 }
7176 }
7177
7178 // fold (add Sym, c) -> Sym+c
7180 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7181 if (TLI->isCommutativeBinOp(Opcode))
7183 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7184
7185 // fold (sext_in_reg c1) -> c2
7186 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7187 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7188
7189 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7190 unsigned FromBits = EVT.getScalarSizeInBits();
7191 Val <<= Val.getBitWidth() - FromBits;
7192 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7193 return getConstant(Val, DL, ConstantVT);
7194 };
7195
7196 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7197 const APInt &Val = C1->getAPIntValue();
7198 return SignExtendInReg(Val, VT);
7199 }
7200
7202 SmallVector<SDValue, 8> ScalarOps;
7203 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7204 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7205 SDValue Op = Ops[0].getOperand(I);
7206 if (Op.isUndef()) {
7207 ScalarOps.push_back(getUNDEF(OpVT));
7208 continue;
7209 }
7210 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7211 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7212 }
7213 return getBuildVector(VT, DL, ScalarOps);
7214 }
7215
7216 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7217 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7218 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7219 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7220 Ops[0].getOperand(0).getValueType()));
7221 }
7222 }
7223
7224 // Handle fshl/fshr special cases.
7225 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7226 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7227 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7228 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7229
7230 if (C1 && C2 && C3) {
7231 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7232 return SDValue();
7233 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7234 &V3 = C3->getAPIntValue();
7235
7236 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7237 : APIntOps::fshr(V1, V2, V3);
7238 return getConstant(FoldedVal, DL, VT);
7239 }
7240 }
7241
7242 // Handle fma/fmad special cases.
7243 if (Opcode == ISD::FMA || Opcode == ISD::FMAD || Opcode == ISD::FMULADD) {
7244 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7245 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7246 Ops[2].getValueType() == VT && "FMA types must match!");
7250 if (C1 && C2 && C3) {
7251 APFloat V1 = C1->getValueAPF();
7252 const APFloat &V2 = C2->getValueAPF();
7253 const APFloat &V3 = C3->getValueAPF();
7254 if (Opcode == ISD::FMAD || Opcode == ISD::FMULADD) {
7257 } else
7259 return getConstantFP(V1, DL, VT);
7260 }
7261 }
7262
7263 // This is for vector folding only from here on.
7264 if (!VT.isVector())
7265 return SDValue();
7266
7267 ElementCount NumElts = VT.getVectorElementCount();
7268
7269 // See if we can fold through any bitcasted integer ops.
7270 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7271 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7272 (Ops[0].getOpcode() == ISD::BITCAST ||
7273 Ops[1].getOpcode() == ISD::BITCAST)) {
7276 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7277 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7278 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7279 N2.getValueType().isInteger()) {
7280 bool IsLE = getDataLayout().isLittleEndian();
7281 unsigned EltBits = VT.getScalarSizeInBits();
7282 SmallVector<APInt> RawBits1, RawBits2;
7283 BitVector UndefElts1, UndefElts2;
7284 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7285 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7286 SmallVector<APInt> RawBits;
7287 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7288 std::optional<APInt> Fold = FoldValueWithUndef(
7289 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7290 if (!Fold)
7291 break;
7292 RawBits.push_back(*Fold);
7293 }
7294 if (RawBits.size() == NumElts.getFixedValue()) {
7295 // We have constant folded, but we might need to cast this again back
7296 // to the original (possibly legalized) type.
7297 EVT BVVT, BVEltVT;
7298 if (N1.getValueType() == VT) {
7299 BVVT = N1.getValueType();
7300 BVEltVT = BV1->getOperand(0).getValueType();
7301 } else {
7302 BVVT = N2.getValueType();
7303 BVEltVT = BV2->getOperand(0).getValueType();
7304 }
7305 unsigned BVEltBits = BVEltVT.getSizeInBits();
7306 SmallVector<APInt> DstBits;
7307 BitVector DstUndefs;
7309 DstBits, RawBits, DstUndefs,
7310 BitVector(RawBits.size(), false));
7311 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7312 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7313 if (DstUndefs[I])
7314 continue;
7315 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7316 }
7317 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7318 }
7319 }
7320 }
7321 }
7322
7323 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7324 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7325 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7326 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7327 APInt RHSVal;
7328 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7329 APInt NewStep = Opcode == ISD::MUL
7330 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7331 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7332 return getStepVector(DL, VT, NewStep);
7333 }
7334 }
7335
7336 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7337 return !Op.getValueType().isVector() ||
7338 Op.getValueType().getVectorElementCount() == NumElts;
7339 };
7340
7341 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7342 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7343 Op.getOpcode() == ISD::BUILD_VECTOR ||
7344 Op.getOpcode() == ISD::SPLAT_VECTOR;
7345 };
7346
7347 // All operands must be vector types with the same number of elements as
7348 // the result type and must be either UNDEF or a build/splat vector
7349 // or UNDEF scalars.
7350 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7351 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7352 return SDValue();
7353
7354 // If we are comparing vectors, then the result needs to be a i1 boolean that
7355 // is then extended back to the legal result type depending on how booleans
7356 // are represented.
7357 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7358 ISD::NodeType ExtendCode =
7359 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7360 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7362
7363 // Find legal integer scalar type for constant promotion and
7364 // ensure that its scalar size is at least as large as source.
7365 EVT LegalSVT = VT.getScalarType();
7366 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7367 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7368 if (LegalSVT.bitsLT(VT.getScalarType()))
7369 return SDValue();
7370 }
7371
7372 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7373 // only have one operand to check. For fixed-length vector types we may have
7374 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7375 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7376
7377 // Constant fold each scalar lane separately.
7378 SmallVector<SDValue, 4> ScalarResults;
7379 for (unsigned I = 0; I != NumVectorElts; I++) {
7380 SmallVector<SDValue, 4> ScalarOps;
7381 for (SDValue Op : Ops) {
7382 EVT InSVT = Op.getValueType().getScalarType();
7383 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7384 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7385 if (Op.isUndef())
7386 ScalarOps.push_back(getUNDEF(InSVT));
7387 else
7388 ScalarOps.push_back(Op);
7389 continue;
7390 }
7391
7392 SDValue ScalarOp =
7393 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7394 EVT ScalarVT = ScalarOp.getValueType();
7395
7396 // Build vector (integer) scalar operands may need implicit
7397 // truncation - do this before constant folding.
7398 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7399 // Don't create illegally-typed nodes unless they're constants or undef
7400 // - if we fail to constant fold we can't guarantee the (dead) nodes
7401 // we're creating will be cleaned up before being visited for
7402 // legalization.
7403 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7404 !isa<ConstantSDNode>(ScalarOp) &&
7405 TLI->getTypeAction(*getContext(), InSVT) !=
7407 return SDValue();
7408 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7409 }
7410
7411 ScalarOps.push_back(ScalarOp);
7412 }
7413
7414 // Constant fold the scalar operands.
7415 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7416
7417 // Scalar folding only succeeded if the result is a constant or UNDEF.
7418 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7419 ScalarResult.getOpcode() != ISD::ConstantFP)
7420 return SDValue();
7421
7422 // Legalize the (integer) scalar constant if necessary. We only do
7423 // this once we know the folding succeeded, since otherwise we would
7424 // get a node with illegal type which has a user.
7425 if (LegalSVT != SVT)
7426 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7427
7428 ScalarResults.push_back(ScalarResult);
7429 }
7430
7431 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7432 : getBuildVector(VT, DL, ScalarResults);
7433 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7434 return V;
7435}
7436
7439 // TODO: Add support for unary/ternary fp opcodes.
7440 if (Ops.size() != 2)
7441 return SDValue();
7442
7443 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7444 // should. That will require dealing with a potentially non-default
7445 // rounding mode, checking the "opStatus" return value from the APFloat
7446 // math calculations, and possibly other variations.
7447 SDValue N1 = Ops[0];
7448 SDValue N2 = Ops[1];
7449 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7450 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7451 if (N1CFP && N2CFP) {
7452 APFloat C1 = N1CFP->getValueAPF(); // make copy
7453 const APFloat &C2 = N2CFP->getValueAPF();
7454 switch (Opcode) {
7455 case ISD::FADD:
7457 return getConstantFP(C1, DL, VT);
7458 case ISD::FSUB:
7460 return getConstantFP(C1, DL, VT);
7461 case ISD::FMUL:
7463 return getConstantFP(C1, DL, VT);
7464 case ISD::FDIV:
7466 return getConstantFP(C1, DL, VT);
7467 case ISD::FREM:
7468 C1.mod(C2);
7469 return getConstantFP(C1, DL, VT);
7470 case ISD::FCOPYSIGN:
7471 C1.copySign(C2);
7472 return getConstantFP(C1, DL, VT);
7473 case ISD::FMINNUM:
7474 return getConstantFP(minnum(C1, C2), DL, VT);
7475 case ISD::FMAXNUM:
7476 return getConstantFP(maxnum(C1, C2), DL, VT);
7477 case ISD::FMINIMUM:
7478 return getConstantFP(minimum(C1, C2), DL, VT);
7479 case ISD::FMAXIMUM:
7480 return getConstantFP(maximum(C1, C2), DL, VT);
7481 case ISD::FMINIMUMNUM:
7482 return getConstantFP(minimumnum(C1, C2), DL, VT);
7483 case ISD::FMAXIMUMNUM:
7484 return getConstantFP(maximumnum(C1, C2), DL, VT);
7485 default: break;
7486 }
7487 }
7488 if (N1CFP && Opcode == ISD::FP_ROUND) {
7489 APFloat C1 = N1CFP->getValueAPF(); // make copy
7490 bool Unused;
7491 // This can return overflow, underflow, or inexact; we don't care.
7492 // FIXME need to be more flexible about rounding mode.
7494 &Unused);
7495 return getConstantFP(C1, DL, VT);
7496 }
7497
7498 switch (Opcode) {
7499 case ISD::FSUB:
7500 // -0.0 - undef --> undef (consistent with "fneg undef")
7501 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7502 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7503 return getUNDEF(VT);
7504 [[fallthrough]];
7505
7506 case ISD::FADD:
7507 case ISD::FMUL:
7508 case ISD::FDIV:
7509 case ISD::FREM:
7510 // If both operands are undef, the result is undef. If 1 operand is undef,
7511 // the result is NaN. This should match the behavior of the IR optimizer.
7512 if (N1.isUndef() && N2.isUndef())
7513 return getUNDEF(VT);
7514 if (N1.isUndef() || N2.isUndef())
7516 }
7517 return SDValue();
7518}
7519
7521 const SDLoc &DL, EVT DstEltVT) {
7522 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7523
7524 // If this is already the right type, we're done.
7525 if (SrcEltVT == DstEltVT)
7526 return SDValue(BV, 0);
7527
7528 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7529 unsigned DstBitSize = DstEltVT.getSizeInBits();
7530
7531 // If this is a conversion of N elements of one type to N elements of another
7532 // type, convert each element. This handles FP<->INT cases.
7533 if (SrcBitSize == DstBitSize) {
7535 for (SDValue Op : BV->op_values()) {
7536 // If the vector element type is not legal, the BUILD_VECTOR operands
7537 // are promoted and implicitly truncated. Make that explicit here.
7538 if (Op.getValueType() != SrcEltVT)
7539 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7540 Ops.push_back(getBitcast(DstEltVT, Op));
7541 }
7542 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7544 return getBuildVector(VT, DL, Ops);
7545 }
7546
7547 // Otherwise, we're growing or shrinking the elements. To avoid having to
7548 // handle annoying details of growing/shrinking FP values, we convert them to
7549 // int first.
7550 if (SrcEltVT.isFloatingPoint()) {
7551 // Convert the input float vector to a int vector where the elements are the
7552 // same sizes.
7553 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7554 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7556 DstEltVT);
7557 return SDValue();
7558 }
7559
7560 // Now we know the input is an integer vector. If the output is a FP type,
7561 // convert to integer first, then to FP of the right size.
7562 if (DstEltVT.isFloatingPoint()) {
7563 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7564 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7566 DstEltVT);
7567 return SDValue();
7568 }
7569
7570 // Okay, we know the src/dst types are both integers of differing types.
7571 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7572
7573 // Extract the constant raw bit data.
7574 BitVector UndefElements;
7575 SmallVector<APInt> RawBits;
7576 bool IsLE = getDataLayout().isLittleEndian();
7577 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7578 return SDValue();
7579
7581 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7582 if (UndefElements[I])
7583 Ops.push_back(getUNDEF(DstEltVT));
7584 else
7585 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7586 }
7587
7588 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7589 return getBuildVector(VT, DL, Ops);
7590}
7591
7593 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7594
7595 // There's no need to assert on a byte-aligned pointer. All pointers are at
7596 // least byte aligned.
7597 if (A == Align(1))
7598 return Val;
7599
7600 SDVTList VTs = getVTList(Val.getValueType());
7602 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7603 ID.AddInteger(A.value());
7604
7605 void *IP = nullptr;
7606 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7607 return SDValue(E, 0);
7608
7609 auto *N =
7610 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7611 createOperands(N, {Val});
7612
7613 CSEMap.InsertNode(N, IP);
7614 InsertNode(N);
7615
7616 SDValue V(N, 0);
7617 NewSDValueDbgMsg(V, "Creating new node: ", this);
7618 return V;
7619}
7620
7621SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7622 SDValue N1, SDValue N2) {
7623 SDNodeFlags Flags;
7624 if (Inserter)
7625 Flags = Inserter->getFlags();
7626 return getNode(Opcode, DL, VT, N1, N2, Flags);
7627}
7628
7630 SDValue &N2) const {
7631 if (!TLI->isCommutativeBinOp(Opcode))
7632 return;
7633
7634 // Canonicalize:
7635 // binop(const, nonconst) -> binop(nonconst, const)
7638 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7639 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7640 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7641 std::swap(N1, N2);
7642
7643 // Canonicalize:
7644 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7645 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7647 std::swap(N1, N2);
7648}
7649
7650SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7651 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7653 N2.getOpcode() != ISD::DELETED_NODE &&
7654 "Operand is DELETED_NODE!");
7655
7656 canonicalizeCommutativeBinop(Opcode, N1, N2);
7657
7658 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7659 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7660
7661 // Don't allow undefs in vector splats - we might be returning N2 when folding
7662 // to zero etc.
7663 ConstantSDNode *N2CV =
7664 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7665
7666 switch (Opcode) {
7667 default: break;
7668 case ISD::TokenFactor:
7669 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7670 N2.getValueType() == MVT::Other && "Invalid token factor!");
7671 // Fold trivial token factors.
7672 if (N1.getOpcode() == ISD::EntryToken) return N2;
7673 if (N2.getOpcode() == ISD::EntryToken) return N1;
7674 if (N1 == N2) return N1;
7675 break;
7676 case ISD::BUILD_VECTOR: {
7677 // Attempt to simplify BUILD_VECTOR.
7678 SDValue Ops[] = {N1, N2};
7679 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7680 return V;
7681 break;
7682 }
7683 case ISD::CONCAT_VECTORS: {
7684 SDValue Ops[] = {N1, N2};
7685 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7686 return V;
7687 break;
7688 }
7689 case ISD::AND:
7690 assert(VT.isInteger() && "This operator does not apply to FP types!");
7691 assert(N1.getValueType() == N2.getValueType() &&
7692 N1.getValueType() == VT && "Binary operator types must match!");
7693 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7694 // worth handling here.
7695 if (N2CV && N2CV->isZero())
7696 return N2;
7697 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7698 return N1;
7699 break;
7700 case ISD::OR:
7701 case ISD::XOR:
7702 case ISD::ADD:
7703 case ISD::PTRADD:
7704 case ISD::SUB:
7705 assert(VT.isInteger() && "This operator does not apply to FP types!");
7706 assert(N1.getValueType() == N2.getValueType() &&
7707 N1.getValueType() == VT && "Binary operator types must match!");
7708 // The equal operand types requirement is unnecessarily strong for PTRADD.
7709 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7710 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7711 // logic everywhere where PTRADDs may be folded or combined to properly
7712 // support them. If/when we introduce pointer types to the SDAG, we will
7713 // need to relax this constraint.
7714
7715 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7716 // it's worth handling here.
7717 if (N2CV && N2CV->isZero())
7718 return N1;
7719 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7720 VT.getScalarType() == MVT::i1)
7721 return getNode(ISD::XOR, DL, VT, N1, N2);
7722 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7723 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7724 N2.getOpcode() == ISD::VSCALE) {
7725 const APInt &C1 = N1->getConstantOperandAPInt(0);
7726 const APInt &C2 = N2->getConstantOperandAPInt(0);
7727 return getVScale(DL, VT, C1 + C2);
7728 }
7729 break;
7730 case ISD::MUL:
7731 assert(VT.isInteger() && "This operator does not apply to FP types!");
7732 assert(N1.getValueType() == N2.getValueType() &&
7733 N1.getValueType() == VT && "Binary operator types must match!");
7734 if (VT.getScalarType() == MVT::i1)
7735 return getNode(ISD::AND, DL, VT, N1, N2);
7736 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7737 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7738 const APInt &N2CImm = N2C->getAPIntValue();
7739 return getVScale(DL, VT, MulImm * N2CImm);
7740 }
7741 break;
7742 case ISD::UDIV:
7743 case ISD::UREM:
7744 case ISD::MULHU:
7745 case ISD::MULHS:
7746 case ISD::SDIV:
7747 case ISD::SREM:
7748 case ISD::SADDSAT:
7749 case ISD::SSUBSAT:
7750 case ISD::UADDSAT:
7751 case ISD::USUBSAT:
7752 assert(VT.isInteger() && "This operator does not apply to FP types!");
7753 assert(N1.getValueType() == N2.getValueType() &&
7754 N1.getValueType() == VT && "Binary operator types must match!");
7755 if (VT.getScalarType() == MVT::i1) {
7756 // fold (add_sat x, y) -> (or x, y) for bool types.
7757 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7758 return getNode(ISD::OR, DL, VT, N1, N2);
7759 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7760 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7761 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7762 }
7763 break;
7764 case ISD::SCMP:
7765 case ISD::UCMP:
7766 assert(N1.getValueType() == N2.getValueType() &&
7767 "Types of operands of UCMP/SCMP must match");
7768 assert(N1.getValueType().isVector() == VT.isVector() &&
7769 "Operands and return type of must both be scalars or vectors");
7770 if (VT.isVector())
7773 "Result and operands must have the same number of elements");
7774 break;
7775 case ISD::AVGFLOORS:
7776 case ISD::AVGFLOORU:
7777 case ISD::AVGCEILS:
7778 case ISD::AVGCEILU:
7779 assert(VT.isInteger() && "This operator does not apply to FP types!");
7780 assert(N1.getValueType() == N2.getValueType() &&
7781 N1.getValueType() == VT && "Binary operator types must match!");
7782 break;
7783 case ISD::ABDS:
7784 case ISD::ABDU:
7785 assert(VT.isInteger() && "This operator does not apply to FP types!");
7786 assert(N1.getValueType() == N2.getValueType() &&
7787 N1.getValueType() == VT && "Binary operator types must match!");
7788 if (VT.getScalarType() == MVT::i1)
7789 return getNode(ISD::XOR, DL, VT, N1, N2);
7790 break;
7791 case ISD::SMIN:
7792 case ISD::UMAX:
7793 assert(VT.isInteger() && "This operator does not apply to FP types!");
7794 assert(N1.getValueType() == N2.getValueType() &&
7795 N1.getValueType() == VT && "Binary operator types must match!");
7796 if (VT.getScalarType() == MVT::i1)
7797 return getNode(ISD::OR, DL, VT, N1, N2);
7798 break;
7799 case ISD::SMAX:
7800 case ISD::UMIN:
7801 assert(VT.isInteger() && "This operator does not apply to FP types!");
7802 assert(N1.getValueType() == N2.getValueType() &&
7803 N1.getValueType() == VT && "Binary operator types must match!");
7804 if (VT.getScalarType() == MVT::i1)
7805 return getNode(ISD::AND, DL, VT, N1, N2);
7806 break;
7807 case ISD::FADD:
7808 case ISD::FSUB:
7809 case ISD::FMUL:
7810 case ISD::FDIV:
7811 case ISD::FREM:
7812 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7813 assert(N1.getValueType() == N2.getValueType() &&
7814 N1.getValueType() == VT && "Binary operator types must match!");
7815 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7816 return V;
7817 break;
7818 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7819 assert(N1.getValueType() == VT &&
7822 "Invalid FCOPYSIGN!");
7823 break;
7824 case ISD::SHL:
7825 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7826 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7827 const APInt &ShiftImm = N2C->getAPIntValue();
7828 return getVScale(DL, VT, MulImm << ShiftImm);
7829 }
7830 [[fallthrough]];
7831 case ISD::SRA:
7832 case ISD::SRL:
7833 if (SDValue V = simplifyShift(N1, N2))
7834 return V;
7835 [[fallthrough]];
7836 case ISD::ROTL:
7837 case ISD::ROTR:
7838 assert(VT == N1.getValueType() &&
7839 "Shift operators return type must be the same as their first arg");
7840 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7841 "Shifts only work on integers");
7842 assert((!VT.isVector() || VT == N2.getValueType()) &&
7843 "Vector shift amounts must be in the same as their first arg");
7844 // Verify that the shift amount VT is big enough to hold valid shift
7845 // amounts. This catches things like trying to shift an i1024 value by an
7846 // i8, which is easy to fall into in generic code that uses
7847 // TLI.getShiftAmount().
7850 "Invalid use of small shift amount with oversized value!");
7851
7852 // Always fold shifts of i1 values so the code generator doesn't need to
7853 // handle them. Since we know the size of the shift has to be less than the
7854 // size of the value, the shift/rotate count is guaranteed to be zero.
7855 if (VT == MVT::i1)
7856 return N1;
7857 if (N2CV && N2CV->isZero())
7858 return N1;
7859 break;
7860 case ISD::FP_ROUND:
7862 VT.bitsLE(N1.getValueType()) && N2C &&
7863 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7864 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7865 if (N1.getValueType() == VT) return N1; // noop conversion.
7866 break;
7867 case ISD::AssertNoFPClass: {
7869 "AssertNoFPClass is used for a non-floating type");
7870 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7871 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7872 assert(llvm::to_underlying(NoFPClass) <=
7874 "FPClassTest value too large");
7875 (void)NoFPClass;
7876 break;
7877 }
7878 case ISD::AssertSext:
7879 case ISD::AssertZext: {
7880 EVT EVT = cast<VTSDNode>(N2)->getVT();
7881 assert(VT == N1.getValueType() && "Not an inreg extend!");
7882 assert(VT.isInteger() && EVT.isInteger() &&
7883 "Cannot *_EXTEND_INREG FP types");
7884 assert(!EVT.isVector() &&
7885 "AssertSExt/AssertZExt type should be the vector element type "
7886 "rather than the vector type!");
7887 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7888 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7889 break;
7890 }
7892 EVT EVT = cast<VTSDNode>(N2)->getVT();
7893 assert(VT == N1.getValueType() && "Not an inreg extend!");
7894 assert(VT.isInteger() && EVT.isInteger() &&
7895 "Cannot *_EXTEND_INREG FP types");
7896 assert(EVT.isVector() == VT.isVector() &&
7897 "SIGN_EXTEND_INREG type should be vector iff the operand "
7898 "type is vector!");
7899 assert((!EVT.isVector() ||
7901 "Vector element counts must match in SIGN_EXTEND_INREG");
7902 assert(EVT.bitsLE(VT) && "Not extending!");
7903 if (EVT == VT) return N1; // Not actually extending
7904 break;
7905 }
7907 case ISD::FP_TO_UINT_SAT: {
7908 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7909 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7910 assert(N1.getValueType().isVector() == VT.isVector() &&
7911 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7912 "vector!");
7913 assert((!VT.isVector() || VT.getVectorElementCount() ==
7915 "Vector element counts must match in FP_TO_*INT_SAT");
7916 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7917 "Type to saturate to must be a scalar.");
7918 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7919 "Not extending!");
7920 break;
7921 }
7924 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7925 element type of the vector.");
7926
7927 // Extract from an undefined value or using an undefined index is undefined.
7928 if (N1.isUndef() || N2.isUndef())
7929 return getUNDEF(VT);
7930
7931 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7932 // vectors. For scalable vectors we will provide appropriate support for
7933 // dealing with arbitrary indices.
7934 if (N2C && N1.getValueType().isFixedLengthVector() &&
7935 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7936 return getUNDEF(VT);
7937
7938 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7939 // expanding copies of large vectors from registers. This only works for
7940 // fixed length vectors, since we need to know the exact number of
7941 // elements.
7942 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7944 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7945 return getExtractVectorElt(DL, VT,
7946 N1.getOperand(N2C->getZExtValue() / Factor),
7947 N2C->getZExtValue() % Factor);
7948 }
7949
7950 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7951 // lowering is expanding large vector constants.
7952 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7953 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7956 "BUILD_VECTOR used for scalable vectors");
7957 unsigned Index =
7958 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7959 SDValue Elt = N1.getOperand(Index);
7960
7961 if (VT != Elt.getValueType())
7962 // If the vector element type is not legal, the BUILD_VECTOR operands
7963 // are promoted and implicitly truncated, and the result implicitly
7964 // extended. Make that explicit here.
7965 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7966
7967 return Elt;
7968 }
7969
7970 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7971 // operations are lowered to scalars.
7972 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7973 // If the indices are the same, return the inserted element else
7974 // if the indices are known different, extract the element from
7975 // the original vector.
7976 SDValue N1Op2 = N1.getOperand(2);
7978
7979 if (N1Op2C && N2C) {
7980 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7981 if (VT == N1.getOperand(1).getValueType())
7982 return N1.getOperand(1);
7983 if (VT.isFloatingPoint()) {
7985 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7986 }
7987 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7988 }
7989 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7990 }
7991 }
7992
7993 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7994 // when vector types are scalarized and v1iX is legal.
7995 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7996 // Here we are completely ignoring the extract element index (N2),
7997 // which is fine for fixed width vectors, since any index other than 0
7998 // is undefined anyway. However, this cannot be ignored for scalable
7999 // vectors - in theory we could support this, but we don't want to do this
8000 // without a profitability check.
8001 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8003 N1.getValueType().getVectorNumElements() == 1) {
8004 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
8005 N1.getOperand(1));
8006 }
8007 break;
8009 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
8010 assert(!N1.getValueType().isVector() && !VT.isVector() &&
8011 (N1.getValueType().isInteger() == VT.isInteger()) &&
8012 N1.getValueType() != VT &&
8013 "Wrong types for EXTRACT_ELEMENT!");
8014
8015 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
8016 // 64-bit integers into 32-bit parts. Instead of building the extract of
8017 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
8018 if (N1.getOpcode() == ISD::BUILD_PAIR)
8019 return N1.getOperand(N2C->getZExtValue());
8020
8021 // EXTRACT_ELEMENT of a constant int is also very common.
