LLVM 22.0.0git
ConstantFolding.cpp
Go to the documentation of this file.
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/Operator.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
59#include <cassert>
60#include <cerrno>
61#include <cfenv>
62#include <cmath>
63#include <cstdint>
64
65using namespace llvm;
66
68 "disable-fp-call-folding",
69 cl::desc("Disable constant-folding of FP intrinsics and libcalls."),
70 cl::init(false), cl::Hidden);
71
72namespace {
73
74//===----------------------------------------------------------------------===//
75// Constant Folding internal helper functions
76//===----------------------------------------------------------------------===//
77
78static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
79 Constant *C, Type *SrcEltTy,
80 unsigned NumSrcElts,
81 const DataLayout &DL) {
82 // Now that we know that the input value is a vector of integers, just shift
83 // and insert them into our result.
84 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
85 for (unsigned i = 0; i != NumSrcElts; ++i) {
86 Constant *Element;
87 if (DL.isLittleEndian())
88 Element = C->getAggregateElement(NumSrcElts - i - 1);
89 else
90 Element = C->getAggregateElement(i);
91
92 if (isa_and_nonnull<UndefValue>(Element)) {
93 Result <<= BitShift;
94 continue;
95 }
96
97 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
98 if (!ElementCI)
99 return ConstantExpr::getBitCast(C, DestTy);
100
101 Result <<= BitShift;
102 Result |= ElementCI->getValue().zext(Result.getBitWidth());
103 }
104
105 return nullptr;
106}
107
108/// Constant fold bitcast, symbolically evaluating it with DataLayout.
109/// This always returns a non-null constant, but it may be a
110/// ConstantExpr if unfoldable.
111Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
112 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
113 "Invalid constantexpr bitcast!");
114
115 // Catch the obvious splat cases.
116 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
117 return Res;
118
119 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
120 // Handle a vector->scalar integer/fp cast.
121 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
122 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
123 Type *SrcEltTy = VTy->getElementType();
124
125 // If the vector is a vector of floating point, convert it to vector of int
126 // to simplify things.
127 if (SrcEltTy->isFloatingPointTy()) {
128 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
129 auto *SrcIVTy = FixedVectorType::get(
130 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
131 // Ask IR to do the conversion now that #elts line up.
132 C = ConstantExpr::getBitCast(C, SrcIVTy);
133 }
134
135 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
136 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
137 SrcEltTy, NumSrcElts, DL))
138 return CE;
139
140 if (isa<IntegerType>(DestTy))
141 return ConstantInt::get(DestTy, Result);
142
143 APFloat FP(DestTy->getFltSemantics(), Result);
144 return ConstantFP::get(DestTy->getContext(), FP);
145 }
146 }
147
148 // The code below only handles casts to vectors currently.
149 auto *DestVTy = dyn_cast<VectorType>(DestTy);
150 if (!DestVTy)
151 return ConstantExpr::getBitCast(C, DestTy);
152
153 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
154 // vector so the code below can handle it uniformly.
155 if (!isa<VectorType>(C->getType()) &&
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159 }
160
161 // Some of what follows may extend to cover scalable vectors but the current
162 // implementation is fixed length specific.
163 if (!isa<FixedVectorType>(C->getType()))
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 // If this is a bitcast from constant vector -> vector, fold it.
169 return ConstantExpr::getBitCast(C, DestTy);
170
171 // If the element types match, IR can fold it.
172 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
173 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
174 if (NumDstElt == NumSrcElt)
175 return ConstantExpr::getBitCast(C, DestTy);
176
177 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
178 Type *DstEltTy = DestVTy->getElementType();
179
180 // Otherwise, we're changing the number of elements in a vector, which
181 // requires endianness information to do the right thing. For example,
182 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
183 // folds to (little endian):
184 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
185 // and to (big endian):
186 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
187
188 // First thing is first. We only want to think about integer here, so if
189 // we have something in FP form, recast it as integer.
190 if (DstEltTy->isFloatingPointTy()) {
191 // Fold to an vector of integers with same size as our FP type.
192 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
193 auto *DestIVTy = FixedVectorType::get(
194 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
195 // Recursively handle this integer conversion, if possible.
196 C = FoldBitCast(C, DestIVTy, DL);
197
198 // Finally, IR can handle this now that #elts line up.
199 return ConstantExpr::getBitCast(C, DestTy);
200 }
201
202 // Okay, we know the destination is integer, if the input is FP, convert
203 // it to integer first.
204 if (SrcEltTy->isFloatingPointTy()) {
205 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
206 auto *SrcIVTy = FixedVectorType::get(
207 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
208 // Ask IR to do the conversion now that #elts line up.
209 C = ConstantExpr::getBitCast(C, SrcIVTy);
210 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
212 "Constant folding cannot fail for plain fp->int bitcast!");
213 }
214
215 // Now we know that the input and output vectors are both integer vectors
216 // of the same size, and that their #elements is not the same. Do the
217 // conversion here, which depends on whether the input or output has
218 // more elements.
219 bool isLittleEndian = DL.isLittleEndian();
220
222 if (NumDstElt < NumSrcElt) {
223 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
225 unsigned Ratio = NumSrcElt/NumDstElt;
226 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
227 unsigned SrcElt = 0;
228 for (unsigned i = 0; i != NumDstElt; ++i) {
229 // Build each element of the result.
230 Constant *Elt = Zero;
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (unsigned j = 0; j != Ratio; ++j) {
233 Constant *Src = C->getAggregateElement(SrcElt++);
236 cast<VectorType>(C->getType())->getElementType());
237 else
239 if (!Src) // Reject constantexpr elements.
240 return ConstantExpr::getBitCast(C, DestTy);
241
242 // Zero extend the element to the right size.
243 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
244 DL);
245 assert(Src && "Constant folding cannot fail on plain integers");
246
247 // Shift it to the right place, depending on endianness.
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
250 DL);
251 assert(Src && "Constant folding cannot fail on plain integers");
252
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
254
255 // Mix it in.
256 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
257 assert(Elt && "Constant folding cannot fail on plain integers");
258 }
259 Result.push_back(Elt);
260 }
261 return ConstantVector::get(Result);
262 }
263
264 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
267
268 // Loop over each source value, expanding into multiple results.
269 for (unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element = C->getAggregateElement(i);
271
272 if (!Element) // Reject constantexpr elements.
273 return ConstantExpr::getBitCast(C, DestTy);
274
275 if (isa<UndefValue>(Element)) {
276 // Correctly Propagate undef values.
