LLVM 22.0.0git
SelectionDAGBuilder.cpp
Go to the documentation of this file.
1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SelectionDAGBuilder.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/Analysis/Loads.h"
58#include "llvm/IR/Argument.h"
59#include "llvm/IR/Attributes.h"
60#include "llvm/IR/BasicBlock.h"
61#include "llvm/IR/CFG.h"
62#include "llvm/IR/CallingConv.h"
63#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/InlineAsm.h"
75#include "llvm/IR/InstrTypes.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/IntrinsicsAArch64.h"
80#include "llvm/IR/IntrinsicsAMDGPU.h"
81#include "llvm/IR/IntrinsicsWebAssembly.h"
82#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Module.h"
86#include "llvm/IR/Operator.h"
88#include "llvm/IR/Statepoint.h"
89#include "llvm/IR/Type.h"
90#include "llvm/IR/User.h"
91#include "llvm/IR/Value.h"
92#include "llvm/MC/MCContext.h"
97#include "llvm/Support/Debug.h"
105#include <cstddef>
106#include <limits>
107#include <optional>
108#include <tuple>
109
110using namespace llvm;
111using namespace PatternMatch;
112using namespace SwitchCG;
113
114#define DEBUG_TYPE "isel"
115
116/// LimitFloatPrecision - Generate low-precision inline sequences for
117/// some float libcalls (6, 8 or 12 bits).
118static unsigned LimitFloatPrecision;
119
120static cl::opt<bool>
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
124
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
130 cl::init(0));
131
133 "switch-peel-threshold", cl::Hidden, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
136 "optimization"));
137
138// Limit the width of DAG chains. This is important in general to prevent
139// DAG-based analysis from blowing up. For example, alias analysis and
140// load clustering may not complete in reasonable time. It is difficult to
141// recognize and avoid this situation within each individual analysis, and
142// future analyses are likely to have the same behavior. Limiting DAG width is
143// the safe approach and will be especially important with global DAGs.
144//
145// MaxParallelChains default is arbitrarily high to avoid affecting
146// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147// sequence over this should have been converted to llvm.memcpy by the
148// frontend. It is easy to induce this behavior with .ll code such as:
149// %buffer = alloca [4096 x i8]
150// %data = load [4096 x i8]* %argPtr
151// store [4096 x i8] %data, [4096 x i8]* %buffer
152static const unsigned MaxParallelChains = 64;
153
155 const SDValue *Parts, unsigned NumParts,
156 MVT PartVT, EVT ValueVT, const Value *V,
157 SDValue InChain,
158 std::optional<CallingConv::ID> CC);
159
160/// getCopyFromParts - Create a value that contains the specified legal parts
161/// combined into the value they represent. If the parts combine to a type
162/// larger than ValueVT then AssertOp can be used to specify whether the extra
163/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164/// (ISD::AssertSext).
165static SDValue
166getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
167 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
168 SDValue InChain,
169 std::optional<CallingConv::ID> CC = std::nullopt,
170 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
171 // Let the target assemble the parts if it wants to
172 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
173 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
174 PartVT, ValueVT, CC))
175 return Val;
176
177 if (ValueVT.isVector())
178 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
179 InChain, CC);
180
181 assert(NumParts > 0 && "No parts to assemble!");
182 SDValue Val = Parts[0];
183
184 if (NumParts > 1) {
185 // Assemble the value from multiple parts.
186 if (ValueVT.isInteger()) {
187 unsigned PartBits = PartVT.getSizeInBits();
188 unsigned ValueBits = ValueVT.getSizeInBits();
189
190 // Assemble the power of 2 part.
191 unsigned RoundParts = llvm::bit_floor(NumParts);
192 unsigned RoundBits = PartBits * RoundParts;
193 EVT RoundVT = RoundBits == ValueBits ?
194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195 SDValue Lo, Hi;
196
197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198
199 if (RoundParts > 2) {
200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
201 InChain);
202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
203 PartVT, HalfVT, V, InChain);
204 } else {
205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207 }
208
209 if (DAG.getDataLayout().isBigEndian())
210 std::swap(Lo, Hi);
211
212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213
214 if (RoundParts < NumParts) {
215 // Assemble the trailing non-power-of-2 part.
216 unsigned OddParts = NumParts - RoundParts;
217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219 OddVT, V, InChain, CC);
220
221 // Combine the round and odd parts.
222 Lo = Val;
223 if (DAG.getDataLayout().isBigEndian())
224 std::swap(Lo, Hi);
225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227 Hi = DAG.getNode(
228 ISD::SHL, DL, TotalVT, Hi,
229 DAG.getShiftAmountConstant(Lo.getValueSizeInBits(), TotalVT, DL));
230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232 }
233 } else if (PartVT.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236 "Unexpected split");
237 SDValue Lo, Hi;
238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243 } else {
244 // FP split into integer parts (soft fp)
245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246 !PartVT.isVector() && "Unexpected split");
247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249 InChain, CC);
250 }
251 }
252
253 // There is now one part, held in Val. Correct it to match ValueVT.
254 // PartEVT is the type of the register class that holds the value.
255 // ValueVT is the type of the inline asm operation.
256 EVT PartEVT = Val.getValueType();
257
258 if (PartEVT == ValueVT)
259 return Val;
260
261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262 ValueVT.bitsLT(PartEVT)) {
263 // For an FP value in an integer part, we need to truncate to the right
264 // width first.
265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267 }
268
269 // Handle types that have the same size.
270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272
273 // Handle types with different sizes.
274 if (PartEVT.isInteger() && ValueVT.isInteger()) {
275 if (ValueVT.bitsLT(PartEVT)) {
276 // For a truncate, see if we have any information to
277 // indicate whether the truncated bits will always be
278 // zero or sign-extension.
279 if (AssertOp)
280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281 DAG.getValueType(ValueVT));
282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283 }
284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285 }
286
287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288 // FP_ROUND's are always exact here.
289 if (ValueVT.bitsLT(Val.getValueType())) {
290
291 SDValue NoChange =
293
294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295 llvm::Attribute::StrictFP)) {
296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298 NoChange);
299 }
300
301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302 }
303
304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305 }
306
307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308 // then truncating.
309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310 ValueVT.bitsLT(PartEVT)) {
311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313 }
314
315 report_fatal_error("Unknown mismatch in getCopyFromParts!");
316}
317
319 const Twine &ErrMsg) {
321 if (!I)
322 return Ctx.emitError(ErrMsg);
323
324 if (const CallInst *CI = dyn_cast<CallInst>(I))
325 if (CI->isInlineAsm()) {
326 return Ctx.diagnose(DiagnosticInfoInlineAsm(
327 *CI, ErrMsg + ", possible invalid constraint for vector type"));
328 }
329
330 return Ctx.emitError(I, ErrMsg);
331}
332
333/// getCopyFromPartsVector - Create a value that contains the specified legal
334/// parts combined into the value they represent. If the parts combine to a
335/// type larger than ValueVT then AssertOp can be used to specify whether the
336/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
337/// ValueVT (ISD::AssertSext).
339 const SDValue *Parts, unsigned NumParts,
340 MVT PartVT, EVT ValueVT, const Value *V,
341 SDValue InChain,
342 std::optional<CallingConv::ID> CallConv) {
343 assert(ValueVT.isVector() && "Not a vector value");
344 assert(NumParts > 0 && "No parts to assemble!");
345 const bool IsABIRegCopy = CallConv.has_value();
346
347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348 SDValue Val = Parts[0];
349
350 // Handle a multi-element vector.
351 if (NumParts > 1) {
352 EVT IntermediateVT;
353 MVT RegisterVT;
354 unsigned NumIntermediates;
355 unsigned NumRegs;
356
357 if (IsABIRegCopy) {
359 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
360 NumIntermediates, RegisterVT);
361 } else {
362 NumRegs =
363 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
364 NumIntermediates, RegisterVT);
365 }
366
367 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
368 NumParts = NumRegs; // Silence a compiler warning.
369 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
370 assert(RegisterVT.getSizeInBits() ==
371 Parts[0].getSimpleValueType().getSizeInBits() &&
372 "Part type sizes don't match!");
373
374 // Assemble the parts into intermediate operands.
375 SmallVector<SDValue, 8> Ops(NumIntermediates);
376 if (NumIntermediates == NumParts) {
377 // If the register was not expanded, truncate or copy the value,
378 // as appropriate.
379 for (unsigned i = 0; i != NumParts; ++i)
380 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
381 V, InChain, CallConv);
382 } else if (NumParts > 0) {
383 // If the intermediate type was expanded, build the intermediate
384 // operands from the parts.
385 assert(NumParts % NumIntermediates == 0 &&
386 "Must expand into a divisible number of parts!");
387 unsigned Factor = NumParts / NumIntermediates;
388 for (unsigned i = 0; i != NumIntermediates; ++i)
389 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
390 IntermediateVT, V, InChain, CallConv);
391 }
392
393 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
394 // intermediate operands.
395 EVT BuiltVectorTy =
396 IntermediateVT.isVector()
398 *DAG.getContext(), IntermediateVT.getScalarType(),
399 IntermediateVT.getVectorElementCount() * NumParts)
401 IntermediateVT.getScalarType(),
402 NumIntermediates);
403 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405 DL, BuiltVectorTy, Ops);
406 }
407
408 // There is now one part, held in Val. Correct it to match ValueVT.
409 EVT PartEVT = Val.getValueType();
410
411 if (PartEVT == ValueVT)
412 return Val;
413
414 if (PartEVT.isVector()) {
415 // Vector/Vector bitcast.
416 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
417 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
418
419 // If the parts vector has more elements than the value vector, then we
420 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
421 // Extract the elements we want.
422 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425 (PartEVT.getVectorElementCount().isScalable() ==
426 ValueVT.getVectorElementCount().isScalable()) &&
427 "Cannot narrow, it would be a lossy transformation");
428 PartEVT =
430 ValueVT.getVectorElementCount());
431 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
432 DAG.getVectorIdxConstant(0, DL));
433 if (PartEVT == ValueVT)
434 return Val;
435 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437
438 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441 }
442
443 // Promoted vector extract
444 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
445 }
446
447 // Trivial bitcast if the types are the same size and the destination
448 // vector type is legal.
449 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
450 TLI.isTypeLegal(ValueVT))
451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452
453 if (ValueVT.getVectorNumElements() != 1) {
454 // Certain ABIs require that vectors are passed as integers. For vectors
455 // are the same size, this is an obvious bitcast.
456 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 } else if (ValueVT.bitsLT(PartEVT)) {
459 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461 // Drop the extra bits.
462 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463 return DAG.getBitcast(ValueVT, Val);
464 }
465
467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468 return DAG.getUNDEF(ValueVT);
469 }
470
471 // Handle cases such as i8 -> <1 x i1>
472 EVT ValueSVT = ValueVT.getVectorElementType();
473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
474 unsigned ValueSize = ValueSVT.getSizeInBits();
475 if (ValueSize == PartEVT.getSizeInBits()) {
476 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
478 // It's possible a scalar floating point type gets softened to integer and
479 // then promoted to a larger integer. If PartEVT is the larger integer
480 // we need to truncate it and then bitcast to the FP type.
481 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
482 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
483 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
484 Val = DAG.getBitcast(ValueSVT, Val);
485 } else {
486 Val = ValueVT.isFloatingPoint()
487 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489 }
490 }
491
492 return DAG.getBuildVector(ValueVT, DL, Val);
493}
494
495static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
496 SDValue Val, SDValue *Parts, unsigned NumParts,
497 MVT PartVT, const Value *V,
498 std::optional<CallingConv::ID> CallConv);
499
500/// getCopyToParts - Create a series of nodes that contain the specified value
501/// split into legal parts. If the parts contain more bits than Val, then, for
502/// integers, ExtendKind can be used to specify how to generate the extra bits.
503static void
505 unsigned NumParts, MVT PartVT, const Value *V,
506 std::optional<CallingConv::ID> CallConv = std::nullopt,
507 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
508 // Let the target split the parts if it wants to
509 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
510 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
511 CallConv))
512 return;
513 EVT ValueVT = Val.getValueType();
514
515 // Handle the vector case separately.
516 if (ValueVT.isVector())
517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518 CallConv);
519
520 unsigned OrigNumParts = NumParts;
522 "Copying to an illegal type!");
523
524 if (NumParts == 0)
525 return;
526
527 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528 EVT PartEVT = PartVT;
529 if (PartEVT == ValueVT) {
530 assert(NumParts == 1 && "No-op copy with multiple parts!");
531 Parts[0] = Val;
532 return;
533 }
534
535 unsigned PartBits = PartVT.getSizeInBits();
536 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537 // If the parts cover more bits than the value has, promote the value.
538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539 assert(NumParts == 1 && "Do not know what to promote to!");
540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541 } else {
542 if (ValueVT.isFloatingPoint()) {
543 // FP values need to be bitcast, then extended if they are being put
544 // into a larger container.
545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547 }
548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549 ValueVT.isInteger() &&
550 "Unknown mismatch!");
551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553 if (PartVT == MVT::x86mmx)
554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555 }
556 } else if (PartBits == ValueVT.getSizeInBits()) {
557 // Different types of the same size.
558 assert(NumParts == 1 && PartEVT != ValueVT);
559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561 // If the parts cover less bits than value has, truncate the value.
562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563 ValueVT.isInteger() &&
564 "Unknown mismatch!");
565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567 if (PartVT == MVT::x86mmx)
568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569 }
570
571 // The value may have changed - recompute ValueVT.
572 ValueVT = Val.getValueType();
573 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574 "Failed to tile the value with PartVT!");
575
576 if (NumParts == 1) {
577 if (PartEVT != ValueVT) {
579 "scalar-to-vector conversion failed");
580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581 }
582
583 Parts[0] = Val;
584 return;
585 }
586
587 // Expand the value into multiple parts.
588 if (NumParts & (NumParts - 1)) {
589 // The number of parts is not a power of 2. Split off and copy the tail.
590 assert(PartVT.isInteger() && ValueVT.isInteger() &&
591 "Do not know what to expand to!");
592 unsigned RoundParts = llvm::bit_floor(NumParts);
593 unsigned RoundBits = RoundParts * PartBits;
594 unsigned OddParts = NumParts - RoundParts;
595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
597
598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599 CallConv);
600
601 if (DAG.getDataLayout().isBigEndian())
602 // The odd parts were reversed by getCopyToParts - unreverse them.
603 std::reverse(Parts + RoundParts, Parts + NumParts);
604
605 NumParts = RoundParts;
606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608 }
609
610 // The number of parts is a power of 2. Repeatedly bisect the value using
611 // EXTRACT_ELEMENT.
612 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614 ValueVT.getSizeInBits()),
615 Val);
616
617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618 for (unsigned i = 0; i < NumParts; i += StepSize) {
619 unsigned ThisBits = StepSize * PartBits / 2;
620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621 SDValue &Part0 = Parts[i];
622 SDValue &Part1 = Parts[i+StepSize/2];
623
624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628
629 if (ThisBits == PartBits && ThisVT != PartVT) {
630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632 }
633 }
634 }
635
636 if (DAG.getDataLayout().isBigEndian())
637 std::reverse(Parts, Parts + OrigNumParts);
638}
639
641 const SDLoc &DL, EVT PartVT) {
642 if (!PartVT.isVector())
643 return SDValue();
644
645 EVT ValueVT = Val.getValueType();
646 EVT PartEVT = PartVT.getVectorElementType();
647 EVT ValueEVT = ValueVT.getVectorElementType();
648 ElementCount PartNumElts = PartVT.getVectorElementCount();
649 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
650
651 // We only support widening vectors with equivalent element types and
652 // fixed/scalable properties. If a target needs to widen a fixed-length type
653 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
654 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
655 PartNumElts.isScalable() != ValueNumElts.isScalable())
656 return SDValue();
657
658 // Have a try for bf16 because some targets share its ABI with fp16.
659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661 "Cannot widen to illegal type");
662 Val = DAG.getNode(
664 ValueVT.changeVectorElementType(*DAG.getContext(), MVT::f16), Val);
665 } else if (PartEVT != ValueEVT) {
666 return SDValue();
667 }
668
669 // Widening a scalable vector to another scalable vector is done by inserting
670 // the vector into a larger undef one.
671 if (PartNumElts.isScalable())
672 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673 Val, DAG.getVectorIdxConstant(0, DL));
674
675 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
676 // undef elements.
678 DAG.ExtractVectorElements(Val, Ops);
679 SDValue EltUndef = DAG.getUNDEF(PartEVT);
680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681
682 // FIXME: Use CONCAT for 2x -> 4x.
683 return DAG.getBuildVector(PartVT, DL, Ops);
684}
685
686/// getCopyToPartsVector - Create a series of nodes that contain the specified
687/// value split into legal parts.
688static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689 SDValue Val, SDValue *Parts, unsigned NumParts,
690 MVT PartVT, const Value *V,
691 std::optional<CallingConv::ID> CallConv) {
692 EVT ValueVT = Val.getValueType();
693 assert(ValueVT.isVector() && "Not a vector");
694 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695 const bool IsABIRegCopy = CallConv.has_value();
696
697 if (NumParts == 1) {
698 EVT PartEVT = PartVT;
699 if (PartEVT == ValueVT) {
700 // Nothing to do.
701 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702 // Bitconvert vector->vector case.
703 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705 Val = Widened;
706 } else if (PartVT.isVector() &&
708 ValueVT.getVectorElementType()) &&
709 PartEVT.getVectorElementCount() ==
710 ValueVT.getVectorElementCount()) {
711
712 // Promoted vector extract
713 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714 } else if (PartEVT.isVector() &&
715 PartEVT.getVectorElementType() !=
716 ValueVT.getVectorElementType() &&
717 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719 // Combination of widening and promotion.
720 EVT WidenVT =
722 PartVT.getVectorElementCount());
723 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725 } else {
726 // Don't extract an integer from a float vector. This can happen if the
727 // FP type gets softened to integer and then promoted. The promotion
728 // prevents it from being picked up by the earlier bitcast case.
729 if (ValueVT.getVectorElementCount().isScalar() &&
730 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731 // If we reach this condition and PartVT is FP, this means that
732 // ValueVT is also FP and both have a different size, otherwise we
733 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
734 // would be invalid since that would mean the smaller FP type has to
735 // be extended to the larger one.
736 if (PartVT.isFloatingPoint()) {
737 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
738 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
739 } else
740 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
741 DAG.getVectorIdxConstant(0, DL));
742 } else {
743 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
744 assert(PartVT.getFixedSizeInBits() > ValueSize &&
745 "lossy conversion of vector to scalar type");
746 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
747 Val = DAG.getBitcast(IntermediateType, Val);
748 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
749 }
750 }
751
752 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
753 Parts[0] = Val;
754 return;
755 }
756
757 // Handle a multi-element vector.
758 EVT IntermediateVT;
759 MVT RegisterVT;
760 unsigned NumIntermediates;
761 unsigned NumRegs;
762 if (IsABIRegCopy) {
764 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
765 RegisterVT);
766 } else {
767 NumRegs =
768 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
769 NumIntermediates, RegisterVT);
770 }
771
772 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
773 NumParts = NumRegs; // Silence a compiler warning.
774 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
775
776 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
777 "Mixing scalable and fixed vectors when copying in parts");
778
779 std::optional<ElementCount> DestEltCnt;
780
781 if (IntermediateVT.isVector())
782 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
783 else
784 DestEltCnt = ElementCount::getFixed(NumIntermediates);
785
786 EVT BuiltVectorTy = EVT::getVectorVT(
787 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
788
789 if (ValueVT == BuiltVectorTy) {
790 // Nothing to do.
791 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
792 // Bitconvert vector->vector case.
793 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
794 } else {
795 if (BuiltVectorTy.getVectorElementType().bitsGT(
796 ValueVT.getVectorElementType())) {
797 // Integer promotion.
798 ValueVT = EVT::getVectorVT(*DAG.getContext(),
799 BuiltVectorTy.getVectorElementType(),
800 ValueVT.getVectorElementCount());
801 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
802 }
803
804 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
805 Val = Widened;
806 }
807 }
808
809 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
810
811 // Split the vector into intermediate operands.
812 SmallVector<SDValue, 8> Ops(NumIntermediates);
813 for (unsigned i = 0; i != NumIntermediates; ++i) {
814 if (IntermediateVT.isVector()) {
815 // This does something sensible for scalable vectors - see the
816 // definition of EXTRACT_SUBVECTOR for further details.
817 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
818 Ops[i] =
819 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
820 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
821 } else {
822 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
823 DAG.getVectorIdxConstant(i, DL));
824 }
825 }
826
827 // Split the intermediate operands into legal parts.
828 if (NumParts == NumIntermediates) {
829 // If the register was not expanded, promote or copy the value,
830 // as appropriate.
831 for (unsigned i = 0; i != NumParts; ++i)
832 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
833 } else if (NumParts > 0) {
834 // If the intermediate type was expanded, split each the value into
835 // legal parts.
836 assert(NumIntermediates != 0 && "division by zero");
837 assert(NumParts % NumIntermediates == 0 &&
838 "Must expand into a divisible number of parts!");
839 unsigned Factor = NumParts / NumIntermediates;
840 for (unsigned i = 0; i != NumIntermediates; ++i)
841 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
842 CallConv);
843 }
844}
845
846static void failForInvalidBundles(const CallBase &I, StringRef Name,
847 ArrayRef<uint32_t> AllowedBundles) {
848 if (I.hasOperandBundlesOtherThan(AllowedBundles)) {
849 ListSeparator LS;
850 std::string Error;
852 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) {
853 OperandBundleUse U = I.getOperandBundleAt(i);
854 if (!is_contained(AllowedBundles, U.getTagID()))
855 OS << LS << U.getTagName();
856 }
858 Twine("cannot lower ", Name)
859 .concat(Twine(" with arbitrary operand bundles: ", Error)));
860 }
861}
862
864 EVT valuevt, std::optional<CallingConv::ID> CC)
865 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
866 RegCount(1, regs.size()), CallConv(CC) {}
867
869 const DataLayout &DL, Register Reg, Type *Ty,
870 std::optional<CallingConv::ID> CC) {
871 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
872
873 CallConv = CC;
874
875 for (EVT ValueVT : ValueVTs) {
876 unsigned NumRegs =
878 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
879 : TLI.getNumRegisters(Context, ValueVT);
880 MVT RegisterVT =
882 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
883 : TLI.getRegisterType(Context, ValueVT);
884 for (unsigned i = 0; i != NumRegs; ++i)
885 Regs.push_back(Reg + i);
886 RegVTs.push_back(RegisterVT);
887 RegCount.push_back(NumRegs);
888 Reg = Reg.id() + NumRegs;
889 }
890}
891
893 FunctionLoweringInfo &FuncInfo,
894 const SDLoc &dl, SDValue &Chain,
895 SDValue *Glue, const Value *V) const {
896 // A Value with type {} or [0 x %t] needs no registers.
897 if (ValueVTs.empty())
898 return SDValue();
899
900 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
901
902 // Assemble the legal parts into the final values.
903 SmallVector<SDValue, 4> Values(ValueVTs.size());
905 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
906 // Copy the legal parts from the registers.
907 EVT ValueVT = ValueVTs[Value];
908 unsigned NumRegs = RegCount[Value];
909 MVT RegisterVT = isABIMangled()
911 *DAG.getContext(), *CallConv, RegVTs[Value])
912 : RegVTs[Value];
913
914 Parts.resize(NumRegs);
915 for (unsigned i = 0; i != NumRegs; ++i) {
916 SDValue P;
917 if (!Glue) {
918 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
919 } else {
920 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
921 *Glue = P.getValue(2);
922 }
923
924 Chain = P.getValue(1);
925 Parts[i] = P;
926
927 // If the source register was virtual and if we know something about it,
928 // add an assert node.
929 if (!Regs[Part + i].isVirtual() || !RegisterVT.isInteger())
930 continue;
931
933 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
934 if (!LOI)
935 continue;
936
937 unsigned RegSize = RegisterVT.getScalarSizeInBits();
938 unsigned NumSignBits = LOI->NumSignBits;
939 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
940
941 if (NumZeroBits == RegSize) {
942 // The current value is a zero.
943 // Explicitly express that as it would be easier for
944 // optimizations to kick in.
945 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
946 continue;
947 }
948
949 // FIXME: We capture more information than the dag can represent. For
950 // now, just use the tightest assertzext/assertsext possible.
951 bool isSExt;
952 EVT FromVT(MVT::Other);
953 if (NumZeroBits) {
954 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
955 isSExt = false;
956 } else if (NumSignBits > 1) {
957 FromVT =
958 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
959 isSExt = true;
960 } else {
961 continue;
962 }
963 // Add an assertion node.
964 assert(FromVT != MVT::Other);
965 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
966 RegisterVT, P, DAG.getValueType(FromVT));
967 }
968
969 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
970 RegisterVT, ValueVT, V, Chain, CallConv);
971 Part += NumRegs;
972 Parts.clear();
973 }
974
975 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
976}
977
979 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
980 const Value *V,
981 ISD::NodeType PreferredExtendType) const {
982 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
983 ISD::NodeType ExtendKind = PreferredExtendType;
984
985 // Get the list of the values's legal parts.
986 unsigned NumRegs = Regs.size();
987 SmallVector<SDValue, 8> Parts(NumRegs);
988 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
989 unsigned NumParts = RegCount[Value];
990
991 MVT RegisterVT = isABIMangled()
993 *DAG.getContext(), *CallConv, RegVTs[Value])
994 : RegVTs[Value];
995
996 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
997 ExtendKind = ISD::ZERO_EXTEND;
998
999 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
1000 NumParts, RegisterVT, V, CallConv, ExtendKind);
1001 Part += NumParts;
1002 }
1003
1004 // Copy the parts into the registers.
1005 SmallVector<SDValue, 8> Chains(NumRegs);
1006 for (unsigned i = 0; i != NumRegs; ++i) {
1007 SDValue Part;
1008 if (!Glue) {
1009 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
1010 } else {
1011 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
1012 *Glue = Part.getValue(1);
1013 }
1014
1015 Chains[i] = Part.getValue(0);
1016 }
1017
1018 if (NumRegs == 1 || Glue)
1019 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1020 // flagged to it. That is the CopyToReg nodes and the user are considered
1021 // a single scheduling unit. If we create a TokenFactor and return it as
1022 // chain, then the TokenFactor is both a predecessor (operand) of the
1023 // user as well as a successor (the TF operands are flagged to the user).
1024 // c1, f1 = CopyToReg
1025 // c2, f2 = CopyToReg
1026 // c3 = TokenFactor c1, c2
1027 // ...
1028 // = op c3, ..., f2
1029 Chain = Chains[NumRegs-1];
1030 else
1031 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1032}
1033
1035 unsigned MatchingIdx, const SDLoc &dl,
1036 SelectionDAG &DAG,
1037 std::vector<SDValue> &Ops) const {
1038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1039
1040 InlineAsm::Flag Flag(Code, Regs.size());
1041 if (HasMatching)
1042 Flag.setMatchingOp(MatchingIdx);
1043 else if (!Regs.empty() && Regs.front().isVirtual()) {
1044 // Put the register class of the virtual registers in the flag word. That
1045 // way, later passes can recompute register class constraints for inline
1046 // assembly as well as normal instructions.
1047 // Don't do this for tied operands that can use the regclass information
1048 // from the def.
1050 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1051 Flag.setRegClass(RC->getID());
1052 }
1053
1054 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1055 Ops.push_back(Res);
1056
1057 if (Code == InlineAsm::Kind::Clobber) {
1058 // Clobbers should always have a 1:1 mapping with registers, and may
1059 // reference registers that have illegal (e.g. vector) types. Hence, we
1060 // shouldn't try to apply any sort of splitting logic to them.
1061 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1062 "No 1:1 mapping from clobbers to regs?");
1064 (void)SP;
1065 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1066 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1067 assert(
1068 (Regs[I] != SP ||
1070 "If we clobbered the stack pointer, MFI should know about it.");
1071 }
1072 return;
1073 }
1074
1075 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1076 MVT RegisterVT = RegVTs[Value];
1077 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1078 RegisterVT);
1079 for (unsigned i = 0; i != NumRegs; ++i) {
1080 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1081 Register TheReg = Regs[Reg++];
1082 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1083 }
1084 }
1085}
1086
1090 unsigned I = 0;
1091 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1092 unsigned RegCount = std::get<0>(CountAndVT);
1093 MVT RegisterVT = std::get<1>(CountAndVT);
1094 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1095 for (unsigned E = I + RegCount; I != E; ++I)
1096 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1097 }
1098 return OutVec;
1099}
1100
1102 AssumptionCache *ac, const TargetLibraryInfo *li,
1103 const TargetTransformInfo &TTI) {
1104 BatchAA = aa;
1105 AC = ac;
1106 GFI = gfi;
1107 LibInfo = li;
1108 Context = DAG.getContext();
1109 LPadToCallSiteMap.clear();
1110 this->TTI = &TTI;
1111 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1112 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1113 *DAG.getMachineFunction().getFunction().getParent());
1114}
1115
1117 NodeMap.clear();
1118 UnusedArgNodeMap.clear();
1119 PendingLoads.clear();
1120 PendingExports.clear();
1121 PendingConstrainedFP.clear();
1122 PendingConstrainedFPStrict.clear();
1123 CurInst = nullptr;
1124 HasTailCall = false;
1125 SDNodeOrder = LowestSDNodeOrder;
1126 StatepointLowering.clear();
1127}
1128
1130 DanglingDebugInfoMap.clear();
1131}
1132
1133// Update DAG root to include dependencies on Pending chains.
1134SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1135 SDValue Root = DAG.getRoot();
1136
1137 if (Pending.empty())
1138 return Root;
1139
1140 // Add current root to PendingChains, unless we already indirectly
1141 // depend on it.
1142 if (Root.getOpcode() != ISD::EntryToken) {
1143 unsigned i = 0, e = Pending.size();
1144 for (; i != e; ++i) {
1145 assert(Pending[i].getNode()->getNumOperands() > 1);
1146 if (Pending[i].getNode()->getOperand(0) == Root)
1147 break; // Don't add the root if we already indirectly depend on it.
1148 }
1149
1150 if (i == e)
1151 Pending.push_back(Root);
1152 }
1153
1154 if (Pending.size() == 1)
1155 Root = Pending[0];
1156 else
1157 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1158
1159 DAG.setRoot(Root);
1160 Pending.clear();
1161 return Root;
1162}
1163
1167
1169 // If the new exception behavior differs from that of the pending
1170 // ones, chain up them and update the root.
1171 switch (EB) {
1174 // Floating-point exceptions produced by such operations are not intended
1175 // to be observed, so the sequence of these operations does not need to be
1176 // preserved.
1177 //
1178 // They however must not be mixed with the instructions that have strict
1179 // exception behavior. Placing an operation with 'ebIgnore' behavior between
1180 // 'ebStrict' operations could distort the observed exception behavior.
1181 if (!PendingConstrainedFPStrict.empty()) {
1182 assert(PendingConstrainedFP.empty());
1183 updateRoot(PendingConstrainedFPStrict);
1184 }
1185 break;
1187 // Floating-point exception produced by these operations may be observed, so
1188 // they must be correctly chained. If trapping on FP exceptions is
1189 // disabled, the exceptions can be observed only by functions that read
1190 // exception flags, like 'llvm.get_fpenv' or 'fetestexcept'. It means that
1191 // the order of operations is not significant between barriers.
1192 //
1193 // If trapping is enabled, each operation becomes an implicit observation
1194 // point, so the operations must be sequenced according their original
1195 // source order.
1196 if (!PendingConstrainedFP.empty()) {
1197 assert(PendingConstrainedFPStrict.empty());
1198 updateRoot(PendingConstrainedFP);
1199 }
1200 // TODO: Add support for trapping-enabled scenarios.
1201 }
1202 return DAG.getRoot();
1203}
1204
1206 // Chain up all pending constrained intrinsics together with all
1207 // pending loads, by simply appending them to PendingLoads and
1208 // then calling getMemoryRoot().
1209 PendingLoads.reserve(PendingLoads.size() +
1210 PendingConstrainedFP.size() +
1211 PendingConstrainedFPStrict.size());
1212 PendingLoads.append(PendingConstrainedFP.begin(),
1213 PendingConstrainedFP.end());
1214 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1215 PendingConstrainedFPStrict.end());
1216 PendingConstrainedFP.clear();
1217 PendingConstrainedFPStrict.clear();
1218 return getMemoryRoot();
1219}
1220
1222 // We need to emit pending fpexcept.strict constrained intrinsics,
1223 // so append them to the PendingExports list.
1224 PendingExports.append(PendingConstrainedFPStrict.begin(),
1225 PendingConstrainedFPStrict.end());
1226 PendingConstrainedFPStrict.clear();
1227 return updateRoot(PendingExports);
1228}
1229
1231 DILocalVariable *Variable,
1233 DebugLoc DL) {
1234 assert(Variable && "Missing variable");
1235
1236 // Check if address has undef value.
1237 if (!Address || isa<UndefValue>(Address) ||
1238 (Address->use_empty() && !isa<Argument>(Address))) {
1239 LLVM_DEBUG(
1240 dbgs()
1241 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1242 return;
1243 }
1244
1245 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1246
1247 SDValue &N = NodeMap[Address];
1248 if (!N.getNode() && isa<Argument>(Address))
1249 // Check unused arguments map.
1250 N = UnusedArgNodeMap[Address];
1251 SDDbgValue *SDV;
1252 if (N.getNode()) {
1253 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1254 Address = BCI->getOperand(0);
1255 // Parameters are handled specially.
1256 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1257 if (IsParameter && FINode) {
1258 // Byval parameter. We have a frame index at this point.
1259 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1260 /*IsIndirect*/ true, DL, SDNodeOrder);
1261 } else if (isa<Argument>(Address)) {
1262 // Address is an argument, so try to emit its dbg value using
1263 // virtual register info from the FuncInfo.ValueMap.
1264 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1265 FuncArgumentDbgValueKind::Declare, N);
1266 return;
1267 } else {
1268 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1269 true, DL, SDNodeOrder);
1270 }
1271 DAG.AddDbgValue(SDV, IsParameter);
1272 } else {
1273 // If Address is an argument then try to emit its dbg value using
1274 // virtual register info from the FuncInfo.ValueMap.
1275 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1276 FuncArgumentDbgValueKind::Declare, N)) {
1277 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1278 << " (could not emit func-arg dbg_value)\n");
1279 }
1280 }
1281}
1282
1284 // Add SDDbgValue nodes for any var locs here. Do so before updating
1285 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1286 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1287 // Add SDDbgValue nodes for any var locs here. Do so before updating
1288 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1289 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1290 It != End; ++It) {
1291 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1292 dropDanglingDebugInfo(Var, It->Expr);
1293 if (It->Values.isKillLocation(It->Expr)) {
1294 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1295 continue;
1296 }
1297 SmallVector<Value *> Values(It->Values.location_ops());
1298 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1299 It->Values.hasArgList())) {
1300 SmallVector<Value *, 4> Vals(It->Values.location_ops());
1302 FnVarLocs->getDILocalVariable(It->VariableID),
1303 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1304 }
1305 }
1306 }
1307
1308 // We must skip DbgVariableRecords if they've already been processed above as
1309 // we have just emitted the debug values resulting from assignment tracking
1310 // analysis, making any existing DbgVariableRecords redundant (and probably
1311 // less correct). We still need to process DbgLabelRecords. This does sink
1312 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1313 // be important as it does so deterministcally and ordering between
1314 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1315 // printing).
1316 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1317 // Is there is any debug-info attached to this instruction, in the form of
1318 // DbgRecord non-instruction debug-info records.
1319 for (DbgRecord &DR : I.getDbgRecordRange()) {
1320 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1321 assert(DLR->getLabel() && "Missing label");
1322 SDDbgLabel *SDV =
1323 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1324 DAG.AddDbgLabel(SDV);
1325 continue;
1326 }
1327
1328 if (SkipDbgVariableRecords)
1329 continue;
1331 DILocalVariable *Variable = DVR.getVariable();
1334
1336 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1337 continue;
1338 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1339 << "\n");
1341 DVR.getDebugLoc());
1342 continue;
1343 }
1344
1345 // A DbgVariableRecord with no locations is a kill location.
1347 if (Values.empty()) {
1349 SDNodeOrder);
1350 continue;
1351 }
1352
1353 // A DbgVariableRecord with an undef or absent location is also a kill
1354 // location.
1355 if (llvm::any_of(Values,
1356 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1358 SDNodeOrder);
1359 continue;
1360 }
1361
1362 bool IsVariadic = DVR.hasArgList();
1363 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1364 SDNodeOrder, IsVariadic)) {
1365 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1366 DVR.getDebugLoc(), SDNodeOrder);
1367 }
1368 }
1369}
1370
1372 visitDbgInfo(I);
1373
1374 // Set up outgoing PHI node register values before emitting the terminator.
1375 if (I.isTerminator()) {
1376 HandlePHINodesInSuccessorBlocks(I.getParent());
1377 }
1378
1379 ++SDNodeOrder;
1380 CurInst = &I;
1381
1382 // Set inserted listener only if required.
1383 bool NodeInserted = false;
1384 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1385 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1386 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1387 if (PCSectionsMD || MMRA) {
1388 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1389 DAG, [&](SDNode *) { NodeInserted = true; });
1390 }
1391
1392 visit(I.getOpcode(), I);
1393
1394 if (!I.isTerminator() && !HasTailCall &&
1395 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1397
1398 // Handle metadata.
1399 if (PCSectionsMD || MMRA) {
1400 auto It = NodeMap.find(&I);
1401 if (It != NodeMap.end()) {
1402 if (PCSectionsMD)
1403 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1404 if (MMRA)
1405 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1406 } else if (NodeInserted) {
1407 // This should not happen; if it does, don't let it go unnoticed so we can
1408 // fix it. Relevant visit*() function is probably missing a setValue().
1409 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1410 << I.getModule()->getName() << "]\n";
1411 LLVM_DEBUG(I.dump());
1412 assert(false);
1413 }
1414 }
1415
1416 CurInst = nullptr;
1417}
1418
1419void SelectionDAGBuilder::visitPHI(const PHINode &) {
1420 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1421}
1422
1423void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1424 // Note: this doesn't use InstVisitor, because it has to work with
1425 // ConstantExpr's in addition to instructions.
1426 switch (Opcode) {
1427 default: llvm_unreachable("Unknown instruction type encountered!");
1428 // Build the switch statement using the Instruction.def file.
1429#define HANDLE_INST(NUM, OPCODE, CLASS) \
1430 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1431#include "llvm/IR/Instruction.def"
1432 }
1433}
1434
1436 DILocalVariable *Variable,
1437 DebugLoc DL, unsigned Order,
1440 // For variadic dbg_values we will now insert poison.
1441 // FIXME: We can potentially recover these!
1443 for (const Value *V : Values) {
1444 auto *Poison = PoisonValue::get(V->getType());
1446 }
1447 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1448 /*IsIndirect=*/false, DL, Order,
1449 /*IsVariadic=*/true);
1450 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1451 return true;
1452}
1453
1455 DILocalVariable *Var,
1456 DIExpression *Expr,
1457 bool IsVariadic, DebugLoc DL,
1458 unsigned Order) {
1459 if (IsVariadic) {
1460 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1461 return;
1462 }
1463 // TODO: Dangling debug info will eventually either be resolved or produce
1464 // a poison DBG_VALUE. However in the resolution case, a gap may appear
1465 // between the original dbg.value location and its resolved DBG_VALUE,
1466 // which we should ideally fill with an extra poison DBG_VALUE.
1467 assert(Values.size() == 1);
1468 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1469}
1470
1472 const DIExpression *Expr) {
1473 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1474 DIVariable *DanglingVariable = DDI.getVariable();
1475 DIExpression *DanglingExpr = DDI.getExpression();
1476 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1477 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1478 << printDDI(nullptr, DDI) << "\n");
1479 return true;
1480 }
1481 return false;
1482 };
1483
1484 for (auto &DDIMI : DanglingDebugInfoMap) {
1485 DanglingDebugInfoVector &DDIV = DDIMI.second;
1486
1487 // If debug info is to be dropped, run it through final checks to see
1488 // whether it can be salvaged.
1489 for (auto &DDI : DDIV)
1490 if (isMatchingDbgValue(DDI))
1491 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1492
1493 erase_if(DDIV, isMatchingDbgValue);
1494 }
1495}
1496
1497// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1498// generate the debug data structures now that we've seen its definition.
1500 SDValue Val) {
1501 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1502 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1503 return;
1504
1505 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1506 for (auto &DDI : DDIV) {
1507 DebugLoc DL = DDI.getDebugLoc();
1508 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1509 DILocalVariable *Variable = DDI.getVariable();
1510 DIExpression *Expr = DDI.getExpression();
1511 assert(Variable->isValidLocationForIntrinsic(DL) &&
1512 "Expected inlined-at fields to agree");
1513 SDDbgValue *SDV;
1514 if (Val.getNode()) {
1515 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1516 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1517 // we couldn't resolve it directly when examining the DbgValue intrinsic
1518 // in the first place we should not be more successful here). Unless we
1519 // have some test case that prove this to be correct we should avoid
1520 // calling EmitFuncArgumentDbgValue here.
1521 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1522 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1523 FuncArgumentDbgValueKind::Value, Val)) {
1524 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1525 << printDDI(V, DDI) << "\n");
1526 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1527 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1528 // inserted after the definition of Val when emitting the instructions
1529 // after ISel. An alternative could be to teach
1530 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1531 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1532 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1533 << ValSDNodeOrder << "\n");
1534 SDV = getDbgValue(Val, Variable, Expr, DL,
1535 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1536 DAG.AddDbgValue(SDV, false);
1537 } else
1538 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1539 << printDDI(V, DDI)
1540 << " in EmitFuncArgumentDbgValue\n");
1541 } else {
1542 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1543 << "\n");
1544 auto Poison = PoisonValue::get(V->getType());
1545 auto SDV =
1546 DAG.getConstantDbgValue(Variable, Expr, Poison, DL, DbgSDNodeOrder);
1547 DAG.AddDbgValue(SDV, false);
1548 }
1549 }
1550 DDIV.clear();
1551}
1552
1554 DanglingDebugInfo &DDI) {
1555 // TODO: For the variadic implementation, instead of only checking the fail
1556 // state of `handleDebugValue`, we need know specifically which values were
1557 // invalid, so that we attempt to salvage only those values when processing
1558 // a DIArgList.
1559 const Value *OrigV = V;
1560 DILocalVariable *Var = DDI.getVariable();
1561 DIExpression *Expr = DDI.getExpression();
1562 DebugLoc DL = DDI.getDebugLoc();
1563 unsigned SDOrder = DDI.getSDNodeOrder();
1564
1565 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1566 // that DW_OP_stack_value is desired.
1567 bool StackValue = true;
1568
1569 // Can this Value can be encoded without any further work?
1570 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1571 return;
1572
1573 // Attempt to salvage back through as many instructions as possible. Bail if
1574 // a non-instruction is seen, such as a constant expression or global
1575 // variable. FIXME: Further work could recover those too.
1576 while (isa<Instruction>(V)) {
1577 const Instruction &VAsInst = *cast<const Instruction>(V);
1578 // Temporary "0", awaiting real implementation.
1580 SmallVector<Value *, 4> AdditionalValues;
1581 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1582 Expr->getNumLocationOperands(), Ops,
1583 AdditionalValues);
1584 // If we cannot salvage any further, and haven't yet found a suitable debug
1585 // expression, bail out.
1586 if (!V)
1587 break;
1588
1589 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1590 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1591 // here for variadic dbg_values, remove that condition.
1592 if (!AdditionalValues.empty())
1593 break;
1594
1595 // New value and expr now represent this debuginfo.
1596 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1597
1598 // Some kind of simplification occurred: check whether the operand of the
1599 // salvaged debug expression can be encoded in this DAG.
1600 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1601 LLVM_DEBUG(
1602 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1603 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1604 return;
1605 }
1606 }
1607
1608 // This was the final opportunity to salvage this debug information, and it
1609 // couldn't be done. Place a poison DBG_VALUE at this location to terminate
1610 // any earlier variable location.
1611 assert(OrigV && "V shouldn't be null");
1612 auto *Poison = PoisonValue::get(OrigV->getType());
1613 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Poison, DL, SDNodeOrder);
1614 DAG.AddDbgValue(SDV, false);
1615 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1616 << printDDI(OrigV, DDI) << "\n");
1617}
1618
1620 DIExpression *Expr,
1621 DebugLoc DbgLoc,
1622 unsigned Order) {
1626 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1627 /*IsVariadic*/ false);
1628}
1629
1631 DILocalVariable *Var,
1632 DIExpression *Expr, DebugLoc DbgLoc,
1633 unsigned Order, bool IsVariadic) {
1634 if (Values.empty())
1635 return true;
1636
1637 // Filter EntryValue locations out early.
1638 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1639 return true;
1640
1641 SmallVector<SDDbgOperand> LocationOps;
1642 SmallVector<SDNode *> Dependencies;
1643 for (const Value *V : Values) {
1644 // Constant value.
1647 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1648 continue;
1649 }
1650
1651 // Look through IntToPtr constants.
1652 if (auto *CE = dyn_cast<ConstantExpr>(V))
1653 if (CE->getOpcode() == Instruction::IntToPtr) {
1654 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1655 continue;
1656 }
1657
1658 // If the Value is a frame index, we can create a FrameIndex debug value
1659 // without relying on the DAG at all.
1660 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1661 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1662 if (SI != FuncInfo.StaticAllocaMap.end()) {
1663 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1664 continue;
1665 }
1666 }
1667
1668 // Do not use getValue() in here; we don't want to generate code at
1669 // this point if it hasn't been done yet.
1670 SDValue N = NodeMap[V];
1671 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1672 N = UnusedArgNodeMap[V];
1673
1674 if (N.getNode()) {
1675 // Only emit func arg dbg value for non-variadic dbg.values for now.
1676 if (!IsVariadic &&
1677 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1678 FuncArgumentDbgValueKind::Value, N))
1679 return true;
1680 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1681 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1682 // describe stack slot locations.
1683 //
1684 // Consider "int x = 0; int *px = &x;". There are two kinds of
1685 // interesting debug values here after optimization:
1686 //
1687 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1688 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1689 //
1690 // Both describe the direct values of their associated variables.
1691 Dependencies.push_back(N.getNode());
1692 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1693 continue;
1694 }
1695 LocationOps.emplace_back(
1696 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1697 continue;
1698 }
1699
1700 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1701 // Special rules apply for the first dbg.values of parameter variables in a
1702 // function. Identify them by the fact they reference Argument Values, that
1703 // they're parameters, and they are parameters of the current function. We
1704 // need to let them dangle until they get an SDNode.
1705 bool IsParamOfFunc =
1706 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1707 if (IsParamOfFunc)
1708 return false;
1709
1710 // The value is not used in this block yet (or it would have an SDNode).
1711 // We still want the value to appear for the user if possible -- if it has
1712 // an associated VReg, we can refer to that instead.
1713 auto VMI = FuncInfo.ValueMap.find(V);
1714 if (VMI != FuncInfo.ValueMap.end()) {
1715 Register Reg = VMI->second;
1716 // If this is a PHI node, it may be split up into several MI PHI nodes
1717 // (in FunctionLoweringInfo::set).
1718 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1719 V->getType(), std::nullopt);
1720 if (RFV.occupiesMultipleRegs()) {
1721 // FIXME: We could potentially support variadic dbg_values here.
1722 if (IsVariadic)
1723 return false;
1724 unsigned Offset = 0;
1725 unsigned BitsToDescribe = 0;
1726 if (auto VarSize = Var->getSizeInBits())
1727 BitsToDescribe = *VarSize;
1728 if (auto Fragment = Expr->getFragmentInfo())
1729 BitsToDescribe = Fragment->SizeInBits;
1730 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1731 // Bail out if all bits are described already.
1732 if (Offset >= BitsToDescribe)
1733 break;
1734 // TODO: handle scalable vectors.
1735 unsigned RegisterSize = RegAndSize.second;
1736 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1737 ? BitsToDescribe - Offset
1738 : RegisterSize;
1739 auto FragmentExpr = DIExpression::createFragmentExpression(
1740 Expr, Offset, FragmentSize);
1741 if (!FragmentExpr)
1742 continue;
1743 SDDbgValue *SDV = DAG.getVRegDbgValue(
1744 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1745 DAG.AddDbgValue(SDV, false);
1746 Offset += RegisterSize;
1747 }
1748 return true;
1749 }
1750 // We can use simple vreg locations for variadic dbg_values as well.
1751 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1752 continue;
1753 }
1754 // We failed to create a SDDbgOperand for V.
1755 return false;
1756 }
1757
1758 // We have created a SDDbgOperand for each Value in Values.
1759 assert(!LocationOps.empty());
1760 SDDbgValue *SDV =
1761 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1762 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1763 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1764 return true;
1765}
1766
1768 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1769 for (auto &Pair : DanglingDebugInfoMap)
1770 for (auto &DDI : Pair.second)
1771 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1773}
1774
1775/// getCopyFromRegs - If there was virtual register allocated for the value V
1776/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1779 SDValue Result;
1780
1781 if (It != FuncInfo.ValueMap.end()) {
1782 Register InReg = It->second;
1783
1784 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1785 DAG.getDataLayout(), InReg, Ty,
1786 std::nullopt); // This is not an ABI copy.
1787 SDValue Chain = DAG.getEntryNode();
1788 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1789 V);
1790 resolveDanglingDebugInfo(V, Result);
1791 }
1792
1793 return Result;
1794}
1795
1796/// getValue - Return an SDValue for the given Value.
1798 // If we already have an SDValue for this value, use it. It's important
1799 // to do this first, so that we don't create a CopyFromReg if we already
1800 // have a regular SDValue.
1801 SDValue &N = NodeMap[V];
1802 if (N.getNode()) return N;
1803
1804 // If there's a virtual register allocated and initialized for this
1805 // value, use it.
1806 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1807 return copyFromReg;
1808
1809 // Otherwise create a new SDValue and remember it.
1810 SDValue Val = getValueImpl(V);
1811 NodeMap[V] = Val;
1813 return Val;
1814}
1815
1816/// getNonRegisterValue - Return an SDValue for the given Value, but
1817/// don't look in FuncInfo.ValueMap for a virtual register.
1819 // If we already have an SDValue for this value, use it.
1820 SDValue &N = NodeMap[V];
1821 if (N.getNode()) {
1822 if (isIntOrFPConstant(N)) {
1823 // Remove the debug location from the node as the node is about to be used
1824 // in a location which may differ from the original debug location. This
1825 // is relevant to Constant and ConstantFP nodes because they can appear
1826 // as constant expressions inside PHI nodes.
