LLVM 20.0.0git
ValueTracking.h
Go to the documentation of this file.
1//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_VALUETRACKING_H
15#define LLVM_ANALYSIS_VALUETRACKING_H
16
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/FMF.h"
23#include "llvm/IR/InstrTypes.h"
24#include "llvm/IR/Intrinsics.h"
25#include <cassert>
26#include <cstdint>
27
28namespace llvm {
29
30class Operator;
31class AddOperator;
32class AssumptionCache;
33class DominatorTree;
34class GEPOperator;
35class WithOverflowInst;
36struct KnownBits;
37class Loop;
38class LoopInfo;
39class MDNode;
40class StringRef;
41class TargetLibraryInfo;
42template <typename T> class ArrayRef;
43
44constexpr unsigned MaxAnalysisRecursionDepth = 6;
45
46/// Determine which bits of V are known to be either zero or one and return
47/// them in the KnownZero/KnownOne bit sets.
48///
49/// This function is defined on values with integer type, values with pointer
50/// type, and vectors of integers. In the case
51/// where V is a vector, the known zero and known one values are the
52/// same width as the vector element, and the bit is set only if it is true
53/// for all of the elements in the vector.
54void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
55 unsigned Depth = 0, AssumptionCache *AC = nullptr,
56 const Instruction *CxtI = nullptr,
57 const DominatorTree *DT = nullptr,
58 bool UseInstrInfo = true);
59
60/// Returns the known bits rather than passing by reference.
62 unsigned Depth = 0, AssumptionCache *AC = nullptr,
63 const Instruction *CxtI = nullptr,
64 const DominatorTree *DT = nullptr,
65 bool UseInstrInfo = true);
66
67/// Returns the known bits rather than passing by reference.
68KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
69 const DataLayout &DL, unsigned Depth = 0,
70 AssumptionCache *AC = nullptr,
71 const Instruction *CxtI = nullptr,
72 const DominatorTree *DT = nullptr,
73 bool UseInstrInfo = true);
74
75KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
76 unsigned Depth, const SimplifyQuery &Q);
77
78KnownBits computeKnownBits(const Value *V, unsigned Depth,
79 const SimplifyQuery &Q);
80
81void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
82 const SimplifyQuery &Q);
83
84/// Compute known bits from the range metadata.
85/// \p KnownZero the set of bits that are known to be zero
86/// \p KnownOne the set of bits that are known to be one
87void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
88
89/// Merge bits known from context-dependent facts into Known.
90void computeKnownBitsFromContext(const Value *V, KnownBits &Known,
91 unsigned Depth, const SimplifyQuery &Q);
92
93/// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
95 const KnownBits &KnownLHS,
96 const KnownBits &KnownRHS,
97 unsigned Depth, const SimplifyQuery &SQ);
98
99/// Adjust \p Known for the given select \p Arm to include information from the
100/// select \p Cond.
102 bool Invert, unsigned Depth,
103 const SimplifyQuery &Q);
104
105/// Return true if LHS and RHS have no common bits set.
107 const WithCache<const Value *> &RHSCache,
108 const SimplifyQuery &SQ);
109
110/// Return true if the given value is known to have exactly one bit set when
111/// defined. For vectors return true if every element is known to be a power
112/// of two when defined. Supports values with integer or pointer type and
113/// vectors of integers. If 'OrZero' is set, then return true if the given
114/// value is either a power of two or zero.
115bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
116 bool OrZero = false, unsigned Depth = 0,
117 AssumptionCache *AC = nullptr,
118 const Instruction *CxtI = nullptr,
119 const DominatorTree *DT = nullptr,
120 bool UseInstrInfo = true);
121
122bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
123 const SimplifyQuery &Q);
124
126
128
129/// Return true if the given value is known to be non-zero when defined. For
130/// vectors, return true if every element is known to be non-zero when
131/// defined. For pointers, if the context instruction and dominator tree are
132/// specified, perform context-sensitive analysis and return true if the
133/// pointer couldn't possibly be null at the specified instruction.
134/// Supports values with integer or pointer type and vectors of integers.
135bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth = 0);
136
137/// Return true if the two given values are negation.
138/// Currently can recoginze Value pair:
139/// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
140/// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
141bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false,
142 bool AllowPoison = true);
143
144/// Return true iff:
145/// 1. X is poison implies Y is poison.
146/// 2. X is true implies Y is false.
147/// 3. X is false implies Y is true.
148/// Otherwise, return false.
149bool isKnownInversion(const Value *X, const Value *Y);
150
151/// Returns true if the give value is known to be non-negative.
152bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
153 unsigned Depth = 0);
154
155/// Returns true if the given value is known be positive (i.e. non-negative
156/// and non-zero).
157bool isKnownPositive(const Value *V, const SimplifyQuery &SQ,
158 unsigned Depth = 0);
159
160/// Returns true if the given value is known be negative (i.e. non-positive
161/// and non-zero).
162bool isKnownNegative(const Value *V, const SimplifyQuery &SQ,
163 unsigned Depth = 0);
164
165/// Return true if the given values are known to be non-equal when defined.
166/// Supports scalar integer types only.
167bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
168 AssumptionCache *AC = nullptr,
169 const Instruction *CxtI = nullptr,
170 const DominatorTree *DT = nullptr,
171 bool UseInstrInfo = true);
172
173/// Return true if 'V & Mask' is known to be zero. We use this predicate to
174/// simplify operations downstream. Mask is known to be zero for bits that V
175/// cannot have.
176///
177/// This function is defined on values with integer type, values with pointer
178/// type, and vectors of integers. In the case
179/// where V is a vector, the mask, known zero, and known one values are the
180/// same width as the vector element, and the bit is set only if it is true
181/// for all of the elements in the vector.