277 Result.append(Ratio, UndefValue::get(DstEltTy));
278 continue;
279 }
280
281 auto *Src = dyn_cast<ConstantInt>(Element);
282 if (!Src)
283 return ConstantExpr::getBitCast(C, DestTy);
284
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (unsigned j = 0; j != Ratio; ++j) {
287 // Shift the piece of the value into the right place, depending on
288 // endianness.
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
291
292 // Truncate and remember this piece.
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
294 }
295 }
296
297 return ConstantVector::get(Result);
298}
299
300} // end anonymous namespace
301
302/// If this constant is a constant offset from a global, return the global and
303/// the constant. Because of constantexprs, this function is recursive.
305 APInt &Offset, const DataLayout &DL,
306 DSOLocalEquivalent **DSOEquiv) {
307 if (DSOEquiv)
308 *DSOEquiv = nullptr;
309
310 // Trivial case, constant is the global.
311 if ((GV = dyn_cast<GlobalValue>(C))) {
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
318 if (DSOEquiv)
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
321 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
322 Offset = APInt(BitWidth, 0);
323 return true;
324 }
325
326 // Otherwise, if this isn't a constant expr, bail out.
327 auto *CE = dyn_cast<ConstantExpr>(C);
328 if (!CE) return false;
329
330 // Look through ptr->int and ptr->ptr casts.
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
334 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
335 DSOEquiv);
336
337 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
338 auto *GEP = dyn_cast<GEPOperator>(CE);
339 if (!GEP)
340 return false;
341
342 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
343 APInt TmpOffset(BitWidth, 0);
344
345 // If the base isn't a global+constant, we aren't either.
346 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
347 DSOEquiv))
348 return false;
349
350 // Otherwise, add any offset that our operands provide.
351 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
352 return false;
353
354 Offset = TmpOffset;
355 return true;
356}
357
359 const DataLayout &DL) {
360 do {
361 Type *SrcTy = C->getType();
362 if (SrcTy == DestTy)
363 return C;
364
365 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
367 if (!TypeSize::isKnownGE(SrcSize, DestSize))
368 return nullptr;
369
370 // Catch the obvious splat cases (since all-zeros can coerce non-integral
371 // pointers legally).
372 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
373 return Res;
374
375 // If the type sizes are the same and a cast is legal, just directly
376 // cast the constant.
377 // But be careful not to coerce non-integral pointers illegally.
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
380 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
381 Instruction::CastOps Cast = Instruction::BitCast;
382 // If we are going from a pointer to int or vice versa, we spell the cast
383 // differently.
384 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
387 Cast = Instruction::PtrToInt;
388
389 if (CastInst::castIsValid(Cast, C, DestTy))
390 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
391 }
392
393 // If this isn't an aggregate type, there is nothing we can do to drill down
394 // and find a bitcastable constant.
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
396 return nullptr;
397
398 // We're simulating a load through a pointer that was bitcast to point to
399 // a different type, so we can try to walk down through the initial
400 // elements of an aggregate to see if some part of the aggregate is
401 // castable to implement the "load" semantic model.
402 if (SrcTy->isStructTy()) {
403 // Struct types might have leading zero-length elements like [0 x i32],
404 // which are certainly not what we are looking for, so skip them.
405 unsigned Elem = 0;
406 Constant *ElemC;
407 do {
408 ElemC = C->getAggregateElement(Elem++);
409 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
410 C = ElemC;
411 } else {
412 // For non-byte-sized vector elements, the first element is not
413 // necessarily located at the vector base address.
414 if (auto *VT = dyn_cast<VectorType>(SrcTy))
415 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
416 return nullptr;
417
418 C = C->getAggregateElement(0u);
419 }
420 } while (C);
421
422 return nullptr;
423}
424
425namespace {
426
427/// Recursive helper to read bits out of global. C is the constant being copied
428/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
429/// results into and BytesLeft is the number of bytes left in
430/// the CurPtr buffer. DL is the DataLayout.
431bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
432 unsigned BytesLeft, const DataLayout &DL) {
433 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
434 "Out of range access");
435
436 // Reading type padding, return zero.
437 if (ByteOffset >= DL.getTypeStoreSize(C->getType()))
438 return true;
439
440 // If this element is zero or undefined, we can just return since *CurPtr is
441 // zero initialized.
443 return true;
444
445 if (auto *CI = dyn_cast<ConstantInt>(C)) {
446 if ((CI->getBitWidth() & 7) != 0)
447 return false;
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
450
451 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!DL.isLittleEndian())
454 n = IntBytes - n - 1;
455 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
456 ++ByteOffset;
457 }
458 return true;
459 }
460
461 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
462 if (CFP->getType()->isDoubleTy()) {
463 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
464 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
465 }
466 if (CFP->getType()->isFloatTy()){
467 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
468 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
469 }
470 if (CFP->getType()->isHalfTy()){
471 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
472 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
473 }
474 return false;
475 }
476
477 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
478 const StructLayout *SL = DL.getStructLayout(CS->getType());
479 unsigned Index = SL->getElementContainingOffset(ByteOffset);
480 uint64_t CurEltOffset = SL->getElementOffset(Index);
481 ByteOffset -= CurEltOffset;
482
483 while (true) {
484 // If the element access is to the element itself and not to tail padding,
485 // read the bytes from the element.
486 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
490 BytesLeft, DL))
491 return false;
492
493 ++Index;
494
495 // Check to see if we read from the last struct element, if so we're done.
496 if (Index == CS->getType()->getNumElements())
497 return true;
498
499 // If we read all of the bytes we needed from this element we're done.
500 uint64_t NextEltOffset = SL->getElementOffset(Index);
501
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
503 return true;
504
505 // Move to the next element of the struct.
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 ByteOffset = 0;
509 CurEltOffset = NextEltOffset;
510 }
511 // not reached.
512 }
513
516 uint64_t NumElts, EltSize;
517 Type *EltTy;
518 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize = DL.getTypeAllocSize(EltTy);
522 } else {
523 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
524 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
525 // TODO: For non-byte-sized vectors, current implementation assumes there is
526 // padding to the next byte boundary between elements.
527 if (!DL.typeSizeEqualsStoreSize(EltTy))
528 return false;
529
530 EltSize = DL.getTypeStoreSize(EltTy);
531 }
532 uint64_t Index = ByteOffset / EltSize;
533 uint64_t Offset = ByteOffset - Index * EltSize;
534
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
537 BytesLeft, DL))
538 return false;
539
540 uint64_t BytesWritten = EltSize - Offset;
541 assert(BytesWritten <= EltSize && "Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
543 return true;
544
545 Offset = 0;
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
548 }
549 return true;
550 }
551
552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
553 if (CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
555 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
556 BytesLeft, DL);
557 }
558 }
559
560 // Otherwise, unknown initializer type.