1827 N->setDebugLoc(DebugLoc());
1828 }
1829 return N;
1830 }
1831
1832 // Otherwise create a new SDValue and remember it.
1833 SDValue Val = getValueImpl(V);
1834 NodeMap[V] = Val;
1836 return Val;
1837}
1838
1839/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1840/// Create an SDValue for the given value.
1842 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1843
1844 if (const Constant *C = dyn_cast<Constant>(V)) {
1845 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1846
1847 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1848 SDLoc DL = getCurSDLoc();
1849
1850 // DAG.getConstant() may attempt to legalise the vector constant which can
1851 // significantly change the combines applied to the DAG. To reduce the
1852 // divergence when enabling ConstantInt based vectors we try to construct
1853 // the DAG in the same way as shufflevector based splats. TODO: The
1854 // divergence sometimes leads to better optimisations. Ideally we should
1855 // prevent DAG.getConstant() from legalising too early but there are some
1856 // degradations preventing this.
1857 if (VT.isScalableVector())
1858 return DAG.getNode(
1859 ISD::SPLAT_VECTOR, DL, VT,
1860 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1861 if (VT.isFixedLengthVector())
1862 return DAG.getSplatBuildVector(
1863 VT, DL,
1864 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1865 return DAG.getConstant(*CI, DL, VT);
1866 }
1867
1868 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1869 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1870
1871 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1872 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1873 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1874 getValue(CPA->getAddrDiscriminator()),
1875 getValue(CPA->getDiscriminator()));
1876 }
1877
1879 return DAG.getConstant(0, getCurSDLoc(), VT);
1880
1881 if (match(C, m_VScale()))
1882 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1883
1884 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1885 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1886
1887 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1888 return isa<PoisonValue>(C) ? DAG.getPOISON(VT) : DAG.getUNDEF(VT);
1889
1890 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1891 visit(CE->getOpcode(), *CE);
1892 SDValue N1 = NodeMap[V];
1893 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1894 return N1;
1895 }
1896
1898 SmallVector<SDValue, 4> Constants;
1899 for (const Use &U : C->operands()) {
1900 SDNode *Val = getValue(U).getNode();
1901 // If the operand is an empty aggregate, there are no values.
1902 if (!Val) continue;
1903 // Add each leaf value from the operand to the Constants list
1904 // to form a flattened list of all the values.
1905 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1906 Constants.push_back(SDValue(Val, i));
1907 }
1908
1909 return DAG.getMergeValues(Constants, getCurSDLoc());
1910 }
1911
1912 if (const ConstantDataSequential *CDS =
1915 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1916 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1917 // Add each leaf value from the operand to the Constants list
1918 // to form a flattened list of all the values.
1919 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1920 Ops.push_back(SDValue(Val, i));
1921 }
1922
1923 if (isa<ArrayType>(CDS->getType()))
1924 return DAG.getMergeValues(Ops, getCurSDLoc());
1925 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1926 }
1927
1928 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1930 "Unknown struct or array constant!");
1931
1932 SmallVector<EVT, 4> ValueVTs;
1933 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1934 unsigned NumElts = ValueVTs.size();
1935 if (NumElts == 0)
1936 return SDValue(); // empty struct
1937 SmallVector<SDValue, 4> Constants(NumElts);
1938 for (unsigned i = 0; i != NumElts; ++i) {
1939 EVT EltVT = ValueVTs[i];
1940 if (isa<UndefValue>(C))
1941 Constants[i] = DAG.getUNDEF(EltVT);
1942 else if (EltVT.isFloatingPoint())
1943 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1944 else
1945 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1946 }
1947
1948 return DAG.getMergeValues(Constants, getCurSDLoc());
1949 }
1950
1951 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1952 return DAG.getBlockAddress(BA, VT);
1953
1954 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1955 return getValue(Equiv->getGlobalValue());
1956
1957 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1958 return getValue(NC->getGlobalValue());
1959
1960 if (VT == MVT::aarch64svcount) {
1961 assert(C->isNullValue() && "Can only zero this target type!");
1962 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1963 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1964 }
1965
1966 if (VT.isRISCVVectorTuple()) {
1967 assert(C->isNullValue() && "Can only zero this target type!");
1968 return DAG.getNode(
1970 DAG.getNode(
1972 EVT::getVectorVT(*DAG.getContext(), MVT::i8,
1973 VT.getSizeInBits().getKnownMinValue() / 8, true),
1974 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8))));
1975 }
1976
1977 VectorType *VecTy = cast<VectorType>(V->getType());
1978
1979 // Now that we know the number and type of the elements, get that number of
1980 // elements into the Ops array based on what kind of constant it is.
1981 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1983 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1984 for (unsigned i = 0; i != NumElements; ++i)
1985 Ops.push_back(getValue(CV->getOperand(i)));
1986
1987 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1988 }
1989
1991 EVT EltVT =
1992 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1993
1994 SDValue Op;
1995 if (EltVT.isFloatingPoint())
1996 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1997 else
1998 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1999
2000 return DAG.getSplat(VT, getCurSDLoc(), Op);
2001 }
2002
2003 llvm_unreachable("Unknown vector constant");
2004 }
2005
2006 // If this is a static alloca, generate it as the frameindex instead of
2007 // computation.
2008 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
2010 FuncInfo.StaticAllocaMap.find(AI);
2011 if (SI != FuncInfo.StaticAllocaMap.end())
2012 return DAG.getFrameIndex(
2013 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
2014 }
2015
2016 // If this is an instruction which fast-isel has deferred, select it now.
2017 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2018 Register InReg = FuncInfo.InitializeRegForValue(Inst);
2019
2020 std::optional<CallingConv::ID> CallConv;
2021 auto *CB = dyn_cast<CallBase>(Inst);
2022 if (CB && !CB->isInlineAsm())
2023 CallConv = CB->getCallingConv();
2024
2025 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
2026 Inst->getType(), CallConv);
2027 SDValue Chain = DAG.getEntryNode();
2028 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
2029 }
2030
2031 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
2032 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
2033
2034 if (const auto *BB = dyn_cast<BasicBlock>(V))
2035 return DAG.getBasicBlock(FuncInfo.getMBB(BB));
2036
2037 llvm_unreachable("Can't get register for value!");
2038}
2039
2040void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
2042 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
2043 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
2044 bool IsSEH = isAsynchronousEHPersonality(Pers);
2045 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
2046 if (IsSEH) {
2047 // For SEH, EHCont Guard needs to know that this catchpad is a target.
2048 CatchPadMBB->setIsEHContTarget(true);
2050 } else
2051 CatchPadMBB->setIsEHScopeEntry();
2052 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
2053 if (IsMSVCCXX || IsCoreCLR)
2054 CatchPadMBB->setIsEHFuncletEntry();
2055}
2056
2057void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
2058 // Update machine-CFG edge.
2059 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
2060 FuncInfo.MBB->addSuccessor(TargetMBB);
2061
2062 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2063 bool IsSEH = isAsynchronousEHPersonality(Pers);
2064 if (IsSEH) {
2065 // If this is not a fall-through branch or optimizations are switched off,
2066 // emit the branch.
2067 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
2068 TM.getOptLevel() == CodeGenOptLevel::None)
2069 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2070 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
2071 return;
2072 }
2073
2074 // For non-SEH, EHCont Guard needs to know that this catchret is a target.
2075 TargetMBB->setIsEHContTarget(true);
2076 DAG.getMachineFunction().setHasEHContTarget(true);
2077
2078 // Figure out the funclet membership for the catchret's successor.
2079 // This will be used by the FuncletLayout pass to determine how to order the
2080 // BB's.
2081 // A 'catchret' returns to the outer scope's color.
2082 Value *ParentPad = I.getCatchSwitchParentPad();
2083 const BasicBlock *SuccessorColor;
2084 if (isa<ConstantTokenNone>(ParentPad))
2085 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2086 else
2087 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2088 assert(SuccessorColor && "No parent funclet for catchret!");
2089 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2090 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2091
2092 // Create the terminator node.
2093 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2094 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2095 DAG.getBasicBlock(SuccessorColorMBB));
2096 DAG.setRoot(Ret);
2097}
2098
2099void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2100 // Don't emit any special code for the cleanuppad instruction. It just marks
2101 // the start of an EH scope/funclet.
2102 FuncInfo.MBB->setIsEHScopeEntry();
2103 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2104 if (Pers != EHPersonality::Wasm_CXX) {
2105 FuncInfo.MBB->setIsEHFuncletEntry();
2106 FuncInfo.MBB->setIsCleanupFuncletEntry();
2107 }
2108}
2109
2110/// When an invoke or a cleanupret unwinds to the next EH pad, there are
2111/// many places it could ultimately go. In the IR, we have a single unwind
2112/// destination, but in the machine CFG, we enumerate all the possible blocks.
2113/// This function skips over imaginary basic blocks that hold catchswitch
2114/// instructions, and finds all the "real" machine
2115/// basic block destinations. As those destinations may not be successors of
2116/// EHPadBB, here we also calculate the edge probability to those destinations.
2117/// The passed-in Prob is the edge probability to EHPadBB.
2119 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2120 BranchProbability Prob,
2121 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2122 &UnwindDests) {
2123 EHPersonality Personality =
2125 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2126 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2127 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2128 bool IsSEH = isAsynchronousEHPersonality(Personality);
2129
2130 while (EHPadBB) {
2132 BasicBlock *NewEHPadBB = nullptr;
2133 if (isa<LandingPadInst>(Pad)) {
2134 // Stop on landingpads. They are not funclets.
2135 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2136 break;
2137 } else if (isa<CleanupPadInst>(Pad)) {
2138 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2139 // personalities except Wasm. And in Wasm this becomes a catch_all(_ref),
2140 // which always catches an exception.
2141 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2142 UnwindDests.back().first->setIsEHScopeEntry();
2143 // In Wasm, EH scopes are not funclets
2144 if (!IsWasmCXX)
2145 UnwindDests.back().first->setIsEHFuncletEntry();
2146 break;
2147 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2148 // Add the catchpad handlers to the possible destinations.
2149 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2150 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2151 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2152 if (IsMSVCCXX || IsCoreCLR)
2153 UnwindDests.back().first->setIsEHFuncletEntry();
2154 if (!IsSEH)
2155 UnwindDests.back().first->setIsEHScopeEntry();
2156 }
2157 NewEHPadBB = CatchSwitch->getUnwindDest();
2158 } else {
2159 continue;
2160 }
2161
2162 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2163 if (BPI && NewEHPadBB)
2164 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2165 EHPadBB = NewEHPadBB;
2166 }
2167}
2168
2169void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2170 // Update successor info.
2172 auto UnwindDest = I.getUnwindDest();
2173 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2174 BranchProbability UnwindDestProb =
2175 (BPI && UnwindDest)
2176 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2178 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2179 for (auto &UnwindDest : UnwindDests) {
2180 UnwindDest.first->setIsEHPad();
2181 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2182 }
2183 FuncInfo.MBB->normalizeSuccProbs();
2184
2185 // Create the terminator node.
2186 MachineBasicBlock *CleanupPadMBB =
2187 FuncInfo.getMBB(I.getCleanupPad()->getParent());
2188 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2189 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2190 DAG.setRoot(Ret);
2191}
2192
2193void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2194 report_fatal_error("visitCatchSwitch not yet implemented!");
2195}
2196
2197void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2198 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2199 auto &DL = DAG.getDataLayout();
2200 SDValue Chain = getControlRoot();
2203
2204 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2205 // lower
2206 //
2207 // %val = call <ty> @llvm.experimental.deoptimize()
2208 // ret <ty> %val
2209 //
2210 // differently.
2211 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2213 return;
2214 }
2215
2216 if (!FuncInfo.CanLowerReturn) {
2217 Register DemoteReg = FuncInfo.DemoteRegister;
2218
2219 // Emit a store of the return value through the virtual register.
2220 // Leave Outs empty so that LowerReturn won't try to load return
2221 // registers the usual way.
2222 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace());
2223 SDValue RetPtr =
2224 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT);
2225 SDValue RetOp = getValue(I.getOperand(0));
2226
2227 SmallVector<EVT, 4> ValueVTs, MemVTs;
2228 SmallVector<uint64_t, 4> Offsets;
2229 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2230 &Offsets, 0);
2231 unsigned NumValues = ValueVTs.size();
2232
2233 SmallVector<SDValue, 4> Chains(NumValues);
2234 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2235 for (unsigned i = 0; i != NumValues; ++i) {
2236 // An aggregate return value cannot wrap around the address space, so
2237 // offsets to its parts don't wrap either.
2238 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2239 TypeSize::getFixed(Offsets[i]));
2240
2241 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2242 if (MemVTs[i] != ValueVTs[i])
2243 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2244 Chains[i] = DAG.getStore(
2245 Chain, getCurSDLoc(), Val,
2246 // FIXME: better loc info would be nice.
2247 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2248 commonAlignment(BaseAlign, Offsets[i]));
2249 }
2250
2251 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2252 MVT::Other, Chains);
2253 } else if (I.getNumOperands() != 0) {
2255 ComputeValueTypes(DL, I.getOperand(0)->getType(), Types);
2256 unsigned NumValues = Types.size();
2257 if (NumValues) {
2258 SDValue RetOp = getValue(I.getOperand(0));
2259
2260 const Function *F = I.getParent()->getParent();
2261
2262 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2263 I.getOperand(0)->getType(), F->getCallingConv(),
2264 /*IsVarArg*/ false, DL);
2265
2266 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2267 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2268 ExtendKind = ISD::SIGN_EXTEND;
2269 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2270 ExtendKind = ISD::ZERO_EXTEND;
2271
2272 LLVMContext &Context = F->getContext();
2273 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2274
2275 for (unsigned j = 0; j != NumValues; ++j) {
2276 EVT VT = TLI.getValueType(DL, Types[j]);
2277
2278 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2279 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2280
2281 CallingConv::ID CC = F->getCallingConv();
2282
2283 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2284 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2285 SmallVector<SDValue, 4> Parts(NumParts);
2287 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2288 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2289
2290 // 'inreg' on function refers to return value
2291 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2292 if (RetInReg)
2293 Flags.setInReg();
2294
2295 if (I.getOperand(0)->getType()->isPointerTy()) {
2296 Flags.setPointer();
2297 Flags.setPointerAddrSpace(
2298 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2299 }
2300
2301 if (NeedsRegBlock) {
2302 Flags.setInConsecutiveRegs();
2303 if (j == NumValues - 1)
2304 Flags.setInConsecutiveRegsLast();
2305 }
2306
2307 // Propagate extension type if any
2308 if (ExtendKind == ISD::SIGN_EXTEND)
2309 Flags.setSExt();
2310 else if (ExtendKind == ISD::ZERO_EXTEND)
2311 Flags.setZExt();
2312 else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2313 Flags.setNoExt();
2314
2315 for (unsigned i = 0; i < NumParts; ++i) {
2316 Outs.push_back(ISD::OutputArg(Flags,
2317 Parts[i].getValueType().getSimpleVT(),
2318 VT, Types[j], 0, 0));
2319 OutVals.push_back(Parts[i]);
2320 }
2321 }
2322 }
2323 }
2324
2325 // Push in swifterror virtual register as the last element of Outs. This makes
2326 // sure swifterror virtual register will be returned in the swifterror
2327 // physical register.
2328 const Function *F = I.getParent()->getParent();
2329 if (TLI.supportSwiftError() &&
2330 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2331 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2332 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2333 Flags.setSwiftError();
2334 Outs.push_back(ISD::OutputArg(Flags, /*vt=*/TLI.getPointerTy(DL),
2335 /*argvt=*/EVT(TLI.getPointerTy(DL)),
2336 PointerType::getUnqual(*DAG.getContext()),
2337 /*origidx=*/1, /*partOffs=*/0));
2338 // Create SDNode for the swifterror virtual register.
2339 OutVals.push_back(
2340 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2341 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2342 EVT(TLI.getPointerTy(DL))));
2343 }
2344
2345 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2346 CallingConv::ID CallConv =
2347 DAG.getMachineFunction().getFunction().getCallingConv();
2348 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2349 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2350
2351 // Verify that the target's LowerReturn behaved as expected.
2352 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2353 "LowerReturn didn't return a valid chain!");
2354
2355 // Update the DAG with the new chain value resulting from return lowering.
2356 DAG.setRoot(Chain);
2357}
2358
2359/// CopyToExportRegsIfNeeded - If the given value has virtual registers
2360/// created for it, emit nodes to copy the value into the virtual
2361/// registers.
2363 // Skip empty types
2364 if (V->getType()->isEmptyTy())
2365 return;
2366
2368 if (VMI != FuncInfo.ValueMap.end()) {
2369 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2370 "Unused value assigned virtual registers!");
2371 CopyValueToVirtualRegister(V, VMI->second);
2372 }
2373}
2374
2375/// ExportFromCurrentBlock - If this condition isn't known to be exported from
2376/// the current basic block, add it to ValueMap now so that we'll get a
2377/// CopyTo/FromReg.
2379 // No need to export constants.
2380 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2381
2382 // Already exported?
2383 if (FuncInfo.isExportedInst(V)) return;
2384
2385 Register Reg = FuncInfo.InitializeRegForValue(V);
2387}
2388
2390 const BasicBlock *FromBB) {
2391 // The operands of the setcc have to be in this block. We don't know
2392 // how to export them from some other block.
2393 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2394 // Can export from current BB.
2395 if (VI->getParent() == FromBB)
2396 return true;
2397
2398 // Is already exported, noop.
2399 return FuncInfo.isExportedInst(V);
2400 }
2401
2402 // If this is an argument, we can export it if the BB is the entry block or
2403 // if it is already exported.
2404 if (isa<Argument>(V)) {
2405 if (FromBB->isEntryBlock())
2406 return true;
2407
2408 // Otherwise, can only export this if it is already exported.
2409 return FuncInfo.isExportedInst(V);
2410 }
2411
2412 // Otherwise, constants can always be exported.
2413 return true;
2414}
2415
2416/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2418SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2419 const MachineBasicBlock *Dst) const {
2421 const BasicBlock *SrcBB = Src->getBasicBlock();
2422 const BasicBlock *DstBB = Dst->getBasicBlock();
2423 if (!BPI) {
2424 // If BPI is not available, set the default probability as 1 / N, where N is
2425 // the number of successors.
2426 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2427 return BranchProbability(1, SuccSize);
2428 }
2429 return BPI->getEdgeProbability(SrcBB, DstBB);
2430}
2431
2432void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2433 MachineBasicBlock *Dst,
2434 BranchProbability Prob) {
2435 if (!FuncInfo.BPI)
2436 Src->addSuccessorWithoutProb(Dst);
2437 else {
2438 if (Prob.isUnknown())
2439 Prob = getEdgeProbability(Src, Dst);
2440 Src->addSuccessor(Dst, Prob);
2441 }
2442}
2443
2444static bool InBlock(const Value *V, const BasicBlock *BB) {
2445 if (const Instruction *I = dyn_cast<Instruction>(V))
2446 return I->getParent() == BB;
2447 return true;
2448}
2449
2450/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2451/// This function emits a branch and is used at the leaves of an OR or an
2452/// AND operator tree.
2453void
2456 MachineBasicBlock *FBB,
2457 MachineBasicBlock *CurBB,
2458 MachineBasicBlock *SwitchBB,
2459 BranchProbability TProb,
2460 BranchProbability FProb,
2461 bool InvertCond) {
2462 const BasicBlock *BB = CurBB->getBasicBlock();
2463
2464 // If the leaf of the tree is a comparison, merge the condition into
2465 // the caseblock.
2466 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2467 // The operands of the cmp have to be in this block. We don't know
2468 // how to export them from some other block. If this is the first block
2469 // of the sequence, no exporting is needed.
2470 if (CurBB == SwitchBB ||
2471 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2472 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2473 ISD::CondCode Condition;
2474 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2475 ICmpInst::Predicate Pred =
2476 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2477 Condition = getICmpCondCode(Pred);
2478 } else {
2479 const FCmpInst *FC = cast<FCmpInst>(Cond);
2480 FCmpInst::Predicate Pred =
2481 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2482 Condition = getFCmpCondCode(Pred);
2483 if (TM.Options.NoNaNsFPMath)
2484 Condition = getFCmpCodeWithoutNaN(Condition);
2485 }
2486
2487 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2488 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2489 SL->SwitchCases.push_back(CB);
2490 return;
2491 }
2492 }
2493
2494 // Create a CaseBlock record representing this branch.
2495 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2496 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2497 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2498 SL->SwitchCases.push_back(CB);
2499}
2500
2501// Collect dependencies on V recursively. This is used for the cost analysis in
2502// `shouldKeepJumpConditionsTogether`.
2506 unsigned Depth = 0) {
2507 // Return false if we have an incomplete count.
2509 return false;
2510
2511 auto *I = dyn_cast<Instruction>(V);
2512 if (I == nullptr)
2513 return true;
2514
2515 if (Necessary != nullptr) {
2516 // This instruction is necessary for the other side of the condition so
2517 // don't count it.
2518 if (Necessary->contains(I))
2519 return true;
2520 }
2521
2522 // Already added this dep.
2523 if (!Deps->try_emplace(I, false).second)
2524 return true;
2525
2526 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2527 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2528 Depth + 1))
2529 return false;
2530 return true;
2531}
2532
2535 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2537 if (I.getNumSuccessors() != 2)
2538 return false;
2539
2540 if (!I.isConditional())
2541 return false;
2542
2543 if (Params.BaseCost < 0)
2544 return false;
2545
2546 // Baseline cost.
2547 InstructionCost CostThresh = Params.BaseCost;
2548
2549 BranchProbabilityInfo *BPI = nullptr;
2550 if (Params.LikelyBias || Params.UnlikelyBias)
2551 BPI = FuncInfo.BPI;
2552 if (BPI != nullptr) {
2553 // See if we are either likely to get an early out or compute both lhs/rhs
2554 // of the condition.
2555 BasicBlock *IfFalse = I.getSuccessor(0);
2556 BasicBlock *IfTrue = I.getSuccessor(1);
2557
2558 std::optional<bool> Likely;
2559 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2560 Likely = true;
2561 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2562 Likely = false;
2563
2564 if (Likely) {
2565 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2566 // Its likely we will have to compute both lhs and rhs of condition
2567 CostThresh += Params.LikelyBias;
2568 else {
2569 if (Params.UnlikelyBias < 0)
2570 return false;
2571 // Its likely we will get an early out.
2572 CostThresh -= Params.UnlikelyBias;
2573 }
2574 }
2575 }
2576
2577 if (CostThresh <= 0)
2578 return false;
2579
2580 // Collect "all" instructions that lhs condition is dependent on.
2581 // Use map for stable iteration (to avoid non-determanism of iteration of
2582 // SmallPtrSet). The `bool` value is just a dummy.
2584 collectInstructionDeps(&LhsDeps, Lhs);
2585 // Collect "all" instructions that rhs condition is dependent on AND are
2586 // dependencies of lhs. This gives us an estimate on which instructions we
2587 // stand to save by splitting the condition.
2588 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2589 return false;
2590 // Add the compare instruction itself unless its a dependency on the LHS.
2591 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2592 if (!LhsDeps.contains(RhsI))
2593 RhsDeps.try_emplace(RhsI, false);
2594
2595 InstructionCost CostOfIncluding = 0;
2596 // See if this instruction will need to computed independently of whether RHS
2597 // is.
2598 Value *BrCond = I.getCondition();
2599 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2600 for (const auto *U : Ins->users()) {
2601 // If user is independent of RHS calculation we don't need to count it.
2602 if (auto *UIns = dyn_cast<Instruction>(U))
2603 if (UIns != BrCond && !RhsDeps.contains(UIns))
2604 return false;
2605 }
2606 return true;
2607 };
2608
2609 // Prune instructions from RHS Deps that are dependencies of unrelated
2610 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2611 // arbitrary and just meant to cap the how much time we spend in the pruning
2612 // loop. Its highly unlikely to come into affect.
2613 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2614 // Stop after a certain point. No incorrectness from including too many
2615 // instructions.
2616 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2617 const Instruction *ToDrop = nullptr;
2618 for (const auto &InsPair : RhsDeps) {
2619 if (!ShouldCountInsn(InsPair.first)) {
2620 ToDrop = InsPair.first;
2621 break;
2622 }
2623 }
2624 if (ToDrop == nullptr)
2625 break;
2626 RhsDeps.erase(ToDrop);
2627 }
2628
2629 for (const auto &InsPair : RhsDeps) {
2630 // Finally accumulate latency that we can only attribute to computing the
2631 // RHS condition. Use latency because we are essentially trying to calculate
2632 // the cost of the dependency chain.
2633 // Possible TODO: We could try to estimate ILP and make this more precise.
2634 CostOfIncluding += TTI->getInstructionCost(
2635 InsPair.first, TargetTransformInfo::TCK_Latency);
2636
2637 if (CostOfIncluding > CostThresh)
2638 return false;
2639 }
2640 return true;
2641}
2642
2645 MachineBasicBlock *FBB,
2646 MachineBasicBlock *CurBB,
2647 MachineBasicBlock *SwitchBB,
2649 BranchProbability TProb,
2650 BranchProbability FProb,
2651 bool InvertCond) {
2652 // Skip over not part of the tree and remember to invert op and operands at
2653 // next level.
2654 Value *NotCond;
2655 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2656 InBlock(NotCond, CurBB->getBasicBlock())) {
2657 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2658 !InvertCond);
2659 return;
2660 }
2661
2663 const Value *BOpOp0, *BOpOp1;
2664 // Compute the effective opcode for Cond, taking into account whether it needs
2665 // to be inverted, e.g.
2666 // and (not (or A, B)), C
2667 // gets lowered as
2668 // and (and (not A, not B), C)
2670 if (BOp) {
2671 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2672 ? Instruction::And
2673 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2674 ? Instruction::Or
2676 if (InvertCond) {
2677 if (BOpc == Instruction::And)
2678 BOpc = Instruction::Or;
2679 else if (BOpc == Instruction::Or)
2680 BOpc = Instruction::And;
2681 }
2682 }
2683
2684 // If this node is not part of the or/and tree, emit it as a branch.
2685 // Note that all nodes in the tree should have same opcode.
2686 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2687 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2688 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2689 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2690 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2691 TProb, FProb, InvertCond);
2692 return;
2693 }
2694
2695 // Create TmpBB after CurBB.
2696 MachineFunction::iterator BBI(CurBB);
2697 MachineFunction &MF = DAG.getMachineFunction();
2699 CurBB->getParent()->insert(++BBI, TmpBB);
2700
2701 if (Opc == Instruction::Or) {
2702 // Codegen X | Y as:
2703 // BB1:
2704 // jmp_if_X TBB
2705 // jmp TmpBB
2706 // TmpBB:
2707 // jmp_if_Y TBB
2708 // jmp FBB
2709 //
2710
2711 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2712 // The requirement is that
2713 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2714 // = TrueProb for original BB.
2715 // Assuming the original probabilities are A and B, one choice is to set
2716 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2717 // A/(1+B) and 2B/(1+B). This choice assumes that
2718 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2719 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2720 // TmpBB, but the math is more complicated.
2721
2722 auto NewTrueProb = TProb / 2;
2723 auto NewFalseProb = TProb / 2 + FProb;
2724 // Emit the LHS condition.
2725 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2726 NewFalseProb, InvertCond);
2727
2728 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2729 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2731 // Emit the RHS condition into TmpBB.
2732 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2733 Probs[1], InvertCond);
2734 } else {
2735 assert(Opc == Instruction::And && "Unknown merge op!");
2736 // Codegen X & Y as:
2737 // BB1:
2738 // jmp_if_X TmpBB
2739 // jmp FBB
2740 // TmpBB:
2741 // jmp_if_Y TBB
2742 // jmp FBB
2743 //
2744 // This requires creation of TmpBB after CurBB.
2745
2746 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2747 // The requirement is that
2748 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2749 // = FalseProb for original BB.
2750 // Assuming the original probabilities are A and B, one choice is to set
2751 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2752 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2753 // TrueProb for BB1 * FalseProb for TmpBB.
2754
2755 auto NewTrueProb = TProb + FProb / 2;
2756 auto NewFalseProb = FProb / 2;
2757 // Emit the LHS condition.
2758 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2759 NewFalseProb, InvertCond);
2760
2761 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2762 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2764 // Emit the RHS condition into TmpBB.
2765 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2766 Probs[1], InvertCond);
2767 }
2768}
2769
2770/// If the set of cases should be emitted as a series of branches, return true.
2771/// If we should emit this as a bunch of and/or'd together conditions, return
2772/// false.
2773bool
2774SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2775 if (Cases.size() != 2) return true;
2776
2777 // If this is two comparisons of the same values or'd or and'd together, they
2778 // will get folded into a single comparison, so don't emit two blocks.
2779 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2780 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2781 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2782 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2783 return false;
2784 }
2785
2786 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2787 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2788 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2789 Cases[0].CC == Cases[1].CC &&
2790 isa<Constant>(Cases[0].CmpRHS) &&
2791 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2792 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2793 return false;
2794 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2795 return false;
2796 }
2797
2798 return true;
2799}
2800
2801void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2803
2804 // Update machine-CFG edges.
2805 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2806
2807 if (I.isUnconditional()) {
2808 // Update machine-CFG edges.
2809 BrMBB->addSuccessor(Succ0MBB);
2810
2811 // If this is not a fall-through branch or optimizations are switched off,
2812 // emit the branch.
2813 if (Succ0MBB != NextBlock(BrMBB) ||
2815 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2816 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2817 setValue(&I, Br);
2818 DAG.setRoot(Br);
2819 }
2820
2821 return;
2822 }
2823
2824 // If this condition is one of the special cases we handle, do special stuff
2825 // now.
2826 const Value *CondVal = I.getCondition();
2827 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2828
2829 // If this is a series of conditions that are or'd or and'd together, emit
2830 // this as a sequence of branches instead of setcc's with and/or operations.
2831 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2832 // unpredictable branches, and vector extracts because those jumps are likely
2833 // expensive for any target), this should improve performance.
2834 // For example, instead of something like:
2835 // cmp A, B
2836 // C = seteq
2837 // cmp D, E
2838 // F = setle
2839 // or C, F
2840 // jnz foo
2841 // Emit:
2842 // cmp A, B
2843 // je foo
2844 // cmp D, E
2845 // jle foo
2846 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2847 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2848 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2849 BOp->hasOneUse() && !IsUnpredictable) {
2850 Value *Vec;
2851 const Value *BOp0, *BOp1;
2853 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2854 Opcode = Instruction::And;
2855 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2856 Opcode = Instruction::Or;
2857
2858 if (Opcode &&
2859 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2860 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2862 FuncInfo, I, Opcode, BOp0, BOp1,
2863 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2864 Opcode, BOp0, BOp1))) {
2865 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2866 getEdgeProbability(BrMBB, Succ0MBB),
2867 getEdgeProbability(BrMBB, Succ1MBB),
2868 /*InvertCond=*/false);
2869 // If the compares in later blocks need to use values not currently
2870 // exported from this block, export them now. This block should always
2871 // be the first entry.
2872 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2873
2874 // Allow some cases to be rejected.
2875 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2876 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2877 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2878 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2879 }
2880
2881 // Emit the branch for this block.
2882 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2883 SL->SwitchCases.erase(SL->SwitchCases.begin());
2884 return;
2885 }
2886
2887 // Okay, we decided not to do this, remove any inserted MBB's and clear
2888 // SwitchCases.
2889 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2890 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2891
2892 SL->SwitchCases.clear();
2893 }
2894 }
2895
2896 // Create a CaseBlock record representing this branch.
2897 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2898 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2900 IsUnpredictable);
2901
2902 // Use visitSwitchCase to actually insert the fast branch sequence for this
2903 // cond branch.
2904 visitSwitchCase(CB, BrMBB);
2905}
2906
2907/// visitSwitchCase - Emits the necessary code to represent a single node in
2908/// the binary search tree resulting from lowering a switch instruction.
2910 MachineBasicBlock *SwitchBB) {
2911 SDValue Cond;
2912 SDValue CondLHS = getValue(CB.CmpLHS);
2913 SDLoc dl = CB.DL;
2914
2915 if (CB.CC == ISD::SETTRUE) {
2916 // Branch or fall through to TrueBB.
2917 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2918 SwitchBB->normalizeSuccProbs();
2919 if (CB.TrueBB != NextBlock(SwitchBB)) {
2920 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2921 DAG.getBasicBlock(CB.TrueBB)));
2922 }
2923 return;
2924 }
2925
2926 auto &TLI = DAG.getTargetLoweringInfo();
2927 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2928
2929 // Build the setcc now.
2930 if (!CB.CmpMHS) {
2931 // Fold "(X == true)" to X and "(X == false)" to !X to
2932 // handle common cases produced by branch lowering.
2933 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2934 CB.CC == ISD::SETEQ)
2935 Cond = CondLHS;
2936 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2937 CB.CC == ISD::SETEQ) {
2938 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2939 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2940 } else {
2941 SDValue CondRHS = getValue(CB.CmpRHS);
2942
2943 // If a pointer's DAG type is larger than its memory type then the DAG
2944 // values are zero-extended. This breaks signed comparisons so truncate
2945 // back to the underlying type before doing the compare.
2946 if (CondLHS.getValueType() != MemVT) {
2947 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2948 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2949 }
2950 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2951 }
2952 } else {
2953 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2954
2955 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2956 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2957
2958 SDValue CmpOp = getValue(CB.CmpMHS);
2959 EVT VT = CmpOp.getValueType();
2960
2961 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2962 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2963 ISD::SETLE);
2964 } else {
2965 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2966 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2967 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2968 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2969 }
2970 }
2971
2972 // Update successor info
2973 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2974 // TrueBB and FalseBB are always different unless the incoming IR is
2975 // degenerate. This only happens when running llc on weird IR.
2976 if (CB.TrueBB != CB.FalseBB)
2977 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2978 SwitchBB->normalizeSuccProbs();
2979
2980 // If the lhs block is the next block, invert the condition so that we can
2981 // fall through to the lhs instead of the rhs block.
2982 if (CB.TrueBB == NextBlock(SwitchBB)) {
2983 std::swap(CB.TrueBB, CB.FalseBB);
2984 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2985 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2986 }
2987
2988 SDNodeFlags Flags;
2990 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2991 Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2992
2993 setValue(CurInst, BrCond);
2994
2995 // Insert the false branch. Do this even if it's a fall through branch,
2996 // this makes it easier to do DAG optimizations which require inverting
2997 // the branch condition.
2998 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2999 DAG.getBasicBlock(CB.FalseBB));
3000
3001 DAG.setRoot(BrCond);
3002}
3003
3004/// visitJumpTable - Emit JumpTable node in the current MBB
3006 // Emit the code for the jump table
3007 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3008 assert(JT.Reg && "Should lower JT Header first!");
3009 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
3010 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
3011 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
3012 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3013 Index.getValue(1), Table, Index);
3014 DAG.setRoot(BrJumpTable);
3015}
3016
3017/// visitJumpTableHeader - This function emits necessary code to produce index
3018/// in the JumpTable from switch case.
3020 JumpTableHeader &JTH,
3021 MachineBasicBlock *SwitchBB) {
3022 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3023 const SDLoc &dl = *JT.SL;
3024
3025 // Subtract the lowest switch case value from the value being switched on.
3026 SDValue SwitchOp = getValue(JTH.SValue);
3027 EVT VT = SwitchOp.getValueType();
3028 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3029 DAG.getConstant(JTH.First, dl, VT));
3030
3031 // The SDNode we just created, which holds the value being switched on minus
3032 // the smallest case value, needs to be copied to a virtual register so it
3033 // can be used as an index into the jump table in a subsequent basic block.
3034 // This value may be smaller or larger than the target's pointer type, and
3035 // therefore require extension or truncating.
3036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3037 SwitchOp =
3038 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3039
3040 Register JumpTableReg =
3041 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3042 SDValue CopyTo =
3043 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3044 JT.Reg = JumpTableReg;
3045
3046 if (!JTH.FallthroughUnreachable) {
3047 // Emit the range check for the jump table, and branch to the default block
3048 // for the switch statement if the value being switched on exceeds the
3049 // largest case in the switch.
3050 SDValue CMP = DAG.getSetCC(
3051 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3052 Sub.getValueType()),
3053 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3054
3055 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3056 MVT::Other, CopyTo, CMP,
3057 DAG.getBasicBlock(JT.Default));
3058
3059 // Avoid emitting unnecessary branches to the next block.
3060 if (JT.MBB != NextBlock(SwitchBB))
3061 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3062 DAG.getBasicBlock(JT.MBB));
3063
3064 DAG.setRoot(BrCond);
3065 } else {
3066 // Avoid emitting unnecessary branches to the next block.
3067 if (JT.MBB != NextBlock(SwitchBB))
3068 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3069 DAG.getBasicBlock(JT.MBB)));
3070 else
3071 DAG.setRoot(CopyTo);
3072 }
3073}
3074
3075/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3076/// variable if there exists one.
3078 SDValue &Chain) {
3079 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3080 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3081 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3085 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3086 if (Global) {
3087 MachinePointerInfo MPInfo(Global);
3091 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
3092 DAG.setNodeMemRefs(Node, {MemRef});
3093 }
3094 if (PtrTy != PtrMemTy)
3095 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3096 return SDValue(Node, 0);
3097}
3098
3099/// Codegen a new tail for a stack protector check ParentMBB which has had its
3100/// tail spliced into a stack protector check success bb.
3101///
3102/// For a high level explanation of how this fits into the stack protector
3103/// generation see the comment on the declaration of class
3104/// StackProtectorDescriptor.
3106 MachineBasicBlock *ParentBB) {
3107
3108 // First create the loads to the guard/stack slot for the comparison.
3109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110 auto &DL = DAG.getDataLayout();
3111 EVT PtrTy = TLI.getFrameIndexTy(DL);
3112 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3113
3114 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3115 int FI = MFI.getStackProtectorIndex();
3116
3117 SDValue Guard;
3118 SDLoc dl = getCurSDLoc();
3119 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3120 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3121 Align Align = DL.getPrefTypeAlign(
3122 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3123
3124 // Generate code to load the content of the guard slot.
3125 SDValue GuardVal = DAG.getLoad(
3126 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3127 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3129
3130 if (TLI.useStackGuardMixCookie())
3131 GuardVal = TLI.emitStackGuardMixCookie(DAG, GuardVal, dl, false);
3132
3133 // If we're using function-based instrumentation, call the guard check
3134 // function
3136 // Get the guard check function from the target and verify it exists since
3137 // we're using function-based instrumentation
3138 const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3139 assert(GuardCheckFn && "Guard check function is null");
3140
3141 // The target provides a guard check function to validate the guard value.
3142 // Generate a call to that function with the content of the guard slot as
3143 // argument.
3144 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3145 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3146
3148 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3149 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3150 Entry.IsInReg = true;
3151 Args.push_back(Entry);
3152
3155 .setChain(DAG.getEntryNode())
3156 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3157 getValue(GuardCheckFn), std::move(Args));
3158
3159 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3160 DAG.setRoot(Result.second);
3161 return;
3162 }
3163
3164 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3165 // Otherwise, emit a volatile load to retrieve the stack guard value.
3166 SDValue Chain = DAG.getEntryNode();
3167 if (TLI.useLoadStackGuardNode(M)) {
3168 Guard = getLoadStackGuard(DAG, dl, Chain);
3169 } else {
3170 if (const Value *IRGuard = TLI.getSDagStackGuard(M)) {
3171 SDValue GuardPtr = getValue(IRGuard);
3172 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3173 MachinePointerInfo(IRGuard, 0), Align,
3175 } else {
3176 LLVMContext &Ctx = *DAG.getContext();
3177 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
3178 Guard = DAG.getPOISON(PtrMemTy);
3179 }
3180 }
3181
3182 // Perform the comparison via a getsetcc.
3183 SDValue Cmp = DAG.getSetCC(
3184 dl, TLI.getSetCCResultType(DL, *DAG.getContext(), Guard.getValueType()),
3185 Guard, GuardVal, ISD::SETNE);
3186
3187 // If the guard/stackslot do not equal, branch to failure MBB.
3188 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3189 MVT::Other, GuardVal.getOperand(0),
3190 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3191 // Otherwise branch to success MBB.
3192 SDValue Br = DAG.getNode(ISD::BR, dl,
3193 MVT::Other, BrCond,
3194 DAG.getBasicBlock(SPD.getSuccessMBB()));
3195
3196 DAG.setRoot(Br);
3197}
3198
3199/// Codegen the failure basic block for a stack protector check.
3200///
3201/// A failure stack protector machine basic block consists simply of a call to
3202/// __stack_chk_fail().
3203///
3204/// For a high level explanation of how this fits into the stack protector
3205/// generation see the comment on the declaration of class
3206/// StackProtectorDescriptor.
3209
3210 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3211 MachineBasicBlock *ParentBB = SPD.getParentMBB();
3212 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3213 SDValue Chain;
3214
3215 // For -Oz builds with a guard check function, we use function-based
3216 // instrumentation. Otherwise, if we have a guard check function, we call it
3217 // in the failure block.
3218 auto *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3219 if (GuardCheckFn && !SPD.shouldEmitFunctionBasedCheckStackProtector()) {
3220 // First create the loads to the guard/stack slot for the comparison.
3221 auto &DL = DAG.getDataLayout();
3222 EVT PtrTy = TLI.getFrameIndexTy(DL);
3223 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3224
3225 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3226 int FI = MFI.getStackProtectorIndex();
3227
3228 SDLoc dl = getCurSDLoc();
3229 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3230 Align Align = DL.getPrefTypeAlign(
3231 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3232
3233 // Generate code to load the content of the guard slot.
3234 SDValue GuardVal = DAG.getLoad(
3235 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3236 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3238
3239 if (TLI.useStackGuardMixCookie())
3240 GuardVal = TLI.emitStackGuardMixCookie(DAG, GuardVal, dl, true);
3241
3242 // The target provides a guard check function to validate the guard value.
3243 // Generate a call to that function with the content of the guard slot as
3244 // argument.
3245 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3246 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3247
3249 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3250 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3251 Entry.IsInReg = true;
3252 Args.push_back(Entry);
3253
3256 .setChain(DAG.getEntryNode())
3257 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3258 getValue(GuardCheckFn), std::move(Args));
3259
3260 Chain = TLI.LowerCallTo(CLI).second;
3261 } else {
3263 CallOptions.setDiscardResult(true);
3264 Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3265 {}, CallOptions, getCurSDLoc())
3266 .second;
3267 }
3268
3269 // Emit a trap instruction if we are required to do so.
3270 const TargetOptions &TargetOpts = DAG.getTarget().Options;
3271 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3272 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3273
3274 DAG.setRoot(Chain);
3275}
3276
3277/// visitBitTestHeader - This function emits necessary code to produce value
3278/// suitable for "bit tests"
3280 MachineBasicBlock *SwitchBB) {
3281 SDLoc dl = getCurSDLoc();
3282
3283 // Subtract the minimum value.
3284 SDValue SwitchOp = getValue(B.SValue);
3285 EVT VT = SwitchOp.getValueType();
3286 SDValue RangeSub =
3287 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3288
3289 // Determine the type of the test operands.
3290 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3291 bool UsePtrType = false;
3292 if (!TLI.isTypeLegal(VT)) {
3293 UsePtrType = true;
3294 } else {
3295 for (const BitTestCase &Case : B.Cases)
3296 if (!isUIntN(VT.getSizeInBits(), Case.Mask)) {
3297 // Switch table case range are encoded into series of masks.
3298 // Just use pointer type, it's guaranteed to fit.
3299 UsePtrType = true;
3300 break;
3301 }
3302 }
3303 SDValue Sub = RangeSub;
3304 if (UsePtrType) {
3305 VT = TLI.getPointerTy(DAG.getDataLayout());
3306 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3307 }
3308
3309 B.RegVT = VT.getSimpleVT();
3310 B.Reg = FuncInfo.CreateReg(B.RegVT);
3311 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3312
3313 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3314
3315 if (!B.FallthroughUnreachable)
3316 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3317 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3318 SwitchBB->normalizeSuccProbs();
3319
3320 SDValue Root = CopyTo;
3321 if (!B.FallthroughUnreachable) {
3322 // Conditional branch to the default block.
3323 SDValue RangeCmp = DAG.getSetCC(dl,
3324 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3325 RangeSub.getValueType()),
3326 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3327 ISD::SETUGT);
3328
3329 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3330 DAG.getBasicBlock(B.Default));
3331 }
3332
3333 // Avoid emitting unnecessary branches to the next block.
3334 if (MBB != NextBlock(SwitchBB))
3335 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3336
3337 DAG.setRoot(Root);
3338}
3339
3340/// visitBitTestCase - this function produces one "bit test"
3342 MachineBasicBlock *NextMBB,
3343 BranchProbability BranchProbToNext,
3344 Register Reg, BitTestCase &B,
3345 MachineBasicBlock *SwitchBB) {
3346 SDLoc dl = getCurSDLoc();
3347 MVT VT = BB.RegVT;
3348 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3349 SDValue Cmp;
3350 unsigned PopCount = llvm::popcount(B.Mask);
3351 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3352 if (PopCount == 1) {
3353 // Testing for a single bit; just compare the shift count with what it
3354 // would need to be to shift a 1 bit in that position.
3355 Cmp = DAG.getSetCC(
3356 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3357 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3358 ISD::SETEQ);
3359 } else if (PopCount == BB.Range) {
3360 // There is only one zero bit in the range, test for it directly.
3361 Cmp = DAG.getSetCC(
3362 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3363 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3364 } else {
3365 // Make desired shift
3366 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3367 DAG.getConstant(1, dl, VT), ShiftOp);
3368
3369 // Emit bit tests and jumps
3370 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3371 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3372 Cmp = DAG.getSetCC(
3373 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3374 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3375 }
3376
3377 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3378 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3379 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3380 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3381 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3382 // one as they are relative probabilities (and thus work more like weights),
3383 // and hence we need to normalize them to let the sum of them become one.
3384 SwitchBB->normalizeSuccProbs();
3385
3386 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3387 MVT::Other, getControlRoot(),
3388 Cmp, DAG.getBasicBlock(B.TargetBB));
3389
3390 // Avoid emitting unnecessary branches to the next block.
3391 if (NextMBB != NextBlock(SwitchBB))
3392 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3393 DAG.getBasicBlock(NextMBB));
3394
3395 DAG.setRoot(BrAnd);
3396}
3397
3398void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3399 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3400
3401 // Retrieve successors. Look through artificial IR level blocks like
3402 // catchswitch for successors.
3403 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3404 const BasicBlock *EHPadBB = I.getSuccessor(1);
3405 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3406
3407 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3408 // have to do anything here to lower funclet bundles.
3409 failForInvalidBundles(I, "invokes",
3415
3416 const Value *Callee(I.getCalledOperand());
3417 const Function *Fn = dyn_cast<Function>(Callee);
3418 if (isa<InlineAsm>(Callee))
3419 visitInlineAsm(I, EHPadBB);
3420 else if (Fn && Fn->isIntrinsic()) {
3421 switch (Fn->getIntrinsicID()) {
3422 default:
3423 llvm_unreachable("Cannot invoke this intrinsic");
3424 case Intrinsic::donothing:
3425 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3426 case Intrinsic::seh_try_begin:
3427 case Intrinsic::seh_scope_begin:
3428 case Intrinsic::seh_try_end:
3429 case Intrinsic::seh_scope_end:
3430 if (EHPadMBB)
3431 // a block referenced by EH table
3432 // so dtor-funclet not removed by opts
3433 EHPadMBB->setMachineBlockAddressTaken();
3434 break;
3435 case Intrinsic::experimental_patchpoint_void:
3436 case Intrinsic::experimental_patchpoint:
3437 visitPatchpoint(I, EHPadBB);
3438 break;
3439 case Intrinsic::experimental_gc_statepoint:
3441 break;
3442 // wasm_throw, wasm_rethrow: This is usually done in visitTargetIntrinsic,
3443 // but these intrinsics are special because they can be invoked, so we
3444 // manually lower it to a DAG node here.
3445 case Intrinsic::wasm_throw: {
3447 std::array<SDValue, 4> Ops = {
3448 getControlRoot(), // inchain for the terminator node
3449 DAG.getTargetConstant(Intrinsic::wasm_throw, getCurSDLoc(),
3451 getValue(I.getArgOperand(0)), // tag
3452 getValue(I.getArgOperand(1)) // thrown value
3453 };
3454 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3455 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3456 break;
3457 }
3458 case Intrinsic::wasm_rethrow: {
3459 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3460 std::array<SDValue, 2> Ops = {
3461 getControlRoot(), // inchain for the terminator node
3462 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3463 TLI.getPointerTy(DAG.getDataLayout()))};
3464 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3465 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3466 break;
3467 }
3468 }
3469 } else if (I.hasDeoptState()) {
3470 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3471 // Eventually we will support lowering the @llvm.experimental.deoptimize
3472 // intrinsic, and right now there are no plans to support other intrinsics
3473 // with deopt state.
3474 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3475 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3477 } else {
3478 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3479 }
3480
3481 // If the value of the invoke is used outside of its defining block, make it
3482 // available as a virtual register.
3483 // We already took care of the exported value for the statepoint instruction
3484 // during call to the LowerStatepoint.
3485 if (!isa<GCStatepointInst>(I)) {
3487 }
3488
3490 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3491 BranchProbability EHPadBBProb =
3492 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3494 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3495
3496 // Update successor info.
3497 addSuccessorWithProb(InvokeMBB, Return);
3498 for (auto &UnwindDest : UnwindDests) {
3499 UnwindDest.first->setIsEHPad();
3500 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3501 }
3502 InvokeMBB->normalizeSuccProbs();
3503
3504 // Drop into normal successor.
3505 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3506 DAG.getBasicBlock(Return)));
3507}
3508
3509/// The intrinsics currently supported by callbr are implicit control flow
3510/// intrinsics such as amdgcn.kill.
3511/// - they should be called (no "dontcall-" attributes)
3512/// - they do not touch memory on the target (= !TLI.getTgtMemIntrinsic())
3513/// - they do not need custom argument handling (no
3514/// TLI.CollectTargetIntrinsicOperands())
3515void SelectionDAGBuilder::visitCallBrIntrinsic(const CallBrInst &I) {
3516 TargetLowering::IntrinsicInfo Info;
3517 assert(!DAG.getTargetLoweringInfo().getTgtMemIntrinsic(
3518 Info, I, DAG.getMachineFunction(), I.getIntrinsicID()) &&
3519 "Intrinsic touches memory");
3520
3521 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
3522
3524 getTargetIntrinsicOperands(I, HasChain, OnlyLoad);
3525 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
3526
3527 // Create the node.