182bool MaskedValueIsZero(const Value *V, const APInt &Mask,
183 const SimplifyQuery &SQ, unsigned Depth = 0);
184
185/// Return the number of times the sign bit of the register is replicated into
186/// the other bits. We know that at least 1 bit is always equal to the sign
187/// bit (itself), but other cases can give us information. For example,
188/// immediately after an "ashr X, 2", we know that the top 3 bits are all
189/// equal to each other, so we return 3. For vectors, return the number of
190/// sign bits for the vector element with the mininum number of known sign
191/// bits.
192unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
193 unsigned Depth = 0, AssumptionCache *AC = nullptr,
194 const Instruction *CxtI = nullptr,
195 const DominatorTree *DT = nullptr,
196 bool UseInstrInfo = true);
197
198/// Get the upper bound on bit size for this Value \p Op as a signed integer.
199/// i.e. x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
200/// Similar to the APInt::getSignificantBits function.
201unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
202 unsigned Depth = 0,
203 AssumptionCache *AC = nullptr,
204 const Instruction *CxtI = nullptr,
205 const DominatorTree *DT = nullptr);
206
207/// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
208/// intrinsics are treated as-if they were intrinsics.
210 const TargetLibraryInfo *TLI);
211
212/// Given an exploded icmp instruction, return true if the comparison only
213/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
214/// the result of the comparison is true when the input value is signed.
216 bool &TrueIfSigned);
217
218/// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
219/// same result as an fcmp with the given operands.
220///
221/// If \p LookThroughSrc is true, consider the input value when computing the
222/// mask.
223///
224/// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
225/// element will always be LHS.
226std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
227 const Function &F, Value *LHS,
228 Value *RHS,
229 bool LookThroughSrc = true);
230std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
231 const Function &F, Value *LHS,
232 const APFloat *ConstRHS,
233 bool LookThroughSrc = true);
234
235/// Compute the possible floating-point classes that \p LHS could be based on
236/// fcmp \Pred \p LHS, \p RHS.
237///
238/// \returns { TestedValue, ClassesIfTrue, ClassesIfFalse }
239///
240/// If the compare returns an exact class test, ClassesIfTrue == ~ClassesIfFalse
241///
242/// This is a less exact version of fcmpToClassTest (e.g. fcmpToClassTest will
243/// only succeed for a test of x > 0 implies positive, but not x > 1).
244///
245/// If \p LookThroughSrc is true, consider the input value when computing the
246/// mask. This may look through sign bit operations.
247///
248/// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
249/// element will always be LHS.
250///
251std::tuple<Value *, FPClassTest, FPClassTest>
253 Value *RHS, bool LookThroughSrc = true);
254std::tuple<Value *, FPClassTest, FPClassTest>
256 FPClassTest RHS, bool LookThroughSrc = true);
257std::tuple<Value *, FPClassTest, FPClassTest>
259 const APFloat &RHS, bool LookThroughSrc = true);
260
262 /// Floating-point classes the value could be one of.
264
265 /// std::nullopt if the sign bit is unknown, true if the sign bit is
266 /// definitely set or false if the sign bit is definitely unset.
267 std::optional<bool> SignBit;
268
270 return KnownFPClasses == Other.KnownFPClasses && SignBit == Other.SignBit;
271 }
272
273 /// Return true if it's known this can never be one of the mask entries.
274 bool isKnownNever(FPClassTest Mask) const {
275 return (KnownFPClasses & Mask) == fcNone;
276 }
277
278 bool isKnownAlways(FPClassTest Mask) const { return isKnownNever(~Mask); }
279
280 bool isUnknown() const {
281 return KnownFPClasses == fcAllFlags && !SignBit;
282 }
283
284 /// Return true if it's known this can never be a nan.
285 bool isKnownNeverNaN() const {
286 return isKnownNever(fcNan);
287 }
288
289 /// Return true if it's known this must always be a nan.
290 bool isKnownAlwaysNaN() const { return isKnownAlways(fcNan); }
291
292 /// Return true if it's known this can never be an infinity.
293 bool isKnownNeverInfinity() const {
294 return isKnownNever(fcInf);
295 }
296
297 /// Return true if it's known this can never be +infinity.
299 return isKnownNever(fcPosInf);
300 }
301
302 /// Return true if it's known this can never be -infinity.
304 return isKnownNever(fcNegInf);
305 }
306
307 /// Return true if it's known this can never be a subnormal
310 }
311
312 /// Return true if it's known this can never be a positive subnormal
315 }
316
317 /// Return true if it's known this can never be a negative subnormal
320 }
321
322 /// Return true if it's known this can never be a zero. This means a literal
323 /// [+-]0, and does not include denormal inputs implicitly treated as [+-]0.
324 bool isKnownNeverZero() const {
325 return isKnownNever(fcZero);
326 }
327
328 /// Return true if it's known this can never be a literal positive zero.
329 bool isKnownNeverPosZero() const {
330 return isKnownNever(fcPosZero);
331 }
332
333 /// Return true if it's known this can never be a negative zero. This means a
334 /// literal -0 and does not include denormal inputs implicitly treated as -0.
335 bool isKnownNeverNegZero() const {
336 return isKnownNever(fcNegZero);
337 }
338
339 /// Return true if it's know this can never be interpreted as a zero. This
340 /// extends isKnownNeverZero to cover the case where the assumed
341 /// floating-point mode for the function interprets denormals as zero.
342 bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const;
343
344 /// Return true if it's know this can never be interpreted as a negative zero.
345 bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const;
346
347 /// Return true if it's know this can never be interpreted as a positive zero.
348 bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const;
349
354
355 /// Return true if we can prove that the analyzed floating-point value is
356 /// either NaN or never less than -0.0.
357 ///
358 /// NaN --> true
359 /// +0 --> true
360 /// -0 --> true
361 /// x > +0 --> true
362 /// x < -0 --> false
365 }
366
367 /// Return true if we can prove that the analyzed floating-point value is
368 /// either NaN or never greater than -0.0.