561 return false;
562}
563
564Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
565 int64_t Offset, const DataLayout &DL) {
566 // Bail out early. Not expect to load from scalable global variable.
567 if (isa<ScalableVectorType>(LoadTy))
568 return nullptr;
569
570 auto *IntType = dyn_cast<IntegerType>(LoadTy);
571
572 // If this isn't an integer load we can't fold it directly.
573 if (!IntType) {
574 // If this is a non-integer load, we can try folding it as an int load and
575 // then bitcast the result. This can be useful for union cases. Note
576 // that address spaces don't matter here since we're not going to result in
577 // an actual new load.
578 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
579 !LoadTy->isVectorTy())
580 return nullptr;
581
582 Type *MapTy = Type::getIntNTy(C->getContext(),
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
584 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
585 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
586 // Materializing a zero can be done trivially without a bitcast
587 return Constant::getNullValue(LoadTy);
588 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
589 Res = FoldBitCast(Res, CastTy, DL);
590 if (LoadTy->isPtrOrPtrVectorTy()) {
591 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
592 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
593 return Constant::getNullValue(LoadTy);
594 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
595 // Be careful not to replace a load of an addrspace value with an inttoptr here
596 return nullptr;
597 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
598 }
599 return Res;
600 }
601 return nullptr;
602 }
603
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
606 return nullptr;
607
608 // If we're not accessing anything in this constant, the result is undefined.
609 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
610 return PoisonValue::get(IntType);
611
612 // TODO: We should be able to support scalable types.
613 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
614 if (InitializerSize.isScalable())
615 return nullptr;
616
617 // If we're not accessing anything in this constant, the result is undefined.
618 if (Offset >= (int64_t)InitializerSize.getFixedValue())
619 return PoisonValue::get(IntType);
620
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
624
625 // If we're loading off the beginning of the global, some bytes may be valid.
626 if (Offset < 0) {
627 CurPtr += -Offset;
628 BytesLeft += Offset;
629 Offset = 0;
630 }
631
632 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
633 return nullptr;
634
635 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
636 if (DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
641 }
642 } else {
643 ResultVal = RawBytes[0];
644 for (unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal <<= 8;
646 ResultVal |= RawBytes[i];
647 }
648 }
649
650 return ConstantInt::get(IntType->getContext(), ResultVal);
651}
652
653} // anonymous namespace
654
655// If GV is a constant with an initializer read its representation starting
656// at Offset and return it as a constant array of unsigned char. Otherwise
657// return null.
660 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
661 return nullptr;
662
663 const DataLayout &DL = GV->getDataLayout();
664 Constant *Init = const_cast<Constant *>(GV->getInitializer());
665 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
666 if (InitSize < Offset)
667 return nullptr;
668
669 uint64_t NBytes = InitSize - Offset;
670 if (NBytes > UINT16_MAX)
671 // Bail for large initializers in excess of 64K to avoid allocating
672 // too much memory.
673 // Offset is assumed to be less than or equal than InitSize (this
674 // is enforced in ReadDataFromGlobal).
675 return nullptr;
676
677 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
678 unsigned char *CurPtr = RawBytes.data();
679
680 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
681 return nullptr;
682
683 return ConstantDataArray::get(GV->getContext(), RawBytes);
684}
685
686/// If this Offset points exactly to the start of an aggregate element, return
687/// that element, otherwise return nullptr.
689 const DataLayout &DL) {
690 if (Offset.isZero())
691 return Base;
692
694 return nullptr;
695
696 Type *ElemTy = Base->getType();
697 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
698 if (!Offset.isZero() || !Indices[0].isZero())
699 return nullptr;
700
701 Constant *C = Base;
702 for (const APInt &Index : drop_begin(Indices)) {
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
704 return nullptr;
705
706 C = C->getAggregateElement(Index.getZExtValue());
707 if (!C)
708 return nullptr;
709 }
710
711 return C;
712}
713
715 const APInt &Offset,
716 const DataLayout &DL) {
717 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
718 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
719 return Result;
720
721 // Explicitly check for out-of-bounds access, so we return poison even if the
722 // constant is a uniform value.
723 TypeSize Size = DL.getTypeAllocSize(C->getType());
724 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
725 return PoisonValue::get(Ty);
726
727 // Try an offset-independent fold of a uniform value.
728 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
729 return Result;
730
731 // Try hard to fold loads from bitcasted strange and non-type-safe things.
732 if (Offset.getSignificantBits() <= 64)
733 if (Constant *Result =
734 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
735 return Result;
736
737 return nullptr;
738}
739
744
747 const DataLayout &DL) {
748 // We can only fold loads from constant globals with a definitive initializer.
749 // Check this upfront, to skip expensive offset calculations.
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
752 return nullptr;
753
754 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
755 DL, Offset, /* AllowNonInbounds */ true));
756
757 if (C == GV)
758 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
759 Offset, DL))
760 return Result;
761
762 // If this load comes from anywhere in a uniform constant global, the value
763 // is always the same, regardless of the loaded offset.
764 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
765}
766
768 const DataLayout &DL) {
769 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
770 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
771}
772
774 const DataLayout &DL) {
775 if (isa<PoisonValue>(C))
776 return PoisonValue::get(Ty);
777 if (isa<UndefValue>(C))
778 return UndefValue::get(Ty);
779 // If padding is needed when storing C to memory, then it isn't considered as
780 // uniform.
781 if (!DL.typeSizeEqualsStoreSize(C->getType()))
782 return nullptr;
783 if (C->isNullValue() && !Ty->isX86_AMXTy())
784 return Constant::getNullValue(Ty);
785 if (C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
787 return Constant::getAllOnesValue(Ty);
788 return nullptr;
789}
790
791namespace {
792
793/// One of Op0/Op1 is a constant expression.
794/// Attempt to symbolically evaluate the result of a binary operator merging
795/// these together. If target data info is available, it is provided as DL,
796/// otherwise DL is null.
797Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
798 const DataLayout &DL) {
799 // SROA
800
801 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
802 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
803 // bits.
804
805 if (Opc == Instruction::And) {
806 KnownBits Known0 = computeKnownBits(Op0, DL);
807 KnownBits Known1 = computeKnownBits(Op1, DL);
808 if ((Known1.One | Known0.Zero).isAllOnes()) {
809 // All the bits of Op0 that the 'and' could be masking are already zero.
810 return Op0;
811 }
812 if ((Known0.One | Known1.Zero).isAllOnes()) {
813 // All the bits of Op1 that the 'and' could be masking are already zero.
