15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
69 "Bitfields must be contiguous");
123 return Align(1ULL << getSubclassData<AlignmentField>());
127 setSubclassData<AlignmentField>(
Log2(
Align));
138 return getSubclassData<UsedWithInAllocaField>();
143 setSubclassData<UsedWithInAllocaField>(V);
147 bool isSwiftError()
const {
return getSubclassData<SwiftErrorField>(); }
153 return (
I->getOpcode() == Instruction::Alloca);
156 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
162 template <
typename Bitfield>
163 void setSubclassData(
typename Bitfield::Type
Value) {
164 Instruction::setSubclassData<Bitfield>(
Value);
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
203 bool isVolatile()
const {
return getSubclassData<VolatileField>(); }
210 return Align(1ULL << (getSubclassData<AlignmentField>()));
214 setSubclassData<AlignmentField>(
Log2(
Align));
219 return getSubclassData<OrderingField>();
224 setSubclassData<OrderingField>(Ordering);
265 return I->getOpcode() == Instruction::Load;
268 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
274 template <
typename Bitfield>
275 void setSubclassData(
typename Bitfield::Type
Value) {
276 Instruction::setSubclassData<Bitfield>(
Value);
295 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
296 "Bitfields must be contiguous");
317 void *
operator new(
size_t S) {
return User::operator
new(S, 2); }
318 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
321 bool isVolatile()
const {
return getSubclassData<VolatileField>(); }
330 return Align(1ULL << (getSubclassData<AlignmentField>()));
334 setSubclassData<AlignmentField>(
Log2(
Align));
339 return getSubclassData<OrderingField>();
345 setSubclassData<OrderingField>(Ordering);
389 return I->getOpcode() == Instruction::Store;
392 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
398 template <
typename Bitfield>
399 void setSubclassData(
typename Bitfield::Type
Value) {
400 Instruction::setSubclassData<Bitfield>(
Value);
439 void *
operator new(
size_t S) {
return User::operator
new(S, 0); }
440 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
444 return getSubclassData<OrderingField>();
450 setSubclassData<OrderingField>(Ordering);
465 return I->getOpcode() == Instruction::Fence;
468 return isa<Instruction>(V) && classof(cast<Instruction>(V));
474 template <
typename Bitfield>
475 void setSubclassData(
typename Bitfield::Type
Value) {
476 Instruction::setSubclassData<Bitfield>(
Value);
500 template <
unsigned Offset>
501 using AtomicOrderingBitfieldElement =
518 void *
operator new(
size_t S) {
return User::operator
new(S, 3); }
519 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
532 "Bitfields must be contiguous");
537 return Align(1ULL << getSubclassData<AlignmentField>());
541 setSubclassData<AlignmentField>(
Log2(
Align));
547 bool isVolatile()
const {
return getSubclassData<VolatileField>(); }
554 bool isWeak()
const {
return getSubclassData<WeakField>(); }
556 void setWeak(
bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
575 return getSubclassData<SuccessOrderingField>();
581 "invalid CmpXchg success ordering");
582 setSubclassData<SuccessOrderingField>(Ordering);
587 return getSubclassData<FailureOrderingField>();
593 "invalid CmpXchg failure ordering");
594 setSubclassData<FailureOrderingField>(Ordering);
645 switch (SuccessOrdering) {
661 return I->getOpcode() == Instruction::AtomicCmpXchg;
664 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
670 template <
typename Bitfield>
671 void setSubclassData(
typename Bitfield::Type
Value) {
672 Instruction::setSubclassData<Bitfield>(
Value);
755 LAST_BINOP = UDecWrap,
760 template <
unsigned Offset>
761 using AtomicOrderingBitfieldElement =
765 template <
unsigned Offset>
766 using BinOpBitfieldElement =
775 void *
operator new(
size_t S) {
return User::operator
new(S, 2); }
776 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
785 "Bitfields must be contiguous");
804 setSubclassData<OperationField>(
Operation);
810 return Align(1ULL << getSubclassData<AlignmentField>());
814 setSubclassData<AlignmentField>(
Log2(
Align));
819 bool isVolatile()
const {
return getSubclassData<VolatileField>(); }
830 return getSubclassData<AtomicOrderingField>();
836 "atomicrmw instructions can only be atomic.");
838 "atomicrmw instructions cannot be unordered.");
839 setSubclassData<AtomicOrderingField>(Ordering);
865 return isFPOperation(getOperation());
870 return I->getOpcode() == Instruction::AtomicRMW;
873 return isa<Instruction>(V) && classof(cast<Instruction>(V));
882 template <
typename Bitfield>
883 void setSubclassData(
typename Bitfield::Type
Value) {
884 Instruction::setSubclassData<Bitfield>(
Value);
908 assert(Ty &&
"Invalid GetElementPtrInst indices for type!");
916 Type *SourceElementType;
917 Type *ResultElementType;
940 const Twine &NameStr =
"",
943 assert(PointeeType &&
"Must specify element type");
945 NameStr, InsertBefore);
950 const Twine &NameStr =
"",
953 Create(PointeeType,
Ptr, IdxList, NameStr, InsertBefore);
954 GEP->setNoWrapFlags(NW);
962 const Twine &NameStr =
"",
965 NameStr, InsertBefore);
977 return ResultElementType;
1047 if (
auto *IndexVTy = dyn_cast<VectorType>(
Index->getType())) {
1104 APInt &ConstantOffset)
const;
1107 return (
I->getOpcode() == Instruction::GetElementPtr);
1110 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
1119GetElementPtrInst::GetElementPtrInst(
Type *PointeeType,
Value *
Ptr,
1121 const Twine &NameStr,
1125 Values, InsertBefore),
1126 SourceElementType(PointeeType),
1127 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1128 init(
Ptr, IdxList, NameStr);
1143 assert(isIntPredicate() &&
1144 "Invalid ICmp predicate value");
1146 "Both operands to ICmp instruction are not of the same type!");
1149 getOperand(0)->
getType()->isPtrOrPtrVectorTy()) &&
1150 "Invalid operand types for ICmp instruction");
1166 const Twine &NameStr =
""
1169 RHS, NameStr, InsertBefore) {
1180 const Twine &NameStr =
""
1193 return getSignedPredicate(getPredicate());
1198 static Predicate getSignedPredicate(Predicate
pred);
1205 return getUnsignedPredicate(getPredicate());
1210 static Predicate getUnsignedPredicate(Predicate
pred);
1215 return P == ICMP_EQ ||
P == ICMP_NE;
1221 return isEquality(getPredicate());
1231 return !isEquality();
1237 return !isEquality(
P);
1243 return P == ICMP_SGT ||
P == ICMP_UGT;
1249 return P == ICMP_SLT ||
P == ICMP_ULT;
1255 return P == ICMP_SGE ||
P == ICMP_UGE;
1261 return P == ICMP_SLE ||
P == ICMP_ULE;
1274 setPredicate(getSwappedPredicate());
1284 return I->getOpcode() == Instruction::ICmp;
1287 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1303 "Both operands to FCmp instruction are not of the same type!");
1306 "Invalid operand types for FCmp instruction");
1322 const Twine &NameStr =
""
1325 RHS, NameStr, InsertBefore) {
1333 const Twine &NameStr =
"",
1336 RHS, NameStr, nullptr, FlagsSource) {
1385 return I->getOpcode() == Instruction::FCmp;
1388 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
1408 :
CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore) {}
1418 static int ComputeNumOperands(
int NumArgs,
int NumBundleInputs = 0) {
1421 return 1 + NumArgs + NumBundleInputs;
1433 return new (ComputeNumOperands(0))
CallInst(Ty,
F, NameStr, InsertBefore);
1437 const Twine &NameStr,
1439 return new (ComputeNumOperands(Args.size()))
1440 CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore);
1445 const Twine &NameStr =
"",
1447 const int NumOperands =
1451 return new (NumOperands, DescriptorBytes)
1452 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1457 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1463 const Twine &NameStr =
"",
1465 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1466 NameStr, InsertBefore);
1470 const Twine &NameStr,
1472 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1496 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1497 "Bitfields must be contiguous");
1500 return getSubclassData<TailCallKindField>();
1513 setSubclassData<TailCallKindField>(TCK);
1527 case Intrinsic::trap:
1528 case Intrinsic::ubsantrap:
1537 return I->getOpcode() == Instruction::Call;
1540 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
1549 template <
typename Bitfield>
1550 void setSubclassData(
typename Bitfield::Type
Value) {
1551 Instruction::setSubclassData<Bitfield>(
Value);
1555CallInst::CallInst(
FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1556 ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr,
1557 InsertPosition InsertBefore)
1558 : CallBase(Ty->getReturnType(), Instruction::
Call,
1559 OperandTraits<CallBase>::op_end(this) -
1560 (
Args.