369 /// NaN --> true
370 /// +0 --> true
371 /// -0 --> true
372 /// x > +0 --> false
373 /// x < -0 --> true
376 }
377
379 KnownFPClasses = KnownFPClasses | RHS.KnownFPClasses;
380
381 if (SignBit != RHS.SignBit)
382 SignBit = std::nullopt;
383 return *this;
384 }
385
386 void knownNot(FPClassTest RuleOut) {
387 KnownFPClasses = KnownFPClasses & ~RuleOut;
388 if (isKnownNever(fcNan) && !SignBit) {
390 SignBit = false;
391 else if (isKnownNever(fcPositive))
392 SignBit = true;
393 }
394 }
395
396 void fneg() {
398 if (SignBit)
399 SignBit = !*SignBit;
400 }
401
402 void fabs() {
405
408
411
414
416 }
417
418 /// Return true if the sign bit must be 0, ignoring the sign of nans.
419 bool signBitIsZeroOrNaN() const {
420 return isKnownNever(fcNegative);
421 }
422
423 /// Assume the sign bit is zero.
426 SignBit = false;
427 }
428
429 /// Assume the sign bit is one.
432 SignBit = true;
433 }
434
435 void copysign(const KnownFPClass &Sign) {
436 // Don't know anything about the sign of the source. Expand the possible set
437 // to its opposite sign pair.
444 if (KnownFPClasses & fcInf)
446
447 // Sign bit is exactly preserved even for nans.
448 SignBit = Sign.SignBit;
449
450 // Clear sign bits based on the input sign mask.
451 if (Sign.isKnownNever(fcPositive | fcNan) || (SignBit && *SignBit))
453 if (Sign.isKnownNever(fcNegative | fcNan) || (SignBit && !*SignBit))
455 }
456
457 // Propagate knowledge that a non-NaN source implies the result can also not
458 // be a NaN. For unconstrained operations, signaling nans are not guaranteed
459 // to be quieted but cannot be introduced.
460 void propagateNaN(const KnownFPClass &Src, bool PreserveSign = false) {
461 if (Src.isKnownNever(fcNan)) {
463 if (PreserveSign)
464 SignBit = Src.SignBit;
465 } else if (Src.isKnownNever(fcSNan))
467 }
468
469 /// Propagate knowledge from a source value that could be a denormal or
470 /// zero. We have to be conservative since output flushing is not guaranteed,
471 /// so known-never-zero may not hold.
472 ///
473 /// This assumes a copy-like operation and will replace any currently known
474 /// information.
475 void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty);
476
477 /// Report known classes if \p Src is evaluated through a potentially
478 /// canonicalizing operation. We can assume signaling nans will not be
479 /// introduced, but cannot assume a denormal will be flushed under FTZ/DAZ.
480 ///
481 /// This assumes a copy-like operation and will replace any currently known
482 /// information.
483 void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F,
484 Type *Ty);
485
486 void resetAll() { *this = KnownFPClass(); }
487};
488
490 LHS |= RHS;
491 return LHS;
492}
493
495 RHS |= LHS;
496 return std::move(RHS);
497}
498
499/// Determine which floating-point classes are valid for \p V, and return them
500/// in KnownFPClass bit sets.
501///
502/// This function is defined on values with floating-point type, values vectors
503/// of floating-point type, and arrays of floating-point type.
504
505/// \p InterestedClasses is a compile time optimization hint for which floating
506/// point classes should be queried. Queries not specified in \p
507/// InterestedClasses should be reliable if they are determined during the
508/// query.
509KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts,
510 FPClassTest InterestedClasses, unsigned Depth,
511 const SimplifyQuery &SQ);
512
513KnownFPClass computeKnownFPClass(const Value *V, FPClassTest InterestedClasses,
514 unsigned Depth, const SimplifyQuery &SQ);
515
517 const Value *V, const DataLayout &DL,
518 FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
519 const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
520 const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
521 bool UseInstrInfo = true) {
522 return computeKnownFPClass(
523 V, InterestedClasses, Depth,
524 SimplifyQuery(DL, TLI, DT, AC, CxtI, UseInstrInfo));
525}
526
527/// Wrapper to account for known fast math flags at the use instruction.
528inline KnownFPClass
529computeKnownFPClass(const Value *V, const APInt &DemandedElts,
530 FastMathFlags FMF, FPClassTest InterestedClasses,
531 unsigned Depth, const SimplifyQuery &SQ) {
532 if (FMF.noNaNs())
533 InterestedClasses &= ~fcNan;
534 if (FMF.noInfs())
535 InterestedClasses &= ~fcInf;
536
537 KnownFPClass Result =
538 computeKnownFPClass(V, DemandedElts, InterestedClasses, Depth, SQ);
539
540 if (FMF.noNaNs())
541 Result.KnownFPClasses &= ~fcNan;
542 if (FMF.noInfs())
543 Result.KnownFPClasses &= ~fcInf;
544 return Result;
545}
546
548 FPClassTest InterestedClasses,
549 unsigned Depth,
550 const SimplifyQuery &SQ) {
551 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
552 APInt DemandedElts =
553 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
554 return computeKnownFPClass(V, DemandedElts, FMF, InterestedClasses, Depth,
555 SQ);
556}
557
558/// Return true if we can prove that the specified FP value is never equal to
559/// -0.0. Users should use caution when considering PreserveSign
560/// denormal-fp-math.
561inline bool cannotBeNegativeZero(const Value *V, unsigned Depth,
562 const SimplifyQuery &SQ) {
564 return Known.isKnownNeverNegZero();
565}
566
567/// Return true if we can prove that the specified FP value is either NaN or
568/// never less than -0.0.
569///
570/// NaN --> true
571/// +0 --> true
572/// -0 --> true
573/// x > +0 --> true
574/// x < -0 --> false
575inline bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth,
576 const SimplifyQuery &SQ) {
577 KnownFPClass Known =
579 return Known.cannotBeOrderedLessThanZero();
580}
581
582/// Return true if the floating-point scalar value is not an infinity or if
583/// the floating-point vector value has no infinities. Return false if a value
584/// could ever be infinity.