8022 if (N1C) {
8023 unsigned ElementSize = VT.getSizeInBits();
8024 unsigned Shift = ElementSize * N2C->getZExtValue();
8025 const APInt &Val = N1C->getAPIntValue();
8026 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
8027 }
8028 break;
8030 EVT N1VT = N1.getValueType();
8031 assert(VT.isVector() && N1VT.isVector() &&
8032 "Extract subvector VTs must be vectors!");
8034 "Extract subvector VTs must have the same element type!");
8035 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8036 "Cannot extract a scalable vector from a fixed length vector!");
8037 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8039 "Extract subvector must be from larger vector to smaller vector!");
8040 assert(N2C && "Extract subvector index must be a constant");
8041 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8042 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8043 N1VT.getVectorMinNumElements()) &&
8044 "Extract subvector overflow!");
8045 assert(N2C->getAPIntValue().getBitWidth() ==
8046 TLI->getVectorIdxWidth(getDataLayout()) &&
8047 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8048 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8049 "Extract index is not a multiple of the output vector length");
8050
8051 // Trivial extraction.
8052 if (VT == N1VT)
8053 return N1;
8054
8055 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8056 if (N1.isUndef())
8057 return getUNDEF(VT);
8058
8059 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8060 // the concat have the same type as the extract.
8061 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8062 VT == N1.getOperand(0).getValueType()) {
8063 unsigned Factor = VT.getVectorMinNumElements();
8064 return N1.getOperand(N2C->getZExtValue() / Factor);
8065 }
8066
8067 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8068 // during shuffle legalization.
8069 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8070 VT == N1.getOperand(1).getValueType())
8071 return N1.getOperand(1);
8072 break;
8073 }
8074 }
8075
8076 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8077 switch (Opcode) {
8078 case ISD::XOR:
8079 case ISD::ADD:
8080 case ISD::PTRADD:
8081 case ISD::SUB:
8083 case ISD::UDIV:
8084 case ISD::SDIV:
8085 case ISD::UREM:
8086 case ISD::SREM:
8087 case ISD::MUL:
8088 case ISD::AND:
8089 case ISD::SSUBSAT:
8090 case ISD::USUBSAT:
8091 case ISD::UMIN:
8092 case ISD::OR:
8093 case ISD::SADDSAT:
8094 case ISD::UADDSAT:
8095 case ISD::UMAX:
8096 case ISD::SMAX:
8097 case ISD::SMIN:
8098 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8099 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8100 }
8101 }
8102
8103 // Canonicalize an UNDEF to the RHS, even over a constant.
8104 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8105 if (TLI->isCommutativeBinOp(Opcode)) {
8106 std::swap(N1, N2);
8107 } else {
8108 switch (Opcode) {
8109 case ISD::PTRADD:
8110 case ISD::SUB:
8111 // fold op(undef, non_undef_arg2) -> undef.
8112 return N1;
8114 case ISD::UDIV:
8115 case ISD::SDIV:
8116 case ISD::UREM:
8117 case ISD::SREM:
8118 case ISD::SSUBSAT:
8119 case ISD::USUBSAT:
8120 // fold op(undef, non_undef_arg2) -> 0.
8121 return getConstant(0, DL, VT);
8122 }
8123 }
8124 }
8125
8126 // Fold a bunch of operators when the RHS is undef.
8127 if (N2.getOpcode() == ISD::UNDEF) {
8128 switch (Opcode) {
8129 case ISD::XOR:
8130 if (N1.getOpcode() == ISD::UNDEF)
8131 // Handle undef ^ undef -> 0 special case. This is a common
8132 // idiom (misuse).
8133 return getConstant(0, DL, VT);
8134 [[fallthrough]];
8135 case ISD::ADD:
8136 case ISD::PTRADD:
8137 case ISD::SUB:
8138 // fold op(arg1, undef) -> undef.
8139 return N2;
8140 case ISD::UDIV:
8141 case ISD::SDIV:
8142 case ISD::UREM:
8143 case ISD::SREM:
8144 // fold op(arg1, undef) -> poison.
8145 return getPOISON(VT);
8146 case ISD::MUL:
8147 case ISD::AND:
8148 case ISD::SSUBSAT:
8149 case ISD::USUBSAT:
8150 case ISD::UMIN:
8151 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8152 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8153 case ISD::OR:
8154 case ISD::SADDSAT:
8155 case ISD::UADDSAT:
8156 case ISD::UMAX:
8157 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8158 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8159 case ISD::SMAX:
8160 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8161 return N1.getOpcode() == ISD::UNDEF
8162 ? N2
8163 : getConstant(
8165 VT);
8166 case ISD::SMIN:
8167 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8168 return N1.getOpcode() == ISD::UNDEF
8169 ? N2
8170 : getConstant(
8172 VT);
8173 }
8174 }
8175
8176 // Perform trivial constant folding.
8177 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8178 return SV;
8179
8180 // Memoize this node if possible.
8181 SDNode *N;
8182 SDVTList VTs = getVTList(VT);
8183 SDValue Ops[] = {N1, N2};
8184 if (VT != MVT::Glue) {
8186 AddNodeIDNode(ID, Opcode, VTs, Ops);
8187 void *IP = nullptr;
8188 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8189 E->intersectFlagsWith(Flags);
8190 return SDValue(E, 0);
8191 }
8192
8193 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8194 N->setFlags(Flags);
8195 createOperands(N, Ops);
8196 CSEMap.InsertNode(N, IP);
8197 } else {
8198 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8199 createOperands(N, Ops);
8200 }
8201
8202 InsertNode(N);
8203 SDValue V = SDValue(N, 0);
8204 NewSDValueDbgMsg(V, "Creating new node: ", this);
8205 return V;
8206}
8207
8208SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8209 SDValue N1, SDValue N2, SDValue N3) {
8210 SDNodeFlags Flags;
8211 if (Inserter)
8212 Flags = Inserter->getFlags();
8213 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8214}
8215
8216SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8217 SDValue N1, SDValue N2, SDValue N3,
8218 const SDNodeFlags Flags) {
8220 N2.getOpcode() != ISD::DELETED_NODE &&
8221 N3.getOpcode() != ISD::DELETED_NODE &&
8222 "Operand is DELETED_NODE!");
8223 // Perform various simplifications.
8224 switch (Opcode) {
8225 case ISD::BUILD_VECTOR: {
8226 // Attempt to simplify BUILD_VECTOR.
8227 SDValue Ops[] = {N1, N2, N3};
8228 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8229 return V;
8230 break;
8231 }
8232 case ISD::CONCAT_VECTORS: {
8233 SDValue Ops[] = {N1, N2, N3};
8234 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8235 return V;
8236 break;
8237 }
8238 case ISD::SETCC: {
8239 assert(VT.isInteger() && "SETCC result type must be an integer!");
8240 assert(N1.getValueType() == N2.getValueType() &&
8241 "SETCC operands must have the same type!");
8242 assert(VT.isVector() == N1.getValueType().isVector() &&
8243 "SETCC type should be vector iff the operand type is vector!");
8244 assert((!VT.isVector() || VT.getVectorElementCount() ==
8246 "SETCC vector element counts must match!");
8247 // Use FoldSetCC to simplify SETCC's.
8248 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8249 return V;
8250 break;
8251 }
8252 case ISD::SELECT:
8253 case ISD::VSELECT:
8254 if (SDValue V = simplifySelect(N1, N2, N3))
8255 return V;
8256 break;
8258 llvm_unreachable("should use getVectorShuffle constructor!");
8259 case ISD::VECTOR_SPLICE: {
8260 if (cast<ConstantSDNode>(N3)->isZero())
8261 return N1;
8262 break;
8263 }
8265 assert(VT.isVector() && VT == N1.getValueType() &&
8266 "INSERT_VECTOR_ELT vector type mismatch");
8268 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8269 assert((!VT.isFloatingPoint() ||
8270 VT.getVectorElementType() == N2.getValueType()) &&
8271 "INSERT_VECTOR_ELT fp scalar type mismatch");
8272 assert((!VT.isInteger() ||
8274 "INSERT_VECTOR_ELT int scalar size mismatch");
8275
8276 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8277 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8278 // for scalable vectors where we will generate appropriate code to
8279 // deal with out-of-bounds cases correctly.
8280 if (N3C && VT.isFixedLengthVector() &&
8281 N3C->getZExtValue() >= VT.getVectorNumElements())
8282 return getUNDEF(VT);
8283
8284 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8285 if (N3.isUndef())
8286 return getUNDEF(VT);
8287
8288 // If inserting poison, just use the input vector.
8289 if (N2.getOpcode() == ISD::POISON)
8290 return N1;
8291
8292 // Inserting undef into undef/poison is still undef.
8293 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8294 return getUNDEF(VT);
8295
8296 // If the inserted element is an UNDEF, just use the input vector.
8297 // But not if skipping the insert could make the result more poisonous.
8298 if (N2.isUndef()) {
8299 if (N3C && VT.isFixedLengthVector()) {
8300 APInt EltMask =
8301 APInt::getOneBitSet(VT.getVectorNumElements(), N3C->getZExtValue());
8302 if (isGuaranteedNotToBePoison(N1, EltMask))
8303 return N1;
8304 } else if (isGuaranteedNotToBePoison(N1))
8305 return N1;
8306 }
8307 break;
8308 }
8309 case ISD::INSERT_SUBVECTOR: {
8310 // If inserting poison, just use the input vector,
8311 if (N2.getOpcode() == ISD::POISON)
8312 return N1;
8313
8314 // Inserting undef into undef/poison is still undef.
8315 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8316 return getUNDEF(VT);
8317
8318 EVT N2VT = N2.getValueType();
8319 assert(VT == N1.getValueType() &&
8320 "Dest and insert subvector source types must match!");
8321 assert(VT.isVector() && N2VT.isVector() &&
8322 "Insert subvector VTs must be vectors!");
8324 "Insert subvector VTs must have the same element type!");
8325 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8326 "Cannot insert a scalable vector into a fixed length vector!");
8327 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8329 "Insert subvector must be from smaller vector to larger vector!");
8331 "Insert subvector index must be constant");
8332 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8333 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8335 "Insert subvector overflow!");
8337 TLI->getVectorIdxWidth(getDataLayout()) &&
8338 "Constant index for INSERT_SUBVECTOR has an invalid size");
8339
8340 // Trivial insertion.
8341 if (VT == N2VT)
8342 return N2;
8343
8344 // If this is an insert of an extracted vector into an undef/poison vector,
8345 // we can just use the input to the extract. But not if skipping the
8346 // extract+insert could make the result more poisonous.
8347 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8348 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) {
8349 if (N1.getOpcode() == ISD::POISON)
8350 return N2.getOperand(0);
8351 if (VT.isFixedLengthVector() && N2VT.isFixedLengthVector()) {
8352 unsigned LoBit = N3->getAsZExtVal();
8353 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8354 APInt EltMask =
8355 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8356 if (isGuaranteedNotToBePoison(N2.getOperand(0), ~EltMask))
8357 return N2.getOperand(0);
8358 } else if (isGuaranteedNotToBePoison(N2.getOperand(0)))
8359 return N2.getOperand(0);
8360 }
8361
8362 // If the inserted subvector is UNDEF, just use the input vector.
8363 // But not if skipping the insert could make the result more poisonous.
8364 if (N2.isUndef()) {
8365 if (VT.isFixedLengthVector()) {
8366 unsigned LoBit = N3->getAsZExtVal();
8367 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8368 APInt EltMask =
8369 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8370 if (isGuaranteedNotToBePoison(N1, EltMask))
8371 return N1;
8372 } else if (isGuaranteedNotToBePoison(N1))
8373 return N1;
8374 }
8375 break;
8376 }
8377 case ISD::BITCAST:
8378 // Fold bit_convert nodes from a type to themselves.
8379 if (N1.getValueType() == VT)
8380 return N1;
8381 break;
8382 case ISD::VP_TRUNCATE:
8383 case ISD::VP_SIGN_EXTEND:
8384 case ISD::VP_ZERO_EXTEND:
8385 // Don't create noop casts.
8386 if (N1.getValueType() == VT)
8387 return N1;
8388 break;
8389 case ISD::VECTOR_COMPRESS: {
8390 [[maybe_unused]] EVT VecVT = N1.getValueType();
8391 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8392 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8393 assert(VT == VecVT && "Vector and result type don't match.");
8394 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8395 "All inputs must be vectors.");
8396 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8398 "Vector and mask must have same number of elements.");
8399
8400 if (N1.isUndef() || N2.isUndef())
8401 return N3;
8402
8403 break;
8404 }
8405 case ISD::PARTIAL_REDUCE_UMLA:
8406 case ISD::PARTIAL_REDUCE_SMLA:
8407 case ISD::PARTIAL_REDUCE_SUMLA: {
8408 [[maybe_unused]] EVT AccVT = N1.getValueType();
8409 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8410 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8411 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8412 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8413 "node to have the same type!");
8414 assert(VT.isVector() && VT == AccVT &&
8415 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8416 "the same type as its result!");
8418 AccVT.getVectorElementCount()) &&
8419 "Expected the element count of the second and third operands of the "
8420 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8421 "element count of the first operand and the result!");
8423 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8424 "node to have an element type which is the same as or smaller than "
8425 "the element type of the first operand and result!");
8426 break;
8427 }
8428 }
8429
8430 // Perform trivial constant folding for arithmetic operators.
8431 switch (Opcode) {
8432 case ISD::FMA:
8433 case ISD::FMAD:
8434 case ISD::SETCC:
8435 case ISD::FSHL:
8436 case ISD::FSHR:
8437 if (SDValue SV =
8438 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8439 return SV;
8440 break;
8441 }
8442
8443 // Memoize node if it doesn't produce a glue result.
8444 SDNode *N;
8445 SDVTList VTs = getVTList(VT);
8446 SDValue Ops[] = {N1, N2, N3};
8447 if (VT != MVT::Glue) {
8449 AddNodeIDNode(ID, Opcode, VTs, Ops);
8450 void *IP = nullptr;
8451 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8452 E->intersectFlagsWith(Flags);
8453 return SDValue(E, 0);
8454 }
8455
8456 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8457 N->setFlags(Flags);
8458 createOperands(N, Ops);
8459 CSEMap.InsertNode(N, IP);
8460 } else {
8461 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8462 createOperands(N, Ops);
8463 }
8464
8465 InsertNode(N);
8466 SDValue V = SDValue(N, 0);
8467 NewSDValueDbgMsg(V, "Creating new node: ", this);
8468 return V;
8469}
8470
8471SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8472 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8473 const SDNodeFlags Flags) {
8474 SDValue Ops[] = { N1, N2, N3, N4 };
8475 return getNode(Opcode, DL, VT, Ops, Flags);
8476}
8477
8478SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8479 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8480 SDNodeFlags Flags;
8481 if (Inserter)
8482 Flags = Inserter->getFlags();
8483 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8484}
8485
8486SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8487 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8488 SDValue N5, const SDNodeFlags Flags) {
8489 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8490 return getNode(Opcode, DL, VT, Ops, Flags);
8491}
8492
8493SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8494 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8495 SDValue N5) {
8496 SDNodeFlags Flags;
8497 if (Inserter)
8498 Flags = Inserter->getFlags();
8499 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8500}
8501
8502/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8503/// the incoming stack arguments to be loaded from the stack.
8505 SmallVector<SDValue, 8> ArgChains;
8506
8507 // Include the original chain at the beginning of the list. When this is
8508 // used by target LowerCall hooks, this helps legalize find the
8509 // CALLSEQ_BEGIN node.
8510 ArgChains.push_back(Chain);
8511
8512 // Add a chain value for each stack argument.
8513 for (SDNode *U : getEntryNode().getNode()->users())
8514 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8515 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8516 if (FI->getIndex() < 0)
8517 ArgChains.push_back(SDValue(L, 1));
8518
8519 // Build a tokenfactor for all the chains.
8520 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8521}
8522
8523/// getMemsetValue - Vectorized representation of the memset value
8524/// operand.
8526 const SDLoc &dl) {
8527 assert(!Value.isUndef());
8528
8529 unsigned NumBits = VT.getScalarSizeInBits();
8531 assert(C->getAPIntValue().getBitWidth() == 8);
8532 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8533 if (VT.isInteger()) {
8534 bool IsOpaque = VT.getSizeInBits() > 64 ||
8535 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8536 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8537 }
8538 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8539 }
8540
8541 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8542 EVT IntVT = VT.getScalarType();
8543 if (!IntVT.isInteger())
8544 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8545
8546 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8547 if (NumBits > 8) {
8548 // Use a multiplication with 0x010101... to extend the input to the
8549 // required length.
8550 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8551 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8552 DAG.getConstant(Magic, dl, IntVT));
8553 }
8554
8555 if (VT != Value.getValueType() && !VT.isInteger())
8556 Value = DAG.getBitcast(VT.getScalarType(), Value);
8557 if (VT != Value.getValueType())
8558 Value = DAG.getSplatBuildVector(VT, dl, Value);
8559
8560 return Value;
8561}
8562
8563/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8564/// used when a memcpy is turned into a memset when the source is a constant
8565/// string ptr.
8567 const TargetLowering &TLI,
8568 const ConstantDataArraySlice &Slice) {
8569 // Handle vector with all elements zero.
8570 if (Slice.Array == nullptr) {
8571 if (VT.isInteger())
8572 return DAG.getConstant(0, dl, VT);
8573 return DAG.getNode(ISD::BITCAST, dl, VT,
8574 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8575 }
8576
8577 assert(!VT.isVector() && "Can't handle vector type here!");
8578 unsigned NumVTBits = VT.getSizeInBits();
8579 unsigned NumVTBytes = NumVTBits / 8;
8580 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8581
8582 APInt Val(NumVTBits, 0);
8583 if (DAG.getDataLayout().isLittleEndian()) {
8584 for (unsigned i = 0; i != NumBytes; ++i)
8585 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8586 } else {
8587 for (unsigned i = 0; i != NumBytes; ++i)
8588 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8589 }
8590
8591 // If the "cost" of materializing the integer immediate is less than the cost
8592 // of a load, then it is cost effective to turn the load into the immediate.
8593 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8594 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8595 return DAG.getConstant(Val, dl, VT);
8596 return SDValue();
8597}
8598
8600 const SDLoc &DL,
8601 const SDNodeFlags Flags) {
8602 EVT VT = Base.getValueType();
8603 SDValue Index;
8604
8605 if (Offset.isScalable())
8606 Index = getVScale(DL, Base.getValueType(),
8607 APInt(Base.getValueSizeInBits().getFixedValue(),
8608 Offset.getKnownMinValue()));
8609 else
8610 Index = getConstant(Offset.getFixedValue(), DL, VT);
8611
8612 return getMemBasePlusOffset(Base, Index, DL, Flags);
8613}
8614
8616 const SDLoc &DL,
8617 const SDNodeFlags Flags) {
8618 assert(Offset.getValueType().isInteger());
8619 EVT BasePtrVT = Ptr.getValueType();
8620 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8621 BasePtrVT))
8622 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8623 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8624}
8625
8626/// Returns true if memcpy source is constant data.
8628 uint64_t SrcDelta = 0;
8629 GlobalAddressSDNode *G = nullptr;
8630 if (Src.getOpcode() == ISD::GlobalAddress)
8632 else if (Src->isAnyAdd() &&
8633 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8634 Src.getOperand(1).getOpcode() == ISD::Constant) {
8635 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8636 SrcDelta = Src.getConstantOperandVal(1);
8637 }
8638 if (!G)
8639 return false;
8640
8641 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8642 SrcDelta + G->getOffset());
8643}
8644
8646 SelectionDAG &DAG) {
8647 // On Darwin, -Os means optimize for size without hurting performance, so
8648 // only really optimize for size when -Oz (MinSize) is used.
8650 return MF.getFunction().hasMinSize();
8651 return DAG.shouldOptForSize();
8652}
8653
8655 SmallVector<SDValue, 32> &OutChains, unsigned From,
8656 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8657 SmallVector<SDValue, 16> &OutStoreChains) {
8658 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8659 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8660 SmallVector<SDValue, 16> GluedLoadChains;
8661 for (unsigned i = From; i < To; ++i) {
8662 OutChains.push_back(OutLoadChains[i]);
8663 GluedLoadChains.push_back(OutLoadChains[i]);
8664 }
8665
8666 // Chain for all loads.
8667 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8668 GluedLoadChains);
8669
8670 for (unsigned i = From; i < To; ++i) {
8671 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8672 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8673 ST->getBasePtr(), ST->getMemoryVT(),
8674 ST->getMemOperand());
8675 OutChains.push_back(NewStore);
8676 }
8677}
8678
8680 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8681 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8682 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8683 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8684 // Turn a memcpy of undef to nop.
8685 // FIXME: We need to honor volatile even is Src is undef.
8686 if (Src.isUndef())
8687 return Chain;
8688
8689 // Expand memcpy to a series of load and store ops if the size operand falls
8690 // below a certain threshold.
8691 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8692 // rather than maybe a humongous number of loads and stores.
8693 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8694 const DataLayout &DL = DAG.getDataLayout();
8695 LLVMContext &C = *DAG.getContext();
8696 std::vector<EVT> MemOps;
8697 bool DstAlignCanChange = false;
8699 MachineFrameInfo &MFI = MF.getFrameInfo();
8700 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8702 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8703 DstAlignCanChange = true;
8704 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8705 if (!SrcAlign || Alignment > *SrcAlign)
8706 SrcAlign = Alignment;
8707 assert(SrcAlign && "SrcAlign must be set");
8709 // If marked as volatile, perform a copy even when marked as constant.
8710 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8711 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8712 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8713 const MemOp Op = isZeroConstant
8714 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8715 /*IsZeroMemset*/ true, isVol)
8716 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8717 *SrcAlign, isVol, CopyFromConstant);
8718 if (!TLI.findOptimalMemOpLowering(
8719 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8720 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8721 return SDValue();
8722
8723 if (DstAlignCanChange) {
8724 Type *Ty = MemOps[0].getTypeForEVT(C);
8725 Align NewAlign = DL.getABITypeAlign(Ty);
8726
8727 // Don't promote to an alignment that would require dynamic stack
8728 // realignment which may conflict with optimizations such as tail call
8729 // optimization.
8731 if (!TRI->hasStackRealignment(MF))
8732 if (MaybeAlign StackAlign = DL.getStackAlignment())
8733 NewAlign = std::min(NewAlign, *StackAlign);
8734
8735 if (NewAlign > Alignment) {
8736 // Give the stack frame object a larger alignment if needed.
8737 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8738 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8739 Alignment = NewAlign;
8740 }
8741 }
8742
8743 // Prepare AAInfo for loads/stores after lowering this memcpy.
8744 AAMDNodes NewAAInfo = AAInfo;
8745 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8746
8747 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8748 bool isConstant =
8749 BatchAA && SrcVal &&
8750 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8751
8752 MachineMemOperand::Flags MMOFlags =
8754 SmallVector<SDValue, 16> OutLoadChains;
8755 SmallVector<SDValue, 16> OutStoreChains;
8756 SmallVector<SDValue, 32> OutChains;
8757 unsigned NumMemOps = MemOps.size();
8758 uint64_t SrcOff = 0, DstOff = 0;
8759 for (unsigned i = 0; i != NumMemOps; ++i) {
8760 EVT VT = MemOps[i];
8761 unsigned VTSize = VT.getSizeInBits() / 8;
8762 SDValue Value, Store;
8763
8764 if (VTSize > Size) {
8765 // Issuing an unaligned load / store pair that overlaps with the previous
8766 // pair. Adjust the offset accordingly.
8767 assert(i == NumMemOps-1 && i != 0);
8768 SrcOff -= VTSize - Size;
8769 DstOff -= VTSize - Size;
8770 }
8771
8772 if (CopyFromConstant &&
8773 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8774 // It's unlikely a store of a vector immediate can be done in a single
8775 // instruction. It would require a load from a constantpool first.
8776 // We only handle zero vectors here.
8777 // FIXME: Handle other cases where store of vector immediate is done in
8778 // a single instruction.
8779 ConstantDataArraySlice SubSlice;
8780 if (SrcOff < Slice.Length) {
8781 SubSlice = Slice;
8782 SubSlice.move(SrcOff);
8783 } else {
8784 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8785 SubSlice.Array = nullptr;
8786 SubSlice.Offset = 0;
8787 SubSlice.Length = VTSize;
8788 }
8789 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8790 if (Value.getNode()) {
8791 Store = DAG.getStore(
8792 Chain, dl, Value,
8793 DAG.getObjectPtrOffset(dl, Dst, TypeSize::getFixed(DstOff)),
8794 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8795 OutChains.push_back(Store);
8796 }
8797 }
8798
8799 if (!Store.getNode()) {
8800 // The type might not be legal for the target. This should only happen
8801 // if the type is smaller than a legal type, as on PPC, so the right
8802 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8803 // to Load/Store if NVT==VT.
8804 // FIXME does the case above also need this?
8805 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8806 assert(NVT.bitsGE(VT));
8807
8808 bool isDereferenceable =
8809 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8810 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8811 if (isDereferenceable)
8813 if (isConstant)
8814 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8815
8816 Value = DAG.getExtLoad(
8817 ISD::EXTLOAD, dl, NVT, Chain,
8818 DAG.getObjectPtrOffset(dl, Src, TypeSize::getFixed(SrcOff)),
8819 SrcPtrInfo.getWithOffset(SrcOff), VT,
8820 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8821 OutLoadChains.push_back(Value.getValue(1));
8822
8823 Store = DAG.getTruncStore(
8824 Chain, dl, Value,
8825 DAG.getObjectPtrOffset(dl, Dst, TypeSize::getFixed(DstOff)),
8826 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8827 OutStoreChains.push_back(Store);
8828 }
8829 SrcOff += VTSize;
8830 DstOff += VTSize;
8831 Size -= VTSize;
8832 }
8833
8834 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8836 unsigned NumLdStInMemcpy = OutStoreChains.size();
8837
8838 if (NumLdStInMemcpy) {
8839 // It may be that memcpy might be converted to memset if it's memcpy
8840 // of constants. In such a case, we won't have loads and stores, but
8841 // just stores. In the absence of loads, there is nothing to gang up.
8842 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8843 // If target does not care, just leave as it.
8844 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8845 OutChains.push_back(OutLoadChains[i]);
8846 OutChains.push_back(OutStoreChains[i]);
8847 }
8848 } else {
8849 // Ld/St less than/equal limit set by target.
8850 if (NumLdStInMemcpy <= GluedLdStLimit) {
8851 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8852 NumLdStInMemcpy, OutLoadChains,
8853 OutStoreChains);
8854 } else {
8855 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8856 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8857 unsigned GlueIter = 0;
8858
8859 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8860 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8861 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8862
8863 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8864 OutLoadChains, OutStoreChains);
8865 GlueIter += GluedLdStLimit;
8866 }
8867
8868 // Residual ld/st.
