31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
342 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
351 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
361 Type *SrcTy =
C->getType();
365 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
387 Cast = Instruction::PtrToInt;
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
402 if (SrcTy->isStructTy()) {
408 ElemC =
C->getAggregateElement(Elem++);
409 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
415 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
418 C =
C->getAggregateElement(0u);
433 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
434 "Out of range access");
437 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
446 if ((CI->getBitWidth() & 7) != 0)
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
451 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!
DL.isLittleEndian())
454 n = IntBytes - n - 1;
462 if (CFP->getType()->isDoubleTy()) {
464 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
466 if (CFP->getType()->isFloatTy()){
468 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
470 if (CFP->getType()->isHalfTy()){
472 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
481 ByteOffset -= CurEltOffset;
486 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
496 if (Index == CS->getType()->getNumElements())
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
509 CurEltOffset = NextEltOffset;
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize =
DL.getTypeAllocSize(EltTy);
527 if (!
DL.typeSizeEqualsStoreSize(EltTy))
530 EltSize =
DL.getTypeStoreSize(EltTy);
532 uint64_t Index = ByteOffset / EltSize;
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
541 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
553 if (
CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
555 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
609 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
613 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
632 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
635 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
636 if (
DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (
unsigned i = 1; i != BytesLoaded; ++i) {
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
643 ResultVal = RawBytes[0];
644 for (
unsigned i = 1; i != BytesLoaded; ++i) {
646 ResultVal |= RawBytes[i];
650 return ConstantInt::get(IntType->getContext(), ResultVal);
670 if (NBytes > UINT16_MAX)
678 unsigned char *CurPtr = RawBytes.
data();
680 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
698 if (!
Offset.isZero() || !Indices[0].isZero())
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
706 C =
C->getAggregateElement(Index.getZExtValue());
732 if (
Offset.getSignificantBits() <= 64)
734 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
781 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
783 if (
C->isNullValue() && !Ty->isX86_AMXTy())
785 if (
C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
805 if (
Opc == Instruction::And) {
808 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
812 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
824 if (
Opc == Instruction::Sub) {
830 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
847 std::optional<ConstantRange>
InRange,
849 Type *IntIdxTy =
DL.getIndexType(ResultTy);
854 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
857 SrcElemTy,
Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
885 Type *SrcElemTy =
GEP->getSourceElementType();
890 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
891 GEP->getInRange(),
DL, TLI))
900 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
904 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
907 DL.getIndexedOffsetInType(
911 std::optional<ConstantRange>
InRange =
GEP->getInRange();
917 bool Overflow =
false;
919 NW &=
GEP->getNoWrapFlags();
924 bool AllConstantInt =
true;
925 for (
Value *NestedOp : NestedOps)
927 AllConstantInt =
false;
934 if (
auto GEPRange =
GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
937 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
941 SrcElemTy =
GEP->getSourceElementType();
957 if (
CE->getOpcode() == Instruction::IntToPtr) {
959 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
964 !
DL.mustNotIntroduceIntToPtr(Ptr->
getType())) {
975 bool CanBeNull, CanBeFreed;
978 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
989 ConstantInt::get(Ctx,
Offset), NW,
998Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1002 bool AllowNonDeterministic) {
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1022 AllowNonDeterministic);
1032 Type *SrcElemTy =
GEP->getSourceElementType();
1040 GEP->getNoWrapFlags(),
1045 return CE->getWithOperands(
Ops);
1048 default:
return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1055 case Instruction::Freeze:
1057 case Instruction::Call:
1062 AllowNonDeterministic);
1065 case Instruction::Select:
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1072 case Instruction::InsertElement:
1074 case Instruction::InsertValue:
1077 case Instruction::ShuffleVector:
1080 case Instruction::Load: {
1082 if (LI->isVolatile())
1105 for (
const Use &OldU :
C->operands()) {
1111 auto It = FoldedOps.
find(OldC);
1112 if (It == FoldedOps.
end()) {
1113 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1114 FoldedOps.
insert({OldC, NewC});
1119 Ops.push_back(NewC);
1123 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1155 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1158 if (CommonValue &&
C != CommonValue)
1169 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1174 for (
const Use &OpU :
I->operands()) {
1177 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1187 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1196 AllowNonDeterministic);
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1228 if (CE0->getOpcode() == Instruction::PtrToInt ||
1229 CE0->getOpcode() == Instruction::PtrToAddr) {
1230 Type *AddrTy =
DL.getAddressType(CE0->getOperand(0)->getType());
1231 if (CE0->getType() == AddrTy) {
1240 if (CE0->getOpcode() == CE1->getOpcode()) {
1241 if (CE0->getOpcode() == Instruction::IntToPtr) {
1242 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1256 if (CE0->getOpcode() == Instruction::PtrToInt ||
1257 CE0->getOpcode() == Instruction::PtrToAddr) {
1258 Type *AddrTy =
DL.getAddressType(CE0->getOperand(0)->getType());
1259 if (CE0->getType() == AddrTy &&
1260 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1262 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1274 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1275 APInt Offset0(IndexWidth, 0);
1278 DL, Offset0, IsEqPred,
1281 APInt Offset1(IndexWidth, 0);
1283 DL, Offset1, IsEqPred,
1286 if (Stripped0 == Stripped1)
1325 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1339 return ConstantFP::get(Ty->getContext(), APF);
1341 return ConstantFP::get(
1345 return ConstantFP::get(Ty->getContext(),
1371 IsOutput ?
Mode.Output :
Mode.Input);
1400 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1422 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1423 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1425 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1445 bool AllowNonDeterministic) {
1458 if (!AllowNonDeterministic)
1460 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1461 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1475 if (!AllowNonDeterministic &&
C->isNaN())
1494 C->getType(), DestTy, &
DL))
1500 case Instruction::PtrToAddr:
1501 case Instruction::PtrToInt:
1506 if (CE->getOpcode() == Instruction::IntToPtr) {
1508 Type *MidTy = Opcode == Instruction::PtrToInt
1509 ?
DL.getAddressType(CE->getType())
1510 :
DL.getIntPtrType(CE->getType());
1517 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1520 DL, BaseOffset,
true));
1521 if (
Base->isNullValue()) {
1522 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1526 if (
GEP->getNumIndices() == 1 &&
1527 GEP->getSourceElementType()->isIntegerTy(8)) {
1531 if (
Sub &&
Sub->getType() == IntIdxTy &&
1532 Sub->getOpcode() == Instruction::Sub &&
1533 Sub->getOperand(0)->isNullValue())
1536 Sub->getOperand(1));
1547 case Instruction::IntToPtr:
1553 if (CE->getOpcode() == Instruction::PtrToInt) {
1554 Constant *SrcPtr = CE->getOperand(0);
1555 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1556 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1558 if (MidIntSize >= SrcPtrSize) {
1566 case Instruction::Trunc:
1567 case Instruction::ZExt:
1568 case Instruction::SExt:
1569 case Instruction::FPTrunc:
1570 case Instruction::FPExt:
1571 case Instruction::UIToFP:
1572 case Instruction::SIToFP:
1573 case Instruction::FPToUI:
1574 case Instruction::FPToSI:
1575 case Instruction::AddrSpaceCast:
1577 case Instruction::BitCast:
1588 Type *SrcTy =
C->getType();
1589 if (SrcTy == DestTy)
1603 if (
Call->isNoBuiltin())
1605 if (
Call->getFunctionType() !=
F->getFunctionType())