3528 SDValue Result =
3529 getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
3530 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
3531
3532 setValue(&I, Result);
3533}
3534
3535void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3536 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3537
3538 if (I.isInlineAsm()) {
3539 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3540 // have to do anything here to lower funclet bundles.
3541 failForInvalidBundles(I, "callbrs",
3543 visitInlineAsm(I);
3544 } else {
3545 assert(!I.hasOperandBundles() &&
3546 "Can't have operand bundles for intrinsics");
3547 visitCallBrIntrinsic(I);
3548 }
3550
3551 // Retrieve successors.
3552 SmallPtrSet<BasicBlock *, 8> Dests;
3553 Dests.insert(I.getDefaultDest());
3554 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3555
3556 // Update successor info.
3557 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3558 // TODO: For most of the cases where there is an intrinsic callbr, we're
3559 // having exactly one indirect target, which will be unreachable. As soon as
3560 // this changes, we might need to enhance
3561 // Target->setIsInlineAsmBrIndirectTarget or add something similar for
3562 // intrinsic indirect branches.
3563 if (I.isInlineAsm()) {
3564 for (BasicBlock *Dest : I.getIndirectDests()) {
3565 MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3566 Target->setIsInlineAsmBrIndirectTarget();
3567 // If we introduce a type of asm goto statement that is permitted to use
3568 // an indirect call instruction to jump to its labels, then we should add
3569 // a call to Target->setMachineBlockAddressTaken() here, to mark the
3570 // target block as requiring a BTI.
3571
3572 Target->setLabelMustBeEmitted();
3573 // Don't add duplicate machine successors.
3574 if (Dests.insert(Dest).second)
3575 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3576 }
3577 }
3578 CallBrMBB->normalizeSuccProbs();
3579
3580 // Drop into default successor.
3581 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3582 MVT::Other, getControlRoot(),
3583 DAG.getBasicBlock(Return)));
3584}
3585
3586void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3587 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3588}
3589
3590void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3591 assert(FuncInfo.MBB->isEHPad() &&
3592 "Call to landingpad not in landing pad!");
3593
3594 // If there aren't registers to copy the values into (e.g., during SjLj
3595 // exceptions), then don't bother to create these DAG nodes.
3596 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3597 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3598 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3599 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3600 return;
3601
3602 // If landingpad's return type is token type, we don't create DAG nodes
3603 // for its exception pointer and selector value. The extraction of exception
3604 // pointer or selector value from token type landingpads is not currently
3605 // supported.
3606 if (LP.getType()->isTokenTy())
3607 return;
3608
3609 SmallVector<EVT, 2> ValueVTs;
3610 SDLoc dl = getCurSDLoc();
3611 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3612 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3613
3614 // Get the two live-in registers as SDValues. The physregs have already been
3615 // copied into virtual registers.
3616 SDValue Ops[2];
3617 if (FuncInfo.ExceptionPointerVirtReg) {
3618 Ops[0] = DAG.getZExtOrTrunc(
3619 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3620 FuncInfo.ExceptionPointerVirtReg,
3621 TLI.getPointerTy(DAG.getDataLayout())),
3622 dl, ValueVTs[0]);
3623 } else {
3624 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3625 }
3626 Ops[1] = DAG.getZExtOrTrunc(
3627 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3628 FuncInfo.ExceptionSelectorVirtReg,
3629 TLI.getPointerTy(DAG.getDataLayout())),
3630 dl, ValueVTs[1]);
3631
3632 // Merge into one.
3633 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3634 DAG.getVTList(ValueVTs), Ops);
3635 setValue(&LP, Res);
3636}
3637
3640 // Update JTCases.
3641 for (JumpTableBlock &JTB : SL->JTCases)
3642 if (JTB.first.HeaderBB == First)
3643 JTB.first.HeaderBB = Last;
3644
3645 // Update BitTestCases.
3646 for (BitTestBlock &BTB : SL->BitTestCases)
3647 if (BTB.Parent == First)
3648 BTB.Parent = Last;
3649}
3650
3651void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3652 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3653
3654 // Update machine-CFG edges with unique successors.
3656 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3657 BasicBlock *BB = I.getSuccessor(i);
3658 bool Inserted = Done.insert(BB).second;
3659 if (!Inserted)
3660 continue;
3661
3662 MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3663 addSuccessorWithProb(IndirectBrMBB, Succ);
3664 }
3665 IndirectBrMBB->normalizeSuccProbs();
3666
3668 MVT::Other, getControlRoot(),
3669 getValue(I.getAddress())));
3670}
3671
3672void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3673 if (!I.shouldLowerToTrap(DAG.getTarget().Options.TrapUnreachable,
3674 DAG.getTarget().Options.NoTrapAfterNoreturn))
3675 return;
3676
3677 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3678}
3679
3680void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3681 SDNodeFlags Flags;
3682 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3683 Flags.copyFMF(*FPOp);
3684
3685 SDValue Op = getValue(I.getOperand(0));
3686 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3687 Op, Flags);
3688 setValue(&I, UnNodeValue);
3689}
3690
3691void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3692 SDNodeFlags Flags;
3693 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3694 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3695 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3696 }
3697 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3698 Flags.setExact(ExactOp->isExact());
3699 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3700 Flags.setDisjoint(DisjointOp->isDisjoint());
3701 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3702 Flags.copyFMF(*FPOp);
3703
3704 SDValue Op1 = getValue(I.getOperand(0));
3705 SDValue Op2 = getValue(I.getOperand(1));
3706 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3707 Op1, Op2, Flags);
3708 setValue(&I, BinNodeValue);
3709}
3710
3711void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3712 SDValue Op1 = getValue(I.getOperand(0));
3713 SDValue Op2 = getValue(I.getOperand(1));
3714
3715 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3716 Op1.getValueType(), DAG.getDataLayout());
3717
3718 // Coerce the shift amount to the right type if we can. This exposes the
3719 // truncate or zext to optimization early.
3720 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3722 "Unexpected shift type");
3723 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3724 }
3725
3726 bool nuw = false;
3727 bool nsw = false;
3728 bool exact = false;
3729
3730 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3731
3732 if (const OverflowingBinaryOperator *OFBinOp =
3734 nuw = OFBinOp->hasNoUnsignedWrap();
3735 nsw = OFBinOp->hasNoSignedWrap();
3736 }
3737 if (const PossiblyExactOperator *ExactOp =
3739 exact = ExactOp->isExact();
3740 }
3741 SDNodeFlags Flags;
3742 Flags.setExact(exact);
3743 Flags.setNoSignedWrap(nsw);
3744 Flags.setNoUnsignedWrap(nuw);
3745 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3746 Flags);
3747 setValue(&I, Res);
3748}
3749
3750void SelectionDAGBuilder::visitSDiv(const User &I) {
3751 SDValue Op1 = getValue(I.getOperand(0));
3752 SDValue Op2 = getValue(I.getOperand(1));
3753
3754 SDNodeFlags Flags;
3755 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3756 cast<PossiblyExactOperator>(&I)->isExact());
3757 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3758 Op2, Flags));
3759}
3760
3761void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3762 ICmpInst::Predicate predicate = I.getPredicate();
3763 SDValue Op1 = getValue(I.getOperand(0));
3764 SDValue Op2 = getValue(I.getOperand(1));
3765 ISD::CondCode Opcode = getICmpCondCode(predicate);
3766
3767 auto &TLI = DAG.getTargetLoweringInfo();
3768 EVT MemVT =
3769 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3770
3771 // If a pointer's DAG type is larger than its memory type then the DAG values
3772 // are zero-extended. This breaks signed comparisons so truncate back to the
3773 // underlying type before doing the compare.
3774 if (Op1.getValueType() != MemVT) {
3775 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3776 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3777 }
3778
3779 SDNodeFlags Flags;
3780 Flags.setSameSign(I.hasSameSign());
3781 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3782
3783 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3784 I.getType());
3785 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3786}
3787
3788void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3789 FCmpInst::Predicate predicate = I.getPredicate();
3790 SDValue Op1 = getValue(I.getOperand(0));
3791 SDValue Op2 = getValue(I.getOperand(1));
3792
3793 ISD::CondCode Condition = getFCmpCondCode(predicate);
3794 auto *FPMO = cast<FPMathOperator>(&I);
3795 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3796 Condition = getFCmpCodeWithoutNaN(Condition);
3797
3798 SDNodeFlags Flags;
3799 Flags.copyFMF(*FPMO);
3800 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3801
3802 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3803 I.getType());
3804 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3805}
3806
3807// Check if the condition of the select has one use or two users that are both
3808// selects with the same condition.
3809static bool hasOnlySelectUsers(const Value *Cond) {
3810 return llvm::all_of(Cond->users(), [](const Value *V) {
3811 return isa<SelectInst>(V);
3812 });
3813}
3814
3815void SelectionDAGBuilder::visitSelect(const User &I) {
3816 SmallVector<EVT, 4> ValueVTs;
3817 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3818 ValueVTs);
3819 unsigned NumValues = ValueVTs.size();
3820 if (NumValues == 0) return;
3821
3822 SmallVector<SDValue, 4> Values(NumValues);
3823 SDValue Cond = getValue(I.getOperand(0));
3824 SDValue LHSVal = getValue(I.getOperand(1));
3825 SDValue RHSVal = getValue(I.getOperand(2));
3826 SmallVector<SDValue, 1> BaseOps(1, Cond);
3828 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3829
3830 bool IsUnaryAbs = false;
3831 bool Negate = false;
3832
3833 SDNodeFlags Flags;
3834 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3835 Flags.copyFMF(*FPOp);
3836
3837 Flags.setUnpredictable(
3838 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3839
3840 // Min/max matching is only viable if all output VTs are the same.
3841 if (all_equal(ValueVTs)) {
3842 EVT VT = ValueVTs[0];
3843 LLVMContext &Ctx = *DAG.getContext();
3844 auto &TLI = DAG.getTargetLoweringInfo();
3845
3846 // We care about the legality of the operation after it has been type
3847 // legalized.
3848 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3849 VT = TLI.getTypeToTransformTo(Ctx, VT);
3850
3851 // If the vselect is legal, assume we want to leave this as a vector setcc +
3852 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3853 // min/max is legal on the scalar type.
3854 bool UseScalarMinMax = VT.isVector() &&
3856
3857 // ValueTracking's select pattern matching does not account for -0.0,
3858 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3859 // -0.0 is less than +0.0.
3860 const Value *LHS, *RHS;
3861 auto SPR = matchSelectPattern(&I, LHS, RHS);
3863 switch (SPR.Flavor) {
3864 case SPF_UMAX: Opc = ISD::UMAX; break;
3865 case SPF_UMIN: Opc = ISD::UMIN; break;
3866 case SPF_SMAX: Opc = ISD::SMAX; break;
3867 case SPF_SMIN: Opc = ISD::SMIN; break;
3868 case SPF_FMINNUM:
3869 switch (SPR.NaNBehavior) {
3870 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3871 case SPNB_RETURNS_NAN: break;
3872 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3873 case SPNB_RETURNS_ANY:
3875 (UseScalarMinMax &&
3877 Opc = ISD::FMINNUM;
3878 break;
3879 }
3880 break;
3881 case SPF_FMAXNUM:
3882 switch (SPR.NaNBehavior) {
3883 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3884 case SPNB_RETURNS_NAN: break;
3885 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3886 case SPNB_RETURNS_ANY:
3888 (UseScalarMinMax &&
3890 Opc = ISD::FMAXNUM;
3891 break;
3892 }
3893 break;
3894 case SPF_NABS:
3895 Negate = true;
3896 [[fallthrough]];
3897 case SPF_ABS:
3898 IsUnaryAbs = true;
3899 Opc = ISD::ABS;
3900 break;
3901 default: break;
3902 }
3903
3904 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3905 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3906 (UseScalarMinMax &&
3908 // If the underlying comparison instruction is used by any other
3909 // instruction, the consumed instructions won't be destroyed, so it is
3910 // not profitable to convert to a min/max.
3912 OpCode = Opc;
3913 LHSVal = getValue(LHS);
3914 RHSVal = getValue(RHS);
3915 BaseOps.clear();
3916 }
3917
3918 if (IsUnaryAbs) {
3919 OpCode = Opc;
3920 LHSVal = getValue(LHS);
3921 BaseOps.clear();
3922 }
3923 }
3924
3925 if (IsUnaryAbs) {
3926 for (unsigned i = 0; i != NumValues; ++i) {
3927 SDLoc dl = getCurSDLoc();
3928 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3929 Values[i] =
3930 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3931 if (Negate)
3932 Values[i] = DAG.getNegative(Values[i], dl, VT);
3933 }
3934 } else {
3935 for (unsigned i = 0; i != NumValues; ++i) {
3936 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3937 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3938 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3939 Values[i] = DAG.getNode(
3940 OpCode, getCurSDLoc(),
3941 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3942 }
3943 }
3944
3946 DAG.getVTList(ValueVTs), Values));
3947}
3948
3949void SelectionDAGBuilder::visitTrunc(const User &I) {
3950 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3951 SDValue N = getValue(I.getOperand(0));
3952 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3953 I.getType());
3954 SDNodeFlags Flags;
3955 if (auto *Trunc = dyn_cast<TruncInst>(&I)) {
3956 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3957 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3958 }
3959
3960 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags));
3961}
3962
3963void SelectionDAGBuilder::visitZExt(const User &I) {
3964 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3965 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3966 SDValue N = getValue(I.getOperand(0));
3967 auto &TLI = DAG.getTargetLoweringInfo();
3968 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3969
3970 SDNodeFlags Flags;
3971 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3972 Flags.setNonNeg(PNI->hasNonNeg());
3973
3974 // Eagerly use nonneg information to canonicalize towards sign_extend if
3975 // that is the target's preference.
3976 // TODO: Let the target do this later.
3977 if (Flags.hasNonNeg() &&
3978 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3979 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3980 return;
3981 }
3982
3983 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3984}
3985
3986void SelectionDAGBuilder::visitSExt(const User &I) {
3987 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3988 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3989 SDValue N = getValue(I.getOperand(0));
3990 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3991 I.getType());
3992 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3993}
3994
3995void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3996 // FPTrunc is never a no-op cast, no need to check
3997 SDValue N = getValue(I.getOperand(0));
3998 SDLoc dl = getCurSDLoc();
3999 SDNodeFlags Flags;
4000 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4001 Flags.copyFMF(*FPOp);
4002 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4003 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4004 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
4005 DAG.getTargetConstant(
4006 0, dl, TLI.getPointerTy(DAG.getDataLayout())),
4007 Flags));
4008}
4009
4010void SelectionDAGBuilder::visitFPExt(const User &I) {
4011 // FPExt is never a no-op cast, no need to check
4012 SDValue N = getValue(I.getOperand(0));
4013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4014 I.getType());
4015 SDNodeFlags Flags;
4016 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4017 Flags.copyFMF(*FPOp);
4018 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N, Flags));
4019}
4020
4021void SelectionDAGBuilder::visitFPToUI(const User &I) {
4022 // FPToUI is never a no-op cast, no need to check
4023 SDValue N = getValue(I.getOperand(0));
4024 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4025 I.getType());
4026 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
4027}
4028
4029void SelectionDAGBuilder::visitFPToSI(const User &I) {
4030 // FPToSI is never a no-op cast, no need to check
4031 SDValue N = getValue(I.getOperand(0));
4032 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4033 I.getType());
4034 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
4035}
4036
4037void SelectionDAGBuilder::visitUIToFP(const User &I) {
4038 // UIToFP is never a no-op cast, no need to check
4039 SDValue N = getValue(I.getOperand(0));
4040 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4041 I.getType());
4042 SDNodeFlags Flags;
4043 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
4044 Flags.setNonNeg(PNI->hasNonNeg());
4045
4046 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
4047}
4048
4049void SelectionDAGBuilder::visitSIToFP(const User &I) {
4050 // SIToFP is never a no-op cast, no need to check
4051 SDValue N = getValue(I.getOperand(0));
4052 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4053 I.getType());
4054 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
4055}
4056
4057void SelectionDAGBuilder::visitPtrToAddr(const User &I) {
4058 SDValue N = getValue(I.getOperand(0));
4059 // By definition the type of the ptrtoaddr must be equal to the address type.
4060 const auto &TLI = DAG.getTargetLoweringInfo();
4061 EVT AddrVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4062 // The address width must be smaller or equal to the pointer representation
4063 // width, so we lower ptrtoaddr as a truncate (possibly folded to a no-op).
4064 N = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), AddrVT, N);
4065 setValue(&I, N);
4066}
4067
4068void SelectionDAGBuilder::visitPtrToInt(const User &I) {
4069 // What to do depends on the size of the integer and the size of the pointer.
4070 // We can either truncate, zero extend, or no-op, accordingly.
4071 SDValue N = getValue(I.getOperand(0));
4072 auto &TLI = DAG.getTargetLoweringInfo();
4073 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4074 I.getType());
4075 EVT PtrMemVT =
4076 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
4077 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4078 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
4079 setValue(&I, N);
4080}
4081
4082void SelectionDAGBuilder::visitIntToPtr(const User &I) {
4083 // What to do depends on the size of the integer and the size of the pointer.
4084 // We can either truncate, zero extend, or no-op, accordingly.
4085 SDValue N = getValue(I.getOperand(0));
4086 auto &TLI = DAG.getTargetLoweringInfo();
4087 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4088 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4089 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4090 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
4091 setValue(&I, N);
4092}
4093
4094void SelectionDAGBuilder::visitBitCast(const User &I) {
4095 SDValue N = getValue(I.getOperand(0));
4096 SDLoc dl = getCurSDLoc();
4097 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4098 I.getType());
4099
4100 // BitCast assures us that source and destination are the same size so this is
4101 // either a BITCAST or a no-op.
4102 if (DestVT != N.getValueType())
4103 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
4104 DestVT, N)); // convert types.
4105 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
4106 // might fold any kind of constant expression to an integer constant and that
4107 // is not what we are looking for. Only recognize a bitcast of a genuine
4108 // constant integer as an opaque constant.
4109 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
4110 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
4111 /*isOpaque*/true));
4112 else
4113 setValue(&I, N); // noop cast.
4114}
4115
4116void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
4117 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4118 const Value *SV = I.getOperand(0);
4119 SDValue N = getValue(SV);
4120 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4121
4122 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
4123 unsigned DestAS = I.getType()->getPointerAddressSpace();
4124
4125 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4126 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
4127
4128 setValue(&I, N);
4129}
4130
4131void SelectionDAGBuilder::visitInsertElement(const User &I) {
4132 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4133 SDValue InVec = getValue(I.getOperand(0));
4134 SDValue InVal = getValue(I.getOperand(1));
4135 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
4136 TLI.getVectorIdxTy(DAG.getDataLayout()));
4138 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4139 InVec, InVal, InIdx));
4140}
4141
4142void SelectionDAGBuilder::visitExtractElement(const User &I) {
4143 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4144 SDValue InVec = getValue(I.getOperand(0));
4145 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
4146 TLI.getVectorIdxTy(DAG.getDataLayout()));
4148 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4149 InVec, InIdx));
4150}
4151
4152void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4153 SDValue Src1 = getValue(I.getOperand(0));
4154 SDValue Src2 = getValue(I.getOperand(1));
4155 ArrayRef<int> Mask;
4156 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4157 Mask = SVI->getShuffleMask();
4158 else
4159 Mask = cast<ConstantExpr>(I).getShuffleMask();
4160 SDLoc DL = getCurSDLoc();
4161 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4162 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4163 EVT SrcVT = Src1.getValueType();
4164
4165 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4166 VT.isScalableVector()) {
4167 // Canonical splat form of first element of first input vector.
4168 SDValue FirstElt =
4169 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4170 DAG.getVectorIdxConstant(0, DL));
4171 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4172 return;
4173 }
4174
4175 // For now, we only handle splats for scalable vectors.
4176 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4177 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4178 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4179
4180 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4181 unsigned MaskNumElts = Mask.size();
4182
4183 if (SrcNumElts == MaskNumElts) {
4184 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4185 return;
4186 }
4187
4188 // Normalize the shuffle vector since mask and vector length don't match.
4189 if (SrcNumElts < MaskNumElts) {
4190 // Mask is longer than the source vectors. We can use concatenate vector to
4191 // make the mask and vectors lengths match.
4192
4193 if (MaskNumElts % SrcNumElts == 0) {
4194 // Mask length is a multiple of the source vector length.
4195 // Check if the shuffle is some kind of concatenation of the input
4196 // vectors.
4197 unsigned NumConcat = MaskNumElts / SrcNumElts;
4198 bool IsConcat = true;
4199 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4200 for (unsigned i = 0; i != MaskNumElts; ++i) {
4201 int Idx = Mask[i];
4202 if (Idx < 0)
4203 continue;
4204 // Ensure the indices in each SrcVT sized piece are sequential and that
4205 // the same source is used for the whole piece.
4206 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4207 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4208 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4209 IsConcat = false;
4210 break;
4211 }
4212 // Remember which source this index came from.
4213 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4214 }
4215
4216 // The shuffle is concatenating multiple vectors together. Just emit
4217 // a CONCAT_VECTORS operation.
4218 if (IsConcat) {
4219 SmallVector<SDValue, 8> ConcatOps;
4220 for (auto Src : ConcatSrcs) {
4221 if (Src < 0)
4222 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4223 else if (Src == 0)
4224 ConcatOps.push_back(Src1);
4225 else
4226 ConcatOps.push_back(Src2);
4227 }
4228 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4229 return;
4230 }
4231 }
4232
4233 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4234 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4235 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4236 PaddedMaskNumElts);
4237
4238 // Pad both vectors with undefs to make them the same length as the mask.
4239 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4240
4241 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4242 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4243 MOps1[0] = Src1;
4244 MOps2[0] = Src2;
4245
4246 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4247 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4248
4249 // Readjust mask for new input vector length.
4250 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4251 for (unsigned i = 0; i != MaskNumElts; ++i) {
4252 int Idx = Mask[i];
4253 if (Idx >= (int)SrcNumElts)
4254 Idx -= SrcNumElts - PaddedMaskNumElts;
4255 MappedOps[i] = Idx;
4256 }
4257
4258 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4259
4260 // If the concatenated vector was padded, extract a subvector with the
4261 // correct number of elements.
4262 if (MaskNumElts != PaddedMaskNumElts)
4263 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4264 DAG.getVectorIdxConstant(0, DL));
4265
4266 setValue(&I, Result);
4267 return;
4268 }
4269
4270 assert(SrcNumElts > MaskNumElts);
4271
4272 // Analyze the access pattern of the vector to see if we can extract
4273 // two subvectors and do the shuffle.
4274 int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4275 bool CanExtract = true;
4276 for (int Idx : Mask) {
4277 unsigned Input = 0;
4278 if (Idx < 0)
4279 continue;
4280
4281 if (Idx >= (int)SrcNumElts) {
4282 Input = 1;
4283 Idx -= SrcNumElts;
4284 }
4285
4286 // If all the indices come from the same MaskNumElts sized portion of
4287 // the sources we can use extract. Also make sure the extract wouldn't
4288 // extract past the end of the source.
4289 int NewStartIdx = alignDown(Idx, MaskNumElts);
4290 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4291 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4292 CanExtract = false;
4293 // Make sure we always update StartIdx as we use it to track if all
4294 // elements are undef.
4295 StartIdx[Input] = NewStartIdx;
4296 }
4297
4298 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4299 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4300 return;
4301 }
4302 if (CanExtract) {
4303 // Extract appropriate subvector and generate a vector shuffle
4304 for (unsigned Input = 0; Input < 2; ++Input) {
4305 SDValue &Src = Input == 0 ? Src1 : Src2;
4306 if (StartIdx[Input] < 0)
4307 Src = DAG.getUNDEF(VT);
4308 else {
4309 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4310 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4311 }
4312 }
4313
4314 // Calculate new mask.
4315 SmallVector<int, 8> MappedOps(Mask);
4316 for (int &Idx : MappedOps) {
4317 if (Idx >= (int)SrcNumElts)
4318 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4319 else if (Idx >= 0)
4320 Idx -= StartIdx[0];
4321 }
4322
4323 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4324 return;
4325 }
4326
4327 // We can't use either concat vectors or extract subvectors so fall back to
4328 // replacing the shuffle with extract and build vector.
4329 // to insert and build vector.
4330 EVT EltVT = VT.getVectorElementType();
4332 for (int Idx : Mask) {
4333 SDValue Res;
4334
4335 if (Idx < 0) {
4336 Res = DAG.getUNDEF(EltVT);
4337 } else {
4338 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4339 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4340
4341 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4342 DAG.getVectorIdxConstant(Idx, DL));
4343 }
4344
4345 Ops.push_back(Res);
4346 }
4347
4348 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4349}
4350
4351void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4352 ArrayRef<unsigned> Indices = I.getIndices();
4353 const Value *Op0 = I.getOperand(0);
4354 const Value *Op1 = I.getOperand(1);
4355 Type *AggTy = I.getType();
4356 Type *ValTy = Op1->getType();
4357 bool IntoUndef = isa<UndefValue>(Op0);
4358 bool FromUndef = isa<UndefValue>(Op1);
4359
4360 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4361
4362 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4363 SmallVector<EVT, 4> AggValueVTs;
4364 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4365 SmallVector<EVT, 4> ValValueVTs;
4366 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4367
4368 unsigned NumAggValues = AggValueVTs.size();
4369 unsigned NumValValues = ValValueVTs.size();
4370 SmallVector<SDValue, 4> Values(NumAggValues);
4371
4372 // Ignore an insertvalue that produces an empty object
4373 if (!NumAggValues) {
4374 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4375 return;
4376 }
4377
4378 SDValue Agg = getValue(Op0);
4379 unsigned i = 0;
4380 // Copy the beginning value(s) from the original aggregate.
4381 for (; i != LinearIndex; ++i)
4382 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4383 SDValue(Agg.getNode(), Agg.getResNo() + i);
4384 // Copy values from the inserted value(s).
4385 if (NumValValues) {
4386 SDValue Val = getValue(Op1);
4387 for (; i != LinearIndex + NumValValues; ++i)
4388 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4389 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4390 }
4391 // Copy remaining value(s) from the original aggregate.
4392 for (; i != NumAggValues; ++i)
4393 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4394 SDValue(Agg.getNode(), Agg.getResNo() + i);
4395
4397 DAG.getVTList(AggValueVTs), Values));
4398}
4399
4400void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4401 ArrayRef<unsigned> Indices = I.getIndices();
4402 const Value *Op0 = I.getOperand(0);
4403 Type *AggTy = Op0->getType();
4404 Type *ValTy = I.getType();
4405 bool OutOfUndef = isa<UndefValue>(Op0);
4406
4407 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4408
4409 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4410 SmallVector<EVT, 4> ValValueVTs;
4411 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4412
4413 unsigned NumValValues = ValValueVTs.size();
4414
4415 // Ignore a extractvalue that produces an empty object
4416 if (!NumValValues) {
4417 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4418 return;
4419 }
4420
4421 SmallVector<SDValue, 4> Values(NumValValues);
4422
4423 SDValue Agg = getValue(Op0);
4424 // Copy out the selected value(s).
4425 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4426 Values[i - LinearIndex] =
4427 OutOfUndef ?
4428 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4429 SDValue(Agg.getNode(), Agg.getResNo() + i);
4430
4432 DAG.getVTList(ValValueVTs), Values));
4433}
4434
4435void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4436 Value *Op0 = I.getOperand(0);
4437 // Note that the pointer operand may be a vector of pointers. Take the scalar
4438 // element which holds a pointer.
4439 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4440 SDValue N = getValue(Op0);
4441 SDLoc dl = getCurSDLoc();
4442 auto &TLI = DAG.getTargetLoweringInfo();
4443 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4444
4445 // For a vector GEP, keep the prefix scalar as long as possible, then
4446 // convert any scalars encountered after the first vector operand to vectors.
4447 bool IsVectorGEP = I.getType()->isVectorTy();
4448 ElementCount VectorElementCount =
4449 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4451
4453 GTI != E; ++GTI) {
4454 const Value *Idx = GTI.getOperand();
4455 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4456 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4457 if (Field) {
4458 // N = N + Offset
4459 uint64_t Offset =
4460 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4461
4462 // In an inbounds GEP with an offset that is nonnegative even when
4463 // interpreted as signed, assume there is no unsigned overflow.
4464 SDNodeFlags Flags;
4465 if (NW.hasNoUnsignedWrap() ||
4466 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4468 Flags.setInBounds(NW.isInBounds());
4469
4470 N = DAG.getMemBasePlusOffset(
4471 N, DAG.getConstant(Offset, dl, N.getValueType()), dl, Flags);
4472 }
4473 } else {
4474 // IdxSize is the width of the arithmetic according to IR semantics.
4475 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4476 // (and fix up the result later).
4477 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4478 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4479 TypeSize ElementSize =
4480 GTI.getSequentialElementStride(DAG.getDataLayout());
4481 // We intentionally mask away the high bits here; ElementSize may not
4482 // fit in IdxTy.
4483 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4484 /*isSigned=*/false, /*implicitTrunc=*/true);
4485 bool ElementScalable = ElementSize.isScalable();
4486
4487 // If this is a scalar constant or a splat vector of constants,
4488 // handle it quickly.
4489 const auto *C = dyn_cast<Constant>(Idx);
4490 if (C && isa<VectorType>(C->getType()))
4491 C = C->getSplatValue();
4492
4493 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4494 if (CI && CI->isZero())
4495 continue;
4496 if (CI && !ElementScalable) {
4497 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4498 LLVMContext &Context = *DAG.getContext();
4499 SDValue OffsVal;
4500 if (N.getValueType().isVector())
4501 OffsVal = DAG.getConstant(
4502 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4503 else
4504 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4505
4506 // In an inbounds GEP with an offset that is nonnegative even when
4507 // interpreted as signed, assume there is no unsigned overflow.
4508 SDNodeFlags Flags;
4509 if (NW.hasNoUnsignedWrap() ||
4510 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4511 Flags.setNoUnsignedWrap(true);
4512 Flags.setInBounds(NW.isInBounds());
4513
4514 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4515
4516 N = DAG.getMemBasePlusOffset(N, OffsVal, dl, Flags);
4517 continue;
4518 }
4519
4520 // N = N + Idx * ElementMul;
4521 SDValue IdxN = getValue(Idx);
4522
4523 if (IdxN.getValueType().isVector() != N.getValueType().isVector()) {
4524 if (N.getValueType().isVector()) {
4525 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4526 VectorElementCount);
4527 IdxN = DAG.getSplat(VT, dl, IdxN);
4528 } else {
4529 EVT VT =
4530 EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4531 N = DAG.getSplat(VT, dl, N);
4532 }
4533 }
4534
4535 // If the index is smaller or larger than intptr_t, truncate or extend
4536 // it.
4537 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4538
4539 SDNodeFlags ScaleFlags;
4540 // The multiplication of an index by the type size does not wrap the
4541 // pointer index type in a signed sense (mul nsw).
4543
4544 // The multiplication of an index by the type size does not wrap the
4545 // pointer index type in an unsigned sense (mul nuw).
4546 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4547
4548 if (ElementScalable) {
4549 EVT VScaleTy = N.getValueType().getScalarType();
4550 SDValue VScale = DAG.getNode(
4551 ISD::VSCALE, dl, VScaleTy,
4552 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4553 if (N.getValueType().isVector())
4554 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4555 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4556 ScaleFlags);
4557 } else {
4558 // If this is a multiply by a power of two, turn it into a shl
4559 // immediately. This is a very common case.
4560 if (ElementMul != 1) {
4561 if (ElementMul.isPowerOf2()) {
4562 unsigned Amt = ElementMul.logBase2();
4563 IdxN = DAG.getNode(
4564 ISD::SHL, dl, N.getValueType(), IdxN,
4565 DAG.getShiftAmountConstant(Amt, N.getValueType(), dl),
4566 ScaleFlags);
4567 } else {
4568 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4569 IdxN.getValueType());
4570 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4571 ScaleFlags);
4572 }
4573 }
4574 }
4575
4576 // The successive addition of the current address, truncated to the
4577 // pointer index type and interpreted as an unsigned number, and each
4578 // offset, also interpreted as an unsigned number, does not wrap the
4579 // pointer index type (add nuw).
4580 SDNodeFlags AddFlags;
4581 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4582 AddFlags.setInBounds(NW.isInBounds());
4583
4584 N = DAG.getMemBasePlusOffset(N, IdxN, dl, AddFlags);
4585 }
4586 }
4587
4588 if (IsVectorGEP && !N.getValueType().isVector()) {
4589 EVT VT = EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4590 N = DAG.getSplat(VT, dl, N);
4591 }
4592
4593 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4594 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4595 if (IsVectorGEP) {
4596 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4597 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4598 }
4599
4600 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4601 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4602
4603 setValue(&I, N);
4604}
4605
4606void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4607 // If this is a fixed sized alloca in the entry block of the function,
4608 // allocate it statically on the stack.
4609 if (FuncInfo.StaticAllocaMap.count(&I))
4610 return; // getValue will auto-populate this.
4611
4612 SDLoc dl = getCurSDLoc();
4613 Type *Ty = I.getAllocatedType();
4614 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4615 auto &DL = DAG.getDataLayout();
4616 TypeSize TySize = DL.getTypeAllocSize(Ty);
4617 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4618
4619 SDValue AllocSize = getValue(I.getArraySize());
4620
4621 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4622 if (AllocSize.getValueType() != IntPtr)
4623 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4624
4625 AllocSize = DAG.getNode(
4626 ISD::MUL, dl, IntPtr, AllocSize,
4627 DAG.getZExtOrTrunc(DAG.getTypeSize(dl, MVT::i64, TySize), dl, IntPtr));
4628
4629 // Handle alignment. If the requested alignment is less than or equal to
4630 // the stack alignment, ignore it. If the size is greater than or equal to
4631 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4632 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4633 if (*Alignment <= StackAlign)
4634 Alignment = std::nullopt;
4635
4636 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4637 // Round the size of the allocation up to the stack alignment size
4638 // by add SA-1 to the size. This doesn't overflow because we're computing
4639 // an address inside an alloca.
4640 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4641 DAG.getConstant(StackAlignMask, dl, IntPtr),
4643
4644 // Mask out the low bits for alignment purposes.
4645 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4646 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4647
4648 SDValue Ops[] = {
4649 getRoot(), AllocSize,
4650 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4651 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4652 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4653 setValue(&I, DSA);
4654 DAG.setRoot(DSA.getValue(1));
4655
4656 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4657}
4658
4659static const MDNode *getRangeMetadata(const Instruction &I) {
4660 return I.getMetadata(LLVMContext::MD_range);
4661}
4662
4663static std::optional<ConstantRange> getRange(const Instruction &I) {
4664 if (const auto *CB = dyn_cast<CallBase>(&I))
4665 if (std::optional<ConstantRange> CR = CB->getRange())
4666 return CR;
4667 if (const MDNode *Range = getRangeMetadata(I))
4669 return std::nullopt;
4670}
4671
4673 if (const auto *CB = dyn_cast<CallBase>(&I))
4674 return CB->getRetNoFPClass();
4675 return fcNone;
4676}
4677
4678void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4679 if (I.isAtomic())
4680 return visitAtomicLoad(I);
4681
4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4683 const Value *SV = I.getOperand(0);
4684 if (TLI.supportSwiftError()) {
4685 // Swifterror values can come from either a function parameter with
4686 // swifterror attribute or an alloca with swifterror attribute.
4687 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4688 if (Arg->hasSwiftErrorAttr())
4689 return visitLoadFromSwiftError(I);
4690 }
4691
4692 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4693 if (Alloca->isSwiftError())
4694 return visitLoadFromSwiftError(I);
4695 }
4696 }
4697
4698 SDValue Ptr = getValue(SV);
4699
4700 Type *Ty = I.getType();
4701 SmallVector<EVT, 4> ValueVTs, MemVTs;
4703 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4704 unsigned NumValues = ValueVTs.size();
4705 if (NumValues == 0)
4706 return;
4707
4708 Align Alignment = I.getAlign();
4709 AAMDNodes AAInfo = I.getAAMetadata();
4710 const MDNode *Ranges = getRangeMetadata(I);
4711 bool isVolatile = I.isVolatile();
4712 MachineMemOperand::Flags MMOFlags =
4713 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4714
4715 SDValue Root;
4716 bool ConstantMemory = false;
4717 if (isVolatile)
4718 // Serialize volatile loads with other side effects.
4719 Root = getRoot();
4720 else if (NumValues > MaxParallelChains)
4721 Root = getMemoryRoot();
4722 else if (BatchAA &&
4723 BatchAA->pointsToConstantMemory(MemoryLocation(
4724 SV,
4725 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4726 AAInfo))) {
4727 // Do not serialize (non-volatile) loads of constant memory with anything.
4728 Root = DAG.getEntryNode();
4729 ConstantMemory = true;
4731 } else {
4732 // Do not serialize non-volatile loads against each other.
4733 Root = DAG.getRoot();
4734 }
4735
4736 SDLoc dl = getCurSDLoc();
4737
4738 if (isVolatile)
4739 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4740
4741 SmallVector<SDValue, 4> Values(NumValues);
4742 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4743
4744 unsigned ChainI = 0;
4745 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4746 // Serializing loads here may result in excessive register pressure, and
4747 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4748 // could recover a bit by hoisting nodes upward in the chain by recognizing
4749 // they are side-effect free or do not alias. The optimizer should really
4750 // avoid this case by converting large object/array copies to llvm.memcpy
4751 // (MaxParallelChains should always remain as failsafe).
4752 if (ChainI == MaxParallelChains) {
4753 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4754 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4755 ArrayRef(Chains.data(), ChainI));
4756 Root = Chain;
4757 ChainI = 0;
4758 }
4759
4760 // TODO: MachinePointerInfo only supports a fixed length offset.
4761 MachinePointerInfo PtrInfo =
4762 !Offsets[i].isScalable() || Offsets[i].isZero()
4763 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4764 : MachinePointerInfo();
4765
4766 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4767 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4768 MMOFlags, AAInfo, Ranges);
4769 Chains[ChainI] = L.getValue(1);
4770
4771 if (MemVTs[i] != ValueVTs[i])
4772 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4773
4774 Values[i] = L;
4775 }
4776
4777 if (!ConstantMemory) {
4778 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4779 ArrayRef(Chains.data(), ChainI));
4780 if (isVolatile)
4781 DAG.setRoot(Chain);
4782 else
4783 PendingLoads.push_back(Chain);
4784 }
4785
4786 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4787 DAG.getVTList(ValueVTs), Values));
4788}
4789
4790void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4791 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4792 "call visitStoreToSwiftError when backend supports swifterror");
4793
4794 SmallVector<EVT, 4> ValueVTs;
4795 SmallVector<uint64_t, 4> Offsets;
4796 const Value *SrcV = I.getOperand(0);
4797 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4798 SrcV->getType(), ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4799 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4800 "expect a single EVT for swifterror");
4801
4802 SDValue Src = getValue(SrcV);
4803 // Create a virtual register, then update the virtual register.
4804 Register VReg =
4805 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4806 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4807 // Chain can be getRoot or getControlRoot.
4808 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4809 SDValue(Src.getNode(), Src.getResNo()));
4810 DAG.setRoot(CopyNode);
4811}
4812
4813void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4814 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4815 "call visitLoadFromSwiftError when backend supports swifterror");
4816
4817 assert(!I.isVolatile() &&
4818 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4819 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4820 "Support volatile, non temporal, invariant for load_from_swift_error");
4821
4822 const Value *SV = I.getOperand(0);
4823 Type *Ty = I.getType();
4824 assert(
4825 (!BatchAA ||
4826 !BatchAA->pointsToConstantMemory(MemoryLocation(
4827 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4828 I.getAAMetadata()))) &&
4829 "load_from_swift_error should not be constant memory");
4830
4831 SmallVector<EVT, 4> ValueVTs;
4832 SmallVector<uint64_t, 4> Offsets;
4833 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4834 ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4835 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4836 "expect a single EVT for swifterror");
4837
4838 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4839 SDValue L = DAG.getCopyFromReg(
4840 getRoot(), getCurSDLoc(),
4841 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4842
4843 setValue(&I, L);
4844}
4845
4846void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4847 if (I.isAtomic())
4848 return visitAtomicStore(I);
4849
4850 const Value *SrcV = I.getOperand(0);
4851 const Value *PtrV = I.getOperand(1);
4852
4853 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4854 if (TLI.supportSwiftError()) {
4855 // Swifterror values can come from either a function parameter with
4856 // swifterror attribute or an alloca with swifterror attribute.
4857 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4858 if (Arg->hasSwiftErrorAttr())
4859 return visitStoreToSwiftError(I);
4860 }
4861
4862 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4863 if (Alloca->isSwiftError())
4864 return visitStoreToSwiftError(I);
4865 }
4866 }
4867
4868 SmallVector<EVT, 4> ValueVTs, MemVTs;
4870 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4871 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4872 unsigned NumValues = ValueVTs.size();
4873 if (NumValues == 0)
4874 return;
4875
4876 // Get the lowered operands. Note that we do this after
4877 // checking if NumResults is zero, because with zero results
4878 // the operands won't have values in the map.
4879 SDValue Src = getValue(SrcV);
4880 SDValue Ptr = getValue(PtrV);
4881
4882 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4883 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4884 SDLoc dl = getCurSDLoc();
4885 Align Alignment = I.getAlign();
4886 AAMDNodes AAInfo = I.getAAMetadata();
4887
4888 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4889
4890 unsigned ChainI = 0;
4891 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4892 // See visitLoad comments.
4893 if (ChainI == MaxParallelChains) {
4894 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4895 ArrayRef(Chains.data(), ChainI));
4896 Root = Chain;
4897 ChainI = 0;
4898 }
4899
4900 // TODO: MachinePointerInfo only supports a fixed length offset.
4901 MachinePointerInfo PtrInfo =
4902 !Offsets[i].isScalable() || Offsets[i].isZero()
4903 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4904 : MachinePointerInfo();
4905
4906 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4907 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4908 if (MemVTs[i] != ValueVTs[i])
4909 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4910 SDValue St =
4911 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4912 Chains[ChainI] = St;
4913 }
4914
4915 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4916 ArrayRef(Chains.data(), ChainI));
4917 setValue(&I, StoreNode);
4918 DAG.setRoot(StoreNode);
4919}
4920
4921void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4922 bool IsCompressing) {
4923 SDLoc sdl = getCurSDLoc();
4924
4925 Value *Src0Operand = I.getArgOperand(0);
4926 Value *PtrOperand = I.getArgOperand(1);
4927 Value *MaskOperand = I.getArgOperand(2);
4928 Align Alignment = I.getParamAlign(1).valueOrOne();
4929
4930 SDValue Ptr = getValue(PtrOperand);
4931 SDValue Src0 = getValue(Src0Operand);
4932 SDValue Mask = getValue(MaskOperand);
4933 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4934
4935 EVT VT = Src0.getValueType();
4936
4937 auto MMOFlags = MachineMemOperand::MOStore;
4938 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4940
4941 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4942 MachinePointerInfo(PtrOperand), MMOFlags,
4943 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4944
4945 const auto &TLI = DAG.getTargetLoweringInfo();
4946
4947 SDValue StoreNode =
4948 !IsCompressing && TTI->hasConditionalLoadStoreForType(
4949 I.getArgOperand(0)->getType(), /*IsStore=*/true)
4950 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4951 Mask)
4952 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4953 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4954 IsCompressing);
4955 DAG.setRoot(StoreNode);
4956 setValue(&I, StoreNode);
4957}
4958
4959// Get a uniform base for the Gather/Scatter intrinsic.
4960// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4961// We try to represent it as a base pointer + vector of indices.
4962// Usually, the vector of pointers comes from a 'getelementptr' instruction.
4963// The first operand of the GEP may be a single pointer or a vector of pointers
4964// Example:
4965// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4966// or
4967// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4968// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4969//
4970// When the first GEP operand is a single pointer - it is the uniform base we
4971// are looking for. If first operand of the GEP is a splat vector - we
4972// extract the splat value and use it as a uniform base.
4973// In all other cases the function returns 'false'.
4974static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4975 SDValue &Scale, SelectionDAGBuilder *SDB,
4976 const BasicBlock *CurBB, uint64_t ElemSize) {
4977 SelectionDAG& DAG = SDB->DAG;
4978 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4979 const DataLayout &DL = DAG.getDataLayout();
4980
4981 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4982
4983 // Handle splat constant pointer.
4984 if (auto *C = dyn_cast<Constant>(Ptr)) {
4985 C = C->getSplatValue();
4986 if (!C)
4987 return false;
4988
4989 Base = SDB->getValue(C);
4990
4991 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4992 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4993 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4994 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4995 return true;
4996 }
4997
4999 if (!GEP || GEP->getParent() != CurBB)
5000 return false;
5001
5002 if (GEP->getNumOperands() != 2)
5003 return false;
5004
5005 const Value *BasePtr = GEP->getPointerOperand();
5006 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
5007
5008 // Make sure the base is scalar and the index is a vector.
5009 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
5010 return false;
5011
5012 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
5013 if (ScaleVal.isScalable())
5014 return false;
5015
5016 // Target may not support the required addressing mode.
5017 if (ScaleVal != 1 &&
5018 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
5019 return false;
5020
5021 Base = SDB->getValue(BasePtr);
5022 Index = SDB->getValue(IndexVal);
5023
5024 Scale =
5025 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
5026 return true;
5027}
5028
5029void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
5030 SDLoc sdl = getCurSDLoc();
5031
5032 // llvm.masked.scatter.*(Src0, Ptrs, Mask)
5033 const Value *Ptr = I.getArgOperand(1);
5034 SDValue Src0 = getValue(I.getArgOperand(0));
5035 SDValue Mask = getValue(I.getArgOperand(2));
5036 EVT VT = Src0.getValueType();
5037 Align Alignment = I.getParamAlign(1).valueOrOne();
5038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5039
5040 SDValue Base;
5041 SDValue Index;
5042 SDValue Scale;
5043 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5044 I.getParent(), VT.getScalarStoreSize());
5045
5046 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5047 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5048 MachinePointerInfo(AS), MachineMemOperand::MOStore,
5049 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
5050 if (!UniformBase) {
5051 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5052 Index = getValue(Ptr);
5053 Scale =
5054 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5055 }
5056
5057 EVT IdxVT = Index.getValueType();
5058 EVT EltTy = IdxVT.getVectorElementType();
5059 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5060 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5061 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5062 }
5063
5064 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
5065 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
5066 Ops, MMO, ISD::SIGNED_SCALED, false);
5067 DAG.setRoot(Scatter);
5068 setValue(&I, Scatter);
5069}
5070
5071void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
5072 SDLoc sdl = getCurSDLoc();
5073
5074 Value *PtrOperand = I.getArgOperand(0);
5075 Value *MaskOperand = I.getArgOperand(1);
5076 Value *Src0Operand = I.getArgOperand(2);
5077 Align Alignment = I.getParamAlign(0).valueOrOne();
5078
5079 SDValue Ptr = getValue(PtrOperand);
5080 SDValue Src0 = getValue(Src0Operand);
5081 SDValue Mask = getValue(MaskOperand);
5082 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
5083
5084 EVT VT = Src0.getValueType();
5085 AAMDNodes AAInfo = I.getAAMetadata();
5086 const MDNode *Ranges = getRangeMetadata(I);
5087
5088 // Do not serialize masked loads of constant memory with anything.
5089 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
5090 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
5091
5092 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
5093
5094 auto MMOFlags = MachineMemOperand::MOLoad;
5095 if (I.hasMetadata(LLVMContext::MD_nontemporal))
5097 if (I.hasMetadata(LLVMContext::MD_invariant_load))
5099
5100 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5101 MachinePointerInfo(PtrOperand), MMOFlags,
5102 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
5103
5104 const auto &TLI = DAG.getTargetLoweringInfo();
5105
5106 // The Load/Res may point to different values and both of them are output
5107 // variables.