585inline bool isKnownNeverInfinity(const Value *V, unsigned Depth,
586 const SimplifyQuery &SQ) {
588 return Known.isKnownNeverInfinity();
589}
590
591/// Return true if the floating-point value can never contain a NaN or infinity.
592inline bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth,
593 const SimplifyQuery &SQ) {
595 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
596}
597
598/// Return true if the floating-point scalar value is not a NaN or if the
599/// floating-point vector value has no NaN elements. Return false if a value
600/// could ever be NaN.
601inline bool isKnownNeverNaN(const Value *V, unsigned Depth,
602 const SimplifyQuery &SQ) {
604 return Known.isKnownNeverNaN();
605}
606
607/// Return false if we can prove that the specified FP value's sign bit is 0.
608/// Return true if we can prove that the specified FP value's sign bit is 1.
609/// Otherwise return std::nullopt.
610inline std::optional<bool> computeKnownFPSignBit(const Value *V, unsigned Depth,
611 const SimplifyQuery &SQ) {
613 return Known.SignBit;
614}
615
616/// If the specified value can be set by repeating the same byte in memory,
617/// return the i8 value that it is represented with. This is true for all i8
618/// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
619/// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
620/// i16 0x1234), return null. If the value is entirely undef and padding,
621/// return undef.
622Value *isBytewiseValue(Value *V, const DataLayout &DL);
623
624/// Given an aggregate and an sequence of indices, see if the scalar value
625/// indexed is already around as a register, for example if it were inserted
626/// directly into the aggregate.
627///
628/// If InsertBefore is not empty, this function will duplicate (modified)
629/// insertvalues when a part of a nested struct is extracted.
630Value *FindInsertedValue(
631 Value *V, ArrayRef<unsigned> idx_range,
632 std::optional<BasicBlock::iterator> InsertBefore = std::nullopt);
633
634/// Analyze the specified pointer to see if it can be expressed as a base
635/// pointer plus a constant offset. Return the base and offset to the caller.
636///
637/// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
638/// creates and later unpacks the required APInt.
640 const DataLayout &DL,
641 bool AllowNonInbounds = true) {
642 APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
643 Value *Base =
644 Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
645
646 Offset = OffsetAPInt.getSExtValue();
647 return Base;
648}
649inline const Value *
651 const DataLayout &DL,
652 bool AllowNonInbounds = true) {
653 return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
654 AllowNonInbounds);
655}
656
657/// Returns true if the GEP is based on a pointer to a string (array of
658// \p CharSize integers) and is indexing into this string.
659bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
660
661/// Represents offset+length into a ConstantDataArray.
663 /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
664 /// initializer, it just doesn't fit the ConstantDataArray interface).
666
667 /// Slice starts at this Offset.
669
670 /// Length of the slice.
672
673 /// Moves the Offset and adjusts Length accordingly.
674 void move(uint64_t Delta) {
675 assert(Delta < Length);
676 Offset += Delta;
677 Length -= Delta;
678 }
679
680 /// Convenience accessor for elements in the slice.
681 uint64_t operator[](unsigned I) const {
682 return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
683 }
684};
685
686/// Returns true if the value \p V is a pointer into a ConstantDataArray.
687/// If successful \p Slice will point to a ConstantDataArray info object
688/// with an appropriate offset.
689bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
690 unsigned ElementSize, uint64_t Offset = 0);
691
692/// This function computes the length of a null-terminated C string pointed to
693/// by V. If successful, it returns true and returns the string in Str. If
694/// unsuccessful, it returns false. This does not include the trailing null
695/// character by default. If TrimAtNul is set to false, then this returns any
696/// trailing null characters as well as any other characters that come after
697/// it.
698bool getConstantStringInfo(const Value *V, StringRef &Str,
699 bool TrimAtNul = true);
700
701/// If we can compute the length of the string pointed to by the specified
702/// pointer, return 'len+1'. If we can't, return 0.
703uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
704
705/// This function returns call pointer argument that is considered the same by
706/// aliasing rules. You CAN'T use it to replace one value with another. If
707/// \p MustPreserveNullness is true, the call must preserve the nullness of
708/// the pointer.
709const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
710 bool MustPreserveNullness);
712 bool MustPreserveNullness) {
713 return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
714 const_cast<const CallBase *>(Call), MustPreserveNullness));
715}
716
717/// {launder,strip}.invariant.group returns pointer that aliases its argument,
718/// and it only captures pointer by returning it.
719/// These intrinsics are not marked as nocapture, because returning is
720/// considered as capture. The arguments are not marked as returned neither,
721/// because it would make it useless. If \p MustPreserveNullness is true,
722/// the intrinsic must preserve the nullness of the pointer.
724 const CallBase *Call, bool MustPreserveNullness);
725
726/// This method strips off any GEP address adjustments, pointer casts
727/// or `llvm.threadlocal.address` from the specified value \p V, returning the
728/// original object being addressed. Note that the returned value has pointer
729/// type if the specified value does. If the \p MaxLookup value is non-zero, it
730/// limits the number of instructions to be stripped off.
731const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
732inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
733 // Force const to avoid infinite recursion.
734 const Value *VConst = V;
735 return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
736}
737
738/// Like getUnderlyingObject(), but will try harder to find a single underlying
739/// object. In particular, this function also looks through selects and phis.
740const Value *getUnderlyingObjectAggressive(const Value *V);
741
742/// This method is similar to getUnderlyingObject except that it can
743/// look through phi and select instructions and return multiple objects.