814 return Op1;
815 }
816
817 Known0 &= Known1;
818 if (Known0.isConstant())
819 return ConstantInt::get(Op0->getType(), Known0.getConstant());
820 }
821
822 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
823 // constant. This happens frequently when iterating over a global array.
824 if (Opc == Instruction::Sub) {
825 GlobalValue *GV1, *GV2;
826 APInt Offs1, Offs2;
827
828 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
829 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
830 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
831
832 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
833 // PtrToInt may change the bitwidth so we have convert to the right size
834 // first.
835 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
836 Offs2.zextOrTrunc(OpSize));
837 }
838 }
839
840 return nullptr;
841}
842
843/// If array indices are not pointer-sized integers, explicitly cast them so
844/// that they aren't implicitly casted by the getelementptr.
845Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
846 Type *ResultTy, GEPNoWrapFlags NW,
847 std::optional<ConstantRange> InRange,
848 const DataLayout &DL, const TargetLibraryInfo *TLI) {
849 Type *IntIdxTy = DL.getIndexType(ResultTy);
850 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
851
852 bool Any = false;
854 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
855 if ((i == 1 ||
857 SrcElemTy, Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
859 Any = true;
860 Type *NewType =
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
863 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
864 DL);
865 if (!NewIdx)
866 return nullptr;
867 NewIdxs.push_back(NewIdx);
868 } else
869 NewIdxs.push_back(Ops[i]);
870 }
871
872 if (!Any)
873 return nullptr;
874
875 Constant *C =
876 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
877 return ConstantFoldConstant(C, DL, TLI);
878}
879
880/// If we can symbolically evaluate the GEP constant expression, do so.
881Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
883 const DataLayout &DL,
884 const TargetLibraryInfo *TLI) {
885 Type *SrcElemTy = GEP->getSourceElementType();
886 Type *ResTy = GEP->getType();
887 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
888 return nullptr;
889
890 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
891 GEP->getInRange(), DL, TLI))
892 return C;
893
894 Constant *Ptr = Ops[0];
895 if (!Ptr->getType()->isPointerTy())
896 return nullptr;
897
898 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
899
900 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
901 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
902 return nullptr;
903
904 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906 BitWidth,
907 DL.getIndexedOffsetInType(
908 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
909 /*isSigned=*/true, /*implicitTrunc=*/true);
910
911 std::optional<ConstantRange> InRange = GEP->getInRange();
912 if (InRange)
913 InRange = InRange->sextOrTrunc(BitWidth);
914
915 // If this is a GEP of a GEP, fold it all into a single GEP.
916 GEPNoWrapFlags NW = GEP->getNoWrapFlags();
917 bool Overflow = false;
918 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
919 NW &= GEP->getNoWrapFlags();
920
921 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
922
923 // Do not try the incorporate the sub-GEP if some index is not a number.
924 bool AllConstantInt = true;
925 for (Value *NestedOp : NestedOps)
926 if (!isa<ConstantInt>(NestedOp)) {
927 AllConstantInt = false;
928 break;
929 }
930 if (!AllConstantInt)
931 break;
932
933 // Adjust inrange offset and intersect inrange attributes
934 if (auto GEPRange = GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(BitWidth).subtract(Offset);
936 InRange =
937 InRange ? InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
938 }
939
940 Ptr = cast<Constant>(GEP->getOperand(0));
941 SrcElemTy = GEP->getSourceElementType();
942 Offset = Offset.sadd_ov(
943 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
944 /*isSigned=*/true, /*implicitTrunc=*/true),
945 Overflow);
946 }
947
948 // Preserving nusw (without inbounds) also requires that the offset
949 // additions did not overflow.
950 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
952
953 // If the base value for this address is a literal integer value, fold the
954 // getelementptr to the resulting integer value casted to the pointer type.
955 APInt BaseIntVal(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
956 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
957 if (CE->getOpcode() == Instruction::IntToPtr) {
958 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
959 BaseIntVal = Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
960 }
961 }
962
963 if ((Ptr->isNullValue() || BaseIntVal != 0) &&
964 !DL.mustNotIntroduceIntToPtr(Ptr->getType())) {
965
966 // If the index size is smaller than the pointer size, add to the low
967 // bits only.
968 BaseIntVal.insertBits(BaseIntVal.trunc(BitWidth) + Offset, 0);
969 Constant *C = ConstantInt::get(Ptr->getContext(), BaseIntVal);
970 return ConstantExpr::getIntToPtr(C, ResTy);
971 }
972
973 // Try to infer inbounds for GEPs of globals.
974 if (!NW.isInBounds() && Offset.isNonNegative()) {
975 bool CanBeNull, CanBeFreed;
976 uint64_t DerefBytes =
977 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
980 }
981
982 // nusw + nneg -> nuw
983 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
985
986 // Otherwise canonicalize this to a single ptradd.
987 LLVMContext &Ctx = Ptr->getContext();
989 ConstantInt::get(Ctx, Offset), NW,
990 InRange);
991}
992
993/// Attempt to constant fold an instruction with the
994/// specified opcode and operands. If successful, the constant result is
995/// returned, if not, null is returned. Note that this function can fail when
996/// attempting to fold instructions like loads and stores, which have no
997/// constant expression form.
998Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1000 const DataLayout &DL,
1001 const TargetLibraryInfo *TLI,
1002 bool AllowNonDeterministic) {
1003 Type *DestTy = InstOrCE->getType();
1004
1005 if (Instruction::isUnaryOp(Opcode))
1006 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1007
1008 if (Instruction::isBinaryOp(Opcode)) {
1009 switch (Opcode) {
1010 default:
1011 break;
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1017 // Handle floating point instructions separately to account for denormals
1018 // TODO: If a constant expression is being folded rather than an
1019 // instruction, denormals will not be flushed/treated as zero
1020 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1021 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1022 AllowNonDeterministic);
1023 }
1024 }
1025 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1026 }
1027
1028 if (Instruction::isCast(Opcode))
1029 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1030
1031 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1032 Type *SrcElemTy = GEP->getSourceElementType();
1034 return nullptr;
1035
1036 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1037 return C;
1038
1039 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1040 GEP->getNoWrapFlags(),
1041 GEP->getInRange());
1042 }
1043
1044 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1045 return CE->getWithOperands(Ops);
1046
1047 switch (Opcode) {
1048 default: return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1051 auto *C = cast<CmpInst>(InstOrCE);
1052 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1053 DL, TLI, C);
1054 }
1055 case Instruction::Freeze:
1056 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1057 case Instruction::Call:
1058 if (auto *F = dyn_cast<Function>(Ops.back())) {
1059 const auto *Call = cast<CallBase>(InstOrCE);
1061 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1062 AllowNonDeterministic);
1063 }
1064 return nullptr;
1065 case Instruction::Select:
1066 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1071 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1072 case Instruction::InsertElement:
1073 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1074 case Instruction::InsertValue:
1076 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1077 case Instruction::ShuffleVector:
1079 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1080 case Instruction::Load: {
1081 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1082 if (LI->isVolatile())
1083 return nullptr;
1084 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1085 }
1086 }
1087}
1088
1089} // end anonymous namespace
1090
1091//===----------------------------------------------------------------------===//
1092// Constant Folding public APIs
1093//===----------------------------------------------------------------------===//
1094
1095namespace {
1096
1097Constant *
1098ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1099 const TargetLibraryInfo *TLI,
1102 return const_cast<Constant *>(C);
1103
1105 for (const Use &OldU : C->operands()) {
1106 Constant *OldC = cast<Constant>(&OldU);
1107 Constant *NewC = OldC;
1108 // Recursively fold the ConstantExpr's operands. If we have already folded
1109 // a ConstantExpr, we don't have to process it again.
