31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
342 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
351 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
361 Type *SrcTy =
C->getType();
365 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
387 Cast = Instruction::PtrToInt;
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
402 if (SrcTy->isStructTy()) {
408 ElemC =
C->getAggregateElement(Elem++);
409 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
415 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
418 C =
C->getAggregateElement(0u);
433 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
434 "Out of range access");
437 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
446 if ((CI->getBitWidth() & 7) != 0)
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
451 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!
DL.isLittleEndian())
454 n = IntBytes - n - 1;
462 if (CFP->getType()->isDoubleTy()) {
464 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
466 if (CFP->getType()->isFloatTy()){
468 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
470 if (CFP->getType()->isHalfTy()){
472 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
481 ByteOffset -= CurEltOffset;
486 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
496 if (Index == CS->getType()->getNumElements())
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
509 CurEltOffset = NextEltOffset;
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize =
DL.getTypeAllocSize(EltTy);
527 if (!
DL.typeSizeEqualsStoreSize(EltTy))
530 EltSize =
DL.getTypeStoreSize(EltTy);
532 uint64_t Index = ByteOffset / EltSize;
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
541 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
553 if (
CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
555 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
609 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
613 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
632 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
635 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
636 if (
DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (
unsigned i = 1; i != BytesLoaded; ++i) {
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
643 ResultVal = RawBytes[0];
644 for (
unsigned i = 1; i != BytesLoaded; ++i) {
646 ResultVal |= RawBytes[i];
650 return ConstantInt::get(IntType->getContext(), ResultVal);
670 if (NBytes > UINT16_MAX)
678 unsigned char *CurPtr = RawBytes.
data();
680 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
698 if (!
Offset.isZero() || !Indices[0].isZero())
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
706 C =
C->getAggregateElement(Index.getZExtValue());
732 if (
Offset.getSignificantBits() <= 64)
734 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
781 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
783 if (
C->isNullValue() && !Ty->isX86_AMXTy())
785 if (
C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
805 if (
Opc == Instruction::And) {
808 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
812 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
824 if (
Opc == Instruction::Sub) {
830 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
847 std::optional<ConstantRange>
InRange,
849 Type *IntIdxTy =
DL.getIndexType(ResultTy);
854 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
857 SrcElemTy,
Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
885 Type *SrcElemTy =
GEP->getSourceElementType();
890 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
891 GEP->getInRange(),
DL, TLI))
900 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
904 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
907 DL.getIndexedOffsetInType(
911 std::optional<ConstantRange>
InRange =
GEP->getInRange();
917 bool Overflow =
false;
919 NW &=
GEP->getNoWrapFlags();
924 bool AllConstantInt =
true;
925 for (
Value *NestedOp : NestedOps)
927 AllConstantInt =
false;
934 if (
auto GEPRange =
GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
937 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
941 SrcElemTy =
GEP->getSourceElementType();
957 if (
CE->getOpcode() == Instruction::IntToPtr) {
959 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
964 !
DL.mustNotIntroduceIntToPtr(Ptr->
getType())) {
975 bool CanBeNull, CanBeFreed;
978 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
989 ConstantInt::get(Ctx,
Offset), NW,
998Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1002 bool AllowNonDeterministic) {
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1022 AllowNonDeterministic);
1032 Type *SrcElemTy =
GEP->getSourceElementType();
1040 GEP->getNoWrapFlags(),
1045 return CE->getWithOperands(
Ops);
1048 default:
return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1055 case Instruction::Freeze:
1057 case Instruction::Call:
1062 AllowNonDeterministic);
1065 case Instruction::Select:
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1072 case Instruction::InsertElement:
1074 case Instruction::InsertValue:
1077 case Instruction::ShuffleVector:
1080 case Instruction::Load: {
1082 if (LI->isVolatile())
1105 for (
const Use &OldU :
C->operands()) {
1111 auto It = FoldedOps.
find(OldC);
1112 if (It == FoldedOps.
end()) {
1113 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1114 FoldedOps.
insert({OldC, NewC});
1119 Ops.push_back(NewC);
1123 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1155 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1158 if (CommonValue &&
C != CommonValue)
1169 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1174 for (
const Use &OpU :
I->operands()) {
1177 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1187 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1196 AllowNonDeterministic);
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1272 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1273 APInt Offset0(IndexWidth, 0);
1276 DL, Offset0, IsEqPred,
1279 APInt Offset1(IndexWidth, 0);
1281 DL, Offset1, IsEqPred,
1284 if (Stripped0 == Stripped1)
1323 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1343 return ConstantFP::get(Ty->getContext(),
1369 IsOutput ?
Mode.Output :
Mode.Input);
1398 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1420 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1423 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1443 bool AllowNonDeterministic) {
1456 if (!AllowNonDeterministic)
1458 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1473 if (!AllowNonDeterministic &&
C->isNaN())
1492 C->getType(), DestTy, &
DL))
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ?
DL.getAddressType(CE->getType())
1508 :
DL.getIntPtrType(CE->getType());
1515 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1518 DL, BaseOffset,
true));
1519 if (
Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1524 if (
GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1529 if (
Sub &&
Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1534 Sub->getOperand(1));
1545 case Instruction::IntToPtr:
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1556 if (MidIntSize >= SrcPtrSize) {
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1575 case Instruction::BitCast:
1586 Type *SrcTy =
C->getType();
1587 if (SrcTy == DestTy)
1601 if (
Call->isNoBuiltin())
1603 if (
Call->getFunctionType() !=
F->getFunctionType())
1612 return Arg.getType()->isFloatingPointTy();