1614 return Arg.getType()->isFloatingPointTy();
1618 switch (
F->getIntrinsicID()) {
1621 case Intrinsic::bswap:
1622 case Intrinsic::ctpop:
1623 case Intrinsic::ctlz:
1624 case Intrinsic::cttz:
1625 case Intrinsic::fshl:
1626 case Intrinsic::fshr:
1627 case Intrinsic::launder_invariant_group:
1628 case Intrinsic::strip_invariant_group:
1629 case Intrinsic::masked_load:
1630 case Intrinsic::get_active_lane_mask:
1631 case Intrinsic::abs:
1632 case Intrinsic::smax:
1633 case Intrinsic::smin:
1634 case Intrinsic::umax:
1635 case Intrinsic::umin:
1636 case Intrinsic::scmp:
1637 case Intrinsic::ucmp:
1638 case Intrinsic::sadd_with_overflow:
1639 case Intrinsic::uadd_with_overflow:
1640 case Intrinsic::ssub_with_overflow:
1641 case Intrinsic::usub_with_overflow:
1642 case Intrinsic::smul_with_overflow:
1643 case Intrinsic::umul_with_overflow:
1644 case Intrinsic::sadd_sat:
1645 case Intrinsic::uadd_sat:
1646 case Intrinsic::ssub_sat:
1647 case Intrinsic::usub_sat:
1648 case Intrinsic::smul_fix:
1649 case Intrinsic::smul_fix_sat:
1650 case Intrinsic::bitreverse:
1651 case Intrinsic::is_constant:
1652 case Intrinsic::vector_reduce_add:
1653 case Intrinsic::vector_reduce_mul:
1654 case Intrinsic::vector_reduce_and:
1655 case Intrinsic::vector_reduce_or:
1656 case Intrinsic::vector_reduce_xor:
1657 case Intrinsic::vector_reduce_smin:
1658 case Intrinsic::vector_reduce_smax:
1659 case Intrinsic::vector_reduce_umin:
1660 case Intrinsic::vector_reduce_umax:
1661 case Intrinsic::vector_extract:
1662 case Intrinsic::vector_insert:
1663 case Intrinsic::vector_interleave2:
1664 case Intrinsic::vector_interleave3:
1665 case Intrinsic::vector_interleave4:
1666 case Intrinsic::vector_interleave5:
1667 case Intrinsic::vector_interleave6:
1668 case Intrinsic::vector_interleave7:
1669 case Intrinsic::vector_interleave8:
1670 case Intrinsic::vector_deinterleave2:
1671 case Intrinsic::vector_deinterleave3:
1672 case Intrinsic::vector_deinterleave4:
1673 case Intrinsic::vector_deinterleave5:
1674 case Intrinsic::vector_deinterleave6:
1675 case Intrinsic::vector_deinterleave7:
1676 case Intrinsic::vector_deinterleave8:
1678 case Intrinsic::amdgcn_perm:
1679 case Intrinsic::amdgcn_wave_reduce_umin:
1680 case Intrinsic::amdgcn_wave_reduce_umax:
1681 case Intrinsic::amdgcn_wave_reduce_max:
1682 case Intrinsic::amdgcn_wave_reduce_min:
1683 case Intrinsic::amdgcn_wave_reduce_add:
1684 case Intrinsic::amdgcn_wave_reduce_sub:
1685 case Intrinsic::amdgcn_wave_reduce_and:
1686 case Intrinsic::amdgcn_wave_reduce_or:
1687 case Intrinsic::amdgcn_wave_reduce_xor:
1688 case Intrinsic::amdgcn_s_wqm:
1689 case Intrinsic::amdgcn_s_quadmask:
1690 case Intrinsic::amdgcn_s_bitreplicate:
1691 case Intrinsic::arm_mve_vctp8:
1692 case Intrinsic::arm_mve_vctp16:
1693 case Intrinsic::arm_mve_vctp32:
1694 case Intrinsic::arm_mve_vctp64:
1695 case Intrinsic::aarch64_sve_convert_from_svbool:
1696 case Intrinsic::wasm_alltrue:
1697 case Intrinsic::wasm_anytrue:
1698 case Intrinsic::wasm_dot:
1700 case Intrinsic::wasm_trunc_signed:
1701 case Intrinsic::wasm_trunc_unsigned:
1706 case Intrinsic::minnum:
1707 case Intrinsic::maxnum:
1708 case Intrinsic::minimum:
1709 case Intrinsic::maximum:
1710 case Intrinsic::minimumnum:
1711 case Intrinsic::maximumnum:
1712 case Intrinsic::log:
1713 case Intrinsic::log2:
1714 case Intrinsic::log10:
1715 case Intrinsic::exp:
1716 case Intrinsic::exp2:
1717 case Intrinsic::exp10:
1718 case Intrinsic::sqrt:
1719 case Intrinsic::sin:
1720 case Intrinsic::cos:
1721 case Intrinsic::sincos:
1722 case Intrinsic::sinh:
1723 case Intrinsic::cosh:
1724 case Intrinsic::atan:
1725 case Intrinsic::pow:
1726 case Intrinsic::powi:
1727 case Intrinsic::ldexp:
1728 case Intrinsic::fma:
1729 case Intrinsic::fmuladd:
1730 case Intrinsic::frexp:
1731 case Intrinsic::fptoui_sat:
1732 case Intrinsic::fptosi_sat:
1733 case Intrinsic::convert_from_fp16:
1734 case Intrinsic::convert_to_fp16:
1735 case Intrinsic::amdgcn_cos:
1736 case Intrinsic::amdgcn_cubeid:
1737 case Intrinsic::amdgcn_cubema:
1738 case Intrinsic::amdgcn_cubesc:
1739 case Intrinsic::amdgcn_cubetc:
1740 case Intrinsic::amdgcn_fmul_legacy:
1741 case Intrinsic::amdgcn_fma_legacy:
1742 case Intrinsic::amdgcn_fract:
1743 case Intrinsic::amdgcn_sin:
1745 case Intrinsic::x86_sse_cvtss2si:
1746 case Intrinsic::x86_sse_cvtss2si64:
1747 case Intrinsic::x86_sse_cvttss2si:
1748 case Intrinsic::x86_sse_cvttss2si64:
1749 case Intrinsic::x86_sse2_cvtsd2si:
1750 case Intrinsic::x86_sse2_cvtsd2si64:
1751 case Intrinsic::x86_sse2_cvttsd2si:
1752 case Intrinsic::x86_sse2_cvttsd2si64:
1753 case Intrinsic::x86_avx512_vcvtss2si32:
1754 case Intrinsic::x86_avx512_vcvtss2si64:
1755 case Intrinsic::x86_avx512_cvttss2si:
1756 case Intrinsic::x86_avx512_cvttss2si64:
1757 case Intrinsic::x86_avx512_vcvtsd2si32:
1758 case Intrinsic::x86_avx512_vcvtsd2si64:
1759 case Intrinsic::x86_avx512_cvttsd2si:
1760 case Intrinsic::x86_avx512_cvttsd2si64:
1761 case Intrinsic::x86_avx512_vcvtss2usi32:
1762 case Intrinsic::x86_avx512_vcvtss2usi64:
1763 case Intrinsic::x86_avx512_cvttss2usi:
1764 case Intrinsic::x86_avx512_cvttss2usi64:
1765 case Intrinsic::x86_avx512_vcvtsd2usi32:
1766 case Intrinsic::x86_avx512_vcvtsd2usi64:
1767 case Intrinsic::x86_avx512_cvttsd2usi:
1768 case Intrinsic::x86_avx512_cvttsd2usi64:
1771 case Intrinsic::nvvm_fmax_d:
1772 case Intrinsic::nvvm_fmax_f:
1773 case Intrinsic::nvvm_fmax_ftz_f:
1774 case Intrinsic::nvvm_fmax_ftz_nan_f:
1775 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1776 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1777 case Intrinsic::nvvm_fmax_nan_f:
1778 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1779 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1782 case Intrinsic::nvvm_fmin_d:
1783 case Intrinsic::nvvm_fmin_f:
1784 case Intrinsic::nvvm_fmin_ftz_f:
1785 case Intrinsic::nvvm_fmin_ftz_nan_f:
1786 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1787 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1788 case Intrinsic::nvvm_fmin_nan_f:
1789 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1790 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1793 case Intrinsic::nvvm_f2i_rm:
1794 case Intrinsic::nvvm_f2i_rn:
1795 case Intrinsic::nvvm_f2i_rp:
1796 case Intrinsic::nvvm_f2i_rz:
1797 case Intrinsic::nvvm_f2i_rm_ftz:
1798 case Intrinsic::nvvm_f2i_rn_ftz:
1799 case Intrinsic::nvvm_f2i_rp_ftz:
1800 case Intrinsic::nvvm_f2i_rz_ftz:
1801 case Intrinsic::nvvm_f2ui_rm:
1802 case Intrinsic::nvvm_f2ui_rn:
1803 case Intrinsic::nvvm_f2ui_rp:
1804 case Intrinsic::nvvm_f2ui_rz:
1805 case Intrinsic::nvvm_f2ui_rm_ftz:
1806 case Intrinsic::nvvm_f2ui_rn_ftz:
1807 case Intrinsic::nvvm_f2ui_rp_ftz:
1808 case Intrinsic::nvvm_f2ui_rz_ftz:
1809 case Intrinsic::nvvm_d2i_rm:
1810 case Intrinsic::nvvm_d2i_rn:
1811 case Intrinsic::nvvm_d2i_rp:
1812 case Intrinsic::nvvm_d2i_rz:
1813 case Intrinsic::nvvm_d2ui_rm:
1814 case Intrinsic::nvvm_d2ui_rn:
1815 case Intrinsic::nvvm_d2ui_rp:
1816 case Intrinsic::nvvm_d2ui_rz:
1819 case Intrinsic::nvvm_f2ll_rm:
1820 case Intrinsic::nvvm_f2ll_rn:
1821 case Intrinsic::nvvm_f2ll_rp:
1822 case Intrinsic::nvvm_f2ll_rz:
1823 case Intrinsic::nvvm_f2ll_rm_ftz:
1824 case Intrinsic::nvvm_f2ll_rn_ftz:
1825 case Intrinsic::nvvm_f2ll_rp_ftz:
1826 case Intrinsic::nvvm_f2ll_rz_ftz:
1827 case Intrinsic::nvvm_f2ull_rm:
1828 case Intrinsic::nvvm_f2ull_rn:
1829 case Intrinsic::nvvm_f2ull_rp:
1830 case Intrinsic::nvvm_f2ull_rz:
1831 case Intrinsic::nvvm_f2ull_rm_ftz:
1832 case Intrinsic::nvvm_f2ull_rn_ftz:
1833 case Intrinsic::nvvm_f2ull_rp_ftz:
1834 case Intrinsic::nvvm_f2ull_rz_ftz:
1835 case Intrinsic::nvvm_d2ll_rm:
1836 case Intrinsic::nvvm_d2ll_rn:
1837 case Intrinsic::nvvm_d2ll_rp:
1838 case Intrinsic::nvvm_d2ll_rz:
1839 case Intrinsic::nvvm_d2ull_rm:
1840 case Intrinsic::nvvm_d2ull_rn:
1841 case Intrinsic::nvvm_d2ull_rp:
1842 case Intrinsic::nvvm_d2ull_rz:
1845 case Intrinsic::nvvm_ceil_d:
1846 case Intrinsic::nvvm_ceil_f:
1847 case Intrinsic::nvvm_ceil_ftz_f:
1849 case Intrinsic::nvvm_fabs:
1850 case Intrinsic::nvvm_fabs_ftz:
1852 case Intrinsic::nvvm_floor_d:
1853 case Intrinsic::nvvm_floor_f:
1854 case Intrinsic::nvvm_floor_ftz_f:
1856 case Intrinsic::nvvm_rcp_rm_d:
1857 case Intrinsic::nvvm_rcp_rm_f:
1858 case Intrinsic::nvvm_rcp_rm_ftz_f:
1859 case Intrinsic::nvvm_rcp_rn_d:
1860 case Intrinsic::nvvm_rcp_rn_f:
1861 case Intrinsic::nvvm_rcp_rn_ftz_f:
1862 case Intrinsic::nvvm_rcp_rp_d:
1863 case Intrinsic::nvvm_rcp_rp_f:
1864 case Intrinsic::nvvm_rcp_rp_ftz_f:
1865 case Intrinsic::nvvm_rcp_rz_d:
1866 case Intrinsic::nvvm_rcp_rz_f:
1867 case Intrinsic::nvvm_rcp_rz_ftz_f:
1869 case Intrinsic::nvvm_round_d:
1870 case Intrinsic::nvvm_round_f:
1871 case Intrinsic::nvvm_round_ftz_f:
1873 case Intrinsic::nvvm_saturate_d:
1874 case Intrinsic::nvvm_saturate_f:
1875 case Intrinsic::nvvm_saturate_ftz_f:
1877 case Intrinsic::nvvm_sqrt_f:
1878 case Intrinsic::nvvm_sqrt_rn_d:
1879 case Intrinsic::nvvm_sqrt_rn_f:
1880 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1881 return !