8869 if (RemainingLdStInMemcpy) {
8870 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8871 RemainingLdStInMemcpy, OutLoadChains,
8872 OutStoreChains);
8873 }
8874 }
8875 }
8876 }
8877 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8878}
8879
8881 SDValue Chain, SDValue Dst, SDValue Src,
8882 uint64_t Size, Align Alignment,
8883 bool isVol, bool AlwaysInline,
8884 MachinePointerInfo DstPtrInfo,
8885 MachinePointerInfo SrcPtrInfo,
8886 const AAMDNodes &AAInfo) {
8887 // Turn a memmove of undef to nop.
8888 // FIXME: We need to honor volatile even is Src is undef.
8889 if (Src.isUndef())
8890 return Chain;
8891
8892 // Expand memmove to a series of load and store ops if the size operand falls
8893 // below a certain threshold.
8894 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8895 const DataLayout &DL = DAG.getDataLayout();
8896 LLVMContext &C = *DAG.getContext();
8897 std::vector<EVT> MemOps;
8898 bool DstAlignCanChange = false;
8900 MachineFrameInfo &MFI = MF.getFrameInfo();
8901 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8903 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8904 DstAlignCanChange = true;
8905 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8906 if (!SrcAlign || Alignment > *SrcAlign)
8907 SrcAlign = Alignment;
8908 assert(SrcAlign && "SrcAlign must be set");
8909 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8910 if (!TLI.findOptimalMemOpLowering(
8911 C, MemOps, Limit,
8912 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8913 /*IsVolatile*/ true),
8914 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8915 MF.getFunction().getAttributes()))
8916 return SDValue();
8917
8918 if (DstAlignCanChange) {
8919 Type *Ty = MemOps[0].getTypeForEVT(C);
8920 Align NewAlign = DL.getABITypeAlign(Ty);
8921
8922 // Don't promote to an alignment that would require dynamic stack
8923 // realignment which may conflict with optimizations such as tail call
8924 // optimization.
8926 if (!TRI->hasStackRealignment(MF))
8927 if (MaybeAlign StackAlign = DL.getStackAlignment())
8928 NewAlign = std::min(NewAlign, *StackAlign);
8929
8930 if (NewAlign > Alignment) {
8931 // Give the stack frame object a larger alignment if needed.
8932 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8933 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8934 Alignment = NewAlign;
8935 }
8936 }
8937
8938 // Prepare AAInfo for loads/stores after lowering this memmove.
8939 AAMDNodes NewAAInfo = AAInfo;
8940 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8941
8942 MachineMemOperand::Flags MMOFlags =
8944 uint64_t SrcOff = 0, DstOff = 0;
8945 SmallVector<SDValue, 8> LoadValues;
8946 SmallVector<SDValue, 8> LoadChains;
8947 SmallVector<SDValue, 8> OutChains;
8948 unsigned NumMemOps = MemOps.size();
8949 for (unsigned i = 0; i < NumMemOps; i++) {
8950 EVT VT = MemOps[i];
8951 unsigned VTSize = VT.getSizeInBits() / 8;
8952 SDValue Value;
8953
8954 bool isDereferenceable =
8955 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8956 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8957 if (isDereferenceable)
8959
8960 Value = DAG.getLoad(
8961 VT, dl, Chain,
8962 DAG.getObjectPtrOffset(dl, Src, TypeSize::getFixed(SrcOff)),
8963 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8964 LoadValues.push_back(Value);
8965 LoadChains.push_back(Value.getValue(1));
8966 SrcOff += VTSize;
8967 }
8968 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8969 OutChains.clear();
8970 for (unsigned i = 0; i < NumMemOps; i++) {
8971 EVT VT = MemOps[i];
8972 unsigned VTSize = VT.getSizeInBits() / 8;
8973 SDValue Store;
8974
8975 Store = DAG.getStore(
8976 Chain, dl, LoadValues[i],
8977 DAG.getObjectPtrOffset(dl, Dst, TypeSize::getFixed(DstOff)),
8978 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8979 OutChains.push_back(Store);
8980 DstOff += VTSize;
8981 }
8982
8983 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8984}
8985
8986/// Lower the call to 'memset' intrinsic function into a series of store
8987/// operations.
8988///
8989/// \param DAG Selection DAG where lowered code is placed.
8990/// \param dl Link to corresponding IR location.
8991/// \param Chain Control flow dependency.
8992/// \param Dst Pointer to destination memory location.
8993/// \param Src Value of byte to write into the memory.
8994/// \param Size Number of bytes to write.
8995/// \param Alignment Alignment of the destination in bytes.
8996/// \param isVol True if destination is volatile.
8997/// \param AlwaysInline Makes sure no function call is generated.
8998/// \param DstPtrInfo IR information on the memory pointer.
8999/// \returns New head in the control flow, if lowering was successful, empty
9000/// SDValue otherwise.
9001///
9002/// The function tries to replace 'llvm.memset' intrinsic with several store
9003/// operations and value calculation code. This is usually profitable for small
9004/// memory size or when the semantic requires inlining.
9006 SDValue Chain, SDValue Dst, SDValue Src,
9007 uint64_t Size, Align Alignment, bool isVol,
9008 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
9009 const AAMDNodes &AAInfo) {
9010 // Turn a memset of undef to nop.
9011 // FIXME: We need to honor volatile even is Src is undef.
9012 if (Src.isUndef())
9013 return Chain;
9014
9015 // Expand memset to a series of load/store ops if the size operand
9016 // falls below a certain threshold.
9017 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9018 std::vector<EVT> MemOps;
9019 bool DstAlignCanChange = false;
9020 LLVMContext &C = *DAG.getContext();
9022 MachineFrameInfo &MFI = MF.getFrameInfo();
9023 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
9025 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
9026 DstAlignCanChange = true;
9027 bool IsZeroVal = isNullConstant(Src);
9028 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
9029
9030 if (!TLI.findOptimalMemOpLowering(
9031 C, MemOps, Limit,
9032 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9033 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
9034 return SDValue();
9035
9036 if (DstAlignCanChange) {
9037 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
9038 const DataLayout &DL = DAG.getDataLayout();
9039 Align NewAlign = DL.getABITypeAlign(Ty);
9040
9041 // Don't promote to an alignment that would require dynamic stack
9042 // realignment which may conflict with optimizations such as tail call
9043 // optimization.
9045 if (!TRI->hasStackRealignment(MF))
9046 if (MaybeAlign StackAlign = DL.getStackAlignment())
9047 NewAlign = std::min(NewAlign, *StackAlign);
9048
9049 if (NewAlign > Alignment) {
9050 // Give the stack frame object a larger alignment if needed.
9051 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
9052 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
9053 Alignment = NewAlign;
9054 }
9055 }
9056
9057 SmallVector<SDValue, 8> OutChains;
9058 uint64_t DstOff = 0;
9059 unsigned NumMemOps = MemOps.size();
9060
9061 // Find the largest store and generate the bit pattern for it.
9062 EVT LargestVT = MemOps[0];
9063 for (unsigned i = 1; i < NumMemOps; i++)
9064 if (MemOps[i].bitsGT(LargestVT))
9065 LargestVT = MemOps[i];
9066 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
9067
9068 // Prepare AAInfo for loads/stores after lowering this memset.
9069 AAMDNodes NewAAInfo = AAInfo;
9070 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
9071
9072 for (unsigned i = 0; i < NumMemOps; i++) {
9073 EVT VT = MemOps[i];
9074 unsigned VTSize = VT.getSizeInBits() / 8;
9075 if (VTSize > Size) {
9076 // Issuing an unaligned load / store pair that overlaps with the previous
9077 // pair. Adjust the offset accordingly.
9078 assert(i == NumMemOps-1 && i != 0);
9079 DstOff -= VTSize - Size;
9080 }
9081
9082 // If this store is smaller than the largest store see whether we can get
9083 // the smaller value for free with a truncate or extract vector element and
9084 // then store.
9085 SDValue Value = MemSetValue;
9086 if (VT.bitsLT(LargestVT)) {
9087 unsigned Index;
9088 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9089 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9090 if (!LargestVT.isVector() && !VT.isVector() &&
9091 TLI.isTruncateFree(LargestVT, VT))
9092 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9093 else if (LargestVT.isVector() && !VT.isVector() &&
9095 LargestVT.getTypeForEVT(*DAG.getContext()),
9096 VT.getSizeInBits(), Index) &&
9097 TLI.isTypeLegal(SVT) &&
9098 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9099 // Target which can combine store(extractelement VectorTy, Idx) can get
9100 // the smaller value for free.
9101 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9102 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9103 } else
9104 Value = getMemsetValue(Src, VT, DAG, dl);
9105 }
9106 assert(Value.getValueType() == VT && "Value with wrong type.");
9107 SDValue Store = DAG.getStore(
9108 Chain, dl, Value,
9109 DAG.getObjectPtrOffset(dl, Dst, TypeSize::getFixed(DstOff)),
9110 DstPtrInfo.getWithOffset(DstOff), Alignment,
9112 NewAAInfo);
9113 OutChains.push_back(Store);
9114 DstOff += VT.getSizeInBits() / 8;
9115 Size -= VTSize;
9116 }
9117
9118 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9119}
9120
9122 unsigned AS) {
9123 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9124 // pointer operands can be losslessly bitcasted to pointers of address space 0
9125 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9126 report_fatal_error("cannot lower memory intrinsic in address space " +
9127 Twine(AS));
9128 }
9129}
9130
9132 const SelectionDAG *SelDAG,
9133 bool AllowReturnsFirstArg) {
9134 if (!CI || !CI->isTailCall())
9135 return false;
9136 // TODO: Fix "returns-first-arg" determination so it doesn't depend on which
9137 // helper symbol we lower to.
9138 return isInTailCallPosition(*CI, SelDAG->getTarget(),
9139 AllowReturnsFirstArg &&
9141}
9142
9143std::pair<SDValue, SDValue>
9145 SDValue Mem1, SDValue Size, const CallInst *CI) {
9146 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9147 if (!LibCallName)
9148 return {};
9149
9152 {Mem0, PT},
9153 {Mem1, PT},
9155
9157 bool IsTailCall =
9158 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9159
9160 CLI.setDebugLoc(dl)
9161 .setChain(Chain)
9162 .setLibCallee(
9163 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9165 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9166 std::move(Args))
9167 .setTailCall(IsTailCall);
9168
9169 return TLI->LowerCallTo(CLI);
9170}
9171
9172std::pair<SDValue, SDValue> SelectionDAG::getStrlen(SDValue Chain,
9173 const SDLoc &dl,
9174 SDValue Src,
9175 const CallInst *CI) {
9176 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9177 if (!LibCallName)
9178 return {};
9179
9180 // Emit a library call.
9183
9185 bool IsTailCall =
9186 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9187
9188 CLI.setDebugLoc(dl)
9189 .setChain(Chain)
9190 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::STRLEN), CI->getType(),
9192 LibCallName, TLI->getProgramPointerTy(getDataLayout())),
9193 std::move(Args))
9194 .setTailCall(IsTailCall);
9195
9196 return TLI->LowerCallTo(CLI);
9197}
9198
9200 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9201 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9202 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9203 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9204 BatchAAResults *BatchAA) {
9205 // Check to see if we should lower the memcpy to loads and stores first.
9206 // For cases within the target-specified limits, this is the best choice.
9208 if (ConstantSize) {
9209 // Memcpy with size zero? Just return the original chain.
9210 if (ConstantSize->isZero())
9211 return Chain;
9212
9214 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9215 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9216 if (Result.getNode())
9217 return Result;
9218 }
9219
9220 // Then check to see if we should lower the memcpy with target-specific
9221 // code. If the target chooses to do this, this is the next best.
9222 if (TSI) {
9223 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9224 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9225 DstPtrInfo, SrcPtrInfo);
9226 if (Result.getNode())
9227 return Result;
9228 }
9229
9230 // If we really need inline code and the target declined to provide it,
9231 // use a (potentially long) sequence of loads and stores.
9232 if (AlwaysInline) {
9233 assert(ConstantSize && "AlwaysInline requires a constant size!");
9235 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9236 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9237 }
9238
9241
9242 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9243 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9244 // respect volatile, so they may do things like read or write memory
9245 // beyond the given memory regions. But fixing this isn't easy, and most
9246 // people don't care.
9247
9248 // Emit a library call.
9251 Args.emplace_back(Dst, PtrTy);
9252 Args.emplace_back(Src, PtrTy);
9253 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9254 // FIXME: pass in SDLoc
9256 bool IsTailCall = false;
9257 const char *MemCpyName = TLI->getMemcpyName();
9258
9259 if (OverrideTailCall.has_value()) {
9260 IsTailCall = *OverrideTailCall;
9261 } else {
9262 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9263 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemcpy);
9264 }
9265
9266 CLI.setDebugLoc(dl)
9267 .setChain(Chain)
9268 .setLibCallee(
9269 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9270 Dst.getValueType().getTypeForEVT(*getContext()),
9271 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9272 std::move(Args))
9274 .setTailCall(IsTailCall);
9275
9276 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9277 return CallResult.second;
9278}
9279
9281 SDValue Dst, SDValue Src, SDValue Size,
9282 Type *SizeTy, unsigned ElemSz,
9283 bool isTailCall,
9284 MachinePointerInfo DstPtrInfo,
9285 MachinePointerInfo SrcPtrInfo) {
9286 // Emit a library call.
9289 Args.emplace_back(Dst, ArgTy);
9290 Args.emplace_back(Src, ArgTy);
9291 Args.emplace_back(Size, SizeTy);
9292
9293 RTLIB::Libcall LibraryCall =
9295 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9296 report_fatal_error("Unsupported element size");
9297
9299 CLI.setDebugLoc(dl)
9300 .setChain(Chain)
9301 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9303 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9304 TLI->getPointerTy(getDataLayout())),
9305 std::move(Args))
9307 .setTailCall(isTailCall);
9308
9309 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9310 return CallResult.second;
9311}
9312
9314 SDValue Src, SDValue Size, Align Alignment,
9315 bool isVol, const CallInst *CI,
9316 std::optional<bool> OverrideTailCall,
9317 MachinePointerInfo DstPtrInfo,
9318 MachinePointerInfo SrcPtrInfo,
9319 const AAMDNodes &AAInfo,
9320 BatchAAResults *BatchAA) {
9321 // Check to see if we should lower the memmove to loads and stores first.
9322 // For cases within the target-specified limits, this is the best choice.
9324 if (ConstantSize) {
9325 // Memmove with size zero? Just return the original chain.
9326 if (ConstantSize->isZero())
9327 return Chain;
9328
9330 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9331 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9332 if (Result.getNode())
9333 return Result;
9334 }
9335
9336 // Then check to see if we should lower the memmove with target-specific
9337 // code. If the target chooses to do this, this is the next best.
9338 if (TSI) {
9339 SDValue Result =
9340 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9341 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9342 if (Result.getNode())
9343 return Result;
9344 }
9345
9348
9349 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9350 // not be safe. See memcpy above for more details.
9351
9352 // Emit a library call.
9355 Args.emplace_back(Dst, PtrTy);
9356 Args.emplace_back(Src, PtrTy);
9357 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9358 // FIXME: pass in SDLoc
9360
9361 bool IsTailCall = false;
9362 if (OverrideTailCall.has_value()) {
9363 IsTailCall = *OverrideTailCall;
9364 } else {
9365 bool LowersToMemmove =
9366 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9367 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemmove);
9368 }
9369
9370 CLI.setDebugLoc(dl)
9371 .setChain(Chain)
9372 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9373 Dst.getValueType().getTypeForEVT(*getContext()),
9374 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9375 TLI->getPointerTy(getDataLayout())),
9376 std::move(Args))
9378 .setTailCall(IsTailCall);
9379
9380 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9381 return CallResult.second;
9382}
9383
9385 SDValue Dst, SDValue Src, SDValue Size,
9386 Type *SizeTy, unsigned ElemSz,
9387 bool isTailCall,
9388 MachinePointerInfo DstPtrInfo,
9389 MachinePointerInfo SrcPtrInfo) {
9390 // Emit a library call.
9392 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9393 Args.emplace_back(Dst, IntPtrTy);
9394 Args.emplace_back(Src, IntPtrTy);
9395 Args.emplace_back(Size, SizeTy);
9396
9397 RTLIB::Libcall LibraryCall =
9399 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9400 report_fatal_error("Unsupported element size");
9401
9403 CLI.setDebugLoc(dl)
9404 .setChain(Chain)
9405 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9407 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9408 TLI->getPointerTy(getDataLayout())),
9409 std::move(Args))
9411 .setTailCall(isTailCall);
9412
9413 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9414 return CallResult.second;
9415}
9416
9418 SDValue Src, SDValue Size, Align Alignment,
9419 bool isVol, bool AlwaysInline,
9420 const CallInst *CI,
9421 MachinePointerInfo DstPtrInfo,
9422 const AAMDNodes &AAInfo) {
9423 // Check to see if we should lower the memset to stores first.
9424 // For cases within the target-specified limits, this is the best choice.
9426 if (ConstantSize) {
9427 // Memset with size zero? Just return the original chain.
9428 if (ConstantSize->isZero())
9429 return Chain;
9430
9431 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9432 ConstantSize->getZExtValue(), Alignment,
9433 isVol, false, DstPtrInfo, AAInfo);
9434
9435 if (Result.getNode())
9436 return Result;
9437 }
9438
9439 // Then check to see if we should lower the memset with target-specific
9440 // code. If the target chooses to do this, this is the next best.
9441 if (TSI) {
9442 SDValue Result = TSI->EmitTargetCodeForMemset(
9443 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9444 if (Result.getNode())
9445 return Result;
9446 }
9447
9448 // If we really need inline code and the target declined to provide it,
9449 // use a (potentially long) sequence of loads and stores.
9450 if (AlwaysInline) {
9451 assert(ConstantSize && "AlwaysInline requires a constant size!");
9452 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9453 ConstantSize->getZExtValue(), Alignment,
9454 isVol, true, DstPtrInfo, AAInfo);
9455 assert(Result &&
9456 "getMemsetStores must return a valid sequence when AlwaysInline");
9457 return Result;
9458 }
9459
9461
9462 // Emit a library call.
9463 auto &Ctx = *getContext();
9464 const auto& DL = getDataLayout();
9465
9467 // FIXME: pass in SDLoc
9468 CLI.setDebugLoc(dl).setChain(Chain);
9469
9470 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9471
9472 bool UseBZero = isNullConstant(Src) && BzeroName;
9473 // If zeroing out and bzero is present, use it.
9474 if (UseBZero) {
9476 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9477 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9478 CLI.setLibCallee(
9479 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9480 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9481 } else {
9483 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9484 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9485 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9486 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9487 Dst.getValueType().getTypeForEVT(Ctx),
9488 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9489 TLI->getPointerTy(DL)),
9490 std::move(Args));
9491 }
9492 bool LowersToMemset =
9493 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9494 // If we're going to use bzero, make sure not to tail call unless the
9495 // subsequent return doesn't need a value, as bzero doesn't return the first
9496 // arg unlike memset.
9497 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9498 bool IsTailCall =
9499 CI && CI->isTailCall() &&
9500 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9501 CLI.setDiscardResult().setTailCall(IsTailCall);
9502
9503 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9504 return CallResult.second;
9505}
9506
9509 Type *SizeTy, unsigned ElemSz,
9510 bool isTailCall,
9511 MachinePointerInfo DstPtrInfo) {
9512 // Emit a library call.
9514 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9515 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9516 Args.emplace_back(Size, SizeTy);
9517
9518 RTLIB::Libcall LibraryCall =
9520 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9521 report_fatal_error("Unsupported element size");
9522
9524 CLI.setDebugLoc(dl)
9525 .setChain(Chain)
9526 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9528 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9529 TLI->getPointerTy(getDataLayout())),
9530 std::move(Args))
9532 .setTailCall(isTailCall);
9533
9534 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9535 return CallResult.second;
9536}
9537
9538SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9540 MachineMemOperand *MMO,
9541 ISD::LoadExtType ExtType) {
9543 AddNodeIDNode(ID, Opcode, VTList, Ops);
9544 ID.AddInteger(MemVT.getRawBits());
9545 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9546 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9547 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9548 ID.AddInteger(MMO->getFlags());
9549 void* IP = nullptr;
9550 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9551 E->refineAlignment(MMO);
9552 E->refineRanges(MMO);
9553 return SDValue(E, 0);
9554 }
9555
9556 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9557 VTList, MemVT, MMO, ExtType);
9558 createOperands(N, Ops);
9559
9560 CSEMap.InsertNode(N, IP);
9561 InsertNode(N);
9562 SDValue V(N, 0);
9563 NewSDValueDbgMsg(V, "Creating new node: ", this);
9564 return V;
9565}
9566
9568 EVT MemVT, SDVTList VTs, SDValue Chain,
9569 SDValue Ptr, SDValue Cmp, SDValue Swp,
9570 MachineMemOperand *MMO) {
9571 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9572 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9573 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9574
9575 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9576 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9577}
9578
9579SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9580 SDValue Chain, SDValue Ptr, SDValue Val,
9581 MachineMemOperand *MMO) {
9582 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9583 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9584 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9585 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9586 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9587 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9588 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9589 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9590 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9591 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9592 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9593 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9594 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9595 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9596 Opcode == ISD::ATOMIC_STORE) &&
9597 "Invalid Atomic Op");
9598
9599 EVT VT = Val.getValueType();
9600
9601 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9602 getVTList(VT, MVT::Other);
9603 SDValue Ops[] = {Chain, Ptr, Val};
9604 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9605}
9606
9608 EVT MemVT, EVT VT, SDValue Chain,
9610 SDVTList VTs = getVTList(VT, MVT::Other);
9611 SDValue Ops[] = {Chain, Ptr};
9612 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9613}
9614
9615/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9617 if (Ops.size() == 1)
9618 return Ops[0];
9619
9621 VTs.reserve(Ops.size());
9622 for (const SDValue &Op : Ops)
9623 VTs.push_back(Op.getValueType());
9624 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9625}
9626
9628 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9629 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9631 const AAMDNodes &AAInfo) {
9632 if (Size.hasValue() && !Size.getValue())
9634
9636 MachineMemOperand *MMO =
9637 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9638
9639 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9640}
9641
9643 SDVTList VTList,
9644 ArrayRef<SDValue> Ops, EVT MemVT,
9645 MachineMemOperand *MMO) {
9646 assert(
9647 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9648 Opcode == ISD::PREFETCH ||
9649 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9650 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9651 "Opcode is not a memory-accessing opcode!");
9652
9653 // Memoize the node unless it returns a glue result.
9655 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9657 AddNodeIDNode(ID, Opcode, VTList, Ops);
9658 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9659 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9660 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9661 ID.AddInteger(MMO->getFlags());
9662 ID.AddInteger(MemVT.getRawBits());
9663 void *IP = nullptr;
9664 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9665 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9666 return SDValue(E, 0);
9667 }
9668
9669 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9670 VTList, MemVT, MMO);
9671 createOperands(N, Ops);
9672
9673 CSEMap.InsertNode(N, IP);
9674 } else {
9675 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9676 VTList, MemVT, MMO);
9677 createOperands(N, Ops);
9678 }
9679 InsertNode(N);
9680 SDValue V(N, 0);
9681 NewSDValueDbgMsg(V, "Creating new node: ", this);
9682 return V;
9683}
9684
9686 SDValue Chain, int FrameIndex) {
9687 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9688 const auto VTs = getVTList(MVT::Other);
9689 SDValue Ops[2] = {
9690 Chain,
9691 getFrameIndex(FrameIndex,
9692 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9693 true)};
9694
9696 AddNodeIDNode(ID, Opcode, VTs, Ops);
9697 ID.AddInteger(FrameIndex);
9698 void *IP = nullptr;
9699 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9700 return SDValue(E, 0);
9701
9702 LifetimeSDNode *N =
9703 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9704 createOperands(N, Ops);
9705 CSEMap.InsertNode(N, IP);
9706 InsertNode(N);
9707 SDValue V(N, 0);
9708 NewSDValueDbgMsg(V, "Creating new node: ", this);
9709 return V;
9710}
9711
9713 uint64_t Guid, uint64_t Index,
9714 uint32_t Attr) {
9715 const unsigned Opcode = ISD::PSEUDO_PROBE;
9716 const auto VTs = getVTList(MVT::Other);
9717 SDValue Ops[] = {Chain};
9719 AddNodeIDNode(ID, Opcode, VTs, Ops);
9720 ID.AddInteger(Guid);
9721 ID.AddInteger(Index);
9722 void *IP = nullptr;
9723 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9724 return SDValue(E, 0);
9725
9726 auto *N = newSDNode<PseudoProbeSDNode>(
9727 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9728 createOperands(N, Ops);
9729 CSEMap.InsertNode(N, IP);
9730 InsertNode(N);
9731 SDValue V(N, 0);
9732 NewSDValueDbgMsg(V, "Creating new node: ", this);
9733 return V;
9734}
9735
9736/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9737/// MachinePointerInfo record from it. This is particularly useful because the
9738/// code generator has many cases where it doesn't bother passing in a
9739/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9741 SelectionDAG &DAG, SDValue Ptr,
9742 int64_t Offset = 0) {
9743 // If this is FI+Offset, we can model it.
9746 FI->getIndex(), Offset);
9747
9748 // If this is (FI+Offset1)+Offset2, we can model it.
9749 if (Ptr.getOpcode() != ISD::ADD ||
9750 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9751 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9752 return Info;
9753
9754 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9756 DAG.getMachineFunction(), FI,
9757 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9758}
9759
9760/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9761/// MachinePointerInfo record from it. This is particularly useful because the
9762/// code generator has many cases where it doesn't bother passing in a
9763/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9765 SelectionDAG &DAG, SDValue Ptr,
9766 SDValue OffsetOp) {
9767 // If the 'Offset' value isn't a constant, we can't handle this.
9769 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9770 if (OffsetOp.isUndef())
9771 return InferPointerInfo(Info, DAG, Ptr);
9772 return Info;
9773}
9774
9776 EVT VT, const SDLoc &dl, SDValue Chain,
9778 MachinePointerInfo PtrInfo, EVT MemVT,
9779 Align Alignment,
9780 MachineMemOperand::Flags MMOFlags,
9781 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9782 assert(Chain.getValueType() == MVT::Other &&
9783 "Invalid chain type");
9784
9785 MMOFlags |= MachineMemOperand::MOLoad;
9786 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9787 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9788 // clients.