1616 switch (
F->getIntrinsicID()) {
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_interleave3:
1663 case Intrinsic::vector_interleave4:
1664 case Intrinsic::vector_interleave5:
1665 case Intrinsic::vector_interleave6:
1666 case Intrinsic::vector_interleave7:
1667 case Intrinsic::vector_interleave8:
1668 case Intrinsic::vector_deinterleave2:
1669 case Intrinsic::vector_deinterleave3:
1670 case Intrinsic::vector_deinterleave4:
1671 case Intrinsic::vector_deinterleave5:
1672 case Intrinsic::vector_deinterleave6:
1673 case Intrinsic::vector_deinterleave7:
1674 case Intrinsic::vector_deinterleave8:
1676 case Intrinsic::amdgcn_perm:
1677 case Intrinsic::amdgcn_wave_reduce_umin:
1678 case Intrinsic::amdgcn_wave_reduce_umax:
1679 case Intrinsic::amdgcn_wave_reduce_max:
1680 case Intrinsic::amdgcn_wave_reduce_min:
1681 case Intrinsic::amdgcn_wave_reduce_add:
1682 case Intrinsic::amdgcn_wave_reduce_sub:
1683 case Intrinsic::amdgcn_wave_reduce_and:
1684 case Intrinsic::amdgcn_wave_reduce_or:
1685 case Intrinsic::amdgcn_wave_reduce_xor:
1686 case Intrinsic::amdgcn_s_wqm:
1687 case Intrinsic::amdgcn_s_quadmask:
1688 case Intrinsic::amdgcn_s_bitreplicate:
1689 case Intrinsic::arm_mve_vctp8:
1690 case Intrinsic::arm_mve_vctp16:
1691 case Intrinsic::arm_mve_vctp32:
1692 case Intrinsic::arm_mve_vctp64:
1693 case Intrinsic::aarch64_sve_convert_from_svbool:
1694 case Intrinsic::wasm_alltrue:
1695 case Intrinsic::wasm_anytrue:
1696 case Intrinsic::wasm_dot:
1698 case Intrinsic::wasm_trunc_signed:
1699 case Intrinsic::wasm_trunc_unsigned:
1704 case Intrinsic::minnum:
1705 case Intrinsic::maxnum:
1706 case Intrinsic::minimum:
1707 case Intrinsic::maximum:
1708 case Intrinsic::minimumnum:
1709 case Intrinsic::maximumnum:
1710 case Intrinsic::log:
1711 case Intrinsic::log2:
1712 case Intrinsic::log10:
1713 case Intrinsic::exp:
1714 case Intrinsic::exp2:
1715 case Intrinsic::exp10:
1716 case Intrinsic::sqrt:
1717 case Intrinsic::sin:
1718 case Intrinsic::cos:
1719 case Intrinsic::sincos:
1720 case Intrinsic::sinh:
1721 case Intrinsic::cosh:
1722 case Intrinsic::atan:
1723 case Intrinsic::pow:
1724 case Intrinsic::powi:
1725 case Intrinsic::ldexp:
1726 case Intrinsic::fma:
1727 case Intrinsic::fmuladd:
1728 case Intrinsic::frexp:
1729 case Intrinsic::fptoui_sat:
1730 case Intrinsic::fptosi_sat:
1731 case Intrinsic::convert_from_fp16:
1732 case Intrinsic::convert_to_fp16:
1733 case Intrinsic::amdgcn_cos:
1734 case Intrinsic::amdgcn_cubeid:
1735 case Intrinsic::amdgcn_cubema:
1736 case Intrinsic::amdgcn_cubesc:
1737 case Intrinsic::amdgcn_cubetc:
1738 case Intrinsic::amdgcn_fmul_legacy:
1739 case Intrinsic::amdgcn_fma_legacy:
1740 case Intrinsic::amdgcn_fract:
1741 case Intrinsic::amdgcn_sin:
1743 case Intrinsic::x86_sse_cvtss2si:
1744 case Intrinsic::x86_sse_cvtss2si64:
1745 case Intrinsic::x86_sse_cvttss2si:
1746 case Intrinsic::x86_sse_cvttss2si64:
1747 case Intrinsic::x86_sse2_cvtsd2si:
1748 case Intrinsic::x86_sse2_cvtsd2si64:
1749 case Intrinsic::x86_sse2_cvttsd2si:
1750 case Intrinsic::x86_sse2_cvttsd2si64:
1751 case Intrinsic::x86_avx512_vcvtss2si32:
1752 case Intrinsic::x86_avx512_vcvtss2si64:
1753 case Intrinsic::x86_avx512_cvttss2si:
1754 case Intrinsic::x86_avx512_cvttss2si64:
1755 case Intrinsic::x86_avx512_vcvtsd2si32:
1756 case Intrinsic::x86_avx512_vcvtsd2si64:
1757 case Intrinsic::x86_avx512_cvttsd2si:
1758 case Intrinsic::x86_avx512_cvttsd2si64:
1759 case Intrinsic::x86_avx512_vcvtss2usi32:
1760 case Intrinsic::x86_avx512_vcvtss2usi64:
1761 case Intrinsic::x86_avx512_cvttss2usi:
1762 case Intrinsic::x86_avx512_cvttss2usi64:
1763 case Intrinsic::x86_avx512_vcvtsd2usi32:
1764 case Intrinsic::x86_avx512_vcvtsd2usi64:
1765 case Intrinsic::x86_avx512_cvttsd2usi:
1766 case Intrinsic::x86_avx512_cvttsd2usi64:
1769 case Intrinsic::nvvm_fmax_d:
1770 case Intrinsic::nvvm_fmax_f:
1771 case Intrinsic::nvvm_fmax_ftz_f:
1772 case Intrinsic::nvvm_fmax_ftz_nan_f:
1773 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1775 case Intrinsic::nvvm_fmax_nan_f:
1776 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1777 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1780 case Intrinsic::nvvm_fmin_d:
1781 case Intrinsic::nvvm_fmin_f:
1782 case Intrinsic::nvvm_fmin_ftz_f:
1783 case Intrinsic::nvvm_fmin_ftz_nan_f:
1784 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1785 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1786 case Intrinsic::nvvm_fmin_nan_f:
1787 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1788 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1791 case Intrinsic::nvvm_f2i_rm:
1792 case Intrinsic::nvvm_f2i_rn:
1793 case Intrinsic::nvvm_f2i_rp:
1794 case Intrinsic::nvvm_f2i_rz:
1795 case Intrinsic::nvvm_f2i_rm_ftz:
1796 case Intrinsic::nvvm_f2i_rn_ftz:
1797 case Intrinsic::nvvm_f2i_rp_ftz:
1798 case Intrinsic::nvvm_f2i_rz_ftz:
1799 case Intrinsic::nvvm_f2ui_rm:
1800 case Intrinsic::nvvm_f2ui_rn:
1801 case Intrinsic::nvvm_f2ui_rp:
1802 case Intrinsic::nvvm_f2ui_rz:
1803 case Intrinsic::nvvm_f2ui_rm_ftz:
1804 case Intrinsic::nvvm_f2ui_rn_ftz:
1805 case Intrinsic::nvvm_f2ui_rp_ftz:
1806 case Intrinsic::nvvm_f2ui_rz_ftz:
1807 case Intrinsic::nvvm_d2i_rm:
1808 case Intrinsic::nvvm_d2i_rn:
1809 case Intrinsic::nvvm_d2i_rp:
1810 case Intrinsic::nvvm_d2i_rz:
1811 case Intrinsic::nvvm_d2ui_rm:
1812 case Intrinsic::nvvm_d2ui_rn:
1813 case Intrinsic::nvvm_d2ui_rp:
1814 case Intrinsic::nvvm_d2ui_rz:
1817 case Intrinsic::nvvm_f2ll_rm:
1818 case Intrinsic::nvvm_f2ll_rn:
1819 case Intrinsic::nvvm_f2ll_rp:
1820 case Intrinsic::nvvm_f2ll_rz:
1821 case Intrinsic::nvvm_f2ll_rm_ftz:
1822 case Intrinsic::nvvm_f2ll_rn_ftz:
1823 case Intrinsic::nvvm_f2ll_rp_ftz:
1824 case Intrinsic::nvvm_f2ll_rz_ftz:
1825 case Intrinsic::nvvm_f2ull_rm:
1826 case Intrinsic::nvvm_f2ull_rn:
1827 case Intrinsic::nvvm_f2ull_rp:
1828 case Intrinsic::nvvm_f2ull_rz:
1829 case Intrinsic::nvvm_f2ull_rm_ftz:
1830 case Intrinsic::nvvm_f2ull_rn_ftz:
1831 case Intrinsic::nvvm_f2ull_rp_ftz:
1832 case Intrinsic::nvvm_f2ull_rz_ftz:
1833 case Intrinsic::nvvm_d2ll_rm:
1834 case Intrinsic::nvvm_d2ll_rn:
1835 case Intrinsic::nvvm_d2ll_rp:
1836 case Intrinsic::nvvm_d2ll_rz:
1837 case Intrinsic::nvvm_d2ull_rm:
1838 case Intrinsic::nvvm_d2ull_rn:
1839 case Intrinsic::nvvm_d2ull_rp:
1840 case Intrinsic::nvvm_d2ull_rz:
1843 case Intrinsic::nvvm_ceil_d:
1844 case Intrinsic::nvvm_ceil_f:
1845 case Intrinsic::nvvm_ceil_ftz_f:
1847 case Intrinsic::nvvm_fabs:
1848 case Intrinsic::nvvm_fabs_ftz:
1850 case Intrinsic::nvvm_floor_d:
1851 case Intrinsic::nvvm_floor_f:
1852 case Intrinsic::nvvm_floor_ftz_f:
1854 case Intrinsic::nvvm_rcp_rm_d:
1855 case Intrinsic::nvvm_rcp_rm_f:
1856 case Intrinsic::nvvm_rcp_rm_ftz_f:
1857 case Intrinsic::nvvm_rcp_rn_d:
1858 case Intrinsic::nvvm_rcp_rn_f:
1859 case Intrinsic::nvvm_rcp_rn_ftz_f:
1860 case Intrinsic::nvvm_rcp_rp_d:
1861 case Intrinsic::nvvm_rcp_rp_f:
1862 case Intrinsic::nvvm_rcp_rp_ftz_f:
1863 case Intrinsic::nvvm_rcp_rz_d:
1864 case Intrinsic::nvvm_rcp_rz_f:
1865 case Intrinsic::nvvm_rcp_rz_ftz_f:
1867 case Intrinsic::nvvm_round_d:
1868 case Intrinsic::nvvm_round_f:
1869 case Intrinsic::nvvm_round_ftz_f:
1871 case Intrinsic::nvvm_saturate_d:
1872 case Intrinsic::nvvm_saturate_f:
1873 case Intrinsic::nvvm_saturate_ftz_f:
1875 case Intrinsic::nvvm_sqrt_f:
1876 case Intrinsic::nvvm_sqrt_rn_d:
1877 case Intrinsic::nvvm_sqrt_rn_f:
1878 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1879 return !