Call->isStrictFP();
1884 case Intrinsic::nvvm_add_rm_d:
1885 case Intrinsic::nvvm_add_rn_d:
1886 case Intrinsic::nvvm_add_rp_d:
1887 case Intrinsic::nvvm_add_rz_d:
1888 case Intrinsic::nvvm_add_rm_f:
1889 case Intrinsic::nvvm_add_rn_f:
1890 case Intrinsic::nvvm_add_rp_f:
1891 case Intrinsic::nvvm_add_rz_f:
1892 case Intrinsic::nvvm_add_rm_ftz_f:
1893 case Intrinsic::nvvm_add_rn_ftz_f:
1894 case Intrinsic::nvvm_add_rp_ftz_f:
1895 case Intrinsic::nvvm_add_rz_ftz_f:
1898 case Intrinsic::nvvm_div_rm_d:
1899 case Intrinsic::nvvm_div_rn_d:
1900 case Intrinsic::nvvm_div_rp_d:
1901 case Intrinsic::nvvm_div_rz_d:
1902 case Intrinsic::nvvm_div_rm_f:
1903 case Intrinsic::nvvm_div_rn_f:
1904 case Intrinsic::nvvm_div_rp_f:
1905 case Intrinsic::nvvm_div_rz_f:
1906 case Intrinsic::nvvm_div_rm_ftz_f:
1907 case Intrinsic::nvvm_div_rn_ftz_f:
1908 case Intrinsic::nvvm_div_rp_ftz_f:
1909 case Intrinsic::nvvm_div_rz_ftz_f:
1912 case Intrinsic::nvvm_mul_rm_d:
1913 case Intrinsic::nvvm_mul_rn_d:
1914 case Intrinsic::nvvm_mul_rp_d:
1915 case Intrinsic::nvvm_mul_rz_d:
1916 case Intrinsic::nvvm_mul_rm_f:
1917 case Intrinsic::nvvm_mul_rn_f:
1918 case Intrinsic::nvvm_mul_rp_f:
1919 case Intrinsic::nvvm_mul_rz_f:
1920 case Intrinsic::nvvm_mul_rm_ftz_f:
1921 case Intrinsic::nvvm_mul_rn_ftz_f:
1922 case Intrinsic::nvvm_mul_rp_ftz_f:
1923 case Intrinsic::nvvm_mul_rz_ftz_f:
1926 case Intrinsic::nvvm_fma_rm_d:
1927 case Intrinsic::nvvm_fma_rn_d:
1928 case Intrinsic::nvvm_fma_rp_d:
1929 case Intrinsic::nvvm_fma_rz_d:
1930 case Intrinsic::nvvm_fma_rm_f:
1931 case Intrinsic::nvvm_fma_rn_f:
1932 case Intrinsic::nvvm_fma_rp_f:
1933 case Intrinsic::nvvm_fma_rz_f:
1934 case Intrinsic::nvvm_fma_rm_ftz_f:
1935 case Intrinsic::nvvm_fma_rn_ftz_f:
1936 case Intrinsic::nvvm_fma_rp_ftz_f:
1937 case Intrinsic::nvvm_fma_rz_ftz_f:
1941 case Intrinsic::fabs:
1942 case Intrinsic::copysign:
1943 case Intrinsic::is_fpclass:
1946 case Intrinsic::ceil:
1947 case Intrinsic::floor:
1948 case Intrinsic::round:
1949 case Intrinsic::roundeven:
1950 case Intrinsic::trunc:
1951 case Intrinsic::nearbyint:
1952 case Intrinsic::rint:
1953 case Intrinsic::canonicalize:
1957 case Intrinsic::experimental_constrained_fma:
1958 case Intrinsic::experimental_constrained_fmuladd:
1959 case Intrinsic::experimental_constrained_fadd:
1960 case Intrinsic::experimental_constrained_fsub:
1961 case Intrinsic::experimental_constrained_fmul:
1962 case Intrinsic::experimental_constrained_fdiv:
1963 case Intrinsic::experimental_constrained_frem:
1964 case Intrinsic::experimental_constrained_ceil:
1965 case Intrinsic::experimental_constrained_floor:
1966 case Intrinsic::experimental_constrained_round:
1967 case Intrinsic::experimental_constrained_roundeven:
1968 case Intrinsic::experimental_constrained_trunc:
1969 case Intrinsic::experimental_constrained_nearbyint:
1970 case Intrinsic::experimental_constrained_rint:
1971 case Intrinsic::experimental_constrained_fcmp:
1972 case Intrinsic::experimental_constrained_fcmps:
1979 if (!