9789 if (PtrInfo.V.isNull())
9790 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9791
9792 TypeSize Size = MemVT.getStoreSize();
9794 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9795 Alignment, AAInfo, Ranges);
9796 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9797}
9798
9800 EVT VT, const SDLoc &dl, SDValue Chain,
9801 SDValue Ptr, SDValue Offset, EVT MemVT,
9802 MachineMemOperand *MMO) {
9803 if (VT == MemVT) {
9804 ExtType = ISD::NON_EXTLOAD;
9805 } else if (ExtType == ISD::NON_EXTLOAD) {
9806 assert(VT == MemVT && "Non-extending load from different memory type!");
9807 } else {
9808 // Extending load.
9809 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9810 "Should only be an extending load, not truncating!");
9811 assert(VT.isInteger() == MemVT.isInteger() &&
9812 "Cannot convert from FP to Int or Int -> FP!");
9813 assert(VT.isVector() == MemVT.isVector() &&
9814 "Cannot use an ext load to convert to or from a vector!");
9815 assert((!VT.isVector() ||
9817 "Cannot use an ext load to change the number of vector elements!");
9818 }
9819
9820 assert((!MMO->getRanges() ||
9822 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9823 MemVT.isInteger())) &&
9824 "Range metadata and load type must match!");
9825
9826 bool Indexed = AM != ISD::UNINDEXED;
9827 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9828
9829 SDVTList VTs = Indexed ?
9830 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9831 SDValue Ops[] = { Chain, Ptr, Offset };
9833 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9834 ID.AddInteger(MemVT.getRawBits());
9835 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9836 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9837 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9838 ID.AddInteger(MMO->getFlags());
9839 void *IP = nullptr;
9840 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9841 E->refineAlignment(MMO);
9842 E->refineRanges(MMO);
9843 return SDValue(E, 0);
9844 }
9845 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9846 ExtType, MemVT, MMO);
9847 createOperands(N, Ops);
9848
9849 CSEMap.InsertNode(N, IP);
9850 InsertNode(N);
9851 SDValue V(N, 0);
9852 NewSDValueDbgMsg(V, "Creating new node: ", this);
9853 return V;
9854}
9855
9858 MaybeAlign Alignment,
9859 MachineMemOperand::Flags MMOFlags,
9860 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9861 SDValue Undef = getUNDEF(Ptr.getValueType());
9862 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9863 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9864}
9865
9868 SDValue Undef = getUNDEF(Ptr.getValueType());
9869 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9870 VT, MMO);
9871}
9872
9874 EVT VT, SDValue Chain, SDValue Ptr,
9875 MachinePointerInfo PtrInfo, EVT MemVT,
9876 MaybeAlign Alignment,
9877 MachineMemOperand::Flags MMOFlags,
9878 const AAMDNodes &AAInfo) {
9879 SDValue Undef = getUNDEF(Ptr.getValueType());
9880 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9881 MemVT, Alignment, MMOFlags, AAInfo);
9882}
9883
9885 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9886 MachineMemOperand *MMO) {
9887 SDValue Undef = getUNDEF(Ptr.getValueType());
9888 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9889 MemVT, MMO);
9890}
9891
9895 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9896 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9897 // Don't propagate the invariant or dereferenceable flags.
9898 auto MMOFlags =
9899 LD->getMemOperand()->getFlags() &
9901 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9902 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9903 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9904}
9905
9908 Align Alignment,
9909 MachineMemOperand::Flags MMOFlags,
9910 const AAMDNodes &AAInfo) {
9911 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9912
9913 MMOFlags |= MachineMemOperand::MOStore;
9914 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9915
9916 if (PtrInfo.V.isNull())
9917 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9918
9921 MachineMemOperand *MMO =
9922 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9923 return getStore(Chain, dl, Val, Ptr, MMO);
9924}
9925
9928 SDValue Undef = getUNDEF(Ptr.getValueType());
9929 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9931}
9932
9936 bool IsTruncating) {
9937 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9938 EVT VT = Val.getValueType();
9939 if (VT == SVT) {
9940 IsTruncating = false;
9941 } else if (!IsTruncating) {
9942 assert(VT == SVT && "No-truncating store from different memory type!");
9943 } else {
9945 "Should only be a truncating store, not extending!");
9946 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9947 assert(VT.isVector() == SVT.isVector() &&
9948 "Cannot use trunc store to convert to or from a vector!");
9949 assert((!VT.isVector() ||
9951 "Cannot use trunc store to change the number of vector elements!");
9952 }
9953
9954 bool Indexed = AM != ISD::UNINDEXED;
9955 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9956 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9957 : getVTList(MVT::Other);
9958 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9960 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9961 ID.AddInteger(SVT.getRawBits());
9962 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9963 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9964 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9965 ID.AddInteger(MMO->getFlags());
9966 void *IP = nullptr;
9967 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9968 cast<StoreSDNode>(E)->refineAlignment(MMO);
9969 return SDValue(E, 0);
9970 }
9971 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9972 IsTruncating, SVT, MMO);
9973 createOperands(N, Ops);
9974
9975 CSEMap.InsertNode(N, IP);
9976 InsertNode(N);
9977 SDValue V(N, 0);
9978 NewSDValueDbgMsg(V, "Creating new node: ", this);
9979 return V;
9980}
9981
9984 EVT SVT, Align Alignment,
9985 MachineMemOperand::Flags MMOFlags,
9986 const AAMDNodes &AAInfo) {
9987 assert(Chain.getValueType() == MVT::Other &&
9988 "Invalid chain type");
9989
9990 MMOFlags |= MachineMemOperand::MOStore;
9991 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9992
9993 if (PtrInfo.V.isNull())
9994 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9995
9997 MachineMemOperand *MMO = MF.getMachineMemOperand(
9998 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9999 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
10000}
10001
10003 SDValue Ptr, EVT SVT,
10004 MachineMemOperand *MMO) {
10005 SDValue Undef = getUNDEF(Ptr.getValueType());
10006 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
10007}
10008
10012 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
10013 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
10014 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10015 ST->getMemoryVT(), ST->getMemOperand(), AM,
10016 ST->isTruncatingStore());
10017}
10018
10020 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
10021 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
10022 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
10023 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
10024 const MDNode *Ranges, bool IsExpanding) {
10025 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10026
10027 MMOFlags |= MachineMemOperand::MOLoad;
10028 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
10029 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
10030 // clients.
10031 if (PtrInfo.V.isNull())
10032 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
10033
10034 TypeSize Size = MemVT.getStoreSize();
10036 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
10037 Alignment, AAInfo, Ranges);
10038 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
10039 MMO, IsExpanding);
10040}
10041
10043 ISD::LoadExtType ExtType, EVT VT,
10044 const SDLoc &dl, SDValue Chain, SDValue Ptr,
10045 SDValue Offset, SDValue Mask, SDValue EVL,
10046 EVT MemVT, MachineMemOperand *MMO,
10047 bool IsExpanding) {
10048 bool Indexed = AM != ISD::UNINDEXED;
10049 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10050
10051 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10052 : getVTList(VT, MVT::Other);
10053 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
10055 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
10056 ID.AddInteger(MemVT.getRawBits());
10057 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10058 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10059 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10060 ID.AddInteger(MMO->getFlags());
10061 void *IP = nullptr;
10062 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
10063 E->refineAlignment(MMO);
10064 E->refineRanges(MMO);
10065 return SDValue(E, 0);
10066 }
10067 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10068 ExtType, IsExpanding, MemVT, MMO);
10069 createOperands(N, Ops);
10070
10071 CSEMap.InsertNode(N, IP);
10072 InsertNode(N);
10073 SDValue V(N, 0);
10074 NewSDValueDbgMsg(V, "Creating new node: ", this);
10075 return V;
10076}
10077
10079 SDValue Ptr, SDValue Mask, SDValue EVL,
10080 MachinePointerInfo PtrInfo,
10081 MaybeAlign Alignment,
10082 MachineMemOperand::Flags MMOFlags,
10083 const AAMDNodes &AAInfo, const MDNode *Ranges,
10084 bool IsExpanding) {
10085 SDValue Undef = getUNDEF(Ptr.getValueType());
10086 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10087 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10088 IsExpanding);
10089}
10090
10092 SDValue Ptr, SDValue Mask, SDValue EVL,
10093 MachineMemOperand *MMO, bool IsExpanding) {
10094 SDValue Undef = getUNDEF(Ptr.getValueType());
10095 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10096 Mask, EVL, VT, MMO, IsExpanding);
10097}
10098
10100 EVT VT, SDValue Chain, SDValue Ptr,
10101 SDValue Mask, SDValue EVL,
10102 MachinePointerInfo PtrInfo, EVT MemVT,
10103 MaybeAlign Alignment,
10104 MachineMemOperand::Flags MMOFlags,
10105 const AAMDNodes &AAInfo, bool IsExpanding) {
10106 SDValue Undef = getUNDEF(Ptr.getValueType());
10107 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10108 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10109 IsExpanding);
10110}
10111
10113 EVT VT, SDValue Chain, SDValue Ptr,
10114 SDValue Mask, SDValue EVL, EVT MemVT,
10115 MachineMemOperand *MMO, bool IsExpanding) {
10116 SDValue Undef = getUNDEF(Ptr.getValueType());
10117 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10118 EVL, MemVT, MMO, IsExpanding);
10119}
10120
10124 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10125 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10126 // Don't propagate the invariant or dereferenceable flags.
10127 auto MMOFlags =
10128 LD->getMemOperand()->getFlags() &
10130 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10131 LD->getChain(), Base, Offset, LD->getMask(),
10132 LD->getVectorLength(), LD->getPointerInfo(),
10133 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10134 nullptr, LD->isExpandingLoad());
10135}
10136
10139 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10140 ISD::MemIndexedMode AM, bool IsTruncating,
10141 bool IsCompressing) {
10142 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10143 bool Indexed = AM != ISD::UNINDEXED;
10144 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10145 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10146 : getVTList(MVT::Other);
10147 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10149 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10150 ID.AddInteger(MemVT.getRawBits());
10151 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10152 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10153 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10154 ID.AddInteger(MMO->getFlags());
10155 void *IP = nullptr;
10156 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10157 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10158 return SDValue(E, 0);
10159 }
10160 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10161 IsTruncating, IsCompressing, MemVT, MMO);
10162 createOperands(N, Ops);
10163
10164 CSEMap.InsertNode(N, IP);
10165 InsertNode(N);
10166 SDValue V(N, 0);
10167 NewSDValueDbgMsg(V, "Creating new node: ", this);
10168 return V;
10169}
10170
10172 SDValue Val, SDValue Ptr, SDValue Mask,
10173 SDValue EVL, MachinePointerInfo PtrInfo,
10174 EVT SVT, Align Alignment,
10175 MachineMemOperand::Flags MMOFlags,
10176 const AAMDNodes &AAInfo,
10177 bool IsCompressing) {
10178 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10179
10180 MMOFlags |= MachineMemOperand::MOStore;
10181 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10182
10183 if (PtrInfo.V.isNull())
10184 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10185
10187 MachineMemOperand *MMO = MF.getMachineMemOperand(
10188 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10189 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10190 IsCompressing);
10191}
10192
10194 SDValue Val, SDValue Ptr, SDValue Mask,
10195 SDValue EVL, EVT SVT,
10196 MachineMemOperand *MMO,
10197 bool IsCompressing) {
10198 EVT VT = Val.getValueType();
10199
10200 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10201 if (VT == SVT)
10202 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10203 EVL, VT, MMO, ISD::UNINDEXED,
10204 /*IsTruncating*/ false, IsCompressing);
10205
10207 "Should only be a truncating store, not extending!");
10208 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10209 assert(VT.isVector() == SVT.isVector() &&
10210 "Cannot use trunc store to convert to or from a vector!");
10211 assert((!VT.isVector() ||
10213 "Cannot use trunc store to change the number of vector elements!");
10214
10215 SDVTList VTs = getVTList(MVT::Other);
10216 SDValue Undef = getUNDEF(Ptr.getValueType());
10217 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10219 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10220 ID.AddInteger(SVT.getRawBits());
10221 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10222 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10223 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10224 ID.AddInteger(MMO->getFlags());
10225 void *IP = nullptr;
10226 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10227 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10228 return SDValue(E, 0);
10229 }
10230 auto *N =
10231 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10232 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10233 createOperands(N, Ops);
10234
10235 CSEMap.InsertNode(N, IP);
10236 InsertNode(N);
10237 SDValue V(N, 0);
10238 NewSDValueDbgMsg(V, "Creating new node: ", this);
10239 return V;
10240}
10241
10245 auto *ST = cast<VPStoreSDNode>(OrigStore);
10246 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10247 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10248 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10249 Offset, ST->getMask(), ST->getVectorLength()};
10251 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10252 ID.AddInteger(ST->getMemoryVT().getRawBits());
10253 ID.AddInteger(ST->getRawSubclassData());
10254 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10255 ID.AddInteger(ST->getMemOperand()->getFlags());
10256 void *IP = nullptr;
10257 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10258 return SDValue(E, 0);
10259
10260 auto *N = newSDNode<VPStoreSDNode>(
10261 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10262 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10263 createOperands(N, Ops);
10264
10265 CSEMap.InsertNode(N, IP);
10266 InsertNode(N);
10267 SDValue V(N, 0);
10268 NewSDValueDbgMsg(V, "Creating new node: ", this);
10269 return V;
10270}
10271
10273 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10274 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10275 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10276 bool Indexed = AM != ISD::UNINDEXED;
10277 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10278
10279 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10280 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10281 : getVTList(VT, MVT::Other);
10283 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10284 ID.AddInteger(VT.getRawBits());
10285 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10286 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10287 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10288
10289 void *IP = nullptr;
10290 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10291 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10292 return SDValue(E, 0);
10293 }
10294
10295 auto *N =
10296 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10297 ExtType, IsExpanding, MemVT, MMO);
10298 createOperands(N, Ops);
10299 CSEMap.InsertNode(N, IP);
10300 InsertNode(N);
10301 SDValue V(N, 0);
10302 NewSDValueDbgMsg(V, "Creating new node: ", this);
10303 return V;
10304}
10305
10307 SDValue Ptr, SDValue Stride,
10308 SDValue Mask, SDValue EVL,
10309 MachineMemOperand *MMO,
10310 bool IsExpanding) {
10311 SDValue Undef = getUNDEF(Ptr.getValueType());
10313 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10314}
10315
10317 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10318 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10319 MachineMemOperand *MMO, bool IsExpanding) {
10320 SDValue Undef = getUNDEF(Ptr.getValueType());
10321 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10322 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10323}
10324
10326 SDValue Val, SDValue Ptr,
10327 SDValue Offset, SDValue Stride,
10328 SDValue Mask, SDValue EVL, EVT MemVT,
10329 MachineMemOperand *MMO,
10331 bool IsTruncating, bool IsCompressing) {
10332 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10333 bool Indexed = AM != ISD::UNINDEXED;
10334 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10335 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10336 : getVTList(MVT::Other);
10337 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10339 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10340 ID.AddInteger(MemVT.getRawBits());
10341 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10342 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10343 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10344 void *IP = nullptr;
10345 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10346 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10347 return SDValue(E, 0);
10348 }
10349 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10350 VTs, AM, IsTruncating,
10351 IsCompressing, MemVT, MMO);
10352 createOperands(N, Ops);
10353
10354 CSEMap.InsertNode(N, IP);
10355 InsertNode(N);
10356 SDValue V(N, 0);
10357 NewSDValueDbgMsg(V, "Creating new node: ", this);
10358 return V;
10359}
10360
10362 SDValue Val, SDValue Ptr,
10363 SDValue Stride, SDValue Mask,
10364 SDValue EVL, EVT SVT,
10365 MachineMemOperand *MMO,
10366 bool IsCompressing) {
10367 EVT VT = Val.getValueType();
10368
10369 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10370 if (VT == SVT)
10371 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10372 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10373 /*IsTruncating*/ false, IsCompressing);
10374
10376 "Should only be a truncating store, not extending!");
10377 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10378 assert(VT.isVector() == SVT.isVector() &&
10379 "Cannot use trunc store to convert to or from a vector!");
10380 assert((!VT.isVector() ||
10382 "Cannot use trunc store to change the number of vector elements!");
10383
10384 SDVTList VTs = getVTList(MVT::Other);
10385 SDValue Undef = getUNDEF(Ptr.getValueType());
10386 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10388 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10389 ID.AddInteger(SVT.getRawBits());
10390 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10391 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10392 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10393 void *IP = nullptr;
10394 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10395 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10396 return SDValue(E, 0);
10397 }
10398 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10399 VTs, ISD::UNINDEXED, true,
10400 IsCompressing, SVT, MMO);
10401 createOperands(N, Ops);
10402
10403 CSEMap.InsertNode(N, IP);
10404 InsertNode(N);
10405 SDValue V(N, 0);
10406 NewSDValueDbgMsg(V, "Creating new node: ", this);
10407 return V;
10408}
10409
10412 ISD::MemIndexType IndexType) {
10413 assert(Ops.size() == 6 && "Incompatible number of operands");
10414
10416 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10417 ID.AddInteger(VT.getRawBits());
10418 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10419 dl.getIROrder(), VTs, VT, MMO, IndexType));
10420 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10421 ID.AddInteger(MMO->getFlags());
10422 void *IP = nullptr;
10423 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10424 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10425 return SDValue(E, 0);
10426 }
10427
10428 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10429 VT, MMO, IndexType);
10430 createOperands(N, Ops);
10431
10432 assert(N->getMask().getValueType().getVectorElementCount() ==
10433 N->getValueType(0).getVectorElementCount() &&
10434 "Vector width mismatch between mask and data");
10435 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10436 N->getValueType(0).getVectorElementCount().isScalable() &&
10437 "Scalable flags of index and data do not match");
10439 N->getIndex().getValueType().getVectorElementCount(),
10440 N->getValueType(0).getVectorElementCount()) &&
10441 "Vector width mismatch between index and data");
10442 assert(isa<ConstantSDNode>(N->getScale()) &&
10443 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10444 "Scale should be a constant power of 2");
10445
10446 CSEMap.InsertNode(N, IP);
10447 InsertNode(N);
10448 SDValue V(N, 0);
10449 NewSDValueDbgMsg(V, "Creating new node: ", this);
10450 return V;
10451}
10452
10455 MachineMemOperand *MMO,
10456 ISD::MemIndexType IndexType) {
10457 assert(Ops.size() == 7 && "Incompatible number of operands");
10458
10460 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10461 ID.AddInteger(VT.getRawBits());
10462 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10463 dl.getIROrder(), VTs, VT, MMO, IndexType));
10464 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10465 ID.AddInteger(MMO->getFlags());
10466 void *IP = nullptr;
10467 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10468 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10469 return SDValue(E, 0);
10470 }
10471 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10472 VT, MMO, IndexType);
10473 createOperands(N, Ops);
10474
10475 assert(N->getMask().getValueType().getVectorElementCount() ==
10476 N->getValue().getValueType().getVectorElementCount() &&
10477 "Vector width mismatch between mask and data");
10478 assert(
10479 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10480 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10481 "Scalable flags of index and data do not match");
10483 N->getIndex().getValueType().getVectorElementCount(),
10484 N->getValue().getValueType().getVectorElementCount()) &&
10485 "Vector width mismatch between index and data");
10486 assert(isa<ConstantSDNode>(N->getScale()) &&
10487 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10488 "Scale should be a constant power of 2");
10489
10490 CSEMap.InsertNode(N, IP);
10491 InsertNode(N);
10492 SDValue V(N, 0);
10493 NewSDValueDbgMsg(V, "Creating new node: ", this);
10494 return V;
10495}
10496
10499 SDValue PassThru, EVT MemVT,
10500 MachineMemOperand *MMO,
10502 ISD::LoadExtType ExtTy, bool isExpanding) {
10503 bool Indexed = AM != ISD::UNINDEXED;
10504 assert((Indexed || Offset.isUndef()) &&
10505 "Unindexed masked load with an offset!");
10506 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10507 : getVTList(VT, MVT::Other);
10508 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10510 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10511 ID.AddInteger(MemVT.getRawBits());
10512 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10513 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10514 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10515 ID.AddInteger(MMO->getFlags());
10516 void *IP = nullptr;
10517 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10518 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10519 return SDValue(E, 0);
10520 }
10521 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10522 AM, ExtTy, isExpanding, MemVT, MMO);
10523 createOperands(N, Ops);
10524
10525 CSEMap.InsertNode(N, IP);
10526 InsertNode(N);
10527 SDValue V(N, 0);
10528 NewSDValueDbgMsg(V, "Creating new node: ", this);
10529 return V;
10530}
10531
10536 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10537 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10538 Offset, LD->getMask(), LD->getPassThru(),
10539 LD->getMemoryVT(), LD->getMemOperand(), AM,
10540 LD->getExtensionType(), LD->isExpandingLoad());
10541}
10542
10545 SDValue Mask, EVT MemVT,
10546 MachineMemOperand *MMO,
10547 ISD::MemIndexedMode AM, bool IsTruncating,
10548 bool IsCompressing) {
10549 assert(Chain.getValueType() == MVT::Other &&
10550 "Invalid chain type");
10551 bool Indexed = AM != ISD::UNINDEXED;
10552 assert((Indexed || Offset.isUndef()) &&
10553 "Unindexed masked store with an offset!");
10554 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10555 : getVTList(MVT::Other);
10556 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10558 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10559 ID.AddInteger(MemVT.getRawBits());
10560 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10561 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10562 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10563 ID.AddInteger(MMO->getFlags());
10564 void *IP = nullptr;
10565 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10566 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10567 return SDValue(E, 0);
10568 }
10569 auto *N =
10570 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10571 IsTruncating, IsCompressing, MemVT, MMO);
10572 createOperands(N, Ops);
10573
10574 CSEMap.InsertNode(N, IP);
10575 InsertNode(N);
10576 SDValue V(N, 0);
10577 NewSDValueDbgMsg(V, "Creating new node: ", this);
10578 return V;
10579}
10580
10585 assert(ST->getOffset().isUndef() &&
10586 "Masked store is already a indexed store!");
10587 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10588 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10589 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10590}
10591
10594 MachineMemOperand *MMO,
10595 ISD::MemIndexType IndexType,
10596 ISD::LoadExtType ExtTy) {
10597 assert(Ops.size() == 6 && "Incompatible number of operands");
10598
10600 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10601 ID.AddInteger(MemVT.getRawBits());
10602 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10603 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10604 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10605 ID.AddInteger(MMO->getFlags());
10606 void *IP = nullptr;
10607 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10608 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10609 return SDValue(E, 0);
10610 }
10611
10612 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10613 VTs, MemVT, MMO, IndexType, ExtTy);
10614 createOperands(N, Ops);
10615
10616 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10617 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10618 assert(N->getMask().getValueType().getVectorElementCount() ==
10619 N->getValueType(0).getVectorElementCount() &&
10620 "Vector width mismatch between mask and data");
10621 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10622 N->getValueType(0).getVectorElementCount().isScalable() &&
10623 "Scalable flags of index and data do not match");
10625 N->getIndex().getValueType().getVectorElementCount(),
10626 N->getValueType(0).getVectorElementCount()) &&
10627 "Vector width mismatch between index and data");
10628 assert(isa<ConstantSDNode>(N->getScale()) &&
10629 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10630 "Scale should be a constant power of 2");
10631
10632 CSEMap.InsertNode(N, IP);
10633 InsertNode(N);
10634 SDValue V(N, 0);
10635 NewSDValueDbgMsg(V, "Creating new node: ", this);
10636 return V;
10637}
10638
10641 MachineMemOperand *MMO,
10642 ISD::MemIndexType IndexType,
10643 bool IsTrunc) {
10644 assert(Ops.size() == 6 && "Incompatible number of operands");
10645
10647 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10648 ID.AddInteger(MemVT.getRawBits());
10649 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10650 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10651 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10652 ID.AddInteger(MMO->getFlags());
10653 void *IP = nullptr;
10654 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10655 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10656 return SDValue(E, 0);
10657 }
10658
10659 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10660 VTs, MemVT, MMO, IndexType, IsTrunc);
10661 createOperands(N, Ops);
10662
10663 assert(N->getMask().getValueType().getVectorElementCount() ==
10664 N->getValue().getValueType().getVectorElementCount() &&
10665 "Vector width mismatch between mask and data");
10666 assert(
10667 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10668 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10669 "Scalable flags of index and data do not match");
10671 N->getIndex().getValueType().getVectorElementCount(),
10672 N->getValue().getValueType().getVectorElementCount()) &&
10673 "Vector width mismatch between index and data");
10674 assert(isa<ConstantSDNode>(N->getScale()) &&
10675 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10676 "Scale should be a constant power of 2");
10677
10678 CSEMap.InsertNode(N, IP);
10679 InsertNode(N);
10680 SDValue V(N, 0);
10681 NewSDValueDbgMsg(V, "Creating new node: ", this);
10682 return V;
10683}
10684
10686 const SDLoc &dl, ArrayRef<SDValue> Ops,
10687 MachineMemOperand *MMO,
10688 ISD::MemIndexType IndexType) {
10689 assert(Ops.size() == 7 && "Incompatible number of operands");
10690
10692 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10693 ID.AddInteger(MemVT.getRawBits());
10694 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10695 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10696 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10697 ID.AddInteger(MMO->getFlags());
10698 void *IP = nullptr;
10699 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10700 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10701 return SDValue(E, 0);
10702 }
10703
10704 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10705 VTs, MemVT, MMO, IndexType);
10706 createOperands(N, Ops);
10707
10708 assert(N->getMask().getValueType().getVectorElementCount() ==
10709 N->getIndex().getValueType().getVectorElementCount() &&
10710 "Vector width mismatch between mask and data");
10711 assert(isa<ConstantSDNode>(N->getScale()) &&
10712 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10713 "Scale should be a constant power of 2");
10714 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10715
10716 CSEMap.InsertNode(N, IP);
10717 InsertNode(N);
10718 SDValue V(N, 0);
10719 NewSDValueDbgMsg(V, "Creating new node: ", this);
10720 return V;
10721}
10722
10724 SDValue Ptr, SDValue Mask, SDValue EVL,
10725 MachineMemOperand *MMO) {
10726 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10727 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10729 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10730 ID.AddInteger(VT.getRawBits());
10731 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10732 VTs, VT, MMO));
10733 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10734 ID.AddInteger(MMO->getFlags());
10735 void *IP = nullptr;
10736 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10737 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10738 return SDValue(E, 0);
10739 }
10740 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10741 VT, MMO);
10742 createOperands(N, Ops);
10743
10744 CSEMap.InsertNode(N, IP);
10745 InsertNode(N);
10746 SDValue V(N, 0);
10747 NewSDValueDbgMsg(V, "Creating new node: ", this);
10748 return V;
10749}
10750
10752 EVT MemVT, MachineMemOperand *MMO) {
10753 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10754 SDVTList VTs = getVTList(MVT::Other);
10755 SDValue Ops[] = {Chain, Ptr};
10757 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10758 ID.AddInteger(MemVT.getRawBits());
10759 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10760 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10761 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10762 ID.AddInteger(MMO->getFlags());
10763 void *IP = nullptr;
10764 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10765 return SDValue(E, 0);
10766
10767 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10768 dl.getDebugLoc(), VTs, MemVT, MMO);
10769 createOperands(N, Ops);
10770
10771 CSEMap.InsertNode(N, IP);
10772 InsertNode(N);
10773 SDValue V(N, 0);
10774 NewSDValueDbgMsg(V, "Creating new node: ", this);
10775 return V;
10776}
10777
10779 EVT MemVT, MachineMemOperand *MMO) {
10780 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10781 SDVTList VTs = getVTList(MVT::Other);
10782 SDValue Ops[] = {Chain, Ptr};
10784 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10785 ID.AddInteger(MemVT.getRawBits());
10786 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10787 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10788 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10789 ID.AddInteger(MMO->getFlags());
10790 void *IP = nullptr;
10791 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10792 return SDValue(E, 0);
10793
10794 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10795 dl.getDebugLoc(), VTs, MemVT, MMO);
10796 createOperands(N, Ops);
10797
10798 CSEMap.InsertNode(N, IP);
10799 InsertNode(N);
10800 SDValue V(N, 0);
10801 NewSDValueDbgMsg(V, "Creating new node: ", this);
10802 return V;
10803}
10804
10806 // select undef, T, F --> T (if T is a constant), otherwise F
10807 // select, ?, undef, F --> F
10808 // select, ?, T, undef --> T
10809 if (Cond.isUndef())
10810 return isConstantValueOfAnyType(T) ? T : F;
10811 if (T.isUndef())
10812 return F;
10813 if (F.isUndef())
10814 return T;
10815
10816 // select true, T, F --> T
10817 // select false, T, F --> F
10818 if (auto C = isBoolConstant(Cond))
10819 return *C ? T : F;
10820
10821 // select ?, T, T --> T
10822 if (T == F)
10823 return T;
10824
10825 return SDValue();
10826}
10827
10829 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10830 if (X.isUndef())
10831 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10832 // shift X, undef --> undef (because it may shift by the bitwidth)
10833 if (Y.isUndef())
10834 return getUNDEF(X.getValueType());
10835
10836 // shift 0, Y --> 0
10837 // shift X, 0 --> X
10839 return X;
10840
10841 // shift X, C >= bitwidth(X) --> undef
10842 // All vector elements must be too big (or undef) to avoid partial undefs.