5108 SDValue Load;
5109 SDValue Res;
5110 if (!IsExpanding &&
5111 TTI->hasConditionalLoadStoreForType(Src0Operand->getType(),
5112 /*IsStore=*/false))
5113 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5114 else
5115 Res = Load =
5116 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5117 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5118 if (AddToChain)
5119 PendingLoads.push_back(Load.getValue(1));
5120 setValue(&I, Res);
5121}
5122
5123void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5124 SDLoc sdl = getCurSDLoc();
5125
5126 // @llvm.masked.gather.*(Ptrs, Mask, Src0)
5127 const Value *Ptr = I.getArgOperand(0);
5128 SDValue Src0 = getValue(I.getArgOperand(2));
5129 SDValue Mask = getValue(I.getArgOperand(1));
5130
5131 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5132 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5133 Align Alignment = I.getParamAlign(0).valueOrOne();
5134
5135 const MDNode *Ranges = getRangeMetadata(I);
5136
5137 SDValue Root = DAG.getRoot();
5138 SDValue Base;
5139 SDValue Index;
5140 SDValue Scale;
5141 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5142 I.getParent(), VT.getScalarStoreSize());
5143 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5144 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5145 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5146 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5147 Ranges);
5148
5149 if (!UniformBase) {
5150 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5151 Index = getValue(Ptr);
5152 Scale =
5153 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5154 }
5155
5156 EVT IdxVT = Index.getValueType();
5157 EVT EltTy = IdxVT.getVectorElementType();
5158 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5159 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5160 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5161 }
5162
5163 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5164 SDValue Gather =
5165 DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, Ops, MMO,
5167
5168 PendingLoads.push_back(Gather.getValue(1));
5169 setValue(&I, Gather);
5170}
5171
5172void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5173 SDLoc dl = getCurSDLoc();
5174 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5175 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5176 SyncScope::ID SSID = I.getSyncScopeID();
5177
5178 SDValue InChain = getRoot();
5179
5180 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5181 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5182
5183 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5184 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5185
5186 MachineFunction &MF = DAG.getMachineFunction();
5187 MachineMemOperand *MMO = MF.getMachineMemOperand(
5188 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5189 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
5190 FailureOrdering);
5191
5193 dl, MemVT, VTs, InChain,
5194 getValue(I.getPointerOperand()),
5195 getValue(I.getCompareOperand()),
5196 getValue(I.getNewValOperand()), MMO);
5197
5198 SDValue OutChain = L.getValue(2);
5199
5200 setValue(&I, L);
5201 DAG.setRoot(OutChain);
5202}
5203
5204void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5205 SDLoc dl = getCurSDLoc();
5207 switch (I.getOperation()) {
5208 default: llvm_unreachable("Unknown atomicrmw operation");
5226 break;
5229 break;
5232 break;
5235 break;
5238 break;
5241 break;
5242 }
5243 AtomicOrdering Ordering = I.getOrdering();
5244 SyncScope::ID SSID = I.getSyncScopeID();
5245
5246 SDValue InChain = getRoot();
5247
5248 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5249 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5250 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5251
5252 MachineFunction &MF = DAG.getMachineFunction();
5253 MachineMemOperand *MMO = MF.getMachineMemOperand(
5254 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5255 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
5256
5257 SDValue L =
5258 DAG.getAtomic(NT, dl, MemVT, InChain,
5259 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5260 MMO);
5261
5262 SDValue OutChain = L.getValue(1);
5263
5264 setValue(&I, L);
5265 DAG.setRoot(OutChain);
5266}
5267
5268void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5269 SDLoc dl = getCurSDLoc();
5270 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5271 SDValue Ops[3];
5272 Ops[0] = getRoot();
5273 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5274 TLI.getFenceOperandTy(DAG.getDataLayout()));
5275 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5276 TLI.getFenceOperandTy(DAG.getDataLayout()));
5277 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5278 setValue(&I, N);
5279 DAG.setRoot(N);
5280}
5281
5282void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5283 SDLoc dl = getCurSDLoc();
5284 AtomicOrdering Order = I.getOrdering();
5285 SyncScope::ID SSID = I.getSyncScopeID();
5286
5287 SDValue InChain = getRoot();
5288
5289 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5290 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5291 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5292
5293 if (!TLI.supportsUnalignedAtomics() &&
5294 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5295 report_fatal_error("Cannot generate unaligned atomic load");
5296
5297 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5298
5299 const MDNode *Ranges = getRangeMetadata(I);
5300 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5301 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5302 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5303
5304 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5305
5306 SDValue Ptr = getValue(I.getPointerOperand());
5307 SDValue L =
5308 DAG.getAtomicLoad(ISD::NON_EXTLOAD, dl, MemVT, MemVT, InChain, Ptr, MMO);
5309
5310 SDValue OutChain = L.getValue(1);
5311 if (MemVT != VT)
5312 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5313
5314 setValue(&I, L);
5315 DAG.setRoot(OutChain);
5316}
5317
5318void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5319 SDLoc dl = getCurSDLoc();
5320
5321 AtomicOrdering Ordering = I.getOrdering();
5322 SyncScope::ID SSID = I.getSyncScopeID();
5323
5324 SDValue InChain = getRoot();
5325
5326 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5327 EVT MemVT =
5328 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5329
5330 if (!TLI.supportsUnalignedAtomics() &&
5331 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5332 report_fatal_error("Cannot generate unaligned atomic store");
5333
5334 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5335
5336 MachineFunction &MF = DAG.getMachineFunction();
5337 MachineMemOperand *MMO = MF.getMachineMemOperand(
5338 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5339 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
5340
5341 SDValue Val = getValue(I.getValueOperand());
5342 if (Val.getValueType() != MemVT)
5343 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5344 SDValue Ptr = getValue(I.getPointerOperand());
5345
5346 SDValue OutChain =
5347 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5348
5349 setValue(&I, OutChain);
5350 DAG.setRoot(OutChain);
5351}
5352
5353/// Check if this intrinsic call depends on the chain (1st return value)
5354/// and if it only *loads* memory.
5355/// Ignore the callsite's attributes. A specific call site may be marked with
5356/// readnone, but the lowering code will expect the chain based on the
5357/// definition.
5358std::pair<bool, bool>
5359SelectionDAGBuilder::getTargetIntrinsicCallProperties(const CallBase &I) {
5360 const Function *F = I.getCalledFunction();
5361 bool HasChain = !F->doesNotAccessMemory();
5362 bool OnlyLoad =
5363 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5364
5365 return {HasChain, OnlyLoad};
5366}
5367
5368SmallVector<SDValue, 8> SelectionDAGBuilder::getTargetIntrinsicOperands(
5369 const CallBase &I, bool HasChain, bool OnlyLoad,
5370 TargetLowering::IntrinsicInfo *TgtMemIntrinsicInfo) {
5371 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5372
5373 // Build the operand list.
5375 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5376 if (OnlyLoad) {
5377 // We don't need to serialize loads against other loads.
5378 Ops.push_back(DAG.getRoot());
5379 } else {
5380 Ops.push_back(getRoot());
5381 }
5382 }
5383
5384 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5385 if (!TgtMemIntrinsicInfo || TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_VOID ||
5386 TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_W_CHAIN)
5387 Ops.push_back(DAG.getTargetConstant(I.getIntrinsicID(), getCurSDLoc(),
5388 TLI.getPointerTy(DAG.getDataLayout())));
5389
5390 // Add all operands of the call to the operand list.
5391 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5392 const Value *Arg = I.getArgOperand(i);
5393 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5394 Ops.push_back(getValue(Arg));
5395 continue;
5396 }
5397
5398 // Use TargetConstant instead of a regular constant for immarg.
5399 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5400 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5401 assert(CI->getBitWidth() <= 64 &&
5402 "large intrinsic immediates not handled");
5403 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5404 } else {
5405 Ops.push_back(
5406 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5407 }
5408 }
5409
5410 if (std::optional<OperandBundleUse> Bundle =
5411 I.getOperandBundle(LLVMContext::OB_deactivation_symbol)) {
5412 auto *Sym = Bundle->Inputs[0].get();
5413 SDValue SDSym = getValue(Sym);
5414 SDSym = DAG.getDeactivationSymbol(cast<GlobalValue>(Sym));
5415 Ops.push_back(SDSym);
5416 }
5417
5418 if (std::optional<OperandBundleUse> Bundle =
5419 I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5420 Value *Token = Bundle->Inputs[0].get();
5421 SDValue ConvControlToken = getValue(Token);
5422 assert(Ops.back().getValueType() != MVT::Glue &&
5423 "Did not expect another glue node here.");
5424 ConvControlToken =
5425 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5426 Ops.push_back(ConvControlToken);
5427 }
5428
5429 return Ops;
5430}
5431
5432SDVTList SelectionDAGBuilder::getTargetIntrinsicVTList(const CallBase &I,
5433 bool HasChain) {
5434 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5435
5436 SmallVector<EVT, 4> ValueVTs;
5437 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5438
5439 if (HasChain)
5440 ValueVTs.push_back(MVT::Other);
5441
5442 return DAG.getVTList(ValueVTs);
5443}
5444
5445/// Get an INTRINSIC node for a target intrinsic which does not touch memory.
5446SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5447 const Type &IntrinsicVT, bool HasChain, ArrayRef<SDValue> Ops,
5448 const SDVTList &VTs) {
5449 if (!HasChain)
5450 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5451 if (!IntrinsicVT.isVoidTy())
5452 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5453 return DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5454}
5455
5456/// Set root, convert return type if necessary and check alignment.
5457SDValue SelectionDAGBuilder::handleTargetIntrinsicRet(const CallBase &I,
5458 bool HasChain,
5459 bool OnlyLoad,
5460 SDValue Result) {
5461 if (HasChain) {
5462 SDValue Chain = Result.getValue(Result.getNode()->getNumValues() - 1);
5463 if (OnlyLoad)
5464 PendingLoads.push_back(Chain);
5465 else
5466 DAG.setRoot(Chain);
5467 }
5468
5469 if (I.getType()->isVoidTy())
5470 return Result;
5471
5472 if (MaybeAlign Alignment = I.getRetAlign(); InsertAssertAlign && Alignment) {
5473 // Insert `assertalign` node if there's an alignment.
5474 Result = DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5475 } else if (!isa<VectorType>(I.getType())) {
5476 Result = lowerRangeToAssertZExt(DAG, I, Result);
5477 }
5478
5479 return Result;
5480}
5481
5482/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5483/// node.
5484void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5485 unsigned Intrinsic) {
5486 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
5487
5488 // Info is set by getTgtMemIntrinsic
5489 TargetLowering::IntrinsicInfo Info;
5490 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5491 bool IsTgtMemIntrinsic =
5492 TLI.getTgtMemIntrinsic(Info, I, DAG.getMachineFunction(), Intrinsic);
5493
5494 SmallVector<SDValue, 8> Ops = getTargetIntrinsicOperands(
5495 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &Info : nullptr);
5496 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
5497
5498 // Propagate fast-math-flags from IR to node(s).
5499 SDNodeFlags Flags;
5500 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5501 Flags.copyFMF(*FPMO);
5502 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5503
5504 // Create the node.
5506
5507 // In some cases, custom collection of operands from CallInst I may be needed.
5509 if (IsTgtMemIntrinsic) {
5510 // This is target intrinsic that touches memory
5511 //
5512 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5513 // didn't yield anything useful.
5514 MachinePointerInfo MPI;
5515 if (Info.ptrVal)
5516 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5517 else if (Info.fallbackAddressSpace)
5518 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5519 EVT MemVT = Info.memVT;
5520 LocationSize Size = LocationSize::precise(Info.size);
5521 if (Size.hasValue() && !Size.getValue())
5523 Align Alignment = Info.align.value_or(DAG.getEVTAlign(MemVT));
5524 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5525 MPI, Info.flags, Size, Alignment, I.getAAMetadata(), /*Ranges=*/nullptr,
5526 Info.ssid, Info.order, Info.failureOrder);
5527 Result =
5528 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, MemVT, MMO);
5529 } else {
5530 Result = getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
5531 }
5532
5533 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
5534
5535 setValue(&I, Result);
5536}
5537
5538/// GetSignificand - Get the significand and build it into a floating-point
5539/// number with exponent of 1:
5540///
5541/// Op = (Op & 0x007fffff) | 0x3f800000;
5542///
5543/// where Op is the hexadecimal representation of floating point value.
5545 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5546 DAG.getConstant(0x007fffff, dl, MVT::i32));
5547 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5548 DAG.getConstant(0x3f800000, dl, MVT::i32));
5549 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5550}
5551
5552/// GetExponent - Get the exponent:
5553///
5554/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5555///
5556/// where Op is the hexadecimal representation of floating point value.
5558 const TargetLowering &TLI, const SDLoc &dl) {
5559 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5560 DAG.getConstant(0x7f800000, dl, MVT::i32));
5561 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
5562 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5563 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5564 DAG.getConstant(127, dl, MVT::i32));
5565 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5566}
5567
5568/// getF32Constant - Get 32-bit floating point constant.
5569static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5570 const SDLoc &dl) {
5571 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5572 MVT::f32);
5573}
5574
5576 SelectionDAG &DAG) {
5577 // TODO: What fast-math-flags should be set on the floating-point nodes?
5578
5579 // IntegerPartOfX = ((int32_t)(t0);
5580 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5581
5582 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5583 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5584 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5585
5586 // IntegerPartOfX <<= 23;
5587 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5588 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5589
5590 SDValue TwoToFractionalPartOfX;
5591 if (LimitFloatPrecision <= 6) {
5592 // For floating-point precision of 6:
5593 //
5594 // TwoToFractionalPartOfX =
5595 // 0.997535578f +
5596 // (0.735607626f + 0.252464424f * x) * x;
5597 //
5598 // error 0.0144103317, which is 6 bits
5599 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5600 getF32Constant(DAG, 0x3e814304, dl));
5601 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5602 getF32Constant(DAG, 0x3f3c50c8, dl));
5603 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5604 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5605 getF32Constant(DAG, 0x3f7f5e7e, dl));
5606 } else if (LimitFloatPrecision <= 12) {
5607 // For floating-point precision of 12:
5608 //
5609 // TwoToFractionalPartOfX =
5610 // 0.999892986f +
5611 // (0.696457318f +
5612 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5613 //
5614 // error 0.000107046256, which is 13 to 14 bits
5615 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5616 getF32Constant(DAG, 0x3da235e3, dl));
5617 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5618 getF32Constant(DAG, 0x3e65b8f3, dl));
5619 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5620 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5621 getF32Constant(DAG, 0x3f324b07, dl));
5622 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5623 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5624 getF32Constant(DAG, 0x3f7ff8fd, dl));
5625 } else { // LimitFloatPrecision <= 18
5626 // For floating-point precision of 18:
5627 //
5628 // TwoToFractionalPartOfX =
5629 // 0.999999982f +
5630 // (0.693148872f +
5631 // (0.240227044f +
5632 // (0.554906021e-1f +
5633 // (0.961591928e-2f +
5634 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5635 // error 2.47208000*10^(-7), which is better than 18 bits
5636 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5637 getF32Constant(DAG, 0x3924b03e, dl));
5638 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5639 getF32Constant(DAG, 0x3ab24b87, dl));
5640 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5641 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5642 getF32Constant(DAG, 0x3c1d8c17, dl));
5643 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5644 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5645 getF32Constant(DAG, 0x3d634a1d, dl));
5646 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5647 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5648 getF32Constant(DAG, 0x3e75fe14, dl));
5649 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5650 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5651 getF32Constant(DAG, 0x3f317234, dl));
5652 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5653 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5654 getF32Constant(DAG, 0x3f800000, dl));
5655 }
5656
5657 // Add the exponent into the result in integer domain.
5658 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5659 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5660 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5661}
5662
5663/// expandExp - Lower an exp intrinsic. Handles the special sequences for
5664/// limited-precision mode.
5666 const TargetLowering &TLI, SDNodeFlags Flags) {
5667 if (Op.getValueType() == MVT::f32 &&
5669
5670 // Put the exponent in the right bit position for later addition to the
5671 // final result:
5672 //
5673 // t0 = Op * log2(e)
5674
5675 // TODO: What fast-math-flags should be set here?
5676 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5677 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5678 return getLimitedPrecisionExp2(t0, dl, DAG);
5679 }
5680
5681 // No special expansion.
5682 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5683}
5684
5685/// expandLog - Lower a log intrinsic. Handles the special sequences for
5686/// limited-precision mode.
5688 const TargetLowering &TLI, SDNodeFlags Flags) {
5689 // TODO: What fast-math-flags should be set on the floating-point nodes?
5690
5691 if (Op.getValueType() == MVT::f32 &&
5693 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5694
5695 // Scale the exponent by log(2).
5696 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5697 SDValue LogOfExponent =
5698 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5699 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5700
5701 // Get the significand and build it into a floating-point number with
5702 // exponent of 1.
5703 SDValue X = GetSignificand(DAG, Op1, dl);
5704
5705 SDValue LogOfMantissa;
5706 if (LimitFloatPrecision <= 6) {
5707 // For floating-point precision of 6:
5708 //
5709 // LogofMantissa =
5710 // -1.1609546f +
5711 // (1.4034025f - 0.23903021f * x) * x;
5712 //
5713 // error 0.0034276066, which is better than 8 bits
5714 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5715 getF32Constant(DAG, 0xbe74c456, dl));
5716 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5717 getF32Constant(DAG, 0x3fb3a2b1, dl));
5718 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5719 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5720 getF32Constant(DAG, 0x3f949a29, dl));
5721 } else if (LimitFloatPrecision <= 12) {
5722 // For floating-point precision of 12:
5723 //
5724 // LogOfMantissa =
5725 // -1.7417939f +
5726 // (2.8212026f +
5727 // (-1.4699568f +
5728 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5729 //
5730 // error 0.000061011436, which is 14 bits
5731 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5732 getF32Constant(DAG, 0xbd67b6d6, dl));
5733 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5734 getF32Constant(DAG, 0x3ee4f4b8, dl));
5735 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5736 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5737 getF32Constant(DAG, 0x3fbc278b, dl));
5738 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5739 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5740 getF32Constant(DAG, 0x40348e95, dl));
5741 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5742 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5743 getF32Constant(DAG, 0x3fdef31a, dl));
5744 } else { // LimitFloatPrecision <= 18
5745 // For floating-point precision of 18:
5746 //
5747 // LogOfMantissa =
5748 // -2.1072184f +
5749 // (4.2372794f +
5750 // (-3.7029485f +
5751 // (2.2781945f +
5752 // (-0.87823314f +
5753 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5754 //
5755 // error 0.0000023660568, which is better than 18 bits
5756 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5757 getF32Constant(DAG, 0xbc91e5ac, dl));
5758 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5759 getF32Constant(DAG, 0x3e4350aa, dl));
5760 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5761 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5762 getF32Constant(DAG, 0x3f60d3e3, dl));
5763 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5764 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5765 getF32Constant(DAG, 0x4011cdf0, dl));
5766 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5767 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5768 getF32Constant(DAG, 0x406cfd1c, dl));
5769 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5770 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5771 getF32Constant(DAG, 0x408797cb, dl));
5772 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5773 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5774 getF32Constant(DAG, 0x4006dcab, dl));
5775 }
5776
5777 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5778 }
5779
5780 // No special expansion.
5781 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5782}
5783
5784/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5785/// limited-precision mode.
5787 const TargetLowering &TLI, SDNodeFlags Flags) {
5788 // TODO: What fast-math-flags should be set on the floating-point nodes?
5789
5790 if (Op.getValueType() == MVT::f32 &&
5792 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5793
5794 // Get the exponent.
5795 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5796
5797 // Get the significand and build it into a floating-point number with
5798 // exponent of 1.
5799 SDValue X = GetSignificand(DAG, Op1, dl);
5800
5801 // Different possible minimax approximations of significand in
5802 // floating-point for various degrees of accuracy over [1,2].
5803 SDValue Log2ofMantissa;
5804 if (LimitFloatPrecision <= 6) {
5805 // For floating-point precision of 6:
5806 //
5807 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5808 //
5809 // error 0.0049451742, which is more than 7 bits
5810 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5811 getF32Constant(DAG, 0xbeb08fe0, dl));
5812 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5813 getF32Constant(DAG, 0x40019463, dl));
5814 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5815 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5816 getF32Constant(DAG, 0x3fd6633d, dl));
5817 } else if (LimitFloatPrecision <= 12) {
5818 // For floating-point precision of 12:
5819 //
5820 // Log2ofMantissa =
5821 // -2.51285454f +
5822 // (4.07009056f +
5823 // (-2.12067489f +
5824 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5825 //
5826 // error 0.0000876136000, which is better than 13 bits
5827 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5828 getF32Constant(DAG, 0xbda7262e, dl));
5829 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5830 getF32Constant(DAG, 0x3f25280b, dl));
5831 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5832 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5833 getF32Constant(DAG, 0x4007b923, dl));
5834 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5835 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5836 getF32Constant(DAG, 0x40823e2f, dl));
5837 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5838 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5839 getF32Constant(DAG, 0x4020d29c, dl));
5840 } else { // LimitFloatPrecision <= 18
5841 // For floating-point precision of 18:
5842 //
5843 // Log2ofMantissa =
5844 // -3.0400495f +
5845 // (6.1129976f +
5846 // (-5.3420409f +
5847 // (3.2865683f +
5848 // (-1.2669343f +
5849 // (0.27515199f -
5850 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5851 //
5852 // error 0.0000018516, which is better than 18 bits
5853 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5854 getF32Constant(DAG, 0xbcd2769e, dl));
5855 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5856 getF32Constant(DAG, 0x3e8ce0b9, dl));
5857 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5858 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5859 getF32Constant(DAG, 0x3fa22ae7, dl));
5860 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5861 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5862 getF32Constant(DAG, 0x40525723, dl));
5863 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5864 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5865 getF32Constant(DAG, 0x40aaf200, dl));
5866 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5867 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5868 getF32Constant(DAG, 0x40c39dad, dl));
5869 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5870 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5871 getF32Constant(DAG, 0x4042902c, dl));
5872 }
5873
5874 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5875 }
5876
5877 // No special expansion.
5878 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5879}
5880
5881/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5882/// limited-precision mode.
5884 const TargetLowering &TLI, SDNodeFlags Flags) {
5885 // TODO: What fast-math-flags should be set on the floating-point nodes?
5886
5887 if (Op.getValueType() == MVT::f32 &&
5889 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5890
5891 // Scale the exponent by log10(2) [0.30102999f].
5892 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5893 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5894 getF32Constant(DAG, 0x3e9a209a, dl));
5895
5896 // Get the significand and build it into a floating-point number with
5897 // exponent of 1.
5898 SDValue X = GetSignificand(DAG, Op1, dl);
5899
5900 SDValue Log10ofMantissa;
5901 if (LimitFloatPrecision <= 6) {
5902 // For floating-point precision of 6:
5903 //
5904 // Log10ofMantissa =
5905 // -0.50419619f +
5906 // (0.60948995f - 0.10380950f * x) * x;
5907 //
5908 // error 0.0014886165, which is 6 bits
5909 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5910 getF32Constant(DAG, 0xbdd49a13, dl));
5911 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5912 getF32Constant(DAG, 0x3f1c0789, dl));
5913 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5914 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5915 getF32Constant(DAG, 0x3f011300, dl));
5916 } else if (LimitFloatPrecision <= 12) {
5917 // For floating-point precision of 12:
5918 //
5919 // Log10ofMantissa =
5920 // -0.64831180f +
5921 // (0.91751397f +
5922 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5923 //
5924 // error 0.00019228036, which is better than 12 bits
5925 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5926 getF32Constant(DAG, 0x3d431f31, dl));
5927 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5928 getF32Constant(DAG, 0x3ea21fb2, dl));
5929 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5930 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5931 getF32Constant(DAG, 0x3f6ae232, dl));
5932 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5933 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5934 getF32Constant(DAG, 0x3f25f7c3, dl));
5935 } else { // LimitFloatPrecision <= 18
5936 // For floating-point precision of 18:
5937 //
5938 // Log10ofMantissa =
5939 // -0.84299375f +
5940 // (1.5327582f +
5941 // (-1.0688956f +
5942 // (0.49102474f +
5943 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5944 //
5945 // error 0.0000037995730, which is better than 18 bits
5946 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5947 getF32Constant(DAG, 0x3c5d51ce, dl));
5948 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5949 getF32Constant(DAG, 0x3e00685a, dl));
5950 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5951 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5952 getF32Constant(DAG, 0x3efb6798, dl));
5953 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5954 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5955 getF32Constant(DAG, 0x3f88d192, dl));
5956 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5957 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5958 getF32Constant(DAG, 0x3fc4316c, dl));
5959 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5960 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5961 getF32Constant(DAG, 0x3f57ce70, dl));
5962 }
5963
5964 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5965 }
5966
5967 // No special expansion.
5968 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5969}
5970
5971/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5972/// limited-precision mode.
5974 const TargetLowering &TLI, SDNodeFlags Flags) {
5975 if (Op.getValueType() == MVT::f32 &&
5977 return getLimitedPrecisionExp2(Op, dl, DAG);
5978
5979 // No special expansion.
5980 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5981}
5982
5983/// visitPow - Lower a pow intrinsic. Handles the special sequences for
5984/// limited-precision mode with x == 10.0f.
5986 SelectionDAG &DAG, const TargetLowering &TLI,
5987 SDNodeFlags Flags) {
5988 bool IsExp10 = false;
5989 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5992 APFloat Ten(10.0f);
5993 IsExp10 = LHSC->isExactlyValue(Ten);
5994 }
5995 }
5996
5997 // TODO: What fast-math-flags should be set on the FMUL node?
5998 if (IsExp10) {
5999 // Put the exponent in the right bit position for later addition to the
6000 // final result:
6001 //
6002 // #define LOG2OF10 3.3219281f
6003 // t0 = Op * LOG2OF10;
6004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
6005 getF32Constant(DAG, 0x40549a78, dl));
6006 return getLimitedPrecisionExp2(t0, dl, DAG);
6007 }
6008
6009 // No special expansion.
6010 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
6011}
6012
6013/// ExpandPowI - Expand a llvm.powi intrinsic.
6015 SelectionDAG &DAG) {
6016 // If RHS is a constant, we can expand this out to a multiplication tree if
6017 // it's beneficial on the target, otherwise we end up lowering to a call to
6018 // __powidf2 (for example).
6020 unsigned Val = RHSC->getSExtValue();
6021
6022 // powi(x, 0) -> 1.0
6023 if (Val == 0)
6024 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
6025
6027 Val, DAG.shouldOptForSize())) {
6028 // Get the exponent as a positive value.
6029 if ((int)Val < 0)
6030 Val = -Val;
6031 // We use the simple binary decomposition method to generate the multiply
6032 // sequence. There are more optimal ways to do this (for example,
6033 // powi(x,15) generates one more multiply than it should), but this has
6034 // the benefit of being both really simple and much better than a libcall.
6035 SDValue Res; // Logically starts equal to 1.0
6036 SDValue CurSquare = LHS;
6037 // TODO: Intrinsics should have fast-math-flags that propagate to these
6038 // nodes.
6039 while (Val) {
6040 if (Val & 1) {
6041 if (Res.getNode())
6042 Res =
6043 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
6044 else
6045 Res = CurSquare; // 1.0*CurSquare.
6046 }
6047
6048 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
6049 CurSquare, CurSquare);
6050 Val >>= 1;
6051 }
6052
6053 // If the original was negative, invert the result, producing 1/(x*x*x).
6054 if (RHSC->getSExtValue() < 0)
6055 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
6056 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
6057 return Res;
6058 }
6059 }
6060
6061 // Otherwise, expand to a libcall.
6062 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
6063}
6064
6065static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
6066 SDValue LHS, SDValue RHS, SDValue Scale,
6067 SelectionDAG &DAG, const TargetLowering &TLI) {
6068 EVT VT = LHS.getValueType();
6069 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
6070 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
6071 LLVMContext &Ctx = *DAG.getContext();
6072
6073 // If the type is legal but the operation isn't, this node might survive all
6074 // the way to operation legalization. If we end up there and we do not have
6075 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
6076 // node.
6077
6078 // Coax the legalizer into expanding the node during type legalization instead
6079 // by bumping the size by one bit. This will force it to Promote, enabling the
6080 // early expansion and avoiding the need to expand later.
6081
6082 // We don't have to do this if Scale is 0; that can always be expanded, unless
6083 // it's a saturating signed operation. Those can experience true integer
6084 // division overflow, a case which we must avoid.
6085
6086 // FIXME: We wouldn't have to do this (or any of the early
6087 // expansion/promotion) if it was possible to expand a libcall of an
6088 // illegal type during operation legalization. But it's not, so things
6089 // get a bit hacky.
6090 unsigned ScaleInt = Scale->getAsZExtVal();
6091 if ((ScaleInt > 0 || (Saturating && Signed)) &&
6092 (TLI.isTypeLegal(VT) ||
6093 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
6095 Opcode, VT, ScaleInt);
6096 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
6097 EVT PromVT;
6098 if (VT.isScalarInteger())
6099 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
6100 else if (VT.isVector()) {
6101 PromVT = VT.getVectorElementType();
6102 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
6103 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
6104 } else
6105 llvm_unreachable("Wrong VT for DIVFIX?");
6106 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
6107 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
6108 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
6109 // For saturating operations, we need to shift up the LHS to get the
6110 // proper saturation width, and then shift down again afterwards.
6111 if (Saturating)
6112 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
6113 DAG.getConstant(1, DL, ShiftTy));
6114 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
6115 if (Saturating)
6116 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
6117 DAG.getConstant(1, DL, ShiftTy));
6118 return DAG.getZExtOrTrunc(Res, DL, VT);
6119 }
6120 }
6121
6122 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
6123}
6124
6125// getUnderlyingArgRegs - Find underlying registers used for a truncated,
6126// bitcasted, or split argument. Returns a list of <Register, size in bits>
6127static void
6128getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
6129 const SDValue &N) {
6130 switch (N.getOpcode()) {
6131 case ISD::CopyFromReg: {
6132 SDValue Op = N.getOperand(1);
6133 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
6134 Op.getValueType().getSizeInBits());
6135 return;
6136 }
6137 case ISD::BITCAST:
6138 case ISD::AssertZext:
6139 case ISD::AssertSext:
6140 case ISD::TRUNCATE:
6141 getUnderlyingArgRegs(Regs, N.getOperand(0));
6142 return;
6143 case ISD::BUILD_PAIR:
6144 case ISD::BUILD_VECTOR:
6146 for (SDValue Op : N->op_values())
6147 getUnderlyingArgRegs(Regs, Op);
6148 return;
6149 default:
6150 return;
6151 }
6152}
6153
6154/// If the DbgValueInst is a dbg_value of a function argument, create the
6155/// corresponding DBG_VALUE machine instruction for it now. At the end of
6156/// instruction selection, they will be inserted to the entry BB.
6157/// We don't currently support this for variadic dbg_values, as they shouldn't
6158/// appear for function arguments or in the prologue.
6159bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6160 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6161 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6162 const Argument *Arg = dyn_cast<Argument>(V);
6163 if (!Arg)
6164 return false;
6165
6166 MachineFunction &MF = DAG.getMachineFunction();
6167 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6168
6169 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6170 // we've been asked to pursue.
6171 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6172 bool Indirect) {
6173 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6174 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6175 // pointing at the VReg, which will be patched up later.
6176 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6178 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6179 /* isKill */ false, /* isDead */ false,
6180 /* isUndef */ false, /* isEarlyClobber */ false,
6181 /* SubReg */ 0, /* isDebug */ true)});
6182
6183 auto *NewDIExpr = FragExpr;
6184 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6185 // the DIExpression.
6186 if (Indirect)
6187 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6189 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6190 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6191 } else {
6192 // Create a completely standard DBG_VALUE.
6193 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6194 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6195 }
6196 };
6197
6198 if (Kind == FuncArgumentDbgValueKind::Value) {
6199 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6200 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6201 // the entry block.
6202 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6203 if (!IsInEntryBlock)
6204 return false;
6205
6206 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6207 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6208 // variable that also is a param.
6209 //
6210 // Although, if we are at the top of the entry block already, we can still
6211 // emit using ArgDbgValue. This might catch some situations when the
6212 // dbg.value refers to an argument that isn't used in the entry block, so
6213 // any CopyToReg node would be optimized out and the only way to express
6214 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6215 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6216 // we should only emit as ArgDbgValue if the Variable is an argument to the
6217 // current function, and the dbg.value intrinsic is found in the entry
6218 // block.
6219 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6220 !DL->getInlinedAt();
6221 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6222 if (!IsInPrologue && !VariableIsFunctionInputArg)
6223 return false;
6224
6225 // Here we assume that a function argument on IR level only can be used to
6226 // describe one input parameter on source level. If we for example have
6227 // source code like this
6228 //
6229 // struct A { long x, y; };
6230 // void foo(struct A a, long b) {
6231 // ...
6232 // b = a.x;
6233 // ...
6234 // }
6235 //
6236 // and IR like this
6237 //
6238 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6239 // entry:
6240 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6241 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6242 // call void @llvm.dbg.value(metadata i32 %b, "b",
6243 // ...
6244 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6245 // ...
6246 //
6247 // then the last dbg.value is describing a parameter "b" using a value that
6248 // is an argument. But since we already has used %a1 to describe a parameter
6249 // we should not handle that last dbg.value here (that would result in an
6250 // incorrect hoisting of the DBG_VALUE to the function entry).
6251 // Notice that we allow one dbg.value per IR level argument, to accommodate
6252 // for the situation with fragments above.
6253 // If there is no node for the value being handled, we return true to skip
6254 // the normal generation of debug info, as it would kill existing debug
6255 // info for the parameter in case of duplicates.
6256 if (VariableIsFunctionInputArg) {
6257 unsigned ArgNo = Arg->getArgNo();
6258 if (ArgNo >= FuncInfo.DescribedArgs.size())
6259 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6260 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6261 return !NodeMap[V].getNode();
6262 FuncInfo.DescribedArgs.set(ArgNo);
6263 }
6264 }
6265
6266 bool IsIndirect = false;
6267 std::optional<MachineOperand> Op;
6268 // Some arguments' frame index is recorded during argument lowering.
6269 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6270 if (FI != std::numeric_limits<int>::max())
6272
6274 if (!Op && N.getNode()) {
6275 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6276 Register Reg;
6277 if (ArgRegsAndSizes.size() == 1)
6278 Reg = ArgRegsAndSizes.front().first;
6279
6280 if (Reg && Reg.isVirtual()) {
6281 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6282 Register PR = RegInfo.getLiveInPhysReg(Reg);
6283 if (PR)
6284 Reg = PR;
6285 }
6286 if (Reg) {
6288 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6289 }
6290 }
6291
6292 if (!Op && N.getNode()) {
6293 // Check if frame index is available.
6294 SDValue LCandidate = peekThroughBitcasts(N);
6295 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6296 if (FrameIndexSDNode *FINode =
6297 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6298 Op = MachineOperand::CreateFI(FINode->getIndex());
6299 }
6300
6301 if (!Op) {
6302 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6303 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>>
6304 SplitRegs) {
6305 unsigned Offset = 0;
6306 for (const auto &RegAndSize : SplitRegs) {
6307 // If the expression is already a fragment, the current register
6308 // offset+size might extend beyond the fragment. In this case, only
6309 // the register bits that are inside the fragment are relevant.
6310 int RegFragmentSizeInBits = RegAndSize.second;
6311 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6312 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6313 // The register is entirely outside the expression fragment,
6314 // so is irrelevant for debug info.
6315 if (Offset >= ExprFragmentSizeInBits)
6316 break;
6317 // The register is partially outside the expression fragment, only
6318 // the low bits within the fragment are relevant for debug info.
6319 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6320 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6321 }
6322 }
6323
6324 auto FragmentExpr = DIExpression::createFragmentExpression(
6325 Expr, Offset, RegFragmentSizeInBits);
6326 Offset += RegAndSize.second;
6327 // If a valid fragment expression cannot be created, the variable's
6328 // correct value cannot be determined and so it is set as poison.
6329 if (!FragmentExpr) {
6330 SDDbgValue *SDV = DAG.getConstantDbgValue(
6331 Variable, Expr, PoisonValue::get(V->getType()), DL, SDNodeOrder);
6332 DAG.AddDbgValue(SDV, false);
6333 continue;
6334 }
6335 MachineInstr *NewMI =
6336 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6337 Kind != FuncArgumentDbgValueKind::Value);
6338 FuncInfo.ArgDbgValues.push_back(NewMI);
6339 }
6340 };
6341
6342 // Check if ValueMap has reg number.
6344 VMI = FuncInfo.ValueMap.find(V);
6345 if (VMI != FuncInfo.ValueMap.end()) {
6346 const auto &TLI = DAG.getTargetLoweringInfo();
6347 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6348 V->getType(), std::nullopt);
6349 if (RFV.occupiesMultipleRegs()) {
6350 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6351 return true;
6352 }
6353
6354 Op = MachineOperand::CreateReg(VMI->second, false);
6355 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6356 } else if (ArgRegsAndSizes.size() > 1) {
6357 // This was split due to the calling convention, and no virtual register
6358 // mapping exists for the value.
6359 splitMultiRegDbgValue(ArgRegsAndSizes);
6360 return true;
6361 }
6362 }
6363
6364 if (!Op)
6365 return false;
6366
6367 assert(Variable->isValidLocationForIntrinsic(DL) &&
6368 "Expected inlined-at fields to agree");
6369 MachineInstr *NewMI = nullptr;
6370
6371 if (Op->isReg())
6372 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6373 else
6374 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6375 Variable, Expr);
6376
6377 // Otherwise, use ArgDbgValues.
6378 FuncInfo.ArgDbgValues.push_back(NewMI);
6379 return true;
6380}
6381
6382/// Return the appropriate SDDbgValue based on N.
6383SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6384 DILocalVariable *Variable,
6385 DIExpression *Expr,
6386 const DebugLoc &dl,
6387 unsigned DbgSDNodeOrder) {
6388 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6389 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6390 // stack slot locations.
6391 //
6392 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6393 // debug values here after optimization:
6394 //
6395 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6396 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6397 //
6398 // Both describe the direct values of their associated variables.
6399 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6400 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6401 }
6402 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6403 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6404}
6405
6406static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6407 switch (Intrinsic) {
6408 case Intrinsic::smul_fix:
6409 return ISD::SMULFIX;
6410 case Intrinsic::umul_fix:
6411 return ISD::UMULFIX;
6412 case Intrinsic::smul_fix_sat:
6413 return ISD::SMULFIXSAT;
6414 case Intrinsic::umul_fix_sat:
6415 return ISD::UMULFIXSAT;
6416 case Intrinsic::sdiv_fix:
6417 return ISD::SDIVFIX;
6418 case Intrinsic::udiv_fix:
6419 return ISD::UDIVFIX;
6420 case Intrinsic::sdiv_fix_sat:
6421 return ISD::SDIVFIXSAT;
6422 case Intrinsic::udiv_fix_sat:
6423 return ISD::UDIVFIXSAT;
6424 default:
6425 llvm_unreachable("Unhandled fixed point intrinsic");
6426 }
6427}
6428
6429/// Given a @llvm.call.preallocated.setup, return the corresponding
6430/// preallocated call.
6431static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6432 assert(cast<CallBase>(PreallocatedSetup)
6434 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6435 "expected call_preallocated_setup Value");
6436 for (const auto *U : PreallocatedSetup->users()) {
6437 auto *UseCall = cast<CallBase>(U);
6438 const Function *Fn = UseCall->getCalledFunction();
6439 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6440 return UseCall;
6441 }
6442 }
6443 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6444}
6445
6446/// If DI is a debug value with an EntryValue expression, lower it using the
6447/// corresponding physical register of the associated Argument value
6448/// (guaranteed to exist by the verifier).
6449bool SelectionDAGBuilder::visitEntryValueDbgValue(
6450 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6451 DIExpression *Expr, DebugLoc DbgLoc) {
6452 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6453 return false;
6454
6455 // These properties are guaranteed by the verifier.
6456 const Argument *Arg = cast<Argument>(Values[0]);
6457 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6458
6459 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6460 if (ArgIt == FuncInfo.ValueMap.end()) {
6461 LLVM_DEBUG(
6462 dbgs() << "Dropping dbg.value: expression is entry_value but "
6463 "couldn't find an associated register for the Argument\n");
6464 return true;
6465 }
6466 Register ArgVReg = ArgIt->getSecond();
6467
6468 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6469 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6470 SDDbgValue *SDV = DAG.getVRegDbgValue(
6471 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6472 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6473 return true;
6474 }
6475 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6476 "couldn't find a physical register\n");
6477 return true;
6478}
6479
6480/// Lower the call to the specified intrinsic function.
6481void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6482 unsigned Intrinsic) {
6483 SDLoc sdl = getCurSDLoc();
6484 switch (Intrinsic) {
6485 case Intrinsic::experimental_convergence_anchor:
6486 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6487 break;
6488 case Intrinsic::experimental_convergence_entry:
6489 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6490 break;
6491 case Intrinsic::experimental_convergence_loop: {
6492 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6493 auto *Token = Bundle->Inputs[0].get();
6494 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6495 getValue(Token)));
6496 break;
6497 }
6498 }
6499}
6500
6501void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6502 unsigned IntrinsicID) {
6503 // For now, we're only lowering an 'add' histogram.
6504 // We can add others later, e.g. saturating adds, min/max.
6505 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6506 "Tried to lower unsupported histogram type");
6507 SDLoc sdl = getCurSDLoc();
6508 Value *Ptr = I.getOperand(0);
6509 SDValue Inc = getValue(I.getOperand(1));
6510 SDValue Mask = getValue(I.getOperand(2));
6511
6512 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6513 DataLayout TargetDL = DAG.getDataLayout();
6514 EVT VT = Inc.getValueType();
6515 Align Alignment = DAG.getEVTAlign(VT);
6516
6517 const MDNode *Ranges = getRangeMetadata(I);
6518
6519 SDValue Root = DAG.getRoot();
6520 SDValue Base;
6521 SDValue Index;
6522 SDValue Scale;
6523 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
6524 I.getParent(), VT.getScalarStoreSize());
6525
6526 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6527
6528 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6529 MachinePointerInfo(AS),
6531 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6532
6533 if (!UniformBase) {
6534 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6535 Index = getValue(Ptr);
6536 Scale =
6537 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6538 }
6539
6540 EVT IdxVT = Index.getValueType();
6541 EVT EltTy = IdxVT.getVectorElementType();
6542 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6543 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
6544 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6545 }
6546
6547 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6548
6549 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6550 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6551 Ops, MMO, ISD::SIGNED_SCALED);
6552
6553 setValue(&I, Histogram);
6554 DAG.setRoot(Histogram);
6555}
6556
6557void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I,
6558 unsigned Intrinsic) {
6559 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6560 "Tried lowering invalid vector extract last");
6561 SDLoc sdl = getCurSDLoc();
6562 const DataLayout &Layout = DAG.getDataLayout();
6563 SDValue Data = getValue(I.getOperand(0));
6564 SDValue Mask = getValue(I.getOperand(1));
6565
6566 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6567 EVT ResVT = TLI.getValueType(Layout, I.getType());
6568
6569 EVT ExtVT = TLI.getVectorIdxTy(Layout);
6570 SDValue Idx = DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6571 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ResVT, Data, Idx);
6572
6573 Value *Default = I.getOperand(2);
6575 SDValue PassThru = getValue(Default);
6576 EVT BoolVT = Mask.getValueType().getScalarType();
6577 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6578 Result = DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6579 }
6580
6581 setValue(&I, Result);
6582}
6583
6584/// Lower the call to the specified intrinsic function.
6585void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6586 unsigned Intrinsic) {
6587 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6588 SDLoc sdl = getCurSDLoc();
6589 DebugLoc dl = getCurDebugLoc();
6590 SDValue Res;
6591
6592 SDNodeFlags Flags;
6593 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6594 Flags.copyFMF(*FPOp);
6595
6596 switch (Intrinsic) {
6597 default:
6598 // By default, turn this into a target intrinsic node.
6599 visitTargetIntrinsic(I, Intrinsic);
6600 return;
6601 case Intrinsic::vscale: {
6602 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6603 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6604 return;
6605 }
6606 case Intrinsic::vastart: visitVAStart(I); return;
6607 case Intrinsic::vaend: visitVAEnd(I); return;
6608 case Intrinsic::vacopy: visitVACopy(I); return;
6609 case Intrinsic::returnaddress:
6610 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6611 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6612 getValue(I.getArgOperand(0))));
6613 return;
6614 case Intrinsic::addressofreturnaddress:
6615 setValue(&I,
6616 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6617 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6618 return;
6619 case Intrinsic::sponentry:
6620 setValue(&I,
6621 DAG.getNode(ISD::SPONENTRY, sdl,
6622 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6623 return;
6624 case Intrinsic::frameaddress:
6625 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6626 TLI.getFrameIndexTy(DAG.getDataLayout()),
6627 getValue(I.getArgOperand(0))));
6628 return;
6629 case Intrinsic::read_volatile_register:
6630 case Intrinsic::read_register: {
6631 Value *Reg = I.getArgOperand(0);
6632 SDValue Chain = getRoot();
6634 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6635 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6636 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6637 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6638 setValue(&I, Res);
6639 DAG.setRoot(Res.getValue(1));
6640 return;
6641 }
6642 case Intrinsic::write_register: {
6643 Value *Reg = I.getArgOperand(0);
6644 Value *RegValue = I.getArgOperand(1);
6645 SDValue Chain = getRoot();
6647 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6648 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6649 RegName, getValue(RegValue)));
6650 return;
6651 }
6652 case Intrinsic::memcpy:
6653 case Intrinsic::memcpy_inline: {
6654 const auto &MCI = cast<MemCpyInst>(I);
6655 SDValue Dst = getValue(I.getArgOperand(0));
6656 SDValue Src = getValue(I.getArgOperand(1));
6657 SDValue Size = getValue(I.getArgOperand(2));
6658 assert((!MCI.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6659 "memcpy_inline needs constant size");
6660 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6661 Align DstAlign = MCI.getDestAlign().valueOrOne();
6662 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6663 Align Alignment = std::min(DstAlign, SrcAlign);
6664 bool isVol = MCI.isVolatile();
6665 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6666 // node.
6667 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6668 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol,
6669 MCI.isForceInlined(), &I, std::nullopt,
6670 MachinePointerInfo(I.getArgOperand(0)),
6671 MachinePointerInfo(I.getArgOperand(1)),
6672 I.getAAMetadata(), BatchAA);
6673 updateDAGForMaybeTailCall(MC);
6674 return;
6675 }
6676 case Intrinsic::memset:
6677 case Intrinsic::memset_inline: {
6678 const auto &MSII = cast<MemSetInst>(I);
6679 SDValue Dst = getValue(I.getArgOperand(0));
6680 SDValue Value = getValue(I.getArgOperand(1));
6681 SDValue Size = getValue(I.getArgOperand(2));
6682 assert((!MSII.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6683 "memset_inline needs constant size");
6684 // @llvm.memset defines 0 and 1 to both mean no alignment.
6685 Align DstAlign = MSII.getDestAlign().valueOrOne();
6686 bool isVol = MSII.isVolatile();
6687 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6688 SDValue MC = DAG.getMemset(
6689 Root, sdl, Dst, Value, Size, DstAlign, isVol, MSII.isForceInlined(),
6690 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6691 updateDAGForMaybeTailCall(MC);
6692 return;
6693 }
6694 case Intrinsic::memmove: {
6695 const auto &MMI = cast<MemMoveInst>(I);
6696 SDValue Op1 = getValue(I.getArgOperand(0));
6697 SDValue Op2 = getValue(I.getArgOperand(1));
6698 SDValue Op3 = getValue(I.getArgOperand(2));
6699 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6700 Align DstAlign = MMI.getDestAlign().valueOrOne();
6701 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6702 Align Alignment = std::min(DstAlign, SrcAlign);
6703 bool isVol = MMI.isVolatile();
6704 // FIXME: Support passing different dest/src alignments to the memmove DAG
6705 // node.
6706 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6707 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6708 /* OverrideTailCall */ std::nullopt,
6709 MachinePointerInfo(I.getArgOperand(0)),
6710 MachinePointerInfo(I.getArgOperand(1)),
6711 I.getAAMetadata(), BatchAA);
6712 updateDAGForMaybeTailCall(MM);
6713 return;
6714 }
6715 case Intrinsic::memcpy_element_unordered_atomic: {
6716 auto &MI = cast<AnyMemCpyInst>(I);
6717 SDValue Dst = getValue(MI.getRawDest());
6718 SDValue Src = getValue(MI.getRawSource());
6719 SDValue Length = getValue(MI.getLength());
6720
6721 Type *LengthTy = MI.getLength()->getType();
6722 unsigned ElemSz = MI.getElementSizeInBytes();
6723 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6724 SDValue MC =
6725 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6726 isTC, MachinePointerInfo(MI.getRawDest()),
6727 MachinePointerInfo(MI.getRawSource()));
6728 updateDAGForMaybeTailCall(MC);
6729 return;
6730 }
6731 case Intrinsic::memmove_element_unordered_atomic: {
6732 auto &MI = cast<AnyMemMoveInst>(I);
6733 SDValue Dst = getValue(MI.getRawDest());
6734 SDValue Src = getValue(MI.getRawSource());
6735 SDValue Length = getValue(MI.getLength());
6736
6737 Type *LengthTy = MI.getLength()->getType();
6738 unsigned ElemSz = MI.getElementSizeInBytes();
6739 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6740 SDValue MC =
6741 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6742 isTC, MachinePointerInfo(MI.getRawDest()),
6743 MachinePointerInfo(MI.getRawSource()));
6744 updateDAGForMaybeTailCall(MC);
6745 return;
6746 }
6747 case Intrinsic::memset_element_unordered_atomic: {
6748 auto &MI = cast<AnyMemSetInst>(I);
6749 SDValue Dst = getValue(MI.getRawDest());
6750 SDValue Val = getValue(MI.getValue());
6751 SDValue Length = getValue(MI.getLength());
6752
6753 Type *LengthTy = MI.getLength()->getType();
6754 unsigned ElemSz = MI.getElementSizeInBytes();
6755 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6756 SDValue MC =
6757 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6758 isTC, MachinePointerInfo(MI.getRawDest()));
6759 updateDAGForMaybeTailCall(MC);
6760 return;
6761 }
6762 case Intrinsic::call_preallocated_setup: {
6763 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6764 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6765 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6766 getRoot(), SrcValue);
6767 setValue(&I, Res);
6768 DAG.setRoot(Res);
6769 return;
6770 }
6771 case Intrinsic::call_preallocated_arg: {
6772 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6773 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6774 SDValue Ops[3];
6775 Ops[0] = getRoot();
6776 Ops[1] = SrcValue;
6777 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6778 MVT::i32); // arg index
6779 SDValue Res = DAG.getNode(
6781 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6782 setValue(&I, Res);
6783 DAG.setRoot(Res.getValue(1));
6784 return;
6785 }
6786
6787 case Intrinsic::eh_typeid_for: {
6788 // Find the type id for the given typeinfo.
6789 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6790 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6791 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6792 setValue(&I, Res);
6793 return;
6794 }
6795
6796 case Intrinsic::eh_return_i32:
6797 case Intrinsic::eh_return_i64:
6798 DAG.getMachineFunction().setCallsEHReturn(true);
6799 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6800 MVT::Other,
6802 getValue(I.getArgOperand(0)),
6803 getValue(I.getArgOperand(1))));
6804 return;
6805 case Intrinsic::eh_unwind_init:
6806 DAG.getMachineFunction().setCallsUnwindInit(true);
6807 return;
6808 case Intrinsic::eh_dwarf_cfa:
6809 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6810 TLI.getPointerTy(DAG.getDataLayout()),
6811 getValue(I.getArgOperand(0))));
6812 return;
6813 case Intrinsic::eh_sjlj_callsite: {
6814 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6815 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6816
6817 FuncInfo.setCurrentCallSite(CI->getZExtValue());
6818 return;
6819 }
6820 case Intrinsic::eh_sjlj_functioncontext: {
6821 // Get and store the index of the function context.