Call->isStrictFP();
1882 case Intrinsic::nvvm_add_rm_d:
1883 case Intrinsic::nvvm_add_rn_d:
1884 case Intrinsic::nvvm_add_rp_d:
1885 case Intrinsic::nvvm_add_rz_d:
1886 case Intrinsic::nvvm_add_rm_f:
1887 case Intrinsic::nvvm_add_rn_f:
1888 case Intrinsic::nvvm_add_rp_f:
1889 case Intrinsic::nvvm_add_rz_f:
1890 case Intrinsic::nvvm_add_rm_ftz_f:
1891 case Intrinsic::nvvm_add_rn_ftz_f:
1892 case Intrinsic::nvvm_add_rp_ftz_f:
1893 case Intrinsic::nvvm_add_rz_ftz_f:
1896 case Intrinsic::nvvm_div_rm_d:
1897 case Intrinsic::nvvm_div_rn_d:
1898 case Intrinsic::nvvm_div_rp_d:
1899 case Intrinsic::nvvm_div_rz_d:
1900 case Intrinsic::nvvm_div_rm_f:
1901 case Intrinsic::nvvm_div_rn_f:
1902 case Intrinsic::nvvm_div_rp_f:
1903 case Intrinsic::nvvm_div_rz_f:
1904 case Intrinsic::nvvm_div_rm_ftz_f:
1905 case Intrinsic::nvvm_div_rn_ftz_f:
1906 case Intrinsic::nvvm_div_rp_ftz_f:
1907 case Intrinsic::nvvm_div_rz_ftz_f:
1910 case Intrinsic::nvvm_mul_rm_d:
1911 case Intrinsic::nvvm_mul_rn_d:
1912 case Intrinsic::nvvm_mul_rp_d:
1913 case Intrinsic::nvvm_mul_rz_d:
1914 case Intrinsic::nvvm_mul_rm_f:
1915 case Intrinsic::nvvm_mul_rn_f:
1916 case Intrinsic::nvvm_mul_rp_f:
1917 case Intrinsic::nvvm_mul_rz_f:
1918 case Intrinsic::nvvm_mul_rm_ftz_f:
1919 case Intrinsic::nvvm_mul_rn_ftz_f:
1920 case Intrinsic::nvvm_mul_rp_ftz_f:
1921 case Intrinsic::nvvm_mul_rz_ftz_f:
1924 case Intrinsic::nvvm_fma_rm_d:
1925 case Intrinsic::nvvm_fma_rn_d:
1926 case Intrinsic::nvvm_fma_rp_d:
1927 case Intrinsic::nvvm_fma_rz_d:
1928 case Intrinsic::nvvm_fma_rm_f:
1929 case Intrinsic::nvvm_fma_rn_f:
1930 case Intrinsic::nvvm_fma_rp_f:
1931 case Intrinsic::nvvm_fma_rz_f:
1932 case Intrinsic::nvvm_fma_rm_ftz_f:
1933 case Intrinsic::nvvm_fma_rn_ftz_f:
1934 case Intrinsic::nvvm_fma_rp_ftz_f:
1935 case Intrinsic::nvvm_fma_rz_ftz_f:
1939 case Intrinsic::fabs:
1940 case Intrinsic::copysign:
1941 case Intrinsic::is_fpclass:
1944 case Intrinsic::ceil:
1945 case Intrinsic::floor:
1946 case Intrinsic::round:
1947 case Intrinsic::roundeven:
1948 case Intrinsic::trunc:
1949 case Intrinsic::nearbyint:
1950 case Intrinsic::rint:
1951 case Intrinsic::canonicalize:
1955 case Intrinsic::experimental_constrained_fma:
1956 case Intrinsic::experimental_constrained_fmuladd:
1957 case Intrinsic::experimental_constrained_fadd:
1958 case Intrinsic::experimental_constrained_fsub:
1959 case Intrinsic::experimental_constrained_fmul:
1960 case Intrinsic::experimental_constrained_fdiv:
1961 case Intrinsic::experimental_constrained_frem:
1962 case Intrinsic::experimental_constrained_ceil:
1963 case Intrinsic::experimental_constrained_floor:
1964 case Intrinsic::experimental_constrained_round:
1965 case Intrinsic::experimental_constrained_roundeven:
1966 case Intrinsic::experimental_constrained_trunc:
1967 case Intrinsic::experimental_constrained_nearbyint:
1968 case Intrinsic::experimental_constrained_rint:
1969 case Intrinsic::experimental_constrained_fcmp:
1970 case Intrinsic::experimental_constrained_fcmps:
1977 if (!
F->hasName() ||
Call->isStrictFP())
1988 return Name ==
"acos" || Name ==
"acosf" ||
1989 Name ==
"asin" || Name ==
"asinf" ||
1990 Name ==
"atan" || Name ==
"atanf" ||
1991 Name ==
"atan2" || Name ==
"atan2f";
1993 return Name ==
"ceil" || Name ==
"ceilf" ||
1994 Name ==
"cos" || Name ==
"cosf" ||
1995 Name ==
"cosh" || Name ==
"coshf";
1997 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1998 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
2000 return Name ==
"fabs" || Name ==
"fabsf" ||
2001 Name ==
"floor" || Name ==
"floorf" ||
2002 Name ==
"fmod" || Name ==
"fmodf";
2004 return Name ==
"ilogb" || Name ==
"ilogbf";
2006 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
2007 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
2008 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
2009 Name ==
"log1p" || Name ==
"log1pf";
2011 return Name ==
"nearbyint" || Name ==
"nearbyintf";
2013 return Name ==
"pow" || Name ==
"powf";
2015 return Name ==
"remainder" || Name ==
"remainderf" ||
2016 Name ==
"rint" || Name ==
"rintf" ||
2017 Name ==
"round" || Name ==
"roundf";
2019 return Name ==
"sin" || Name ==
"sinf" ||
2020 Name ==
"sinh" || Name ==
"sinhf" ||
2021 Name ==
"sqrt" || Name ==
"sqrtf";
2023 return Name ==
"tan" || Name ==
"tanf" ||
2024 Name ==
"tanh" || Name ==
"tanhf" ||
2025 Name ==
"trunc" || Name ==
"truncf";
2033 if (Name.size() < 12 || Name[1] !=
'_')
2039 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2040 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2041 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2043 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2045 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2046 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2048 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2049 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2051 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2053 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2061 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2065 return ConstantFP::get(Ty->getContext(), APF);
2067 if (Ty->isDoubleTy())
2068 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2072#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2073Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2074 if (Ty->isFP128Ty())
2075 return ConstantFP::get(Ty, V);
2081inline void llvm_fenv_clearexcept() {
2082#if HAVE_DECL_FE_ALL_EXCEPT
2083 feclearexcept(FE_ALL_EXCEPT);
2089inline bool llvm_fenv_testexcept() {
2090 int errno_val = errno;
2091 if (errno_val == ERANGE || errno_val == EDOM)
2093#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2094 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2116 switch (DenormKind) {
2120 return FTZPreserveSign(V);
2122 return FlushToPositiveZero(V);
2130 if (!DenormMode.isValid() ||
2135 llvm_fenv_clearexcept();
2136 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2137 double Result = NativeFP(
Input.convertToDouble());
2138 if (llvm_fenv_testexcept()) {
2139 llvm_fenv_clearexcept();
2143 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2146 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2147 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2148 return ConstantFP::get(Ty->getContext(), Res);
2151#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2152Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2154 llvm_fenv_clearexcept();
2155 float128
Result = NativeFP(V.convertToQuad());
2156 if (llvm_fenv_testexcept()) {
2157 llvm_fenv_clearexcept();
2161 return GetConstantFoldFPValue128(Result, Ty);
2165Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2167 llvm_fenv_clearexcept();
2168 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2169 if (llvm_fenv_testexcept()) {
2170 llvm_fenv_clearexcept();
2174 return GetConstantFoldFPValue(Result, Ty);
2181 if (
Op->containsPoisonElement())
2185 if (
Constant *SplatVal =
Op->getSplatValue()) {
2187 case Intrinsic::vector_reduce_and:
2188 case Intrinsic::vector_reduce_or:
2189 case Intrinsic::vector_reduce_smin:
2190 case Intrinsic::vector_reduce_smax:
2191 case Intrinsic::vector_reduce_umin:
2192 case Intrinsic::vector_reduce_umax:
2194 case Intrinsic::vector_reduce_add:
2195 if (SplatVal->isNullValue())
2198 case Intrinsic::vector_reduce_mul:
2199 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2202 case Intrinsic::vector_reduce_xor:
2203 if (SplatVal->isNullValue())
2205 if (OpVT->getElementCount().isKnownMultipleOf(2))
2220 APInt Acc = EltC->getValue();
2224 const APInt &
X = EltC->getValue();
2226 case Intrinsic::vector_reduce_add:
2229 case Intrinsic::vector_reduce_mul:
2232 case Intrinsic::vector_reduce_and:
2235 case Intrinsic::vector_reduce_or:
2238 case Intrinsic::vector_reduce_xor:
2241 case Intrinsic::vector_reduce_smin:
2244 case Intrinsic::vector_reduce_smax:
2247 case Intrinsic::vector_reduce_umin:
2250 case Intrinsic::vector_reduce_umax:
2256 return ConstantInt::get(
Op->getContext(), Acc);
2266Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2267 Type *Ty,
bool IsSigned) {
2269 unsigned ResultWidth = Ty->getIntegerBitWidth();
2270 assert(ResultWidth <= 64 &&
2271 "Can only constant fold conversions to 64 and 32 bit ints");
2274 bool isExact =
false;
2279 IsSigned,
mode, &isExact);
2283 return ConstantInt::get(Ty, UIntVal, IsSigned);
2287 Type *Ty =
Op->getType();
2289 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2290 return Op->getValueAPF().convertToDouble();
2300 C = &CI->getValue();
2359 return ConstantFP::get(
2364 if (!Ty->isIEEELikeFPTy())
2371 if (Src.isNormal() || Src.isInfinity())
2372 return ConstantFP::get(CI->
getContext(), Src);
2379 return ConstantFP::get(CI->
getContext(), Src);
2409 assert(Operands.