10843 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10844 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10845 };
10846 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10847 return getUNDEF(X.getValueType());
10848
10849 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10850 if (X.getValueType().getScalarType() == MVT::i1)
10851 return X;
10852
10853 return SDValue();
10854}
10855
10857 SDNodeFlags Flags) {
10858 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10859 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10860 // operation is poison. That result can be relaxed to undef.
10861 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10862 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10863 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10864 (YC && YC->getValueAPF().isNaN());
10865 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10866 (YC && YC->getValueAPF().isInfinity());
10867
10868 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10869 return getUNDEF(X.getValueType());
10870
10871 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10872 return getUNDEF(X.getValueType());
10873
10874 if (!YC)
10875 return SDValue();
10876
10877 // X + -0.0 --> X
10878 if (Opcode == ISD::FADD)
10879 if (YC->getValueAPF().isNegZero())
10880 return X;
10881
10882 // X - +0.0 --> X
10883 if (Opcode == ISD::FSUB)
10884 if (YC->getValueAPF().isPosZero())
10885 return X;
10886
10887 // X * 1.0 --> X
10888 // X / 1.0 --> X
10889 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10890 if (YC->getValueAPF().isExactlyValue(1.0))
10891 return X;
10892
10893 // X * 0.0 --> 0.0
10894 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10895 if (YC->getValueAPF().isZero())
10896 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10897
10898 return SDValue();
10899}
10900
10902 SDValue Ptr, SDValue SV, unsigned Align) {
10903 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10904 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10905}
10906
10907SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10909 switch (Ops.size()) {
10910 case 0: return getNode(Opcode, DL, VT);
10911 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10912 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10913 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10914 default: break;
10915 }
10916
10917 // Copy from an SDUse array into an SDValue array for use with
10918 // the regular getNode logic.
10920 return getNode(Opcode, DL, VT, NewOps);
10921}
10922
10923SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10925 SDNodeFlags Flags;
10926 if (Inserter)
10927 Flags = Inserter->getFlags();
10928 return getNode(Opcode, DL, VT, Ops, Flags);
10929}
10930
10931SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10932 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10933 unsigned NumOps = Ops.size();
10934 switch (NumOps) {
10935 case 0: return getNode(Opcode, DL, VT);
10936 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10937 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10938 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10939 default: break;
10940 }
10941
10942#ifndef NDEBUG
10943 for (const auto &Op : Ops)
10944 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10945 "Operand is DELETED_NODE!");
10946#endif
10947
10948 switch (Opcode) {
10949 default: break;
10950 case ISD::BUILD_VECTOR:
10951 // Attempt to simplify BUILD_VECTOR.
10952 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10953 return V;
10954 break;
10956 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10957 return V;
10958 break;
10959 case ISD::SELECT_CC:
10960 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10961 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10962 "LHS and RHS of condition must have same type!");
10963 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10964 "True and False arms of SelectCC must have same type!");
10965 assert(Ops[2].getValueType() == VT &&
10966 "select_cc node must be of same type as true and false value!");
10967 assert((!Ops[0].getValueType().isVector() ||
10968 Ops[0].getValueType().getVectorElementCount() ==
10969 VT.getVectorElementCount()) &&
10970 "Expected select_cc with vector result to have the same sized "
10971 "comparison type!");
10972 break;
10973 case ISD::BR_CC:
10974 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10975 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10976 "LHS/RHS of comparison should match types!");
10977 break;
10978 case ISD::VP_ADD:
10979 case ISD::VP_SUB:
10980 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10981 if (VT.getScalarType() == MVT::i1)
10982 Opcode = ISD::VP_XOR;
10983 break;
10984 case ISD::VP_MUL:
10985 // If it is VP_MUL mask operation then turn it to VP_AND
10986 if (VT.getScalarType() == MVT::i1)
10987 Opcode = ISD::VP_AND;
10988 break;
10989 case ISD::VP_REDUCE_MUL:
10990 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10991 if (VT == MVT::i1)
10992 Opcode = ISD::VP_REDUCE_AND;
10993 break;
10994 case ISD::VP_REDUCE_ADD:
10995 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10996 if (VT == MVT::i1)
10997 Opcode = ISD::VP_REDUCE_XOR;
10998 break;
10999 case ISD::VP_REDUCE_SMAX:
11000 case ISD::VP_REDUCE_UMIN:
11001 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
11002 // VP_REDUCE_AND.
11003 if (VT == MVT::i1)
11004 Opcode = ISD::VP_REDUCE_AND;
11005 break;
11006 case ISD::VP_REDUCE_SMIN:
11007 case ISD::VP_REDUCE_UMAX:
11008 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
11009 // VP_REDUCE_OR.
11010 if (VT == MVT::i1)
11011 Opcode = ISD::VP_REDUCE_OR;
11012 break;
11013 }
11014
11015 // Memoize nodes.
11016 SDNode *N;
11017 SDVTList VTs = getVTList(VT);
11018
11019 if (VT != MVT::Glue) {
11021 AddNodeIDNode(ID, Opcode, VTs, Ops);
11022 void *IP = nullptr;
11023
11024 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11025 E->intersectFlagsWith(Flags);
11026 return SDValue(E, 0);
11027 }
11028
11029 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11030 createOperands(N, Ops);
11031
11032 CSEMap.InsertNode(N, IP);
11033 } else {
11034 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11035 createOperands(N, Ops);
11036 }
11037
11038 N->setFlags(Flags);
11039 InsertNode(N);
11040 SDValue V(N, 0);
11041 NewSDValueDbgMsg(V, "Creating new node: ", this);
11042 return V;
11043}
11044
11045SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11046 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
11047 SDNodeFlags Flags;
11048 if (Inserter)
11049 Flags = Inserter->getFlags();
11050 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11051}
11052
11053SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11055 const SDNodeFlags Flags) {
11056 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11057}
11058
11059SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11061 SDNodeFlags Flags;
11062 if (Inserter)
11063 Flags = Inserter->getFlags();
11064 return getNode(Opcode, DL, VTList, Ops, Flags);
11065}
11066
11067SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11068 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
11069 if (VTList.NumVTs == 1)
11070 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
11071
11072#ifndef NDEBUG
11073 for (const auto &Op : Ops)
11074 assert(Op.getOpcode() != ISD::DELETED_NODE &&
11075 "Operand is DELETED_NODE!");
11076#endif
11077
11078 switch (Opcode) {
11079 case ISD::SADDO:
11080 case ISD::UADDO:
11081 case ISD::SSUBO:
11082 case ISD::USUBO: {
11083 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11084 "Invalid add/sub overflow op!");
11085 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11086 Ops[0].getValueType() == Ops[1].getValueType() &&
11087 Ops[0].getValueType() == VTList.VTs[0] &&
11088 "Binary operator types must match!");
11089 SDValue N1 = Ops[0], N2 = Ops[1];
11090 canonicalizeCommutativeBinop(Opcode, N1, N2);
11091
11092 // (X +- 0) -> X with zero-overflow.
11093 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
11094 /*AllowTruncation*/ true);
11095 if (N2CV && N2CV->isZero()) {
11096 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
11097 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
11098 }
11099
11100 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
11101 VTList.VTs[1].getScalarType() == MVT::i1) {
11102 SDValue F1 = getFreeze(N1);
11103 SDValue F2 = getFreeze(N2);
11104 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
11105 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11106 return getNode(ISD::MERGE_VALUES, DL, VTList,
11107 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11108 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11109 Flags);
11110 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11111 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11112 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11113 return getNode(ISD::MERGE_VALUES, DL, VTList,
11114 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11115 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11116 Flags);
11117 }
11118 }
11119 break;
11120 }
11121 case ISD::SADDO_CARRY:
11122 case ISD::UADDO_CARRY:
11123 case ISD::SSUBO_CARRY:
11124 case ISD::USUBO_CARRY:
11125 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11126 "Invalid add/sub overflow op!");
11127 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11128 Ops[0].getValueType() == Ops[1].getValueType() &&
11129 Ops[0].getValueType() == VTList.VTs[0] &&
11130 Ops[2].getValueType() == VTList.VTs[1] &&
11131 "Binary operator types must match!");
11132 break;
11133 case ISD::SMUL_LOHI:
11134 case ISD::UMUL_LOHI: {
11135 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11136 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11137 VTList.VTs[0] == Ops[0].getValueType() &&
11138 VTList.VTs[0] == Ops[1].getValueType() &&
11139 "Binary operator types must match!");
11140 // Constant fold.
11143 if (LHS && RHS) {
11144 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11145 unsigned OutWidth = Width * 2;
11146 APInt Val = LHS->getAPIntValue();
11147 APInt Mul = RHS->getAPIntValue();
11148 if (Opcode == ISD::SMUL_LOHI) {
11149 Val = Val.sext(OutWidth);
11150 Mul = Mul.sext(OutWidth);
11151 } else {
11152 Val = Val.zext(OutWidth);
11153 Mul = Mul.zext(OutWidth);
11154 }
11155 Val *= Mul;
11156
11157 SDValue Hi =
11158 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11159 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11160 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11161 }
11162 break;
11163 }
11164 case ISD::FFREXP: {
11165 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11166 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11167 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11168
11170 int FrexpExp;
11171 APFloat FrexpMant =
11172 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11173 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11174 SDValue Result1 = getSignedConstant(FrexpMant.isFinite() ? FrexpExp : 0,
11175 DL, VTList.VTs[1]);
11176 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11177 }
11178
11179 break;
11180 }
11182 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11183 "Invalid STRICT_FP_EXTEND!");
11184 assert(VTList.VTs[0].isFloatingPoint() &&
11185 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11186 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11187 "STRICT_FP_EXTEND result type should be vector iff the operand "
11188 "type is vector!");
11189 assert((!VTList.VTs[0].isVector() ||
11190 VTList.VTs[0].getVectorElementCount() ==
11191 Ops[1].getValueType().getVectorElementCount()) &&
11192 "Vector element count mismatch!");
11193 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11194 "Invalid fpext node, dst <= src!");
11195 break;
11197 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11198 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11199 "STRICT_FP_ROUND result type should be vector iff the operand "
11200 "type is vector!");
11201 assert((!VTList.VTs[0].isVector() ||
11202 VTList.VTs[0].getVectorElementCount() ==
11203 Ops[1].getValueType().getVectorElementCount()) &&
11204 "Vector element count mismatch!");
11205 assert(VTList.VTs[0].isFloatingPoint() &&
11206 Ops[1].getValueType().isFloatingPoint() &&
11207 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11208 Ops[2].getOpcode() == ISD::TargetConstant &&
11209 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11210 "Invalid STRICT_FP_ROUND!");
11211 break;
11212 }
11213
11214 // Memoize the node unless it returns a glue result.
11215 SDNode *N;
11216 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11218 AddNodeIDNode(ID, Opcode, VTList, Ops);
11219 void *IP = nullptr;
11220 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11221 E->intersectFlagsWith(Flags);
11222 return SDValue(E, 0);
11223 }
11224
11225 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11226 createOperands(N, Ops);
11227 CSEMap.InsertNode(N, IP);
11228 } else {
11229 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11230 createOperands(N, Ops);
11231 }
11232
11233 N->setFlags(Flags);
11234 InsertNode(N);
11235 SDValue V(N, 0);
11236 NewSDValueDbgMsg(V, "Creating new node: ", this);
11237 return V;
11238}
11239
11240SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11241 SDVTList VTList) {
11242 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11243}
11244
11245SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11246 SDValue N1) {
11247 SDValue Ops[] = { N1 };
11248 return getNode(Opcode, DL, VTList, Ops);
11249}
11250
11251SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11252 SDValue N1, SDValue N2) {
11253 SDValue Ops[] = { N1, N2 };
11254 return getNode(Opcode, DL, VTList, Ops);
11255}
11256
11257SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11258 SDValue N1, SDValue N2, SDValue N3) {
11259 SDValue Ops[] = { N1, N2, N3 };
11260 return getNode(Opcode, DL, VTList, Ops);
11261}
11262
11263SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11264 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11265 SDValue Ops[] = { N1, N2, N3, N4 };
11266 return getNode(Opcode, DL, VTList, Ops);
11267}
11268
11269SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11270 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11271 SDValue N5) {
11272 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11273 return getNode(Opcode, DL, VTList, Ops);
11274}
11275
11277 if (!VT.isExtended())
11278 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11279
11280 return makeVTList(&(*EVTs.insert(VT).first), 1);
11281}
11282
11285 ID.AddInteger(2U);
11286 ID.AddInteger(VT1.getRawBits());
11287 ID.AddInteger(VT2.getRawBits());
11288
11289 void *IP = nullptr;
11290 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11291 if (!Result) {
11292 EVT *Array = Allocator.Allocate<EVT>(2);
11293 Array[0] = VT1;
11294 Array[1] = VT2;
11295 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11296 VTListMap.InsertNode(Result, IP);
11297 }
11298 return Result->getSDVTList();
11299}
11300
11303 ID.AddInteger(3U);
11304 ID.AddInteger(VT1.getRawBits());
11305 ID.AddInteger(VT2.getRawBits());
11306 ID.AddInteger(VT3.getRawBits());
11307
11308 void *IP = nullptr;
11309 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11310 if (!Result) {
11311 EVT *Array = Allocator.Allocate<EVT>(3);
11312 Array[0] = VT1;
11313 Array[1] = VT2;
11314 Array[2] = VT3;
11315 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11316 VTListMap.InsertNode(Result, IP);
11317 }
11318 return Result->getSDVTList();
11319}
11320
11323 ID.AddInteger(4U);
11324 ID.AddInteger(VT1.getRawBits());
11325 ID.AddInteger(VT2.getRawBits());
11326 ID.AddInteger(VT3.getRawBits());
11327 ID.AddInteger(VT4.getRawBits());
11328
11329 void *IP = nullptr;
11330 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11331 if (!Result) {
11332 EVT *Array = Allocator.Allocate<EVT>(4);
11333 Array[0] = VT1;
11334 Array[1] = VT2;
11335 Array[2] = VT3;
11336 Array[3] = VT4;
11337 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11338 VTListMap.InsertNode(Result, IP);
11339 }
11340 return Result->getSDVTList();
11341}
11342
11344 unsigned NumVTs = VTs.size();
11346 ID.AddInteger(NumVTs);
11347 for (unsigned index = 0; index < NumVTs; index++) {
11348 ID.AddInteger(VTs[index].getRawBits());
11349 }
11350
11351 void *IP = nullptr;
11352 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11353 if (!Result) {
11354 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11355 llvm::copy(VTs, Array);
11356 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11357 VTListMap.InsertNode(Result, IP);
11358 }
11359 return Result->getSDVTList();
11360}
11361
11362
11363/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11364/// specified operands. If the resultant node already exists in the DAG,
11365/// this does not modify the specified node, instead it returns the node that
11366/// already exists. If the resultant node does not exist in the DAG, the
11367/// input node is returned. As a degenerate case, if you specify the same
11368/// input operands as the node already has, the input node is returned.
11370 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11371
11372 // Check to see if there is no change.
11373 if (Op == N->getOperand(0)) return N;
11374
11375 // See if the modified node already exists.
11376 void *InsertPos = nullptr;
11377 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11378 return Existing;
11379
11380 // Nope it doesn't. Remove the node from its current place in the maps.
11381 if (InsertPos)
11382 if (!RemoveNodeFromCSEMaps(N))
11383 InsertPos = nullptr;
11384
11385 // Now we update the operands.
11386 N->OperandList[0].set(Op);
11387
11389 // If this gets put into a CSE map, add it.
11390 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11391 return N;
11392}
11393
11395 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11396
11397 // Check to see if there is no change.
11398 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11399 return N; // No operands changed, just return the input node.
11400
11401 // See if the modified node already exists.
11402 void *InsertPos = nullptr;
11403 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11404 return Existing;
11405
11406 // Nope it doesn't. Remove the node from its current place in the maps.
11407 if (InsertPos)
11408 if (!RemoveNodeFromCSEMaps(N))
11409 InsertPos = nullptr;
11410
11411 // Now we update the operands.
11412 if (N->OperandList[0] != Op1)
11413 N->OperandList[0].set(Op1);
11414 if (N->OperandList[1] != Op2)
11415 N->OperandList[1].set(Op2);
11416
11418 // If this gets put into a CSE map, add it.
11419 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11420 return N;
11421}
11422
11425 SDValue Ops[] = { Op1, Op2, Op3 };
11426 return UpdateNodeOperands(N, Ops);
11427}
11428
11431 SDValue Op3, SDValue Op4) {
11432 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11433 return UpdateNodeOperands(N, Ops);
11434}
11435
11438 SDValue Op3, SDValue Op4, SDValue Op5) {
11439 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11440 return UpdateNodeOperands(N, Ops);
11441}
11442
11445 unsigned NumOps = Ops.size();
11446 assert(N->getNumOperands() == NumOps &&
11447 "Update with wrong number of operands");
11448
11449 // If no operands changed just return the input node.
11450 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11451 return N;
11452
11453 // See if the modified node already exists.
11454 void *InsertPos = nullptr;
11455 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11456 return Existing;
11457
11458 // Nope it doesn't. Remove the node from its current place in the maps.
11459 if (InsertPos)
11460 if (!RemoveNodeFromCSEMaps(N))
11461 InsertPos = nullptr;
11462
11463 // Now we update the operands.
11464 for (unsigned i = 0; i != NumOps; ++i)
11465 if (N->OperandList[i] != Ops[i])
11466 N->OperandList[i].set(Ops[i]);
11467
11469 // If this gets put into a CSE map, add it.
11470 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11471 return N;
11472}
11473
11474/// DropOperands - Release the operands and set this node to have
11475/// zero operands.
11477 // Unlike the code in MorphNodeTo that does this, we don't need to
11478 // watch for dead nodes here.
11479 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11480 SDUse &Use = *I++;
11481 Use.set(SDValue());
11482 }
11483}
11484
11486 ArrayRef<MachineMemOperand *> NewMemRefs) {
11487 if (NewMemRefs.empty()) {
11488 N->clearMemRefs();
11489 return;
11490 }
11491
11492 // Check if we can avoid allocating by storing a single reference directly.
11493 if (NewMemRefs.size() == 1) {
11494 N->MemRefs = NewMemRefs[0];
11495 N->NumMemRefs = 1;
11496 return;
11497 }
11498
11499 MachineMemOperand **MemRefsBuffer =
11500 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11501 llvm::copy(NewMemRefs, MemRefsBuffer);
11502 N->MemRefs = MemRefsBuffer;
11503 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11504}
11505
11506/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11507/// machine opcode.
11508///
11510 EVT VT) {
11511 SDVTList VTs = getVTList(VT);
11512 return SelectNodeTo(N, MachineOpc, VTs, {});
11513}
11514
11516 EVT VT, SDValue Op1) {
11517 SDVTList VTs = getVTList(VT);
11518 SDValue Ops[] = { Op1 };
11519 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11520}
11521
11523 EVT VT, SDValue Op1,
11524 SDValue Op2) {
11525 SDVTList VTs = getVTList(VT);
11526 SDValue Ops[] = { Op1, Op2 };
11527 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11528}
11529
11531 EVT VT, SDValue Op1,
11532 SDValue Op2, SDValue Op3) {
11533 SDVTList VTs = getVTList(VT);
11534 SDValue Ops[] = { Op1, Op2, Op3 };
11535 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11536}
11537
11540 SDVTList VTs = getVTList(VT);
11541 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11542}
11543
11545 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11546 SDVTList VTs = getVTList(VT1, VT2);
11547 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11548}
11549
11551 EVT VT1, EVT VT2) {
11552 SDVTList VTs = getVTList(VT1, VT2);
11553 return SelectNodeTo(N, MachineOpc, VTs, {});
11554}
11555
11557 EVT VT1, EVT VT2, EVT VT3,
11559 SDVTList VTs = getVTList(VT1, VT2, VT3);
11560 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11561}
11562
11564 EVT VT1, EVT VT2,
11565 SDValue Op1, SDValue Op2) {
11566 SDVTList VTs = getVTList(VT1, VT2);
11567 SDValue Ops[] = { Op1, Op2 };
11568 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11569}
11570
11573 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11574 // Reset the NodeID to -1.
11575 New->setNodeId(-1);
11576 if (New != N) {
11577 ReplaceAllUsesWith(N, New);
11579 }
11580 return New;
11581}
11582
11583/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11584/// the line number information on the merged node since it is not possible to
11585/// preserve the information that operation is associated with multiple lines.
11586/// This will make the debugger working better at -O0, were there is a higher
11587/// probability having other instructions associated with that line.
11588///
11589/// For IROrder, we keep the smaller of the two
11590SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11591 DebugLoc NLoc = N->getDebugLoc();
11592 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11593 N->setDebugLoc(DebugLoc());
11594 }
11595 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11596 N->setIROrder(Order);
11597 return N;
11598}
11599
11600/// MorphNodeTo - This *mutates* the specified node to have the specified
11601/// return type, opcode, and operands.
11602///
11603/// Note that MorphNodeTo returns the resultant node. If there is already a
11604/// node of the specified opcode and operands, it returns that node instead of
11605/// the current one. Note that the SDLoc need not be the same.
11606///
11607/// Using MorphNodeTo is faster than creating a new node and swapping it in
11608/// with ReplaceAllUsesWith both because it often avoids allocating a new
11609/// node, and because it doesn't require CSE recalculation for any of
11610/// the node's users.
11611///
11612/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11613/// As a consequence it isn't appropriate to use from within the DAG combiner or
11614/// the legalizer which maintain worklists that would need to be updated when
11615/// deleting things.
11618 // If an identical node already exists, use it.
11619 void *IP = nullptr;
11620 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11622 AddNodeIDNode(ID, Opc, VTs, Ops);
11623 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11624 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11625 }
11626
11627 if (!RemoveNodeFromCSEMaps(N))
11628 IP = nullptr;
11629
11630 // Start the morphing.
11631 N->NodeType = Opc;
11632 N->ValueList = VTs.VTs;
11633 N->NumValues = VTs.NumVTs;
11634
11635 // Clear the operands list, updating used nodes to remove this from their
11636 // use list. Keep track of any operands that become dead as a result.
11637 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11638 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11639 SDUse &Use = *I++;
11640 SDNode *Used = Use.getNode();
11641 Use.set(SDValue());
11642 if (Used->use_empty())
11643 DeadNodeSet.insert(Used);
11644 }
11645
11646 // For MachineNode, initialize the memory references information.
11648 MN->clearMemRefs();
11649
11650 // Swap for an appropriately sized array from the recycler.
11651 removeOperands(N);
11652 createOperands(N, Ops);
11653
11654 // Delete any nodes that are still dead after adding the uses for the
11655 // new operands.
11656 if (!DeadNodeSet.empty()) {
11657 SmallVector<SDNode *, 16> DeadNodes;
11658 for (SDNode *N : DeadNodeSet)
11659 if (N->use_empty())
11660 DeadNodes.push_back(N);
11661 RemoveDeadNodes(DeadNodes);
11662 }
11663
11664 if (IP)
11665 CSEMap.InsertNode(N, IP); // Memoize the new node.
11666 return N;
11667}
11668
11670 unsigned OrigOpc = Node->getOpcode();
11671 unsigned NewOpc;
11672 switch (OrigOpc) {
11673 default:
11674 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11675#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11676 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11677#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11678 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11679#include "llvm/IR/ConstrainedOps.def"
11680 }
11681
11682 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11683
11684 // We're taking this node out of the chain, so we need to re-link things.
11685 SDValue InputChain = Node->getOperand(0);
11686 SDValue OutputChain = SDValue(Node, 1);
11687 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11688
11690 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11691 Ops.push_back(Node->getOperand(i));
11692
11693 SDVTList VTs = getVTList(Node->getValueType(0));
11694 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11695
11696 // MorphNodeTo can operate in two ways: if an existing node with the
11697 // specified operands exists, it can just return it. Otherwise, it
11698 // updates the node in place to have the requested operands.
11699 if (Res == Node) {
11700 // If we updated the node in place, reset the node ID. To the isel,
11701 // this should be just like a newly allocated machine node.
11702 Res->setNodeId(-1);
11703 } else {
11706 }
11707
11708 return Res;
11709}
11710
11711/// getMachineNode - These are used for target selectors to create a new node
11712/// with specified return type(s), MachineInstr opcode, and operands.
11713///
11714/// Note that getMachineNode returns the resultant node. If there is already a
11715/// node of the specified opcode and operands, it returns that node instead of
11716/// the current one.