size() + CountBundleInputs(Bundles) + 1),
1563 init(Ty, Func, Args, Bundles, NameStr);
1597 const Twine &NameStr =
"",
1634 return I->getOpcode() == Instruction::Select;
1637 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
1674 return I->getOpcode() == VAArg;
1677 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1700 const Twine &NameStr =
"",
1723 return I->getOpcode() == Instruction::ExtractElement;
1726 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
1746 const Twine &NameStr =
"",
1757 const Twine &NameStr =
"",
1764 static bool isValidOperands(
const Value *Vec,
const Value *NewElt,
1778 return I->getOpcode() == Instruction::InsertElement;
1781 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1824 const Twine &NameStr =
"",
1827 const Twine &NameStr =
"",
1830 void *
operator new(
size_t S) {
return User::operator
new(S, 2); }
1831 void operator delete(
void *
Ptr) {
return User::operator
delete(
Ptr); }
1839 static bool isValidOperands(
const Value *V1,
const Value *V2,
1841 static bool isValidOperands(
const Value *V1,
const Value *V2,
1859 static void getShuffleMask(
const Constant *Mask,
1865 Result.assign(ShuffleMask.
begin(), ShuffleMask.
end());
1886 unsigned NumSourceElts = cast<VectorType>(
Op<0>()->
getType())
1888 .getKnownMinValue();
1889 unsigned NumMaskElts = ShuffleMask.
size();
1890 return NumSourceElts != NumMaskElts;
1897 unsigned NumSourceElts = cast<VectorType>(
Op<0>()->
getType())
1899 .getKnownMinValue();
1900 unsigned NumMaskElts = ShuffleMask.
size();
1901 return NumSourceElts < NumMaskElts;
1909 static bool isSingleSourceMask(
ArrayRef<int> Mask,
int NumSrcElts);
1911 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
1913 getShuffleMask(Mask, MaskAsInts);
1914 return isSingleSourceMask(MaskAsInts, NumSrcElts);
1922 return !changesLength() &&
1923 isSingleSourceMask(ShuffleMask, ShuffleMask.
size());
1931 static bool isIdentityMask(
ArrayRef<int> Mask,
int NumSrcElts);
1933 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
1937 if (isa<ScalableVectorType>(Mask->getType()))
1941 getShuffleMask(Mask, MaskAsInts);
1942 return isIdentityMask(MaskAsInts, NumSrcElts);
1952 if (isa<ScalableVectorType>(
getType()))
1955 return !changesLength() && isIdentityMask(ShuffleMask, ShuffleMask.
size());
1960 bool isIdentityWithPadding()
const;
1964 bool isIdentityWithExtract()
const;
1969 bool isConcat()
const;
1979 static bool isSelectMask(
ArrayRef<int> Mask,
int NumSrcElts);
1981 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
1983 getShuffleMask(Mask, MaskAsInts);
1984 return isSelectMask(MaskAsInts, NumSrcElts);
1996 return !changesLength() && isSelectMask(ShuffleMask, ShuffleMask.
size());
2006 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
2008 getShuffleMask(Mask, MaskAsInts);
2025 static bool isZeroEltSplatMask(
ArrayRef<int> Mask,
int NumSrcElts);
2027 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
2029 getShuffleMask(Mask, MaskAsInts);
2030 return isZeroEltSplatMask(MaskAsInts, NumSrcElts);
2040 return !changesLength() &&
2041 isZeroEltSplatMask(ShuffleMask, ShuffleMask.
size());
2076 static bool isTransposeMask(
ArrayRef<int> Mask,
int NumSrcElts);
2078 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
2080 getShuffleMask(Mask, MaskAsInts);
2081 return isTransposeMask(MaskAsInts, NumSrcElts);
2090 return !changesLength() && isTransposeMask(ShuffleMask, ShuffleMask.
size());
2101 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
2103 getShuffleMask(Mask, MaskAsInts);
2104 return isSpliceMask(MaskAsInts, NumSrcElts,
Index);
2112 return !changesLength() &&
2113 isSpliceMask(ShuffleMask, ShuffleMask.
size(),
Index);
2119 static bool isExtractSubvectorMask(
ArrayRef<int> Mask,
int NumSrcElts,
2123 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
2126 if (isa<ScalableVectorType>(Mask->getType()))
2129 getShuffleMask(Mask, MaskAsInts);
2130 return isExtractSubvectorMask(MaskAsInts, NumSrcElts,
Index);
2137 if (isa<ScalableVectorType>(
getType()))
2141 cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2142 return isExtractSubvectorMask(ShuffleMask, NumSrcElts,
Index);
2149 static bool isInsertSubvectorMask(
ArrayRef<int> Mask,
int NumSrcElts,
2150 int &NumSubElts,
int &
Index);
2152 int &NumSubElts,
int &
Index) {
2153 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
2156 if (isa<ScalableVectorType>(Mask->getType()))
2159 getShuffleMask(Mask, MaskAsInts);
2160 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts,
Index);
2167 if (isa<ScalableVectorType>(
getType()))
2171 cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2172 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts,
Index);
2179 static bool isReplicationMask(
ArrayRef<int> Mask,
int &ReplicationFactor,
2183 assert(Mask->getType()->isVectorTy() &&
"Shuffle needs vector constant.");
2186 if (isa<ScalableVectorType>(Mask->getType()))
2189 getShuffleMask(Mask, MaskAsInts);
2190 return isReplicationMask(MaskAsInts, ReplicationFactor, VF);
2194 bool isReplicationMask(
int &ReplicationFactor,
int &VF)
const;
2205 static bool isOneUseSingleSourceMask(
ArrayRef<int> Mask,
int VF);
2209 bool isOneUseSingleSourceMask(
int VF)
const;
2214 unsigned InVecNumElts) {
2215 for (
int &
Idx : Mask) {
2218 Idx =
Idx < (int)InVecNumElts ?