size() == 1 &&
"Wrong number of operands.");
2411 if (IntrinsicID == Intrinsic::is_constant) {
2415 if (Operands[0]->isManifestConstant())
2424 if (IntrinsicID == Intrinsic::cos ||
2425 IntrinsicID == Intrinsic::ctpop ||
2426 IntrinsicID == Intrinsic::fptoui_sat ||
2427 IntrinsicID == Intrinsic::fptosi_sat ||
2428 IntrinsicID == Intrinsic::canonicalize)
2430 if (IntrinsicID == Intrinsic::bswap ||
2431 IntrinsicID == Intrinsic::bitreverse ||
2432 IntrinsicID == Intrinsic::launder_invariant_group ||
2433 IntrinsicID == Intrinsic::strip_invariant_group)
2439 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2440 IntrinsicID == Intrinsic::strip_invariant_group) {
2445 Call->getParent() ?
Call->getCaller() :
nullptr;
2456 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2467 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2468 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2469 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2474 unsigned Width = Ty->getIntegerBitWidth();
2476 bool IsExact =
false;
2481 return ConstantInt::get(Ty,
Int);
2486 if (IntrinsicID == Intrinsic::fptoui_sat ||
2487 IntrinsicID == Intrinsic::fptosi_sat) {
2490 IntrinsicID == Intrinsic::fptoui_sat);
2493 return ConstantInt::get(Ty,
Int);
2496 if (IntrinsicID == Intrinsic::canonicalize)
2497 return constantFoldCanonicalize(Ty,
Call, U);
2499#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2500 if (Ty->isFP128Ty()) {
2501 if (IntrinsicID == Intrinsic::log) {
2502 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2503 return GetConstantFoldFPValue128(Result, Ty);
2506 LibFunc Fp128Func = NotLibFunc;
2507 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2508 Fp128Func == LibFunc_logl)
2509 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2513 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2519 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2521 return ConstantFP::get(Ty->getContext(), U);
2524 if (IntrinsicID == Intrinsic::round) {
2526 return ConstantFP::get(Ty->getContext(), U);
2529 if (IntrinsicID == Intrinsic::roundeven) {
2531 return ConstantFP::get(Ty->getContext(), U);
2534 if (IntrinsicID == Intrinsic::ceil) {
2536 return ConstantFP::get(Ty->getContext(), U);
2539 if (IntrinsicID == Intrinsic::floor) {
2541 return ConstantFP::get(Ty->getContext(), U);
2544 if (IntrinsicID == Intrinsic::trunc) {
2546 return ConstantFP::get(Ty->getContext(), U);
2549 if (IntrinsicID == Intrinsic::fabs) {
2551 return ConstantFP::get(Ty->getContext(), U);
2554 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2562 APFloat AlmostOne(U.getSemantics(), 1);
2563 AlmostOne.next(
true);
2564 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2570 std::optional<APFloat::roundingMode>
RM;
2571 switch (IntrinsicID) {
2574 case Intrinsic::experimental_constrained_nearbyint:
2575 case Intrinsic::experimental_constrained_rint: {
2577 RM = CI->getRoundingMode();
2582 case Intrinsic::experimental_constrained_round:
2585 case Intrinsic::experimental_constrained_ceil:
2588 case Intrinsic::experimental_constrained_floor:
2591 case Intrinsic::experimental_constrained_trunc:
2599 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2601 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2605 }
else if (U.isSignaling()) {
2606 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2611 return ConstantFP::get(Ty->getContext(), U);
2615 switch (IntrinsicID) {
2617 case Intrinsic::nvvm_f2i_rm:
2618 case Intrinsic::nvvm_f2i_rn:
2619 case Intrinsic::nvvm_f2i_rp:
2620 case Intrinsic::nvvm_f2i_rz:
2621 case Intrinsic::nvvm_f2i_rm_ftz:
2622 case Intrinsic::nvvm_f2i_rn_ftz:
2623 case Intrinsic::nvvm_f2i_rp_ftz:
2624 case Intrinsic::nvvm_f2i_rz_ftz:
2626 case Intrinsic::nvvm_f2ui_rm:
2627 case Intrinsic::nvvm_f2ui_rn:
2628 case Intrinsic::nvvm_f2ui_rp:
2629 case Intrinsic::nvvm_f2ui_rz:
2630 case Intrinsic::nvvm_f2ui_rm_ftz:
2631 case Intrinsic::nvvm_f2ui_rn_ftz:
2632 case Intrinsic::nvvm_f2ui_rp_ftz:
2633 case Intrinsic::nvvm_f2ui_rz_ftz:
2635 case Intrinsic::nvvm_d2i_rm:
2636 case Intrinsic::nvvm_d2i_rn:
2637 case Intrinsic::nvvm_d2i_rp:
2638 case Intrinsic::nvvm_d2i_rz:
2640 case Intrinsic::nvvm_d2ui_rm:
2641 case Intrinsic::nvvm_d2ui_rn:
2642 case Intrinsic::nvvm_d2ui_rp:
2643 case Intrinsic::nvvm_d2ui_rz:
2645 case Intrinsic::nvvm_f2ll_rm:
2646 case Intrinsic::nvvm_f2ll_rn:
2647 case Intrinsic::nvvm_f2ll_rp:
2648 case Intrinsic::nvvm_f2ll_rz:
2649 case Intrinsic::nvvm_f2ll_rm_ftz:
2650 case Intrinsic::nvvm_f2ll_rn_ftz:
2651 case Intrinsic::nvvm_f2ll_rp_ftz:
2652 case Intrinsic::nvvm_f2ll_rz_ftz:
2654 case Intrinsic::nvvm_f2ull_rm:
2655 case Intrinsic::nvvm_f2ull_rn:
2656 case Intrinsic::nvvm_f2ull_rp:
2657 case Intrinsic::nvvm_f2ull_rz:
2658 case Intrinsic::nvvm_f2ull_rm_ftz:
2659 case Intrinsic::nvvm_f2ull_rn_ftz:
2660 case Intrinsic::nvvm_f2ull_rp_ftz:
2661 case Intrinsic::nvvm_f2ull_rz_ftz:
2663 case Intrinsic::nvvm_d2ll_rm:
2664 case Intrinsic::nvvm_d2ll_rn:
2665 case Intrinsic::nvvm_d2ll_rp:
2666 case Intrinsic::nvvm_d2ll_rz:
2668 case Intrinsic::nvvm_d2ull_rm:
2669 case Intrinsic::nvvm_d2ull_rn:
2670 case Intrinsic::nvvm_d2ull_rp:
2671 case Intrinsic::nvvm_d2ull_rz: {
2677 return ConstantInt::get(Ty, 0);
2680 unsigned BitWidth = Ty->getIntegerBitWidth();
2690 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2691 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2695 bool IsExact =
false;
2696 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2697 return ConstantInt::get(Ty, ResInt);
2713 switch (IntrinsicID) {
2715 case Intrinsic::log:
2716 return ConstantFoldFP(log, APF, Ty);
2717 case Intrinsic::log2:
2719 return ConstantFoldFP(
log2, APF, Ty);
2720 case Intrinsic::log10:
2722 return ConstantFoldFP(log10, APF, Ty);
2723 case Intrinsic::exp:
2724 return ConstantFoldFP(exp, APF, Ty);
2725 case Intrinsic::exp2:
2727 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2728 case Intrinsic::exp10:
2730 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2731 case Intrinsic::sin:
2732 return ConstantFoldFP(sin, APF, Ty);
2733 case Intrinsic::cos:
2734 return ConstantFoldFP(cos, APF, Ty);
2735 case Intrinsic::sinh:
2736 return ConstantFoldFP(sinh, APF, Ty);
2737 case Intrinsic::cosh:
2738 return ConstantFoldFP(cosh, APF, Ty);
2739 case Intrinsic::atan:
2742 return ConstantFP::get(Ty->getContext(), U);
2743 return ConstantFoldFP(atan, APF, Ty);
2744 case Intrinsic::sqrt:
2745 return ConstantFoldFP(sqrt, APF, Ty);
2748 case Intrinsic::nvvm_ceil_ftz_f:
2749 case Intrinsic::nvvm_ceil_f:
2750 case Intrinsic::nvvm_ceil_d:
2751 return ConstantFoldFP(
2756 case Intrinsic::nvvm_fabs_ftz:
2757 case Intrinsic::nvvm_fabs:
2758 return ConstantFoldFP(
2763 case Intrinsic::nvvm_floor_ftz_f:
2764 case Intrinsic::nvvm_floor_f:
2765 case Intrinsic::nvvm_floor_d:
2766 return ConstantFoldFP(
2771 case Intrinsic::nvvm_rcp_rm_ftz_f:
2772 case Intrinsic::nvvm_rcp_rn_ftz_f:
2773 case Intrinsic::nvvm_rcp_rp_ftz_f:
2774 case Intrinsic::nvvm_rcp_rz_ftz_f:
2775 case Intrinsic::nvvm_rcp_rm_d:
2776 case Intrinsic::nvvm_rcp_rm_f:
2777 case Intrinsic::nvvm_rcp_rn_d:
2778 case Intrinsic::nvvm_rcp_rn_f:
2779 case Intrinsic::nvvm_rcp_rp_d:
2780 case Intrinsic::nvvm_rcp_rp_f:
2781 case Intrinsic::nvvm_rcp_rz_d:
2782 case Intrinsic::nvvm_rcp_rz_f: {
2786 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2792 Res = FTZPreserveSign(Res);
2793 return ConstantFP::get(Ty->getContext(), Res);
2798 case Intrinsic::nvvm_round_ftz_f:
2799 case Intrinsic::nvvm_round_f:
2800 case Intrinsic::nvvm_round_d: {
2805 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2807 return ConstantFP::get(Ty->getContext(), V);
2810 case Intrinsic::nvvm_saturate_ftz_f:
2811 case Intrinsic::nvvm_saturate_d:
2812 case Intrinsic::nvvm_saturate_f: {
2814 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2815 if (V.isNegative() || V.isZero() || V.isNaN())
2819 return ConstantFP::get(Ty->getContext(), One);
2820 return ConstantFP::get(Ty->getContext(), APF);
2823 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2824 case Intrinsic::nvvm_sqrt_f:
2825 case Intrinsic::nvvm_sqrt_rn_d:
2826 case Intrinsic::nvvm_sqrt_rn_f:
2829 return ConstantFoldFP(
2835 case Intrinsic::amdgcn_cos:
2836 case Intrinsic::amdgcn_sin: {
2837 double V = getValueAsDouble(
Op);
2838 if (V < -256.0 || V > 256.0)
2843 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2844 double V4 = V * 4.0;
2845 if (V4 == floor(V4)) {
2847 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2848 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2855 return GetConstantFoldFPValue(V, Ty);
2862 LibFunc
Func = NotLibFunc;
2871 case LibFunc_acos_finite:
2872 case LibFunc_acosf_finite:
2874 return ConstantFoldFP(acos, APF, Ty);
2878 case LibFunc_asin_finite:
2879 case LibFunc_asinf_finite:
2881 return ConstantFoldFP(asin, APF, Ty);
2887 return ConstantFP::get(Ty->getContext(), U);
2889 return ConstantFoldFP(atan, APF, Ty);
2893 if (TLI->
has(Func)) {
2895 return ConstantFP::get(Ty->getContext(), U);
2901 return ConstantFoldFP(cos, APF, Ty);
2905 case LibFunc_cosh_finite:
2906 case LibFunc_coshf_finite:
2908 return ConstantFoldFP(cosh, APF, Ty);
2912 case LibFunc_exp_finite:
2913 case LibFunc_expf_finite:
2915 return ConstantFoldFP(exp, APF, Ty);
2919 case LibFunc_exp2_finite:
2920 case LibFunc_exp2f_finite:
2923 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2927 if (TLI->
has(Func)) {
2929 return ConstantFP::get(Ty->getContext(), U);
2933 case LibFunc_floorf:
2934 if (TLI->
has(Func)) {
2936 return ConstantFP::get(Ty->getContext(), U);
2941 case LibFunc_log_finite:
2942 case LibFunc_logf_finite:
2944 return ConstantFoldFP(log, APF, Ty);
2948 case LibFunc_log2_finite:
2949 case LibFunc_log2f_finite:
2952 return ConstantFoldFP(
log2, APF, Ty);
2955 case LibFunc_log10f:
2956 case LibFunc_log10_finite:
2957 case LibFunc_log10f_finite:
2960 return ConstantFoldFP(log10, APF, Ty);
2963 case LibFunc_ilogbf:
2965 return ConstantInt::get(Ty,
ilogb(APF),
true);
2970 return ConstantFoldFP(logb, APF, Ty);
2973 case LibFunc_log1pf:
2976 return ConstantFP::get(Ty->getContext(), U);
2978 return ConstantFoldFP(log1p, APF, Ty);
2985 return ConstantFoldFP(erf, APF, Ty);
2987 case LibFunc_nearbyint:
2988 case LibFunc_nearbyintf:
2991 if (TLI->
has(Func)) {
2993 return ConstantFP::get(Ty->getContext(), U);
2997 case LibFunc_roundf:
2998 if (TLI->
has(Func)) {
3000 return ConstantFP::get(Ty->getContext(), U);
3006 return ConstantFoldFP(sin, APF, Ty);
3010 case LibFunc_sinh_finite:
3011 case LibFunc_sinhf_finite:
3013 return ConstantFoldFP(sinh, APF, Ty);
3018 return ConstantFoldFP(sqrt, APF, Ty);
3023 return ConstantFoldFP(tan, APF, Ty);
3028 return ConstantFoldFP(tanh, APF, Ty);
3031 case LibFunc_truncf:
3032 if (TLI->
has(Func)) {
3034 return ConstantFP::get(Ty->getContext(), U);
3042 switch (IntrinsicID) {
3043 case Intrinsic::bswap:
3044 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3045 case Intrinsic::ctpop:
3046 return ConstantInt::get(Ty,
Op->getValue().popcount());
3047 case Intrinsic::bitreverse:
3048 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3049 case Intrinsic::convert_from_fp16: {
3059 "Precision lost during fp16 constfolding");
3061 return ConstantFP::get(Ty->getContext(), Val);
3064 case Intrinsic::amdgcn_s_wqm: {
3066 Val |= (Val & 0x5555555555555555ULL) << 1 |
3067 ((Val >> 1) & 0x5555555555555555ULL);
3068 Val |= (Val & 0x3333333333333333ULL) << 2 |
3069 ((Val >> 2) & 0x3333333333333333ULL);
3070 return ConstantInt::get(Ty, Val);
3073 case Intrinsic::amdgcn_s_quadmask: {
3076 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3080 QuadMask |= (1ULL <<
I);
3082 return ConstantInt::get(Ty, QuadMask);
3085 case Intrinsic::amdgcn_s_bitreplicate: {
3087 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3088 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3089 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3090 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3091 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3092 Val = Val | Val << 1;
3093 return ConstantInt::get(Ty, Val);
3098 if (Operands[0]->
getType()->isVectorTy()) {
3100 switch (IntrinsicID) {
3102 case Intrinsic::vector_reduce_add:
3103 case Intrinsic::vector_reduce_mul:
3104 case Intrinsic::vector_reduce_and:
3105 case Intrinsic::vector_reduce_or:
3106 case Intrinsic::vector_reduce_xor:
3107 case Intrinsic::vector_reduce_smin:
3108 case Intrinsic::vector_reduce_smax:
3109 case Intrinsic::vector_reduce_umin:
3110 case Intrinsic::vector_reduce_umax:
3111 if (
Constant *
C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3114 case Intrinsic::x86_sse_cvtss2si:
3115 case Intrinsic::x86_sse_cvtss2si64:
3116 case Intrinsic::x86_sse2_cvtsd2si:
3117 case Intrinsic::x86_sse2_cvtsd2si64:
3120 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3124 case Intrinsic::x86_sse_cvttss2si:
3125 case Intrinsic::x86_sse_cvttss2si64:
3126 case Intrinsic::x86_sse2_cvttsd2si:
3127 case Intrinsic::x86_sse2_cvttsd2si64:
3130 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3135 case Intrinsic::wasm_anytrue:
3136 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3139 case Intrinsic::wasm_alltrue:
3142 for (
unsigned I = 0;
I !=
E; ++
I) {
3146 return ConstantInt::get(Ty, 0);
3152 return ConstantInt::get(Ty, 1);
3164 if (FCmp->isSignaling()) {
3173 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3183 LibFunc
Func = NotLibFunc;
3195 const APFloat &Op1V = Op1->getValueAPF();
3196 const APFloat &Op2V = Op2->getValueAPF();
3203 case LibFunc_pow_finite:
3204 case LibFunc_powf_finite:
3206 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3210 if (TLI->
has(Func)) {
3211 APFloat V = Op1->getValueAPF();
3213 return ConstantFP::get(Ty->getContext(), V);
3216 case LibFunc_remainder:
3217 case LibFunc_remainderf:
3218 if (TLI->
has(Func)) {
3219 APFloat V = Op1->getValueAPF();
3221 return ConstantFP::get(Ty->getContext(), V);
3225 case LibFunc_atan2f:
3231 case LibFunc_atan2_finite:
3232 case LibFunc_atan2f_finite:
3234 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3244 assert(Operands.