F->hasName() ||
Call->isStrictFP())
1991 return Name ==
"acos" || Name ==
"acosf" ||
1992 Name ==
"asin" || Name ==
"asinf" ||
1993 Name ==
"atan" || Name ==
"atanf" ||
1994 Name ==
"atan2" || Name ==
"atan2f";
1996 return Name ==
"ceil" || Name ==
"ceilf" ||
1997 Name ==
"cos" || Name ==
"cosf" ||
1998 Name ==
"cosh" || Name ==
"coshf";
2000 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
2001 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
2003 return Name ==
"fabs" || Name ==
"fabsf" ||
2004 Name ==
"floor" || Name ==
"floorf" ||
2005 Name ==
"fmod" || Name ==
"fmodf";
2007 return Name ==
"ilogb" || Name ==
"ilogbf";
2009 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
2010 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
2011 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
2012 Name ==
"log1p" || Name ==
"log1pf";
2014 return Name ==
"nearbyint" || Name ==
"nearbyintf";
2016 return Name ==
"pow" || Name ==
"powf";
2018 return Name ==
"remainder" || Name ==
"remainderf" ||
2019 Name ==
"rint" || Name ==
"rintf" ||
2020 Name ==
"round" || Name ==
"roundf" ||
2021 Name ==
"roundeven" || Name ==
"roundevenf";
2023 return Name ==
"sin" || Name ==
"sinf" ||
2024 Name ==
"sinh" || Name ==
"sinhf" ||
2025 Name ==
"sqrt" || Name ==
"sqrtf";
2027 return Name ==
"tan" || Name ==
"tanf" ||
2028 Name ==
"tanh" || Name ==
"tanhf" ||
2029 Name ==
"trunc" || Name ==
"truncf";
2037 if (Name.size() < 12 || Name[1] !=
'_')
2043 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2044 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2045 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2047 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2049 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2050 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2052 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2053 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2055 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2057 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2066 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2070 return ConstantFP::get(Ty->getContext(), APF);
2072 if (Ty->isDoubleTy())
2073 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2077#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2078Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2079 if (Ty->isFP128Ty())
2080 return ConstantFP::get(Ty, V);
2086inline void llvm_fenv_clearexcept() {
2087#if HAVE_DECL_FE_ALL_EXCEPT
2088 feclearexcept(FE_ALL_EXCEPT);
2094inline bool llvm_fenv_testexcept() {
2095 int errno_val = errno;
2096 if (errno_val == ERANGE || errno_val == EDOM)
2098#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2099 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2121 switch (DenormKind) {
2125 return FTZPreserveSign(V);
2127 return FlushToPositiveZero(V);
2135 if (!DenormMode.isValid() ||
2140 llvm_fenv_clearexcept();
2141 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2142 double Result = NativeFP(
Input.convertToDouble());
2143 if (llvm_fenv_testexcept()) {
2144 llvm_fenv_clearexcept();
2148 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2151 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2152 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2153 return ConstantFP::get(Ty->getContext(), Res);
2156#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2157Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2159 llvm_fenv_clearexcept();
2160 float128
Result = NativeFP(V.convertToQuad());
2161 if (llvm_fenv_testexcept()) {
2162 llvm_fenv_clearexcept();
2166 return GetConstantFoldFPValue128(Result, Ty);
2170Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2172 llvm_fenv_clearexcept();
2173 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2174 if (llvm_fenv_testexcept()) {
2175 llvm_fenv_clearexcept();
2179 return GetConstantFoldFPValue(Result, Ty);
2186 if (
Op->containsPoisonElement())
2190 if (
Constant *SplatVal =
Op->getSplatValue()) {
2192 case Intrinsic::vector_reduce_and:
2193 case Intrinsic::vector_reduce_or:
2194 case Intrinsic::vector_reduce_smin:
2195 case Intrinsic::vector_reduce_smax:
2196 case Intrinsic::vector_reduce_umin:
2197 case Intrinsic::vector_reduce_umax:
2199 case Intrinsic::vector_reduce_add:
2200 if (SplatVal->isNullValue())
2203 case Intrinsic::vector_reduce_mul:
2204 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2207 case Intrinsic::vector_reduce_xor:
2208 if (SplatVal->isNullValue())
2210 if (OpVT->getElementCount().isKnownMultipleOf(2))
2225 APInt Acc = EltC->getValue();
2229 const APInt &
X = EltC->getValue();
2231 case Intrinsic::vector_reduce_add:
2234 case Intrinsic::vector_reduce_mul:
2237 case Intrinsic::vector_reduce_and:
2240 case Intrinsic::vector_reduce_or:
2243 case Intrinsic::vector_reduce_xor:
2246 case Intrinsic::vector_reduce_smin:
2249 case Intrinsic::vector_reduce_smax:
2252 case Intrinsic::vector_reduce_umin:
2255 case Intrinsic::vector_reduce_umax:
2261 return ConstantInt::get(
Op->getContext(), Acc);
2271Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2272 Type *Ty,
bool IsSigned) {
2274 unsigned ResultWidth = Ty->getIntegerBitWidth();
2275 assert(ResultWidth <= 64 &&
2276 "Can only constant fold conversions to 64 and 32 bit ints");
2279 bool isExact =
false;
2284 IsSigned,
mode, &isExact);
2288 return ConstantInt::get(Ty, UIntVal, IsSigned);
2292 Type *Ty =
Op->getType();
2294 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2295 return Op->getValueAPF().convertToDouble();
2305 C = &CI->getValue();
2364 return ConstantFP::get(
2369 if (!Ty->isIEEELikeFPTy())
2376 if (Src.isNormal() || Src.isInfinity())
2377 return ConstantFP::get(CI->
getContext(), Src);
2384 return ConstantFP::get(CI->
getContext(), Src);
2414 assert(Operands.
size() == 1 &&
"Wrong number of operands.");
2416 if (IntrinsicID == Intrinsic::is_constant) {
2420 if (Operands[0]->isManifestConstant())
2429 if (IntrinsicID == Intrinsic::cos ||
2430 IntrinsicID == Intrinsic::ctpop ||
2431 IntrinsicID == Intrinsic::fptoui_sat ||
2432 IntrinsicID == Intrinsic::fptosi_sat ||
2433 IntrinsicID == Intrinsic::canonicalize)
2435 if (IntrinsicID == Intrinsic::bswap ||
2436 IntrinsicID == Intrinsic::bitreverse ||
2437 IntrinsicID == Intrinsic::launder_invariant_group ||
2438 IntrinsicID == Intrinsic::strip_invariant_group)
2444 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2445 IntrinsicID == Intrinsic::strip_invariant_group) {
2450 Call->getParent() ?
Call->getCaller() :
nullptr;
2461 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2472 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2473 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2474 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2479 unsigned Width = Ty->getIntegerBitWidth();
2481 bool IsExact =
false;
2486 return ConstantInt::get(Ty,
Int);
2491 if (IntrinsicID == Intrinsic::fptoui_sat ||
2492 IntrinsicID == Intrinsic::fptosi_sat) {
2495 IntrinsicID == Intrinsic::fptoui_sat);
2498 return ConstantInt::get(Ty,
Int);
2501 if (IntrinsicID == Intrinsic::canonicalize)
2502 return constantFoldCanonicalize(Ty,
Call, U);
2504#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2505 if (Ty->isFP128Ty()) {
2506 if (IntrinsicID == Intrinsic::log) {
2507 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2508 return GetConstantFoldFPValue128(Result, Ty);
2511 LibFunc Fp128Func = NotLibFunc;
2512 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2513 Fp128Func == LibFunc_logl)
2514 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2518 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2524 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint ||
2525 IntrinsicID == Intrinsic::roundeven) {
2527 return ConstantFP::get(Ty->getContext(), U);
2530 if (IntrinsicID == Intrinsic::round) {
2532 return ConstantFP::get(Ty->getContext(), U);
2535 if (IntrinsicID == Intrinsic::roundeven) {
2537 return ConstantFP::get(Ty->getContext(), U);
2540 if (IntrinsicID == Intrinsic::ceil) {
2542 return ConstantFP::get(Ty->getContext(), U);
2545 if (IntrinsicID == Intrinsic::floor) {
2547 return ConstantFP::get(Ty->getContext(), U);
2550 if (IntrinsicID == Intrinsic::trunc) {
2552 return ConstantFP::get(Ty->getContext(), U);
2555 if (IntrinsicID == Intrinsic::fabs) {
2557 return ConstantFP::get(Ty->getContext(), U);
2560 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2568 APFloat AlmostOne(U.getSemantics(), 1);
2569 AlmostOne.next(
true);
2570 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2576 std::optional<APFloat::roundingMode>
RM;
2577 switch (IntrinsicID) {