Idx + InVecNumElts :
Idx - InVecNumElts;
2220 "shufflevector mask index out of range");
2225 bool isInterleave(
unsigned Factor);
2246 static bool isInterleaveMask(
ArrayRef<int> Mask,
unsigned Factor,
2247 unsigned NumInputElts,
2250 unsigned NumInputElts) {
2252 return isInterleaveMask(Mask, Factor, NumInputElts, StartIndexes);
2258 static bool isDeInterleaveMaskOfFactor(
ArrayRef<int> Mask,
unsigned Factor,
2262 return isDeInterleaveMaskOfFactor(Mask, Factor, Unused);
2276 static bool isBitRotateMask(
ArrayRef<int> Mask,
unsigned EltSizeInBits,
2277 unsigned MinSubElts,
unsigned MaxSubElts,
2278 unsigned &NumSubElts,
unsigned &RotateAmt);
2282 return I->getOpcode() == Instruction::ShuffleVector;
2285 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2324 const Twine &NameStr =
"",
2345 return getOperand(0);
2348 return getOperand(0);
2359 return (
unsigned)Indices.
size();
2368 return I->getOpcode() == Instruction::ExtractValue;
2371 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2375ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
2376 const Twine &NameStr,
2377 InsertPosition InsertBefore)
2379 ExtractValue, Agg, InsertBefore) {
2380 init(Idxs, NameStr);
2405 const Twine &NameStr =
"",
2409 const Twine &NameStr);
2419 void *
operator new(
size_t S) {
return User::operator
new(S, 2); }
2420 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
2424 const Twine &NameStr =
"",
2465 return (
unsigned)Indices.
size();
2474 return I->getOpcode() == Instruction::InsertValue;
2477 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
2486InsertValueInst::InsertValueInst(
Value *Agg,
Value *Val,
2492 init(Agg, Val, Idxs, NameStr);
2508 unsigned ReservedSpace;
2512 explicit PHINode(
Type *Ty,
unsigned NumReservedValues,
2513 const Twine &NameStr =
"",
2515 :
Instruction(Ty, Instruction::PHI,
nullptr, 0, InsertBefore),
2516 ReservedSpace(NumReservedValues) {
2519 allocHungoffUses(ReservedSpace);
2539 const Twine &NameStr =
"",
2541 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2560 return block_begin() + getNumOperands();
2564 return make_range(block_begin(), block_end());
2578 return getOperand(i);
2581 assert(V &&
"PHI node got a null value!");
2583 "All operands to PHI node must be the same type as the PHI node!");
2598 return block_begin()[i];
2605 assert(
this == U.getUser() &&
"Iterator doesn't point to PHI's Uses?");
2606 return getIncomingBlock(
unsigned(&U - op_begin()));
2613 return getIncomingBlock(
I.getUse());
2629 assert(New && Old &&
"PHI node got a null basic block!");
2630 for (
unsigned Op = 0, NumOps = getNumOperands();
Op != NumOps; ++
Op)
2631 if (getIncomingBlock(
Op) == Old)
2632 setIncomingBlock(
Op, New);
2638 if (getNumOperands() == ReservedSpace)
2641 setNumHungOffUseOperands(getNumOperands() + 1);
2642 setIncomingValue(getNumOperands() - 1, V);
2643 setIncomingBlock(getNumOperands() - 1, BB);
2654 Value *removeIncomingValue(
unsigned Idx,
bool DeletePHIIfEmpty =
true);
2657 int Idx = getBasicBlockIndex(BB);
2658 assert(
Idx >= 0 &&
"Invalid basic block argument to remove!");
2659 return removeIncomingValue(
Idx, DeletePHIIfEmpty);
2664 void removeIncomingValueIf(
function_ref<
bool(
unsigned)> Predicate,
2665 bool DeletePHIIfEmpty =
true);
2671 for (
unsigned i = 0, e = getNumOperands(); i != e; ++i)
2672 if (block_begin()[i] == BB)
2678 int Idx = getBasicBlockIndex(BB);
2679 assert(
Idx >= 0 &&
"Invalid basic block argument!");
2680 return getIncomingValue(
Idx);
2685 assert(BB &&
"PHI node got a null basic block!");
2687 for (
unsigned Op = 0, NumOps = getNumOperands();
Op != NumOps; ++
Op)
2688 if (getIncomingBlock(
Op) == BB) {
2690 setIncomingValue(
Op, V);
2693 assert(Found &&
"Invalid basic block argument to set!");
2698 Value *hasConstantValue()
const;
2703 bool hasConstantOrUndefValue()
const;
2710 return getBasicBlockIndex(Pred) >= 0;
2716 return I->getOpcode() == Instruction::PHI;
2719 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2723 void growOperands();
2749 unsigned ReservedSpace;
2761 void *
operator new(
size_t S) {
return User::operator
new(S); }
2763 void growOperands(
unsigned Size);
2764 void init(
unsigned NumReservedValues,
const Twine &NameStr);
2773 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
2778 const Twine &NameStr =
"",
2787 bool isCleanup()
const {
return getSubclassData<CleanupField>(); }
2798 return cast<Constant>(getOperandList()[
Idx]);
2803 return !isa<ArrayType>(getOperandList()[
Idx]->
getType());
2808 return isa<ArrayType>(getOperandList()[
Idx]->
getType());
2820 return I->getOpcode() == Instruction::LandingPad;
2823 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2870 return new(!!retVal)
ReturnInst(
C, retVal, InsertBefore);
2874 return new (0)
ReturnInst(
C,
nullptr, InsertAtEnd);
2882 return getNumOperands() != 0 ? getOperand(0) :
nullptr;
2889 return (
I->getOpcode() == Instruction::Ret);
2892 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2896 BasicBlock *getSuccessor(
unsigned idx)
const {
2900 void setSuccessor(
unsigned idx, BasicBlock *
B) {
2953 std::random_access_iterator_tag, BasicBlock *,
2954 ptrdiff_t, BasicBlock *, BasicBlock *> {
2964 std::random_access_iterator_tag,
2965 const BasicBlock *, ptrdiff_t, const BasicBlock *,
2966 const BasicBlock *> {
2976 return new(1)
BranchInst(IfTrue, InsertBefore);
2992 assert(isConditional() &&
"Cannot get condition of an uncond branch!");
2997 assert(isConditional() &&
"Cannot set condition of unconditional branch!");
3004 assert(i < getNumSuccessors() &&
"Successor # out of range for Branch!");
3005 return cast_or_null<BasicBlock>((&
Op<-1>() - i)->
get());
3009 assert(idx < getNumSuccessors() &&
"Successor # out of range for Branch!");
3010 *(&
Op<-1>() - idx) = NewSucc;
3018 void swapSuccessors();
3028 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3034 return (
I->getOpcode() == Instruction::Br);
3037 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3055 unsigned ReservedSpace;
3071 void *
operator new(
size_t S) {
return User::operator
new(S); }
3074 void growOperands();
3083 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
3086 static const unsigned DefaultPseudoIndex =
static_cast<unsigned>(~0L-1);
3095 template <
typename SwitchInstT,
typename ConstantIntT,
typename BasicBlockT>
3114 assert((
unsigned)Index < SI->getNumCases() &&
3115 "Index out the number of cases.");
3116 return reinterpret_cast<ConstantIntT *
>(
SI->getOperand(2 +
Index * 2));
3121 assert(((
unsigned)Index < SI->getNumCases() ||
3122 (
unsigned)
Index == DefaultPseudoIndex) &&
3123 "Index out the number of cases.");
3124 return SI->getSuccessor(getSuccessorIndex());
3133 (
unsigned)Index < SI->getNumCases()) &&
3134 "Index out the number of cases.");
3135 return (
unsigned)
Index != DefaultPseudoIndex ?