size() == 2 &&
"Wrong number of operands.");
3246 if (Ty->isFloatingPointTy()) {
3251 switch (IntrinsicID) {
3252 case Intrinsic::maxnum:
3253 case Intrinsic::minnum:
3254 case Intrinsic::maximum:
3255 case Intrinsic::minimum:
3256 case Intrinsic::maximumnum:
3257 case Intrinsic::minimumnum:
3258 case Intrinsic::nvvm_fmax_d:
3259 case Intrinsic::nvvm_fmin_d:
3267 case Intrinsic::nvvm_fmax_f:
3268 case Intrinsic::nvvm_fmax_ftz_f:
3269 case Intrinsic::nvvm_fmax_ftz_nan_f:
3270 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3271 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3272 case Intrinsic::nvvm_fmax_nan_f:
3273 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3274 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3276 case Intrinsic::nvvm_fmin_f:
3277 case Intrinsic::nvvm_fmin_ftz_f:
3278 case Intrinsic::nvvm_fmin_ftz_nan_f:
3279 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3280 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3281 case Intrinsic::nvvm_fmin_nan_f:
3282 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3283 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3287 if (!IsOp0Undef && !IsOp1Undef)
3291 APInt NVCanonicalNaN(32, 0x7fffffff);
3292 return ConstantFP::get(
3293 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3296 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3305 const APFloat &Op1V = Op1->getValueAPF();
3308 if (Op2->getType() != Op1->getType())
3310 const APFloat &Op2V = Op2->getValueAPF();
3312 if (
const auto *ConstrIntr =
3317 switch (IntrinsicID) {
3320 case Intrinsic::experimental_constrained_fadd:
3321 St = Res.
add(Op2V, RM);
3323 case Intrinsic::experimental_constrained_fsub:
3326 case Intrinsic::experimental_constrained_fmul:
3329 case Intrinsic::experimental_constrained_fdiv:
3330 St = Res.
divide(Op2V, RM);
3332 case Intrinsic::experimental_constrained_frem:
3335 case Intrinsic::experimental_constrained_fcmp:
3336 case Intrinsic::experimental_constrained_fcmps:
3337 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3341 return ConstantFP::get(Ty->getContext(), Res);
3345 switch (IntrinsicID) {
3348 case Intrinsic::copysign:
3350 case Intrinsic::minnum:
3351 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3352 case Intrinsic::maxnum:
3353 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3354 case Intrinsic::minimum:
3355 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3356 case Intrinsic::maximum:
3357 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3358 case Intrinsic::minimumnum:
3359 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3360 case Intrinsic::maximumnum:
3361 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3363 case Intrinsic::nvvm_fmax_d:
3364 case Intrinsic::nvvm_fmax_f:
3365 case Intrinsic::nvvm_fmax_ftz_f:
3366 case Intrinsic::nvvm_fmax_ftz_nan_f:
3367 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3368 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3369 case Intrinsic::nvvm_fmax_nan_f:
3370 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3371 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3373 case Intrinsic::nvvm_fmin_d:
3374 case Intrinsic::nvvm_fmin_f:
3375 case Intrinsic::nvvm_fmin_ftz_f:
3376 case Intrinsic::nvvm_fmin_ftz_nan_f:
3377 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3378 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3379 case Intrinsic::nvvm_fmin_nan_f:
3380 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3381 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3383 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3384 IntrinsicID == Intrinsic::nvvm_fmin_d);
3389 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3390 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3392 bool XorSign =
false;
3394 XorSign =
A.isNegative() ^
B.isNegative();
3399 bool IsFMax =
false;
3400 switch (IntrinsicID) {
3401 case Intrinsic::nvvm_fmax_d:
3402 case Intrinsic::nvvm_fmax_f:
3403 case Intrinsic::nvvm_fmax_ftz_f:
3404 case Intrinsic::nvvm_fmax_ftz_nan_f:
3405 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3406 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3407 case Intrinsic::nvvm_fmax_nan_f:
3408 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3409 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3415 if (ShouldCanonicalizeNaNs) {
3417 if (
A.isNaN() &&
B.isNaN())
3418 return ConstantFP::get(Ty, NVCanonicalNaN);
3419 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3420 return ConstantFP::get(Ty, NVCanonicalNaN);
3423 if (
A.isNaN() &&
B.isNaN())
3433 return ConstantFP::get(Ty->getContext(), Res);
3436 case Intrinsic::nvvm_add_rm_f:
3437 case Intrinsic::nvvm_add_rn_f:
3438 case Intrinsic::nvvm_add_rp_f:
3439 case Intrinsic::nvvm_add_rz_f:
3440 case Intrinsic::nvvm_add_rm_d:
3441 case Intrinsic::nvvm_add_rn_d:
3442 case Intrinsic::nvvm_add_rp_d:
3443 case Intrinsic::nvvm_add_rz_d:
3444 case Intrinsic::nvvm_add_rm_ftz_f:
3445 case Intrinsic::nvvm_add_rn_ftz_f:
3446 case Intrinsic::nvvm_add_rp_ftz_f:
3447 case Intrinsic::nvvm_add_rz_ftz_f: {
3450 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3451 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3461 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3462 return ConstantFP::get(Ty->getContext(), Res);
3467 case Intrinsic::nvvm_mul_rm_f:
3468 case Intrinsic::nvvm_mul_rn_f:
3469 case Intrinsic::nvvm_mul_rp_f:
3470 case Intrinsic::nvvm_mul_rz_f:
3471 case Intrinsic::nvvm_mul_rm_d:
3472 case Intrinsic::nvvm_mul_rn_d:
3473 case Intrinsic::nvvm_mul_rp_d:
3474 case Intrinsic::nvvm_mul_rz_d:
3475 case Intrinsic::nvvm_mul_rm_ftz_f:
3476 case Intrinsic::nvvm_mul_rn_ftz_f:
3477 case Intrinsic::nvvm_mul_rp_ftz_f:
3478 case Intrinsic::nvvm_mul_rz_ftz_f: {
3481 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3482 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3492 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3493 return ConstantFP::get(Ty->getContext(), Res);
3498 case Intrinsic::nvvm_div_rm_f:
3499 case Intrinsic::nvvm_div_rn_f:
3500 case Intrinsic::nvvm_div_rp_f:
3501 case Intrinsic::nvvm_div_rz_f:
3502 case Intrinsic::nvvm_div_rm_d:
3503 case Intrinsic::nvvm_div_rn_d:
3504 case Intrinsic::nvvm_div_rp_d:
3505 case Intrinsic::nvvm_div_rz_d:
3506 case Intrinsic::nvvm_div_rm_ftz_f:
3507 case Intrinsic::nvvm_div_rn_ftz_f:
3508 case Intrinsic::nvvm_div_rp_ftz_f:
3509 case Intrinsic::nvvm_div_rz_ftz_f: {
3511 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3512 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3520 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3521 return ConstantFP::get(Ty->getContext(), Res);
3527 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3530 switch (IntrinsicID) {
3533 case Intrinsic::pow:
3534 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3535 case Intrinsic::amdgcn_fmul_legacy:
3540 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3544 switch (IntrinsicID) {
3545 case Intrinsic::ldexp: {
3546 return ConstantFP::get(
3550 case Intrinsic::is_fpclass: {
3563 return ConstantInt::get(Ty, Result);
3565 case Intrinsic::powi: {
3566 int Exp =
static_cast<int>(Op2C->getSExtValue());
3567 switch (Ty->getTypeID()) {
3571 if (Ty->isHalfTy()) {
3576 return ConstantFP::get(Ty->getContext(), Res);