1110 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1111 auto It = FoldedOps.find(OldC);
1112 if (It == FoldedOps.end()) {
1113 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1114 FoldedOps.insert({OldC, NewC});
1115 } else {
1116 NewC = It->second;
1117 }
1118 }
1119 Ops.push_back(NewC);
1120 }
1121
1122 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1123 if (Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1125 return Res;
1126 return const_cast<Constant *>(C);
1127 }
1128
1130 return ConstantVector::get(Ops);
1131}
1132
1133} // end anonymous namespace
1134
1136 const DataLayout &DL,
1137 const TargetLibraryInfo *TLI) {
1138 // Handle PHI nodes quickly here...
1139 if (auto *PN = dyn_cast<PHINode>(I)) {
1140 Constant *CommonValue = nullptr;
1141
1143 for (Value *Incoming : PN->incoming_values()) {
1144 // If the incoming value is undef then skip it. Note that while we could
1145 // skip the value if it is equal to the phi node itself we choose not to
1146 // because that would break the rule that constant folding only applies if
1147 // all operands are constants.
1149 continue;
1150 // If the incoming value is not a constant, then give up.
1151 auto *C = dyn_cast<Constant>(Incoming);
1152 if (!C)
1153 return nullptr;
1154 // Fold the PHI's operands.
1155 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1156 // If the incoming value is a different constant to
1157 // the one we saw previously, then give up.
1158 if (CommonValue && C != CommonValue)
1159 return nullptr;
1160 CommonValue = C;
1161 }
1162
1163 // If we reach here, all incoming values are the same constant or undef.
1164 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1165 }
1166
1167 // Scan the operand list, checking to see if they are all constants, if so,
1168 // hand off to ConstantFoldInstOperandsImpl.
1169 if (!all_of(I->operands(), [](const Use &U) { return isa<Constant>(U); }))
1170 return nullptr;
1171
1174 for (const Use &OpU : I->operands()) {
1175 auto *Op = cast<Constant>(&OpU);
1176 // Fold the Instruction's operands.
1177 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1178 Ops.push_back(Op);
1179 }
1180
1181 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1182}
1183
1185 const TargetLibraryInfo *TLI) {
1187 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1188}
1189
1192 const DataLayout &DL,
1193 const TargetLibraryInfo *TLI,
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1196 AllowNonDeterministic);
1197}
1198
1200 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1201 const TargetLibraryInfo *TLI, const Instruction *I) {
1202 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1203 // fold: icmp (inttoptr x), null -> icmp x, 0
1204 // fold: icmp null, (inttoptr x) -> icmp 0, x
1205 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1206 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1207 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1208 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1209 //
1210 // FIXME: The following comment is out of data and the DataLayout is here now.
1211 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1212 // around to know if bit truncation is happening.
1213 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1214 if (Ops1->isNullValue()) {
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1217 // Convert the integer value to the right size to ensure we get the
1218 // proper extension or truncation.
1219 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1220 /*IsSigned*/ false, DL)) {
1221 Constant *Null = Constant::getNullValue(C->getType());
1222 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1223 }
1224 }
1225
1226 // Only do this transformation if the int is intptrty in size, otherwise
1227 // there is a truncation or extension that we aren't modeling.
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1231 Constant *C = CE0->getOperand(0);
1232 Constant *Null = Constant::getNullValue(C->getType());
1233 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1234 }
1235 }
1236 }
1237
1238 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1242
1243 // Convert the integer value to the right size to ensure we get the
1244 // proper extension or truncation.
1245 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1246 /*IsSigned*/ false, DL);
1247 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1248 /*IsSigned*/ false, DL);
1249 if (C0 && C1)
1250 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1251 }
1252
1253 // Only do this transformation if the int is intptrty in size, otherwise
1254 // there is a truncation or extension that we aren't modeling.
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1261 }
1262 }
1263 }
1264 }
1265
1266 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1267 // offset1 pred offset2, for the case where the offset is inbounds. This
1268 // only works for equality and unsigned comparison, as inbounds permits
1269 // crossing the sign boundary. However, the offset comparison itself is
1270 // signed.
1271 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1272 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1273 APInt Offset0(IndexWidth, 0);
1274 bool IsEqPred = ICmpInst::isEquality(Predicate);
1275 Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets(
1276 DL, Offset0, /*AllowNonInbounds=*/IsEqPred,
1277 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1278 /*LookThroughIntToPtr=*/IsEqPred);
1279 APInt Offset1(IndexWidth, 0);
1280 Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets(
1281 DL, Offset1, /*AllowNonInbounds=*/IsEqPred,
1282 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1283 /*LookThroughIntToPtr=*/IsEqPred);
1284 if (Stripped0 == Stripped1)
1285 return ConstantInt::getBool(
1286 Ops0->getContext(),
1287 ICmpInst::compare(Offset0, Offset1,
1288 ICmpInst::getSignedPredicate(Predicate)));
1289 }
1290 } else if (isa<ConstantExpr>(Ops1)) {
1291 // If RHS is a constant expression, but the left side isn't, swap the
1292 // operands and try again.
1293 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1294 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1295 }
1296
1297 if (CmpInst::isFPPredicate(Predicate)) {
1298 // Flush any denormal constant float input according to denormal handling
1299 // mode.