Index + 1 : 0;
3139 assert(
SI ==
RHS.SI &&
"Incompatible operators.");
3156 assert((
unsigned)Index < SI->getNumCases() &&
3157 "Index out the number of cases.");
3158 SI->setOperand(2 +
Index*2,
reinterpret_cast<Value*
>(V));
3163 SI->setSuccessor(getSuccessorIndex(), S);
3167 template <
typename CaseHandleT>
3170 std::random_access_iterator_tag,
3171 const CaseHandleT> {
3172 using SwitchInstT =
typename CaseHandleT::SwitchInstType;
3188 unsigned SuccessorIndex) {
3189 assert(SuccessorIndex < SI->getNumSuccessors() &&
3190 "Successor index # out of range!");
3205 (
unsigned)(Case.Index +
N) <= Case.SI->getNumCases() &&
3206 "Case.Index out the number of cases.");
3214 (
unsigned)(Case.Index -
N) <= Case.SI->getNumCases() &&
3215 "Case.Index out the number of cases.");
3220 assert(Case.SI ==
RHS.Case.SI &&
"Incompatible operators.");
3221 return Case.Index -
RHS.Case.Index;
3224 return Case ==
RHS.Case;
3227 assert(Case.SI ==
RHS.Case.SI &&
"Incompatible operators.");
3228 return Case.Index <
RHS.Case.Index;
3250 return cast<BasicBlock>(getOperand(1));
3256 return isa<UnreachableInst>(getDefaultDest()->getFirstNonPHIOrDbg());
3260 setOperand(1,
reinterpret_cast<Value*
>(DefaultCase));
3266 return getNumOperands()/2 - 1;
3284 return CaseIt(
this, getNumCases());
3309 return CaseIt(
this, DefaultPseudoIndex);
3322 const_cast<const SwitchInst *
>(
this)->findCaseValue(
C)->getCaseIndex());
3328 if (
I != case_end())
3331 return case_default();
3337 if (BB == getDefaultDest())
3341 for (
auto Case : cases()) {
3342 if (Case.getCaseSuccessor() != BB)
3348 CI = Case.getCaseValue();
3367 CaseIt removeCase(CaseIt
I);
3371 assert(idx < getNumSuccessors() &&
"Successor idx out of range for switch!");
3372 return cast<BasicBlock>(getOperand(idx*2+1));
3375 assert(idx < getNumSuccessors() &&
"Successor # out of range for switch!");
3376 setOperand(idx * 2 + 1, NewSucc);
3381 return I->getOpcode() == Instruction::Switch;
3384 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3392 std::optional<SmallVector<uint32_t, 8>> Weights;
3393 bool Changed =
false;
3445 unsigned ReservedSpace;
3459 void *
operator new(
size_t S) {
return User::operator
new(S); }
3462 void growOperands();
3471 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
3479 std::random_access_iterator_tag, BasicBlock *,
3480 ptrdiff_t, BasicBlock *, BasicBlock *> {
3490 std::random_access_iterator_tag,
3491 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3492 const BasicBlock *> {
3527 void removeDestination(
unsigned i);
3531 return cast<BasicBlock>(getOperand(i+1));
3534 setOperand(i + 1, NewSucc);
3549 return I->getOpcode() == Instruction::IndirectBr;
3552 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3572 static constexpr int NumExtraOperands = 2;
3575 static constexpr int NormalDestOpEndIdx = -3;
3578 static constexpr int UnwindDestOpEndIdx = -2;
3595 static int ComputeNumOperands(
int NumArgs,
int NumBundleInputs = 0) {
3598 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3610 const Twine &NameStr,
3612 int NumOperands = ComputeNumOperands(Args.size());
3613 return new (NumOperands)
3614 InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt,
3615 NumOperands, NameStr, InsertBefore);
3621 const Twine &NameStr =
"",
3624 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3627 return new (NumOperands, DescriptorBytes)
3628 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3629 NameStr, InsertBefore);
3634 const Twine &NameStr,
3636 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3637 IfException, Args, std::nullopt, NameStr, InsertBefore);
3643 const Twine &NameStr =
"",
3645 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3646 IfException, Args, Bundles, NameStr, InsertBefore);
3677 assert(i < 2 &&
"Successor # out of range for invoke!");
3678 return i == 0 ? getNormalDest() : getUnwindDest();
3682 assert(i < 2 &&
"Successor # out of range for invoke!");
3684 setNormalDest(NewSucc);
3686 setUnwindDest(NewSucc);
3696 return (
I->getOpcode() == Instruction::Invoke);
3699 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3705 template <
typename Bitfield>
3706 void setSubclassData(
typename Bitfield::Type
Value) {
3707 Instruction::setSubclassData<Bitfield>(
Value);
3711InvokeInst::InvokeInst(
FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3712 BasicBlock *IfException, ArrayRef<Value *> Args,
3713 ArrayRef<OperandBundleDef> Bundles,
int NumOperands,
3714 const Twine &NameStr, InsertPosition InsertBefore)
3715 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3716 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3718 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3731 unsigned NumIndirectDests;
3741 int NumOperands,
const Twine &NameStr,
3749 static int ComputeNumOperands(
int NumArgs,
int NumIndirectDests,
3750 int NumBundleInputs = 0) {
3753 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3768 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.
size());
3769 return new (NumOperands)
3770 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt,
3771 NumOperands, NameStr, InsertBefore);
3779 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.
size(),
3783 return new (NumOperands, DescriptorBytes)
3784 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3785 NumOperands, NameStr, InsertBefore);
3792 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3793 IndirectDests, Args, NameStr, InsertBefore);
3800 const Twine &NameStr =
"",
3802 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3803 IndirectDests, Args, Bundles, NameStr, InsertBefore);
3842 return IndirectDests;
3853 "Successor # out of range for callbr!");
3859 "Successor # out of range for callbr!");
3867 return (
I->getOpcode() == Instruction::CallBr);
3870 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
3876 template <
typename Bitfield>
3877 void setSubclassData(
typename Bitfield::Type
Value) {
3878 Instruction::setSubclassData<Bitfield>(
Value);
3882CallBrInst::CallBrInst(
FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3883 ArrayRef<BasicBlock *> IndirectDests,
3884 ArrayRef<Value *> Args,
3885 ArrayRef<OperandBundleDef> Bundles,
int NumOperands,
3886 const Twine &NameStr, InsertPosition InsertBefore)
3887 : CallBase(Ty->getReturnType(), Instruction::CallBr,
3888 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3890 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
3926 return I->getOpcode() == Instruction::Resume;
3929 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
3933 BasicBlock *getSuccessor(
unsigned idx)
const {
3937 void setSuccessor(
unsigned idx,
BasicBlock *NewSucc) {
3957 unsigned ReservedSpace;
3969 unsigned NumHandlers,
const Twine &NameStr,
3973 void *
operator new(
size_t S) {
return User::operator
new(S); }
3975 void init(
Value *ParentPad,
BasicBlock *UnwindDest,
unsigned NumReserved);
3976 void growOperands(
unsigned Size);
3985 void operator delete(
void *
Ptr) {
return User::operator
delete(
Ptr); }
3988 unsigned NumHandlers,
3989 const Twine &NameStr =
"",
3991 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4006 if (hasUnwindDest())
4007 return cast<BasicBlock>(getOperand(1));
4013 setOperand(1, UnwindDest);
4019 if (hasUnwindDest())
4020 return getNumOperands() - 2;
4021 return getNumOperands() - 1;
4025 static BasicBlock *handler_helper(
Value *V) {
return cast<BasicBlock>(V); }
4026 static const BasicBlock *handler_helper(
const Value *V) {
4027 return cast<BasicBlock>(V);
4042 if (hasUnwindDest())
4051 if (hasUnwindDest())
4070 return make_range(handler_begin(), handler_end());
4075 return make_range(handler_begin(), handler_end());
4084 void removeHandler(handler_iterator HI);
4089 "Successor # out of range for catchswitch!");