2580 case Intrinsic::experimental_constrained_nearbyint:
2581 case Intrinsic::experimental_constrained_rint: {
2583 RM = CI->getRoundingMode();
2588 case Intrinsic::experimental_constrained_round:
2591 case Intrinsic::experimental_constrained_ceil:
2594 case Intrinsic::experimental_constrained_floor:
2597 case Intrinsic::experimental_constrained_trunc:
2605 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2607 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2611 }
else if (U.isSignaling()) {
2612 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2617 return ConstantFP::get(Ty->getContext(), U);
2621 switch (IntrinsicID) {
2623 case Intrinsic::nvvm_f2i_rm:
2624 case Intrinsic::nvvm_f2i_rn:
2625 case Intrinsic::nvvm_f2i_rp:
2626 case Intrinsic::nvvm_f2i_rz:
2627 case Intrinsic::nvvm_f2i_rm_ftz:
2628 case Intrinsic::nvvm_f2i_rn_ftz:
2629 case Intrinsic::nvvm_f2i_rp_ftz:
2630 case Intrinsic::nvvm_f2i_rz_ftz:
2632 case Intrinsic::nvvm_f2ui_rm:
2633 case Intrinsic::nvvm_f2ui_rn:
2634 case Intrinsic::nvvm_f2ui_rp:
2635 case Intrinsic::nvvm_f2ui_rz:
2636 case Intrinsic::nvvm_f2ui_rm_ftz:
2637 case Intrinsic::nvvm_f2ui_rn_ftz:
2638 case Intrinsic::nvvm_f2ui_rp_ftz:
2639 case Intrinsic::nvvm_f2ui_rz_ftz:
2641 case Intrinsic::nvvm_d2i_rm:
2642 case Intrinsic::nvvm_d2i_rn:
2643 case Intrinsic::nvvm_d2i_rp:
2644 case Intrinsic::nvvm_d2i_rz:
2646 case Intrinsic::nvvm_d2ui_rm:
2647 case Intrinsic::nvvm_d2ui_rn:
2648 case Intrinsic::nvvm_d2ui_rp:
2649 case Intrinsic::nvvm_d2ui_rz:
2651 case Intrinsic::nvvm_f2ll_rm:
2652 case Intrinsic::nvvm_f2ll_rn:
2653 case Intrinsic::nvvm_f2ll_rp:
2654 case Intrinsic::nvvm_f2ll_rz:
2655 case Intrinsic::nvvm_f2ll_rm_ftz:
2656 case Intrinsic::nvvm_f2ll_rn_ftz:
2657 case Intrinsic::nvvm_f2ll_rp_ftz:
2658 case Intrinsic::nvvm_f2ll_rz_ftz:
2660 case Intrinsic::nvvm_f2ull_rm:
2661 case Intrinsic::nvvm_f2ull_rn:
2662 case Intrinsic::nvvm_f2ull_rp:
2663 case Intrinsic::nvvm_f2ull_rz:
2664 case Intrinsic::nvvm_f2ull_rm_ftz:
2665 case Intrinsic::nvvm_f2ull_rn_ftz:
2666 case Intrinsic::nvvm_f2ull_rp_ftz:
2667 case Intrinsic::nvvm_f2ull_rz_ftz:
2669 case Intrinsic::nvvm_d2ll_rm:
2670 case Intrinsic::nvvm_d2ll_rn:
2671 case Intrinsic::nvvm_d2ll_rp:
2672 case Intrinsic::nvvm_d2ll_rz:
2674 case Intrinsic::nvvm_d2ull_rm:
2675 case Intrinsic::nvvm_d2ull_rn:
2676 case Intrinsic::nvvm_d2ull_rp:
2677 case Intrinsic::nvvm_d2ull_rz: {
2683 return ConstantInt::get(Ty, 0);
2686 unsigned BitWidth = Ty->getIntegerBitWidth();
2696 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2697 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2701 bool IsExact =
false;
2702 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2703 return ConstantInt::get(Ty, ResInt);
2719 switch (IntrinsicID) {
2721 case Intrinsic::log:
2722 return ConstantFoldFP(log, APF, Ty);
2723 case Intrinsic::log2:
2725 return ConstantFoldFP(
log2, APF, Ty);
2726 case Intrinsic::log10:
2728 return ConstantFoldFP(log10, APF, Ty);
2729 case Intrinsic::exp:
2730 return ConstantFoldFP(exp, APF, Ty);
2731 case Intrinsic::exp2:
2733 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2734 case Intrinsic::exp10:
2736 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2737 case Intrinsic::sin:
2738 return ConstantFoldFP(sin, APF, Ty);
2739 case Intrinsic::cos:
2740 return ConstantFoldFP(cos, APF, Ty);
2741 case Intrinsic::sinh:
2742 return ConstantFoldFP(sinh, APF, Ty);
2743 case Intrinsic::cosh:
2744 return ConstantFoldFP(cosh, APF, Ty);
2745 case Intrinsic::atan:
2748 return ConstantFP::get(Ty->getContext(), U);
2749 return ConstantFoldFP(atan, APF, Ty);
2750 case Intrinsic::sqrt:
2751 return ConstantFoldFP(sqrt, APF, Ty);
2754 case Intrinsic::nvvm_ceil_ftz_f:
2755 case Intrinsic::nvvm_ceil_f:
2756 case Intrinsic::nvvm_ceil_d:
2757 return ConstantFoldFP(
2762 case Intrinsic::nvvm_fabs_ftz:
2763 case Intrinsic::nvvm_fabs:
2764 return ConstantFoldFP(
2769 case Intrinsic::nvvm_floor_ftz_f:
2770 case Intrinsic::nvvm_floor_f:
2771 case Intrinsic::nvvm_floor_d:
2772 return ConstantFoldFP(
2777 case Intrinsic::nvvm_rcp_rm_ftz_f:
2778 case Intrinsic::nvvm_rcp_rn_ftz_f:
2779 case Intrinsic::nvvm_rcp_rp_ftz_f:
2780 case Intrinsic::nvvm_rcp_rz_ftz_f:
2781 case Intrinsic::nvvm_rcp_rm_d:
2782 case Intrinsic::nvvm_rcp_rm_f:
2783 case Intrinsic::nvvm_rcp_rn_d:
2784 case Intrinsic::nvvm_rcp_rn_f:
2785 case Intrinsic::nvvm_rcp_rp_d:
2786 case Intrinsic::nvvm_rcp_rp_f:
2787 case Intrinsic::nvvm_rcp_rz_d:
2788 case Intrinsic::nvvm_rcp_rz_f: {
2792 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2798 Res = FTZPreserveSign(Res);
2799 return ConstantFP::get(Ty->getContext(), Res);
2804 case Intrinsic::nvvm_round_ftz_f:
2805 case Intrinsic::nvvm_round_f:
2806 case Intrinsic::nvvm_round_d: {
2811 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2813 return ConstantFP::get(Ty->getContext(), V);
2816 case Intrinsic::nvvm_saturate_ftz_f:
2817 case Intrinsic::nvvm_saturate_d:
2818 case Intrinsic::nvvm_saturate_f: {
2820 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2821 if (V.isNegative() || V.isZero() || V.isNaN())
2825 return ConstantFP::get(Ty->getContext(), One);
2826 return ConstantFP::get(Ty->getContext(), APF);
2829 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2830 case Intrinsic::nvvm_sqrt_f:
2831 case Intrinsic::nvvm_sqrt_rn_d:
2832 case Intrinsic::nvvm_sqrt_rn_f:
2835 return ConstantFoldFP(
2841 case Intrinsic::amdgcn_cos:
2842 case Intrinsic::amdgcn_sin: {
2843 double V = getValueAsDouble(
Op);
2844 if (V < -256.0 || V > 256.0)
2849 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2850 double V4 = V * 4.0;
2851 if (V4 == floor(V4)) {
2853 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2854 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2861 return GetConstantFoldFPValue(V, Ty);
2868 LibFunc
Func = NotLibFunc;
2877 case LibFunc_acos_finite:
2878 case LibFunc_acosf_finite:
2880 return ConstantFoldFP(acos, APF, Ty);
2884 case LibFunc_asin_finite:
2885 case LibFunc_asinf_finite:
2887 return ConstantFoldFP(asin, APF, Ty);
2893 return ConstantFP::get(Ty->getContext(), U);
2895 return ConstantFoldFP(atan, APF, Ty);
2899 if (TLI->
has(Func)) {
2901 return ConstantFP::get(Ty->getContext(), U);
2907 return ConstantFoldFP(cos, APF, Ty);
2911 case LibFunc_cosh_finite:
2912 case LibFunc_coshf_finite:
2914 return ConstantFoldFP(cosh, APF, Ty);
2918 case LibFunc_exp_finite:
2919 case LibFunc_expf_finite:
2921 return ConstantFoldFP(exp, APF, Ty);
2925 case LibFunc_exp2_finite:
2926 case LibFunc_exp2f_finite:
2929 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2933 if (TLI->
has(Func)) {
2935 return ConstantFP::get(Ty->getContext(), U);
2939 case LibFunc_floorf:
2940 if (TLI->
has(Func)) {
2942 return ConstantFP::get(Ty->getContext(), U);
2947 case LibFunc_log_finite:
2948 case LibFunc_logf_finite:
2950 return ConstantFoldFP(log, APF, Ty);
2954 case LibFunc_log2_finite:
2955 case LibFunc_log2f_finite:
2958 return ConstantFoldFP(
log2, APF, Ty);
2961 case LibFunc_log10f:
2962 case LibFunc_log10_finite:
2963 case LibFunc_log10f_finite:
2966 return ConstantFoldFP(log10, APF, Ty);
2969 case LibFunc_ilogbf:
2971 return ConstantInt::get(Ty,
ilogb(APF),
true);
2976 return ConstantFoldFP(logb, APF, Ty);
2979 case LibFunc_log1pf:
2982 return ConstantFP::get(Ty->getContext(), U);
2984 return ConstantFoldFP(log1p, APF, Ty);
2991 return ConstantFoldFP(erf, APF, Ty);
2993 case LibFunc_nearbyint:
2994 case LibFunc_nearbyintf:
2997 case LibFunc_roundeven:
2998 case LibFunc_roundevenf:
2999 if (TLI->
has(Func)) {
3001 return ConstantFP::get(Ty->getContext(), U);
3005 case LibFunc_roundf:
3006 if (TLI->
has(Func)) {
3008 return ConstantFP::get(Ty->getContext(), U);
3014 return ConstantFoldFP(sin, APF, Ty);
3018 case LibFunc_sinh_finite:
3019 case LibFunc_sinhf_finite:
3021 return ConstantFoldFP(sinh, APF, Ty);
3026 return ConstantFoldFP(sqrt, APF, Ty);
3031 return ConstantFoldFP(tan, APF, Ty);
3036 return ConstantFoldFP(tanh, APF, Ty);
3039 case LibFunc_truncf:
3040 if (TLI->
has(Func)) {
3042 return ConstantFP::get(Ty->getContext(), U);
3050 switch (IntrinsicID) {
3051 case Intrinsic::bswap:
3052 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3053 case Intrinsic::ctpop:
3054 return ConstantInt::get(Ty,
Op->getValue().popcount());
3055 case Intrinsic::bitreverse:
3056 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3057 case Intrinsic::convert_from_fp16: {
3067 "Precision lost during fp16 constfolding");
3069 return ConstantFP::get(Ty->getContext(), Val);
3072 case Intrinsic::amdgcn_s_wqm: {
3074 Val |= (Val & 0x5555555555555555ULL) << 1 |
3075 ((Val >> 1) & 0x5555555555555555ULL);