744///
745/// If LoopInfo is passed, loop phis are further analyzed. If a pointer
746/// accesses different objects in each iteration, we don't look through the
747/// phi node. E.g. consider this loop nest:
748///
749/// int **A;
750/// for (i)
751/// for (j) {
752/// A[i][j] = A[i-1][j] * B[j]
753/// }
754///
755/// This is transformed by Load-PRE to stash away A[i] for the next iteration
756/// of the outer loop:
757///
758/// Curr = A[0]; // Prev_0
759/// for (i: 1..N) {
760/// Prev = Curr; // Prev = PHI (Prev_0, Curr)
761/// Curr = A[i];
762/// for (j: 0..N) {
763/// Curr[j] = Prev[j] * B[j]
764/// }
765/// }
766///
767/// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
768/// should not assume that Curr and Prev share the same underlying object thus
769/// it shouldn't look through the phi above.
770void getUnderlyingObjects(const Value *V,
771 SmallVectorImpl<const Value *> &Objects,
772 const LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
773
774/// This is a wrapper around getUnderlyingObjects and adds support for basic
775/// ptrtoint+arithmetic+inttoptr sequences.
776bool getUnderlyingObjectsForCodeGen(const Value *V,
777 SmallVectorImpl<Value *> &Objects);
778
779/// Returns unique alloca where the value comes from, or nullptr.
780/// If OffsetZero is true check that V points to the begining of the alloca.
781AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
782inline const AllocaInst *findAllocaForValue(const Value *V,
783 bool OffsetZero = false) {
784 return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
785}
786
787/// Return true if the only users of this pointer are lifetime markers.
788bool onlyUsedByLifetimeMarkers(const Value *V);
789
790/// Return true if the only users of this pointer are lifetime markers or
791/// droppable instructions.
793
794/// Return true if the instruction doesn't potentially cross vector lanes. This
795/// condition is weaker than checking that the instruction is lanewise: lanewise
796/// means that the same operation is splatted across all lanes, but we also
797/// include the case where there is a different operation on each lane, as long
798/// as the operation only uses data from that lane. An example of an operation
799/// that is not lanewise, but doesn't cross vector lanes is insertelement.
800bool isNotCrossLaneOperation(const Instruction *I);
801
802/// Return true if the instruction does not have any effects besides
803/// calculating the result and does not have undefined behavior.
804///
805/// This method never returns true for an instruction that returns true for
806/// mayHaveSideEffects; however, this method also does some other checks in
807/// addition. It checks for undefined behavior, like dividing by zero or
808/// loading from an invalid pointer (but not for undefined results, like a
809/// shift with a shift amount larger than the width of the result). It checks
810/// for malloc and alloca because speculatively executing them might cause a
811/// memory leak. It also returns false for instructions related to control
812/// flow, specifically terminators and PHI nodes.
813///
814/// If the CtxI is specified this method performs context-sensitive analysis
815/// and returns true if it is safe to execute the instruction immediately
816/// before the CtxI. If the instruction has (transitive) operands that don't
817/// dominate CtxI, the analysis is performed under the assumption that these
818/// operands will also be speculated to a point before CxtI.
819///
820/// If the CtxI is NOT specified this method only looks at the instruction
821/// itself and its operands, so if this method returns true, it is safe to
822/// move the instruction as long as the correct dominance relationships for
823/// the operands and users hold.
824///
825/// This method can return true for instructions that read memory;
826/// for such instructions, moving them may change the resulting value.
827bool isSafeToSpeculativelyExecute(const Instruction *I,
828 const Instruction *CtxI = nullptr,
829 AssumptionCache *AC = nullptr,
830 const DominatorTree *DT = nullptr,
831 const TargetLibraryInfo *TLI = nullptr,
832 bool UseVariableInfo = true);
833
836 AssumptionCache *AC = nullptr,
837 const DominatorTree *DT = nullptr,
838 const TargetLibraryInfo *TLI = nullptr,
839 bool UseVariableInfo = true) {
840 // Take an iterator, and unwrap it into an Instruction *.
841 return isSafeToSpeculativelyExecute(I, &*CtxI, AC, DT, TLI, UseVariableInfo);
842}
843
844/// Don't use information from its non-constant operands. This helper is used
845/// when its operands are going to be replaced.
846inline bool
848 return isSafeToSpeculativelyExecute(I, nullptr, nullptr, nullptr, nullptr,
849 /*UseVariableInfo=*/false);
850}
851
852/// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
853/// the actual opcode of Inst. If the provided and actual opcode differ, the
854/// function (virtually) overrides the opcode of Inst with the provided
855/// Opcode. There are come constraints in this case:
856/// * If Opcode has a fixed number of operands (eg, as binary operators do),
857/// then Inst has to have at least as many leading operands. The function
858/// will ignore all trailing operands beyond that number.
859/// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
860/// do), then all operands are considered.
861/// * The virtual instruction has to satisfy all typing rules of the provided
862/// Opcode.
863/// * This function is pessimistic in the following sense: If one actually
864/// materialized the virtual instruction, then isSafeToSpeculativelyExecute
865/// may say that the materialized instruction is speculatable whereas this
866/// function may have said that the instruction wouldn't be speculatable.
867/// This behavior is a shortcoming in the current implementation and not
868/// intentional.
870 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
871 AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
872 const TargetLibraryInfo *TLI = nullptr, bool UseVariableInfo = true);
873
874/// Returns true if the result or effects of the given instructions \p I
875/// depend values not reachable through the def use graph.
876/// * Memory dependence arises for example if the instruction reads from
877/// memory or may produce effects or undefined behaviour. Memory dependent
878/// instructions generally cannot be reorderd with respect to other memory
879/// dependent instructions.
880/// * Control dependence arises for example if the instruction may fault
881/// if lifted above a throwing call or infinite loop.
882bool mayHaveNonDefUseDependency(const Instruction &I);
883
884/// Return true if it is an intrinsic that cannot be speculated but also
885/// cannot trap.
886bool isAssumeLikeIntrinsic(const Instruction *I);
887
888/// Return true if it is valid to use the assumptions provided by an
889/// assume intrinsic, I, at the point in the control-flow identified by the
890/// context instruction, CxtI. By default, ephemeral values of the assumption
891/// are treated as an invalid context, to prevent the assumption from being used
892/// to optimize away its argument. If the caller can ensure that this won't
893/// happen, it can call with AllowEphemerals set to true to get more valid
894/// assumptions.
895bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
896 const DominatorTree *DT = nullptr,
897 bool AllowEphemerals = false);
898
899enum class OverflowResult {
900 /// Always overflows in the direction of signed/unsigned min value.
902 /// Always overflows in the direction of signed/unsigned max value.
904 /// May or may not overflow.
906 /// Never overflows.
908};
909
910OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
911 const SimplifyQuery &SQ,
912 bool IsNSW = false);
913OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
914 const SimplifyQuery &SQ);
916computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
917 const WithCache<const Value *> &RHS,
918 const SimplifyQuery &SQ);
919OverflowResult computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
920 const WithCache<const Value *> &RHS,
921 const SimplifyQuery &SQ);
922/// This version also leverages the sign bit of Add if known.
924 const SimplifyQuery &SQ);
925OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
926 const SimplifyQuery &SQ);
927OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
928 const SimplifyQuery &SQ);
929
930/// Returns true if the arithmetic part of the \p WO 's result is
931/// used only along the paths control dependent on the computation
932/// not overflowing, \p WO being an <op>.with.overflow intrinsic.
933bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
934 const DominatorTree &DT);
935
936/// Determine the possible constant range of vscale with the given bit width,
937/// based on the vscale_range function attribute.
938ConstantRange getVScaleRange(const Function *F, unsigned BitWidth);
939
940/// Determine the possible constant range of an integer or vector of integer
941/// value. This is intended as a cheap, non-recursive check.
942ConstantRange computeConstantRange(const Value *V, bool ForSigned,
943 bool UseInstrInfo = true,
944 AssumptionCache *AC = nullptr,
945 const Instruction *CtxI = nullptr,
946 const DominatorTree *DT = nullptr,
947 unsigned Depth = 0);
948
949/// Combine constant ranges from computeConstantRange() and computeKnownBits().
950ConstantRange
951computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
952 bool ForSigned, const SimplifyQuery &SQ);
953
954/// Return true if this function can prove that the instruction I will
955/// always transfer execution to one of its successors (including the next
956/// instruction that follows within a basic block). E.g. this is not
957/// guaranteed for function calls that could loop infinitely.
958///
959/// In other words, this function returns false for instructions that may
960/// transfer execution or fail to transfer execution in a way that is not
961/// captured in the CFG nor in the sequence of instructions within a basic
962/// block.
963///
964/// Undefined behavior is assumed not to happen, so e.g. division is
965/// guaranteed to transfer execution to the following instruction even
966/// though division by zero might cause undefined behavior.
967bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
968
969/// Returns true if this block does not contain a potential implicit exit.
970/// This is equivelent to saying that all instructions within the basic block
971/// are guaranteed to transfer execution to their successor within the basic
972/// block. This has the same assumptions w.r.t. undefined behavior as the
973/// instruction variant of this function.
974bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
975
976/// Return true if every instruction in the range (Begin, End) is
977/// guaranteed to transfer execution to its static successor. \p ScanLimit
978/// bounds the search to avoid scanning huge blocks.
981 unsigned ScanLimit = 32);
982
983/// Same as previous, but with range expressed via iterator_range.
985 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
986
987/// Return true if this function can prove that the instruction I
988/// is executed for every iteration of the loop L.
989///
990/// Note that this currently only considers the loop header.
991bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
992 const Loop *L);
993
994/// Return true if \p PoisonOp's user yields poison or raises UB if its
995/// operand \p PoisonOp is poison.
996///
997/// If \p PoisonOp is a vector or an aggregate and the operation's result is a
998/// single value, any poison element in /p PoisonOp should make the result
999/// poison or raise UB.
1000///
1001/// To filter out operands that raise UB on poison, you can use
1002/// getGuaranteedNonPoisonOp.
1003bool propagatesPoison(const Use &PoisonOp);
1004
1005/// Insert operands of I into Ops such that I will trigger undefined behavior
1006/// if I is executed and that operand has a poison value.
1007void getGuaranteedNonPoisonOps(const Instruction *I,
1008 SmallVectorImpl<const Value *> &Ops);
1009
1010/// Insert operands of I into Ops such that I will trigger undefined behavior
1011/// if I is executed and that operand is not a well-defined value
1012/// (i.e. has undef bits or poison).
1013void getGuaranteedWellDefinedOps(const Instruction *I,
1014 SmallVectorImpl<const Value *> &Ops);
1015
1016/// Return true if the given instruction must trigger undefined behavior
1017/// when I is executed with any operands which appear in KnownPoison holding
1018/// a poison value at the point of execution.
1019bool mustTriggerUB(const Instruction *I,
1020 const SmallPtrSetImpl<const Value *> &KnownPoison);
1021
1022/// Return true if this function can prove that if Inst is executed
1023/// and yields a poison value or undef bits, then that will trigger
1024/// undefined behavior.
1025///
1026/// Note that this currently only considers the basic block that is
1027/// the parent of Inst.
1028bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
1029bool programUndefinedIfPoison(const Instruction *Inst);
1030
1031/// canCreateUndefOrPoison returns true if Op can create undef or poison from
1032/// non-undef & non-poison operands.
1033/// For vectors, canCreateUndefOrPoison returns true if there is potential
1034/// poison or undef in any element of the result when vectors without
1035/// undef/poison poison are given as operands.
1036/// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
1037/// true. If Op raises immediate UB but never creates poison or undef
1038/// (e.g. sdiv I, 0), canCreatePoison returns false.
1039///
1040/// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
1041/// metadata on the instruction are considered. This can be used to see if the
1042/// instruction could still introduce undef or poison even without poison
1043/// generating flags and metadata which might be on the instruction.
1044/// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
1045/// poison or undef)
1046///
1047/// canCreatePoison returns true if Op can create poison from non-poison
1048/// operands.