3591 if (Operands[0]->
getType()->isIntegerTy() &&
3592 Operands[1]->
getType()->isIntegerTy()) {
3593 const APInt *C0, *C1;
3594 if (!getConstIntOrUndef(Operands[0], C0) ||
3595 !getConstIntOrUndef(Operands[1], C1))
3598 switch (IntrinsicID) {
3600 case Intrinsic::smax:
3601 case Intrinsic::smin:
3602 case Intrinsic::umax:
3603 case Intrinsic::umin:
3608 return ConstantInt::get(
3614 case Intrinsic::scmp:
3615 case Intrinsic::ucmp:
3617 return ConstantInt::get(Ty, 0);
3620 if (IntrinsicID == Intrinsic::scmp)
3621 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3623 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3624 return ConstantInt::get(Ty, Res,
true);
3626 case Intrinsic::usub_with_overflow:
3627 case Intrinsic::ssub_with_overflow:
3633 case Intrinsic::uadd_with_overflow:
3634 case Intrinsic::sadd_with_overflow:
3644 case Intrinsic::smul_with_overflow:
3645 case Intrinsic::umul_with_overflow: {
3653 switch (IntrinsicID) {
3655 case Intrinsic::sadd_with_overflow:
3656 Res = C0->
sadd_ov(*C1, Overflow);
3658 case Intrinsic::uadd_with_overflow:
3659 Res = C0->
uadd_ov(*C1, Overflow);
3661 case Intrinsic::ssub_with_overflow:
3662 Res = C0->
ssub_ov(*C1, Overflow);
3664 case Intrinsic::usub_with_overflow:
3665 Res = C0->
usub_ov(*C1, Overflow);
3667 case Intrinsic::smul_with_overflow:
3668 Res = C0->
smul_ov(*C1, Overflow);
3670 case Intrinsic::umul_with_overflow:
3671 Res = C0->
umul_ov(*C1, Overflow);
3675 ConstantInt::get(Ty->getContext(), Res),
3680 case Intrinsic::uadd_sat:
3681 case Intrinsic::sadd_sat:
3686 if (IntrinsicID == Intrinsic::uadd_sat)
3687 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3689 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3690 case Intrinsic::usub_sat:
3691 case Intrinsic::ssub_sat:
3696 if (IntrinsicID == Intrinsic::usub_sat)
3697 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3699 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3700 case Intrinsic::cttz:
3701 case Intrinsic::ctlz:
3702 assert(C1 &&
"Must be constant int");
3709 if (IntrinsicID == Intrinsic::cttz)
3714 case Intrinsic::abs:
3715 assert(C1 &&
"Must be constant int");
3726 return ConstantInt::get(Ty, C0->
abs());
3727 case Intrinsic::amdgcn_wave_reduce_umin:
3728 case Intrinsic::amdgcn_wave_reduce_umax:
3729 case Intrinsic::amdgcn_wave_reduce_max:
3730 case Intrinsic::amdgcn_wave_reduce_min:
3731 case Intrinsic::amdgcn_wave_reduce_add:
3732 case Intrinsic::amdgcn_wave_reduce_sub:
3733 case Intrinsic::amdgcn_wave_reduce_and:
3734 case Intrinsic::amdgcn_wave_reduce_or:
3735 case Intrinsic::amdgcn_wave_reduce_xor:
3750 switch (IntrinsicID) {
3752 case Intrinsic::x86_avx512_vcvtss2si32:
3753 case Intrinsic::x86_avx512_vcvtss2si64:
3754 case Intrinsic::x86_avx512_vcvtsd2si32:
3755 case Intrinsic::x86_avx512_vcvtsd2si64:
3758 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3762 case Intrinsic::x86_avx512_vcvtss2usi32:
3763 case Intrinsic::x86_avx512_vcvtss2usi64:
3764 case Intrinsic::x86_avx512_vcvtsd2usi32:
3765 case Intrinsic::x86_avx512_vcvtsd2usi64:
3768 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3772 case Intrinsic::x86_avx512_cvttss2si:
3773 case Intrinsic::x86_avx512_cvttss2si64:
3774 case Intrinsic::x86_avx512_cvttsd2si:
3775 case Intrinsic::x86_avx512_cvttsd2si64:
3778 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3782 case Intrinsic::x86_avx512_cvttss2usi:
3783 case Intrinsic::x86_avx512_cvttss2usi64:
3784 case Intrinsic::x86_avx512_cvttsd2usi:
3785 case Intrinsic::x86_avx512_cvttsd2usi64:
3788 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3803 APFloat MA(Sem), SC(Sem), TC(Sem);
3816 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3838 switch (IntrinsicID) {
3841 case Intrinsic::amdgcn_cubeid:
3843 case Intrinsic::amdgcn_cubema:
3845 case Intrinsic::amdgcn_cubesc:
3847 case Intrinsic::amdgcn_cubetc:
3854 const APInt *C0, *C1, *C2;
3855 if (!getConstIntOrUndef(Operands[0], C0) ||
3856 !getConstIntOrUndef(Operands[1], C1) ||
3857 !getConstIntOrUndef(Operands[2], C2))
3864 unsigned NumUndefBytes = 0;
3865 for (
unsigned I = 0;
I < 32;
I += 8) {
3874 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3878 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3880 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3883 Val.insertBits(
B,
I, 8);
3886 if (NumUndefBytes == 4)
3889 return ConstantInt::get(Ty, Val);
3898 assert(Operands.
size() == 3 &&
"Wrong number of operands.");
3903 const APFloat &C1 = Op1->getValueAPF();
3904 const APFloat &C2 = Op2->getValueAPF();
3905 const APFloat &C3 = Op3->getValueAPF();
3911 switch (IntrinsicID) {
3914 case Intrinsic::experimental_constrained_fma:
3915 case Intrinsic::experimental_constrained_fmuladd:
3919 if (mayFoldConstrained(
3921 return ConstantFP::get(Ty->getContext(), Res);
3925 switch (IntrinsicID) {
3927 case Intrinsic::amdgcn_fma_legacy: {
3933 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3937 case Intrinsic::fma:
3938 case Intrinsic::fmuladd: {
3941 return ConstantFP::get(Ty->getContext(), V);
3944 case Intrinsic::nvvm_fma_rm_f:
3945 case Intrinsic::nvvm_fma_rn_f:
3946 case Intrinsic::nvvm_fma_rp_f:
3947 case Intrinsic::nvvm_fma_rz_f:
3948 case Intrinsic::nvvm_fma_rm_d:
3949 case Intrinsic::nvvm_fma_rn_d:
3950 case Intrinsic::nvvm_fma_rp_d:
3951 case Intrinsic::nvvm_fma_rz_d:
3952 case Intrinsic::nvvm_fma_rm_ftz_f:
3953 case Intrinsic::nvvm_fma_rn_ftz_f:
3954 case Intrinsic::nvvm_fma_rp_ftz_f:
3955 case Intrinsic::nvvm_fma_rz_ftz_f: {
3957 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3958 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3959 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3969 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3970 return ConstantFP::get(Ty->getContext(), Res);
3975 case Intrinsic::amdgcn_cubeid:
3976 case Intrinsic::amdgcn_cubema:
3977 case Intrinsic::amdgcn_cubesc:
3978 case Intrinsic::amdgcn_cubetc: {
3979 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3980 return ConstantFP::get(Ty->getContext(), V);
3987 if (IntrinsicID == Intrinsic::smul_fix ||
3988 IntrinsicID == Intrinsic::smul_fix_sat) {
3989 const APInt *C0, *C1;
3990 if (!getConstIntOrUndef(Operands[0], C0) ||
3991 !getConstIntOrUndef(Operands[1], C1))
4007 assert(Scale < Width &&
"Illegal scale.");
4008 unsigned ExtendedWidth = Width * 2;
4010 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
4011 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4017 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
4020 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4021 const APInt *C0, *C1, *C2;
4022 if (!getConstIntOrUndef(Operands[0], C0) ||
4023 !getConstIntOrUndef(Operands[1], C1) ||
4024 !getConstIntOrUndef(Operands[2], C2))
4027 bool IsRight = IntrinsicID == Intrinsic::fshr;
4029 return Operands[IsRight ? 1 : 0];
4038 return Operands[IsRight ? 1 : 0];
4041 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4042 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4044 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4046 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4047 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4050 if (IntrinsicID == Intrinsic::amdgcn_perm)
4051 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4067 if (Operands.