3076 Val |= (Val & 0x3333333333333333ULL) << 2 |
3077 ((Val >> 2) & 0x3333333333333333ULL);
3078 return ConstantInt::get(Ty, Val);
3081 case Intrinsic::amdgcn_s_quadmask: {
3084 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3088 QuadMask |= (1ULL <<
I);
3090 return ConstantInt::get(Ty, QuadMask);
3093 case Intrinsic::amdgcn_s_bitreplicate: {
3095 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3096 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3097 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3098 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3099 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3100 Val = Val | Val << 1;
3101 return ConstantInt::get(Ty, Val);
3106 if (Operands[0]->
getType()->isVectorTy()) {
3108 switch (IntrinsicID) {
3110 case Intrinsic::vector_reduce_add:
3111 case Intrinsic::vector_reduce_mul:
3112 case Intrinsic::vector_reduce_and:
3113 case Intrinsic::vector_reduce_or:
3114 case Intrinsic::vector_reduce_xor:
3115 case Intrinsic::vector_reduce_smin:
3116 case Intrinsic::vector_reduce_smax:
3117 case Intrinsic::vector_reduce_umin:
3118 case Intrinsic::vector_reduce_umax:
3119 if (
Constant *
C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3122 case Intrinsic::x86_sse_cvtss2si:
3123 case Intrinsic::x86_sse_cvtss2si64:
3124 case Intrinsic::x86_sse2_cvtsd2si:
3125 case Intrinsic::x86_sse2_cvtsd2si64:
3128 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3132 case Intrinsic::x86_sse_cvttss2si:
3133 case Intrinsic::x86_sse_cvttss2si64:
3134 case Intrinsic::x86_sse2_cvttsd2si:
3135 case Intrinsic::x86_sse2_cvttsd2si64:
3138 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3143 case Intrinsic::wasm_anytrue:
3144 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3147 case Intrinsic::wasm_alltrue:
3150 for (
unsigned I = 0;
I !=
E; ++
I) {
3154 return ConstantInt::get(Ty, 0);
3160 return ConstantInt::get(Ty, 1);
3172 if (FCmp->isSignaling()) {
3181 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3191 LibFunc
Func = NotLibFunc;
3203 const APFloat &Op1V = Op1->getValueAPF();
3204 const APFloat &Op2V = Op2->getValueAPF();
3211 case LibFunc_pow_finite:
3212 case LibFunc_powf_finite:
3214 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3218 if (TLI->
has(Func)) {
3219 APFloat V = Op1->getValueAPF();
3221 return ConstantFP::get(Ty->getContext(), V);
3224 case LibFunc_remainder:
3225 case LibFunc_remainderf:
3226 if (TLI->
has(Func)) {
3227 APFloat V = Op1->getValueAPF();
3229 return ConstantFP::get(Ty->getContext(), V);
3233 case LibFunc_atan2f:
3239 case LibFunc_atan2_finite:
3240 case LibFunc_atan2f_finite:
3242 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3252 assert(Operands.
size() == 2 &&
"Wrong number of operands.");
3254 if (Ty->isFloatingPointTy()) {
3259 switch (IntrinsicID) {
3260 case Intrinsic::maxnum:
3261 case Intrinsic::minnum:
3262 case Intrinsic::maximum:
3263 case Intrinsic::minimum:
3264 case Intrinsic::maximumnum:
3265 case Intrinsic::minimumnum:
3266 case Intrinsic::nvvm_fmax_d:
3267 case Intrinsic::nvvm_fmin_d:
3275 case Intrinsic::nvvm_fmax_f:
3276 case Intrinsic::nvvm_fmax_ftz_f:
3277 case Intrinsic::nvvm_fmax_ftz_nan_f:
3278 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3279 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3280 case Intrinsic::nvvm_fmax_nan_f:
3281 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3282 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3284 case Intrinsic::nvvm_fmin_f:
3285 case Intrinsic::nvvm_fmin_ftz_f:
3286 case Intrinsic::nvvm_fmin_ftz_nan_f:
3287 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3288 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3289 case Intrinsic::nvvm_fmin_nan_f:
3290 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3291 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3295 if (!IsOp0Undef && !IsOp1Undef)
3299 APInt NVCanonicalNaN(32, 0x7fffffff);
3300 return ConstantFP::get(
3301 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3304 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3313 const APFloat &Op1V = Op1->getValueAPF();
3316 if (Op2->getType() != Op1->getType())
3318 const APFloat &Op2V = Op2->getValueAPF();
3320 if (
const auto *ConstrIntr =
3325 switch (IntrinsicID) {
3328 case Intrinsic::experimental_constrained_fadd:
3329 St = Res.
add(Op2V, RM);
3331 case Intrinsic::experimental_constrained_fsub:
3334 case Intrinsic::experimental_constrained_fmul:
3337 case Intrinsic::experimental_constrained_fdiv:
3338 St = Res.
divide(Op2V, RM);
3340 case Intrinsic::experimental_constrained_frem:
3343 case Intrinsic::experimental_constrained_fcmp:
3344 case Intrinsic::experimental_constrained_fcmps:
3345 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3349 return ConstantFP::get(Ty->getContext(), Res);
3353 switch (IntrinsicID) {
3356 case Intrinsic::copysign:
3358 case Intrinsic::minnum:
3361 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3362 case Intrinsic::maxnum:
3365 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3366 case Intrinsic::minimum:
3367 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3368 case Intrinsic::maximum:
3369 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3370 case Intrinsic::minimumnum:
3371 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3372 case Intrinsic::maximumnum:
3373 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3375 case Intrinsic::nvvm_fmax_d:
3376 case Intrinsic::nvvm_fmax_f:
3377 case Intrinsic::nvvm_fmax_ftz_f:
3378 case Intrinsic::nvvm_fmax_ftz_nan_f:
3379 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3380 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3381 case Intrinsic::nvvm_fmax_nan_f:
3382 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3383 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3385 case Intrinsic::nvvm_fmin_d:
3386 case Intrinsic::nvvm_fmin_f:
3387 case Intrinsic::nvvm_fmin_ftz_f:
3388 case Intrinsic::nvvm_fmin_ftz_nan_f:
3389 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3390 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3391 case Intrinsic::nvvm_fmin_nan_f:
3392 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3393 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3395 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3396 IntrinsicID == Intrinsic::nvvm_fmin_d);
3401 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3402 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3404 bool XorSign =
false;
3406 XorSign =
A.isNegative() ^
B.isNegative();
3411 bool IsFMax =
false;
3412 switch (IntrinsicID) {
3413 case Intrinsic::nvvm_fmax_d:
3414 case Intrinsic::nvvm_fmax_f:
3415 case Intrinsic::nvvm_fmax_ftz_f:
3416 case Intrinsic::nvvm_fmax_ftz_nan_f:
3417 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3418 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3419 case Intrinsic::nvvm_fmax_nan_f:
3420 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3421 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3427 if (ShouldCanonicalizeNaNs) {
3429 if (
A.isNaN() &&
B.isNaN())
3430 return ConstantFP::get(Ty, NVCanonicalNaN);
3431 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3432 return ConstantFP::get(Ty, NVCanonicalNaN);
3435 if (
A.isNaN() &&
B.isNaN())
3445 return ConstantFP::get(Ty->getContext(), Res);
3448 case Intrinsic::nvvm_add_rm_f:
3449 case Intrinsic::nvvm_add_rn_f:
3450 case Intrinsic::nvvm_add_rp_f:
3451 case Intrinsic::nvvm_add_rz_f:
3452 case Intrinsic::nvvm_add_rm_d:
3453 case Intrinsic::nvvm_add_rn_d:
3454 case Intrinsic::nvvm_add_rp_d:
3455 case Intrinsic::nvvm_add_rz_d:
3456 case Intrinsic::nvvm_add_rm_ftz_f:
3457 case Intrinsic::nvvm_add_rn_ftz_f:
3458 case Intrinsic::nvvm_add_rp_ftz_f:
3459 case Intrinsic::nvvm_add_rz_ftz_f: {
3462 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3463 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3473 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3474 return ConstantFP::get(Ty->getContext(), Res);
3479 case Intrinsic::nvvm_mul_rm_f:
3480 case Intrinsic::nvvm_mul_rn_f:
3481 case Intrinsic::nvvm_mul_rp_f:
3482 case Intrinsic::nvvm_mul_rz_f:
3483 case Intrinsic::nvvm_mul_rm_d:
3484 case Intrinsic::nvvm_mul_rn_d:
3485 case Intrinsic::nvvm_mul_rp_d:
3486 case Intrinsic::nvvm_mul_rz_d:
3487 case Intrinsic::nvvm_mul_rm_ftz_f:
3488 case Intrinsic::nvvm_mul_rn_ftz_f:
3489 case Intrinsic::nvvm_mul_rp_ftz_f:
3490 case Intrinsic::nvvm_mul_rz_ftz_f: {
3493 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3494 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3504 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3505 return ConstantFP::get(Ty->getContext(), Res);