1300 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1301 if (!Ops0)
1302 return nullptr;
1303 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1304 if (!Ops1)
1305 return nullptr;
1306 }
1307
1308 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1309}
1310
1312 const DataLayout &DL) {
1314
1315 return ConstantFoldUnaryInstruction(Opcode, Op);
1316}
1317
1319 Constant *RHS,
1320 const DataLayout &DL) {
1322 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1323 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1324 return C;
1325
1327 return ConstantExpr::get(Opcode, LHS, RHS);
1328 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1329}
1330
1333 switch (Mode) {
1335 return nullptr;
1336 case DenormalMode::IEEE:
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1340 Ty->getContext(),
1343 return ConstantFP::get(Ty->getContext(),
1344 APFloat::getZero(APF.getSemantics(), false));
1345 default:
1346 break;
1347 }
1348
1349 llvm_unreachable("unknown denormal mode");
1350}
1351
1352/// Return the denormal mode that can be assumed when executing a floating point
1353/// operation at \p CtxI.
1355 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1356 return DenormalMode::getDynamic();
1357 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1358}
1359
1361 const Instruction *Inst,
1362 bool IsOutput) {
1363 const APFloat &APF = CFP->getValueAPF();
1364 if (!APF.isDenormal())
1365 return CFP;
1366
1368 return flushDenormalConstant(CFP->getType(), APF,
1369 IsOutput ? Mode.Output : Mode.Input);
1370}
1371
1373 bool IsOutput) {
1374 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1375 return flushDenormalConstantFP(CFP, Inst, IsOutput);
1376
1378 return Operand;
1379
1380 Type *Ty = Operand->getType();
1381 VectorType *VecTy = dyn_cast<VectorType>(Ty);
1382 if (VecTy) {
1383 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1384 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1385 if (!Folded)
1386 return nullptr;
1387 return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1388 }
1389
1390 Ty = VecTy->getElementType();
1391 }
1392
1393 if (isa<ConstantExpr>(Operand))
1394 return Operand;
1395
1396 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1398 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1399 Constant *Element = CV->getAggregateElement(i);
1400 if (isa<UndefValue>(Element)) {
1401 NewElts.push_back(Element);
1402 continue;
1403 }
1404
1405 ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1406 if (!CFP)
1407 return nullptr;
1408
1409 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1410 if (!Folded)
1411 return nullptr;
1412 NewElts.push_back(Folded);
1413 }
1414
1415 return ConstantVector::get(NewElts);
1416 }
1417
1418 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1420 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(I);
1422 if (!Elt.isDenormal()) {
1423 NewElts.push_back(ConstantFP::get(Ty, Elt));
1424 } else {
1425 DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1426 ConstantFP *Folded =
1427 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1428 if (!Folded)
1429 return nullptr;
1430 NewElts.push_back(Folded);
1431 }
1432 }
1433
1434 return ConstantVector::get(NewElts);
1435 }
1436
1437 return nullptr;
1438}
1439
1441 Constant *RHS, const DataLayout &DL,
1442 const Instruction *I,
1443 bool AllowNonDeterministic) {
1444 if (Instruction::isBinaryOp(Opcode)) {
1445 // Flush denormal inputs if needed.
1446 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1447 if (!Op0)
1448 return nullptr;
1449 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1450 if (!Op1)
1451 return nullptr;
1452
1453 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1454 // may change due to future optimization. Don't constant fold them if
1455 // non-deterministic results are not allowed.
1456 if (!AllowNonDeterministic)
1458 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() || FP->hasAllowReciprocal())
1460 return nullptr;
1461
1462 // Calculate constant result.
1463 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1464 if (!C)
1465 return nullptr;
1466
1467 // Flush denormal output if needed.
1468 C = FlushFPConstant(C, I, /* IsOutput */ true);
1469 if (!C)
1470 return nullptr;
1471
1472 // The precise NaN value is non-deterministic.
1473 if (!AllowNonDeterministic && C->isNaN())
1474 return nullptr;
1475
1476 return C;
1477 }
1478 // If instruction lacks a parent/function and the denormal mode cannot be
1479 // determined, use the default (IEEE).
1480 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1481}
1482
1484 Type *DestTy, const DataLayout &DL) {
1485 assert(Instruction::isCast(Opcode));
1486
1487 if (auto *CE = dyn_cast<ConstantExpr>(C))
1488 if (CE->isCast())
1489 if (unsigned NewOp = CastInst::isEliminableCastPair(
1490 Instruction::CastOps(CE->getOpcode()),
1491 Instruction::CastOps(Opcode), CE->getOperand(0)->getType(),
1492 C->getType(), DestTy, &DL))
1493 return ConstantFoldCastOperand(NewOp, CE->getOperand(0), DestTy, DL);
1494
1495 switch (Opcode) {
1496 default:
1497 llvm_unreachable("Missing case");
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1500 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1501 Constant *FoldedValue = nullptr;
1502 // If the input is an inttoptr, eliminate the pair. This requires knowing
1503 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1505 // zext/trunc the inttoptr to pointer/address size.
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ? DL.getAddressType(CE->getType())
1508 : DL.getIntPtrType(CE->getType());
1509 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), MidTy,
1510 /*IsSigned=*/false, DL);
1511 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1512 // If we have GEP, we can perform the following folds:
1513 // (ptrtoint/ptrtoaddr (gep null, x)) -> x
1514 // (ptrtoint/ptrtoaddr (gep (gep null, x), y) -> x + y, etc.
1515 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1516 APInt BaseOffset(BitWidth, 0);
1517 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1518 DL, BaseOffset, /*AllowNonInbounds=*/true));
1519 if (Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1521 } else {
1522 // ptrtoint/ptrtoaddr (gep i8, Ptr, (sub 0, V))
1523 // -> sub (ptrtoint/ptrtoaddr Ptr), V
1524 if (GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1526 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1527 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1528 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1529 if (Sub && Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1532 FoldedValue = ConstantExpr::getSub(
1533 ConstantExpr::getCast(Opcode, Ptr, IntIdxTy),
1534 Sub->getOperand(1));
1535 }
1536 }
1537 }
1538 if (FoldedValue) {
1539 // Do a zext or trunc to get to the ptrtoint/ptrtoaddr dest size.
1540 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1541 DL);
1542 }
1543 }
1544 break;
1545 case Instruction::IntToPtr:
1546 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1547 // the int size is >= the ptr size and the address spaces are the same.
1548 // This requires knowing the width of a pointer, so it can't be done in
1549 // ConstantExpr::getCast.