size() == 1)
4068 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4070 if (Operands.
size() == 2) {
4072 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4073 return FoldedLibCall;
4075 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands,
Call);
4078 if (Operands.
size() == 3)
4079 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4084static Constant *ConstantFoldFixedVectorCall(
4092 switch (IntrinsicID) {
4093 case Intrinsic::masked_load: {
4094 auto *SrcPtr = Operands[0];
4095 auto *
Mask = Operands[1];
4096 auto *Passthru = Operands[2];
4102 auto *MaskElt =
Mask->getAggregateElement(
I);
4105 auto *PassthruElt = Passthru->getAggregateElement(
I);
4115 if (MaskElt->isNullValue()) {
4119 }
else if (MaskElt->isOneValue()) {
4131 case Intrinsic::arm_mve_vctp8:
4132 case Intrinsic::arm_mve_vctp16:
4133 case Intrinsic::arm_mve_vctp32:
4134 case Intrinsic::arm_mve_vctp64: {
4140 for (
unsigned i = 0; i < Lanes; i++) {
4150 case Intrinsic::get_active_lane_mask: {
4156 uint64_t Limit = Op1->getZExtValue();
4159 for (
unsigned i = 0; i < Lanes; i++) {
4160 if (
Base + i < Limit)
4169 case Intrinsic::vector_extract: {
4176 unsigned VecNumElements =
4178 unsigned StartingIndex = Idx->getZExtValue();
4181 if (NumElements == VecNumElements && StartingIndex == 0)
4184 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4189 Result[
I - StartingIndex] = Elt;
4194 case Intrinsic::vector_insert: {
4201 unsigned SubVecNumElements =
4203 unsigned VecNumElements =
4205 unsigned IdxN = Idx->getZExtValue();
4207 if (SubVecNumElements == VecNumElements && IdxN == 0)
4210 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4212 if (
I < IdxN + SubVecNumElements)
4222 case Intrinsic::vector_interleave2:
4223 case Intrinsic::vector_interleave3:
4224 case Intrinsic::vector_interleave4:
4225 case Intrinsic::vector_interleave5:
4226 case Intrinsic::vector_interleave6:
4227 case Intrinsic::vector_interleave7:
4228 case Intrinsic::vector_interleave8: {
4229 unsigned NumElements =
4231 unsigned NumOperands = Operands.
size();
4232 for (
unsigned I = 0;
I < NumElements; ++
I) {
4233 for (
unsigned J = 0; J < NumOperands; ++J) {
4234 Constant *Elt = Operands[J]->getAggregateElement(
I);
4237 Result[NumOperands *
I + J] = Elt;
4242 case Intrinsic::wasm_dot: {
4243 unsigned NumElements =
4247 "wasm dot takes i16x8 and produces i32x4");
4248 assert(Ty->isIntegerTy());
4249 int32_t MulVector[8];
4251 for (
unsigned I = 0;
I < NumElements; ++
I) {
4259 for (
unsigned I = 0;
I <
Result.size();
I++) {
4260 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4261 Result[
I] = ConstantInt::get(Ty, IAdd);
4272 for (
unsigned J = 0, JE = Operands.
size(); J != JE; ++J) {
4275 Lane[J] = Operands[J];
4279 Constant *Agg = Operands[J]->getAggregateElement(
I);
4288 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4297static Constant *ConstantFoldScalableVectorCall(
4301 switch (IntrinsicID) {
4302 case Intrinsic::aarch64_sve_convert_from_svbool: {
4304 if (!Src || !Src->isNullValue())
4309 case Intrinsic::get_active_lane_mask: {
4312 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4316 case Intrinsic::vector_interleave2:
4317 case Intrinsic::vector_interleave3:
4318 case Intrinsic::vector_interleave4:
4319 case Intrinsic::vector_interleave5:
4320 case Intrinsic::vector_interleave6:
4321 case Intrinsic::vector_interleave7:
4322 case Intrinsic::vector_interleave8: {
4323 Constant *SplatVal = Operands[0]->getSplatValue();
4354 Constant *Folded = ConstantFoldScalarCall(
4361static std::pair<Constant *, Constant *>
4370 const APFloat &U = ConstFP->getValueAPF();
4373 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4380 return {Result0, Result1};
4390 switch (IntrinsicID) {
4391 case Intrinsic::frexp: {
4399 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4400 Constant *Lane = Operands[0]->getAggregateElement(
I);
4401 std::tie(Results0[
I], Results1[
I]) =
4402 ConstantFoldScalarFrexpCall(Lane, Ty1);
4411 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4416 case Intrinsic::sincos: {
4420 auto ConstantFoldScalarSincosCall =
4421 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4423 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4425 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4426 return std::make_pair(SinResult, CosResult);
4434 Constant *Lane = Operands[0]->getAggregateElement(
I);
4435 std::tie(SinResults[
I], CosResults[
I]) =
4436 ConstantFoldScalarSincosCall(Lane);
4437 if (!SinResults[
I] || !CosResults[
I])
4445 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4446 if (!SinResult || !CosResult)
4450 case Intrinsic::vector_deinterleave2:
4451 case Intrinsic::vector_deinterleave3:
4452 case Intrinsic::vector_deinterleave4:
4453 case Intrinsic::vector_deinterleave5:
4454 case Intrinsic::vector_deinterleave6:
4455 case Intrinsic::vector_deinterleave7:
4456 case Intrinsic::vector_deinterleave8: {
4458 auto *Vec = Operands[0];
4476 for (
unsigned I = 0;
I != NumResults; ++
I) {
4477 for (
unsigned J = 0; J != NumElements; ++J) {
4490 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI,
Call);
4506 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4512 bool AllowNonDeterministic) {
4513 if (
Call->isNoBuiltin())
4530 Type *Ty =
F->getReturnType();
4531 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4536 return ConstantFoldFixedVectorCall(
4537 Name, IID, FVTy, Operands,
F->getDataLayout(), TLI,
Call);
4540 return ConstantFoldScalableVectorCall(
4541 Name, IID, SVTy, Operands,
F->getDataLayout(), TLI,
Call);
4544 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4545 F->getDataLayout(), TLI,
Call);
4550 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI,
Call);
4557 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4567 if (
Call->arg_size() == 1) {
4577 case LibFunc_log10l:
4579 case LibFunc_log10f:
4580 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4583 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4589 if (OpC->getType()->isDoubleTy())
4591 if (OpC->getType()->isFloatTy())
4599 if (OpC->getType()->isDoubleTy())
4601 if (OpC->getType()->isFloatTy())
4611 return !
Op.isInfinity();
4615 case LibFunc_tanf: {
4618 Type *Ty = OpC->getType();
4619 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4620 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4646 if (OpC->getType()->isDoubleTy())
4648 if (OpC->getType()->isFloatTy())
4655 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4665 if (
Call->arg_size() == 2) {
4675 case LibFunc_powf: {
4679 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4681 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4689 case LibFunc_remainderl:
4690 case LibFunc_remainder:
4691 case LibFunc_remainderf:
4696 case LibFunc_atan2f:
4697 case LibFunc_atan2l:
4717 case Instruction::BitCast:
4720 case Instruction::Trunc: {
4728 Flags->NSW = ZExtC == SExtC;
4732 case Instruction::SExt:
4733 case Instruction::ZExt: {
4737 if (!CastInvC || CastInvC !=
C)
4739 if (Flags && CastOp == Instruction::ZExt) {
4743 Flags->NNeg = CastInvC == SExtInvC;
4764void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static constexpr roundingMode rmTowardZero
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
static constexpr roundingMode rmNearestTiesToAway
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.