11718 EVT VT) {
11719 SDVTList VTs = getVTList(VT);
11720 return getMachineNode(Opcode, dl, VTs, {});
11721}
11722
11724 EVT VT, SDValue Op1) {
11725 SDVTList VTs = getVTList(VT);
11726 SDValue Ops[] = { Op1 };
11727 return getMachineNode(Opcode, dl, VTs, Ops);
11728}
11729
11731 EVT VT, SDValue Op1, SDValue Op2) {
11732 SDVTList VTs = getVTList(VT);
11733 SDValue Ops[] = { Op1, Op2 };
11734 return getMachineNode(Opcode, dl, VTs, Ops);
11735}
11736
11738 EVT VT, SDValue Op1, SDValue Op2,
11739 SDValue Op3) {
11740 SDVTList VTs = getVTList(VT);
11741 SDValue Ops[] = { Op1, Op2, Op3 };
11742 return getMachineNode(Opcode, dl, VTs, Ops);
11743}
11744
11747 SDVTList VTs = getVTList(VT);
11748 return getMachineNode(Opcode, dl, VTs, Ops);
11749}
11750
11752 EVT VT1, EVT VT2, SDValue Op1,
11753 SDValue Op2) {
11754 SDVTList VTs = getVTList(VT1, VT2);
11755 SDValue Ops[] = { Op1, Op2 };
11756 return getMachineNode(Opcode, dl, VTs, Ops);
11757}
11758
11760 EVT VT1, EVT VT2, SDValue Op1,
11761 SDValue Op2, SDValue Op3) {
11762 SDVTList VTs = getVTList(VT1, VT2);
11763 SDValue Ops[] = { Op1, Op2, Op3 };
11764 return getMachineNode(Opcode, dl, VTs, Ops);
11765}
11766
11768 EVT VT1, EVT VT2,
11770 SDVTList VTs = getVTList(VT1, VT2);
11771 return getMachineNode(Opcode, dl, VTs, Ops);
11772}
11773
11775 EVT VT1, EVT VT2, EVT VT3,
11776 SDValue Op1, SDValue Op2) {
11777 SDVTList VTs = getVTList(VT1, VT2, VT3);
11778 SDValue Ops[] = { Op1, Op2 };
11779 return getMachineNode(Opcode, dl, VTs, Ops);
11780}
11781
11783 EVT VT1, EVT VT2, EVT VT3,
11784 SDValue Op1, SDValue Op2,
11785 SDValue Op3) {
11786 SDVTList VTs = getVTList(VT1, VT2, VT3);
11787 SDValue Ops[] = { Op1, Op2, Op3 };
11788 return getMachineNode(Opcode, dl, VTs, Ops);
11789}
11790
11792 EVT VT1, EVT VT2, EVT VT3,
11794 SDVTList VTs = getVTList(VT1, VT2, VT3);
11795 return getMachineNode(Opcode, dl, VTs, Ops);
11796}
11797
11799 ArrayRef<EVT> ResultTys,
11801 SDVTList VTs = getVTList(ResultTys);
11802 return getMachineNode(Opcode, dl, VTs, Ops);
11803}
11804
11806 SDVTList VTs,
11808 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11810 void *IP = nullptr;
11811
11812 if (DoCSE) {
11814 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11815 IP = nullptr;
11816 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11817 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11818 }
11819 }
11820
11821 // Allocate a new MachineSDNode.
11822 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11823 createOperands(N, Ops);
11824
11825 if (DoCSE)
11826 CSEMap.InsertNode(N, IP);
11827
11828 InsertNode(N);
11829 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11830 return N;
11831}
11832
11833/// getTargetExtractSubreg - A convenience function for creating
11834/// TargetOpcode::EXTRACT_SUBREG nodes.
11836 SDValue Operand) {
11837 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11838 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11839 VT, Operand, SRIdxVal);
11840 return SDValue(Subreg, 0);
11841}
11842
11843/// getTargetInsertSubreg - A convenience function for creating
11844/// TargetOpcode::INSERT_SUBREG nodes.
11846 SDValue Operand, SDValue Subreg) {
11847 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11848 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11849 VT, Operand, Subreg, SRIdxVal);
11850 return SDValue(Result, 0);
11851}
11852
11853/// getNodeIfExists - Get the specified node if it's already available, or
11854/// else return NULL.
11857 bool AllowCommute) {
11858 SDNodeFlags Flags;
11859 if (Inserter)
11860 Flags = Inserter->getFlags();
11861 return getNodeIfExists(Opcode, VTList, Ops, Flags, AllowCommute);
11862}
11863
11866 const SDNodeFlags Flags,
11867 bool AllowCommute) {
11868 if (VTList.VTs[VTList.NumVTs - 1] == MVT::Glue)
11869 return nullptr;
11870
11871 auto Lookup = [&](ArrayRef<SDValue> LookupOps) -> SDNode * {
11873 AddNodeIDNode(ID, Opcode, VTList, LookupOps);
11874 void *IP = nullptr;
11875 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) {
11876 E->intersectFlagsWith(Flags);
11877 return E;
11878 }
11879 return nullptr;
11880 };
11881
11882 if (SDNode *Existing = Lookup(Ops))
11883 return Existing;
11884
11885 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11886 return Lookup({Ops[1], Ops[0]});
11887
11888 return nullptr;
11889}
11890
11891/// doesNodeExist - Check if a node exists without modifying its flags.
11892bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11894 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11896 AddNodeIDNode(ID, Opcode, VTList, Ops);
11897 void *IP = nullptr;
11898 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11899 return true;
11900 }
11901 return false;
11902}
11903
11904/// getDbgValue - Creates a SDDbgValue node.
11905///
11906/// SDNode
11908 SDNode *N, unsigned R, bool IsIndirect,
11909 const DebugLoc &DL, unsigned O) {
11910 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11911 "Expected inlined-at fields to agree");
11912 return new (DbgInfo->getAlloc())
11913 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11914 {}, IsIndirect, DL, O,
11915 /*IsVariadic=*/false);
11916}
11917
11918/// Constant
11920 DIExpression *Expr,
11921 const Value *C,
11922 const DebugLoc &DL, unsigned O) {
11923 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11924 "Expected inlined-at fields to agree");
11925 return new (DbgInfo->getAlloc())
11926 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11927 /*IsIndirect=*/false, DL, O,
11928 /*IsVariadic=*/false);
11929}
11930
11931/// FrameIndex
11933 DIExpression *Expr, unsigned FI,
11934 bool IsIndirect,
11935 const DebugLoc &DL,
11936 unsigned O) {
11937 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11938 "Expected inlined-at fields to agree");
11939 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11940}
11941
11942/// FrameIndex with dependencies
11944 DIExpression *Expr, unsigned FI,
11945 ArrayRef<SDNode *> Dependencies,
11946 bool IsIndirect,
11947 const DebugLoc &DL,
11948 unsigned O) {
11949 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11950 "Expected inlined-at fields to agree");
11951 return new (DbgInfo->getAlloc())
11952 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11953 Dependencies, IsIndirect, DL, O,
11954 /*IsVariadic=*/false);
11955}
11956
11957/// VReg
11959 Register VReg, bool IsIndirect,
11960 const DebugLoc &DL, unsigned O) {
11961 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11962 "Expected inlined-at fields to agree");
11963 return new (DbgInfo->getAlloc())
11964 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11965 {}, IsIndirect, DL, O,
11966 /*IsVariadic=*/false);
11967}
11968
11971 ArrayRef<SDNode *> Dependencies,
11972 bool IsIndirect, const DebugLoc &DL,
11973 unsigned O, bool IsVariadic) {
11974 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11975 "Expected inlined-at fields to agree");
11976 return new (DbgInfo->getAlloc())
11977 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11978 DL, O, IsVariadic);
11979}
11980
11982 unsigned OffsetInBits, unsigned SizeInBits,
11983 bool InvalidateDbg) {
11984 SDNode *FromNode = From.getNode();
11985 SDNode *ToNode = To.getNode();
11986 assert(FromNode && ToNode && "Can't modify dbg values");
11987
11988 // PR35338
11989 // TODO: assert(From != To && "Redundant dbg value transfer");
11990 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11991 if (From == To || FromNode == ToNode)
11992 return;
11993
11994 if (!FromNode->getHasDebugValue())
11995 return;
11996
11997 SDDbgOperand FromLocOp =
11998 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
12000
12002 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
12003 if (Dbg->isInvalidated())
12004 continue;
12005
12006 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
12007
12008 // Create a new location ops vector that is equal to the old vector, but
12009 // with each instance of FromLocOp replaced with ToLocOp.
12010 bool Changed = false;
12011 auto NewLocOps = Dbg->copyLocationOps();
12012 std::replace_if(
12013 NewLocOps.begin(), NewLocOps.end(),
12014 [&Changed, FromLocOp](const SDDbgOperand &Op) {
12015 bool Match = Op == FromLocOp;
12016 Changed |= Match;
12017 return Match;
12018 },
12019 ToLocOp);
12020 // Ignore this SDDbgValue if we didn't find a matching location.
12021 if (!Changed)
12022 continue;
12023
12024 DIVariable *Var = Dbg->getVariable();
12025 auto *Expr = Dbg->getExpression();
12026 // If a fragment is requested, update the expression.
12027 if (SizeInBits) {
12028 // When splitting a larger (e.g., sign-extended) value whose
12029 // lower bits are described with an SDDbgValue, do not attempt
12030 // to transfer the SDDbgValue to the upper bits.
12031 if (auto FI = Expr->getFragmentInfo())
12032 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12033 continue;
12034 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
12035 SizeInBits);
12036 if (!Fragment)
12037 continue;
12038 Expr = *Fragment;
12039 }
12040
12041 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12042 // Clone the SDDbgValue and move it to To.
12043 SDDbgValue *Clone = getDbgValueList(
12044 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12045 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
12046 Dbg->isVariadic());
12047 ClonedDVs.push_back(Clone);
12048
12049 if (InvalidateDbg) {
12050 // Invalidate value and indicate the SDDbgValue should not be emitted.
12051 Dbg->setIsInvalidated();
12052 Dbg->setIsEmitted();
12053 }
12054 }
12055
12056 for (SDDbgValue *Dbg : ClonedDVs) {
12057 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
12058 "Transferred DbgValues should depend on the new SDNode");
12059 AddDbgValue(Dbg, false);
12060 }
12061}
12062
12064 if (!N.getHasDebugValue())
12065 return;
12066
12067 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
12068 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
12069 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
12070 return SDDbgOperand::fromNode(Node, ResNo);
12071 };
12072
12074 for (auto *DV : GetDbgValues(&N)) {
12075 if (DV->isInvalidated())
12076 continue;
12077 switch (N.getOpcode()) {
12078 default:
12079 break;
12080 case ISD::ADD: {
12081 SDValue N0 = N.getOperand(0);
12082 SDValue N1 = N.getOperand(1);
12083 if (!isa<ConstantSDNode>(N0)) {
12084 bool RHSConstant = isa<ConstantSDNode>(N1);
12086 if (RHSConstant)
12087 Offset = N.getConstantOperandVal(1);
12088 // We are not allowed to turn indirect debug values variadic, so
12089 // don't salvage those.
12090 if (!RHSConstant && DV->isIndirect())
12091 continue;
12092
12093 // Rewrite an ADD constant node into a DIExpression. Since we are
12094 // performing arithmetic to compute the variable's *value* in the
12095 // DIExpression, we need to mark the expression with a
12096 // DW_OP_stack_value.
12097 auto *DIExpr = DV->getExpression();
12098 auto NewLocOps = DV->copyLocationOps();
12099 bool Changed = false;
12100 size_t OrigLocOpsSize = NewLocOps.size();
12101 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
12102 // We're not given a ResNo to compare against because the whole
12103 // node is going away. We know that any ISD::ADD only has one
12104 // result, so we can assume any node match is using the result.
12105 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12106 NewLocOps[i].getSDNode() != &N)
12107 continue;
12108 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12109 if (RHSConstant) {
12112 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
12113 } else {
12114 // Convert to a variadic expression (if not already).
12115 // convertToVariadicExpression() returns a const pointer, so we use
12116 // a temporary const variable here.
12117 const auto *TmpDIExpr =
12121 ExprOps.push_back(NewLocOps.size());
12122 ExprOps.push_back(dwarf::DW_OP_plus);
12123 SDDbgOperand RHS =
12125 NewLocOps.push_back(RHS);
12126 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12127 }
12128 Changed = true;
12129 }
12130 (void)Changed;
12131 assert(Changed && "Salvage target doesn't use N");
12132
12133 bool IsVariadic =
12134 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12135
12136 auto AdditionalDependencies = DV->getAdditionalDependencies();
12137 SDDbgValue *Clone = getDbgValueList(
12138 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12139 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12140 ClonedDVs.push_back(Clone);
12141 DV->setIsInvalidated();
12142 DV->setIsEmitted();
12143 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12144 N0.getNode()->dumprFull(this);
12145 dbgs() << " into " << *DIExpr << '\n');
12146 }
12147 break;
12148 }
12149 case ISD::TRUNCATE: {
12150 SDValue N0 = N.getOperand(0);
12151 TypeSize FromSize = N0.getValueSizeInBits();
12152 TypeSize ToSize = N.getValueSizeInBits(0);
12153
12154 DIExpression *DbgExpression = DV->getExpression();
12155 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12156 auto NewLocOps = DV->copyLocationOps();
12157 bool Changed = false;
12158 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12159 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12160 NewLocOps[i].getSDNode() != &N)
12161 continue;
12162
12163 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12164 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12165 Changed = true;
12166 }
12167 assert(Changed && "Salvage target doesn't use N");
12168 (void)Changed;
12169
12170 SDDbgValue *Clone =
12171 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12172 DV->getAdditionalDependencies(), DV->isIndirect(),
12173 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12174
12175 ClonedDVs.push_back(Clone);
12176 DV->setIsInvalidated();
12177 DV->setIsEmitted();
12178 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12179 dbgs() << " into " << *DbgExpression << '\n');
12180 break;
12181 }
12182 }
12183 }
12184
12185 for (SDDbgValue *Dbg : ClonedDVs) {
12186 assert((!Dbg->getSDNodes().empty() ||
12187 llvm::any_of(Dbg->getLocationOps(),
12188 [&](const SDDbgOperand &Op) {
12189 return Op.getKind() == SDDbgOperand::FRAMEIX;
12190 })) &&
12191 "Salvaged DbgValue should depend on a new SDNode");
12192 AddDbgValue(Dbg, false);
12193 }
12194}
12195
12196/// Creates a SDDbgLabel node.
12198 const DebugLoc &DL, unsigned O) {
12199 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12200 "Expected inlined-at fields to agree");
12201 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12202}
12203
12204namespace {
12205
12206/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12207/// pointed to by a use iterator is deleted, increment the use iterator
12208/// so that it doesn't dangle.
12209///
12210class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12213
12214 void NodeDeleted(SDNode *N, SDNode *E) override {
12215 // Increment the iterator as needed.
12216 while (UI != UE && N == UI->getUser())
12217 ++UI;
12218 }
12219
12220public:
12221 RAUWUpdateListener(SelectionDAG &d,
12224 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12225};
12226
12227} // end anonymous namespace
12228
12229/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12230/// This can cause recursive merging of nodes in the DAG.
12231///
12232/// This version assumes From has a single result value.
12233///
12235 SDNode *From = FromN.getNode();
12236 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12237 "Cannot replace with this method!");
12238 assert(From != To.getNode() && "Cannot replace uses of with self");
12239
12240 // Preserve Debug Values
12241 transferDbgValues(FromN, To);
12242 // Preserve extra info.
12243 copyExtraInfo(From, To.getNode());
12244
12245 // Iterate over all the existing uses of From. New uses will be added
12246 // to the beginning of the use list, which we avoid visiting.
12247 // This specifically avoids visiting uses of From that arise while the
12248 // replacement is happening, because any such uses would be the result
12249 // of CSE: If an existing node looks like From after one of its operands
12250 // is replaced by To, we don't want to replace of all its users with To
12251 // too. See PR3018 for more info.
12252 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12253 RAUWUpdateListener Listener(*this, UI, UE);
12254 while (UI != UE) {
12255 SDNode *User = UI->getUser();
12256
12257 // This node is about to morph, remove its old self from the CSE maps.
12258 RemoveNodeFromCSEMaps(User);
12259
12260 // A user can appear in a use list multiple times, and when this
12261 // happens the uses are usually next to each other in the list.
12262 // To help reduce the number of CSE recomputations, process all
12263 // the uses of this user that we can find this way.
12264 do {
12265 SDUse &Use = *UI;
12266 ++UI;
12267 Use.set(To);
12268 if (To->isDivergent() != From->isDivergent())
12270 } while (UI != UE && UI->getUser() == User);
12271 // Now that we have modified User, add it back to the CSE maps. If it
12272 // already exists there, recursively merge the results together.
12273 AddModifiedNodeToCSEMaps(User);
12274 }
12275
12276 // If we just RAUW'd the root, take note.
12277 if (FromN == getRoot())
12278 setRoot(To);
12279}
12280
12281/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12282/// This can cause recursive merging of nodes in the DAG.
12283///
12284/// This version assumes that for each value of From, there is a
12285/// corresponding value in To in the same position with the same type.
12286///
12288#ifndef NDEBUG
12289 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12290 assert((!From->hasAnyUseOfValue(i) ||
12291 From->getValueType(i) == To->getValueType(i)) &&
12292 "Cannot use this version of ReplaceAllUsesWith!");
12293#endif
12294
12295 // Handle the trivial case.
12296 if (From == To)
12297 return;
12298
12299 // Preserve Debug Info. Only do this if there's a use.
12300 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12301 if (From->hasAnyUseOfValue(i)) {
12302 assert((i < To->getNumValues()) && "Invalid To location");
12303 transferDbgValues(SDValue(From, i), SDValue(To, i));
12304 }
12305 // Preserve extra info.
12306 copyExtraInfo(From, To);
12307
12308 // Iterate over just the existing users of From. See the comments in
12309 // the ReplaceAllUsesWith above.
12310 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12311 RAUWUpdateListener Listener(*this, UI, UE);
12312 while (UI != UE) {
12313 SDNode *User = UI->getUser();
12314
12315 // This node is about to morph, remove its old self from the CSE maps.
12316 RemoveNodeFromCSEMaps(User);
12317
12318 // A user can appear in a use list multiple times, and when this
12319 // happens the uses are usually next to each other in the list.
12320 // To help reduce the number of CSE recomputations, process all
12321 // the uses of this user that we can find this way.
12322 do {
12323 SDUse &Use = *UI;
12324 ++UI;
12325 Use.setNode(To);
12326 if (To->isDivergent() != From->isDivergent())
12328 } while (UI != UE && UI->getUser() == User);
12329
12330 // Now that we have modified User, add it back to the CSE maps. If it
12331 // already exists there, recursively merge the results together.
12332 AddModifiedNodeToCSEMaps(User);
12333 }
12334
12335 // If we just RAUW'd the root, take note.
12336 if (From == getRoot().getNode())
12337 setRoot(SDValue(To, getRoot().getResNo()));
12338}
12339
12340/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12341/// This can cause recursive merging of nodes in the DAG.
12342///
12343/// This version can replace From with any result values. To must match the
12344/// number and types of values returned by From.
12346 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12347 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12348
12349 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12350 // Preserve Debug Info.
12351 transferDbgValues(SDValue(From, i), To[i]);
12352 // Preserve extra info.
12353 copyExtraInfo(From, To[i].getNode());
12354 }
12355
12356 // Iterate over just the existing users of From. See the comments in
12357 // the ReplaceAllUsesWith above.
12358 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12359 RAUWUpdateListener Listener(*this, UI, UE);
12360 while (UI != UE) {
12361 SDNode *User = UI->getUser();
12362
12363 // This node is about to morph, remove its old self from the CSE maps.
12364 RemoveNodeFromCSEMaps(User);
12365
12366 // A user can appear in a use list multiple times, and when this happens the
12367 // uses are usually next to each other in the list. To help reduce the
12368 // number of CSE and divergence recomputations, process all the uses of this
12369 // user that we can find this way.
12370 bool To_IsDivergent = false;
12371 do {
12372 SDUse &Use = *UI;
12373 const SDValue &ToOp = To[Use.getResNo()];
12374 ++UI;
12375 Use.set(ToOp);
12376 To_IsDivergent |= ToOp->isDivergent();
12377 } while (UI != UE && UI->getUser() == User);
12378
12379 if (To_IsDivergent != From->isDivergent())
12381
12382 // Now that we have modified User, add it back to the CSE maps. If it
12383 // already exists there, recursively merge the results together.
12384 AddModifiedNodeToCSEMaps(User);
12385 }
12386
12387 // If we just RAUW'd the root, take note.
12388 if (From == getRoot().getNode())
12389 setRoot(SDValue(To[getRoot().getResNo()]));
12390}
12391
12392/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12393/// uses of other values produced by From.getNode() alone. The Deleted
12394/// vector is handled the same way as for ReplaceAllUsesWith.
12396 // Handle the really simple, really trivial case efficiently.
12397 if (From == To) return;
12398
12399 // Handle the simple, trivial, case efficiently.
12400 if (From.getNode()->getNumValues() == 1) {
12401 ReplaceAllUsesWith(From, To);
12402 return;
12403 }
12404
12405 // Preserve Debug Info.
12406 transferDbgValues(From, To);
12407 copyExtraInfo(From.getNode(), To.getNode());
12408
12409 // Iterate over just the existing users of From. See the comments in
12410 // the ReplaceAllUsesWith above.
12411 SDNode::use_iterator UI = From.getNode()->use_begin(),
12412 UE = From.getNode()->use_end();
12413 RAUWUpdateListener Listener(*this, UI, UE);
12414 while (UI != UE) {
12415 SDNode *User = UI->getUser();
12416 bool UserRemovedFromCSEMaps = false;
12417
12418 // A user can appear in a use list multiple times, and when this
12419 // happens the uses are usually next to each other in the list.
12420 // To help reduce the number of CSE recomputations, process all
12421 // the uses of this user that we can find this way.
12422 do {
12423 SDUse &Use = *UI;
12424
12425 // Skip uses of different values from the same node.
12426 if (Use.getResNo() != From.getResNo()) {
12427 ++UI;
12428 continue;
12429 }
12430
12431 // If this node hasn't been modified yet, it's still in the CSE maps,
12432 // so remove its old self from the CSE maps.
12433 if (!UserRemovedFromCSEMaps) {
12434 RemoveNodeFromCSEMaps(User);
12435 UserRemovedFromCSEMaps = true;
12436 }
12437
12438 ++UI;
12439 Use.set(To);
12440 if (To->isDivergent() != From->isDivergent())
12442 } while (UI != UE && UI->getUser() == User);
12443 // We are iterating over all uses of the From node, so if a use
12444 // doesn't use the specific value, no changes are made.
12445 if (!UserRemovedFromCSEMaps)
12446 continue;
12447
12448 // Now that we have modified User, add it back to the CSE maps. If it
12449 // already exists there, recursively merge the results together.
12450 AddModifiedNodeToCSEMaps(User);
12451 }
12452
12453 // If we just RAUW'd the root, take note.
12454 if (From == getRoot())
12455 setRoot(To);
12456}
12457
12458namespace {
12459
12460/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12461/// to record information about a use.
12462struct UseMemo {
12463 SDNode *User;
12464 unsigned Index;
12465 SDUse *Use;
12466};
12467
12468/// operator< - Sort Memos by User.
12469bool operator<(const UseMemo &L, const UseMemo &R) {
12470 return (intptr_t)L.User < (intptr_t)R.User;
12471}
12472
12473/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12474/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12475/// the node already has been taken care of recursively.
12476class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12477 SmallVectorImpl<UseMemo> &Uses;
12478
12479 void NodeDeleted(SDNode *N, SDNode *E) override {
12480 for (UseMemo &Memo : Uses)
12481 if (Memo.User == N)
12482 Memo.User = nullptr;
12483 }
12484
12485public:
12486 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12487 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12488};
12489
12490} // end anonymous namespace
12491
12492/// Return true if a glue output should propagate divergence information.
12494 switch (Node->getOpcode()) {
12495 case ISD::CopyFromReg:
12496 case ISD::CopyToReg:
12497 return false;
12498 default:
12499 return true;
12500 }
12501
12502 llvm_unreachable("covered opcode switch");
12503}
12504
12506 if (TLI->isSDNodeAlwaysUniform(N)) {
12507 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12508 "Conflicting divergence information!");
12509 return false;
12510 }
12511 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12512 return true;
12513 for (const auto &Op : N->ops()) {
12514 EVT VT = Op.getValueType();
12515
12516 // Skip Chain. It does not carry divergence.
12517 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12518 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12519 return true;
12520 }
12521 return false;
12522}
12523
12525 SmallVector<SDNode *, 16> Worklist(1, N);
12526 do {
12527 N = Worklist.pop_back_val();
12528 bool IsDivergent = calculateDivergence(N);
12529 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12530 N->SDNodeBits.IsDivergent = IsDivergent;
12531 llvm::append_range(Worklist, N->users());
12532 }
12533 } while (!Worklist.empty());
12534}
12535
12536void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12538 Order.reserve(AllNodes.size());
12539 for (auto &N : allnodes()) {
12540 unsigned NOps = N.getNumOperands();
12541 Degree[&N] = NOps;
12542 if (0 == NOps)
12543 Order.push_back(&N);
12544 }
12545 for (size_t I = 0; I != Order.size(); ++I) {
12546 SDNode *N = Order[I];
12547 for (auto *U : N->users()) {
12548 unsigned &UnsortedOps = Degree[U];
12549 if (0 == --UnsortedOps)
12550 Order.push_back(U);
12551 }
12552 }
12553}
12554
12555#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12556void SelectionDAG::VerifyDAGDivergence() {
12557 std::vector<SDNode *> TopoOrder;
12558 CreateTopologicalOrder(TopoOrder);
12559 for (auto *N : TopoOrder) {
12560 assert(calculateDivergence(N) == N->isDivergent() &&
12561 "Divergence bit inconsistency detected");
12562 }
12563}
12564#endif
12565
12566/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12567/// uses of other values produced by From.getNode() alone. The same value
12568/// may appear in both the From and To list. The Deleted vector is
12569/// handled the same way as for ReplaceAllUsesWith.
12571 const SDValue *To,
12572 unsigned Num){
12573 // Handle the simple, trivial case efficiently.
12574 if (Num == 1)
12575 return ReplaceAllUsesOfValueWith(*From, *To);
12576
12577 transferDbgValues(*From, *To);
12578 copyExtraInfo(From->getNode(), To->getNode());
12579
12580 // Read up all the uses and make records of them. This helps
12581 // processing new uses that are introduced during the
12582 // replacement process.