1049bool canCreateUndefOrPoison(const Operator *Op,
1050 bool ConsiderFlagsAndMetadata = true);
1051bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);
1052
1053/// Return true if V is poison given that ValAssumedPoison is already poison.
1054/// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
1055/// impliesPoison returns true.
1056bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
1057
1058/// Return true if this function can prove that V does not have undef bits
1059/// and is never poison. If V is an aggregate value or vector, check whether
1060/// all elements (except padding) are not undef or poison.
1061/// Note that this is different from canCreateUndefOrPoison because the
1062/// function assumes Op's operands are not poison/undef.
1063///
1064/// If CtxI and DT are specified this method performs flow-sensitive analysis
1065/// and returns true if it is guaranteed to be never undef or poison
1066/// immediately before the CtxI.
1067bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
1068 AssumptionCache *AC = nullptr,
1069 const Instruction *CtxI = nullptr,
1070 const DominatorTree *DT = nullptr,
1071 unsigned Depth = 0);
1072
1073/// Returns true if V cannot be poison, but may be undef.
1074bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
1075 const Instruction *CtxI = nullptr,
1076 const DominatorTree *DT = nullptr,
1077 unsigned Depth = 0);
1078
1081 const DominatorTree *DT = nullptr,
1082 unsigned Depth = 0) {
1083 // Takes an iterator as a position, passes down to Instruction *
1084 // implementation.
1085 return isGuaranteedNotToBePoison(V, AC, &*CtxI, DT, Depth);
1086}
1087
1088/// Returns true if V cannot be undef, but may be poison.
1089bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC = nullptr,
1090 const Instruction *CtxI = nullptr,
1091 const DominatorTree *DT = nullptr,
1092 unsigned Depth = 0);
1093
1094/// Return true if undefined behavior would provable be executed on the path to
1095/// OnPathTo if Root produced a posion result. Note that this doesn't say
1096/// anything about whether OnPathTo is actually executed or whether Root is
1097/// actually poison. This can be used to assess whether a new use of Root can
1098/// be added at a location which is control equivalent with OnPathTo (such as
1099/// immediately before it) without introducing UB which didn't previously
1100/// exist. Note that a false result conveys no information.
1101bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
1102 Instruction *OnPathTo,
1103 DominatorTree *DT);
1104
1105/// Specific patterns of select instructions we can match.
1108 SPF_SMIN, /// Signed minimum
1109 SPF_UMIN, /// Unsigned minimum
1110 SPF_SMAX, /// Signed maximum
1111 SPF_UMAX, /// Unsigned maximum
1112 SPF_FMINNUM, /// Floating point minnum
1113 SPF_FMAXNUM, /// Floating point maxnum
1114 SPF_ABS, /// Absolute value
1115 SPF_NABS /// Negated absolute value
1117
1118/// Behavior when a floating point min/max is given one NaN and one
1119/// non-NaN as input.
1121 SPNB_NA = 0, /// NaN behavior not applicable.
1122 SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN.
1123 SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
1124 SPNB_RETURNS_ANY /// Given one NaN input, can return either (or
1125 /// it has been determined that no operands can
1126 /// be NaN).
1128
1131 SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
1132 /// SPF_FMINNUM or SPF_FMAXNUM.
1133 bool Ordered; /// When implementing this min/max pattern as
1134 /// fcmp; select, does the fcmp have to be
1135 /// ordered?
1136
1137 /// Return true if \p SPF is a min or a max pattern.
1139 return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
1140 }
1141};
1142
1143/// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
1144/// and providing the out parameter results if we successfully match.
1145///
1146/// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
1147/// the negation instruction from the idiom.
1148///
1149/// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
1150/// not match that of the original select. If this is the case, the cast
1151/// operation (one of Trunc,SExt,Zext) that must be done to transform the
1152/// type of LHS and RHS into the type of V is returned in CastOp.
1153///
1154/// For example:
1155/// %1 = icmp slt i32 %a, i32 4
1156/// %2 = sext i32 %a to i64
1157/// %3 = select i1 %1, i64 %2, i64 4
1158///
1159/// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
1160///
1161SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
1162 Instruction::CastOps *CastOp = nullptr,
1163 unsigned Depth = 0);
1164
1166 const Value *&RHS) {
1167 Value *L = const_cast<Value *>(LHS);
1168 Value *R = const_cast<Value *>(RHS);
1169 auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
1170 LHS = L;
1171 RHS = R;
1172 return Result;
1173}
1174
1175/// Determine the pattern that a select with the given compare as its
1176/// predicate and given values as its true/false operands would match.
1177SelectPatternResult matchDecomposedSelectPattern(
1178 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
1179 Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
1180
1181/// Determine the pattern for predicate `X Pred Y ? X : Y`.
1182SelectPatternResult
1184 SelectPatternNaNBehavior NaNBehavior = SPNB_NA,
1185 bool Ordered = false);
1186
1187/// Return the canonical comparison predicate for the specified
1188/// minimum/maximum flavor.
1189CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
1190
1191/// Convert given `SPF` to equivalent min/max intrinsic.
1192/// Caller must ensure `SPF` is an integer min or max pattern.
1194
1195/// Return the inverse minimum/maximum flavor of the specified flavor.
1196/// For example, signed minimum is the inverse of signed maximum.
1198
1200
1201/// Return the minimum or maximum constant value for the specified integer
1202/// min/max flavor and type.
1203APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
1204
1205/// Check if the values in \p VL are select instructions that can be converted
1206/// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
1207/// conversion is possible, together with a bool indicating whether all select
1208/// conditions are only used by the selects. Otherwise return
1209/// Intrinsic::not_intrinsic.