6822 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6823 AllocaInst *FnCtx =
6824 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6825 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6827 return;
6828 }
6829 case Intrinsic::eh_sjlj_setjmp: {
6830 SDValue Ops[2];
6831 Ops[0] = getRoot();
6832 Ops[1] = getValue(I.getArgOperand(0));
6833 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6834 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6835 setValue(&I, Op.getValue(0));
6836 DAG.setRoot(Op.getValue(1));
6837 return;
6838 }
6839 case Intrinsic::eh_sjlj_longjmp:
6840 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6841 getRoot(), getValue(I.getArgOperand(0))));
6842 return;
6843 case Intrinsic::eh_sjlj_setup_dispatch:
6844 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6845 getRoot()));
6846 return;
6847 case Intrinsic::masked_gather:
6848 visitMaskedGather(I);
6849 return;
6850 case Intrinsic::masked_load:
6851 visitMaskedLoad(I);
6852 return;
6853 case Intrinsic::masked_scatter:
6854 visitMaskedScatter(I);
6855 return;
6856 case Intrinsic::masked_store:
6857 visitMaskedStore(I);
6858 return;
6859 case Intrinsic::masked_expandload:
6860 visitMaskedLoad(I, true /* IsExpanding */);
6861 return;
6862 case Intrinsic::masked_compressstore:
6863 visitMaskedStore(I, true /* IsCompressing */);
6864 return;
6865 case Intrinsic::powi:
6866 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6867 getValue(I.getArgOperand(1)), DAG));
6868 return;
6869 case Intrinsic::log:
6870 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6871 return;
6872 case Intrinsic::log2:
6873 setValue(&I,
6874 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6875 return;
6876 case Intrinsic::log10:
6877 setValue(&I,
6878 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6879 return;
6880 case Intrinsic::exp:
6881 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6882 return;
6883 case Intrinsic::exp2:
6884 setValue(&I,
6885 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6886 return;
6887 case Intrinsic::pow:
6888 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6889 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6890 return;
6891 case Intrinsic::sqrt:
6892 case Intrinsic::fabs:
6893 case Intrinsic::sin:
6894 case Intrinsic::cos:
6895 case Intrinsic::tan:
6896 case Intrinsic::asin:
6897 case Intrinsic::acos:
6898 case Intrinsic::atan:
6899 case Intrinsic::sinh:
6900 case Intrinsic::cosh:
6901 case Intrinsic::tanh:
6902 case Intrinsic::exp10:
6903 case Intrinsic::floor:
6904 case Intrinsic::ceil:
6905 case Intrinsic::trunc:
6906 case Intrinsic::rint:
6907 case Intrinsic::nearbyint:
6908 case Intrinsic::round:
6909 case Intrinsic::roundeven:
6910 case Intrinsic::canonicalize: {
6911 unsigned Opcode;
6912 // clang-format off
6913 switch (Intrinsic) {
6914 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6915 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6916 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6917 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6918 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6919 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6920 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6921 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6922 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6923 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6924 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6925 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6926 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6927 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6928 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6929 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6930 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6931 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6932 case Intrinsic::round: Opcode = ISD::FROUND; break;
6933 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6934 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6935 }
6936 // clang-format on
6937
6938 setValue(&I, DAG.getNode(Opcode, sdl,
6939 getValue(I.getArgOperand(0)).getValueType(),
6940 getValue(I.getArgOperand(0)), Flags));
6941 return;
6942 }
6943 case Intrinsic::atan2:
6944 setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6945 getValue(I.getArgOperand(0)).getValueType(),
6946 getValue(I.getArgOperand(0)),
6947 getValue(I.getArgOperand(1)), Flags));
6948 return;
6949 case Intrinsic::lround:
6950 case Intrinsic::llround:
6951 case Intrinsic::lrint:
6952 case Intrinsic::llrint: {
6953 unsigned Opcode;
6954 // clang-format off
6955 switch (Intrinsic) {
6956 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6957 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6958 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6959 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6960 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6961 }
6962 // clang-format on
6963
6964 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6965 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6966 getValue(I.getArgOperand(0))));
6967 return;
6968 }
6969 case Intrinsic::minnum:
6970 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6971 getValue(I.getArgOperand(0)).getValueType(),
6972 getValue(I.getArgOperand(0)),
6973 getValue(I.getArgOperand(1)), Flags));
6974 return;
6975 case Intrinsic::maxnum:
6976 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6977 getValue(I.getArgOperand(0)).getValueType(),
6978 getValue(I.getArgOperand(0)),
6979 getValue(I.getArgOperand(1)), Flags));
6980 return;
6981 case Intrinsic::minimum:
6982 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6983 getValue(I.getArgOperand(0)).getValueType(),
6984 getValue(I.getArgOperand(0)),
6985 getValue(I.getArgOperand(1)), Flags));
6986 return;
6987 case Intrinsic::maximum:
6988 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6989 getValue(I.getArgOperand(0)).getValueType(),
6990 getValue(I.getArgOperand(0)),
6991 getValue(I.getArgOperand(1)), Flags));
6992 return;
6993 case Intrinsic::minimumnum:
6994 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6995 getValue(I.getArgOperand(0)).getValueType(),
6996 getValue(I.getArgOperand(0)),
6997 getValue(I.getArgOperand(1)), Flags));
6998 return;
6999 case Intrinsic::maximumnum:
7000 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
7001 getValue(I.getArgOperand(0)).getValueType(),
7002 getValue(I.getArgOperand(0)),
7003 getValue(I.getArgOperand(1)), Flags));
7004 return;
7005 case Intrinsic::copysign:
7006 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
7007 getValue(I.getArgOperand(0)).getValueType(),
7008 getValue(I.getArgOperand(0)),
7009 getValue(I.getArgOperand(1)), Flags));
7010 return;
7011 case Intrinsic::ldexp:
7012 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
7013 getValue(I.getArgOperand(0)).getValueType(),
7014 getValue(I.getArgOperand(0)),
7015 getValue(I.getArgOperand(1)), Flags));
7016 return;
7017 case Intrinsic::modf:
7018 case Intrinsic::sincos:
7019 case Intrinsic::sincospi:
7020 case Intrinsic::frexp: {
7021 unsigned Opcode;
7022 switch (Intrinsic) {
7023 default:
7024 llvm_unreachable("unexpected intrinsic");
7025 case Intrinsic::sincos:
7026 Opcode = ISD::FSINCOS;
7027 break;
7028 case Intrinsic::sincospi:
7029 Opcode = ISD::FSINCOSPI;
7030 break;
7031 case Intrinsic::modf:
7032 Opcode = ISD::FMODF;
7033 break;
7034 case Intrinsic::frexp:
7035 Opcode = ISD::FFREXP;
7036 break;
7037 }
7038 SmallVector<EVT, 2> ValueVTs;
7039 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
7040 SDVTList VTs = DAG.getVTList(ValueVTs);
7041 setValue(
7042 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
7043 return;
7044 }
7045 case Intrinsic::arithmetic_fence: {
7046 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
7047 getValue(I.getArgOperand(0)).getValueType(),
7048 getValue(I.getArgOperand(0)), Flags));
7049 return;
7050 }
7051 case Intrinsic::fma:
7052 setValue(&I, DAG.getNode(
7053 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
7054 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
7055 getValue(I.getArgOperand(2)), Flags));
7056 return;
7057#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7058 case Intrinsic::INTRINSIC:
7059#include "llvm/IR/ConstrainedOps.def"
7060 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
7061 return;
7062#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7063#include "llvm/IR/VPIntrinsics.def"
7064 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
7065 return;
7066 case Intrinsic::fptrunc_round: {
7067 // Get the last argument, the metadata and convert it to an integer in the
7068 // call
7069 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
7070 std::optional<RoundingMode> RoundMode =
7071 convertStrToRoundingMode(cast<MDString>(MD)->getString());
7072
7073 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7074
7075 // Propagate fast-math-flags from IR to node(s).
7076 SDNodeFlags Flags;
7077 Flags.copyFMF(*cast<FPMathOperator>(&I));
7078 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
7079
7081 Result = DAG.getNode(
7082 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
7083 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
7084 setValue(&I, Result);
7085
7086 return;
7087 }
7088 case Intrinsic::fmuladd: {
7089 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7090 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7091 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7092 setValue(&I, DAG.getNode(ISD::FMA, sdl,
7093 getValue(I.getArgOperand(0)).getValueType(),
7094 getValue(I.getArgOperand(0)),
7095 getValue(I.getArgOperand(1)),
7096 getValue(I.getArgOperand(2)), Flags));
7097 } else if (TLI.isOperationLegalOrCustom(ISD::FMULADD, VT)) {
7098 // TODO: Support splitting the vector.
7099 setValue(&I, DAG.getNode(ISD::FMULADD, sdl,
7100 getValue(I.getArgOperand(0)).getValueType(),
7101 getValue(I.getArgOperand(0)),
7102 getValue(I.getArgOperand(1)),
7103 getValue(I.getArgOperand(2)), Flags));
7104 } else {
7105 // TODO: Intrinsic calls should have fast-math-flags.
7106 SDValue Mul = DAG.getNode(
7107 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7108 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7109 SDValue Add = DAG.getNode(ISD::FADD, sdl,
7110 getValue(I.getArgOperand(0)).getValueType(),
7111 Mul, getValue(I.getArgOperand(2)), Flags);
7112 setValue(&I, Add);
7113 }
7114 return;
7115 }
7116 case Intrinsic::convert_to_fp16:
7117 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
7118 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
7119 getValue(I.getArgOperand(0)),
7120 DAG.getTargetConstant(0, sdl,
7121 MVT::i32))));
7122 return;
7123 case Intrinsic::convert_from_fp16:
7124 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7125 TLI.getValueType(DAG.getDataLayout(), I.getType()),
7126 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7127 getValue(I.getArgOperand(0)))));
7128 return;
7129 case Intrinsic::fptosi_sat: {
7130 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7131 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7132 getValue(I.getArgOperand(0)),
7133 DAG.getValueType(VT.getScalarType())));
7134 return;
7135 }
7136 case Intrinsic::fptoui_sat: {
7137 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7138 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7139 getValue(I.getArgOperand(0)),
7140 DAG.getValueType(VT.getScalarType())));
7141 return;
7142 }
7143 case Intrinsic::set_rounding:
7144 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7145 {getRoot(), getValue(I.getArgOperand(0))});
7146 setValue(&I, Res);
7147 DAG.setRoot(Res.getValue(0));
7148 return;
7149 case Intrinsic::is_fpclass: {
7150 const DataLayout DLayout = DAG.getDataLayout();
7151 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7152 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7153 FPClassTest Test = static_cast<FPClassTest>(
7154 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7155 MachineFunction &MF = DAG.getMachineFunction();
7156 const Function &F = MF.getFunction();
7157 SDValue Op = getValue(I.getArgOperand(0));
7158 SDNodeFlags Flags;
7159 Flags.setNoFPExcept(
7160 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7161 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7162 // expansion can use illegal types. Making expansion early allows
7163 // legalizing these types prior to selection.
7164 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7165 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7166 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7167 setValue(&I, Result);
7168 return;
7169 }
7170
7171 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7172 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7173 setValue(&I, V);
7174 return;
7175 }
7176 case Intrinsic::get_fpenv: {
7177 const DataLayout DLayout = DAG.getDataLayout();
7178 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7179 Align TempAlign = DAG.getEVTAlign(EnvVT);
7180 SDValue Chain = getRoot();
7181 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7182 // and temporary storage in stack.
7183 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7184 Res = DAG.getNode(
7185 ISD::GET_FPENV, sdl,
7186 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7187 MVT::Other),
7188 Chain);
7189 } else {
7190 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7191 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7192 auto MPI =
7193 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7194 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7196 TempAlign);
7197 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7198 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7199 }
7200 setValue(&I, Res);
7201 DAG.setRoot(Res.getValue(1));
7202 return;
7203 }
7204 case Intrinsic::set_fpenv: {
7205 const DataLayout DLayout = DAG.getDataLayout();
7206 SDValue Env = getValue(I.getArgOperand(0));
7207 EVT EnvVT = Env.getValueType();
7208 Align TempAlign = DAG.getEVTAlign(EnvVT);
7209 SDValue Chain = getRoot();
7210 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7211 // environment from memory.
7212 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7213 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7214 } else {
7215 // Allocate space in stack, copy environment bits into it and use this
7216 // memory in SET_FPENV_MEM.
7217 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7218 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7219 auto MPI =
7220 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7221 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7223 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7225 TempAlign);
7226 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7227 }
7228 DAG.setRoot(Chain);
7229 return;
7230 }
7231 case Intrinsic::reset_fpenv:
7232 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7233 return;
7234 case Intrinsic::get_fpmode:
7235 Res = DAG.getNode(
7236 ISD::GET_FPMODE, sdl,
7237 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7238 MVT::Other),
7239 DAG.getRoot());
7240 setValue(&I, Res);
7241 DAG.setRoot(Res.getValue(1));
7242 return;
7243 case Intrinsic::set_fpmode:
7244 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7245 getValue(I.getArgOperand(0)));
7246 DAG.setRoot(Res);
7247 return;
7248 case Intrinsic::reset_fpmode: {
7249 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7250 DAG.setRoot(Res);
7251 return;
7252 }
7253 case Intrinsic::pcmarker: {
7254 SDValue Tmp = getValue(I.getArgOperand(0));
7255 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7256 return;
7257 }
7258 case Intrinsic::readcyclecounter: {
7259 SDValue Op = getRoot();
7260 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7261 DAG.getVTList(MVT::i64, MVT::Other), Op);
7262 setValue(&I, Res);
7263 DAG.setRoot(Res.getValue(1));
7264 return;
7265 }
7266 case Intrinsic::readsteadycounter: {
7267 SDValue Op = getRoot();
7268 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7269 DAG.getVTList(MVT::i64, MVT::Other), Op);
7270 setValue(&I, Res);
7271 DAG.setRoot(Res.getValue(1));
7272 return;
7273 }
7274 case Intrinsic::bitreverse:
7275 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7276 getValue(I.getArgOperand(0)).getValueType(),
7277 getValue(I.getArgOperand(0))));
7278 return;
7279 case Intrinsic::bswap:
7280 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7281 getValue(I.getArgOperand(0)).getValueType(),
7282 getValue(I.getArgOperand(0))));
7283 return;
7284 case Intrinsic::cttz: {
7285 SDValue Arg = getValue(I.getArgOperand(0));
7286 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7287 EVT Ty = Arg.getValueType();
7288 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7289 sdl, Ty, Arg));
7290 return;
7291 }
7292 case Intrinsic::ctlz: {
7293 SDValue Arg = getValue(I.getArgOperand(0));
7294 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7295 EVT Ty = Arg.getValueType();
7296 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7297 sdl, Ty, Arg));
7298 return;
7299 }
7300 case Intrinsic::ctpop: {
7301 SDValue Arg = getValue(I.getArgOperand(0));
7302 EVT Ty = Arg.getValueType();
7303 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7304 return;
7305 }
7306 case Intrinsic::fshl:
7307 case Intrinsic::fshr: {
7308 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7309 SDValue X = getValue(I.getArgOperand(0));
7310 SDValue Y = getValue(I.getArgOperand(1));
7311 SDValue Z = getValue(I.getArgOperand(2));
7312 EVT VT = X.getValueType();
7313
7314 if (X == Y) {
7315 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7316 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7317 } else {
7318 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7319 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7320 }
7321 return;
7322 }
7323 case Intrinsic::sadd_sat: {
7324 SDValue Op1 = getValue(I.getArgOperand(0));
7325 SDValue Op2 = getValue(I.getArgOperand(1));
7326 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7327 return;
7328 }
7329 case Intrinsic::uadd_sat: {
7330 SDValue Op1 = getValue(I.getArgOperand(0));
7331 SDValue Op2 = getValue(I.getArgOperand(1));
7332 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7333 return;
7334 }
7335 case Intrinsic::ssub_sat: {
7336 SDValue Op1 = getValue(I.getArgOperand(0));
7337 SDValue Op2 = getValue(I.getArgOperand(1));
7338 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7339 return;
7340 }
7341 case Intrinsic::usub_sat: {
7342 SDValue Op1 = getValue(I.getArgOperand(0));
7343 SDValue Op2 = getValue(I.getArgOperand(1));
7344 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7345 return;
7346 }
7347 case Intrinsic::sshl_sat:
7348 case Intrinsic::ushl_sat: {
7349 SDValue Op1 = getValue(I.getArgOperand(0));
7350 SDValue Op2 = getValue(I.getArgOperand(1));
7351
7352 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
7353 Op1.getValueType(), DAG.getDataLayout());
7354
7355 // Coerce the shift amount to the right type if we can. This exposes the
7356 // truncate or zext to optimization early.
7357 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
7358 assert(ShiftTy.getSizeInBits() >=
7360 "Unexpected shift type");
7361 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
7362 }
7363
7364 unsigned Opc =
7365 Intrinsic == Intrinsic::sshl_sat ? ISD::SSHLSAT : ISD::USHLSAT;
7366 setValue(&I, DAG.getNode(Opc, sdl, Op1.getValueType(), Op1, Op2));
7367 return;
7368 }
7369 case Intrinsic::smul_fix:
7370 case Intrinsic::umul_fix:
7371 case Intrinsic::smul_fix_sat:
7372 case Intrinsic::umul_fix_sat: {
7373 SDValue Op1 = getValue(I.getArgOperand(0));
7374 SDValue Op2 = getValue(I.getArgOperand(1));
7375 SDValue Op3 = getValue(I.getArgOperand(2));
7376 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7377 Op1.getValueType(), Op1, Op2, Op3));
7378 return;
7379 }
7380 case Intrinsic::sdiv_fix:
7381 case Intrinsic::udiv_fix:
7382 case Intrinsic::sdiv_fix_sat:
7383 case Intrinsic::udiv_fix_sat: {
7384 SDValue Op1 = getValue(I.getArgOperand(0));
7385 SDValue Op2 = getValue(I.getArgOperand(1));
7386 SDValue Op3 = getValue(I.getArgOperand(2));
7388 Op1, Op2, Op3, DAG, TLI));
7389 return;
7390 }
7391 case Intrinsic::smax: {
7392 SDValue Op1 = getValue(I.getArgOperand(0));
7393 SDValue Op2 = getValue(I.getArgOperand(1));
7394 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7395 return;
7396 }
7397 case Intrinsic::smin: {
7398 SDValue Op1 = getValue(I.getArgOperand(0));
7399 SDValue Op2 = getValue(I.getArgOperand(1));
7400 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7401 return;
7402 }
7403 case Intrinsic::umax: {
7404 SDValue Op1 = getValue(I.getArgOperand(0));
7405 SDValue Op2 = getValue(I.getArgOperand(1));
7406 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7407 return;
7408 }
7409 case Intrinsic::umin: {
7410 SDValue Op1 = getValue(I.getArgOperand(0));
7411 SDValue Op2 = getValue(I.getArgOperand(1));
7412 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7413 return;
7414 }
7415 case Intrinsic::abs: {
7416 // TODO: Preserve "int min is poison" arg in SDAG?
7417 SDValue Op1 = getValue(I.getArgOperand(0));
7418 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7419 return;
7420 }
7421 case Intrinsic::scmp: {
7422 SDValue Op1 = getValue(I.getArgOperand(0));
7423 SDValue Op2 = getValue(I.getArgOperand(1));
7424 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7425 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7426 break;
7427 }
7428 case Intrinsic::ucmp: {
7429 SDValue Op1 = getValue(I.getArgOperand(0));
7430 SDValue Op2 = getValue(I.getArgOperand(1));
7431 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7432 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7433 break;
7434 }
7435 case Intrinsic::stacksave: {
7436 SDValue Op = getRoot();
7437 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7438 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7439 setValue(&I, Res);
7440 DAG.setRoot(Res.getValue(1));
7441 return;
7442 }
7443 case Intrinsic::stackrestore:
7444 Res = getValue(I.getArgOperand(0));
7445 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7446 return;
7447 case Intrinsic::get_dynamic_area_offset: {
7448 SDValue Op = getRoot();
7449 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7450 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7451 Op);
7452 DAG.setRoot(Op);
7453 setValue(&I, Res);
7454 return;
7455 }
7456 case Intrinsic::stackguard: {
7457 MachineFunction &MF = DAG.getMachineFunction();
7458 const Module &M = *MF.getFunction().getParent();
7459 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7460 SDValue Chain = getRoot();
7461 if (TLI.useLoadStackGuardNode(M)) {
7462 Res = getLoadStackGuard(DAG, sdl, Chain);
7463 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7464 } else {
7465 const Value *Global = TLI.getSDagStackGuard(M);
7466 if (!Global) {
7467 LLVMContext &Ctx = *DAG.getContext();
7468 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
7469 setValue(&I, DAG.getPOISON(PtrTy));
7470 return;
7471 }
7472
7473 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7474 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7475 MachinePointerInfo(Global, 0), Align,
7477 }
7478 if (TLI.useStackGuardMixCookie())
7479 Res = TLI.emitStackGuardMixCookie(DAG, Res, sdl, false);
7480 DAG.setRoot(Chain);
7481 setValue(&I, Res);
7482 return;
7483 }
7484 case Intrinsic::stackprotector: {
7485 // Emit code into the DAG to store the stack guard onto the stack.
7486 MachineFunction &MF = DAG.getMachineFunction();
7487 MachineFrameInfo &MFI = MF.getFrameInfo();
7488 const Module &M = *MF.getFunction().getParent();
7489 SDValue Src, Chain = getRoot();
7490
7491 if (TLI.useLoadStackGuardNode(M))
7492 Src = getLoadStackGuard(DAG, sdl, Chain);
7493 else
7494 Src = getValue(I.getArgOperand(0)); // The guard's value.
7495
7496 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7497
7498 int FI = FuncInfo.StaticAllocaMap[Slot];
7499 MFI.setStackProtectorIndex(FI);
7500 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7501
7502 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7503
7504 // Store the stack protector onto the stack.
7505 Res = DAG.getStore(
7506 Chain, sdl, Src, FIN,
7507 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7508 MaybeAlign(), MachineMemOperand::MOVolatile);
7509 setValue(&I, Res);
7510 DAG.setRoot(Res);
7511 return;
7512 }
7513 case Intrinsic::objectsize:
7514 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7515
7516 case Intrinsic::is_constant:
7517 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7518
7519 case Intrinsic::annotation:
7520 case Intrinsic::ptr_annotation:
7521 case Intrinsic::launder_invariant_group:
7522 case Intrinsic::strip_invariant_group:
7523 // Drop the intrinsic, but forward the value
7524 setValue(&I, getValue(I.getOperand(0)));
7525 return;
7526
7527 case Intrinsic::type_test:
7528 case Intrinsic::public_type_test:
7529 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7530 return;
7531
7532 case Intrinsic::assume:
7533 case Intrinsic::experimental_noalias_scope_decl:
7534 case Intrinsic::var_annotation:
7535 case Intrinsic::sideeffect:
7536 // Discard annotate attributes, noalias scope declarations, assumptions, and
7537 // artificial side-effects.
7538 return;
7539
7540 case Intrinsic::codeview_annotation: {
7541 // Emit a label associated with this metadata.
7542 MachineFunction &MF = DAG.getMachineFunction();
7543 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7544 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7545 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7546 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7547 DAG.setRoot(Res);
7548 return;
7549 }
7550
7551 case Intrinsic::init_trampoline: {
7552 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7553
7554 SDValue Ops[6];
7555 Ops[0] = getRoot();
7556 Ops[1] = getValue(I.getArgOperand(0));
7557 Ops[2] = getValue(I.getArgOperand(1));
7558 Ops[3] = getValue(I.getArgOperand(2));
7559 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7560 Ops[5] = DAG.getSrcValue(F);
7561
7562 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7563
7564 DAG.setRoot(Res);
7565 return;
7566 }
7567 case Intrinsic::adjust_trampoline:
7568 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7569 TLI.getPointerTy(DAG.getDataLayout()),
7570 getValue(I.getArgOperand(0))));
7571 return;
7572 case Intrinsic::gcroot: {
7573 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7574 "only valid in functions with gc specified, enforced by Verifier");
7575 assert(GFI && "implied by previous");
7576 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7577 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7578
7579 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7580 GFI->addStackRoot(FI->getIndex(), TypeMap);
7581 return;
7582 }
7583 case Intrinsic::gcread:
7584 case Intrinsic::gcwrite:
7585 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7586 case Intrinsic::get_rounding:
7587 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7588 setValue(&I, Res);
7589 DAG.setRoot(Res.getValue(1));
7590 return;
7591
7592 case Intrinsic::expect:
7593 case Intrinsic::expect_with_probability:
7594 // Just replace __builtin_expect(exp, c) and
7595 // __builtin_expect_with_probability(exp, c, p) with EXP.
7596 setValue(&I, getValue(I.getArgOperand(0)));
7597 return;
7598
7599 case Intrinsic::ubsantrap:
7600 case Intrinsic::debugtrap:
7601 case Intrinsic::trap: {
7602 StringRef TrapFuncName =
7603 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7604 if (TrapFuncName.empty()) {
7605 switch (Intrinsic) {
7606 case Intrinsic::trap:
7607 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7608 break;
7609 case Intrinsic::debugtrap:
7610 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7611 break;
7612 case Intrinsic::ubsantrap:
7613 DAG.setRoot(DAG.getNode(
7614 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7615 DAG.getTargetConstant(
7616 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7617 MVT::i32)));
7618 break;
7619 default: llvm_unreachable("unknown trap intrinsic");
7620 }
7621 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7622 I.hasFnAttr(Attribute::NoMerge));
7623 return;
7624 }
7626 if (Intrinsic == Intrinsic::ubsantrap) {
7627 Value *Arg = I.getArgOperand(0);
7628 Args.emplace_back(Arg, getValue(Arg));
7629 }
7630
7631 TargetLowering::CallLoweringInfo CLI(DAG);
7632 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7633 CallingConv::C, I.getType(),
7634 DAG.getExternalSymbol(TrapFuncName.data(),
7635 TLI.getPointerTy(DAG.getDataLayout())),
7636 std::move(Args));
7637 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7638 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7639 DAG.setRoot(Result.second);
7640 return;
7641 }
7642
7643 case Intrinsic::allow_runtime_check:
7644 case Intrinsic::allow_ubsan_check:
7645 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7646 return;
7647
7648 case Intrinsic::uadd_with_overflow:
7649 case Intrinsic::sadd_with_overflow:
7650 case Intrinsic::usub_with_overflow:
7651 case Intrinsic::ssub_with_overflow:
7652 case Intrinsic::umul_with_overflow:
7653 case Intrinsic::smul_with_overflow: {
7655 switch (Intrinsic) {
7656 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7657 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7658 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7659 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7660 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7661 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7662 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7663 }
7664 SDValue Op1 = getValue(I.getArgOperand(0));
7665 SDValue Op2 = getValue(I.getArgOperand(1));
7666
7667 EVT ResultVT = Op1.getValueType();
7668 EVT OverflowVT = ResultVT.changeElementType(*Context, MVT::i1);
7669
7670 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7671 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7672 return;
7673 }
7674 case Intrinsic::prefetch: {
7675 SDValue Ops[5];
7676 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7678 Ops[0] = DAG.getRoot();
7679 Ops[1] = getValue(I.getArgOperand(0));
7680 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7681 MVT::i32);
7682 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7683 MVT::i32);
7684 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7685 MVT::i32);
7686 SDValue Result = DAG.getMemIntrinsicNode(
7687 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7688 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7689 /* align */ std::nullopt, Flags);
7690
7691 // Chain the prefetch in parallel with any pending loads, to stay out of
7692 // the way of later optimizations.
7693 PendingLoads.push_back(Result);
7694 Result = getRoot();
7695 DAG.setRoot(Result);
7696 return;
7697 }
7698 case Intrinsic::lifetime_start:
7699 case Intrinsic::lifetime_end: {
7700 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7701 // Stack coloring is not enabled in O0, discard region information.
7702 if (TM.getOptLevel() == CodeGenOptLevel::None)
7703 return;
7704
7705 const AllocaInst *LifetimeObject = dyn_cast<AllocaInst>(I.getArgOperand(0));
7706 if (!LifetimeObject)
7707 return;
7708
7709 // First check that the Alloca is static, otherwise it won't have a
7710 // valid frame index.
7711 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7712 if (SI == FuncInfo.StaticAllocaMap.end())
7713 return;
7714
7715 const int FrameIndex = SI->second;
7716 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex);
7717 DAG.setRoot(Res);
7718 return;
7719 }
7720 case Intrinsic::pseudoprobe: {
7721 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7722 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7723 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7724 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7725 DAG.setRoot(Res);
7726 return;
7727 }
7728 case Intrinsic::invariant_start:
7729 // Discard region information.
7730 setValue(&I,
7731 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7732 return;
7733 case Intrinsic::invariant_end:
7734 // Discard region information.
7735 return;
7736 case Intrinsic::clear_cache: {
7737 SDValue InputChain = DAG.getRoot();
7738 SDValue StartVal = getValue(I.getArgOperand(0));
7739 SDValue EndVal = getValue(I.getArgOperand(1));
7740 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7741 {InputChain, StartVal, EndVal});
7742 setValue(&I, Res);
7743 DAG.setRoot(Res);
7744 return;
7745 }
7746 case Intrinsic::donothing:
7747 case Intrinsic::seh_try_begin:
7748 case Intrinsic::seh_scope_begin:
7749 case Intrinsic::seh_try_end:
7750 case Intrinsic::seh_scope_end:
7751 // ignore
7752 return;
7753 case Intrinsic::experimental_stackmap:
7754 visitStackmap(I);
7755 return;
7756 case Intrinsic::experimental_patchpoint_void:
7757 case Intrinsic::experimental_patchpoint:
7758 visitPatchpoint(I);
7759 return;
7760 case Intrinsic::experimental_gc_statepoint:
7762 return;
7763 case Intrinsic::experimental_gc_result:
7764 visitGCResult(cast<GCResultInst>(I));
7765 return;
7766 case Intrinsic::experimental_gc_relocate:
7767 visitGCRelocate(cast<GCRelocateInst>(I));
7768 return;
7769 case Intrinsic::instrprof_cover:
7770 llvm_unreachable("instrprof failed to lower a cover");
7771 case Intrinsic::instrprof_increment:
7772 llvm_unreachable("instrprof failed to lower an increment");
7773 case Intrinsic::instrprof_timestamp:
7774 llvm_unreachable("instrprof failed to lower a timestamp");
7775 case Intrinsic::instrprof_value_profile:
7776 llvm_unreachable("instrprof failed to lower a value profiling call");
7777 case Intrinsic::instrprof_mcdc_parameters:
7778 llvm_unreachable("instrprof failed to lower mcdc parameters");
7779 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7780 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7781 case Intrinsic::localescape: {
7782 MachineFunction &MF = DAG.getMachineFunction();
7783 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7784
7785 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7786 // is the same on all targets.
7787 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7788 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7789 if (isa<ConstantPointerNull>(Arg))
7790 continue; // Skip null pointers. They represent a hole in index space.
7791 AllocaInst *Slot = cast<AllocaInst>(Arg);
7792 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7793 "can only escape static allocas");
7794 int FI = FuncInfo.StaticAllocaMap[Slot];
7795 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7798 TII->get(TargetOpcode::LOCAL_ESCAPE))
7799 .addSym(FrameAllocSym)
7800 .addFrameIndex(FI);
7801 }
7802
7803 return;
7804 }
7805
7806 case Intrinsic::localrecover: {
7807 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7808 MachineFunction &MF = DAG.getMachineFunction();
7809
7810 // Get the symbol that defines the frame offset.
7811 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7812 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7813 unsigned IdxVal =
7814 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7815 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7817
7818 Value *FP = I.getArgOperand(1);
7819 SDValue FPVal = getValue(FP);
7820 EVT PtrVT = FPVal.getValueType();
7821
7822 // Create a MCSymbol for the label to avoid any target lowering
7823 // that would make this PC relative.
7824 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7825 SDValue OffsetVal =
7826 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7827
7828 // Add the offset to the FP.
7829 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7830 setValue(&I, Add);
7831
7832 return;
7833 }
7834
7835 case Intrinsic::fake_use: {
7836 Value *V = I.getArgOperand(0);
7837 SDValue Ops[2];
7838 // For Values not declared or previously used in this basic block, the
7839 // NodeMap will not have an entry, and `getValue` will assert if V has no
7840 // valid register value.
7841 auto FakeUseValue = [&]() -> SDValue {
7842 SDValue &N = NodeMap[V];
7843 if (N.getNode())
7844 return N;
7845
7846 // If there's a virtual register allocated and initialized for this
7847 // value, use it.
7848 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7849 return copyFromReg;
7850 // FIXME: Do we want to preserve constants? It seems pointless.
7851 if (isa<Constant>(V))
7852 return getValue(V);
7853 return SDValue();
7854 }();
7855 if (!FakeUseValue || FakeUseValue.isUndef())
7856 return;
7857 Ops[0] = getRoot();
7858 Ops[1] = FakeUseValue;
7859 // Also, do not translate a fake use with an undef operand, or any other
7860 // empty SDValues.
7861 if (!Ops[1] || Ops[1].isUndef())
7862 return;
7863 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7864 return;
7865 }
7866
7867 case Intrinsic::reloc_none: {
7868 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7869 StringRef SymbolName = cast<MDString>(MD)->getString();
7870 SDValue Ops[2] = {
7871 getRoot(),
7872 DAG.getTargetExternalSymbol(
7873 SymbolName.data(), TLI.getProgramPointerTy(DAG.getDataLayout()))};
7874 DAG.setRoot(DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other, Ops));
7875 return;
7876 }
7877
7878 case Intrinsic::eh_exceptionpointer:
7879 case Intrinsic::eh_exceptioncode: {
7880 // Get the exception pointer vreg, copy from it, and resize it to fit.
7881 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7882 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7883 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7884 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7885 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7886 if (Intrinsic == Intrinsic::eh_exceptioncode)
7887 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7888 setValue(&I, N);
7889 return;
7890 }
7891 case Intrinsic::xray_customevent: {
7892 // Here we want to make sure that the intrinsic behaves as if it has a
7893 // specific calling convention.
7894 const auto &Triple = DAG.getTarget().getTargetTriple();
7895 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7896 return;
7897
7899
7900 // We want to say that we always want the arguments in registers.
7901 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7902 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7903 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7904 SDValue Chain = getRoot();
7905 Ops.push_back(LogEntryVal);
7906 Ops.push_back(StrSizeVal);
7907 Ops.push_back(Chain);
7908
7909 // We need to enforce the calling convention for the callsite, so that
7910 // argument ordering is enforced correctly, and that register allocation can
7911 // see that some registers may be assumed clobbered and have to preserve
7912 // them across calls to the intrinsic.
7913 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7914 sdl, NodeTys, Ops);
7915 SDValue patchableNode = SDValue(MN, 0);
7916 DAG.setRoot(patchableNode);
7917 setValue(&I, patchableNode);
7918 return;
7919 }
7920 case Intrinsic::xray_typedevent: {
7921 // Here we want to make sure that the intrinsic behaves as if it has a
7922 // specific calling convention.
7923 const auto &Triple = DAG.getTarget().getTargetTriple();
7924 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7925 return;
7926
7928
7929 // We want to say that we always want the arguments in registers.
7930 // It's unclear to me how manipulating the selection DAG here forces callers
7931 // to provide arguments in registers instead of on the stack.
7932 SDValue LogTypeId = getValue(I.getArgOperand(0));
7933 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7934 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7935 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7936 SDValue Chain = getRoot();
7937 Ops.push_back(LogTypeId);
7938 Ops.push_back(LogEntryVal);
7939 Ops.push_back(StrSizeVal);
7940 Ops.push_back(Chain);
7941
7942 // We need to enforce the calling convention for the callsite, so that
7943 // argument ordering is enforced correctly, and that register allocation can
7944 // see that some registers may be assumed clobbered and have to preserve
7945 // them across calls to the intrinsic.
7946 MachineSDNode *MN = DAG.getMachineNode(
7947 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7948 SDValue patchableNode = SDValue(MN, 0);
7949 DAG.setRoot(patchableNode);
7950 setValue(&I, patchableNode);
7951 return;
7952 }
7953 case Intrinsic::experimental_deoptimize:
7955 return;
7956 case Intrinsic::stepvector:
7957 visitStepVector(I);
7958 return;
7959 case Intrinsic::vector_reduce_fadd:
7960 case Intrinsic::vector_reduce_fmul:
7961 case Intrinsic::vector_reduce_add:
7962 case Intrinsic::vector_reduce_mul:
7963 case Intrinsic::vector_reduce_and:
7964 case Intrinsic::vector_reduce_or:
7965 case Intrinsic::vector_reduce_xor:
7966 case Intrinsic::vector_reduce_smax:
7967 case Intrinsic::vector_reduce_smin:
7968 case Intrinsic::vector_reduce_umax:
7969 case Intrinsic::vector_reduce_umin:
7970 case Intrinsic::vector_reduce_fmax:
7971 case Intrinsic::vector_reduce_fmin:
7972 case Intrinsic::vector_reduce_fmaximum:
7973 case Intrinsic::vector_reduce_fminimum:
7974 visitVectorReduce(I, Intrinsic);
7975 return;
7976
7977 case Intrinsic::icall_branch_funnel: {
7979 Ops.push_back(getValue(I.getArgOperand(0)));
7980
7981 int64_t Offset;
7983 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7984 if (!Base)
7986 "llvm.icall.branch.funnel operand must be a GlobalValue");
7987 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7988
7989 struct BranchFunnelTarget {
7990 int64_t Offset;
7992 };
7994
7995 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7997 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7998 if (ElemBase != Base)
7999 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
8000 "to the same GlobalValue");
8001
8002 SDValue Val = getValue(I.getArgOperand(Op + 1));
8003 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
8004 if (!GA)
8006 "llvm.icall.branch.funnel operand must be a GlobalValue");
8007 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
8008 GA->getGlobal(), sdl, Val.getValueType(),
8009 GA->getOffset())});
8010 }
8011 llvm::sort(Targets,
8012 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
8013 return T1.Offset < T2.Offset;
8014 });
8015
8016 for (auto &T : Targets) {
8017 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
8018 Ops.push_back(T.Target);
8019 }
8020
8021 Ops.push_back(DAG.getRoot()); // Chain
8022 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
8023 MVT::Other, Ops),
8024 0);
8025 DAG.setRoot(N);
8026 setValue(&I, N);
8027 HasTailCall = true;
8028 return;
8029 }
8030
8031 case Intrinsic::wasm_landingpad_index:
8032 // Information this intrinsic contained has been transferred to
8033 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
8034 // delete it now.
8035 return;
8036
8037 case Intrinsic::aarch64_settag:
8038 case Intrinsic::aarch64_settag_zero: {
8039 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8040 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
8042 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
8043 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
8044 ZeroMemory);
8045 DAG.setRoot(Val);
8046 setValue(&I, Val);
8047 return;
8048 }
8049 case Intrinsic::amdgcn_cs_chain: {
8050 // At this point we don't care if it's amdgpu_cs_chain or
8051 // amdgpu_cs_chain_preserve.
8053
8054 Type *RetTy = I.getType();
8055 assert(RetTy->isVoidTy() && "Should not return");
8056
8057 SDValue Callee = getValue(I.getOperand(0));
8058
8059 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
8060 // We'll also tack the value of the EXEC mask at the end.
8062 Args.reserve(3);
8063
8064 for (unsigned Idx : {2, 3, 1}) {
8065 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8066 I.getOperand(Idx)->getType());
8067 Arg.setAttributes(&I, Idx);
8068 Args.push_back(Arg);
8069 }
8070
8071 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
8072 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
8073 Args[2].IsInReg = true; // EXEC should be inreg
8074
8075 // Forward the flags and any additional arguments.
8076 for (unsigned Idx = 4; Idx < I.arg_size(); ++Idx) {
8077 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8078 I.getOperand(Idx)->getType());
8079 Arg.setAttributes(&I, Idx);
8080 Args.push_back(Arg);
8081 }
8082
8083 TargetLowering::CallLoweringInfo CLI(DAG);
8084 CLI.setDebugLoc(getCurSDLoc())
8085 .setChain(getRoot())
8086 .setCallee(CC, RetTy, Callee, std::move(Args))
8087 .setNoReturn(true)
8088 .setTailCall(true)
8089 .setConvergent(I.isConvergent());
8090 CLI.CB = &I;
8091 std::pair<SDValue, SDValue> Result =
8092 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
8093 (void)Result;
8094 assert(!Result.first.getNode() && !Result.second.getNode() &&
8095 "Should've lowered as tail call");
8096
8097 HasTailCall = true;
8098 return;
8099 }
8100 case Intrinsic::amdgcn_call_whole_wave: {
8102 bool isTailCall = I.isTailCall();
8103
8104 // The first argument is the callee. Skip it when assembling the call args.
8105 for (unsigned Idx = 1; Idx < I.arg_size(); ++Idx) {
8106 TargetLowering::ArgListEntry Arg(getValue(I.getArgOperand(Idx)),
8107 I.getArgOperand(Idx)->getType());
8108 Arg.setAttributes(&I, Idx);
8109
8110 // If we have an explicit sret argument that is an Instruction, (i.e., it
8111 // might point to function-local memory), we can't meaningfully tail-call.
8112 if (Arg.IsSRet && isa<Instruction>(I.getArgOperand(Idx)))
8113 isTailCall = false;
8114
8115 Args.push_back(Arg);
8116 }
8117
8118 SDValue ConvControlToken;
8119 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8120 auto *Token = Bundle->Inputs[0].get();
8121 ConvControlToken = getValue(Token);
8122 }
8123
8124 TargetLowering::CallLoweringInfo CLI(DAG);
8125 CLI.setDebugLoc(getCurSDLoc())
8126 .setChain(getRoot())
8127 .setCallee(CallingConv::AMDGPU_Gfx_WholeWave, I.getType(),
8128 getValue(I.getArgOperand(0)), std::move(Args))
8129 .setTailCall(isTailCall && canTailCall(I))
8130 .setIsPreallocated(
8131 I.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8132 .setConvergent(I.isConvergent())
8133 .setConvergenceControlToken(ConvControlToken);
8134 CLI.CB = &I;
8135
8136 std::pair<SDValue, SDValue> Result =
8137 lowerInvokable(CLI, /*EHPadBB=*/nullptr);
8138
8139 if (Result.first.getNode())
8140 setValue(&I, Result.first);
8141 return;
8142 }
8143 case Intrinsic::ptrmask: {
8144 SDValue Ptr = getValue(I.getOperand(0));
8145 SDValue Mask = getValue(I.getOperand(1));
8146
8147 // On arm64_32, pointers are 32 bits when stored in memory, but
8148 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
8149 // match the index type, but the pointer is 64 bits, so the mask must be
8150 // zero-extended up to 64 bits to match the pointer.
8151 EVT PtrVT =
8152 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8153 EVT MemVT =
8154 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8155 assert(PtrVT == Ptr.getValueType());
8156 if (Mask.getValueType().getFixedSizeInBits() < MemVT.getFixedSizeInBits()) {
8157 // For AMDGPU buffer descriptors the mask is 48 bits, but the pointer is
8158 // 128-bit, so we have to pad the mask with ones for unused bits.
8159 auto HighOnes = DAG.getNode(
8160 ISD::SHL, sdl, PtrVT, DAG.getAllOnesConstant(sdl, PtrVT),
8161 DAG.getShiftAmountConstant(Mask.getValueType().getFixedSizeInBits(),
8162 PtrVT, sdl));
8163 Mask = DAG.getNode(ISD::OR, sdl, PtrVT,
8164 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8165 } else if (Mask.getValueType() != PtrVT)
8166 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8167
8168 assert(Mask.getValueType() == PtrVT);
8169 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8170 return;
8171 }
8172 case Intrinsic::threadlocal_address: {
8173 setValue(&I, getValue(I.getOperand(0)));
8174 return;
8175 }
8176 case Intrinsic::get_active_lane_mask: {
8177 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8178 SDValue Index = getValue(I.getOperand(0));
8179 SDValue TripCount = getValue(I.getOperand(1));
8180 EVT ElementVT = Index.getValueType();
8181
8182 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8183 setValue(&I, DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8184 TripCount));
8185 return;
8186 }
8187
8188 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8189 CCVT.getVectorElementCount());
8190
8191 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8192 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8193 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8194 SDValue VectorInduction = DAG.getNode(
8195 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8196 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8197 VectorTripCount, ISD::CondCode::SETULT);
8198 setValue(&I, SetCC);
8199 return;
8200 }
8201 case Intrinsic::experimental_get_vector_length: {
8202 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8203 "Expected positive VF");
8204 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8205 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8206
8207 SDValue Count = getValue(I.getOperand(0));
8208 EVT CountVT = Count.getValueType();
8209
8210 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8211 visitTargetIntrinsic(I, Intrinsic);
8212 return;
8213 }
8214
8215 // Expand to a umin between the trip count and the maximum elements the type
8216 // can hold.
8217 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8218
8219 // Extend the trip count to at least the result VT.
8220 if (CountVT.bitsLT(VT)) {
8221 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8222 CountVT = VT;
8223 }
8224
8225 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8226 ElementCount::get(VF, IsScalable));
8227
8228 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8229 // Clip to the result type if needed.
8230 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8231
8232 setValue(&I, Trunc);
8233 return;
8234 }
8235 case Intrinsic::vector_partial_reduce_add: {
8236 SDValue Acc = getValue(I.getOperand(0));
8237 SDValue Input = getValue(I.getOperand(1));
8238 setValue(&I,
8239 DAG.getNode(ISD::PARTIAL_REDUCE_UMLA, sdl, Acc.getValueType(), Acc,
8240 Input, DAG.getConstant(1, sdl, Input.getValueType())));
8241 return;
8242 }
8243 case Intrinsic::vector_partial_reduce_fadd: {
8244 SDValue Acc = getValue(I.getOperand(0));
8245 SDValue Input = getValue(I.getOperand(1));
8246 setValue(&I, DAG.getNode(
8247 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.getValueType(), Acc,
8248 Input, DAG.getConstantFP(1.0, sdl, Input.getValueType())));
8249 return;
8250 }
8251 case Intrinsic::experimental_cttz_elts: {
8252 auto DL = getCurSDLoc();
8253 SDValue Op = getValue(I.getOperand(0));
8254 EVT OpVT = Op.getValueType();
8255
8256 if (!TLI.shouldExpandCttzElements(OpVT)) {
8257 visitTargetIntrinsic(I, Intrinsic);
8258 return;
8259 }
8260
8261 if (OpVT.getScalarType() != MVT::i1) {
8262 // Compare the input vector elements to zero & use to count trailing zeros
8263 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8264 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8265 OpVT.getVectorElementCount());
8266 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8267 }
8268
8269 // If the zero-is-poison flag is set, we can assume the upper limit
8270 // of the result is VF-1.
8271 bool ZeroIsPoison =
8272 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8273 ConstantRange VScaleRange(1, true); // Dummy value.
8274 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8275 VScaleRange = getVScaleRange(I.getCaller(), 64);
8276 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8277 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8278
8279 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8280
8281 // Create the new vector type & get the vector length
8282 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8283 OpVT.getVectorElementCount());
8284
8285 SDValue VL =
8286 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8287
8288 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8289 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8290 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8291 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8292 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8293 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8294 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8295
8296 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8297 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8298
8299 setValue(&I, Ret);
8300 return;
8301 }
8302 case Intrinsic::vector_insert: {
8303 SDValue Vec = getValue(I.getOperand(0));
8304 SDValue SubVec = getValue(I.getOperand(1));
8305 SDValue Index = getValue(I.getOperand(2));
8306
8307 // The intrinsic's index type is i64, but the SDNode requires an index type
8308 // suitable for the target. Convert the index as required.
8309 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8310 if (Index.getValueType() != VectorIdxTy)
8311 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8312
8313 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8314 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8315 Index));
8316 return;
8317 }
8318 case Intrinsic::vector_extract: {
8319 SDValue Vec = getValue(I.getOperand(0));
8320 SDValue Index = getValue(I.getOperand(1));
8321 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8322
8323 // The intrinsic's index type is i64, but the SDNode requires an index type
8324 // suitable for the target. Convert the index as required.
8325 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8326 if (Index.getValueType() != VectorIdxTy)
8327 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8328
8329 setValue(&I,
8330 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8331 return;
8332 }
8333 case Intrinsic::experimental_vector_match: {
8334 SDValue Op1 = getValue(I.getOperand(0));
8335 SDValue Op2 = getValue(I.getOperand(1));
8336 SDValue Mask = getValue(I.getOperand(2));
8337 EVT Op1VT = Op1.getValueType();
8338 EVT Op2VT = Op2.getValueType();
8339 EVT ResVT = Mask.getValueType();
8340 unsigned SearchSize = Op2VT.getVectorNumElements();
8341
8342 // If the target has native support for this vector match operation, lower
8343 // the intrinsic untouched; otherwise, expand it below.
8344 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) {
8345 visitTargetIntrinsic(I, Intrinsic);
8346 return;
8347 }
8348
8349 SDValue Ret = DAG.getConstant(0, sdl, ResVT);
8350
8351 for (unsigned i = 0; i < SearchSize; ++i) {
8352 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
8353 Op2VT.getVectorElementType(), Op2,
8354 DAG.getVectorIdxConstant(i, sdl));
8355 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem);
8356 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ);
8357 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp);
8358 }
8359
8360 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask));
8361 return;
8362 }
8363 case Intrinsic::vector_reverse:
8364 visitVectorReverse(I);
8365 return;
8366 case Intrinsic::vector_splice:
8367 visitVectorSplice(I);
8368 return;
8369 case Intrinsic::callbr_landingpad:
8370 visitCallBrLandingPad(I);
8371 return;
8372 case Intrinsic::vector_interleave2:
8373 visitVectorInterleave(I, 2);
8374 return;
8375 case Intrinsic::vector_interleave3:
8376 visitVectorInterleave(I, 3);
8377 return;
8378 case Intrinsic::vector_interleave4:
8379 visitVectorInterleave(I, 4);
8380 return;
8381 case Intrinsic::vector_interleave5:
8382 visitVectorInterleave(I, 5);
8383 return;
8384 case Intrinsic::vector_interleave6:
8385 visitVectorInterleave(I, 6);
8386 return;
8387 case Intrinsic::vector_interleave7:
8388 visitVectorInterleave(I, 7);
8389 return;
8390 case Intrinsic::vector_interleave8:
8391 visitVectorInterleave(I, 8);
8392 return;
8393 case Intrinsic::vector_deinterleave2:
8394 visitVectorDeinterleave(I, 2);
8395 return;
8396 case Intrinsic::vector_deinterleave3:
8397 visitVectorDeinterleave(I, 3);
8398 return;
8399 case Intrinsic::vector_deinterleave4:
8400 visitVectorDeinterleave(I, 4);
8401 return;
8402 case Intrinsic::vector_deinterleave5:
8403 visitVectorDeinterleave(I, 5);
8404 return;
8405 case Intrinsic::vector_deinterleave6:
8406 visitVectorDeinterleave(I, 6);
8407 return;
8408 case Intrinsic::vector_deinterleave7:
8409 visitVectorDeinterleave(I, 7);
8410 return;
8411 case Intrinsic::vector_deinterleave8:
8412 visitVectorDeinterleave(I, 8);
8413 return;
8414 case Intrinsic::experimental_vector_compress:
8415 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8416 getValue(I.getArgOperand(0)).getValueType(),
8417 getValue(I.getArgOperand(0)),
8418 getValue(I.getArgOperand(1)),
8419 getValue(I.getArgOperand(2)), Flags));
8420 return;
8421 case Intrinsic::experimental_convergence_anchor:
8422 case Intrinsic::experimental_convergence_entry:
8423 case Intrinsic::experimental_convergence_loop:
8424 visitConvergenceControl(I, Intrinsic);
8425 return;
8426 case Intrinsic::experimental_vector_histogram_add: {
8427 visitVectorHistogram(I, Intrinsic);
8428 return;
8429 }
8430 case Intrinsic::experimental_vector_extract_last_active: {
8431 visitVectorExtractLastActive(I, Intrinsic);
8432 return;
8433 }
8434 case Intrinsic::loop_dependence_war_mask:
8435 setValue(&I,
8437 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8438 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8439 DAG.getConstant(0, sdl, MVT::i64)));
8440 return;
8441 case Intrinsic::loop_dependence_raw_mask:
8442 setValue(&I,
8444 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8445 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8446 DAG.getConstant(0, sdl, MVT::i64)));
8447 return;
8448 }
8449}
8450
8451void SelectionDAGBuilder::pushFPOpOutChain(SDValue Result,
8453 assert(Result.getNode()->getNumValues() == 2);
8454 SDValue OutChain = Result.getValue(1);
8455 assert(OutChain.getValueType() == MVT::Other);
8456
8457 // Instead of updating the root immediately, push the produced chain to the
8458 // appropriate list, deferring the update until the root is requested. In this
8459 // case, the nodes from the lists are chained using TokenFactor, indicating
8460 // that the operations are independent.