4090 return cast<BasicBlock>(getOperand(
Idx + 1));
4094 "Successor # out of range for catchswitch!");
4095 setOperand(
Idx + 1, NewSucc);
4100 return I->getOpcode() == Instruction::CatchSwitch;
4103 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4118 unsigned Values,
const Twine &NameStr,
4120 :
FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4121 NameStr, InsertBefore) {}
4126 const Twine &NameStr =
"",
4128 unsigned Values = 1 + Args.size();
4135 return I->getOpcode() == Instruction::CleanupPad;
4138 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4148 unsigned Values,
const Twine &NameStr,
4150 :
FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4151 NameStr, InsertBefore) {}
4155 const Twine &NameStr =
"",
4157 unsigned Values = 1 + Args.size();
4159 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4164 return cast<CatchSwitchInst>(
Op<-1>());
4168 Op<-1>() = CatchSwitch;
4173 return I->getOpcode() == Instruction::CatchPad;
4176 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4229 return (
I->getOpcode() == Instruction::CatchRet);
4232 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4278 unsigned Values = 1;
4293 return cast<CleanupPadInst>(
Op<0>());
4297 Op<0>() = CleanupPad;
4303 return hasUnwindDest() ? cast<BasicBlock>(
Op<1>()) :
nullptr;
4313 return (
I->getOpcode() == Instruction::CleanupRet);
4316 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4322 return getUnwindDest();
4325 void setSuccessor(
unsigned Idx, BasicBlock *
B) {
4332 template <
typename Bitfield>
4333 void setSubclassData(
typename Bitfield::Type Value) {
4334 Instruction::setSubclassData<Bitfield>(Value);
4365 void *
operator new(
size_t S) {
return User::operator
new(S, 0); }
4366 void operator delete(
void *
Ptr) { User::operator
delete(
Ptr); }
4372 return I->getOpcode() == Instruction::Unreachable;
4375 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4379 BasicBlock *getSuccessor(
unsigned idx)
const {
4383 void setSuccessor(
unsigned idx, BasicBlock *
B) {
4407 const Twine &NameStr =
"",
4414 return I->getOpcode() == Trunc;
4417 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4443 unsigned NoWrapKind = 0;
4471 const Twine &NameStr =
"",
4478 return I->getOpcode() == ZExt;
4481 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4502 const Twine &NameStr =
"",
4509 return I->getOpcode() == SExt;
4512 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4532 const Twine &NameStr =
"",
4539 return I->getOpcode() == FPTrunc;
4542 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4563 const Twine &NameStr =
"",
4570 return I->getOpcode() == FPExt;
4573 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4594 const Twine &NameStr =
"",
4601 return I->getOpcode() == UIToFP;
4604 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4625 const Twine &NameStr =
"",
4632 return I->getOpcode() == SIToFP;
4635 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4656 const Twine &NameStr =
"",
4663 return I->getOpcode() == FPToUI;
4666 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4687 const Twine &NameStr =
"",
4694 return I->getOpcode() == FPToSI;
4697 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4714 const Twine &NameStr =
"",
4729 return I->getOpcode() == IntToPtr;
4732 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4753 const Twine &NameStr =
"",
4772 return I->getOpcode() == PtrToInt;
4775 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4796 const Twine &NameStr =
"",
4803 return I->getOpcode() == BitCast;
4806 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4829 const Twine &NameStr =
"",
4836 return I->getOpcode() == AddrSpaceCast;
4839 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
4875 if (
auto *Load = dyn_cast<LoadInst>(V))
4876 return Load->getPointerOperand();
4877 if (
auto *Store = dyn_cast<StoreInst>(V))
4878 return Store->getPointerOperand();
4882 return const_cast<Value *
>(
4891 if (
auto *Gep = dyn_cast<GetElementPtrInst>(V))
4892 return Gep->getPointerOperand();
4901 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
4902 "Expected Load or Store instruction");
4903 if (
auto *LI = dyn_cast<LoadInst>(
I))
4904 return LI->getAlign();
4905 return cast<StoreInst>(
I)->getAlign();
4911 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
4912 "Expected Load or Store instruction");
4913 if (
auto *LI = dyn_cast<LoadInst>(
I))
4914 return LI->getPointerAddressSpace();
4915 return cast<StoreInst>(
I)->getPointerAddressSpace();
4920 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
4921 "Expected Load or Store instruction");
4922 if (
auto *LI = dyn_cast<LoadInst>(
I))
4923 return LI->getType();
4924 return cast<StoreInst>(
I)->getValueOperand()->getType();
4931 return std::nullopt;
4932 if (
auto *AI = dyn_cast<LoadInst>(
I))
4933 return AI->getSyncScopeID();
4934 if (
auto *AI = dyn_cast<StoreInst>(
I))
4935 return AI->getSyncScopeID();
4936 if (
auto *AI = dyn_cast<FenceInst>(
I))
4937 return AI->getSyncScopeID();
4938 if (
auto *AI = dyn_cast<AtomicCmpXchgInst>(
I))
4939 return AI->getSyncScopeID();
4940 if (
auto *AI = dyn_cast<AtomicRMWInst>(
I))
4941 return AI->getSyncScopeID();
4948 if (
auto *AI = dyn_cast<LoadInst>(
I))
4949 AI->setSyncScopeID(SSID);
4950 else if (
auto *AI = dyn_cast<StoreInst>(
I))
4951 AI->setSyncScopeID(SSID);
4952 else if (
auto *AI = dyn_cast<FenceInst>(
I))
4953 AI->setSyncScopeID(SSID);
4954 else if (
auto *AI = dyn_cast<AtomicCmpXchgInst>(
I))
4955 AI->setSyncScopeID(SSID);
4956 else if (
auto *AI = dyn_cast<AtomicRMWInst>(
I))
4957 AI->setSyncScopeID(SSID);
4982 return I->getOpcode() == Freeze;
4985 return isa<Instruction>(V) &&
classof(cast<Instruction>(V));
static bool isReverseMask(ArrayRef< int > M, EVT VT)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
static const Function * getParent(const Value *V)
This file implements methods to test, set and extract typed bits from packed unsigned integers.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This defines the Use class.
This file implements a map that provides insertion order iteration.
uint64_t IntrinsicInst * II
#define DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CLASS, VALUECLASS)
Macro for generating out-of-class operand accessor definitions.
PowerPC Reduce CR logical Operation
StandardInstrumentations SI(Mod->getContext(), Debug, VerifyEach)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
Class for arbitrary precision integers.
This class represents a conversion between pointers from one address space to another.
const Value * getPointerOperand() const
Gets the pointer operand.
AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
Value * getPointerOperand()
Gets the pointer operand.
static bool classof(const Instruction *I)
static bool classof(const Value *V)
unsigned getSrcAddressSpace() const
Returns the address space of the pointer operand.
unsigned getDestAddressSpace() const
Returns the address space of the result.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
an instruction to allocate memory on the stack
std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
static bool classof(const Value *V)
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
void setSwiftError(bool V)
Specify whether this alloca is used to represent a swifterror.
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
void setAllocatedType(Type *Ty)
for use only in special circumstances that need to generically transform a whole instruction (eg: IR ...
static bool classof(const Instruction *I)
PointerType * getType() const
Overload to return most specific pointer type.
void setUsedWithInAlloca(bool V)
Specify whether this alloca is used to represent the arguments to a call.