3510 case Intrinsic::nvvm_div_rm_f:
3511 case Intrinsic::nvvm_div_rn_f:
3512 case Intrinsic::nvvm_div_rp_f:
3513 case Intrinsic::nvvm_div_rz_f:
3514 case Intrinsic::nvvm_div_rm_d:
3515 case Intrinsic::nvvm_div_rn_d:
3516 case Intrinsic::nvvm_div_rp_d:
3517 case Intrinsic::nvvm_div_rz_d:
3518 case Intrinsic::nvvm_div_rm_ftz_f:
3519 case Intrinsic::nvvm_div_rn_ftz_f:
3520 case Intrinsic::nvvm_div_rp_ftz_f:
3521 case Intrinsic::nvvm_div_rz_ftz_f: {
3523 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3524 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3532 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3533 return ConstantFP::get(Ty->getContext(), Res);
3539 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3542 switch (IntrinsicID) {
3545 case Intrinsic::pow:
3546 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3547 case Intrinsic::amdgcn_fmul_legacy:
3552 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3556 switch (IntrinsicID) {
3557 case Intrinsic::ldexp: {
3558 return ConstantFP::get(
3562 case Intrinsic::is_fpclass: {
3575 return ConstantInt::get(Ty, Result);
3577 case Intrinsic::powi: {
3578 int Exp =
static_cast<int>(Op2C->getSExtValue());
3579 switch (Ty->getTypeID()) {
3583 if (Ty->isHalfTy()) {
3588 return ConstantFP::get(Ty->getContext(), Res);
3603 if (Operands[0]->
getType()->isIntegerTy() &&
3604 Operands[1]->
getType()->isIntegerTy()) {
3605 const APInt *C0, *C1;
3606 if (!getConstIntOrUndef(Operands[0], C0) ||
3607 !getConstIntOrUndef(Operands[1], C1))
3610 switch (IntrinsicID) {
3612 case Intrinsic::smax:
3613 case Intrinsic::smin:
3614 case Intrinsic::umax:
3615 case Intrinsic::umin:
3620 return ConstantInt::get(
3626 case Intrinsic::scmp:
3627 case Intrinsic::ucmp:
3629 return ConstantInt::get(Ty, 0);
3632 if (IntrinsicID == Intrinsic::scmp)
3633 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3635 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3636 return ConstantInt::get(Ty, Res,
true);
3638 case Intrinsic::usub_with_overflow:
3639 case Intrinsic::ssub_with_overflow:
3645 case Intrinsic::uadd_with_overflow:
3646 case Intrinsic::sadd_with_overflow:
3656 case Intrinsic::smul_with_overflow:
3657 case Intrinsic::umul_with_overflow: {
3665 switch (IntrinsicID) {
3667 case Intrinsic::sadd_with_overflow:
3668 Res = C0->
sadd_ov(*C1, Overflow);
3670 case Intrinsic::uadd_with_overflow:
3671 Res = C0->
uadd_ov(*C1, Overflow);
3673 case Intrinsic::ssub_with_overflow:
3674 Res = C0->
ssub_ov(*C1, Overflow);
3676 case Intrinsic::usub_with_overflow:
3677 Res = C0->
usub_ov(*C1, Overflow);
3679 case Intrinsic::smul_with_overflow:
3680 Res = C0->
smul_ov(*C1, Overflow);
3682 case Intrinsic::umul_with_overflow:
3683 Res = C0->
umul_ov(*C1, Overflow);
3687 ConstantInt::get(Ty->getContext(), Res),
3692 case Intrinsic::uadd_sat:
3693 case Intrinsic::sadd_sat:
3698 if (IntrinsicID == Intrinsic::uadd_sat)
3699 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3701 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3702 case Intrinsic::usub_sat:
3703 case Intrinsic::ssub_sat:
3708 if (IntrinsicID == Intrinsic::usub_sat)
3709 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3711 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3712 case Intrinsic::cttz:
3713 case Intrinsic::ctlz:
3714 assert(C1 &&
"Must be constant int");
3721 if (IntrinsicID == Intrinsic::cttz)
3726 case Intrinsic::abs:
3727 assert(C1 &&
"Must be constant int");
3738 return ConstantInt::get(Ty, C0->
abs());
3739 case Intrinsic::amdgcn_wave_reduce_umin:
3740 case Intrinsic::amdgcn_wave_reduce_umax:
3741 case Intrinsic::amdgcn_wave_reduce_max:
3742 case Intrinsic::amdgcn_wave_reduce_min:
3743 case Intrinsic::amdgcn_wave_reduce_add:
3744 case Intrinsic::amdgcn_wave_reduce_sub:
3745 case Intrinsic::amdgcn_wave_reduce_and:
3746 case Intrinsic::amdgcn_wave_reduce_or:
3747 case Intrinsic::amdgcn_wave_reduce_xor:
3762 switch (IntrinsicID) {
3764 case Intrinsic::x86_avx512_vcvtss2si32:
3765 case Intrinsic::x86_avx512_vcvtss2si64:
3766 case Intrinsic::x86_avx512_vcvtsd2si32:
3767 case Intrinsic::x86_avx512_vcvtsd2si64:
3770 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3774 case Intrinsic::x86_avx512_vcvtss2usi32:
3775 case Intrinsic::x86_avx512_vcvtss2usi64:
3776 case Intrinsic::x86_avx512_vcvtsd2usi32:
3777 case Intrinsic::x86_avx512_vcvtsd2usi64:
3780 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3784 case Intrinsic::x86_avx512_cvttss2si:
3785 case Intrinsic::x86_avx512_cvttss2si64:
3786 case Intrinsic::x86_avx512_cvttsd2si:
3787 case Intrinsic::x86_avx512_cvttsd2si64:
3790 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3794 case Intrinsic::x86_avx512_cvttss2usi:
3795 case Intrinsic::x86_avx512_cvttss2usi64:
3796 case Intrinsic::x86_avx512_cvttsd2usi:
3797 case Intrinsic::x86_avx512_cvttsd2usi64:
3800 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3815 APFloat MA(Sem), SC(Sem), TC(Sem);
3828 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3850 switch (IntrinsicID) {
3853 case Intrinsic::amdgcn_cubeid:
3855 case Intrinsic::amdgcn_cubema:
3857 case Intrinsic::amdgcn_cubesc:
3859 case Intrinsic::amdgcn_cubetc:
3866 const APInt *C0, *C1, *C2;
3867 if (!getConstIntOrUndef(Operands[0], C0) ||
3868 !getConstIntOrUndef(Operands[1], C1) ||
3869 !getConstIntOrUndef(Operands[2], C2))
3876 unsigned NumUndefBytes = 0;
3877 for (
unsigned I = 0;
I < 32;
I += 8) {
3886 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3890 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3892 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3895 Val.insertBits(
B,
I, 8);
3898 if (NumUndefBytes == 4)
3901 return ConstantInt::get(Ty, Val);
3910 assert(Operands.
size() == 3 &&
"Wrong number of operands.");
3915 const APFloat &C1 = Op1->getValueAPF();
3916 const APFloat &C2 = Op2->getValueAPF();
3917 const APFloat &C3 = Op3->getValueAPF();
3923 switch (IntrinsicID) {
3926 case Intrinsic::experimental_constrained_fma:
3927 case Intrinsic::experimental_constrained_fmuladd:
3931 if (mayFoldConstrained(
3933 return ConstantFP::get(Ty->getContext(), Res);
3937 switch (IntrinsicID) {
3939 case Intrinsic::amdgcn_fma_legacy: {
3945 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3949 case Intrinsic::fma:
3950 case Intrinsic::fmuladd: {
3953 return ConstantFP::get(Ty->getContext(), V);
3956 case Intrinsic::nvvm_fma_rm_f:
3957 case Intrinsic::nvvm_fma_rn_f:
3958 case Intrinsic::nvvm_fma_rp_f:
3959 case Intrinsic::nvvm_fma_rz_f:
3960 case Intrinsic::nvvm_fma_rm_d:
3961 case Intrinsic::nvvm_fma_rn_d:
3962 case Intrinsic::nvvm_fma_rp_d:
3963 case Intrinsic::nvvm_fma_rz_d:
3964 case Intrinsic::nvvm_fma_rm_ftz_f:
3965 case Intrinsic::nvvm_fma_rn_ftz_f:
3966 case Intrinsic::nvvm_fma_rp_ftz_f:
3967 case Intrinsic::nvvm_fma_rz_ftz_f: {
3969 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3970 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3971 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3981 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3982 return ConstantFP::get(Ty->getContext(), Res);
3987 case Intrinsic::amdgcn_cubeid:
3988 case Intrinsic::amdgcn_cubema:
3989 case Intrinsic::amdgcn_cubesc:
3990 case Intrinsic::amdgcn_cubetc: {
3991 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3992 return ConstantFP::get(Ty->getContext(), V);
3999 if (IntrinsicID == Intrinsic::smul_fix ||
4000 IntrinsicID == Intrinsic::smul_fix_sat) {
4001 const APInt *C0, *C1;
4002 if (!getConstIntOrUndef(Operands[0], C0) ||
4003 !getConstIntOrUndef(Operands[1], C1))
4019 assert(Scale < Width &&
"Illegal scale.");
4020 unsigned ExtendedWidth = Width * 2;
4022 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
4023 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4029 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
4032 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4033 const APInt *C0, *C1, *C2;
4034 if (!getConstIntOrUndef(Operands[0], C0) ||
4035 !getConstIntOrUndef(Operands[1], C1) ||
4036 !getConstIntOrUndef(Operands[2], C2))
4039 bool IsRight = IntrinsicID == Intrinsic::fshr;
4041 return Operands[IsRight ? 1 : 0];
4050 return Operands[IsRight ? 1 : 0];
4053 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4054 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4056 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4058 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4059 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4062 if (IntrinsicID == Intrinsic::amdgcn_perm)
4063 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4079 if (Operands.