1550 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1555
1556 if (MidIntSize >= SrcPtrSize) {
1557 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1558 if (SrcAS == DestTy->getPointerAddressSpace())
1559 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1560 }
1561 }
1562 }
1563 break;
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1574 break;
1575 case Instruction::BitCast:
1576 return FoldBitCast(C, DestTy, DL);
1577 }
1578
1580 return ConstantExpr::getCast(Opcode, C, DestTy);
1581 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1582}
1583
1585 bool IsSigned, const DataLayout &DL) {
1586 Type *SrcTy = C->getType();
1587 if (SrcTy == DestTy)
1588 return C;
1589 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1590 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1591 if (IsSigned)
1592 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1593 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1594}
1595
1596//===----------------------------------------------------------------------===//
1597// Constant Folding for Calls
1598//
1599
1601 if (Call->isNoBuiltin())
1602 return false;
1603 if (Call->getFunctionType() != F->getFunctionType())
1604 return false;
1605
1606 // Allow FP calls (both libcalls and intrinsics) to avoid being folded.
1607 // This can be useful for GPU targets or in cross-compilation scenarios
1608 // when the exact target FP behaviour is required, and the host compiler's
1609 // behaviour may be slightly different from the device's run-time behaviour.
1610 if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() ||
1611 any_of(F->args(), [](const Argument &Arg) {
1612 return Arg.getType()->isFloatingPointTy();
1613 })))
1614 return false;
1615
1616 switch (F->getIntrinsicID()) {
1617 // Operations that do not operate floating-point numbers and do not depend on
1618 // FP environment can be folded even in strictfp functions.
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_interleave3:
1663 case Intrinsic::vector_interleave4:
1664 case Intrinsic::vector_interleave5:
1665 case Intrinsic::vector_interleave6:
1666 case Intrinsic::vector_interleave7:
1667 case Intrinsic::vector_interleave8:
1668 case Intrinsic::vector_deinterleave2:
1669 case Intrinsic::vector_deinterleave3:
1670 case Intrinsic::vector_deinterleave4:
1671 case Intrinsic::vector_deinterleave5:
1672 case Intrinsic::vector_deinterleave6:
1673 case Intrinsic::vector_deinterleave7:
1674 case Intrinsic::vector_deinterleave8:
1675 // Target intrinsics
1676 case Intrinsic::amdgcn_perm:
1677 case Intrinsic::amdgcn_wave_reduce_umin:
1678 case Intrinsic::amdgcn_wave_reduce_umax:
1679 case Intrinsic::amdgcn_wave_reduce_max:
1680 case Intrinsic::amdgcn_wave_reduce_min:
1681 case Intrinsic::amdgcn_wave_reduce_add:
1682 case Intrinsic::amdgcn_wave_reduce_sub:
1683 case Intrinsic::amdgcn_wave_reduce_and:
1684 case Intrinsic::amdgcn_wave_reduce_or:
1685 case Intrinsic::amdgcn_wave_reduce_xor:
1686 case Intrinsic::amdgcn_s_wqm:
1687 case Intrinsic::amdgcn_s_quadmask:
1688 case Intrinsic::amdgcn_s_bitreplicate:
1689 case Intrinsic::arm_mve_vctp8:
1690 case Intrinsic::arm_mve_vctp16:
1691 case Intrinsic::arm_mve_vctp32:
1692 case Intrinsic::arm_mve_vctp64:
1693 case Intrinsic::aarch64_sve_convert_from_svbool:
1694 case Intrinsic::wasm_alltrue:
1695 case Intrinsic::wasm_anytrue:
1696 case Intrinsic::wasm_dot:
1697 // WebAssembly float semantics are always known
1698 case Intrinsic::wasm_trunc_signed:
1699 case Intrinsic::wasm_trunc_unsigned:
1700 return true;
1701
1702 // Floating point operations cannot be folded in strictfp functions in
1703 // general case. They can be folded if FP environment is known to compiler.
1704 case Intrinsic::minnum:
1705 case Intrinsic::maxnum:
1706 case Intrinsic::minimum:
1707 case Intrinsic::maximum:
1708 case Intrinsic::minimumnum:
1709 case Intrinsic::maximumnum:
1710 case Intrinsic::log:
1711 case Intrinsic::log2:
1712 case Intrinsic::log10:
1713 case Intrinsic::exp:
1714 case Intrinsic::exp2:
1715 case Intrinsic::exp10:
1716 case Intrinsic::sqrt:
1717 case Intrinsic::sin:
1718 case Intrinsic::cos:
1719 case Intrinsic::sincos:
1720 case Intrinsic::sinh:
1721 case Intrinsic::cosh:
1722 case Intrinsic::atan:
1723 case Intrinsic::pow:
1724 case Intrinsic::powi:
1725 case Intrinsic::ldexp:
1726 case Intrinsic::fma:
1727 case Intrinsic::fmuladd:
1728 case Intrinsic::frexp:
1729 case Intrinsic::fptoui_sat:
1730 case Intrinsic::fptosi_sat:
1731 case Intrinsic::convert_from_fp16:
1732 case Intrinsic::convert_to_fp16:
1733 case Intrinsic::amdgcn_cos:
1734 case Intrinsic::amdgcn_cubeid:
1735 case Intrinsic::amdgcn_cubema:
1736 case Intrinsic::amdgcn_cubesc:
1737 case Intrinsic::amdgcn_cubetc:
1738 case Intrinsic::amdgcn_fmul_legacy:
1739 case Intrinsic::amdgcn_fma_legacy:
1740 case Intrinsic::amdgcn_fract:
1741 case Intrinsic::amdgcn_sin:
1742 // The intrinsics below depend on rounding mode in MXCSR.