12584 for (unsigned i = 0; i != Num; ++i) {
12585 unsigned FromResNo = From[i].getResNo();
12586 SDNode *FromNode = From[i].getNode();
12587 for (SDUse &Use : FromNode->uses()) {
12588 if (Use.getResNo() == FromResNo) {
12589 UseMemo Memo = {Use.getUser(), i, &Use};
12590 Uses.push_back(Memo);
12591 }
12592 }
12593 }
12594
12595 // Sort the uses, so that all the uses from a given User are together.
12597 RAUOVWUpdateListener Listener(*this, Uses);
12598
12599 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12600 UseIndex != UseIndexEnd; ) {
12601 // We know that this user uses some value of From. If it is the right
12602 // value, update it.
12603 SDNode *User = Uses[UseIndex].User;
12604 // If the node has been deleted by recursive CSE updates when updating
12605 // another node, then just skip this entry.
12606 if (User == nullptr) {
12607 ++UseIndex;
12608 continue;
12609 }
12610
12611 // This node is about to morph, remove its old self from the CSE maps.
12612 RemoveNodeFromCSEMaps(User);
12613
12614 // The Uses array is sorted, so all the uses for a given User
12615 // are next to each other in the list.
12616 // To help reduce the number of CSE recomputations, process all
12617 // the uses of this user that we can find this way.
12618 do {
12619 unsigned i = Uses[UseIndex].Index;
12620 SDUse &Use = *Uses[UseIndex].Use;
12621 ++UseIndex;
12622
12623 Use.set(To[i]);
12624 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12625
12626 // Now that we have modified User, add it back to the CSE maps. If it
12627 // already exists there, recursively merge the results together.
12628 AddModifiedNodeToCSEMaps(User);
12629 }
12630}
12631
12632/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12633/// based on their topological order. It returns the maximum id and a vector
12634/// of the SDNodes* in assigned order by reference.
12636 unsigned DAGSize = 0;
12637
12638 // SortedPos tracks the progress of the algorithm. Nodes before it are
12639 // sorted, nodes after it are unsorted. When the algorithm completes
12640 // it is at the end of the list.
12641 allnodes_iterator SortedPos = allnodes_begin();
12642
12643 // Visit all the nodes. Move nodes with no operands to the front of
12644 // the list immediately. Annotate nodes that do have operands with their
12645 // operand count. Before we do this, the Node Id fields of the nodes
12646 // may contain arbitrary values. After, the Node Id fields for nodes
12647 // before SortedPos will contain the topological sort index, and the
12648 // Node Id fields for nodes At SortedPos and after will contain the
12649 // count of outstanding operands.
12651 checkForCycles(&N, this);
12652 unsigned Degree = N.getNumOperands();
12653 if (Degree == 0) {
12654 // A node with no uses, add it to the result array immediately.
12655 N.setNodeId(DAGSize++);
12656 allnodes_iterator Q(&N);
12657 if (Q != SortedPos)
12658 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12659 assert(SortedPos != AllNodes.end() && "Overran node list");
12660 ++SortedPos;
12661 } else {
12662 // Temporarily use the Node Id as scratch space for the degree count.
12663 N.setNodeId(Degree);
12664 }
12665 }
12666
12667 // Visit all the nodes. As we iterate, move nodes into sorted order,
12668 // such that by the time the end is reached all nodes will be sorted.
12669 for (SDNode &Node : allnodes()) {
12670 SDNode *N = &Node;
12671 checkForCycles(N, this);
12672 // N is in sorted position, so all its uses have one less operand
12673 // that needs to be sorted.
12674 for (SDNode *P : N->users()) {
12675 unsigned Degree = P->getNodeId();
12676 assert(Degree != 0 && "Invalid node degree");
12677 --Degree;
12678 if (Degree == 0) {
12679 // All of P's operands are sorted, so P may sorted now.
12680 P->setNodeId(DAGSize++);
12681 if (P->getIterator() != SortedPos)
12682 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12683 assert(SortedPos != AllNodes.end() && "Overran node list");
12684 ++SortedPos;
12685 } else {
12686 // Update P's outstanding operand count.
12687 P->setNodeId(Degree);
12688 }
12689 }
12690 if (Node.getIterator() == SortedPos) {
12691#ifndef NDEBUG
12693 SDNode *S = &*++I;
12694 dbgs() << "Overran sorted position:\n";
12695 S->dumprFull(this); dbgs() << "\n";
12696 dbgs() << "Checking if this is due to cycles\n";
12697 checkForCycles(this, true);
12698#endif
12699 llvm_unreachable(nullptr);
12700 }
12701 }
12702
12703 assert(SortedPos == AllNodes.end() &&
12704 "Topological sort incomplete!");
12705 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12706 "First node in topological sort is not the entry token!");
12707 assert(AllNodes.front().getNodeId() == 0 &&
12708 "First node in topological sort has non-zero id!");
12709 assert(AllNodes.front().getNumOperands() == 0 &&
12710 "First node in topological sort has operands!");
12711 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12712 "Last node in topologic sort has unexpected id!");
12713 assert(AllNodes.back().use_empty() &&
12714 "Last node in topologic sort has users!");
12715 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12716 return DAGSize;
12717}
12718
12720 SmallVectorImpl<const SDNode *> &SortedNodes) const {
12721 SortedNodes.clear();
12722 // Node -> remaining number of outstanding operands.
12723 DenseMap<const SDNode *, unsigned> RemainingOperands;
12724
12725 // Put nodes without any operands into SortedNodes first.
12726 for (const SDNode &N : allnodes()) {
12727 checkForCycles(&N, this);
12728 unsigned NumOperands = N.getNumOperands();
12729 if (NumOperands == 0)
12730 SortedNodes.push_back(&N);
12731 else
12732 // Record their total number of outstanding operands.
12733 RemainingOperands[&N] = NumOperands;
12734 }
12735
12736 // A node is pushed into SortedNodes when all of its operands (predecessors in
12737 // the graph) are also in SortedNodes.
12738 for (unsigned i = 0U; i < SortedNodes.size(); ++i) {
12739 const SDNode *N = SortedNodes[i];
12740 for (const SDNode *U : N->users()) {
12741 unsigned &NumRemOperands = RemainingOperands[U];
12742 assert(NumRemOperands && "Invalid number of remaining operands");
12743 --NumRemOperands;
12744 if (!NumRemOperands)
12745 SortedNodes.push_back(U);
12746 }
12747 }
12748
12749 assert(SortedNodes.size() == AllNodes.size() && "Node count mismatch");
12750 assert(SortedNodes.front()->getOpcode() == ISD::EntryToken &&
12751 "First node in topological sort is not the entry token");
12752 assert(SortedNodes.front()->getNumOperands() == 0 &&
12753 "First node in topological sort has operands");
12754 assert(SortedNodes.back()->use_empty() &&
12755 "Last node in topologic sort has users");
12756}
12757
12758/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12759/// value is produced by SD.
12760void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12761 for (SDNode *SD : DB->getSDNodes()) {
12762 if (!SD)
12763 continue;
12764 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12765 SD->setHasDebugValue(true);
12766 }
12767 DbgInfo->add(DB, isParameter);
12768}
12769
12770void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12771
12773 SDValue NewMemOpChain) {
12774 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12775 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12776 // The new memory operation must have the same position as the old load in
12777 // terms of memory dependency. Create a TokenFactor for the old load and new
12778 // memory operation and update uses of the old load's output chain to use that
12779 // TokenFactor.
12780 if (OldChain == NewMemOpChain || OldChain.use_empty())
12781 return NewMemOpChain;
12782
12783 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12784 OldChain, NewMemOpChain);
12785 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12786 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12787 return TokenFactor;
12788}
12789
12791 SDValue NewMemOp) {
12792 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12793 SDValue OldChain = SDValue(OldLoad, 1);
12794 SDValue NewMemOpChain = NewMemOp.getValue(1);
12795 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12796}
12797
12799 Function **OutFunction) {
12800 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12801
12802 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12803 auto *Module = MF->getFunction().getParent();
12804 auto *Function = Module->getFunction(Symbol);
12805
12806 if (OutFunction != nullptr)
12807 *OutFunction = Function;
12808
12809 if (Function != nullptr) {
12810 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12811 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12812 }
12813
12814 std::string ErrorStr;
12815 raw_string_ostream ErrorFormatter(ErrorStr);
12816 ErrorFormatter << "Undefined external symbol ";
12817 ErrorFormatter << '"' << Symbol << '"';
12818 report_fatal_error(Twine(ErrorStr));
12819}
12820
12821//===----------------------------------------------------------------------===//
12822// SDNode Class
12823//===----------------------------------------------------------------------===//
12824
12827 return Const != nullptr && Const->isZero();
12828}
12829
12831 return V.isUndef() || isNullConstant(V);
12832}
12833
12836 return Const != nullptr && Const->isZero() && !Const->isNegative();
12837}
12838
12841 return Const != nullptr && Const->isAllOnes();
12842}
12843
12846 return Const != nullptr && Const->isOne();
12847}
12848
12851 return Const != nullptr && Const->isMinSignedValue();
12852}
12853
12854bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12855 unsigned OperandNo) {
12856 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12857 // TODO: Target-specific opcodes could be added.
12858 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12859 /*AllowTruncation*/ true)) {
12860 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12861 switch (Opcode) {
12862 case ISD::ADD:
12863 case ISD::OR:
12864 case ISD::XOR:
12865 case ISD::UMAX:
12866 return Const.isZero();
12867 case ISD::MUL:
12868 return Const.isOne();
12869 case ISD::AND:
12870 case ISD::UMIN:
12871 return Const.isAllOnes();
12872 case ISD::SMAX:
12873 return Const.isMinSignedValue();
12874 case ISD::SMIN:
12875 return Const.isMaxSignedValue();
12876 case ISD::SUB:
12877 case ISD::SHL:
12878 case ISD::SRA:
12879 case ISD::SRL:
12880 return OperandNo == 1 && Const.isZero();
12881 case ISD::UDIV:
12882 case ISD::SDIV:
12883 return OperandNo == 1 && Const.isOne();
12884 }
12885 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12886 switch (Opcode) {
12887 case ISD::FADD:
12888 return ConstFP->isZero() &&
12889 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12890 case ISD::FSUB:
12891 return OperandNo == 1 && ConstFP->isZero() &&
12892 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12893 case ISD::FMUL:
12894 return ConstFP->isExactlyValue(1.0);
12895 case ISD::FDIV:
12896 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12897 case ISD::FMINNUM:
12898 case ISD::FMAXNUM: {
12899 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12900 EVT VT = V.getValueType();
12901 const fltSemantics &Semantics = VT.getFltSemantics();
12902 APFloat NeutralAF = !Flags.hasNoNaNs()
12903 ? APFloat::getQNaN(Semantics)
12904 : !Flags.hasNoInfs()
12905 ? APFloat::getInf(Semantics)
12906 : APFloat::getLargest(Semantics);
12907 if (Opcode == ISD::FMAXNUM)
12908 NeutralAF.changeSign();
12909
12910 return ConstFP->isExactlyValue(NeutralAF);
12911 }
12912 }
12913 }
12914 return false;
12915}
12916
12918 while (V.getOpcode() == ISD::BITCAST)
12919 V = V.getOperand(0);
12920 return V;
12921}
12922
12924 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12925 V = V.getOperand(0);
12926 return V;
12927}
12928
12930 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12931 V = V.getOperand(0);
12932 return V;
12933}
12934
12936 while (V.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12937 SDValue InVec = V.getOperand(0);
12938 SDValue EltNo = V.getOperand(2);
12939 EVT VT = InVec.getValueType();
12940 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
12941 if (IndexC && VT.isFixedLengthVector() &&
12942 IndexC->getAPIntValue().ult(VT.getVectorNumElements()) &&
12943 !DemandedElts[IndexC->getZExtValue()]) {
12944 V = InVec;
12945 continue;
12946 }
12947 break;
12948 }
12949 return V;
12950}
12951
12953 while (V.getOpcode() == ISD::TRUNCATE)
12954 V = V.getOperand(0);
12955 return V;
12956}
12957
12958bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12959 if (V.getOpcode() != ISD::XOR)
12960 return false;
12961 V = peekThroughBitcasts(V.getOperand(1));
12962 unsigned NumBits = V.getScalarValueSizeInBits();
12963 ConstantSDNode *C =
12964 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12965 return C && (C->getAPIntValue().countr_one() >= NumBits);
12966}
12967
12969 bool AllowTruncation) {
12970 EVT VT = N.getValueType();
12971 APInt DemandedElts = VT.isFixedLengthVector()
12973 : APInt(1, 1);
12974 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12975}
12976
12978 bool AllowUndefs,
12979 bool AllowTruncation) {
12981 return CN;
12982
12983 // SplatVectors can truncate their operands. Ignore that case here unless
12984 // AllowTruncation is set.
12985 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12986 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12987 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12988 EVT CVT = CN->getValueType(0);
12989 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12990 if (AllowTruncation || CVT == VecEltVT)
12991 return CN;
12992 }
12993 }
12994
12996 BitVector UndefElements;
12997 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12998
12999 // BuildVectors can truncate their operands. Ignore that case here unless
13000 // AllowTruncation is set.
13001 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
13002 if (CN && (UndefElements.none() || AllowUndefs)) {
13003 EVT CVT = CN->getValueType(0);
13004 EVT NSVT = N.getValueType().getScalarType();
13005 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
13006 if (AllowTruncation || (CVT == NSVT))
13007 return CN;
13008 }
13009 }
13010
13011 return nullptr;
13012}
13013
13015 EVT VT = N.getValueType();
13016 APInt DemandedElts = VT.isFixedLengthVector()
13018 : APInt(1, 1);
13019 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
13020}
13021
13023 const APInt &DemandedElts,
13024 bool AllowUndefs) {
13026 return CN;
13027
13029 BitVector UndefElements;
13030 ConstantFPSDNode *CN =
13031 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13032 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
13033 if (CN && (UndefElements.none() || AllowUndefs))
13034 return CN;
13035 }
13036
13037 if (N.getOpcode() == ISD::SPLAT_VECTOR)
13038 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
13039 return CN;
13040
13041 return nullptr;
13042}
13043
13044bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
13045 // TODO: may want to use peekThroughBitcast() here.
13046 ConstantSDNode *C =
13047 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
13048 return C && C->isZero();
13049}
13050
13051bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
13052 ConstantSDNode *C =
13053 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
13054 return C && C->isOne();
13055}
13056
13057bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
13059 unsigned BitWidth = N.getScalarValueSizeInBits();
13060 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13061 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
13062}
13063
13064bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
13065 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13066 return C && APInt::isSameValue(C->getAPIntValue(),
13067 APInt(C->getAPIntValue().getBitWidth(), 1));
13068}
13069
13070bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
13072 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
13073 return C && C->isZero();
13074}
13075
13079
13080MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
13081 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
13082 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
13083 MemSDNodeBits.IsVolatile = MMO->isVolatile();
13084 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
13085 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
13086 MemSDNodeBits.IsInvariant = MMO->isInvariant();
13087
13088 // We check here that the size of the memory operand fits within the size of
13089 // the MMO. This is because the MMO might indicate only a possible address
13090 // range instead of specifying the affected memory addresses precisely.
13091 assert(
13092 (!MMO->getType().isValid() ||
13093 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
13094 "Size mismatch!");
13095}
13096
13097/// Profile - Gather unique data for the node.
13098///
13100 AddNodeIDNode(ID, this);
13101}
13102
13103namespace {
13104
13105 struct EVTArray {
13106 std::vector<EVT> VTs;
13107
13108 EVTArray() {
13109 VTs.reserve(MVT::VALUETYPE_SIZE);
13110 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
13111 VTs.push_back(MVT((MVT::SimpleValueType)i));
13112 }
13113 };
13114
13115} // end anonymous namespace
13116
13117/// getValueTypeList - Return a pointer to the specified value type.
13118///
13119const EVT *SDNode::getValueTypeList(MVT VT) {
13120 static EVTArray SimpleVTArray;
13121
13122 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
13123 return &SimpleVTArray.VTs[VT.SimpleTy];
13124}
13125
13126/// hasAnyUseOfValue - Return true if there are any use of the indicated
13127/// value. This method ignores uses of other values defined by this operation.
13128bool SDNode::hasAnyUseOfValue(unsigned Value) const {
13129 assert(Value < getNumValues() && "Bad value!");
13130
13131 for (SDUse &U : uses())
13132 if (U.getResNo() == Value)
13133 return true;
13134
13135 return false;
13136}
13137
13138/// isOnlyUserOf - Return true if this node is the only use of N.
13139bool SDNode::isOnlyUserOf(const SDNode *N) const {
13140 bool Seen = false;
13141 for (const SDNode *User : N->users()) {
13142 if (User == this)
13143 Seen = true;
13144 else
13145 return false;
13146 }
13147
13148 return Seen;
13149}
13150
13151/// Return true if the only users of N are contained in Nodes.
13153 bool Seen = false;
13154 for (const SDNode *User : N->users()) {
13155 if (llvm::is_contained(Nodes, User))
13156 Seen = true;
13157 else
13158 return false;
13159 }
13160
13161 return Seen;
13162}
13163
13164/// Return true if the referenced return value is an operand of N.
13165bool SDValue::isOperandOf(const SDNode *N) const {
13166 return is_contained(N->op_values(), *this);
13167}
13168
13169bool SDNode::isOperandOf(const SDNode *N) const {
13170 return any_of(N->op_values(),
13171 [this](SDValue Op) { return this == Op.getNode(); });
13172}
13173
13174/// reachesChainWithoutSideEffects - Return true if this operand (which must
13175/// be a chain) reaches the specified operand without crossing any
13176/// side-effecting instructions on any chain path. In practice, this looks
13177/// through token factors and non-volatile loads. In order to remain efficient,
13178/// this only looks a couple of nodes in, it does not do an exhaustive search.
13179///
13180/// Note that we only need to examine chains when we're searching for
13181/// side-effects; SelectionDAG requires that all side-effects are represented
13182/// by chains, even if another operand would force a specific ordering. This
13183/// constraint is necessary to allow transformations like splitting loads.
13185 unsigned Depth) const {
13186 if (*this == Dest) return true;
13187
13188 // Don't search too deeply, we just want to be able to see through
13189 // TokenFactor's etc.
13190 if (Depth == 0) return false;
13191
13192 // If this is a token factor, all inputs to the TF happen in parallel.
13193 if (getOpcode() == ISD::TokenFactor) {
13194 // First, try a shallow search.
13195 if (is_contained((*this)->ops(), Dest)) {
13196 // We found the chain we want as an operand of this TokenFactor.
13197 // Essentially, we reach the chain without side-effects if we could
13198 // serialize the TokenFactor into a simple chain of operations with
13199 // Dest as the last operation. This is automatically true if the
13200 // chain has one use: there are no other ordering constraints.
13201 // If the chain has more than one use, we give up: some other
13202 // use of Dest might force a side-effect between Dest and the current
13203 // node.
13204 if (Dest.hasOneUse())
13205 return true;
13206 }
13207 // Next, try a deep search: check whether every operand of the TokenFactor
13208 // reaches Dest.
13209 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13210 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13211 });
13212 }
13213
13214 // Loads don't have side effects, look through them.
13215 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13216 if (Ld->isUnordered())
13217 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13218 }
13219 return false;
13220}
13221
13222bool SDNode::hasPredecessor(const SDNode *N) const {
13225 Worklist.push_back(this);
13226 return hasPredecessorHelper(N, Visited, Worklist);
13227}
13228
13230 this->Flags &= Flags;
13231}
13232
13233SDValue
13235 ArrayRef<ISD::NodeType> CandidateBinOps,
13236 bool AllowPartials) {
13237 // The pattern must end in an extract from index 0.
13238 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13239 !isNullConstant(Extract->getOperand(1)))
13240 return SDValue();
13241
13242 // Match against one of the candidate binary ops.
13243 SDValue Op = Extract->getOperand(0);
13244 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13245 return Op.getOpcode() == unsigned(BinOp);
13246 }))
13247 return SDValue();
13248
13249 // Floating-point reductions may require relaxed constraints on the final step
13250 // of the reduction because they may reorder intermediate operations.
13251 unsigned CandidateBinOp = Op.getOpcode();
13252 if (Op.getValueType().isFloatingPoint()) {
13253 SDNodeFlags Flags = Op->getFlags();
13254 switch (CandidateBinOp) {
13255 case ISD::FADD:
13256 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13257 return SDValue();
13258 break;
13259 default:
13260 llvm_unreachable("Unhandled FP opcode for binop reduction");
13261 }
13262 }
13263
13264 // Matching failed - attempt to see if we did enough stages that a partial
13265 // reduction from a subvector is possible.
13266 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13267 if (!AllowPartials || !Op)
13268 return SDValue();
13269 EVT OpVT = Op.getValueType();
13270 EVT OpSVT = OpVT.getScalarType();
13271 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13272 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13273 return SDValue();
13274 BinOp = (ISD::NodeType)CandidateBinOp;
13275 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13276 };
13277
13278 // At each stage, we're looking for something that looks like:
13279 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13280 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13281 // i32 undef, i32 undef, i32 undef, i32 undef>
13282 // %a = binop <8 x i32> %op, %s
13283 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13284 // we expect something like:
13285 // <4,5,6,7,u,u,u,u>
13286 // <2,3,u,u,u,u,u,u>
13287 // <1,u,u,u,u,u,u,u>
13288 // While a partial reduction match would be:
13289 // <2,3,u,u,u,u,u,u>
13290 // <1,u,u,u,u,u,u,u>
13291 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13292 SDValue PrevOp;
13293 for (unsigned i = 0; i < Stages; ++i) {
13294 unsigned MaskEnd = (1 << i);
13295
13296 if (Op.getOpcode() != CandidateBinOp)
13297 return PartialReduction(PrevOp, MaskEnd);
13298
13299 SDValue Op0 = Op.getOperand(0);
13300 SDValue Op1 = Op.getOperand(1);
13301
13303 if (Shuffle) {
13304 Op = Op1;
13305 } else {
13306 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13307 Op = Op0;
13308 }
13309
13310 // The first operand of the shuffle should be the same as the other operand
13311 // of the binop.
13312 if (!Shuffle || Shuffle->getOperand(0) != Op)
13313 return PartialReduction(PrevOp, MaskEnd);
13314
13315 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13316 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13317 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13318 return PartialReduction(PrevOp, MaskEnd);
13319
13320 PrevOp = Op;
13321 }
13322
13323 // Handle subvector reductions, which tend to appear after the shuffle
13324 // reduction stages.
13325 while (Op.getOpcode() == CandidateBinOp) {
13326 unsigned NumElts = Op.getValueType().getVectorNumElements();
13327 SDValue Op0 = Op.getOperand(0);
13328 SDValue Op1 = Op.getOperand(1);
13329 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13331 Op0.getOperand(0) != Op1.getOperand(0))
13332 break;
13333 SDValue Src = Op0.getOperand(0);
13334 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13335 if (NumSrcElts != (2 * NumElts))
13336 break;
13337 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13338 Op1.getConstantOperandAPInt(1) == NumElts) &&
13339 !(Op1.getConstantOperandAPInt(1) == 0 &&
13340 Op0.getConstantOperandAPInt(1) == NumElts))
13341 break;
13342 Op = Src;
13343 }
13344
13345 BinOp = (ISD::NodeType)CandidateBinOp;
13346 return Op;
13347}
13348
13350 EVT VT = N->getValueType(0);
13351 EVT EltVT = VT.getVectorElementType();
13352 unsigned NE = VT.getVectorNumElements();
13353
13354 SDLoc dl(N);
13355
13356 // If ResNE is 0, fully unroll the vector op.
13357 if (ResNE == 0)
13358 ResNE = NE;
13359 else if (NE > ResNE)
13360 NE = ResNE;
13361
13362 if (N->getNumValues() == 2) {
13363 SmallVector<SDValue, 8> Scalars0, Scalars1;
13364 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13365 EVT VT1 = N->getValueType(1);
13366 EVT EltVT1 = VT1.getVectorElementType();
13367
13368 unsigned i;
13369 for (i = 0; i != NE; ++i) {
13370 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13371 SDValue Operand = N->getOperand(j);
13372 EVT OperandVT = Operand.getValueType();
13373
13374 // A vector operand; extract a single element.
13375 EVT OperandEltVT = OperandVT.getVectorElementType();
13376 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13377 }
13378
13379 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13380 Scalars0.push_back(EltOp);
13381 Scalars1.push_back(EltOp.getValue(1));
13382 }
13383
13384 for (; i < ResNE; ++i) {
13385 Scalars0.push_back(getUNDEF(EltVT));
13386 Scalars1.push_back(getUNDEF(EltVT1));
13387 }
13388
13389 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13390 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13391 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13392 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13393 return getMergeValues({Vec0, Vec1}, dl);
13394 }
13395
13396 assert(N->getNumValues() == 1 &&
13397 "Can't unroll a vector with multiple results!");
13398
13400 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13401
13402 unsigned i;
13403 for (i= 0; i != NE; ++i) {
13404 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13405 SDValue Operand = N->getOperand(j);
13406 EVT OperandVT = Operand.getValueType();
13407 if (OperandVT.isVector()) {
13408 // A vector operand; extract a single element.
13409 EVT OperandEltVT = OperandVT.getVectorElementType();
13410 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13411 } else {
13412 // A scalar operand; just use it as is.
13413 Operands[j] = Operand;
13414 }
13415 }
13416
13417 switch (N->getOpcode()) {
13418 default: {
13419 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13420 N->getFlags()));
13421 break;
13422 }
13423 case ISD::VSELECT:
13424 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13425 break;
13426 case ISD::SHL:
13427 case ISD::SRA:
13428 case ISD::SRL:
13429 case ISD::ROTL:
13430 case ISD::ROTR:
13431 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13432 getShiftAmountOperand(Operands[0].getValueType(),
13433 Operands[1])));
13434 break;
13436 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13437 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13438 Operands[0],
13439 getValueType(ExtVT)));
13440 break;
13441 }
13442 case ISD::ADDRSPACECAST: {
13443 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13444 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13445 ASC->getSrcAddressSpace(),
13446 ASC->getDestAddressSpace()));
13447 break;
13448 }
13449 }
13450 }
13451
13452 for (; i < ResNE; ++i)
13453 Scalars.push_back(getUNDEF(EltVT));
13454
13455 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13456 return getBuildVector(VecVT, dl, Scalars);
13457}
13458
13459std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13460 SDNode *N, unsigned ResNE) {
13461 unsigned Opcode = N->getOpcode();
13462 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13463 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13464 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13465 "Expected an overflow opcode");
13466
13467 EVT ResVT = N->getValueType(0);
13468 EVT OvVT = N->getValueType(1);
13469 EVT ResEltVT = ResVT.getVectorElementType();
13470 EVT OvEltVT = OvVT.getVectorElementType();
13471 SDLoc dl(N);
13472
13473 // If ResNE is 0, fully unroll the vector op.