AllocaInst * cloneImpl() const
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
BoolBitfieldElementT< 0 > VolatileField
const Value * getCompareOperand() const
Value * getNewValOperand()
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
AtomicOrdering getMergedOrdering() const
Returns a single ordering which is at least as strong as both the success and failure orderings for t...
void setWeak(bool IsWeak)
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
BoolBitfieldElementT< VolatileField::NextBit > WeakField
AtomicOrderingBitfieldElementT< SuccessOrderingField::NextBit > FailureOrderingField
Value * getCompareOperand()
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
static bool isValidFailureOrdering(AtomicOrdering Ordering)
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
AlignmentBitfieldElementT< FailureOrderingField::NextBit > AlignmentField
Value * getPointerOperand()
static AtomicOrdering getStrongestFailureOrdering(AtomicOrdering SuccessOrdering)
Returns the strongest permitted ordering on failure, given the desired ordering on success.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
const Value * getPointerOperand() const
static bool classof(const Value *V)
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
void setVolatile(bool V)
Specify whether this is a volatile cmpxchg.
static bool isValidSuccessOrdering(AtomicOrdering Ordering)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
AtomicOrderingBitfieldElementT< WeakField::NextBit > SuccessOrderingField
static unsigned getPointerOperandIndex()
const Value * getNewValOperand() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
static bool classof(const Instruction *I)
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static bool isFPOperation(BinOp Op)
static unsigned getPointerOperandIndex()
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
void setVolatile(bool V)
Specify whether this is a volatile RMW or not.
BinOpBitfieldElement< AtomicOrderingField::NextBit > OperationField
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Min
*p = old <signed v ? old : v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
AtomicOrderingBitfieldElementT< VolatileField::NextBit > AtomicOrderingField
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
Value * getPointerOperand()
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
bool isFloatingPointOperation() const
static bool classof(const Instruction *I)
const Value * getPointerOperand() const
void setOperation(BinOp Operation)
static bool classof(const Value *V)
BinOp getOperation() const
const Value * getValOperand() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
AlignmentBitfieldElementT< OperationField::NextBit > AlignmentField
BoolBitfieldElementT< 0 > VolatileField
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
LLVM Basic Block Representation.
This class represents a no-op cast from one type to another.
static bool classof(const Instruction *I)
static bool classof(const Value *V)
BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
Conditional or Unconditional Branch instruction.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
iterator_range< succ_op_iterator > successors()
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, InsertPosition InsertBefore=nullptr)
void setCondition(Value *V)
static bool classof(const Instruction *I)
bool isConditional() const
unsigned getNumSuccessors() const
static bool classof(const Value *V)
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
iterator_range< const_succ_op_iterator > successors() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
unsigned arg_size() const
unsigned getNumTotalBundleOperands() const
Return the total number operands (not operand bundles) used by every operand bundle in this OperandBu...
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static bool classof(const Value *V)
static bool classof(const Instruction *I)
SmallVector< BasicBlock *, 16 > getIndirectDests() const
static CallBrInst * Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
void setSuccessor(unsigned i, BasicBlock *NewSucc)
BasicBlock * getSuccessor(unsigned i) const
Value * getIndirectDestLabelUse(unsigned i) const
BasicBlock * getIndirectDest(unsigned i) const
static CallBrInst * Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles=std::nullopt, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setDefaultDest(BasicBlock *B)
unsigned getNumSuccessors() const
void setIndirectDest(unsigned i, BasicBlock *B)
Value * getIndirectDestLabel(unsigned i) const
getIndirectDestLabel - Return the i-th indirect dest label.
BasicBlock * getDefaultDest() const
unsigned getNumIndirectDests() const
Return the number of callbr indirect dest labels.
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
CallBrInst * cloneImpl() const
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles=std::nullopt, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static bool classof(const Value *V)
void setTailCallKind(TailCallKind TCK)
static CallInst * Create(FunctionType *Ty, Value *Func, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
bool canReturnTwice() const
Return true if the call can return twice.
TailCallKind getTailCallKind() const
CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CallInst * Create(FunctionCallee Func, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles=std::nullopt, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CallInst * Create(FunctionType *Ty, Value *Func, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles=std::nullopt, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setTailCall(bool IsTc=true)
bool isMustTailCall() const
static CallInst * Create(FunctionCallee Func, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
bool isNonContinuableTrap() const
Return true if the call is for a noreturn trap intrinsic.
static CallInst * Create(FunctionCallee Func, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is the base class for all instructions that perform data casts.
CatchSwitchInst * getCatchSwitch() const
Convenience accessors.
void setCatchSwitch(Value *CatchSwitch)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static CatchPadInst * Create(Value *CatchSwitch, ArrayRef< Value * > Args, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Value *V)
static bool classof(const Instruction *I)
BasicBlock * getSuccessor() const
CatchPadInst * getCatchPad() const
Convenience accessors.
void setSuccessor(BasicBlock *NewSucc)
static bool classof(const Value *V)
static CatchReturnInst * Create(Value *CatchPad, BasicBlock *BB, InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
void setCatchPad(CatchPadInst *CatchPad)
CatchReturnInst * cloneImpl() const
Value * getCatchSwitchParentPad() const
Get the parentPad of this catchret's catchpad's catchswitch.
void setUnwindDest(BasicBlock *UnwindDest)
static bool classof(const Instruction *I)
BasicBlock *(*)(Value *) DerefFnTy
const BasicBlock *(*)(const Value *) ConstDerefFnTy
unsigned getNumSuccessors() const
const_handler_iterator handler_begin() const
Returns an iterator that points to the first handler in the CatchSwitchInst.
unsigned getNumHandlers() const
return the number of 'handlers' in this catchswitch instruction, except the default handler
void setSuccessor(unsigned Idx, BasicBlock *NewSucc)
Value * getParentPad() const
void setParentPad(Value *ParentPad)
bool unwindsToCaller() const
static bool classof(const Value *V)
handler_iterator handler_end()
Returns a read-only iterator that points one past the last handler in the CatchSwitchInst.
BasicBlock * getUnwindDest() const
BasicBlock * getSuccessor(unsigned Idx) const
const_handler_iterator handler_end() const
Returns an iterator that points one past the last handler in the CatchSwitchInst.
bool hasUnwindDest() const
handler_iterator handler_begin()
Returns an iterator that points to the first handler in CatchSwitchInst.
static CatchSwitchInst * Create(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
handler_range handlers()
iteration adapter for range-for loops.
const_handler_range handlers() const
iteration adapter for range-for loops.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static CleanupPadInst * Create(Value *ParentPad, ArrayRef< Value * > Args=std::nullopt, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool classof(const Instruction *I)
CleanupPadInst * getCleanupPad() const
Convenience accessor.
unsigned getNumSuccessors() const
BasicBlock * getUnwindDest() const
bool unwindsToCaller() const
void setCleanupPad(CleanupPadInst *CleanupPad)
static bool classof(const Value *V)
void setUnwindDest(BasicBlock *NewDest)
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, InsertPosition InsertBefore=nullptr)
bool hasUnwindDest() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static auto FCmpPredicates()
Returns the sequence of all FCmp predicates.
bool isFPPredicate() const
Predicate getPredicate() const
Return the predicate for this instruction.
This is the shared class of boolean and integer constants.
This is an important base class in LLVM.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
This instruction compares its operands according to the predicate given to the constructor.
bool isRelational() const
FCmpInst(Predicate Pred, Value *LHS, Value *RHS, const Twine &NameStr="", Instruction *FlagsSource=nullptr)
Constructor with no-insertion semantics.
static bool classof(const Value *V)
bool isCommutative() const
static bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
static bool isEquality(Predicate Pred)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static auto predicates()
Returns the sequence of all FCmp predicates.
FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
FCmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
This class represents an extension of floating point types.
static bool classof(const Value *V)
FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents a cast from floating point to signed integer.
static bool classof(const Value *V)
FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents a cast from floating point to unsigned integer.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
This class represents a truncation of floating point types.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V)
FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
An instruction for ordering other memory operations.
static bool classof(const Value *V)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
static bool classof(const Instruction *I)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
This class represents a freeze function that returns random concrete value if an operand is either a ...
static bool classof(const Value *V)
FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
static bool classof(const Instruction *I)
friend class CatchPadInst
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
Value * getPointerOperand()
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
void setResultElementType(Type *Ty)
bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
unsigned getAddressSpace() const
Returns the address space of this instruction's pointer type.
iterator_range< const_op_iterator > indices() const
bool collectOffset(const DataLayout &DL, unsigned BitWidth, MapVector< Value *, APInt > &VariableOffsets, APInt &ConstantOffset) const
Type * getResultElementType() const
static bool classof(const Instruction *I)
static bool classof(const Value *V)
iterator_range< op_iterator > indices()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
void setSourceElementType(Type *Ty)
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
Type * getSourceElementType() const
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Type * getPointerOperandType() const
Method to return the pointer operand as a PointerType.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, GEPNoWrapFlags NW, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static unsigned getPointerOperandIndex()
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
const_op_iterator idx_begin() const
GetElementPtrInst * cloneImpl() const
void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
unsigned getNumIndices() const
GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
const_op_iterator idx_end() const
const Value * getPointerOperand() const
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
This instruction compares its operands according to the predicate given to the constructor.
static bool classof(const Value *V)
ICmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
bool isCommutative() const
static bool isGE(Predicate P)
Return true if the predicate is SGE or UGE.
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
static bool classof(const Instruction *I)
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
static auto predicates()
Returns the sequence of all ICmp predicates.
ICmpInst(Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with no-insertion semantics.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
static bool isLE(Predicate P)
Return true if the predicate is SLE or ULE.
Indirect Branch Instruction.
static IndirectBrInst * Create(Value *Address, unsigned NumDests, InsertPosition InsertBefore=nullptr)
BasicBlock * getDestination(unsigned i)
Return the specified destination.
static bool classof(const Value *V)
const Value * getAddress() const
static bool classof(const Instruction *I)
BasicBlock * getSuccessor(unsigned i) const
iterator_range< const_succ_op_iterator > successors() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
unsigned getNumDestinations() const
return the number of possible destinations in this indirectbr instruction.
const BasicBlock * getDestination(unsigned i) const
void setSuccessor(unsigned i, BasicBlock *NewSucc)
void setAddress(Value *V)
unsigned getNumSuccessors() const
iterator_range< succ_op_iterator > successors()
This instruction inserts a single (scalar) element into a VectorType value.
static bool classof(const Value *V)
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
VectorType * getType() const
Overload to return most specific vector type.
static bool classof(const Instruction *I)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getInsertedValueOperand()
static bool classof(const Instruction *I)
static unsigned getAggregateOperandIndex()
Value * getAggregateOperand()
static bool classof(const Value *V)
unsigned getNumIndices() const
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
static unsigned getInsertedValueOperandIndex()
InsertValueInst * cloneImpl() const
idx_iterator idx_end() const
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
const Value * getAggregateOperand() const
const Value * getInsertedValueOperand() const
idx_iterator idx_begin() const
typename Bitfield::Element< AtomicOrdering, Offset, 3, AtomicOrdering::LAST > AtomicOrderingBitfieldElementT
typename Bitfield::Element< bool, Offset, 1 > BoolBitfieldElementT
bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
typename Bitfield::Element< unsigned, Offset, 6, Value::MaxAlignmentExponent > AlignmentBitfieldElementT
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
friend class BasicBlock
Various leaf nodes.
This class represents a cast from an integer to a pointer.
static bool classof(const Instruction *I)
IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
unsigned getAddressSpace() const
Returns the address space of this instruction's pointer type.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
static bool classof(const Value *V)
static InvokeInst * Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
void setSuccessor(unsigned i, BasicBlock *NewSucc)
BasicBlock * getSuccessor(unsigned i) const
void setUnwindDest(BasicBlock *B)
BasicBlock * getNormalDest() const
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles=std::nullopt, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static InvokeInst * Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > Bundles=std::nullopt, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
unsigned getNumSuccessors() const
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
static bool classof(const Value *V)
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
void reserveClauses(unsigned Size)
Grow the size of the operand list to accommodate the new number of clauses.
static bool classof(const Instruction *I)
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
const Value * getPointerOperand() const
void setAlignment(Align Align)
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static bool classof(const Instruction *I)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this load instruction.
static bool classof(const Value *V)
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this load instruction.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LoadInst * cloneImpl() const
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Type * getPointerOperandType() const
static unsigned getPointerOperandIndex()
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Align getAlign() const
Return the alignment of the access that is being performed.
This class implements a map that also provides access to all stored values in a deterministic order.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
BasicBlock * getIncomingBlock(Value::const_user_iterator I) const
Return incoming basic block corresponding to value use iterator.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
bool isComplete() const
If the PHI node is complete which means all of its parent's predecessors have incoming value in this ...
iterator_range< const_block_iterator > blocks() const
op_range incoming_values()
static bool classof(const Value *V)
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
void setIncomingBlock(unsigned i, BasicBlock *BB)
BasicBlock *const * const_block_iterator
void setIncomingValue(unsigned i, Value *V)
static unsigned getOperandNumForIncomingValue(unsigned i)
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
static unsigned getIncomingValueNumForOperand(unsigned i)
const_op_range incoming_values() const
Value * removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true)
void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New)
Replace every incoming basic block Old to basic block New.
BasicBlock * getIncomingBlock(const Use &U) const
Return incoming basic block corresponding to an operand of the PHI.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
This class represents a cast from a pointer to an integer.
Value * getPointerOperand()
Gets the pointer operand.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
static bool classof(const Value *V)
const Value * getPointerOperand() const
Gets the pointer operand.
static unsigned getPointerOperandIndex()
Gets the operand index of the pointer operand.
static bool classof(const Instruction *I)
PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
static ResumeInst * Create(Value *Exn, InsertPosition InsertBefore=nullptr)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
Value * getValue() const
Convenience accessor.
static bool classof(const Value *V)
unsigned getNumSuccessors() const
ResumeInst * cloneImpl() const
static bool classof(const Instruction *I)
Return a value (possibly void), from a function.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
unsigned getNumSuccessors() const
static bool classof(const Value *V)
static bool classof(const Instruction *I)
static ReturnInst * Create(LLVMContext &C, BasicBlock *InsertAtEnd)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
This class represents a sign extension of integer types.
static bool classof(const Value *V)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
SExtInst * cloneImpl() const
Clone an identical SExtInst.
This class represents a cast from signed integer to floating point.
SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V)
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
void setFalseValue(Value *V)
const Value * getFalseValue() const
void setTrueValue(Value *V)
OtherOps getOpcode() const
void swapValues()
Swap the true and false values of the select instruction.
const Value * getCondition() const
SelectInst * cloneImpl() const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
static bool classof(const Value *V)
void setCondition(Value *V)
const Value * getTrueValue() const
static bool classof(const Instruction *I)
This instruction constructs a fixed permutation of two input vectors.
static bool classof(const Value *V)
static bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts)
Constant * getShuffleMaskForBitcode() const
Return the mask for this instruction, for use in bitcode.
bool isSingleSource() const
Return true if this shuffle chooses elements from exactly one source vector without changing the leng...
bool changesLength() const
Return true if this shuffle returns a vector with a different number of elements than its source vect...
bool isExtractSubvectorMask(int &Index) const
Return true if this shuffle mask is an extract subvector mask.