8461 //
8462 // In particular, the root is updated before any call that might access the
8463 // floating-point environment, except for constrained intrinsics.
8464 switch (EB) {
8467 PendingConstrainedFP.push_back(OutChain);
8468 break;
8470 PendingConstrainedFPStrict.push_back(OutChain);
8471 break;
8472 }
8473}
8474
8475void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8476 const ConstrainedFPIntrinsic &FPI) {
8477 SDLoc sdl = getCurSDLoc();
8478
8479 // We do not need to serialize constrained FP intrinsics against
8480 // each other or against (nonvolatile) loads, so they can be
8481 // chained like loads.
8483 SDValue Chain = getFPOperationRoot(EB);
8485 Opers.push_back(Chain);
8486 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8487 Opers.push_back(getValue(FPI.getArgOperand(I)));
8488
8489 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8490 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8491 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8492
8493 SDNodeFlags Flags;
8495 Flags.setNoFPExcept(true);
8496
8497 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8498 Flags.copyFMF(*FPOp);
8499
8500 unsigned Opcode;
8501 switch (FPI.getIntrinsicID()) {
8502 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8503#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8504 case Intrinsic::INTRINSIC: \
8505 Opcode = ISD::STRICT_##DAGN; \
8506 break;
8507#include "llvm/IR/ConstrainedOps.def"
8508 case Intrinsic::experimental_constrained_fmuladd: {
8509 Opcode = ISD::STRICT_FMA;
8510 // Break fmuladd into fmul and fadd.
8511 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8512 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8513 Opers.pop_back();
8514 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8515 pushFPOpOutChain(Mul, EB);
8516 Opcode = ISD::STRICT_FADD;
8517 Opers.clear();
8518 Opers.push_back(Mul.getValue(1));
8519 Opers.push_back(Mul.getValue(0));
8520 Opers.push_back(getValue(FPI.getArgOperand(2)));
8521 }
8522 break;
8523 }
8524 }
8525
8526 // A few strict DAG nodes carry additional operands that are not
8527 // set up by the default code above.
8528 switch (Opcode) {
8529 default: break;
8531 Opers.push_back(
8532 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8533 break;
8534 case ISD::STRICT_FSETCC:
8535 case ISD::STRICT_FSETCCS: {
8536 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8537 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8538 if (TM.Options.NoNaNsFPMath)
8539 Condition = getFCmpCodeWithoutNaN(Condition);
8540 Opers.push_back(DAG.getCondCode(Condition));
8541 break;
8542 }
8543 }
8544
8545 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8546 pushFPOpOutChain(Result, EB);
8547
8548 SDValue FPResult = Result.getValue(0);
8549 setValue(&FPI, FPResult);
8550}
8551
8552static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8553 std::optional<unsigned> ResOPC;
8554 switch (VPIntrin.getIntrinsicID()) {
8555 case Intrinsic::vp_ctlz: {
8556 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8557 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8558 break;
8559 }
8560 case Intrinsic::vp_cttz: {
8561 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8562 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8563 break;
8564 }
8565 case Intrinsic::vp_cttz_elts: {
8566 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8567 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8568 break;
8569 }
8570#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8571 case Intrinsic::VPID: \
8572 ResOPC = ISD::VPSD; \
8573 break;
8574#include "llvm/IR/VPIntrinsics.def"
8575 }
8576
8577 if (!ResOPC)
8579 "Inconsistency: no SDNode available for this VPIntrinsic!");
8580
8581 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8582 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8583 if (VPIntrin.getFastMathFlags().allowReassoc())
8584 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8585 : ISD::VP_REDUCE_FMUL;
8586 }
8587
8588 return *ResOPC;
8589}
8590
8591void SelectionDAGBuilder::visitVPLoad(
8592 const VPIntrinsic &VPIntrin, EVT VT,
8593 const SmallVectorImpl<SDValue> &OpValues) {
8594 SDLoc DL = getCurSDLoc();
8595 Value *PtrOperand = VPIntrin.getArgOperand(0);
8596 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8597 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8598 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8599 SDValue LD;
8600 // Do not serialize variable-length loads of constant memory with
8601 // anything.
8602 if (!Alignment)
8603 Alignment = DAG.getEVTAlign(VT);
8604 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8605 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8606 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8607 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8608 MachineMemOperand::Flags MMOFlags =
8609 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8610 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8611 MachinePointerInfo(PtrOperand), MMOFlags,
8612 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8613 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8614 MMO, false /*IsExpanding */);
8615 if (AddToChain)
8616 PendingLoads.push_back(LD.getValue(1));
8617 setValue(&VPIntrin, LD);
8618}
8619
8620void SelectionDAGBuilder::visitVPLoadFF(
8621 const VPIntrinsic &VPIntrin, EVT VT, EVT EVLVT,
8622 const SmallVectorImpl<SDValue> &OpValues) {
8623 assert(OpValues.size() == 3 && "Unexpected number of operands");
8624 SDLoc DL = getCurSDLoc();
8625 Value *PtrOperand = VPIntrin.getArgOperand(0);
8626 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8627 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8628 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
8629 SDValue LD;
8630 // Do not serialize variable-length loads of constant memory with
8631 // anything.
8632 if (!Alignment)
8633 Alignment = DAG.getEVTAlign(VT);
8634 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8635 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8636 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8637 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8638 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8639 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8640 LD = DAG.getLoadFFVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8641 MMO);
8642 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, EVLVT, LD.getValue(1));
8643 if (AddToChain)
8644 PendingLoads.push_back(LD.getValue(2));
8645 setValue(&VPIntrin, DAG.getMergeValues({LD.getValue(0), Trunc}, DL));
8646}
8647
8648void SelectionDAGBuilder::visitVPGather(
8649 const VPIntrinsic &VPIntrin, EVT VT,
8650 const SmallVectorImpl<SDValue> &OpValues) {
8651 SDLoc DL = getCurSDLoc();
8652 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8653 Value *PtrOperand = VPIntrin.getArgOperand(0);
8654 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8655 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8656 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8657 SDValue LD;
8658 if (!Alignment)
8659 Alignment = DAG.getEVTAlign(VT.getScalarType());
8660 unsigned AS =
8661 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8662 MachineMemOperand::Flags MMOFlags =
8663 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8664 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8665 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8666 *Alignment, AAInfo, Ranges);
8667 SDValue Base, Index, Scale;
8668 bool UniformBase =
8669 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8670 VT.getScalarStoreSize());
8671 if (!UniformBase) {
8672 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8673 Index = getValue(PtrOperand);
8674 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8675 }
8676 EVT IdxVT = Index.getValueType();
8677 EVT EltTy = IdxVT.getVectorElementType();
8678 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8679 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8680 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8681 }
8682 LD = DAG.getGatherVP(
8683 DAG.getVTList(VT, MVT::Other), VT, DL,
8684 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8686 PendingLoads.push_back(LD.getValue(1));
8687 setValue(&VPIntrin, LD);
8688}
8689
8690void SelectionDAGBuilder::visitVPStore(
8691 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8692 SDLoc DL = getCurSDLoc();
8693 Value *PtrOperand = VPIntrin.getArgOperand(1);
8694 EVT VT = OpValues[0].getValueType();
8695 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8696 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8697 SDValue ST;
8698 if (!Alignment)
8699 Alignment = DAG.getEVTAlign(VT);
8700 SDValue Ptr = OpValues[1];
8701 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8702 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8703 MachineMemOperand::Flags MMOFlags =
8704 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8705 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8706 MachinePointerInfo(PtrOperand), MMOFlags,
8707 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8708 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8709 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8710 /* IsTruncating */ false, /*IsCompressing*/ false);
8711 DAG.setRoot(ST);
8712 setValue(&VPIntrin, ST);
8713}
8714
8715void SelectionDAGBuilder::visitVPScatter(
8716 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8717 SDLoc DL = getCurSDLoc();
8718 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8719 Value *PtrOperand = VPIntrin.getArgOperand(1);
8720 EVT VT = OpValues[0].getValueType();
8721 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8722 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8723 SDValue ST;
8724 if (!Alignment)
8725 Alignment = DAG.getEVTAlign(VT.getScalarType());
8726 unsigned AS =
8727 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8728 MachineMemOperand::Flags MMOFlags =
8729 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8730 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8731 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8732 *Alignment, AAInfo);
8733 SDValue Base, Index, Scale;
8734 bool UniformBase =
8735 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8736 VT.getScalarStoreSize());
8737 if (!UniformBase) {
8738 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8739 Index = getValue(PtrOperand);
8740 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8741 }
8742 EVT IdxVT = Index.getValueType();
8743 EVT EltTy = IdxVT.getVectorElementType();
8744 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8745 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8746 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8747 }
8748 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8749 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8750 OpValues[2], OpValues[3]},
8751 MMO, ISD::SIGNED_SCALED);
8752 DAG.setRoot(ST);
8753 setValue(&VPIntrin, ST);
8754}
8755
8756void SelectionDAGBuilder::visitVPStridedLoad(
8757 const VPIntrinsic &VPIntrin, EVT VT,
8758 const SmallVectorImpl<SDValue> &OpValues) {
8759 SDLoc DL = getCurSDLoc();
8760 Value *PtrOperand = VPIntrin.getArgOperand(0);
8761 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8762 if (!Alignment)
8763 Alignment = DAG.getEVTAlign(VT.getScalarType());
8764 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8765 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8766 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8767 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8768 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8769 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8770 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8771 MachineMemOperand::Flags MMOFlags =
8772 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8773 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8774 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8775 *Alignment, AAInfo, Ranges);
8776
8777 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8778 OpValues[2], OpValues[3], MMO,
8779 false /*IsExpanding*/);
8780
8781 if (AddToChain)
8782 PendingLoads.push_back(LD.getValue(1));
8783 setValue(&VPIntrin, LD);
8784}
8785
8786void SelectionDAGBuilder::visitVPStridedStore(
8787 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8788 SDLoc DL = getCurSDLoc();
8789 Value *PtrOperand = VPIntrin.getArgOperand(1);
8790 EVT VT = OpValues[0].getValueType();
8791 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8792 if (!Alignment)
8793 Alignment = DAG.getEVTAlign(VT.getScalarType());
8794 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8795 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8796 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8797 MachineMemOperand::Flags MMOFlags =
8798 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8799 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8800 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8801 *Alignment, AAInfo);
8802
8803 SDValue ST = DAG.getStridedStoreVP(
8804 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8805 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8806 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8807 /*IsCompressing*/ false);
8808
8809 DAG.setRoot(ST);
8810 setValue(&VPIntrin, ST);
8811}
8812
8813void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8814 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8815 SDLoc DL = getCurSDLoc();
8816
8817 ISD::CondCode Condition;
8819 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8820 if (IsFP) {
8821 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8822 // flags, but calls that don't return floating-point types can't be
8823 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8824 Condition = getFCmpCondCode(CondCode);
8825 if (TM.Options.NoNaNsFPMath)
8826 Condition = getFCmpCodeWithoutNaN(Condition);
8827 } else {
8828 Condition = getICmpCondCode(CondCode);
8829 }
8830
8831 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8832 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8833 // #2 is the condition code
8834 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8835 SDValue EVL = getValue(VPIntrin.getOperand(4));
8836 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8837 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8838 "Unexpected target EVL type");
8839 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8840
8841 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8842 VPIntrin.getType());
8843 setValue(&VPIntrin,
8844 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8845}
8846
8847void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8848 const VPIntrinsic &VPIntrin) {
8849 SDLoc DL = getCurSDLoc();
8850 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8851
8852 auto IID = VPIntrin.getIntrinsicID();
8853
8854 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8855 return visitVPCmp(*CmpI);
8856
8857 SmallVector<EVT, 4> ValueVTs;
8858 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8859 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8860 SDVTList VTs = DAG.getVTList(ValueVTs);
8861
8862 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8863
8864 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8865 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8866 "Unexpected target EVL type");
8867
8868 // Request operands.
8869 SmallVector<SDValue, 7> OpValues;
8870 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8871 auto Op = getValue(VPIntrin.getArgOperand(I));
8872 if (I == EVLParamPos)
8873 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8874 OpValues.push_back(Op);
8875 }
8876
8877 switch (Opcode) {
8878 default: {
8879 SDNodeFlags SDFlags;
8880 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8881 SDFlags.copyFMF(*FPMO);
8882 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8883 setValue(&VPIntrin, Result);
8884 break;
8885 }
8886 case ISD::VP_LOAD:
8887 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8888 break;
8889 case ISD::VP_LOAD_FF:
8890 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8891 break;
8892 case ISD::VP_GATHER:
8893 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8894 break;
8895 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8896 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8897 break;
8898 case ISD::VP_STORE:
8899 visitVPStore(VPIntrin, OpValues);
8900 break;
8901 case ISD::VP_SCATTER:
8902 visitVPScatter(VPIntrin, OpValues);
8903 break;
8904 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8905 visitVPStridedStore(VPIntrin, OpValues);
8906 break;
8907 case ISD::VP_FMULADD: {
8908 assert(OpValues.size() == 5 && "Unexpected number of operands");
8909 SDNodeFlags SDFlags;
8910 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8911 SDFlags.copyFMF(*FPMO);
8912 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8913 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8914 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8915 } else {
8916 SDValue Mul = DAG.getNode(
8917 ISD::VP_FMUL, DL, VTs,
8918 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8919 SDValue Add =
8920 DAG.getNode(ISD::VP_FADD, DL, VTs,
8921 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8922 setValue(&VPIntrin, Add);
8923 }
8924 break;
8925 }
8926 case ISD::VP_IS_FPCLASS: {
8927 const DataLayout DLayout = DAG.getDataLayout();
8928 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8929 auto Constant = OpValues[1]->getAsZExtVal();
8930 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8931 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8932 {OpValues[0], Check, OpValues[2], OpValues[3]});
8933 setValue(&VPIntrin, V);
8934 return;
8935 }
8936 case ISD::VP_INTTOPTR: {
8937 SDValue N = OpValues[0];
8938 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8939 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8940 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8941 OpValues[2]);
8942 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8943 OpValues[2]);
8944 setValue(&VPIntrin, N);
8945 break;
8946 }
8947 case ISD::VP_PTRTOINT: {
8948 SDValue N = OpValues[0];
8949 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8950 VPIntrin.getType());
8951 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8952 VPIntrin.getOperand(0)->getType());
8953 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8954 OpValues[2]);
8955 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8956 OpValues[2]);
8957 setValue(&VPIntrin, N);
8958 break;
8959 }
8960 case ISD::VP_ABS:
8961 case ISD::VP_CTLZ:
8962 case ISD::VP_CTLZ_ZERO_UNDEF:
8963 case ISD::VP_CTTZ:
8964 case ISD::VP_CTTZ_ZERO_UNDEF:
8965 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8966 case ISD::VP_CTTZ_ELTS: {
8967 SDValue Result =
8968 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8969 setValue(&VPIntrin, Result);
8970 break;
8971 }
8972 }
8973}
8974
8975SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8976 const BasicBlock *EHPadBB,
8977 MCSymbol *&BeginLabel) {
8978 MachineFunction &MF = DAG.getMachineFunction();
8979
8980 // Insert a label before the invoke call to mark the try range. This can be
8981 // used to detect deletion of the invoke via the MachineModuleInfo.
8982 BeginLabel = MF.getContext().createTempSymbol();
8983
8984 // For SjLj, keep track of which landing pads go with which invokes
8985 // so as to maintain the ordering of pads in the LSDA.
8986 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8987 if (CallSiteIndex) {
8988 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8989 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8990
8991 // Now that the call site is handled, stop tracking it.
8992 FuncInfo.setCurrentCallSite(0);
8993 }
8994
8995 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8996}
8997
8998SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8999 const BasicBlock *EHPadBB,
9000 MCSymbol *BeginLabel) {
9001 assert(BeginLabel && "BeginLabel should've been set");
9002
9003 MachineFunction &MF = DAG.getMachineFunction();
9004
9005 // Insert a label at the end of the invoke call to mark the try range. This
9006 // can be used to detect deletion of the invoke via the MachineModuleInfo.
9007 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
9008 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
9009
9010 // Inform MachineModuleInfo of range.
9011 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
9012 // There is a platform (e.g. wasm) that uses funclet style IR but does not
9013 // actually use outlined funclets and their LSDA info style.
9014 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
9015 assert(II && "II should've been set");
9016 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
9017 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
9018 } else if (!isScopedEHPersonality(Pers)) {
9019 assert(EHPadBB);
9020 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
9021 }
9022
9023 return Chain;
9024}
9025
9026std::pair<SDValue, SDValue>
9028 const BasicBlock *EHPadBB) {
9029 MCSymbol *BeginLabel = nullptr;
9030
9031 if (EHPadBB) {
9032 // Both PendingLoads and PendingExports must be flushed here;
9033 // this call might not return.
9034 (void)getRoot();
9035 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
9036 CLI.setChain(getRoot());
9037 }
9038
9039 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9040 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
9041
9042 assert((CLI.IsTailCall || Result.second.getNode()) &&
9043 "Non-null chain expected with non-tail call!");
9044 assert((Result.second.getNode() || !Result.first.getNode()) &&
9045 "Null value expected with tail call!");
9046
9047 if (!Result.second.getNode()) {
9048 // As a special case, a null chain means that a tail call has been emitted
9049 // and the DAG root is already updated.
9050 HasTailCall = true;
9051
9052 // Since there's no actual continuation from this block, nothing can be
9053 // relying on us setting vregs for them.
9054 PendingExports.clear();
9055 } else {
9056 DAG.setRoot(Result.second);
9057 }
9058
9059 if (EHPadBB) {
9060 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
9061 BeginLabel));
9062 Result.second = getRoot();
9063 }
9064
9065 return Result;
9066}
9067
9069 bool isMustTailCall = CB.isMustTailCall();
9070
9071 // Avoid emitting tail calls in functions with the disable-tail-calls
9072 // attribute.
9073 const Function *Caller = CB.getParent()->getParent();
9074 if (!isMustTailCall &&
9075 Caller->getFnAttribute("disable-tail-calls").getValueAsBool())
9076 return false;
9077
9078 // We can't tail call inside a function with a swifterror argument. Lowering
9079 // does not support this yet. It would have to move into the swifterror
9080 // register before the call.
9081 if (DAG.getTargetLoweringInfo().supportSwiftError() &&
9082 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9083 return false;
9084
9085 // Check if target-independent constraints permit a tail call here.
9086 // Target-dependent constraints are checked within TLI->LowerCallTo.
9087 return isInTailCallPosition(CB, DAG.getTarget());
9088}
9089
9091 bool isTailCall, bool isMustTailCall,
9092 const BasicBlock *EHPadBB,
9093 const TargetLowering::PtrAuthInfo *PAI) {
9094 auto &DL = DAG.getDataLayout();
9095 FunctionType *FTy = CB.getFunctionType();
9096 Type *RetTy = CB.getType();
9097
9099 Args.reserve(CB.arg_size());
9100
9101 const Value *SwiftErrorVal = nullptr;
9102 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9103
9104 if (isTailCall)
9105 isTailCall = canTailCall(CB);
9106
9107 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
9108 const Value *V = *I;
9109
9110 // Skip empty types
9111 if (V->getType()->isEmptyTy())
9112 continue;
9113
9114 SDValue ArgNode = getValue(V);
9115 TargetLowering::ArgListEntry Entry(ArgNode, V->getType());
9116 Entry.setAttributes(&CB, I - CB.arg_begin());
9117
9118 // Use swifterror virtual register as input to the call.
9119 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
9120 SwiftErrorVal = V;
9121 // We find the virtual register for the actual swifterror argument.
9122 // Instead of using the Value, we use the virtual register instead.
9123 Entry.Node =
9124 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
9125 EVT(TLI.getPointerTy(DL)));
9126 }
9127
9128 Args.push_back(Entry);
9129
9130 // If we have an explicit sret argument that is an Instruction, (i.e., it
9131 // might point to function-local memory), we can't meaningfully tail-call.
9132 if (Entry.IsSRet && isa<Instruction>(V))
9133 isTailCall = false;
9134 }
9135
9136 // If call site has a cfguardtarget operand bundle, create and add an
9137 // additional ArgListEntry.
9138 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
9139 Value *V = Bundle->Inputs[0];
9141 Entry.IsCFGuardTarget = true;
9142 Args.push_back(Entry);
9143 }
9144
9145 // Disable tail calls if there is an swifterror argument. Targets have not
9146 // been updated to support tail calls.
9147 if (TLI.supportSwiftError() && SwiftErrorVal)
9148 isTailCall = false;
9149
9150 ConstantInt *CFIType = nullptr;
9151 if (CB.isIndirectCall()) {
9152 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
9153 if (!TLI.supportKCFIBundles())
9155 "Target doesn't support calls with kcfi operand bundles.");
9156 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
9157 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
9158 }
9159 }
9160
9161 SDValue ConvControlToken;
9162 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
9163 auto *Token = Bundle->Inputs[0].get();
9164 ConvControlToken = getValue(Token);
9165 }
9166
9167 GlobalValue *DeactivationSymbol = nullptr;
9169 DeactivationSymbol = cast<GlobalValue>(Bundle->Inputs[0].get());
9170 }
9171
9174 .setChain(getRoot())
9175 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9176 .setTailCall(isTailCall)
9180 .setCFIType(CFIType)
9181 .setConvergenceControlToken(ConvControlToken)
9182 .setDeactivationSymbol(DeactivationSymbol);
9183
9184 // Set the pointer authentication info if we have it.
9185 if (PAI) {
9186 if (!TLI.supportPtrAuthBundles())
9188 "This target doesn't support calls with ptrauth operand bundles.");
9189 CLI.setPtrAuth(*PAI);
9190 }
9191
9192 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9193
9194 if (Result.first.getNode()) {
9195 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
9196 Result.first = lowerNoFPClassToAssertNoFPClass(DAG, CB, Result.first);
9197 setValue(&CB, Result.first);
9198 }
9199
9200 // The last element of CLI.InVals has the SDValue for swifterror return.
9201 // Here we copy it to a virtual register and update SwiftErrorMap for
9202 // book-keeping.
9203 if (SwiftErrorVal && TLI.supportSwiftError()) {
9204 // Get the last element of InVals.
9205 SDValue Src = CLI.InVals.back();
9206 Register VReg =
9207 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
9208 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
9209 DAG.setRoot(CopyNode);
9210 }
9211}
9212
9213static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
9214 SelectionDAGBuilder &Builder) {
9215 // Check to see if this load can be trivially constant folded, e.g. if the
9216 // input is from a string literal.
9217 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
9218 // Cast pointer to the type we really want to load.
9219 Type *LoadTy =
9220 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
9221 if (LoadVT.isVector())
9222 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
9223 if (const Constant *LoadCst =
9224 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
9225 LoadTy, Builder.DAG.getDataLayout()))
9226 return Builder.getValue(LoadCst);
9227 }
9228
9229 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
9230 // still constant memory, the input chain can be the entry node.
9231 SDValue Root;
9232 bool ConstantMemory = false;
9233
9234 // Do not serialize (non-volatile) loads of constant memory with anything.
9235 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9236 Root = Builder.DAG.getEntryNode();
9237 ConstantMemory = true;
9238 } else {
9239 // Do not serialize non-volatile loads against each other.
9240 Root = Builder.DAG.getRoot();
9241 }
9242
9243 SDValue Ptr = Builder.getValue(PtrVal);
9244 SDValue LoadVal =
9245 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9246 MachinePointerInfo(PtrVal), Align(1));
9247
9248 if (!ConstantMemory)
9249 Builder.PendingLoads.push_back(LoadVal.getValue(1));
9250 return LoadVal;
9251}
9252
9253/// Record the value for an instruction that produces an integer result,
9254/// converting the type where necessary.
9255void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
9256 SDValue Value,
9257 bool IsSigned) {
9258 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9259 I.getType(), true);
9260 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
9261 setValue(&I, Value);
9262}
9263
9264/// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
9265/// true and lower it. Otherwise return false, and it will be lowered like a
9266/// normal call.
9267/// The caller already checked that \p I calls the appropriate LibFunc with a
9268/// correct prototype.
9269bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
9270 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
9271 const Value *Size = I.getArgOperand(2);
9272 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
9273 if (CSize && CSize->getZExtValue() == 0) {
9274 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9275 I.getType(), true);
9276 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
9277 return true;
9278 }
9279
9280 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9281 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
9282 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
9283 getValue(Size), &I);
9284 if (Res.first.getNode()) {
9285 processIntegerCallValue(I, Res.first, true);
9286 PendingLoads.push_back(Res.second);
9287 return true;
9288 }
9289
9290 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
9291 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
9292 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9293 return false;
9294
9295 // If the target has a fast compare for the given size, it will return a
9296 // preferred load type for that size. Require that the load VT is legal and
9297 // that the target supports unaligned loads of that type. Otherwise, return
9298 // INVALID.
9299 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9300 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9301 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9302 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9303 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9304 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9305 // TODO: Check alignment of src and dest ptrs.
9306 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9307 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9308 if (!TLI.isTypeLegal(LVT) ||
9309 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9310 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9312 }
9313
9314 return LVT;
9315 };
9316
9317 // This turns into unaligned loads. We only do this if the target natively
9318 // supports the MVT we'll be loading or if it is small enough (<= 4) that
9319 // we'll only produce a small number of byte loads.
9320 MVT LoadVT;
9321 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9322 switch (NumBitsToCompare) {
9323 default:
9324 return false;
9325 case 16:
9326 LoadVT = MVT::i16;
9327 break;
9328 case 32:
9329 LoadVT = MVT::i32;
9330 break;
9331 case 64:
9332 case 128:
9333 case 256:
9334 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9335 break;
9336 }
9337
9338 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9339 return false;
9340
9341 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9342 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9343
9344 // Bitcast to a wide integer type if the loads are vectors.
9345 if (LoadVT.isVector()) {
9346 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9347 LoadL = DAG.getBitcast(CmpVT, LoadL);
9348 LoadR = DAG.getBitcast(CmpVT, LoadR);
9349 }
9350
9351 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9352 processIntegerCallValue(I, Cmp, false);
9353 return true;
9354}
9355
9356/// See if we can lower a memchr call into an optimized form. If so, return
9357/// true and lower it. Otherwise return false, and it will be lowered like a
9358/// normal call.
9359/// The caller already checked that \p I calls the appropriate LibFunc with a
9360/// correct prototype.
9361bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9362 const Value *Src = I.getArgOperand(0);
9363 const Value *Char = I.getArgOperand(1);
9364 const Value *Length = I.getArgOperand(2);
9365
9366 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9367 std::pair<SDValue, SDValue> Res =
9368 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9369 getValue(Src), getValue(Char), getValue(Length),
9370 MachinePointerInfo(Src));
9371 if (Res.first.getNode()) {
9372 setValue(&I, Res.first);
9373 PendingLoads.push_back(Res.second);
9374 return true;
9375 }
9376
9377 return false;
9378}
9379
9380/// See if we can lower a mempcpy call into an optimized form. If so, return
9381/// true and lower it. Otherwise return false, and it will be lowered like a
9382/// normal call.
9383/// The caller already checked that \p I calls the appropriate LibFunc with a
9384/// correct prototype.
9385bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9386 SDValue Dst = getValue(I.getArgOperand(0));
9387 SDValue Src = getValue(I.getArgOperand(1));
9388 SDValue Size = getValue(I.getArgOperand(2));
9389
9390 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9391 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9392 // DAG::getMemcpy needs Alignment to be defined.
9393 Align Alignment = std::min(DstAlign, SrcAlign);
9394
9395 SDLoc sdl = getCurSDLoc();
9396
9397 // In the mempcpy context we need to pass in a false value for isTailCall
9398 // because the return pointer needs to be adjusted by the size of
9399 // the copied memory.
9400 SDValue Root = getMemoryRoot();
9401 SDValue MC = DAG.getMemcpy(
9402 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9403 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9404 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9405 assert(MC.getNode() != nullptr &&
9406 "** memcpy should not be lowered as TailCall in mempcpy context **");
9407 DAG.setRoot(MC);
9408
9409 // Check if Size needs to be truncated or extended.
9410 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9411
9412 // Adjust return pointer to point just past the last dst byte.
9413 SDValue DstPlusSize = DAG.getMemBasePlusOffset(Dst, Size, sdl);
9414 setValue(&I, DstPlusSize);
9415 return true;
9416}
9417
9418/// See if we can lower a strcpy call into an optimized form. If so, return
9419/// true and lower it, otherwise return false and it will be lowered like a
9420/// normal call.
9421/// The caller already checked that \p I calls the appropriate LibFunc with a
9422/// correct prototype.
9423bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9424 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9425
9426 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9427 std::pair<SDValue, SDValue> Res =
9429 getValue(Arg0), getValue(Arg1),
9430 MachinePointerInfo(Arg0),
9431 MachinePointerInfo(Arg1), isStpcpy);
9432 if (Res.first.getNode()) {
9433 setValue(&I, Res.first);
9434 DAG.setRoot(Res.second);
9435 return true;
9436 }
9437
9438 return false;
9439}
9440
9441/// See if we can lower a strcmp call into an optimized form. If so, return
9442/// true and lower it, otherwise return false and it will be lowered like a
9443/// normal call.
9444/// The caller already checked that \p I calls the appropriate LibFunc with a
9445/// correct prototype.
9446bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9447 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9448
9449 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9450 std::pair<SDValue, SDValue> Res =
9451 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9452 getValue(Arg0), getValue(Arg1),
9453 MachinePointerInfo(Arg0),
9454 MachinePointerInfo(Arg1));
9455 if (Res.first.getNode()) {
9456 processIntegerCallValue(I, Res.first, true);
9457 PendingLoads.push_back(Res.second);
9458 return true;
9459 }
9460
9461 return false;
9462}
9463
9464/// See if we can lower a strlen call into an optimized form. If so, return
9465/// true and lower it, otherwise return false and it will be lowered like a
9466/// normal call.
9467/// The caller already checked that \p I calls the appropriate LibFunc with a
9468/// correct prototype.
9469bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9470 const Value *Arg0 = I.getArgOperand(0);
9471
9472 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9473 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrlen(
9474 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), &I);
9475 if (Res.first.getNode()) {
9476 processIntegerCallValue(I, Res.first, false);
9477 PendingLoads.push_back(Res.second);
9478 return true;
9479 }
9480
9481 return false;
9482}
9483
9484/// See if we can lower a strnlen call into an optimized form. If so, return
9485/// true and lower it, otherwise return false and it will be lowered like a
9486/// normal call.
9487/// The caller already checked that \p I calls the appropriate LibFunc with a
9488/// correct prototype.
9489bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9490 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9491
9492 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9493 std::pair<SDValue, SDValue> Res =
9494 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9495 getValue(Arg0), getValue(Arg1),
9496 MachinePointerInfo(Arg0));
9497 if (Res.first.getNode()) {
9498 processIntegerCallValue(I, Res.first, false);
9499 PendingLoads.push_back(Res.second);
9500 return true;
9501 }
9502
9503 return false;
9504}
9505
9506/// See if we can lower a unary floating-point operation into an SDNode with
9507/// the specified Opcode. If so, return true and lower it, otherwise return
9508/// false and it will be lowered like a normal call.
9509/// The caller already checked that \p I calls the appropriate LibFunc with a
9510/// correct prototype.
9511bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9512 unsigned Opcode) {
9513 // We already checked this call's prototype; verify it doesn't modify errno.
9514 // Do not perform optimizations for call sites that require strict
9515 // floating-point semantics.
9516 if (!I.onlyReadsMemory() || I.isStrictFP())
9517 return false;
9518
9519 SDNodeFlags Flags;
9520 Flags.copyFMF(cast<FPMathOperator>(I));
9521
9522 SDValue Tmp = getValue(I.getArgOperand(0));
9523 setValue(&I,
9524 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9525 return true;
9526}
9527
9528/// See if we can lower a binary floating-point operation into an SDNode with
9529/// the specified Opcode. If so, return true and lower it. Otherwise return
9530/// false, and it will be lowered like a normal call.
9531/// The caller already checked that \p I calls the appropriate LibFunc with a
9532/// correct prototype.
9533bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9534 unsigned Opcode) {
9535 // We already checked this call's prototype; verify it doesn't modify errno.
9536 // Do not perform optimizations for call sites that require strict
9537 // floating-point semantics.
9538 if (!I.onlyReadsMemory() || I.isStrictFP())
9539 return false;
9540
9541 SDNodeFlags Flags;
9542 Flags.copyFMF(cast<FPMathOperator>(I));
9543
9544 SDValue Tmp0 = getValue(I.getArgOperand(0));
9545 SDValue Tmp1 = getValue(I.getArgOperand(1));
9546 EVT VT = Tmp0.getValueType();
9547 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9548 return true;
9549}
9550
9551void SelectionDAGBuilder::visitCall(const CallInst &I) {
9552 // Handle inline assembly differently.
9553 if (I.isInlineAsm()) {
9554 visitInlineAsm(I);
9555 return;
9556 }
9557
9559
9560 if (Function *F = I.getCalledFunction()) {
9561 if (F->isDeclaration()) {
9562 // Is this an LLVM intrinsic?
9563 if (unsigned IID = F->getIntrinsicID()) {
9564 visitIntrinsicCall(I, IID);
9565 return;
9566 }
9567 }
9568
9569 // Check for well-known libc/libm calls. If the function is internal, it
9570 // can't be a library call. Don't do the check if marked as nobuiltin for
9571 // some reason.
9572 // This code should not handle libcalls that are already canonicalized to
9573 // intrinsics by the middle-end.
9574 LibFunc Func;
9575 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
9576 LibInfo->getLibFunc(*F, Func) && LibInfo->hasOptimizedCodeGen(Func)) {
9577 switch (Func) {
9578 default: break;
9579 case LibFunc_bcmp:
9580 if (visitMemCmpBCmpCall(I))
9581 return;
9582 break;
9583 case LibFunc_copysign:
9584 case LibFunc_copysignf:
9585 case LibFunc_copysignl:
9586 // We already checked this call's prototype; verify it doesn't modify
9587 // errno.
9588 if (I.onlyReadsMemory()) {
9589 SDValue LHS = getValue(I.getArgOperand(0));
9590 SDValue RHS = getValue(I.getArgOperand(1));
9592 LHS.getValueType(), LHS, RHS));
9593 return;
9594 }
9595 break;
9596 case LibFunc_fabs:
9597 case LibFunc_fabsf:
9598 case LibFunc_fabsl:
9599 // TODO: Remove this, already canonicalized by the middle-end.
9600 if (visitUnaryFloatCall(I, ISD::FABS))
9601 return;
9602 break;
9603 case LibFunc_sin:
9604 case LibFunc_sinf:
9605 case LibFunc_sinl:
9606 if (visitUnaryFloatCall(I, ISD::FSIN))
9607 return;
9608 break;
9609 case LibFunc_cos:
9610 case LibFunc_cosf:
9611 case LibFunc_cosl:
9612 if (visitUnaryFloatCall(I, ISD::FCOS))
9613 return;
9614 break;
9615 case LibFunc_tan:
9616 case LibFunc_tanf:
9617 case LibFunc_tanl:
9618 if (visitUnaryFloatCall(I, ISD::FTAN))
9619 return;
9620 break;
9621 case LibFunc_asin:
9622 case LibFunc_asinf:
9623 case LibFunc_asinl:
9624 if (visitUnaryFloatCall(I, ISD::FASIN))
9625 return;
9626 break;
9627 case LibFunc_acos:
9628 case LibFunc_acosf:
9629 case LibFunc_acosl:
9630 if (visitUnaryFloatCall(I, ISD::FACOS))
9631 return;
9632 break;
9633 case LibFunc_atan:
9634 case LibFunc_atanf:
9635 case LibFunc_atanl:
9636 if (visitUnaryFloatCall(I, ISD::FATAN))
9637 return;
9638 break;
9639 case LibFunc_atan2:
9640 case LibFunc_atan2f:
9641 case LibFunc_atan2l:
9642 if (visitBinaryFloatCall(I, ISD::FATAN2))
9643 return;
9644 break;
9645 case LibFunc_sinh:
9646 case LibFunc_sinhf:
9647 case LibFunc_sinhl:
9648 if (visitUnaryFloatCall(I, ISD::FSINH))
9649 return;
9650 break;
9651 case LibFunc_cosh:
9652 case LibFunc_coshf:
9653 case LibFunc_coshl:
9654 if (visitUnaryFloatCall(I, ISD::FCOSH))
9655 return;
9656 break;
9657 case LibFunc_tanh:
9658 case LibFunc_tanhf:
9659 case LibFunc_tanhl:
9660 if (visitUnaryFloatCall(I, ISD::FTANH))
9661 return;
9662 break;
9663 case LibFunc_sqrt:
9664 case LibFunc_sqrtf:
9665 case LibFunc_sqrtl:
9666 case LibFunc_sqrt_finite:
9667 case LibFunc_sqrtf_finite:
9668 case LibFunc_sqrtl_finite:
9669 if (visitUnaryFloatCall(I, ISD::FSQRT))
9670 return;
9671 break;
9672 case LibFunc_log2:
9673 case LibFunc_log2f:
9674 case LibFunc_log2l:
9675 if (visitUnaryFloatCall(I, ISD::FLOG2))
9676 return;
9677 break;
9678 case LibFunc_exp2:
9679 case LibFunc_exp2f:
9680 case LibFunc_exp2l:
9681 if (visitUnaryFloatCall(I, ISD::FEXP2))
9682 return;
9683 break;
9684 case LibFunc_exp10:
9685 case LibFunc_exp10f:
9686 case LibFunc_exp10l:
9687 if (visitUnaryFloatCall(I, ISD::FEXP10))
9688 return;
9689 break;
9690 case LibFunc_ldexp:
9691 case LibFunc_ldexpf:
9692 case LibFunc_ldexpl:
9693 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9694 return;
9695 break;
9696 case LibFunc_memcmp:
9697 if (visitMemCmpBCmpCall(I))
9698 return;
9699 break;
9700 case LibFunc_mempcpy:
9701 if (visitMemPCpyCall(I))
9702 return;
9703 break;
9704 case LibFunc_memchr:
9705 if (visitMemChrCall(I))
9706 return;
9707 break;
9708 case LibFunc_strcpy:
9709 if (visitStrCpyCall(I, false))
9710 return;
9711 break;
9712 case LibFunc_stpcpy:
9713 if (visitStrCpyCall(I, true))
9714 return;
9715 break;
9716 case LibFunc_strcmp:
9717 if (visitStrCmpCall(I))
9718 return;
9719 break;
9720 case LibFunc_strlen:
9721 if (visitStrLenCall(I))
9722 return;
9723 break;
9724 case LibFunc_strnlen:
9725 if (visitStrNLenCall(I))
9726 return;
9727 break;
9728 }
9729 }
9730 }
9731
9732 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9733 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9734 return;
9735 }
9736
9737 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9738 // have to do anything here to lower funclet bundles.
9739 // CFGuardTarget bundles are lowered in LowerCallTo.
9741 I, "calls",
9746
9747 SDValue Callee = getValue(I.getCalledOperand());
9748
9749 if (I.hasDeoptState())
9750 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9751 else
9752 // Check if we can potentially perform a tail call. More detailed checking
9753 // is be done within LowerCallTo, after more information about the call is
9754 // known.
9755 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9756}
9757
9759 const CallBase &CB, const BasicBlock *EHPadBB) {
9760 auto PAB = CB.getOperandBundle("ptrauth");
9761 const Value *CalleeV = CB.getCalledOperand();
9762
9763 // Gather the call ptrauth data from the operand bundle:
9764 // [ i32 <key>, i64 <discriminator> ]
9765 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9766 const Value *Discriminator = PAB->Inputs[1];
9767
9768 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9769 assert(Discriminator->getType()->isIntegerTy(64) &&
9770 "Invalid ptrauth discriminator");
9771
9772 // Look through ptrauth constants to find the raw callee.
9773 // Do a direct unauthenticated call if we found it and everything matches.
9774 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9775 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9776 DAG.getDataLayout()))
9777 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9778 CB.isMustTailCall(), EHPadBB);
9779
9780 // Functions should never be ptrauth-called directly.
9781 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9782
9783 // Otherwise, do an authenticated indirect call.
9784 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9785 getValue(Discriminator)};
9786
9787 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9788 EHPadBB, &PAI);
9789}
9790
9791namespace {
9792
9793/// AsmOperandInfo - This contains information for each constraint that we are
9794/// lowering.
9795class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9796public:
9797 /// CallOperand - If this is the result output operand or a clobber
9798 /// this is null, otherwise it is the incoming operand to the CallInst.
9799 /// This gets modified as the asm is processed.
9800 SDValue CallOperand;
9801
9802 /// AssignedRegs - If this is a register or register class operand, this
9803 /// contains the set of register corresponding to the operand.
9804 RegsForValue AssignedRegs;
9805
9806 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9807 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9808 }
9809
9810 /// Whether or not this operand accesses memory
9811 bool hasMemory(const TargetLowering &TLI) const {
9812 // Indirect operand accesses access memory.
9813 if (isIndirect)
9814 return true;
9815
9816 for (const auto &Code : Codes)
9818 return true;
9819
9820 return false;
9821 }
9822};
9823
9824
9825} // end anonymous namespace
9826
9827/// Make sure that the output operand \p OpInfo and its corresponding input
9828/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9829/// out).
9830static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9831 SDISelAsmOperandInfo &MatchingOpInfo,
9832 SelectionDAG &DAG) {
9833 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9834 return;
9835
9837 const auto &TLI = DAG.getTargetLoweringInfo();
9838
9839 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9840 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9841 OpInfo.ConstraintVT);
9842 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9843 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9844 MatchingOpInfo.ConstraintVT);
9845 const bool OutOpIsIntOrFP =
9846 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9847 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9848 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9849 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9850 // FIXME: error out in a more elegant fashion
9851 report_fatal_error("Unsupported asm: input constraint"
9852 " with a matching output constraint of"
9853 " incompatible type!");
9854 }
9855 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9856}
9857
9858/// Get a direct memory input to behave well as an indirect operand.
9859/// This may introduce stores, hence the need for a \p Chain.
9860/// \return The (possibly updated) chain.
9861static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9862 SDISelAsmOperandInfo &OpInfo,
9863 SelectionDAG &DAG) {
9864 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9865
9866 // If we don't have an indirect input, put it in the constpool if we can,
9867 // otherwise spill it to a stack slot.
9868 // TODO: This isn't quite right. We need to handle these according to
9869 // the addressing mode that the constraint wants. Also, this may take
9870 // an additional register for the computation and we don't want that
9871 // either.
9872
9873 // If the operand is a float, integer, or vector constant, spill to a
9874 // constant pool entry to get its address.
9875 const Value *OpVal = OpInfo.CallOperandVal;
9876 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9878 OpInfo.CallOperand = DAG.getConstantPool(
9879 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9880 return Chain;
9881 }
9882
9883 // Otherwise, create a stack slot and emit a store to it before the asm.
9884 Type *Ty = OpVal->getType();
9885 auto &DL = DAG.getDataLayout();
9886 TypeSize TySize = DL.getTypeAllocSize(Ty);
9889 int StackID = 0;
9890 if (TySize.isScalable())
9891 StackID = TFI->getStackIDForScalableVectors();
9892 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9893 DL.getPrefTypeAlign(Ty), false,
9894 nullptr, StackID);
9895 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9896 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9898 TLI.getMemValueType(DL, Ty));
9899 OpInfo.CallOperand = StackSlot;
9900
9901 return Chain;
9902}
9903
9904/// GetRegistersForValue - Assign registers (virtual or physical) for the
9905/// specified operand. We prefer to assign virtual registers, to allow the
9906/// register allocator to handle the assignment process. However, if the asm
9907/// uses features that we can't model on machineinstrs, we have SDISel do the
9908/// allocation. This produces generally horrible, but correct, code.
9909///
9910/// OpInfo describes the operand
9911/// RefOpInfo describes the matching operand if any, the operand otherwise
9912static std::optional<unsigned>
9914 SDISelAsmOperandInfo &OpInfo,
9915 SDISelAsmOperandInfo &RefOpInfo) {
9916 LLVMContext &Context = *DAG.getContext();
9917 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9918
9922
9923 // No work to do for memory/address operands.
9924 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9925 OpInfo.ConstraintType == TargetLowering::C_Address)
9926 return std::nullopt;
9927
9928 // If this is a constraint for a single physreg, or a constraint for a
9929 // register class, find it.
9930 unsigned AssignedReg;
9931 const TargetRegisterClass *RC;
9932 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9933 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9934 // RC is unset only on failure. Return immediately.
9935 if (!RC)
9936 return std::nullopt;
9937
9938 // Get the actual register value type. This is important, because the user
9939 // may have asked for (e.g.) the AX register in i32 type. We need to
9940 // remember that AX is actually i16 to get the right extension.
9941 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9942
9943 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9944 // If this is an FP operand in an integer register (or visa versa), or more
9945 // generally if the operand value disagrees with the register class we plan
9946 // to stick it in, fix the operand type.
9947 //
9948 // If this is an input value, the bitcast to the new type is done now.
9949 // Bitcast for output value is done at the end of visitInlineAsm().
9950 if ((OpInfo.Type == InlineAsm::isOutput ||
9951 OpInfo.Type == InlineAsm::isInput) &&
9952 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9953 // Try to convert to the first EVT that the reg class contains. If the
9954 // types are identical size, use a bitcast to convert (e.g. two differing
9955 // vector types). Note: output bitcast is done at the end of
9956 // visitInlineAsm().
9957 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9958 // Exclude indirect inputs while they are unsupported because the code
9959 // to perform the load is missing and thus OpInfo.CallOperand still
9960 // refers to the input address rather than the pointed-to value.
9961 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9962 OpInfo.CallOperand =
9963 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9964 OpInfo.ConstraintVT = RegVT;
9965 // If the operand is an FP value and we want it in integer registers,
9966 // use the corresponding integer type. This turns an f64 value into
9967 // i64, which can be passed with two i32 values on a 32-bit machine.
9968 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9969 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9970 if (OpInfo.Type == InlineAsm::isInput)
9971 OpInfo.CallOperand =
9972 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9973 OpInfo.ConstraintVT = VT;
9974 }
9975 }
9976 }
9977
9978 // No need to allocate a matching input constraint since the constraint it's
9979 // matching to has already been allocated.
9980 if (OpInfo.isMatchingInputConstraint())
9981 return std::nullopt;
9982
9983 EVT ValueVT = OpInfo.ConstraintVT;
9984 if (OpInfo.ConstraintVT == MVT::Other)
9985 ValueVT = RegVT;
9986
9987 // Initialize NumRegs.
9988 unsigned NumRegs = 1;
9989 if (OpInfo.ConstraintVT != MVT::Other)
9990 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9991
9992 // If this is a constraint for a specific physical register, like {r17},
9993 // assign it now.
9994
9995 // If this associated to a specific register, initialize iterator to correct
9996 // place. If virtual, make sure we have enough registers
9997
9998 // Initialize iterator if necessary
10001
10002 // Do not check for single registers.
10003 if (AssignedReg) {
10004 I = std::find(I, RC->end(), AssignedReg);
10005 if (I == RC->end()) {
10006 // RC does not contain the selected register, which indicates a
10007 // mismatch between the register and the required type/bitwidth.
10008 return {AssignedReg};
10009 }
10010 }
10011
10012 for (; NumRegs; --NumRegs, ++I) {
10013 assert(I != RC->end() && "Ran out of registers to allocate!");
10014 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
10015 Regs.push_back(R);
10016 }
10017
10018 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
10019 return std::nullopt;
10020}
10021
10022static unsigned
10024 const std::vector<SDValue> &AsmNodeOperands) {
10025 // Scan until we find the definition we already emitted of this operand.
10026 unsigned CurOp = InlineAsm::Op_FirstOperand;
10027 for (; OperandNo; --OperandNo) {
10028 // Advance to the next operand.
10029 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10030 const InlineAsm::Flag F(OpFlag);
10031 assert(
10032 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
10033 "Skipped past definitions?");
10034 CurOp += F.getNumOperandRegisters() + 1;
10035 }
10036 return CurOp;
10037}
10038
10039namespace {
10040
10041class ExtraFlags {
10042 unsigned Flags = 0;
10043
10044public:
10045 explicit ExtraFlags(const CallBase &Call) {
10046 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10047 if (IA->hasSideEffects())
10049 if (IA->isAlignStack())
10051 if (Call.isConvergent())
10053 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
10054 }
10055
10056 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
10057 // Ideally, we would only check against memory constraints. However, the
10058 // meaning of an Other constraint can be target-specific and we can't easily
10059 // reason about it. Therefore, be conservative and set MayLoad/MayStore
10060 // for Other constraints as well.