13474 unsigned NE = ResVT.getVectorNumElements();
13475 if (ResNE == 0)
13476 ResNE = NE;
13477 else if (NE > ResNE)
13478 NE = ResNE;
13479
13480 SmallVector<SDValue, 8> LHSScalars;
13481 SmallVector<SDValue, 8> RHSScalars;
13482 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13483 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13484
13485 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13486 SDVTList VTs = getVTList(ResEltVT, SVT);
13487 SmallVector<SDValue, 8> ResScalars;
13488 SmallVector<SDValue, 8> OvScalars;
13489 for (unsigned i = 0; i < NE; ++i) {
13490 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13491 SDValue Ov =
13492 getSelect(dl, OvEltVT, Res.getValue(1),
13493 getBoolConstant(true, dl, OvEltVT, ResVT),
13494 getConstant(0, dl, OvEltVT));
13495
13496 ResScalars.push_back(Res);
13497 OvScalars.push_back(Ov);
13498 }
13499
13500 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13501 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13502
13503 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13504 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13505 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13506 getBuildVector(NewOvVT, dl, OvScalars));
13507}
13508
13511 unsigned Bytes,
13512 int Dist) const {
13513 if (LD->isVolatile() || Base->isVolatile())
13514 return false;
13515 // TODO: probably too restrictive for atomics, revisit
13516 if (!LD->isSimple())
13517 return false;
13518 if (LD->isIndexed() || Base->isIndexed())
13519 return false;
13520 if (LD->getChain() != Base->getChain())
13521 return false;
13522 EVT VT = LD->getMemoryVT();
13523 if (VT.getSizeInBits() / 8 != Bytes)
13524 return false;
13525
13526 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13527 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13528
13529 int64_t Offset = 0;
13530 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13531 return (Dist * (int64_t)Bytes == Offset);
13532 return false;
13533}
13534
13535/// InferPtrAlignment - Infer alignment of a load / store address. Return
13536/// std::nullopt if it cannot be inferred.
13538 // If this is a GlobalAddress + cst, return the alignment.
13539 const GlobalValue *GV = nullptr;
13540 int64_t GVOffset = 0;
13541 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13542 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13543 KnownBits Known(PtrWidth);
13545 unsigned AlignBits = Known.countMinTrailingZeros();
13546 if (AlignBits)
13547 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13548 }
13549
13550 // If this is a direct reference to a stack slot, use information about the
13551 // stack slot's alignment.
13552 int FrameIdx = INT_MIN;
13553 int64_t FrameOffset = 0;
13555 FrameIdx = FI->getIndex();
13556 } else if (isBaseWithConstantOffset(Ptr) &&
13557 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13558 // Handle FI+Cst
13559 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13560 FrameOffset = Ptr.getConstantOperandVal(1);
13561 }
13562
13563 if (FrameIdx != INT_MIN) {
13565 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13566 }
13567
13568 return std::nullopt;
13569}
13570
13571/// Split the scalar node with EXTRACT_ELEMENT using the provided
13572/// VTs and return the low/high part.
13573std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13574 const SDLoc &DL,
13575 const EVT &LoVT,
13576 const EVT &HiVT) {
13577 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13578 "Split node must be a scalar type");
13579 SDValue Lo =
13581 SDValue Hi =
13583 return std::make_pair(Lo, Hi);
13584}
13585
13586/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13587/// which is split (or expanded) into two not necessarily identical pieces.
13588std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13589 // Currently all types are split in half.
13590 EVT LoVT, HiVT;
13591 if (!VT.isVector())
13592 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13593 else
13594 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13595
13596 return std::make_pair(LoVT, HiVT);
13597}
13598
13599/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13600/// type, dependent on an enveloping VT that has been split into two identical
13601/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13602std::pair<EVT, EVT>
13604 bool *HiIsEmpty) const {
13605 EVT EltTp = VT.getVectorElementType();
13606 // Examples:
13607 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13608 // custom VL=9 with enveloping VL=8/8 yields 8/1
13609 // custom VL=10 with enveloping VL=8/8 yields 8/2
13610 // etc.
13611 ElementCount VTNumElts = VT.getVectorElementCount();
13612 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13613 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13614 "Mixing fixed width and scalable vectors when enveloping a type");
13615 EVT LoVT, HiVT;
13616 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13617 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13618 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13619 *HiIsEmpty = false;
13620 } else {
13621 // Flag that hi type has zero storage size, but return split envelop type
13622 // (this would be easier if vector types with zero elements were allowed).
13623 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13624 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13625 *HiIsEmpty = true;
13626 }
13627 return std::make_pair(LoVT, HiVT);
13628}
13629
13630/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13631/// low/high part.
13632std::pair<SDValue, SDValue>
13633SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13634 const EVT &HiVT) {
13635 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13636 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13637 "Splitting vector with an invalid mixture of fixed and scalable "
13638 "vector types");
13640 N.getValueType().getVectorMinNumElements() &&
13641 "More vector elements requested than available!");
13642 SDValue Lo, Hi;
13643 Lo = getExtractSubvector(DL, LoVT, N, 0);
13644 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13645 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13646 // IDX with the runtime scaling factor of the result vector type. For
13647 // fixed-width result vectors, that runtime scaling factor is 1.
13650 return std::make_pair(Lo, Hi);
13651}
13652
13653std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13654 const SDLoc &DL) {
13655 // Split the vector length parameter.
13656 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13657 EVT VT = N.getValueType();
13659 "Expecting the mask to be an evenly-sized vector");
13660 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13661 SDValue HalfNumElts =
13662 VecVT.isFixedLengthVector()
13663 ? getConstant(HalfMinNumElts, DL, VT)
13664 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13665 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13666 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13667 return std::make_pair(Lo, Hi);
13668}
13669
13670/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13672 EVT VT = N.getValueType();
13675 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13676}
13677
13680 unsigned Start, unsigned Count,
13681 EVT EltVT) {
13682 EVT VT = Op.getValueType();
13683 if (Count == 0)
13685 if (EltVT == EVT())
13686 EltVT = VT.getVectorElementType();
13687 SDLoc SL(Op);
13688 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13689 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13690 }
13691}
13692
13693// getAddressSpace - Return the address space this GlobalAddress belongs to.
13695 return getGlobal()->getType()->getAddressSpace();
13696}
13697
13700 return Val.MachineCPVal->getType();
13701 return Val.ConstVal->getType();
13702}
13703
13704bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13705 unsigned &SplatBitSize,
13706 bool &HasAnyUndefs,
13707 unsigned MinSplatBits,
13708 bool IsBigEndian) const {
13709 EVT VT = getValueType(0);
13710 assert(VT.isVector() && "Expected a vector type");
13711 unsigned VecWidth = VT.getSizeInBits();
13712 if (MinSplatBits > VecWidth)
13713 return false;
13714
13715 // FIXME: The widths are based on this node's type, but build vectors can
13716 // truncate their operands.
13717 SplatValue = APInt(VecWidth, 0);
13718 SplatUndef = APInt(VecWidth, 0);
13719
13720 // Get the bits. Bits with undefined values (when the corresponding element
13721 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13722 // in SplatValue. If any of the values are not constant, give up and return
13723 // false.
13724 unsigned int NumOps = getNumOperands();
13725 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13726 unsigned EltWidth = VT.getScalarSizeInBits();
13727
13728 for (unsigned j = 0; j < NumOps; ++j) {
13729 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13730 SDValue OpVal = getOperand(i);
13731 unsigned BitPos = j * EltWidth;
13732
13733 if (OpVal.isUndef())
13734 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13735 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13736 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13737 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13738 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13739 else
13740 return false;
13741 }
13742
13743 // The build_vector is all constants or undefs. Find the smallest element
13744 // size that splats the vector.
13745 HasAnyUndefs = (SplatUndef != 0);
13746
13747 // FIXME: This does not work for vectors with elements less than 8 bits.
13748 while (VecWidth > 8) {
13749 // If we can't split in half, stop here.
13750 if (VecWidth & 1)
13751 break;
13752
13753 unsigned HalfSize = VecWidth / 2;
13754 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13755 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13756 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13757 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13758
13759 // If the two halves do not match (ignoring undef bits), stop here.
13760 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13761 MinSplatBits > HalfSize)
13762 break;
13763
13764 SplatValue = HighValue | LowValue;
13765 SplatUndef = HighUndef & LowUndef;
13766
13767 VecWidth = HalfSize;
13768 }
13769
13770 // FIXME: The loop above only tries to split in halves. But if the input
13771 // vector for example is <3 x i16> it wouldn't be able to detect a
13772 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13773 // optimizations. I guess that back in the days when this helper was created
13774 // vectors normally was power-of-2 sized.
13775
13776 SplatBitSize = VecWidth;
13777 return true;
13778}
13779
13781 BitVector *UndefElements) const {
13782 unsigned NumOps = getNumOperands();
13783 if (UndefElements) {
13784 UndefElements->clear();
13785 UndefElements->resize(NumOps);
13786 }
13787 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13788 if (!DemandedElts)
13789 return SDValue();
13790 SDValue Splatted;
13791 for (unsigned i = 0; i != NumOps; ++i) {
13792 if (!DemandedElts[i])
13793 continue;
13794 SDValue Op = getOperand(i);
13795 if (Op.isUndef()) {
13796 if (UndefElements)
13797 (*UndefElements)[i] = true;
13798 } else if (!Splatted) {
13799 Splatted = Op;
13800 } else if (Splatted != Op) {
13801 return SDValue();
13802 }
13803 }
13804
13805 if (!Splatted) {
13806 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13807 assert(getOperand(FirstDemandedIdx).isUndef() &&
13808 "Can only have a splat without a constant for all undefs.");
13809 return getOperand(FirstDemandedIdx);
13810 }
13811
13812 return Splatted;
13813}
13814
13816 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13817 return getSplatValue(DemandedElts, UndefElements);
13818}
13819
13821 SmallVectorImpl<SDValue> &Sequence,
13822 BitVector *UndefElements) const {
13823 unsigned NumOps = getNumOperands();
13824 Sequence.clear();
13825 if (UndefElements) {
13826 UndefElements->clear();
13827 UndefElements->resize(NumOps);
13828 }
13829 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13830 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13831 return false;
13832
13833 // Set the undefs even if we don't find a sequence (like getSplatValue).
13834 if (UndefElements)
13835 for (unsigned I = 0; I != NumOps; ++I)
13836 if (DemandedElts[I] && getOperand(I).isUndef())
13837 (*UndefElements)[I] = true;
13838
13839 // Iteratively widen the sequence length looking for repetitions.
13840 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13841 Sequence.append(SeqLen, SDValue());
13842 for (unsigned I = 0; I != NumOps; ++I) {
13843 if (!DemandedElts[I])
13844 continue;
13845 SDValue &SeqOp = Sequence[I % SeqLen];
13847 if (Op.isUndef()) {
13848 if (!SeqOp)
13849 SeqOp = Op;
13850 continue;
13851 }
13852 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13853 Sequence.clear();
13854 break;
13855 }
13856 SeqOp = Op;
13857 }
13858 if (!Sequence.empty())
13859 return true;
13860 }
13861
13862 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13863 return false;
13864}
13865
13867 BitVector *UndefElements) const {
13868 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13869 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13870}
13871
13874 BitVector *UndefElements) const {
13876 getSplatValue(DemandedElts, UndefElements));
13877}
13878
13881 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13882}
13883
13886 BitVector *UndefElements) const {
13888 getSplatValue(DemandedElts, UndefElements));
13889}
13890
13895
13896int32_t
13898 uint32_t BitWidth) const {
13899 if (ConstantFPSDNode *CN =
13901 bool IsExact;
13902 APSInt IntVal(BitWidth);
13903 const APFloat &APF = CN->getValueAPF();
13904 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13905 APFloat::opOK ||
13906 !IsExact)
13907 return -1;
13908
13909 return IntVal.exactLogBase2();
13910 }
13911 return -1;
13912}
13913
13915 bool IsLittleEndian, unsigned DstEltSizeInBits,
13916 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13917 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13918 if (!isConstant())
13919 return false;
13920
13921 unsigned NumSrcOps = getNumOperands();
13922 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13923 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13924 "Invalid bitcast scale");
13925
13926 // Extract raw src bits.
13927 SmallVector<APInt> SrcBitElements(NumSrcOps,
13928 APInt::getZero(SrcEltSizeInBits));
13929 BitVector SrcUndeElements(NumSrcOps, false);
13930
13931 for (unsigned I = 0; I != NumSrcOps; ++I) {
13933 if (Op.isUndef()) {
13934 SrcUndeElements.set(I);
13935 continue;
13936 }
13937 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13938 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13939 assert((CInt || CFP) && "Unknown constant");
13940 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13941 : CFP->getValueAPF().bitcastToAPInt();
13942 }
13943
13944 // Recast to dst width.
13945 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13946 SrcBitElements, UndefElements, SrcUndeElements);
13947 return true;
13948}
13949
13950void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13951 unsigned DstEltSizeInBits,
13952 SmallVectorImpl<APInt> &DstBitElements,
13953 ArrayRef<APInt> SrcBitElements,
13954 BitVector &DstUndefElements,
13955 const BitVector &SrcUndefElements) {
13956 unsigned NumSrcOps = SrcBitElements.size();
13957 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13958 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13959 "Invalid bitcast scale");
13960 assert(NumSrcOps == SrcUndefElements.size() &&
13961 "Vector size mismatch");
13962
13963 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13964 DstUndefElements.clear();
13965 DstUndefElements.resize(NumDstOps, false);
13966 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13967
13968 // Concatenate src elements constant bits together into dst element.
13969 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13970 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13971 for (unsigned I = 0; I != NumDstOps; ++I) {
13972 DstUndefElements.set(I);
13973 APInt &DstBits = DstBitElements[I];
13974 for (unsigned J = 0; J != Scale; ++J) {
13975 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13976 if (SrcUndefElements[Idx])
13977 continue;
13978 DstUndefElements.reset(I);
13979 const APInt &SrcBits = SrcBitElements[Idx];
13980 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13981 "Illegal constant bitwidths");
13982 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13983 }
13984 }
13985 return;
13986 }
13987
13988 // Split src element constant bits into dst elements.
13989 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13990 for (unsigned I = 0; I != NumSrcOps; ++I) {
13991 if (SrcUndefElements[I]) {
13992 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13993 continue;
13994 }
13995 const APInt &SrcBits = SrcBitElements[I];
13996 for (unsigned J = 0; J != Scale; ++J) {
13997 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13998 APInt &DstBits = DstBitElements[Idx];
13999 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
14000 }
14001 }
14002}
14003
14005 for (const SDValue &Op : op_values()) {
14006 unsigned Opc = Op.getOpcode();
14007 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
14008 return false;
14009 }
14010 return true;
14011}
14012
14013std::optional<std::pair<APInt, APInt>>
14015 unsigned NumOps = getNumOperands();
14016 if (NumOps < 2)
14017 return std::nullopt;
14018
14021 return std::nullopt;
14022
14023 unsigned EltSize = getValueType(0).getScalarSizeInBits();
14024 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
14025 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
14026
14027 if (Stride.isZero())
14028 return std::nullopt;
14029
14030 for (unsigned i = 2; i < NumOps; ++i) {
14032 return std::nullopt;
14033
14034 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
14035 if (Val != (Start + (Stride * i)))
14036 return std::nullopt;
14037 }
14038
14039 return std::make_pair(Start, Stride);
14040}
14041
14043 // Find the first non-undef value in the shuffle mask.
14044 unsigned i, e;
14045 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14046 /* search */;
14047
14048 // If all elements are undefined, this shuffle can be considered a splat
14049 // (although it should eventually get simplified away completely).
14050 if (i == e)
14051 return true;
14052
14053 // Make sure all remaining elements are either undef or the same as the first
14054 // non-undef value.
14055 for (int Idx = Mask[i]; i != e; ++i)
14056 if (Mask[i] >= 0 && Mask[i] != Idx)
14057 return false;
14058 return true;
14059}
14060
14061// Returns true if it is a constant integer BuildVector or constant integer,
14062// possibly hidden by a bitcast.
14064 SDValue N, bool AllowOpaques) const {
14066
14067 if (auto *C = dyn_cast<ConstantSDNode>(N))
14068 return AllowOpaques || !C->isOpaque();
14069
14071 return true;
14072
14073 // Treat a GlobalAddress supporting constant offset folding as a
14074 // constant integer.
14075 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
14076 if (GA->getOpcode() == ISD::GlobalAddress &&
14077 TLI->isOffsetFoldingLegal(GA))
14078 return true;
14079
14080 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14081 isa<ConstantSDNode>(N.getOperand(0)))
14082 return true;
14083 return false;
14084}
14085
14086// Returns true if it is a constant float BuildVector or constant float.
14089 return true;
14090
14092 return true;
14093
14094 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14095 isa<ConstantFPSDNode>(N.getOperand(0)))
14096 return true;
14097
14098 return false;
14099}
14100
14101std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
14102 ConstantSDNode *Const =
14103 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
14104 if (!Const)
14105 return std::nullopt;
14106
14107 EVT VT = N->getValueType(0);
14108 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
14109 switch (TLI->getBooleanContents(N.getValueType())) {
14111 if (CVal.isOne())
14112 return true;
14113 if (CVal.isZero())
14114 return false;
14115 return std::nullopt;
14117 if (CVal.isAllOnes())
14118 return true;
14119 if (CVal.isZero())
14120 return false;
14121 return std::nullopt;
14123 return CVal[0];
14124 }
14125 llvm_unreachable("Unknown BooleanContent enum");
14126}
14127
14128void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
14129 assert(!Node->OperandList && "Node already has operands");
14131 "too many operands to fit into SDNode");
14132 SDUse *Ops = OperandRecycler.allocate(
14133 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
14134
14135 bool IsDivergent = false;
14136 for (unsigned I = 0; I != Vals.size(); ++I) {
14137 Ops[I].setUser(Node);
14138 Ops[I].setInitial(Vals[I]);
14139 EVT VT = Ops[I].getValueType();
14140
14141 // Skip Chain. It does not carry divergence.
14142 if (VT != MVT::Other &&
14143 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
14144 Ops[I].getNode()->isDivergent()) {
14145 IsDivergent = true;
14146 }
14147 }
14148 Node->NumOperands = Vals.size();
14149 Node->OperandList = Ops;
14150 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14151 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14152 Node->SDNodeBits.IsDivergent = IsDivergent;
14153 }
14154 checkForCycles(Node);
14155}
14156
14159 size_t Limit = SDNode::getMaxNumOperands();
14160 while (Vals.size() > Limit) {
14161 unsigned SliceIdx = Vals.size() - Limit;
14162 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
14163 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
14164 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
14165 Vals.emplace_back(NewTF);
14166 }
14167 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
14168}
14169
14171 EVT VT, SDNodeFlags Flags) {
14172 switch (Opcode) {
14173 default:
14174 return SDValue();
14175 case ISD::ADD:
14176 case ISD::OR:
14177 case ISD::XOR:
14178 case ISD::UMAX:
14179 return getConstant(0, DL, VT);
14180 case ISD::MUL:
14181 return getConstant(1, DL, VT);
14182 case ISD::AND:
14183 case ISD::UMIN:
14184 return getAllOnesConstant(DL, VT);
14185 case ISD::SMAX:
14187 case ISD::SMIN:
14189 case ISD::FADD:
14190 // If flags allow, prefer positive zero since it's generally cheaper
14191 // to materialize on most targets.
14192 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14193 case ISD::FMUL:
14194 return getConstantFP(1.0, DL, VT);
14195 case ISD::FMINNUM:
14196 case ISD::FMAXNUM: {
14197 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14198 const fltSemantics &Semantics = VT.getFltSemantics();
14199 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14200 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14201 APFloat::getLargest(Semantics);
14202 if (Opcode == ISD::FMAXNUM)
14203 NeutralAF.changeSign();
14204
14205 return getConstantFP(NeutralAF, DL, VT);
14206 }
14207 case ISD::FMINIMUM:
14208 case ISD::FMAXIMUM: {
14209 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14210 const fltSemantics &Semantics = VT.getFltSemantics();
14211 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14212 : APFloat::getLargest(Semantics);
14213 if (Opcode == ISD::FMAXIMUM)
14214 NeutralAF.changeSign();
14215
14216 return getConstantFP(NeutralAF, DL, VT);
14217 }
14218
14219 }
14220}
14221
14222/// Helper used to make a call to a library function that has one argument of
14223/// pointer type.
14224///
14225/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14226/// used to get or set floating-point state. They have one argument of pointer
14227/// type, which points to the memory region containing bits of the
14228/// floating-point state. The value returned by such function is ignored in the
14229/// created call.
14230///
14231/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14232/// \param Ptr Pointer used to save/load state.
14233/// \param InChain Ingoing token chain.
14234/// \returns Outgoing chain token.
14236 SDValue InChain,
14237 const SDLoc &DLoc) {
14238 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14240 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14241 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14242 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14243 TLI->getPointerTy(getDataLayout()));
14245 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14246 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14247 std::move(Args));
14248 return TLI->LowerCallTo(CLI).second;
14249}
14250
14252 assert(From && To && "Invalid SDNode; empty source SDValue?");
14253 auto I = SDEI.find(From);
14254 if (I == SDEI.end())
14255 return;
14256
14257 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14258 // the iterator, hence the need to make a copy to prevent a use-after-free.
14259 NodeExtraInfo NEI = I->second;
14260 if (LLVM_LIKELY(!NEI.PCSections)) {
14261 // No deep copy required for the types of extra info set.
14262 //
14263 // FIXME: Investigate if other types of extra info also need deep copy. This
14264 // depends on the types of nodes they can be attached to: if some extra info
14265 // is only ever attached to nodes where a replacement To node is always the
14266 // node where later use and propagation of the extra info has the intended
14267 // semantics, no deep copy is required.
14268 SDEI[To] = std::move(NEI);
14269 return;
14270 }
14271
14272 const SDNode *EntrySDN = getEntryNode().getNode();
14273
14274 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14275 // through the replacement of From with To. Otherwise, replacements of a node
14276 // (From) with more complex nodes (To and its operands) may result in lost
14277 // extra info where the root node (To) is insignificant in further propagating
14278 // and using extra info when further lowering to MIR.
14279 //
14280 // In the first step pre-populate the visited set with the nodes reachable
14281 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14282 // DAG that is not new and should be left untouched.
14283 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14284 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14285 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14286 if (MaxDepth == 0) {
14287 // Remember this node in case we need to increase MaxDepth and continue
14288 // populating FromReach from this node.
14289 Leafs.emplace_back(N);
14290 return;
14291 }
14292 if (!FromReach.insert(N).second)
14293 return;
14294 for (const SDValue &Op : N->op_values())
14295 Self(Self, Op.getNode(), MaxDepth - 1);
14296 };
14297
14298 // Copy extra info to To and all its transitive operands (that are new).
14300 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14301 if (FromReach.contains(N))
14302 return true;
14303 if (!Visited.insert(N).second)
14304 return true;
14305 if (EntrySDN == N)
14306 return false;
14307 for (const SDValue &Op : N->op_values()) {
14308 if (N == To && Op.getNode() == EntrySDN) {
14309 // Special case: New node's operand is the entry node; just need to
14310 // copy extra info to new node.
14311 break;
14312 }
14313 if (!Self(Self, Op.getNode()))
14314 return false;
14315 }
14316 // Copy only if entry node was not reached.
14317 SDEI[N] = NEI;
14318 return true;
14319 };
14320
14321 // We first try with a lower MaxDepth, assuming that the path to common
14322 // operands between From and To is relatively short. This significantly
14323 // improves performance in the common case. The initial MaxDepth is big
14324 // enough to avoid retry in the common case; the last MaxDepth is large
14325 // enough to avoid having to use the fallback below (and protects from
14326 // potential stack exhaustion from recursion).
14327 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14328 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14329 // StartFrom is the previous (or initial) set of leafs reachable at the
14330 // previous maximum depth.
14332 std::swap(StartFrom, Leafs);
14333 for (const SDNode *N : StartFrom)
14334 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14335 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14336 return;
14337 // This should happen very rarely (reached the entry node).
14338 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14339 assert(!Leafs.empty());
14340 }
14341
14342 // This should not happen - but if it did, that means the subgraph reachable
14343 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14344 // could not visit all reachable common operands. Consequently, we were able
14345 // to reach the entry node.
14346 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14347 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14348 // Best-effort fallback if assertions disabled.
14349 SDEI[To] = std::move(NEI);
14350}
14351
14352#ifndef NDEBUG
14353static void checkForCyclesHelper(const SDNode *N,
14356 const llvm::SelectionDAG *DAG) {
14357 // If this node has already been checked, don't check it again.
14358 if (Checked.count(N))
14359 return;
14360
14361 // If a node has already been visited on this depth-first walk, reject it as
14362 // a cycle.
14363 if (!Visited.insert(N).second) {
14364 errs() << "Detected cycle in SelectionDAG\n";
14365 dbgs() << "Offending node:\n";
14366 N->dumprFull(DAG); dbgs() << "\n";
14367 abort();
14368 }
14369
14370 for (const SDValue &Op : N->op_values())
14371 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14372
14373 Checked.insert(N);
14374 Visited.erase(N);
14375}
14376#endif
14377
14379 const llvm::SelectionDAG *DAG,
14380 bool force) {
14381#ifndef NDEBUG
14382 bool check = force;
14383#ifdef EXPENSIVE_CHECKS
14384 check = true;
14385#endif // EXPENSIVE_CHECKS
14386 if (check) {
14387 assert(N && "Checking nonexistent SDNode");
14390 checkForCyclesHelper(N, visited, checked, DAG);
14391 }
14392#endif // !NDEBUG
14393}
14394
14395void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14396 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14397}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:334
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:347
static const fltSemantics & BFloat()
Definition APFloat.h:295
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static const fltSemantics & IEEEquad()
Definition APFloat.h:298
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:346
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1102
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
void copySign(const APFloat &RHS)
Definition APFloat.h:1284
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6060
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1172
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1414
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1163
bool isFinite() const
Definition APFloat.h:1436
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1329
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1217
bool isZero() const
Definition APFloat.h:1427
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1120
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1314
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1080
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1208
bool isPosZero() const
Definition APFloat.h:1442
bool isNegZero() const
Definition APFloat.h:1443
void changeSign()
Definition APFloat.h:1279
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1091
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:411
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:360
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:354
BitVector & set()
Definition BitVector.h:370
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:207
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:178
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:207
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:612
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:270
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:231
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:238
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:593
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:662
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:688
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:701
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:607
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:799
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:678
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:821
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:346
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1606
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:243
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
auto cast_or_null(const Y &Val)
Definition Casting.h:714
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1588
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:333
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1611
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1835
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:574
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1638
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:375
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:781
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:778
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:512
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:124
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:119
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:518
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:225
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:196
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:145
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:114
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:326
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)