ArrayRef< int > getShuffleMask() const
static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts, int &NumSubElts, int &Index)
static bool isSingleSourceMask(const Constant *Mask, int NumSrcElts)
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
void getShuffleMask(SmallVectorImpl< int > &Result) const
Return the mask for this instruction as a vector of integers.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor)
VectorType * getType() const
Overload to return most specific vector type.
bool isInsertSubvectorMask(int &NumSubElts, int &Index) const
Return true if this shuffle mask is an insert subvector mask.
bool increasesLength() const
Return true if this shuffle returns a vector with a greater number of elements than its source vector...
bool isZeroEltSplat() const
Return true if all elements of this shuffle are the same value as the first element of exactly one so...
static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, int &Index)
bool isSelect() const
Return true if this shuffle chooses elements from its source vectors without lane crossings and all o...
static bool isSpliceMask(const Constant *Mask, int NumSrcElts, int &Index)
bool isTranspose() const
Return true if this shuffle transposes the elements of its inputs without changing the length of the ...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
bool isSplice(int &Index) const
Return true if this shuffle splices two inputs without changing the length of the vectors.
static bool isReverseMask(const Constant *Mask, int NumSrcElts)
static bool isSelectMask(const Constant *Mask, int NumSrcElts)
static bool classof(const Instruction *I)
static bool isZeroEltSplatMask(const Constant *Mask, int NumSrcElts)
bool isIdentity() const
Return true if this shuffle chooses elements from exactly one source vector without lane crossings an...
static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor, int &VF)
static bool isIdentityMask(const Constant *Mask, int NumSrcElts)
static bool isTransposeMask(const Constant *Mask, int NumSrcElts)
bool isReverse() const
Return true if this shuffle swaps the order of elements from exactly one source vector.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
static bool classof(const Instruction *I)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
const Value * getPointerOperand() const
Type * getPointerOperandType() const
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
const Value * getValueOperand() const
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
Value * getValueOperand()
static bool classof(const Value *V)
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this store instruction.
StoreInst * cloneImpl() const
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
static unsigned getPointerOperandIndex()
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
Value * getPointerOperand()
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
SwitchInstProfUpdateWrapper(SwitchInst &SI)
~SwitchInstProfUpdateWrapper()
CaseWeightOpt getSuccessorWeight(unsigned idx)
MDNode * buildProfBranchWeightsMD()
std::optional< uint32_t > CaseWeightOpt
SwitchInst * operator->()
SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
A handle to a particular switch case.
unsigned getCaseIndex() const
Returns number of current case.
unsigned getSuccessorIndex() const
Returns successor index for current case successor.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index)
bool operator==(const CaseHandleImpl &RHS) const
ConstantIntT * getCaseValue() const
Resolves case value for current case.
SwitchInstT SwitchInstType
CaseHandle(SwitchInst *SI, ptrdiff_t Index)
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
const CaseHandleT & operator*() const
CaseIteratorImpl()=default
Default constructed iterator is in an invalid state until assigned to a case for a particular switch.
CaseIteratorImpl & operator-=(ptrdiff_t N)
bool operator==(const CaseIteratorImpl &RHS) const
CaseIteratorImpl & operator+=(ptrdiff_t N)
ptrdiff_t operator-(const CaseIteratorImpl &RHS) const
bool operator<(const CaseIteratorImpl &RHS) const
CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum)
Initializes case iterator for given SwitchInst and for given case number.
static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, unsigned SuccessorIndex)
Initializes case iterator for given SwitchInst and for given successor index.
BasicBlock * getDefaultDest() const
CaseIt case_end()
Returns a read/write iterator that points one past the last in the SwitchInst.
BasicBlock * getSuccessor(unsigned idx) const
ConstCaseIt findCaseValue(const ConstantInt *C) const
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Provide fast operand accessors.
static SwitchInst * Create(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore=nullptr)
void setCondition(Value *V)
ConstCaseIt case_begin() const
Returns a read-only iterator that points to the first case in the SwitchInst.
bool defaultDestUndefined() const
Returns true if the default branch must result in immediate undefined behavior, false otherwise.
iterator_range< ConstCaseIt > cases() const
Constant iteration adapter for range-for loops.
ConstantInt * findCaseDest(BasicBlock *BB)
Finds the unique case value for a given successor.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
static bool classof(const Value *V)
unsigned getNumSuccessors() const
CaseIt case_default()
Returns an iterator that points to the default case.
void setDefaultDest(BasicBlock *DefaultCase)
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
CaseIt findCaseValue(const ConstantInt *C)
Search all of the case values for the specified constant.
Value * getCondition() const
ConstCaseIt case_default() const
CaseIt case_begin()
Returns a read/write iterator that points to the first case in the SwitchInst.
static bool classof(const Instruction *I)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
ConstCaseIt case_end() const
Returns a read-only iterator that points one past the last in the SwitchInst.
This class represents a truncation of integer types.
void setHasNoSignedWrap(bool B)
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
TruncInst * cloneImpl() const
Clone an identical TruncInst.
void setHasNoUnsignedWrap(bool B)
unsigned getNoWrapKind() const
Returns the no-wrap kind of the operation.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
static bool classof(const Value *V)
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isTokenTy() const
Return true if this is 'token'.
This class represents a cast unsigned integer to floating point.
static bool classof(const Value *V)
UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
This function has undefined behavior.
unsigned getNumSuccessors() const
static bool classof(const Value *V)
static bool classof(const Instruction *I)
A Use represents the edge between a Value definition and its users.
void allocHungoffUses(unsigned N, bool IsPhi=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
static bool classof(const Instruction *I)
Value * getPointerOperand()
VAArgInst(Value *List, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
const Value * getPointerOperand() const
static bool classof(const Value *V)
static unsigned getPointerOperandIndex()
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator_impl< const User > const_user_iterator
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
void setName(const Twine &Name)
Change the name of the value.
Base class of all SIMD vector types.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
static bool classof(const Instruction *I)
Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V)
ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
An efficient, type-erasing, non-owning reference to a callable.
base_list_type::iterator iterator
CRTP base class for adapting an iterator to a different type.
CRTP base class which implements the entire standard iterator facade in terms of a minimal subset of ...
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
@ System
Synchronized with respect to all concurrently executing threads.
This is an optimization pass for GlobalISel generic memory operations.
Type * checkGEPType(Type *Ty)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
APInt operator*(APInt a, uint64_t RHS)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void setAtomicSyncScopeID(Instruction *I, SyncScope::ID SSID)
A helper function that sets an atomic operation's sync scope.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
std::optional< SyncScope::ID > getAtomicSyncScopeID(const Instruction *I)
A helper function that returns an atomic operation's sync scope; returns std::nullopt if it is not an...
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
DWARFExpression::Operation Op
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
unsigned Log2(Align A)
Returns the log2 of the alignment.
@ Default
The result values are uniform if and only if all operands are uniform.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Describes an element of a Bitfield.
static constexpr bool areContiguous()
The const version of succ_op_iterator.
const BasicBlock * operator->() const
const_succ_op_iterator(const_value_op_iterator I)
const BasicBlock * operator*() const
Iterator type that casts an operand to a basic block.
BasicBlock * operator->() const
succ_op_iterator(value_op_iterator I)
BasicBlock * operator*() const
Used to keep track of an operand bundle.
FixedNumOperandTraits - determine the allocation regime of the Use array when it is a prefix to the U...
HungoffOperandTraits - determine the allocation regime of the Use array when it is not a prefix to th...
The const version of succ_op_iterator.
const BasicBlock * operator*() const
const_succ_op_iterator(const_value_op_iterator I)
const BasicBlock * operator->() const
Iterator type that casts an operand to a basic block.
BasicBlock * operator*() const
succ_op_iterator(value_op_iterator I)
BasicBlock * operator->() const
Compile-time customization of User operands.
Iterator for directly iterating over the operand Values.
VariadicOperandTraits - determine the allocation regime of the Use array when it is a prefix to the U...