10063 if (OpInfo.Type == InlineAsm::isInput)
10065 else if (OpInfo.Type == InlineAsm::isOutput)
10067 else if (OpInfo.Type == InlineAsm::isClobber)
10069 }
10070 }
10071
10072 unsigned get() const { return Flags; }
10073};
10074
10075} // end anonymous namespace
10076
10077static bool isFunction(SDValue Op) {
10078 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
10079 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10080 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
10081
10082 // In normal "call dllimport func" instruction (non-inlineasm) it force
10083 // indirect access by specifing call opcode. And usually specially print
10084 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
10085 // not do in this way now. (In fact, this is similar with "Data Access"
10086 // action). So here we ignore dllimport function.
10087 if (Fn && !Fn->hasDLLImportStorageClass())
10088 return true;
10089 }
10090 }
10091 return false;
10092}
10093
10094/// visitInlineAsm - Handle a call to an InlineAsm object.
10095void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
10096 const BasicBlock *EHPadBB) {
10097 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10098
10099 /// ConstraintOperands - Information about all of the constraints.
10100 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
10101
10102 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10104 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
10105
10106 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
10107 // AsmDialect, MayLoad, MayStore).
10108 bool HasSideEffect = IA->hasSideEffects();
10109 ExtraFlags ExtraInfo(Call);
10110
10111 for (auto &T : TargetConstraints) {
10112 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
10113 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
10114
10115 if (OpInfo.CallOperandVal)
10116 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
10117
10118 if (!HasSideEffect)
10119 HasSideEffect = OpInfo.hasMemory(TLI);
10120
10121 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
10122 // FIXME: Could we compute this on OpInfo rather than T?
10123
10124 // Compute the constraint code and ConstraintType to use.
10126
10127 if (T.ConstraintType == TargetLowering::C_Immediate &&
10128 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
10129 // We've delayed emitting a diagnostic like the "n" constraint because
10130 // inlining could cause an integer showing up.
10131 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
10132 "' expects an integer constant "
10133 "expression");
10134
10135 ExtraInfo.update(T);
10136 }
10137
10138 // We won't need to flush pending loads if this asm doesn't touch
10139 // memory and is nonvolatile.
10140 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
10141
10142 bool EmitEHLabels = isa<InvokeInst>(Call);
10143 if (EmitEHLabels) {
10144 assert(EHPadBB && "InvokeInst must have an EHPadBB");
10145 }
10146 bool IsCallBr = isa<CallBrInst>(Call);
10147
10148 if (IsCallBr || EmitEHLabels) {
10149 // If this is a callbr or invoke we need to flush pending exports since
10150 // inlineasm_br and invoke are terminators.
10151 // We need to do this before nodes are glued to the inlineasm_br node.
10152 Chain = getControlRoot();
10153 }
10154
10155 MCSymbol *BeginLabel = nullptr;
10156 if (EmitEHLabels) {
10157 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10158 }
10159
10160 int OpNo = -1;
10161 SmallVector<StringRef> AsmStrs;
10162 IA->collectAsmStrs(AsmStrs);
10163
10164 // Second pass over the constraints: compute which constraint option to use.
10165 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10166 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
10167 OpNo++;
10168
10169 // If this is an output operand with a matching input operand, look up the
10170 // matching input. If their types mismatch, e.g. one is an integer, the
10171 // other is floating point, or their sizes are different, flag it as an
10172 // error.
10173 if (OpInfo.hasMatchingInput()) {
10174 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10175 patchMatchingInput(OpInfo, Input, DAG);
10176 }
10177
10178 // Compute the constraint code and ConstraintType to use.
10179 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
10180
10181 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
10182 OpInfo.Type == InlineAsm::isClobber) ||
10183 OpInfo.ConstraintType == TargetLowering::C_Address)
10184 continue;
10185
10186 // In Linux PIC model, there are 4 cases about value/label addressing:
10187 //
10188 // 1: Function call or Label jmp inside the module.
10189 // 2: Data access (such as global variable, static variable) inside module.
10190 // 3: Function call or Label jmp outside the module.
10191 // 4: Data access (such as global variable) outside the module.
10192 //
10193 // Due to current llvm inline asm architecture designed to not "recognize"
10194 // the asm code, there are quite troubles for us to treat mem addressing
10195 // differently for same value/adress used in different instuctions.
10196 // For example, in pic model, call a func may in plt way or direclty
10197 // pc-related, but lea/mov a function adress may use got.
10198 //
10199 // Here we try to "recognize" function call for the case 1 and case 3 in
10200 // inline asm. And try to adjust the constraint for them.
10201 //
10202 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
10203 // label, so here we don't handle jmp function label now, but we need to
10204 // enhance it (especilly in PIC model) if we meet meaningful requirements.
10205 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
10206 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
10207 TM.getCodeModel() != CodeModel::Large) {
10208 OpInfo.isIndirect = false;
10209 OpInfo.ConstraintType = TargetLowering::C_Address;
10210 }
10211
10212 // If this is a memory input, and if the operand is not indirect, do what we
10213 // need to provide an address for the memory input.
10214 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
10215 !OpInfo.isIndirect) {
10216 assert((OpInfo.isMultipleAlternative ||
10217 (OpInfo.Type == InlineAsm::isInput)) &&
10218 "Can only indirectify direct input operands!");
10219
10220 // Memory operands really want the address of the value.
10221 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
10222
10223 // There is no longer a Value* corresponding to this operand.
10224 OpInfo.CallOperandVal = nullptr;
10225
10226 // It is now an indirect operand.
10227 OpInfo.isIndirect = true;
10228 }
10229
10230 }
10231
10232 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10233 std::vector<SDValue> AsmNodeOperands;
10234 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
10235 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10236 IA->getAsmString().data(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10237
10238 // If we have a !srcloc metadata node associated with it, we want to attach
10239 // this to the ultimately generated inline asm machineinstr. To do this, we
10240 // pass in the third operand as this (potentially null) inline asm MDNode.
10241 const MDNode *SrcLoc = Call.getMetadata("srcloc");
10242 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10243
10244 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10245 // bits as operand 3.
10246 AsmNodeOperands.push_back(DAG.getTargetConstant(
10247 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10248
10249 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10250 // this, assign virtual and physical registers for inputs and otput.
10251 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10252 // Assign Registers.
10253 SDISelAsmOperandInfo &RefOpInfo =
10254 OpInfo.isMatchingInputConstraint()
10255 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10256 : OpInfo;
10257 const auto RegError =
10258 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10259 if (RegError) {
10260 const MachineFunction &MF = DAG.getMachineFunction();
10261 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10262 const char *RegName = TRI.getName(*RegError);
10263 emitInlineAsmError(Call, "register '" + Twine(RegName) +
10264 "' allocated for constraint '" +
10265 Twine(OpInfo.ConstraintCode) +
10266 "' does not match required type");
10267 return;
10268 }
10269
10270 auto DetectWriteToReservedRegister = [&]() {
10271 const MachineFunction &MF = DAG.getMachineFunction();
10272 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10273 for (Register Reg : OpInfo.AssignedRegs.Regs) {
10274 if (Reg.isPhysical() && TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10275 const char *RegName = TRI.getName(Reg);
10276 emitInlineAsmError(Call, "write to reserved register '" +
10277 Twine(RegName) + "'");
10278 return true;
10279 }
10280 }
10281 return false;
10282 };
10283 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10284 (OpInfo.Type == InlineAsm::isInput &&
10285 !OpInfo.isMatchingInputConstraint())) &&
10286 "Only address as input operand is allowed.");
10287
10288 switch (OpInfo.Type) {
10290 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10291 const InlineAsm::ConstraintCode ConstraintID =
10292 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10294 "Failed to convert memory constraint code to constraint id.");
10295
10296 // Add information to the INLINEASM node to know about this output.
10297 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10298 OpFlags.setMemConstraint(ConstraintID);
10299 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10300 MVT::i32));
10301 AsmNodeOperands.push_back(OpInfo.CallOperand);
10302 } else {
10303 // Otherwise, this outputs to a register (directly for C_Register /
10304 // C_RegisterClass, and a target-defined fashion for
10305 // C_Immediate/C_Other). Find a register that we can use.
10306 if (OpInfo.AssignedRegs.Regs.empty()) {
10307 emitInlineAsmError(
10308 Call, "couldn't allocate output register for constraint '" +
10309 Twine(OpInfo.ConstraintCode) + "'");
10310 return;
10311 }
10312
10313 if (DetectWriteToReservedRegister())
10314 return;
10315
10316 // Add information to the INLINEASM node to know that this register is
10317 // set.
10318 OpInfo.AssignedRegs.AddInlineAsmOperands(
10319 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10321 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10322 }
10323 break;
10324
10325 case InlineAsm::isInput:
10326 case InlineAsm::isLabel: {
10327 SDValue InOperandVal = OpInfo.CallOperand;
10328
10329 if (OpInfo.isMatchingInputConstraint()) {
10330 // If this is required to match an output register we have already set,
10331 // just use its register.
10332 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10333 AsmNodeOperands);
10334 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10335 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10336 if (OpInfo.isIndirect) {
10337 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10338 emitInlineAsmError(Call, "inline asm not supported yet: "
10339 "don't know how to handle tied "
10340 "indirect register inputs");
10341 return;
10342 }
10343
10345 MachineFunction &MF = DAG.getMachineFunction();
10346 MachineRegisterInfo &MRI = MF.getRegInfo();
10347 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10348 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10349 Register TiedReg = R->getReg();
10350 MVT RegVT = R->getSimpleValueType(0);
10351 const TargetRegisterClass *RC =
10352 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10353 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10354 : TRI.getMinimalPhysRegClass(TiedReg);
10355 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10356 Regs.push_back(MRI.createVirtualRegister(RC));
10357
10358 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10359
10360 SDLoc dl = getCurSDLoc();
10361 // Use the produced MatchedRegs object to
10362 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10363 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10364 OpInfo.getMatchedOperand(), dl, DAG,
10365 AsmNodeOperands);
10366 break;
10367 }
10368
10369 assert(Flag.isMemKind() && "Unknown matching constraint!");
10370 assert(Flag.getNumOperandRegisters() == 1 &&
10371 "Unexpected number of operands");
10372 // Add information to the INLINEASM node to know about this input.
10373 // See InlineAsm.h isUseOperandTiedToDef.
10374 Flag.clearMemConstraint();
10375 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10376 AsmNodeOperands.push_back(DAG.getTargetConstant(
10377 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10378 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10379 break;
10380 }
10381
10382 // Treat indirect 'X' constraint as memory.
10383 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10384 OpInfo.isIndirect)
10385 OpInfo.ConstraintType = TargetLowering::C_Memory;
10386
10387 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10388 OpInfo.ConstraintType == TargetLowering::C_Other) {
10389 std::vector<SDValue> Ops;
10390 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10391 Ops, DAG);
10392 if (Ops.empty()) {
10393 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10394 if (isa<ConstantSDNode>(InOperandVal)) {
10395 emitInlineAsmError(Call, "value out of range for constraint '" +
10396 Twine(OpInfo.ConstraintCode) + "'");
10397 return;
10398 }
10399
10400 emitInlineAsmError(Call,
10401 "invalid operand for inline asm constraint '" +
10402 Twine(OpInfo.ConstraintCode) + "'");
10403 return;
10404 }
10405
10406 // Add information to the INLINEASM node to know about this input.
10407 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10408 AsmNodeOperands.push_back(DAG.getTargetConstant(
10409 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10410 llvm::append_range(AsmNodeOperands, Ops);
10411 break;
10412 }
10413
10414 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10415 assert((OpInfo.isIndirect ||
10416 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10417 "Operand must be indirect to be a mem!");
10418 assert(InOperandVal.getValueType() ==
10419 TLI.getPointerTy(DAG.getDataLayout()) &&
10420 "Memory operands expect pointer values");
10421
10422 const InlineAsm::ConstraintCode ConstraintID =
10423 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10425 "Failed to convert memory constraint code to constraint id.");
10426
10427 // Add information to the INLINEASM node to know about this input.
10428 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10429 ResOpType.setMemConstraint(ConstraintID);
10430 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10431 getCurSDLoc(),
10432 MVT::i32));
10433 AsmNodeOperands.push_back(InOperandVal);
10434 break;
10435 }
10436
10437 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10438 const InlineAsm::ConstraintCode ConstraintID =
10439 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10441 "Failed to convert memory constraint code to constraint id.");
10442
10443 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10444
10445 SDValue AsmOp = InOperandVal;
10446 if (isFunction(InOperandVal)) {
10447 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10448 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10449 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10450 InOperandVal.getValueType(),
10451 GA->getOffset());
10452 }
10453
10454 // Add information to the INLINEASM node to know about this input.
10455 ResOpType.setMemConstraint(ConstraintID);
10456
10457 AsmNodeOperands.push_back(
10458 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10459
10460 AsmNodeOperands.push_back(AsmOp);
10461 break;
10462 }
10463
10464 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10465 OpInfo.ConstraintType != TargetLowering::C_Register) {
10466 emitInlineAsmError(Call, "unknown asm constraint '" +
10467 Twine(OpInfo.ConstraintCode) + "'");
10468 return;
10469 }
10470
10471 // TODO: Support this.
10472 if (OpInfo.isIndirect) {
10473 emitInlineAsmError(
10474 Call, "Don't know how to handle indirect register inputs yet "
10475 "for constraint '" +
10476 Twine(OpInfo.ConstraintCode) + "'");
10477 return;
10478 }
10479
10480 // Copy the input into the appropriate registers.
10481 if (OpInfo.AssignedRegs.Regs.empty()) {
10482 emitInlineAsmError(Call,
10483 "couldn't allocate input reg for constraint '" +
10484 Twine(OpInfo.ConstraintCode) + "'");
10485 return;
10486 }
10487
10488 if (DetectWriteToReservedRegister())
10489 return;
10490
10491 SDLoc dl = getCurSDLoc();
10492
10493 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10494 &Call);
10495
10496 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10497 0, dl, DAG, AsmNodeOperands);
10498 break;
10499 }
10501 // Add the clobbered value to the operand list, so that the register
10502 // allocator is aware that the physreg got clobbered.
10503 if (!OpInfo.AssignedRegs.Regs.empty())
10505 false, 0, getCurSDLoc(), DAG,
10506 AsmNodeOperands);
10507 break;
10508 }
10509 }
10510
10511 // Finish up input operands. Set the input chain and add the flag last.
10512 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10513 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10514
10515 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10516 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10517 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10518 Glue = Chain.getValue(1);
10519
10520 // Do additional work to generate outputs.
10521
10522 SmallVector<EVT, 1> ResultVTs;
10523 SmallVector<SDValue, 1> ResultValues;
10524 SmallVector<SDValue, 8> OutChains;
10525
10526 llvm::Type *CallResultType = Call.getType();
10527 ArrayRef<Type *> ResultTypes;
10528 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10529 ResultTypes = StructResult->elements();
10530 else if (!CallResultType->isVoidTy())
10531 ResultTypes = ArrayRef(CallResultType);
10532
10533 auto CurResultType = ResultTypes.begin();
10534 auto handleRegAssign = [&](SDValue V) {
10535 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10536 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10537 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10538 ++CurResultType;
10539 // If the type of the inline asm call site return value is different but has
10540 // same size as the type of the asm output bitcast it. One example of this
10541 // is for vectors with different width / number of elements. This can
10542 // happen for register classes that can contain multiple different value
10543 // types. The preg or vreg allocated may not have the same VT as was
10544 // expected.
10545 //
10546 // This can also happen for a return value that disagrees with the register
10547 // class it is put in, eg. a double in a general-purpose register on a
10548 // 32-bit machine.
10549 if (ResultVT != V.getValueType() &&
10550 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10551 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10552 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10553 V.getValueType().isInteger()) {
10554 // If a result value was tied to an input value, the computed result
10555 // may have a wider width than the expected result. Extract the
10556 // relevant portion.
10557 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10558 }
10559 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10560 ResultVTs.push_back(ResultVT);
10561 ResultValues.push_back(V);
10562 };
10563
10564 // Deal with output operands.
10565 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10566 if (OpInfo.Type == InlineAsm::isOutput) {
10567 SDValue Val;
10568 // Skip trivial output operands.
10569 if (OpInfo.AssignedRegs.Regs.empty())
10570 continue;
10571
10572 switch (OpInfo.ConstraintType) {
10575 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10576 Chain, &Glue, &Call);
10577 break;
10580 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10581 OpInfo, DAG);
10582 break;
10584 break; // Already handled.
10586 break; // Silence warning.
10588 assert(false && "Unexpected unknown constraint");
10589 }
10590
10591 // Indirect output manifest as stores. Record output chains.
10592 if (OpInfo.isIndirect) {
10593 const Value *Ptr = OpInfo.CallOperandVal;
10594 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10595 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10596 MachinePointerInfo(Ptr));
10597 OutChains.push_back(Store);
10598 } else {
10599 // generate CopyFromRegs to associated registers.
10600 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10601 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10602 for (const SDValue &V : Val->op_values())
10603 handleRegAssign(V);
10604 } else
10605 handleRegAssign(Val);
10606 }
10607 }
10608 }
10609
10610 // Set results.
10611 if (!ResultValues.empty()) {
10612 assert(CurResultType == ResultTypes.end() &&
10613 "Mismatch in number of ResultTypes");
10614 assert(ResultValues.size() == ResultTypes.size() &&
10615 "Mismatch in number of output operands in asm result");
10616
10618 DAG.getVTList(ResultVTs), ResultValues);
10619 setValue(&Call, V);
10620 }
10621
10622 // Collect store chains.
10623 if (!OutChains.empty())
10624 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10625
10626 if (EmitEHLabels) {
10627 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10628 }
10629
10630 // Only Update Root if inline assembly has a memory effect.
10631 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10632 EmitEHLabels)
10633 DAG.setRoot(Chain);
10634}
10635
10636void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10637 const Twine &Message) {
10638 LLVMContext &Ctx = *DAG.getContext();
10639 Ctx.diagnose(DiagnosticInfoInlineAsm(Call, Message));
10640
10641 // Make sure we leave the DAG in a valid state
10642 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10643 SmallVector<EVT, 1> ValueVTs;
10644 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10645
10646 if (ValueVTs.empty())
10647 return;
10648
10650 for (const EVT &VT : ValueVTs)
10651 Ops.push_back(DAG.getUNDEF(VT));
10652
10653 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10654}
10655
10656void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10657 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10658 MVT::Other, getRoot(),
10659 getValue(I.getArgOperand(0)),
10660 DAG.getSrcValue(I.getArgOperand(0))));
10661}
10662
10663void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10664 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10665 const DataLayout &DL = DAG.getDataLayout();
10666 SDValue V = DAG.getVAArg(
10667 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10668 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10669 DL.getABITypeAlign(I.getType()).value());
10670 DAG.setRoot(V.getValue(1));
10671
10672 if (I.getType()->isPointerTy())
10673 V = DAG.getPtrExtOrTrunc(
10674 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10675 setValue(&I, V);
10676}
10677
10678void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10679 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10680 MVT::Other, getRoot(),
10681 getValue(I.getArgOperand(0)),
10682 DAG.getSrcValue(I.getArgOperand(0))));
10683}
10684
10685void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10686 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10687 MVT::Other, getRoot(),
10688 getValue(I.getArgOperand(0)),
10689 getValue(I.getArgOperand(1)),
10690 DAG.getSrcValue(I.getArgOperand(0)),
10691 DAG.getSrcValue(I.getArgOperand(1))));
10692}
10693
10695 const Instruction &I,
10696 SDValue Op) {
10697 std::optional<ConstantRange> CR = getRange(I);
10698
10699 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10700 return Op;
10701
10702 APInt Lo = CR->getUnsignedMin();
10703 if (!Lo.isMinValue())
10704 return Op;
10705
10706 APInt Hi = CR->getUnsignedMax();
10707 unsigned Bits = std::max(Hi.getActiveBits(),
10708 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10709
10710 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10711
10712 SDLoc SL = getCurSDLoc();
10713
10714 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10715 DAG.getValueType(SmallVT));
10716 unsigned NumVals = Op.getNode()->getNumValues();
10717 if (NumVals == 1)
10718 return ZExt;
10719
10721
10722 Ops.push_back(ZExt);
10723 for (unsigned I = 1; I != NumVals; ++I)
10724 Ops.push_back(Op.getValue(I));
10725
10726 return DAG.getMergeValues(Ops, SL);
10727}
10728
10730 SelectionDAG &DAG, const Instruction &I, SDValue Op) {
10731 FPClassTest Classes = getNoFPClass(I);
10732 if (Classes == fcNone)
10733 return Op;
10734
10735 SDLoc SL = getCurSDLoc();
10736 SDValue TestConst = DAG.getTargetConstant(Classes, SDLoc(), MVT::i32);
10737
10738 if (Op.getOpcode() != ISD::MERGE_VALUES) {
10739 return DAG.getNode(ISD::AssertNoFPClass, SL, Op.getValueType(), Op,
10740 TestConst);
10741 }
10742
10743 SmallVector<SDValue, 8> Ops(Op.getNumOperands());
10744 for (unsigned I = 0, E = Ops.size(); I != E; ++I) {
10745 SDValue MergeOp = Op.getOperand(I);
10746 Ops[I] = DAG.getNode(ISD::AssertNoFPClass, SL, MergeOp.getValueType(),
10747 MergeOp, TestConst);
10748 }
10749
10750 return DAG.getMergeValues(Ops, SL);
10751}
10752
10753/// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10754/// the call being lowered.
10755///
10756/// This is a helper for lowering intrinsics that follow a target calling
10757/// convention or require stack pointer adjustment. Only a subset of the
10758/// intrinsic's operands need to participate in the calling convention.
10761 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10762 AttributeSet RetAttrs, bool IsPatchPoint) {
10764 Args.reserve(NumArgs);
10765
10766 // Populate the argument list.
10767 // Attributes for args start at offset 1, after the return attribute.
10768 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10769 ArgI != ArgE; ++ArgI) {
10770 const Value *V = Call->getOperand(ArgI);
10771
10772 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10773
10774 TargetLowering::ArgListEntry Entry(getValue(V), V->getType());
10775 Entry.setAttributes(Call, ArgI);
10776 Args.push_back(Entry);
10777 }
10778
10780 .setChain(getRoot())
10781 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10782 RetAttrs)
10783 .setDiscardResult(Call->use_empty())
10784 .setIsPatchPoint(IsPatchPoint)
10786 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10787}
10788
10789/// Add a stack map intrinsic call's live variable operands to a stackmap
10790/// or patchpoint target node's operand list.
10791///
10792/// Constants are converted to TargetConstants purely as an optimization to
10793/// avoid constant materialization and register allocation.
10794///
10795/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10796/// generate addess computation nodes, and so FinalizeISel can convert the
10797/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10798/// address materialization and register allocation, but may also be required
10799/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10800/// alloca in the entry block, then the runtime may assume that the alloca's
10801/// StackMap location can be read immediately after compilation and that the
10802/// location is valid at any point during execution (this is similar to the
10803/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10804/// only available in a register, then the runtime would need to trap when
10805/// execution reaches the StackMap in order to read the alloca's location.
10806static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10808 SelectionDAGBuilder &Builder) {
10809 SelectionDAG &DAG = Builder.DAG;
10810 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10811 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10812
10813 // Things on the stack are pointer-typed, meaning that they are already
10814 // legal and can be emitted directly to target nodes.
10816 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10817 } else {
10818 // Otherwise emit a target independent node to be legalised.
10819 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10820 }
10821 }
10822}
10823
10824/// Lower llvm.experimental.stackmap.
10825void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10826 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10827 // [live variables...])
10828
10829 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10830
10831 SDValue Chain, InGlue, Callee;
10833
10834 SDLoc DL = getCurSDLoc();
10836
10837 // The stackmap intrinsic only records the live variables (the arguments
10838 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10839 // intrinsic, this won't be lowered to a function call. This means we don't
10840 // have to worry about calling conventions and target specific lowering code.
10841 // Instead we perform the call lowering right here.
10842 //
10843 // chain, flag = CALLSEQ_START(chain, 0, 0)
10844 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10845 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10846 //
10847 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10848 InGlue = Chain.getValue(1);
10849
10850 // Add the STACKMAP operands, starting with DAG house-keeping.
10851 Ops.push_back(Chain);
10852 Ops.push_back(InGlue);
10853
10854 // Add the <id>, <numShadowBytes> operands.
10855 //
10856 // These do not require legalisation, and can be emitted directly to target
10857 // constant nodes.
10859 assert(ID.getValueType() == MVT::i64);
10860 SDValue IDConst =
10861 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10862 Ops.push_back(IDConst);
10863
10864 SDValue Shad = getValue(CI.getArgOperand(1));
10865 assert(Shad.getValueType() == MVT::i32);
10866 SDValue ShadConst =
10867 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10868 Ops.push_back(ShadConst);
10869
10870 // Add the live variables.
10871 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10872
10873 // Create the STACKMAP node.
10874 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10875 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10876 InGlue = Chain.getValue(1);
10877
10878 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10879
10880 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10881
10882 // Set the root to the target-lowered call chain.
10883 DAG.setRoot(Chain);
10884
10885 // Inform the Frame Information that we have a stackmap in this function.
10886 FuncInfo.MF->getFrameInfo().setHasStackMap();
10887}
10888
10889/// Lower llvm.experimental.patchpoint directly to its target opcode.
10890void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10891 const BasicBlock *EHPadBB) {
10892 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10893 // i32 <numBytes>,
10894 // i8* <target>,
10895 // i32 <numArgs>,
10896 // [Args...],
10897 // [live variables...])
10898
10900 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10901 bool HasDef = !CB.getType()->isVoidTy();
10902 SDLoc dl = getCurSDLoc();
10904
10905 // Handle immediate and symbolic callees.
10906 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10907 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10908 /*isTarget=*/true);
10909 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10910 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10911 SDLoc(SymbolicCallee),
10912 SymbolicCallee->getValueType(0));
10913
10914 // Get the real number of arguments participating in the call <numArgs>
10916 unsigned NumArgs = NArgVal->getAsZExtVal();
10917
10918 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10919 // Intrinsics include all meta-operands up to but not including CC.
10920 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10921 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10922 "Not enough arguments provided to the patchpoint intrinsic");
10923
10924 // For AnyRegCC the arguments are lowered later on manually.
10925 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10926 Type *ReturnTy =
10927 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10928
10929 TargetLowering::CallLoweringInfo CLI(DAG);
10930 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10931 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10932 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10933
10934 SDNode *CallEnd = Result.second.getNode();
10935 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10936 CallEnd = CallEnd->getOperand(0).getNode();
10937 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10938 CallEnd = CallEnd->getOperand(0).getNode();
10939
10940 /// Get a call instruction from the call sequence chain.
10941 /// Tail calls are not allowed.
10942 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10943 "Expected a callseq node.");
10944 SDNode *Call = CallEnd->getOperand(0).getNode();
10945 bool HasGlue = Call->getGluedNode();
10946
10947 // Replace the target specific call node with the patchable intrinsic.
10949
10950 // Push the chain.
10951 Ops.push_back(*(Call->op_begin()));
10952
10953 // Optionally, push the glue (if any).
10954 if (HasGlue)
10955 Ops.push_back(*(Call->op_end() - 1));
10956
10957 // Push the register mask info.
10958 if (HasGlue)
10959 Ops.push_back(*(Call->op_end() - 2));
10960 else
10961 Ops.push_back(*(Call->op_end() - 1));
10962
10963 // Add the <id> and <numBytes> constants.
10965 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10967 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10968
10969 // Add the callee.
10970 Ops.push_back(Callee);
10971
10972 // Adjust <numArgs> to account for any arguments that have been passed on the
10973 // stack instead.
10974 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10975 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10976 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10977 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10978
10979 // Add the calling convention
10980 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10981
10982 // Add the arguments we omitted previously. The register allocator should
10983 // place these in any free register.
10984 if (IsAnyRegCC)
10985 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10986 Ops.push_back(getValue(CB.getArgOperand(i)));
10987
10988 // Push the arguments from the call instruction.
10989 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10990 Ops.append(Call->op_begin() + 2, e);
10991
10992 // Push live variables for the stack map.
10993 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10994
10995 SDVTList NodeTys;
10996 if (IsAnyRegCC && HasDef) {
10997 // Create the return types based on the intrinsic definition
10998 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10999 SmallVector<EVT, 3> ValueVTs;
11000 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
11001 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
11002
11003 // There is always a chain and a glue type at the end
11004 ValueVTs.push_back(MVT::Other);
11005 ValueVTs.push_back(MVT::Glue);
11006 NodeTys = DAG.getVTList(ValueVTs);
11007 } else
11008 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11009
11010 // Replace the target specific call node with a PATCHPOINT node.
11011 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
11012
11013 // Update the NodeMap.
11014 if (HasDef) {
11015 if (IsAnyRegCC)
11016 setValue(&CB, SDValue(PPV.getNode(), 0));
11017 else
11018 setValue(&CB, Result.first);
11019 }
11020
11021 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
11022 // call sequence. Furthermore the location of the chain and glue can change
11023 // when the AnyReg calling convention is used and the intrinsic returns a
11024 // value.
11025 if (IsAnyRegCC && HasDef) {
11026 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
11027 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
11028 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11029 } else
11030 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
11031 DAG.DeleteNode(Call);
11032
11033 // Inform the Frame Information that we have a patchpoint in this function.
11034 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11035}
11036
11037void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
11038 unsigned Intrinsic) {
11039 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11040 SDValue Op1 = getValue(I.getArgOperand(0));
11041 SDValue Op2;
11042 if (I.arg_size() > 1)
11043 Op2 = getValue(I.getArgOperand(1));
11044 SDLoc dl = getCurSDLoc();
11045 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11046 SDValue Res;
11047 SDNodeFlags SDFlags;
11048 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
11049 SDFlags.copyFMF(*FPMO);
11050
11051 switch (Intrinsic) {
11052 case Intrinsic::vector_reduce_fadd:
11053 if (SDFlags.hasAllowReassociation())
11054 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
11055 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11056 SDFlags);
11057 else
11058 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11059 break;
11060 case Intrinsic::vector_reduce_fmul:
11061 if (SDFlags.hasAllowReassociation())
11062 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
11063 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11064 SDFlags);
11065 else
11066 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11067 break;
11068 case Intrinsic::vector_reduce_add:
11069 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11070 break;
11071 case Intrinsic::vector_reduce_mul:
11072 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11073 break;
11074 case Intrinsic::vector_reduce_and:
11075 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11076 break;
11077 case Intrinsic::vector_reduce_or:
11078 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11079 break;
11080 case Intrinsic::vector_reduce_xor:
11081 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11082 break;
11083 case Intrinsic::vector_reduce_smax:
11084 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11085 break;
11086 case Intrinsic::vector_reduce_smin:
11087 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11088 break;
11089 case Intrinsic::vector_reduce_umax:
11090 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11091 break;
11092 case Intrinsic::vector_reduce_umin:
11093 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11094 break;
11095 case Intrinsic::vector_reduce_fmax:
11096 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11097 break;
11098 case Intrinsic::vector_reduce_fmin:
11099 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11100 break;
11101 case Intrinsic::vector_reduce_fmaximum:
11102 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11103 break;
11104 case Intrinsic::vector_reduce_fminimum:
11105 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11106 break;
11107 default:
11108 llvm_unreachable("Unhandled vector reduce intrinsic");
11109 }
11110 setValue(&I, Res);
11111}
11112
11113/// Returns an AttributeList representing the attributes applied to the return
11114/// value of the given call.
11117 if (CLI.RetSExt)
11118 Attrs.push_back(Attribute::SExt);
11119 if (CLI.RetZExt)
11120 Attrs.push_back(Attribute::ZExt);
11121 if (CLI.IsInReg)
11122 Attrs.push_back(Attribute::InReg);
11123
11124 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
11125 Attrs);
11126}
11127
11128/// TargetLowering::LowerCallTo - This is the default LowerCallTo
11129/// implementation, which just calls LowerCall.
11130/// FIXME: When all targets are
11131/// migrated to using LowerCall, this hook should be integrated into SDISel.
11132std::pair<SDValue, SDValue>
11134 LLVMContext &Context = CLI.RetTy->getContext();
11135
11136 // Handle the incoming return values from the call.
11137 CLI.Ins.clear();
11138 SmallVector<Type *, 4> RetOrigTys;
11140 auto &DL = CLI.DAG.getDataLayout();
11141 ComputeValueTypes(DL, CLI.OrigRetTy, RetOrigTys, &Offsets);
11142
11143 SmallVector<EVT, 4> RetVTs;
11144 if (CLI.RetTy != CLI.OrigRetTy) {
11145 assert(RetOrigTys.size() == 1 &&
11146 "Only supported for non-aggregate returns");
11147 RetVTs.push_back(getValueType(DL, CLI.RetTy));
11148 } else {
11149 for (Type *Ty : RetOrigTys)
11150 RetVTs.push_back(getValueType(DL, Ty));
11151 }
11152
11153 if (CLI.IsPostTypeLegalization) {
11154 // If we are lowering a libcall after legalization, split the return type.
11155 SmallVector<Type *, 4> OldRetOrigTys;
11156 SmallVector<EVT, 4> OldRetVTs;
11157 SmallVector<TypeSize, 4> OldOffsets;
11158 RetOrigTys.swap(OldRetOrigTys);
11159 RetVTs.swap(OldRetVTs);
11160 Offsets.swap(OldOffsets);
11161
11162 for (size_t i = 0, e = OldRetVTs.size(); i != e; ++i) {
11163 EVT RetVT = OldRetVTs[i];
11164 uint64_t Offset = OldOffsets[i];
11165 MVT RegisterVT = getRegisterType(Context, RetVT);
11166 unsigned NumRegs = getNumRegisters(Context, RetVT);
11167 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
11168 RetOrigTys.append(NumRegs, OldRetOrigTys[i]);
11169 RetVTs.append(NumRegs, RegisterVT);
11170 for (unsigned j = 0; j != NumRegs; ++j)
11171 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
11172 }
11173 }
11174
11176 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
11177
11178 bool CanLowerReturn =
11180 CLI.IsVarArg, Outs, Context, CLI.RetTy);
11181
11182 SDValue DemoteStackSlot;
11183 int DemoteStackIdx = -100;
11184 if (!CanLowerReturn) {
11185 // FIXME: equivalent assert?
11186 // assert(!CS.hasInAllocaArgument() &&
11187 // "sret demotion is incompatible with inalloca");
11188 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
11189 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
11191 DemoteStackIdx =
11192 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
11193 Type *StackSlotPtrType = PointerType::get(Context, DL.getAllocaAddrSpace());
11194
11195 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
11196 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11197 Entry.IsSRet = true;
11198 Entry.Alignment = Alignment;
11199 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
11200 CLI.NumFixedArgs += 1;
11201 CLI.getArgs()[0].IndirectType = CLI.RetTy;
11202 CLI.RetTy = CLI.OrigRetTy = Type::getVoidTy(Context);
11203
11204 // sret demotion isn't compatible with tail-calls, since the sret argument
11205 // points into the callers stack frame.
11206 CLI.IsTailCall = false;
11207 } else {
11208 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11209 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
11210 for (unsigned I = 0, E = RetVTs.size(); I != E; ++I) {
11211 ISD::ArgFlagsTy Flags;
11212 if (NeedsRegBlock) {
11213 Flags.setInConsecutiveRegs();
11214 if (I == RetVTs.size() - 1)
11215 Flags.setInConsecutiveRegsLast();
11216 }
11217 EVT VT = RetVTs[I];
11218 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11219 unsigned NumRegs =
11220 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11221 for (unsigned i = 0; i != NumRegs; ++i) {
11222 ISD::InputArg Ret(Flags, RegisterVT, VT, RetOrigTys[I],
11224 if (CLI.RetTy->isPointerTy()) {
11225 Ret.Flags.setPointer();
11227 cast<PointerType>(CLI.RetTy)->getAddressSpace());
11228 }
11229 if (CLI.RetSExt)
11230 Ret.Flags.setSExt();
11231 if (CLI.RetZExt)
11232 Ret.Flags.setZExt();
11233 if (CLI.IsInReg)
11234 Ret.Flags.setInReg();
11235 CLI.Ins.push_back(Ret);
11236 }
11237 }
11238 }
11239
11240 // We push in swifterror return as the last element of CLI.Ins.
11241 ArgListTy &Args = CLI.getArgs();
11242 if (supportSwiftError()) {
11243 for (const ArgListEntry &Arg : Args) {
11244 if (Arg.IsSwiftError) {
11245 ISD::ArgFlagsTy Flags;
11246 Flags.setSwiftError();
11248 PointerType::getUnqual(Context),
11249 /*Used=*/true, ISD::InputArg::NoArgIndex, 0);
11250 CLI.Ins.push_back(Ret);
11251 }
11252 }
11253 }
11254
11255 // Handle all of the outgoing arguments.
11256 CLI.Outs.clear();
11257 CLI.OutVals.clear();
11258 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11259 SmallVector<Type *, 4> OrigArgTys;
11260 ComputeValueTypes(DL, Args[i].OrigTy, OrigArgTys);
11261 // FIXME: Split arguments if CLI.IsPostTypeLegalization
11262 Type *FinalType = Args[i].Ty;
11263 if (Args[i].IsByVal)
11264 FinalType = Args[i].IndirectType;
11265 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11266 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11267 for (unsigned Value = 0, NumValues = OrigArgTys.size(); Value != NumValues;
11268 ++Value) {
11269 Type *OrigArgTy = OrigArgTys[Value];
11270 Type *ArgTy = OrigArgTy;
11271 if (Args[i].Ty != Args[i].OrigTy) {
11272 assert(Value == 0 && "Only supported for non-aggregate arguments");
11273 ArgTy = Args[i].Ty;
11274 }
11275
11276 EVT VT = getValueType(DL, ArgTy);
11277 SDValue Op = SDValue(Args[i].Node.getNode(),
11278 Args[i].Node.getResNo() + Value);
11279 ISD::ArgFlagsTy Flags;
11280
11281 // Certain targets (such as MIPS), may have a different ABI alignment
11282 // for a type depending on the context. Give the target a chance to
11283 // specify the alignment it wants.
11284 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11285 Flags.setOrigAlign(OriginalAlignment);
11286
11287 if (i >= CLI.NumFixedArgs)
11288 Flags.setVarArg();
11289 if (ArgTy->isPointerTy()) {
11290 Flags.setPointer();
11291 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11292 }
11293 if (Args[i].IsZExt)
11294 Flags.setZExt();
11295 if (Args[i].IsSExt)
11296 Flags.setSExt();
11297 if (Args[i].IsNoExt)
11298 Flags.setNoExt();
11299 if (Args[i].IsInReg) {
11300 // If we are using vectorcall calling convention, a structure that is
11301 // passed InReg - is surely an HVA
11303 isa<StructType>(FinalType)) {
11304 // The first value of a structure is marked
11305 if (0 == Value)
11306 Flags.setHvaStart();
11307 Flags.setHva();
11308 }
11309 // Set InReg Flag
11310 Flags.setInReg();
11311 }
11312 if (Args[i].IsSRet)
11313 Flags.setSRet();
11314 if (Args[i].IsSwiftSelf)
11315 Flags.setSwiftSelf();
11316 if (Args[i].IsSwiftAsync)
11317 Flags.setSwiftAsync();
11318 if (Args[i].IsSwiftError)
11319 Flags.setSwiftError();
11320 if (Args[i].IsCFGuardTarget)
11321 Flags.setCFGuardTarget();
11322 if (Args[i].IsByVal)
11323 Flags.setByVal();
11324 if (Args[i].IsByRef)
11325 Flags.setByRef();
11326 if (Args[i].IsPreallocated) {
11327 Flags.setPreallocated();
11328 // Set the byval flag for CCAssignFn callbacks that don't know about
11329 // preallocated. This way we can know how many bytes we should've
11330 // allocated and how many bytes a callee cleanup function will pop. If
11331 // we port preallocated to more targets, we'll have to add custom
11332 // preallocated handling in the various CC lowering callbacks.
11333 Flags.setByVal();
11334 }
11335 if (Args[i].IsInAlloca) {
11336 Flags.setInAlloca();
11337 // Set the byval flag for CCAssignFn callbacks that don't know about
11338 // inalloca. This way we can know how many bytes we should've allocated
11339 // and how many bytes a callee cleanup function will pop. If we port
11340 // inalloca to more targets, we'll have to add custom inalloca handling
11341 // in the various CC lowering callbacks.
11342 Flags.setByVal();
11343 }
11344 Align MemAlign;
11345 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11346 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11347 Flags.setByValSize(FrameSize);
11348
11349 // info is not there but there are cases it cannot get right.
11350 if (auto MA = Args[i].Alignment)
11351 MemAlign = *MA;
11352 else
11353 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL);
11354 } else if (auto MA = Args[i].Alignment) {
11355 MemAlign = *MA;
11356 } else {
11357 MemAlign = OriginalAlignment;
11358 }
11359 Flags.setMemAlign(MemAlign);
11360 if (Args[i].IsNest)
11361 Flags.setNest();
11362 if (NeedsRegBlock)
11363 Flags.setInConsecutiveRegs();
11364
11365 MVT PartVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11366 unsigned NumParts =
11367 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11368 SmallVector<SDValue, 4> Parts(NumParts);
11369 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11370
11371 if (Args[i].IsSExt)
11372 ExtendKind = ISD::SIGN_EXTEND;
11373 else if (Args[i].IsZExt)
11374 ExtendKind = ISD::ZERO_EXTEND;
11375
11376 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11377 // for now.
11378 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11380 assert((CLI.RetTy == Args[i].Ty ||
11381 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11383 Args[i].Ty->getPointerAddressSpace())) &&
11384 RetVTs.size() == NumValues && "unexpected use of 'returned'");
11385 // Before passing 'returned' to the target lowering code, ensure that
11386 // either the register MVT and the actual EVT are the same size or that
11387 // the return value and argument are extended in the same way; in these
11388 // cases it's safe to pass the argument register value unchanged as the
11389 // return register value (although it's at the target's option whether
11390 // to do so)
11391 // TODO: allow code generation to take advantage of partially preserved
11392 // registers rather than clobbering the entire register when the
11393 // parameter extension method is not compatible with the return
11394 // extension method
11395 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11396 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11397 CLI.RetZExt == Args[i].IsZExt))
11398 Flags.setReturned();
11399 }
11400
11401 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11402 CLI.CallConv, ExtendKind);
11403
11404 for (unsigned j = 0; j != NumParts; ++j) {
11405 // if it isn't first piece, alignment must be 1
11406 // For scalable vectors the scalable part is currently handled
11407 // by individual targets, so we just use the known minimum size here.
11408 ISD::OutputArg MyFlags(
11409 Flags, Parts[j].getValueType().getSimpleVT(), VT, OrigArgTy, i,
11410 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11411 if (NumParts > 1 && j == 0)
11412 MyFlags.Flags.setSplit();
11413 else if (j != 0) {
11414 MyFlags.Flags.setOrigAlign(Align(1));
11415 if (j == NumParts - 1)
11416 MyFlags.Flags.setSplitEnd();
11417 }
11418
11419 CLI.Outs.push_back(MyFlags);
11420 CLI.OutVals.push_back(Parts[j]);
11421 }
11422
11423 if (NeedsRegBlock && Value == NumValues - 1)
11424 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11425 }
11426 }
11427
11429 CLI.Chain = LowerCall(CLI, InVals);
11430
11431 // Update CLI.InVals to use outside of this function.
11432 CLI.InVals = InVals;
11433
11434 // Verify that the target's LowerCall behaved as expected.
11435 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11436 "LowerCall didn't return a valid chain!");
11437 assert((!CLI.IsTailCall || InVals.empty()) &&
11438 "LowerCall emitted a return value for a tail call!");
11439 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11440 "LowerCall didn't emit the correct number of values!");
11441
11442 // For a tail call, the return value is merely live-out and there aren't
11443 // any nodes in the DAG representing it. Return a special value to
11444 // indicate that a tail call has been emitted and no more Instructions
11445 // should be processed in the current block.
11446 if (CLI.IsTailCall) {
11447 CLI.DAG.setRoot(CLI.Chain);
11448 return std::make_pair(SDValue(), SDValue());
11449 }
11450
11451#ifndef NDEBUG
11452 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11453 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11454 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11455 "LowerCall emitted a value with the wrong type!");
11456 }
11457#endif
11458
11459 SmallVector<SDValue, 4> ReturnValues;
11460 if (!CanLowerReturn) {
11461 // The instruction result is the result of loading from the
11462 // hidden sret parameter.
11463 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace());
11464
11465 unsigned NumValues = RetVTs.size();
11466 ReturnValues.resize(NumValues);
11467 SmallVector<SDValue, 4> Chains(NumValues);
11468
11469 // An aggregate return value cannot wrap around the address space, so
11470 // offsets to its parts don't wrap either.
11472 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11473 for (unsigned i = 0; i < NumValues; ++i) {
11475 DemoteStackSlot, CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11477 SDValue L = CLI.DAG.getLoad(
11478 RetVTs[i], CLI.DL, CLI.Chain, Add,
11480 DemoteStackIdx, Offsets[i]),
11481 HiddenSRetAlign);
11482 ReturnValues[i] = L;
11483 Chains[i] = L.getValue(1);
11484 }
11485
11486 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11487 } else {
11488 // Collect the legal value parts into potentially illegal values
11489 // that correspond to the original function's return values.
11490 std::optional<ISD::NodeType> AssertOp;
11491 if (CLI.RetSExt)
11492 AssertOp = ISD::AssertSext;
11493 else if (CLI.RetZExt)
11494 AssertOp = ISD::AssertZext;
11495 unsigned CurReg = 0;
11496 for (EVT VT : RetVTs) {
11497 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11498 unsigned NumRegs =
11499 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11500
11501 ReturnValues.push_back(getCopyFromParts(
11502 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11503 CLI.Chain, CLI.CallConv, AssertOp));
11504 CurReg += NumRegs;
11505 }
11506
11507 // For a function returning void, there is no return value. We can't create
11508 // such a node, so we just return a null return value in that case. In
11509 // that case, nothing will actually look at the value.
11510 if (ReturnValues.empty())
11511 return std::make_pair(SDValue(), CLI.Chain);
11512 }
11513
11514 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11515 CLI.DAG.getVTList(RetVTs), ReturnValues);
11516 return std::make_pair(Res, CLI.Chain);
11517}
11518
11519/// Places new result values for the node in Results (their number
11520/// and types must exactly match those of the original return values of
11521/// the node), or leaves Results empty, which indicates that the node is not
11522/// to be custom lowered after all.
11525 SelectionDAG &DAG) const {
11526 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11527
11528 if (!Res.getNode())
11529 return;
11530
11531 // If the original node has one result, take the return value from
11532 // LowerOperation as is. It might not be result number 0.
11533 if (N->getNumValues() == 1) {
11534 Results.push_back(Res);
11535 return;
11536 }
11537
11538 // If the original node has multiple results, then the return node should
11539 // have the same number of results.
11540 assert((N->getNumValues() == Res->getNumValues()) &&
11541 "Lowering returned the wrong number of results!");
11542
11543 // Places new result values base on N result number.
11544 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11545 Results.push_back(Res.getValue(I));
11546}
11547
11549 llvm_unreachable("LowerOperation not implemented for this target!");
11550}
11551
11553 Register Reg,
11554 ISD::NodeType ExtendType) {
11556 assert((Op.getOpcode() != ISD::CopyFromReg ||
11557 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11558 "Copy from a reg to the same reg!");
11559 assert(!Reg.isPhysical() && "Is a physreg");
11560
11561 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11562 // If this is an InlineAsm we have to match the registers required, not the
11563 // notional registers required by the type.
11564
11565 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11566 std::nullopt); // This is not an ABI copy.
11567 SDValue Chain = DAG.getEntryNode();
11568
11569 if (ExtendType == ISD::ANY_EXTEND) {
11570 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11571 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11572 ExtendType = PreferredExtendIt->second;
11573 }
11574 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11575 PendingExports.push_back(Chain);
11576}
11577
11579
11580/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11581/// entry block, return true. This includes arguments used by switches, since
11582/// the switch may expand into multiple basic blocks.
11583static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11584 // With FastISel active, we may be splitting blocks, so force creation
11585 // of virtual registers for all non-dead arguments.
11586 if (FastISel)
11587 return A->use_empty();
11588
11589 const BasicBlock &Entry = A->getParent()->front();
11590 for (const User *U : A->users())
11591 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11592 return false; // Use not in entry block.
11593
11594 return true;
11595}
11596
11598 DenseMap<const Argument *,
11599 std::pair<const AllocaInst *, const StoreInst *>>;
11600
11601/// Scan the entry block of the function in FuncInfo for arguments that look
11602/// like copies into a local alloca. Record any copied arguments in
11603/// ArgCopyElisionCandidates.
11604static void
11606 FunctionLoweringInfo *FuncInfo,
11607 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11608 // Record the state of every static alloca used in the entry block. Argument
11609 // allocas are all used in the entry block, so we need approximately as many
11610 // entries as we have arguments.
11611 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11613 unsigned NumArgs = FuncInfo->Fn->arg_size();
11614 StaticAllocas.reserve(NumArgs * 2);
11615
11616 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11617 if (!V)
11618 return nullptr;
11619 V = V->stripPointerCasts();
11620 const auto *AI = dyn_cast<AllocaInst>(V);
11621 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11622 return nullptr;
11623 auto Iter = StaticAllocas.insert({AI, Unknown});
11624 return &Iter.first->second;
11625 };
11626
11627 // Look for stores of arguments to static allocas. Look through bitcasts and
11628 // GEPs to handle type coercions, as long as the alloca is fully initialized
11629 // by the store. Any non-store use of an alloca escapes it and any subsequent
11630 // unanalyzed store might write it.
11631 // FIXME: Handle structs initialized with multiple stores.
11632 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11633 // Look for stores, and handle non-store uses conservatively.
11634 const auto *SI = dyn_cast<StoreInst>(&I);
11635 if (!SI) {
11636 // We will look through cast uses, so ignore them completely.
11637 if (I.isCast())
11638 continue;
11639 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11640 // to allocas.
11641 if (I.isDebugOrPseudoInst())
11642 continue;
11643 // This is an unknown instruction. Assume it escapes or writes to all
11644 // static alloca operands.
11645 for (const Use &U : I.operands()) {
11646 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11647 *Info = StaticAllocaInfo::Clobbered;
11648 }
11649 continue;
11650 }
11651
11652 // If the stored value is a static alloca, mark it as escaped.
11653 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11654 *Info = StaticAllocaInfo::Clobbered;
11655
11656 // Check if the destination is a static alloca.
11657 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11658 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11659 if (!Info)
11660 continue;
11661 const AllocaInst *AI = cast<AllocaInst>(Dst);
11662
11663 // Skip allocas that have been initialized or clobbered.