size() == 1)
4080 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4082 if (Operands.
size() == 2) {
4084 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4085 return FoldedLibCall;
4087 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands,
Call);
4090 if (Operands.
size() == 3)
4091 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4096static Constant *ConstantFoldFixedVectorCall(
4104 switch (IntrinsicID) {
4105 case Intrinsic::masked_load: {
4106 auto *SrcPtr = Operands[0];
4107 auto *
Mask = Operands[1];
4108 auto *Passthru = Operands[2];
4114 auto *MaskElt =
Mask->getAggregateElement(
I);
4117 auto *PassthruElt = Passthru->getAggregateElement(
I);
4127 if (MaskElt->isNullValue()) {
4131 }
else if (MaskElt->isOneValue()) {
4143 case Intrinsic::arm_mve_vctp8:
4144 case Intrinsic::arm_mve_vctp16:
4145 case Intrinsic::arm_mve_vctp32:
4146 case Intrinsic::arm_mve_vctp64: {
4152 for (
unsigned i = 0; i < Lanes; i++) {
4162 case Intrinsic::get_active_lane_mask: {
4168 uint64_t Limit = Op1->getZExtValue();
4171 for (
unsigned i = 0; i < Lanes; i++) {
4172 if (
Base + i < Limit)
4181 case Intrinsic::vector_extract: {
4188 unsigned VecNumElements =
4190 unsigned StartingIndex = Idx->getZExtValue();
4193 if (NumElements == VecNumElements && StartingIndex == 0)
4196 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4201 Result[
I - StartingIndex] = Elt;
4206 case Intrinsic::vector_insert: {
4213 unsigned SubVecNumElements =
4215 unsigned VecNumElements =
4217 unsigned IdxN = Idx->getZExtValue();
4219 if (SubVecNumElements == VecNumElements && IdxN == 0)
4222 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4224 if (
I < IdxN + SubVecNumElements)
4234 case Intrinsic::vector_interleave2:
4235 case Intrinsic::vector_interleave3:
4236 case Intrinsic::vector_interleave4:
4237 case Intrinsic::vector_interleave5:
4238 case Intrinsic::vector_interleave6:
4239 case Intrinsic::vector_interleave7:
4240 case Intrinsic::vector_interleave8: {
4241 unsigned NumElements =
4243 unsigned NumOperands = Operands.
size();
4244 for (
unsigned I = 0;
I < NumElements; ++
I) {
4245 for (
unsigned J = 0; J < NumOperands; ++J) {
4246 Constant *Elt = Operands[J]->getAggregateElement(
I);
4249 Result[NumOperands *
I + J] = Elt;
4254 case Intrinsic::wasm_dot: {
4255 unsigned NumElements =
4259 "wasm dot takes i16x8 and produces i32x4");
4260 assert(Ty->isIntegerTy());
4261 int32_t MulVector[8];
4263 for (
unsigned I = 0;
I < NumElements; ++
I) {
4271 for (
unsigned I = 0;
I <
Result.size();
I++) {
4272 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4273 Result[
I] = ConstantInt::get(Ty, IAdd);
4284 for (
unsigned J = 0, JE = Operands.
size(); J != JE; ++J) {
4287 Lane[J] = Operands[J];
4291 Constant *Agg = Operands[J]->getAggregateElement(
I);
4300 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4309static Constant *ConstantFoldScalableVectorCall(
4313 switch (IntrinsicID) {
4314 case Intrinsic::aarch64_sve_convert_from_svbool: {
4316 if (!Src || !Src->isNullValue())
4321 case Intrinsic::get_active_lane_mask: {
4324 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4328 case Intrinsic::vector_interleave2:
4329 case Intrinsic::vector_interleave3:
4330 case Intrinsic::vector_interleave4:
4331 case Intrinsic::vector_interleave5:
4332 case Intrinsic::vector_interleave6:
4333 case Intrinsic::vector_interleave7:
4334 case Intrinsic::vector_interleave8: {
4335 Constant *SplatVal = Operands[0]->getSplatValue();
4366 Constant *Folded = ConstantFoldScalarCall(
4373static std::pair<Constant *, Constant *>
4382 const APFloat &U = ConstFP->getValueAPF();
4385 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4392 return {Result0, Result1};
4402 switch (IntrinsicID) {
4403 case Intrinsic::frexp: {
4411 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4412 Constant *Lane = Operands[0]->getAggregateElement(
I);
4413 std::tie(Results0[
I], Results1[
I]) =
4414 ConstantFoldScalarFrexpCall(Lane, Ty1);
4423 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4428 case Intrinsic::sincos: {
4432 auto ConstantFoldScalarSincosCall =
4433 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4435 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4437 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4438 return std::make_pair(SinResult, CosResult);
4446 Constant *Lane = Operands[0]->getAggregateElement(
I);
4447 std::tie(SinResults[
I], CosResults[
I]) =
4448 ConstantFoldScalarSincosCall(Lane);
4449 if (!SinResults[
I] || !CosResults[
I])
4457 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4458 if (!SinResult || !CosResult)
4462 case Intrinsic::vector_deinterleave2:
4463 case Intrinsic::vector_deinterleave3:
4464 case Intrinsic::vector_deinterleave4:
4465 case Intrinsic::vector_deinterleave5:
4466 case Intrinsic::vector_deinterleave6:
4467 case Intrinsic::vector_deinterleave7:
4468 case Intrinsic::vector_deinterleave8: {
4470 auto *Vec = Operands[0];
4488 for (
unsigned I = 0;
I != NumResults; ++
I) {
4489 for (
unsigned J = 0; J != NumElements; ++J) {
4502 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI,
Call);
4518 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4524 bool AllowNonDeterministic) {
4525 if (
Call->isNoBuiltin())
4542 Type *Ty =
F->getReturnType();
4543 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4548 return ConstantFoldFixedVectorCall(
4549 Name, IID, FVTy, Operands,
F->getDataLayout(), TLI,
Call);
4552 return ConstantFoldScalableVectorCall(
4553 Name, IID, SVTy, Operands,
F->getDataLayout(), TLI,
Call);
4556 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4557 F->getDataLayout(), TLI,
Call);
4562 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI,
Call);
4569 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4579 if (
Call->arg_size() == 1) {
4589 case LibFunc_log10l:
4591 case LibFunc_log10f:
4592 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4595 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4601 if (OpC->getType()->isDoubleTy())
4603 if (OpC->getType()->isFloatTy())
4611 if (OpC->getType()->isDoubleTy())
4613 if (OpC->getType()->isFloatTy())
4623 return !
Op.isInfinity();
4627 case LibFunc_tanf: {
4630 Type *Ty = OpC->getType();
4631 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4632 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4658 if (OpC->getType()->isDoubleTy())
4660 if (OpC->getType()->isFloatTy())
4667 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4677 if (
Call->arg_size() == 2) {
4687 case LibFunc_powf: {
4691 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4693 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4701 case LibFunc_remainderl:
4702 case LibFunc_remainder:
4703 case LibFunc_remainderf:
4708 case LibFunc_atan2f:
4709 case LibFunc_atan2l:
4729 case Instruction::BitCast:
4732 case Instruction::Trunc: {
4740 Flags->NSW = ZExtC == SExtC;
4744 case Instruction::SExt:
4745 case Instruction::ZExt: {
4749 if (!CastInvC || CastInvC !=
C)
4751 if (Flags && CastOp == Instruction::ZExt) {
4755 Flags->NNeg = CastInvC == SExtInvC;
4776void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static constexpr roundingMode rmTowardZero
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
static constexpr roundingMode rmNearestTiesToAway
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.