1210std::pair<Intrinsic::ID, bool>
1211canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
1212
1213/// Attempt to match a simple first order recurrence cycle of the form:
1214/// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1215/// %inc = binop %iv, %step
1216/// OR
1217/// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1218/// %inc = binop %step, %iv
1219///
1220/// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
1221///
1222/// A couple of notes on subtleties in that definition:
1223/// * The Step does not have to be loop invariant. In math terms, it can
1224/// be a free variable. We allow recurrences with both constant and
1225/// variable coefficients. Callers may wish to filter cases where Step
1226/// does not dominate P.
1227/// * For non-commutative operators, we will match both forms. This
1228/// results in some odd recurrence structures. Callers may wish to filter
1229/// out recurrences where the phi is not the LHS of the returned operator.
1230/// * Because of the structure matched, the caller can assume as a post
1231/// condition of the match the presence of a Loop with P's parent as it's
1232/// header *except* in unreachable code. (Dominance decays in unreachable
1233/// code.)
1234///
1235/// NOTE: This is intentional simple. If you want the ability to analyze
1236/// non-trivial loop conditons, see ScalarEvolution instead.
1237bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
1238 Value *&Step);
1239
1240/// Analogous to the above, but starting from the binary operator
1241bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
1242 Value *&Step);
1243
1244/// Return true if RHS is known to be implied true by LHS. Return false if
1245/// RHS is known to be implied false by LHS. Otherwise, return std::nullopt if
1246/// no implication can be made. A & B must be i1 (boolean) values or a vector of
1247/// such values. Note that the truth table for implication is the same as <=u on
1248/// i1 values (but not
1249/// <=s!). The truth table for both is:
1250/// | T | F (B)
1251/// T | T | F
1252/// F | T | T
1253/// (A)
1254std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
1255 const DataLayout &DL,
1256 bool LHSIsTrue = true,
1257 unsigned Depth = 0);
1258std::optional<bool> isImpliedCondition(const Value *LHS, CmpPredicate RHSPred,
1259 const Value *RHSOp0, const Value *RHSOp1,
1260 const DataLayout &DL,
1261 bool LHSIsTrue = true,
1262 unsigned Depth = 0);
1263
1264/// Return the boolean condition value in the context of the given instruction
1265/// if it is known based on dominating conditions.
1266std::optional<bool> isImpliedByDomCondition(const Value *Cond,
1267 const Instruction *ContextI,
1268 const DataLayout &DL);
1269std::optional<bool> isImpliedByDomCondition(CmpPredicate Pred, const Value *LHS,
1270 const Value *RHS,
1271 const Instruction *ContextI,
1272 const DataLayout &DL);
1273
1274/// Call \p InsertAffected on all Values whose known bits / value may be
1275/// affected by the condition \p Cond. Used by AssumptionCache and
1276/// DomConditionCache.
1277void findValuesAffectedByCondition(Value *Cond, bool IsAssume,
1278 function_ref<void(Value *)> InsertAffected);
1279
1280} // end namespace llvm
1281
1282#endif // LLVM_ANALYSIS_VALUETRACKING_H
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
Hexagon Common GEP
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:234
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1542
an instruction to allocate memory on the stack
Definition: Instructions.h:63
A cache of @llvm.assume calls within a function.
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:178
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1120
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:696
uint64_t getElementAsInteger(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
Definition: Constants.cpp:3114
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
bool noInfs() const
Definition: FMF.h:67
bool noNaNs() const
Definition: FMF.h:66
Metadata node.
Definition: Metadata.h:1069
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition: Operator.h:32
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition: DWP.cpp:480
OverflowResult
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I)
Don't use information from its non-constant operands.
bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
bool isKnownNeverInfinity(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
void getGuaranteedNonPoisonOps(const Instruction *I, SmallVectorImpl< const Value * > &Ops)
Insert operands of I into Ops such that I will trigger undefined behavior if I is executed and that o...
bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined.
bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point value can never contain a NaN or infinity.
CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
void computeKnownBitsFromContext(const Value *V, KnownBits &Known, unsigned Depth, const SimplifyQuery &Q)
Merge bits known from context-dependent facts into Known.
bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, unsigned Depth, const SimplifyQuery &SQ)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:44
bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
void getGuaranteedWellDefinedOps(const Instruction *I, SmallVectorImpl< const Value * > &Ops)
Insert operands of I into Ops such that I will trigger undefined behavior if I is executed and that o...
FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Compute the possible floating-point classes that LHS could be based on fcmp \Pred LHS,...
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_UNKNOWN
@ SPF_FMINNUM
Unsigned maximum.
bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, unsigned Depth, const SimplifyQuery &Q)
Adjust Known for the given select Arm to include information from the select Cond.
bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool programUndefinedIfPoison(const Instruction *Inst)
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ Other
Any other memory.
const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given values are known to be non-equal when defined.
@ Add
Sum of integers.
ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:217
SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
std::pair< Value *, FPClassTest > fcmpToClassTest(CmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=6)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
std::optional< bool > computeKnownFPSignBit(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return false if we can prove that the specified FP value's sign bit is 0.
bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
bool cannotBeNegativeZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is never equal to -0.0.
OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
bool isKnownNeverNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize=8)
Returns true if the GEP is based on a pointer to a string (array of.
APInt operator|(APInt a, const APInt &b)
Definition: APInt.h:2112
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, unsigned Depth, const SimplifyQuery &SQ)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Get the upper bound on bit size for this Value Op as a signed integer.
bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
uint64_t operator[](unsigned I) const
Convenience accessor for elements in the slice.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
bool isKnownAlwaysNaN() const
Return true if it's known this must always be a nan.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
bool isKnownNeverZero() const
Return true if it's known this can never be a zero.
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
bool isKnownAlways(FPClassTest Mask) const
bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a positive zero.
KnownFPClass & operator|=(const KnownFPClass &RHS)
void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F, Type *Ty)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty)
Propagate knowledge from a source value that could be a denormal or zero.
bool isUnknown() const
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
void signBitMustBeZero()
Assume the sign bit is zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
bool operator==(KnownFPClass Other) const
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SelectPatternNaNBehavior NaNBehavior