11664 if (*Info != StaticAllocaInfo::Unknown)
11665 continue;
11666
11667 // Check if the stored value is an argument, and that this store fully
11668 // initializes the alloca.
11669 // If the argument type has padding bits we can't directly forward a pointer
11670 // as the upper bits may contain garbage.
11671 // Don't elide copies from the same argument twice.
11672 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11673 const auto *Arg = dyn_cast<Argument>(Val);
11674 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11675 Arg->getType()->isEmptyTy() ||
11676 DL.getTypeStoreSize(Arg->getType()) !=
11677 DL.getTypeAllocSize(AI->getAllocatedType()) ||
11678 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11679 ArgCopyElisionCandidates.count(Arg)) {
11680 *Info = StaticAllocaInfo::Clobbered;
11681 continue;
11682 }
11683
11684 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11685 << '\n');
11686
11687 // Mark this alloca and store for argument copy elision.
11688 *Info = StaticAllocaInfo::Elidable;
11689 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11690
11691 // Stop scanning if we've seen all arguments. This will happen early in -O0
11692 // builds, which is useful, because -O0 builds have large entry blocks and
11693 // many allocas.
11694 if (ArgCopyElisionCandidates.size() == NumArgs)
11695 break;
11696 }
11697}
11698
11699/// Try to elide argument copies from memory into a local alloca. Succeeds if
11700/// ArgVal is a load from a suitable fixed stack object.
11703 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11704 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11705 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11706 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11707 // Check if this is a load from a fixed stack object.
11708 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11709 if (!LNode)
11710 return;
11711 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11712 if (!FINode)
11713 return;
11714
11715 // Check that the fixed stack object is the right size and alignment.
11716 // Look at the alignment that the user wrote on the alloca instead of looking
11717 // at the stack object.
11718 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11719 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11720 const AllocaInst *AI = ArgCopyIter->second.first;
11721 int FixedIndex = FINode->getIndex();
11722 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11723 int OldIndex = AllocaIndex;
11724 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11725 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11726 LLVM_DEBUG(
11727 dbgs() << " argument copy elision failed due to bad fixed stack "
11728 "object size\n");
11729 return;
11730 }
11731 Align RequiredAlignment = AI->getAlign();
11732 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11733 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11734 "greater than stack argument alignment ("
11735 << DebugStr(RequiredAlignment) << " vs "
11736 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11737 return;
11738 }
11739
11740 // Perform the elision. Delete the old stack object and replace its only use
11741 // in the variable info map. Mark the stack object as mutable and aliased.
11742 LLVM_DEBUG({
11743 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11744 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11745 << '\n';
11746 });
11747 MFI.RemoveStackObject(OldIndex);
11748 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11749 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11750 AllocaIndex = FixedIndex;
11751 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11752 for (SDValue ArgVal : ArgVals)
11753 Chains.push_back(ArgVal.getValue(1));
11754
11755 // Avoid emitting code for the store implementing the copy.
11756 const StoreInst *SI = ArgCopyIter->second.second;
11757 ElidedArgCopyInstrs.insert(SI);
11758
11759 // Check for uses of the argument again so that we can avoid exporting ArgVal
11760 // if it is't used by anything other than the store.
11761 for (const Value *U : Arg.users()) {
11762 if (U != SI) {
11763 ArgHasUses = true;
11764 break;
11765 }
11766 }
11767}
11768
11769void SelectionDAGISel::LowerArguments(const Function &F) {
11770 SelectionDAG &DAG = SDB->DAG;
11771 SDLoc dl = SDB->getCurSDLoc();
11772 const DataLayout &DL = DAG.getDataLayout();
11774
11775 // In Naked functions we aren't going to save any registers.
11776 if (F.hasFnAttribute(Attribute::Naked))
11777 return;
11778
11779 if (!FuncInfo->CanLowerReturn) {
11780 // Put in an sret pointer parameter before all the other parameters.
11781 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11782
11783 ISD::ArgFlagsTy Flags;
11784 Flags.setSRet();
11785 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT);
11786 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, F.getReturnType(), true,
11788 Ins.push_back(RetArg);
11789 }
11790
11791 // Look for stores of arguments to static allocas. Mark such arguments with a
11792 // flag to ask the target to give us the memory location of that argument if
11793 // available.
11794 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11796 ArgCopyElisionCandidates);
11797
11798 // Set up the incoming argument description vector.
11799 for (const Argument &Arg : F.args()) {
11800 unsigned ArgNo = Arg.getArgNo();
11802 ComputeValueTypes(DAG.getDataLayout(), Arg.getType(), Types);
11803 bool isArgValueUsed = !Arg.use_empty();
11804 Type *FinalType = Arg.getType();
11805 if (Arg.hasAttribute(Attribute::ByVal))
11806 FinalType = Arg.getParamByValType();
11807 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11808 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11809 for (unsigned Value = 0, NumValues = Types.size(); Value != NumValues;
11810 ++Value) {
11811 Type *ArgTy = Types[Value];
11812 EVT VT = TLI->getValueType(DL, ArgTy);
11813 ISD::ArgFlagsTy Flags;
11814
11815 if (ArgTy->isPointerTy()) {
11816 Flags.setPointer();
11817 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11818 }
11819 if (Arg.hasAttribute(Attribute::ZExt))
11820 Flags.setZExt();
11821 if (Arg.hasAttribute(Attribute::SExt))
11822 Flags.setSExt();
11823 if (Arg.hasAttribute(Attribute::InReg)) {
11824 // If we are using vectorcall calling convention, a structure that is
11825 // passed InReg - is surely an HVA
11826 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11827 isa<StructType>(Arg.getType())) {
11828 // The first value of a structure is marked
11829 if (0 == Value)
11830 Flags.setHvaStart();
11831 Flags.setHva();
11832 }
11833 // Set InReg Flag
11834 Flags.setInReg();
11835 }
11836 if (Arg.hasAttribute(Attribute::StructRet))
11837 Flags.setSRet();
11838 if (Arg.hasAttribute(Attribute::SwiftSelf))
11839 Flags.setSwiftSelf();
11840 if (Arg.hasAttribute(Attribute::SwiftAsync))
11841 Flags.setSwiftAsync();
11842 if (Arg.hasAttribute(Attribute::SwiftError))
11843 Flags.setSwiftError();
11844 if (Arg.hasAttribute(Attribute::ByVal))
11845 Flags.setByVal();
11846 if (Arg.hasAttribute(Attribute::ByRef))
11847 Flags.setByRef();
11848 if (Arg.hasAttribute(Attribute::InAlloca)) {
11849 Flags.setInAlloca();
11850 // Set the byval flag for CCAssignFn callbacks that don't know about
11851 // inalloca. This way we can know how many bytes we should've allocated
11852 // and how many bytes a callee cleanup function will pop. If we port
11853 // inalloca to more targets, we'll have to add custom inalloca handling
11854 // in the various CC lowering callbacks.
11855 Flags.setByVal();
11856 }
11857 if (Arg.hasAttribute(Attribute::Preallocated)) {
11858 Flags.setPreallocated();
11859 // Set the byval flag for CCAssignFn callbacks that don't know about
11860 // preallocated. This way we can know how many bytes we should've
11861 // allocated and how many bytes a callee cleanup function will pop. If
11862 // we port preallocated to more targets, we'll have to add custom
11863 // preallocated handling in the various CC lowering callbacks.
11864 Flags.setByVal();
11865 }
11866
11867 // Certain targets (such as MIPS), may have a different ABI alignment
11868 // for a type depending on the context. Give the target a chance to
11869 // specify the alignment it wants.
11870 const Align OriginalAlignment(
11871 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11872 Flags.setOrigAlign(OriginalAlignment);
11873
11874 Align MemAlign;
11875 Type *ArgMemTy = nullptr;
11876 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11877 Flags.isByRef()) {
11878 if (!ArgMemTy)
11879 ArgMemTy = Arg.getPointeeInMemoryValueType();
11880
11881 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11882
11883 // For in-memory arguments, size and alignment should be passed from FE.
11884 // BE will guess if this info is not there but there are cases it cannot
11885 // get right.
11886 if (auto ParamAlign = Arg.getParamStackAlign())
11887 MemAlign = *ParamAlign;
11888 else if ((ParamAlign = Arg.getParamAlign()))
11889 MemAlign = *ParamAlign;
11890 else
11891 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL);
11892 if (Flags.isByRef())
11893 Flags.setByRefSize(MemSize);
11894 else
11895 Flags.setByValSize(MemSize);
11896 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11897 MemAlign = *ParamAlign;
11898 } else {
11899 MemAlign = OriginalAlignment;
11900 }
11901 Flags.setMemAlign(MemAlign);
11902
11903 if (Arg.hasAttribute(Attribute::Nest))
11904 Flags.setNest();
11905 if (NeedsRegBlock)
11906 Flags.setInConsecutiveRegs();
11907 if (ArgCopyElisionCandidates.count(&Arg))
11908 Flags.setCopyElisionCandidate();
11909 if (Arg.hasAttribute(Attribute::Returned))
11910 Flags.setReturned();
11911
11912 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11913 *CurDAG->getContext(), F.getCallingConv(), VT);
11914 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11915 *CurDAG->getContext(), F.getCallingConv(), VT);
11916 for (unsigned i = 0; i != NumRegs; ++i) {
11917 // For scalable vectors, use the minimum size; individual targets
11918 // are responsible for handling scalable vector arguments and
11919 // return values.
11920 ISD::InputArg MyFlags(
11921 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11922 i * RegisterVT.getStoreSize().getKnownMinValue());
11923 if (NumRegs > 1 && i == 0)
11924 MyFlags.Flags.setSplit();
11925 // if it isn't first piece, alignment must be 1
11926 else if (i > 0) {
11927 MyFlags.Flags.setOrigAlign(Align(1));
11928 if (i == NumRegs - 1)
11929 MyFlags.Flags.setSplitEnd();
11930 }
11931 Ins.push_back(MyFlags);
11932 }
11933 if (NeedsRegBlock && Value == NumValues - 1)
11934 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11935 }
11936 }
11937
11938 // Call the target to set up the argument values.
11940 SDValue NewRoot = TLI->LowerFormalArguments(
11941 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11942
11943 // Verify that the target's LowerFormalArguments behaved as expected.
11944 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11945 "LowerFormalArguments didn't return a valid chain!");
11946 assert(InVals.size() == Ins.size() &&
11947 "LowerFormalArguments didn't emit the correct number of values!");
11948 LLVM_DEBUG({
11949 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11950 assert(InVals[i].getNode() &&
11951 "LowerFormalArguments emitted a null value!");
11952 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11953 "LowerFormalArguments emitted a value with the wrong type!");
11954 }
11955 });
11956
11957 // Update the DAG with the new chain value resulting from argument lowering.
11958 DAG.setRoot(NewRoot);
11959
11960 // Set up the argument values.
11961 unsigned i = 0;
11962 if (!FuncInfo->CanLowerReturn) {
11963 // Create a virtual register for the sret pointer, and put in a copy
11964 // from the sret argument into it.
11965 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11966 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11967 std::optional<ISD::NodeType> AssertOp;
11968 SDValue ArgValue =
11969 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11970 F.getCallingConv(), AssertOp);
11971
11972 MachineFunction& MF = SDB->DAG.getMachineFunction();
11973 MachineRegisterInfo& RegInfo = MF.getRegInfo();
11974 Register SRetReg =
11975 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11976 FuncInfo->DemoteRegister = SRetReg;
11977 NewRoot =
11978 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11979 DAG.setRoot(NewRoot);
11980
11981 // i indexes lowered arguments. Bump it past the hidden sret argument.
11982 ++i;
11983 }
11984
11986 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11987 for (const Argument &Arg : F.args()) {
11988 SmallVector<SDValue, 4> ArgValues;
11989 SmallVector<EVT, 4> ValueVTs;
11990 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11991 unsigned NumValues = ValueVTs.size();
11992 if (NumValues == 0)
11993 continue;
11994
11995 bool ArgHasUses = !Arg.use_empty();
11996
11997 // Elide the copying store if the target loaded this argument from a
11998 // suitable fixed stack object.
11999 if (Ins[i].Flags.isCopyElisionCandidate()) {
12000 unsigned NumParts = 0;
12001 for (EVT VT : ValueVTs)
12002 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
12003 F.getCallingConv(), VT);
12004
12005 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
12006 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
12007 ArrayRef(&InVals[i], NumParts), ArgHasUses);
12008 }
12009
12010 // If this argument is unused then remember its value. It is used to generate
12011 // debugging information.
12012 bool isSwiftErrorArg =
12013 TLI->supportSwiftError() &&
12014 Arg.hasAttribute(Attribute::SwiftError);
12015 if (!ArgHasUses && !isSwiftErrorArg) {
12016 SDB->setUnusedArgValue(&Arg, InVals[i]);
12017
12018 // Also remember any frame index for use in FastISel.
12019 if (FrameIndexSDNode *FI =
12021 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12022 }
12023
12024 for (unsigned Val = 0; Val != NumValues; ++Val) {
12025 EVT VT = ValueVTs[Val];
12026 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
12027 F.getCallingConv(), VT);
12028 unsigned NumParts = TLI->getNumRegistersForCallingConv(
12029 *CurDAG->getContext(), F.getCallingConv(), VT);
12030
12031 // Even an apparent 'unused' swifterror argument needs to be returned. So
12032 // we do generate a copy for it that can be used on return from the
12033 // function.
12034 if (ArgHasUses || isSwiftErrorArg) {
12035 std::optional<ISD::NodeType> AssertOp;
12036 if (Arg.hasAttribute(Attribute::SExt))
12037 AssertOp = ISD::AssertSext;
12038 else if (Arg.hasAttribute(Attribute::ZExt))
12039 AssertOp = ISD::AssertZext;
12040
12041 SDValue OutVal =
12042 getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, nullptr,
12043 NewRoot, F.getCallingConv(), AssertOp);
12044
12045 FPClassTest NoFPClass = Arg.getNoFPClass();
12046 if (NoFPClass != fcNone) {
12047 SDValue SDNoFPClass = DAG.getTargetConstant(
12048 static_cast<uint64_t>(NoFPClass), dl, MVT::i32);
12049 OutVal = DAG.getNode(ISD::AssertNoFPClass, dl, OutVal.getValueType(),
12050 OutVal, SDNoFPClass);
12051 }
12052 ArgValues.push_back(OutVal);
12053 }
12054
12055 i += NumParts;
12056 }
12057
12058 // We don't need to do anything else for unused arguments.
12059 if (ArgValues.empty())
12060 continue;
12061
12062 // Note down frame index.
12063 if (FrameIndexSDNode *FI =
12064 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
12065 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12066
12067 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
12068 SDB->getCurSDLoc());
12069
12070 SDB->setValue(&Arg, Res);
12071 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
12072 // We want to associate the argument with the frame index, among
12073 // involved operands, that correspond to the lowest address. The
12074 // getCopyFromParts function, called earlier, is swapping the order of
12075 // the operands to BUILD_PAIR depending on endianness. The result of
12076 // that swapping is that the least significant bits of the argument will
12077 // be in the first operand of the BUILD_PAIR node, and the most
12078 // significant bits will be in the second operand.
12079 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
12080 if (LoadSDNode *LNode =
12081 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
12082 if (FrameIndexSDNode *FI =
12083 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
12084 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12085 }
12086
12087 // Analyses past this point are naive and don't expect an assertion.
12088 if (Res.getOpcode() == ISD::AssertZext)
12089 Res = Res.getOperand(0);
12090
12091 // Update the SwiftErrorVRegDefMap.
12092 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
12093 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12094 if (Reg.isVirtual())
12095 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
12096 Reg);
12097 }
12098
12099 // If this argument is live outside of the entry block, insert a copy from
12100 // wherever we got it to the vreg that other BB's will reference it as.
12101 if (Res.getOpcode() == ISD::CopyFromReg) {
12102 // If we can, though, try to skip creating an unnecessary vreg.
12103 // FIXME: This isn't very clean... it would be nice to make this more
12104 // general.
12105 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12106 if (Reg.isVirtual()) {
12107 FuncInfo->ValueMap[&Arg] = Reg;
12108 continue;
12109 }
12110 }
12111 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
12112 FuncInfo->InitializeRegForValue(&Arg);
12113 SDB->CopyToExportRegsIfNeeded(&Arg);
12114 }
12115 }
12116
12117 if (!Chains.empty()) {
12118 Chains.push_back(NewRoot);
12119 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
12120 }
12121
12122 DAG.setRoot(NewRoot);
12123
12124 assert(i == InVals.size() && "Argument register count mismatch!");
12125
12126 // If any argument copy elisions occurred and we have debug info, update the
12127 // stale frame indices used in the dbg.declare variable info table.
12128 if (!ArgCopyElisionFrameIndexMap.empty()) {
12129 for (MachineFunction::VariableDbgInfo &VI :
12130 MF->getInStackSlotVariableDbgInfo()) {
12131 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
12132 if (I != ArgCopyElisionFrameIndexMap.end())
12133 VI.updateStackSlot(I->second);
12134 }
12135 }
12136
12137 // Finally, if the target has anything special to do, allow it to do so.
12139}
12140
12141/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
12142/// ensure constants are generated when needed. Remember the virtual registers
12143/// that need to be added to the Machine PHI nodes as input. We cannot just
12144/// directly add them, because expansion might result in multiple MBB's for one
12145/// BB. As such, the start of the BB might correspond to a different MBB than
12146/// the end.
12147void
12148SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
12149 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12150
12151 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12152
12153 // Check PHI nodes in successors that expect a value to be available from this
12154 // block.
12155 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
12156 if (!isa<PHINode>(SuccBB->begin())) continue;
12157 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
12158
12159 // If this terminator has multiple identical successors (common for
12160 // switches), only handle each succ once.
12161 if (!SuccsHandled.insert(SuccMBB).second)
12162 continue;
12163
12165
12166 // At this point we know that there is a 1-1 correspondence between LLVM PHI
12167 // nodes and Machine PHI nodes, but the incoming operands have not been
12168 // emitted yet.
12169 for (const PHINode &PN : SuccBB->phis()) {
12170 // Ignore dead phi's.
12171 if (PN.use_empty())
12172 continue;
12173
12174 // Skip empty types
12175 if (PN.getType()->isEmptyTy())
12176 continue;
12177
12178 Register Reg;
12179 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12180
12181 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
12182 Register &RegOut = ConstantsOut[C];
12183 if (!RegOut) {
12184 RegOut = FuncInfo.CreateRegs(&PN);
12185 // We need to zero/sign extend ConstantInt phi operands to match
12186 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
12187 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
12188 if (auto *CI = dyn_cast<ConstantInt>(C))
12189 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
12191 CopyValueToVirtualRegister(C, RegOut, ExtendType);
12192 }
12193 Reg = RegOut;
12194 } else {
12196 FuncInfo.ValueMap.find(PHIOp);
12197 if (I != FuncInfo.ValueMap.end())
12198 Reg = I->second;
12199 else {
12200 assert(isa<AllocaInst>(PHIOp) &&
12201 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
12202 "Didn't codegen value into a register!??");
12203 Reg = FuncInfo.CreateRegs(&PN);
12205 }
12206 }
12207
12208 // Remember that this register needs to added to the machine PHI node as
12209 // the input for this MBB.
12210 SmallVector<EVT, 4> ValueVTs;
12211 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
12212 for (EVT VT : ValueVTs) {
12213 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
12214 for (unsigned i = 0; i != NumRegisters; ++i)
12215 FuncInfo.PHINodesToUpdate.emplace_back(&*MBBI++, Reg + i);
12216 Reg += NumRegisters;
12217 }
12218 }
12219 }
12220
12221 ConstantsOut.clear();
12222}
12223
12224MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
12226 if (++I == FuncInfo.MF->end())
12227 return nullptr;
12228 return &*I;
12229}
12230
12231/// During lowering new call nodes can be created (such as memset, etc.).
12232/// Those will become new roots of the current DAG, but complications arise
12233/// when they are tail calls. In such cases, the call lowering will update
12234/// the root, but the builder still needs to know that a tail call has been
12235/// lowered in order to avoid generating an additional return.
12236void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12237 // If the node is null, we do have a tail call.
12238 if (MaybeTC.getNode() != nullptr)
12239 DAG.setRoot(MaybeTC);
12240 else
12241 HasTailCall = true;
12242}
12243
12244void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12245 MachineBasicBlock *SwitchMBB,
12246 MachineBasicBlock *DefaultMBB) {
12247 MachineFunction *CurMF = FuncInfo.MF;
12248 MachineBasicBlock *NextMBB = nullptr;
12250 if (++BBI != FuncInfo.MF->end())
12251 NextMBB = &*BBI;
12252
12253 unsigned Size = W.LastCluster - W.FirstCluster + 1;
12254
12255 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12256
12257 if (Size == 2 && W.MBB == SwitchMBB) {
12258 // If any two of the cases has the same destination, and if one value
12259 // is the same as the other, but has one bit unset that the other has set,
12260 // use bit manipulation to do two compares at once. For example:
12261 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12262 // TODO: This could be extended to merge any 2 cases in switches with 3
12263 // cases.
12264 // TODO: Handle cases where W.CaseBB != SwitchBB.
12265 CaseCluster &Small = *W.FirstCluster;
12266 CaseCluster &Big = *W.LastCluster;
12267
12268 if (Small.Low == Small.High && Big.Low == Big.High &&
12269 Small.MBB == Big.MBB) {
12270 const APInt &SmallValue = Small.Low->getValue();
12271 const APInt &BigValue = Big.Low->getValue();
12272
12273 // Check that there is only one bit different.
12274 APInt CommonBit = BigValue ^ SmallValue;
12275 if (CommonBit.isPowerOf2()) {
12276 SDValue CondLHS = getValue(Cond);
12277 EVT VT = CondLHS.getValueType();
12278 SDLoc DL = getCurSDLoc();
12279
12280 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12281 DAG.getConstant(CommonBit, DL, VT));
12282 SDValue Cond = DAG.getSetCC(
12283 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12284 ISD::SETEQ);
12285
12286 // Update successor info.
12287 // Both Small and Big will jump to Small.BB, so we sum up the
12288 // probabilities.
12289 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12290 if (BPI)
12291 addSuccessorWithProb(
12292 SwitchMBB, DefaultMBB,
12293 // The default destination is the first successor in IR.
12294 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12295 else
12296 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12297
12298 // Insert the true branch.
12299 SDValue BrCond =
12300 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12301 DAG.getBasicBlock(Small.MBB));
12302 // Insert the false branch.
12303 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12304 DAG.getBasicBlock(DefaultMBB));
12305
12306 DAG.setRoot(BrCond);
12307 return;
12308 }
12309 }
12310 }
12311
12312 if (TM.getOptLevel() != CodeGenOptLevel::None) {
12313 // Here, we order cases by probability so the most likely case will be
12314 // checked first. However, two clusters can have the same probability in
12315 // which case their relative ordering is non-deterministic. So we use Low
12316 // as a tie-breaker as clusters are guaranteed to never overlap.
12317 llvm::sort(W.FirstCluster, W.LastCluster + 1,
12318 [](const CaseCluster &a, const CaseCluster &b) {
12319 return a.Prob != b.Prob ?
12320 a.Prob > b.Prob :
12321 a.Low->getValue().slt(b.Low->getValue());
12322 });
12323
12324 // Rearrange the case blocks so that the last one falls through if possible
12325 // without changing the order of probabilities.
12326 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12327 --I;
12328 if (I->Prob > W.LastCluster->Prob)
12329 break;
12330 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12331 std::swap(*I, *W.LastCluster);
12332 break;
12333 }
12334 }
12335 }
12336
12337 // Compute total probability.
12338 BranchProbability DefaultProb = W.DefaultProb;
12339 BranchProbability UnhandledProbs = DefaultProb;
12340 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12341 UnhandledProbs += I->Prob;
12342
12343 MachineBasicBlock *CurMBB = W.MBB;
12344 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12345 bool FallthroughUnreachable = false;
12346 MachineBasicBlock *Fallthrough;
12347 if (I == W.LastCluster) {
12348 // For the last cluster, fall through to the default destination.
12349 Fallthrough = DefaultMBB;
12350 FallthroughUnreachable = isa<UnreachableInst>(
12351 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12352 } else {
12353 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12354 CurMF->insert(BBI, Fallthrough);
12355 // Put Cond in a virtual register to make it available from the new blocks.
12357 }
12358 UnhandledProbs -= I->Prob;
12359
12360 switch (I->Kind) {
12361 case CC_JumpTable: {
12362 // FIXME: Optimize away range check based on pivot comparisons.
12363 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12364 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12365
12366 // The jump block hasn't been inserted yet; insert it here.
12367 MachineBasicBlock *JumpMBB = JT->MBB;
12368 CurMF->insert(BBI, JumpMBB);
12369
12370 auto JumpProb = I->Prob;
12371 auto FallthroughProb = UnhandledProbs;
12372
12373 // If the default statement is a target of the jump table, we evenly
12374 // distribute the default probability to successors of CurMBB. Also
12375 // update the probability on the edge from JumpMBB to Fallthrough.
12376 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12377 SE = JumpMBB->succ_end();
12378 SI != SE; ++SI) {
12379 if (*SI == DefaultMBB) {
12380 JumpProb += DefaultProb / 2;
12381 FallthroughProb -= DefaultProb / 2;
12382 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12383 JumpMBB->normalizeSuccProbs();
12384 break;
12385 }
12386 }
12387
12388 // If the default clause is unreachable, propagate that knowledge into
12389 // JTH->FallthroughUnreachable which will use it to suppress the range
12390 // check.
12391 //
12392 // However, don't do this if we're doing branch target enforcement,
12393 // because a table branch _without_ a range check can be a tempting JOP
12394 // gadget - out-of-bounds inputs that are impossible in correct
12395 // execution become possible again if an attacker can influence the
12396 // control flow. So if an attacker doesn't already have a BTI bypass
12397 // available, we don't want them to be able to get one out of this
12398 // table branch.
12399 if (FallthroughUnreachable) {
12400 Function &CurFunc = CurMF->getFunction();
12401 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12402 JTH->FallthroughUnreachable = true;
12403 }
12404
12405 if (!JTH->FallthroughUnreachable)
12406 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12407 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12408 CurMBB->normalizeSuccProbs();
12409
12410 // The jump table header will be inserted in our current block, do the
12411 // range check, and fall through to our fallthrough block.
12412 JTH->HeaderBB = CurMBB;
12413 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12414
12415 // If we're in the right place, emit the jump table header right now.
12416 if (CurMBB == SwitchMBB) {
12417 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12418 JTH->Emitted = true;
12419 }
12420 break;
12421 }
12422 case CC_BitTests: {
12423 // FIXME: Optimize away range check based on pivot comparisons.
12424 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12425
12426 // The bit test blocks haven't been inserted yet; insert them here.
12427 for (BitTestCase &BTC : BTB->Cases)
12428 CurMF->insert(BBI, BTC.ThisBB);
12429
12430 // Fill in fields of the BitTestBlock.
12431 BTB->Parent = CurMBB;
12432 BTB->Default = Fallthrough;
12433
12434 BTB->DefaultProb = UnhandledProbs;
12435 // If the cases in bit test don't form a contiguous range, we evenly
12436 // distribute the probability on the edge to Fallthrough to two
12437 // successors of CurMBB.
12438 if (!BTB->ContiguousRange) {
12439 BTB->Prob += DefaultProb / 2;
12440 BTB->DefaultProb -= DefaultProb / 2;
12441 }
12442
12443 if (FallthroughUnreachable)
12444 BTB->FallthroughUnreachable = true;
12445
12446 // If we're in the right place, emit the bit test header right now.
12447 if (CurMBB == SwitchMBB) {
12448 visitBitTestHeader(*BTB, SwitchMBB);
12449 BTB->Emitted = true;
12450 }
12451 break;
12452 }
12453 case CC_Range: {
12454 const Value *RHS, *LHS, *MHS;
12455 ISD::CondCode CC;
12456 if (I->Low == I->High) {
12457 // Check Cond == I->Low.
12458 CC = ISD::SETEQ;
12459 LHS = Cond;
12460 RHS=I->Low;
12461 MHS = nullptr;
12462 } else {
12463 // Check I->Low <= Cond <= I->High.
12464 CC = ISD::SETLE;
12465 LHS = I->Low;
12466 MHS = Cond;
12467 RHS = I->High;
12468 }
12469
12470 // If Fallthrough is unreachable, fold away the comparison.
12471 if (FallthroughUnreachable)
12472 CC = ISD::SETTRUE;
12473
12474 // The false probability is the sum of all unhandled cases.
12475 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12476 getCurSDLoc(), I->Prob, UnhandledProbs);
12477
12478 if (CurMBB == SwitchMBB)
12479 visitSwitchCase(CB, SwitchMBB);
12480 else
12481 SL->SwitchCases.push_back(CB);
12482
12483 break;
12484 }
12485 }
12486 CurMBB = Fallthrough;
12487 }
12488}
12489
12490void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12491 const SwitchWorkListItem &W,
12492 Value *Cond,
12493 MachineBasicBlock *SwitchMBB) {
12494 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12495 "Clusters not sorted?");
12496 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12497
12498 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12499 SL->computeSplitWorkItemInfo(W);
12500
12501 // Use the first element on the right as pivot since we will make less-than
12502 // comparisons against it.
12503 CaseClusterIt PivotCluster = FirstRight;
12504 assert(PivotCluster > W.FirstCluster);
12505 assert(PivotCluster <= W.LastCluster);
12506
12507 CaseClusterIt FirstLeft = W.FirstCluster;
12508 CaseClusterIt LastRight = W.LastCluster;
12509
12510 const ConstantInt *Pivot = PivotCluster->Low;
12511
12512 // New blocks will be inserted immediately after the current one.
12514 ++BBI;
12515
12516 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12517 // we can branch to its destination directly if it's squeezed exactly in
12518 // between the known lower bound and Pivot - 1.
12519 MachineBasicBlock *LeftMBB;
12520 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12521 FirstLeft->Low == W.GE &&
12522 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12523 LeftMBB = FirstLeft->MBB;
12524 } else {
12525 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12526 FuncInfo.MF->insert(BBI, LeftMBB);
12527 WorkList.push_back(
12528 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12529 // Put Cond in a virtual register to make it available from the new blocks.
12531 }
12532
12533 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12534 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12535 // directly if RHS.High equals the current upper bound.
12536 MachineBasicBlock *RightMBB;
12537 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12538 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12539 RightMBB = FirstRight->MBB;
12540 } else {
12541 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12542 FuncInfo.MF->insert(BBI, RightMBB);
12543 WorkList.push_back(
12544 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12545 // Put Cond in a virtual register to make it available from the new blocks.
12547 }
12548
12549 // Create the CaseBlock record that will be used to lower the branch.
12550 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12551 getCurSDLoc(), LeftProb, RightProb);
12552
12553 if (W.MBB == SwitchMBB)
12554 visitSwitchCase(CB, SwitchMBB);
12555 else
12556 SL->SwitchCases.push_back(CB);
12557}
12558
12559// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12560// from the swith statement.
12562 BranchProbability PeeledCaseProb) {
12563 if (PeeledCaseProb == BranchProbability::getOne())
12565 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12566
12567 uint32_t Numerator = CaseProb.getNumerator();
12568 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12569 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12570}
12571
12572// Try to peel the top probability case if it exceeds the threshold.
12573// Return current MachineBasicBlock for the switch statement if the peeling
12574// does not occur.
12575// If the peeling is performed, return the newly created MachineBasicBlock
12576// for the peeled switch statement. Also update Clusters to remove the peeled
12577// case. PeeledCaseProb is the BranchProbability for the peeled case.
12578MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12579 const SwitchInst &SI, CaseClusterVector &Clusters,
12580 BranchProbability &PeeledCaseProb) {
12581 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12582 // Don't perform if there is only one cluster or optimizing for size.
12583 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12584 TM.getOptLevel() == CodeGenOptLevel::None ||
12585 SwitchMBB->getParent()->getFunction().hasMinSize())
12586 return SwitchMBB;
12587
12588 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12589 unsigned PeeledCaseIndex = 0;
12590 bool SwitchPeeled = false;
12591 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12592 CaseCluster &CC = Clusters[Index];
12593 if (CC.Prob < TopCaseProb)
12594 continue;
12595 TopCaseProb = CC.Prob;
12596 PeeledCaseIndex = Index;
12597 SwitchPeeled = true;
12598 }
12599 if (!SwitchPeeled)
12600 return SwitchMBB;
12601
12602 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12603 << TopCaseProb << "\n");
12604
12605 // Record the MBB for the peeled switch statement.
12606 MachineFunction::iterator BBI(SwitchMBB);
12607 ++BBI;
12608 MachineBasicBlock *PeeledSwitchMBB =
12609 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12610 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12611
12612 ExportFromCurrentBlock(SI.getCondition());
12613 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12614 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12615 nullptr, nullptr, TopCaseProb.getCompl()};
12616 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12617
12618 Clusters.erase(PeeledCaseIt);
12619 for (CaseCluster &CC : Clusters) {
12620 LLVM_DEBUG(
12621 dbgs() << "Scale the probablity for one cluster, before scaling: "
12622 << CC.Prob << "\n");
12623 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12624 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12625 }
12626 PeeledCaseProb = TopCaseProb;
12627 return PeeledSwitchMBB;
12628}
12629
12630void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12631 // Extract cases from the switch.
12632 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12633 CaseClusterVector Clusters;
12634 Clusters.reserve(SI.getNumCases());
12635 for (auto I : SI.cases()) {
12636 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12637 const ConstantInt *CaseVal = I.getCaseValue();
12638 BranchProbability Prob =
12639 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12640 : BranchProbability(1, SI.getNumCases() + 1);
12641 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12642 }
12643
12644 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12645
12646 // Cluster adjacent cases with the same destination. We do this at all
12647 // optimization levels because it's cheap to do and will make codegen faster
12648 // if there are many clusters.
12649 sortAndRangeify(Clusters);
12650
12651 // The branch probablity of the peeled case.
12652 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12653 MachineBasicBlock *PeeledSwitchMBB =
12654 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12655
12656 // If there is only the default destination, jump there directly.
12657 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12658 if (Clusters.empty()) {
12659 assert(PeeledSwitchMBB == SwitchMBB);
12660 SwitchMBB->addSuccessor(DefaultMBB);
12661 if (DefaultMBB != NextBlock(SwitchMBB)) {
12662 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12663 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12664 }
12665 return;
12666 }
12667
12668 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12669 DAG.getBFI());
12670 SL->findBitTestClusters(Clusters, &SI);
12671
12672 LLVM_DEBUG({
12673 dbgs() << "Case clusters: ";
12674 for (const CaseCluster &C : Clusters) {
12675 if (C.Kind == CC_JumpTable)
12676 dbgs() << "JT:";
12677 if (C.Kind == CC_BitTests)
12678 dbgs() << "BT:";
12679
12680 C.Low->getValue().print(dbgs(), true);
12681 if (C.Low != C.High) {
12682 dbgs() << '-';
12683 C.High->getValue().print(dbgs(), true);
12684 }
12685 dbgs() << ' ';
12686 }
12687 dbgs() << '\n';
12688 });
12689
12690 assert(!Clusters.empty());
12691 SwitchWorkList WorkList;
12692 CaseClusterIt First = Clusters.begin();
12693 CaseClusterIt Last = Clusters.end() - 1;
12694 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12695 // Scale the branchprobability for DefaultMBB if the peel occurs and
12696 // DefaultMBB is not replaced.
12697 if (PeeledCaseProb != BranchProbability::getZero() &&
12698 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12699 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12700 WorkList.push_back(
12701 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12702
12703 while (!WorkList.empty()) {
12704 SwitchWorkListItem W = WorkList.pop_back_val();
12705 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12706
12707 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12708 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12709 // For optimized builds, lower large range as a balanced binary tree.
12710 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12711 continue;
12712 }
12713
12714 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12715 }
12716}
12717
12718void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12719 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12720 auto DL = getCurSDLoc();
12721 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12722 setValue(&I, DAG.getStepVector(DL, ResultVT));
12723}
12724
12725void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12726 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12727 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12728
12729 SDLoc DL = getCurSDLoc();
12730 SDValue V = getValue(I.getOperand(0));
12731 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12732
12733 if (VT.isScalableVector()) {
12734 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12735 return;
12736 }
12737
12738 // Use VECTOR_SHUFFLE for the fixed-length vector
12739 // to maintain existing behavior.
12740 SmallVector<int, 8> Mask;
12741 unsigned NumElts = VT.getVectorMinNumElements();
12742 for (unsigned i = 0; i != NumElts; ++i)
12743 Mask.push_back(NumElts - 1 - i);
12744
12745 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12746}
12747
12748void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I,
12749 unsigned Factor) {
12750 auto DL = getCurSDLoc();
12751 SDValue InVec = getValue(I.getOperand(0));
12752
12753 SmallVector<EVT, 4> ValueVTs;
12754 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12755 ValueVTs);
12756
12757 EVT OutVT = ValueVTs[0];
12758 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12759
12760 SmallVector<SDValue, 4> SubVecs(Factor);
12761 for (unsigned i = 0; i != Factor; ++i) {
12762 assert(ValueVTs[i] == OutVT && "Expected VTs to be the same");
12763 SubVecs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12764 DAG.getVectorIdxConstant(OutNumElts * i, DL));
12765 }
12766
12767 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12768 // from existing legalisation and combines.
12769 if (OutVT.isFixedLengthVector() && Factor == 2) {
12770 SDValue Even = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12771 createStrideMask(0, 2, OutNumElts));
12772 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12773 createStrideMask(1, 2, OutNumElts));
12774 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12775 setValue(&I, Res);
12776 return;
12777 }
12778
12779 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12780 DAG.getVTList(ValueVTs), SubVecs);
12781 setValue(&I, Res);
12782}
12783
12784void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I,
12785 unsigned Factor) {
12786 auto DL = getCurSDLoc();
12787 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12788 EVT InVT = getValue(I.getOperand(0)).getValueType();
12789 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12790
12791 SmallVector<SDValue, 8> InVecs(Factor);
12792 for (unsigned i = 0; i < Factor; ++i) {
12793 InVecs[i] = getValue(I.getOperand(i));
12794 assert(InVecs[i].getValueType() == InVecs[0].getValueType() &&
12795 "Expected VTs to be the same");
12796 }
12797
12798 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12799 // from existing legalisation and combines.
12800 if (OutVT.isFixedLengthVector() && Factor == 2) {
12801 unsigned NumElts = InVT.getVectorMinNumElements();
12802 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVecs);
12803 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12804 createInterleaveMask(NumElts, 2)));
12805 return;
12806 }
12807
12808 SmallVector<EVT, 8> ValueVTs(Factor, InVT);
12809 SDValue Res =
12810 DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(ValueVTs), InVecs);
12811
12813 for (unsigned i = 0; i < Factor; ++i)
12814 Results[i] = Res.getValue(i);
12815
12816 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Results);
12817 setValue(&I, Res);
12818}
12819
12820void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12821 SmallVector<EVT, 4> ValueVTs;
12822 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12823 ValueVTs);
12824 unsigned NumValues = ValueVTs.size();
12825 if (NumValues == 0) return;
12826
12827 SmallVector<SDValue, 4> Values(NumValues);
12828 SDValue Op = getValue(I.getOperand(0));
12829
12830 for (unsigned i = 0; i != NumValues; ++i)
12831 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12832 SDValue(Op.getNode(), Op.getResNo() + i));
12833
12835 DAG.getVTList(ValueVTs), Values));
12836}
12837
12838void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12839 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12840 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12841
12842 SDLoc DL = getCurSDLoc();
12843 SDValue V1 = getValue(I.getOperand(0));
12844 SDValue V2 = getValue(I.getOperand(1));
12845 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12846
12847 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12848 if (VT.isScalableVector()) {
12849 setValue(
12850 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12851 DAG.getSignedConstant(
12852 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12853 return;
12854 }
12855
12856 unsigned NumElts = VT.getVectorNumElements();
12857
12858 uint64_t Idx = (NumElts + Imm) % NumElts;
12859
12860 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12861 SmallVector<int, 8> Mask;
12862 for (unsigned i = 0; i < NumElts; ++i)
12863 Mask.push_back(Idx + i);
12864 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12865}
12866
12867// Consider the following MIR after SelectionDAG, which produces output in
12868// phyregs in the first case or virtregs in the second case.
12869//
12870// INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12871// %5:gr32 = COPY $ebx
12872// %6:gr32 = COPY $edx
12873// %1:gr32 = COPY %6:gr32
12874// %0:gr32 = COPY %5:gr32
12875//
12876// INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12877// %1:gr32 = COPY %6:gr32
12878// %0:gr32 = COPY %5:gr32
12879//
12880// Given %0, we'd like to return $ebx in the first case and %5 in the second.
12881// Given %1, we'd like to return $edx in the first case and %6 in the second.
12882//
12883// If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12884// to a single virtreg (such as %0). The remaining outputs monotonically
12885// increase in virtreg number from there. If a callbr has no outputs, then it
12886// should not have a corresponding callbr landingpad; in fact, the callbr
12887// landingpad would not even be able to refer to such a callbr.
12889 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12890 // There is definitely at least one copy.
12891 assert(MI->getOpcode() == TargetOpcode::COPY &&
12892 "start of copy chain MUST be COPY");
12893 Reg = MI->getOperand(1).getReg();
12894
12895 // If the copied register in the first copy must be virtual.
12896 assert(Reg.isVirtual() && "expected COPY of virtual register");
12897 MI = MRI.def_begin(Reg)->getParent();
12898
12899 // There may be an optional second copy.
12900 if (MI->getOpcode() == TargetOpcode::COPY) {
12901 assert(Reg.isVirtual() && "expected COPY of virtual register");
12902 Reg = MI->getOperand(1).getReg();
12903 assert(Reg.isPhysical() && "expected COPY of physical register");
12904 } else {
12905 // The start of the chain must be an INLINEASM_BR.
12906 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12907 "end of copy chain MUST be INLINEASM_BR");
12908 }
12909
12910 return Reg;
12911}
12912
12913// We must do this walk rather than the simpler
12914// setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12915// otherwise we will end up with copies of virtregs only valid along direct
12916// edges.
12917void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12918 SmallVector<EVT, 8> ResultVTs;
12919 SmallVector<SDValue, 8> ResultValues;
12920 const auto *CBR =
12921 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12922
12923 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12924 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12925 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12926
12927 Register InitialDef = FuncInfo.ValueMap[CBR];
12928 SDValue Chain = DAG.getRoot();
12929
12930 // Re-parse the asm constraints string.
12931 TargetLowering::AsmOperandInfoVector TargetConstraints =
12932 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12933 for (auto &T : TargetConstraints) {
12934 SDISelAsmOperandInfo OpInfo(T);
12935 if (OpInfo.Type != InlineAsm::isOutput)
12936 continue;
12937
12938 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12939 // individual constraint.
12940 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12941
12942 switch (OpInfo.ConstraintType) {
12945 // Fill in OpInfo.AssignedRegs.Regs.
12946 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12947
12948 // getRegistersForValue may produce 1 to many registers based on whether
12949 // the OpInfo.ConstraintVT is legal on the target or not.
12950 for (Register &Reg : OpInfo.AssignedRegs.Regs) {
12951 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12952 if (OriginalDef.isPhysical())
12953 FuncInfo.MBB->addLiveIn(OriginalDef);
12954 // Update the assigned registers to use the original defs.
12955 Reg = OriginalDef;
12956 }
12957
12958 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12959 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12960 ResultValues.push_back(V);
12961 ResultVTs.push_back(OpInfo.ConstraintVT);
12962 break;
12963 }
12965 SDValue Flag;
12966 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12967 OpInfo, DAG);
12968 ++InitialDef;
12969 ResultValues.push_back(V);
12970 ResultVTs.push_back(OpInfo.ConstraintVT);
12971 break;
12972 }
12973 default:
12974 break;
12975 }
12976 }
12978 DAG.getVTList(ResultVTs), ResultValues);
12979 setValue(&I, V);
12980}
unsigned const MachineRegisterInfo * MRI
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil translate DXIL Translate Metadata
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
Definition FastISel.cpp:942
#define Check(C,...)
static Value * getCondition(Instruction *I)
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
This file contains the declarations for metadata subclasses.
Type::TypeID TypeID
#define T
#define T1
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static FPClassTest getNoFPClass(const Instruction &I)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
Class for arbitrary precision integers.
Definition APInt.h:78
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
Definition Function.cpp:339
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition Argument.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
iterator end() const
Definition ArrayRef.h:131
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
iterator begin() const
Definition ArrayRef.h:130
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Definition Constants.h:907
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:601
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1133
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:285
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:222
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:171
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:162
A signed pointer, in the ptrauth sense.
Definition Constants.h:1040
uint64_t getZExtValue() const
Constant Vector Declarations.
Definition Constants.h:525
This is an important base class in LLVM.
Definition Constant.h:43
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isBigEndian() const
Definition DataLayout.h:215
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
A debug info location.
Definition DebugLoc.h:123
LLVM_ABI DILocation * getInlinedAt() const
Definition DebugLoc.cpp:67
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition DenseMap.h:74
bool empty() const
Definition DenseMap.h:109
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
Definition DenseMap.h:75
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition DenseMap.h:114
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
Class representing an expression and its matching format.
This instruction extracts a struct member or array element value from an aggregate value.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
Definition Function.h:807
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition Function.h:244
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
Definition Function.cpp:742
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
size_t arg_size() const
Definition Function.h:899
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Garbage collection metadata for a single function.
Definition GCMetadata.h:80
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
bool isInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
Definition MapVector.h:146
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
Definition MapVector.h:116
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
Metadata wrapper in the Value hierarchy.
Definition Metadata.h:183
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
const TargetTransformInfo * TTI
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
SDValue lowerNoFPClassToAssertNoFPClass(SelectionDAG &DAG, const Instruction &I, SDValue Op)
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li, const TargetTransformInfo &TTI)
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Multiway switch.
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
virtual bool useStackGuardMixCookie() const
If this function returns true, stack protection checks should mix the stack guard value before checki...
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual SDValue emitStackGuardMixCookie(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, bool FailureBB) const
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
@ TCK_Latency
The latency of instruction.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
Definition Type.cpp:180
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_iterator op_begin()
Definition User.h:285
Value * getOperand(unsigned i) const
Definition User.h:233
unsigned getNumOperands() const
Definition User.h:255
op_iterator op_end()
Definition User.h:287
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1106
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
const ParentTy * getParent() const
Definition ilist_node.h:34
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:782
@ CONVERGENCECTRL_ANCHOR
The llvm.experimental.convergence.* intrinsics.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:506
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
Definition ISDOpcodes.h:163
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:595
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:773
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:389
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ RESET_FPENV
Set floating-point environment to default state.
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:395
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:843
@ ATOMIC_LOAD_USUB_COND
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:513
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
Definition ISDOpcodes.h:167
@ GlobalAddress
Definition ISDOpcodes.h:88
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:870
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:579
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:412
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:746
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:523
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
Definition ISDOpcodes.h:510
@ FAKE_USE
FAKE_USE represents a use of the operand but does not do anything.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:983
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ INIT_TRAMPOLINE
INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:402
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ ATOMIC_LOAD_USUB_SAT
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
Definition ISDOpcodes.h:151
@ ANNOTATION_LABEL
ANNOTATION_LABEL - Represents a mid basic block label used by annotations.
@ SET_ROUNDING
Set rounding mode.
Definition ISDOpcodes.h:965
@ CONVERGENCECTRL_GLUE
This does not correspond to any convergence control intrinsic.
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:834
@ PREALLOCATED_SETUP
PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE with the preallocated call Va...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
Definition ISDOpcodes.h:117
@ CONVERGENCECTRL_ENTRY
@ BR
Control flow instructions. These all have token chains.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:781
@ PARTIAL_REDUCE_FMLA
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ PREALLOCATED_ARG
PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE with the preallocated call Value,...
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:630
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:536
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:543
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:786
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:671
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
Definition ISDOpcodes.h:960
@ CLEANUPRET
CLEANUPRET - Represents a return from a cleanup block funclet.
@ ATOMIC_LOAD_FMAXIMUM
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:764
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ PtrAuthGlobalAddress
A ptrauth constant.
Definition ISDOpcodes.h:100
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:609
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
Definition ISDOpcodes.h:134
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:571
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:840
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
Definition ISDOpcodes.h:130
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:381
@ PATCHPOINT
The llvm.experimental.patchpoint.
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ATOMIC_LOAD_FMINIMUM
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
Definition ISDOpcodes.h:635
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:408
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:968
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:795
@ PCMARKER
PCMARKER - This corresponds to the pcmarker intrinsic.
@ INLINEASM_BR
INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
Definition ISDOpcodes.h:145
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ ATOMIC_LOAD_UDEC_WRAP
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:495
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:916
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ RELOC_NONE
Issue a no-op relocation against a given symbol at the current location.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:738
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:734
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:422
@ STACKMAP
The llvm.experimental.stackmap intrinsic.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:560
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:656
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:949
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:698
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
Definition ISDOpcodes.h:122
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ CONVERGENCECTRL_LOOP
@ INLINEASM
INLINEASM - Represents an inline asm block.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:935
@ VECREDUCE_FMINIMUM
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
Definition ISDOpcodes.h:157
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:846
@ BRCOND
BRCOND - Conditional branch.
@ VECREDUCE_SEQ_FMUL
@ CATCHRET
CATCHRET - Represents a return from a catch block funclet.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ ATOMIC_LOAD_UINC_WRAP
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:529
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
Definition ISDOpcodes.h:619
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ADJUST_TRAMPOLINE
ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:551
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
Offsets
Offsets in bytes from the start of the input buffer.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
ExceptionBehavior
Exception behavior used for floating point operations.
Definition FPEnv.h:39
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
Definition FPEnv.h:41
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr float log2ef
Definition MathExtras.h:51
constexpr double e
constexpr float ln2f
Definition MathExtras.h:49
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ Done
Definition Threading.h:60
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:293
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2184
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
gep_type_iterator gep_type_end(const User *GEP)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
Definition STLExtras.h:852
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:207
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2274
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
Definition Analysis.cpp:229
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
Definition FPEnv.cpp:25
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2168
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Definition Analysis.cpp:185
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2156
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
Definition Analysis.cpp:33
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
uint64_t getScalarStoreSize() const
Definition ValueTypes.h:402
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
Definition ValueTypes.h:179
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
void setPointerAddrSpace(unsigned AS)
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
Definition InlineAsm.h:128
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
RegsForValue()=default
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)