1743 case Intrinsic::x86_sse_cvtss2si:
1744 case Intrinsic::x86_sse_cvtss2si64:
1745 case Intrinsic::x86_sse_cvttss2si:
1746 case Intrinsic::x86_sse_cvttss2si64:
1747 case Intrinsic::x86_sse2_cvtsd2si:
1748 case Intrinsic::x86_sse2_cvtsd2si64:
1749 case Intrinsic::x86_sse2_cvttsd2si:
1750 case Intrinsic::x86_sse2_cvttsd2si64:
1751 case Intrinsic::x86_avx512_vcvtss2si32:
1752 case Intrinsic::x86_avx512_vcvtss2si64:
1753 case Intrinsic::x86_avx512_cvttss2si:
1754 case Intrinsic::x86_avx512_cvttss2si64:
1755 case Intrinsic::x86_avx512_vcvtsd2si32:
1756 case Intrinsic::x86_avx512_vcvtsd2si64:
1757 case Intrinsic::x86_avx512_cvttsd2si:
1758 case Intrinsic::x86_avx512_cvttsd2si64:
1759 case Intrinsic::x86_avx512_vcvtss2usi32:
1760 case Intrinsic::x86_avx512_vcvtss2usi64:
1761 case Intrinsic::x86_avx512_cvttss2usi:
1762 case Intrinsic::x86_avx512_cvttss2usi64:
1763 case Intrinsic::x86_avx512_vcvtsd2usi32:
1764 case Intrinsic::x86_avx512_vcvtsd2usi64:
1765 case Intrinsic::x86_avx512_cvttsd2usi:
1766 case Intrinsic::x86_avx512_cvttsd2usi64:
1767
1768 // NVVM FMax intrinsics
1769 case Intrinsic::nvvm_fmax_d:
1770 case Intrinsic::nvvm_fmax_f:
1771 case Intrinsic::nvvm_fmax_ftz_f:
1772 case Intrinsic::nvvm_fmax_ftz_nan_f:
1773 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1775 case Intrinsic::nvvm_fmax_nan_f:
1776 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1777 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1778
1779 // NVVM FMin intrinsics
1780 case Intrinsic::nvvm_fmin_d:
1781 case Intrinsic::nvvm_fmin_f:
1782 case Intrinsic::nvvm_fmin_ftz_f:
1783 case Intrinsic::nvvm_fmin_ftz_nan_f:
1784 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1785 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1786 case Intrinsic::nvvm_fmin_nan_f:
1787 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1788 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1789
1790 // NVVM float/double to int32/uint32 conversion intrinsics
1791 case Intrinsic::nvvm_f2i_rm:
1792 case Intrinsic::nvvm_f2i_rn:
1793 case Intrinsic::nvvm_f2i_rp:
1794 case Intrinsic::nvvm_f2i_rz:
1795 case Intrinsic::nvvm_f2i_rm_ftz:
1796 case Intrinsic::nvvm_f2i_rn_ftz:
1797 case Intrinsic::nvvm_f2i_rp_ftz:
1798 case Intrinsic::nvvm_f2i_rz_ftz:
1799 case Intrinsic::nvvm_f2ui_rm:
1800 case Intrinsic::nvvm_f2ui_rn:
1801 case Intrinsic::nvvm_f2ui_rp:
1802 case Intrinsic::nvvm_f2ui_rz:
1803 case Intrinsic::nvvm_f2ui_rm_ftz:
1804 case Intrinsic::nvvm_f2ui_rn_ftz:
1805 case Intrinsic::nvvm_f2ui_rp_ftz:
1806 case Intrinsic::nvvm_f2ui_rz_ftz:
1807 case Intrinsic::nvvm_d2i_rm:
1808 case Intrinsic::nvvm_d2i_rn:
1809 case Intrinsic::nvvm_d2i_rp:
1810 case Intrinsic::nvvm_d2i_rz:
1811 case Intrinsic::nvvm_d2ui_rm:
1812 case Intrinsic::nvvm_d2ui_rn:
1813 case Intrinsic::nvvm_d2ui_rp:
1814 case Intrinsic::nvvm_d2ui_rz:
1815
1816 // NVVM float/double to int64/uint64 conversion intrinsics
1817 case Intrinsic::nvvm_f2ll_rm:
1818 case Intrinsic::nvvm_f2ll_rn:
1819 case Intrinsic::nvvm_f2ll_rp:
1820 case Intrinsic::nvvm_f2ll_rz:
1821 case Intrinsic::nvvm_f2ll_rm_ftz:
1822 case Intrinsic::nvvm_f2ll_rn_ftz:
1823 case Intrinsic::nvvm_f2ll_rp_ftz:
1824 case Intrinsic::nvvm_f2ll_rz_ftz:
1825 case Intrinsic::nvvm_f2ull_rm:
1826 case Intrinsic::nvvm_f2ull_rn:
1827 case Intrinsic::nvvm_f2ull_rp:
1828 case Intrinsic::nvvm_f2ull_rz:
1829 case Intrinsic::nvvm_f2ull_rm_ftz:
1830 case Intrinsic::nvvm_f2ull_rn_ftz:
1831 case Intrinsic::nvvm_f2ull_rp_ftz:
1832 case Intrinsic::nvvm_f2ull_rz_ftz:
1833 case Intrinsic::nvvm_d2ll_rm:
1834 case Intrinsic::nvvm_d2ll_rn:
1835 case Intrinsic::nvvm_d2ll_rp:
1836 case Intrinsic::nvvm_d2ll_rz:
1837 case Intrinsic::nvvm_d2ull_rm:
1838 case Intrinsic::nvvm_d2ull_rn:
1839 case Intrinsic::nvvm_d2ull_rp:
1840 case Intrinsic::nvvm_d2ull_rz:
1841
1842 // NVVM math intrinsics:
1843 case Intrinsic::nvvm_ceil_d:
1844 case Intrinsic::nvvm_ceil_f:
1845 case Intrinsic::nvvm_ceil_ftz_f:
1846
1847 case Intrinsic::nvvm_fabs:
1848 case Intrinsic::nvvm_fabs_ftz:
1849
1850 case Intrinsic::nvvm_floor_d:
1851 case Intrinsic::nvvm_floor_f:
1852 case Intrinsic::nvvm_floor_ftz_f:
1853
1854 case Intrinsic::nvvm_rcp_rm_d:
1855 case Intrinsic::nvvm_rcp_rm_f:
1856 case Intrinsic::nvvm_rcp_rm_ftz_f:
1857 case Intrinsic::nvvm_rcp_rn_d:
1858 case Intrinsic::nvvm_rcp_rn_f:
1859 case Intrinsic::nvvm_rcp_rn_ftz_f:
1860 case Intrinsic::nvvm_rcp_rp_d:
1861 case Intrinsic::nvvm_rcp_rp_f:
1862 case Intrinsic::nvvm_rcp_rp_ftz_f:
1863 case Intrinsic::nvvm_rcp_rz_d:
1864 case Intrinsic::nvvm_rcp_rz_f:
1865 case Intrinsic::nvvm_rcp_rz_ftz_f:
1866
1867 case Intrinsic::nvvm_round_d:
1868 case Intrinsic::nvvm_round_f:
1869 case Intrinsic::nvvm_round_ftz_f:
1870
1871 case Intrinsic::nvvm_saturate_d:
1872 case Intrinsic::nvvm_saturate_f:
1873 case Intrinsic::nvvm_saturate_ftz_f:
1874
1875 case Intrinsic::nvvm_sqrt_f:
1876 case Intrinsic::nvvm_sqrt_rn_d:
1877 case Intrinsic::nvvm_sqrt_rn_f:
1878 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1879 return !Call->isStrictFP();
1880
1881 // NVVM add intrinsics with explicit rounding modes
1882 case Intrinsic::nvvm_add_rm_d:
1883 case Intrinsic::nvvm_add_rn_d:
1884 case Intrinsic::nvvm_add_rp_d:
1885 case Intrinsic::nvvm_add_rz_d:
1886 case Intrinsic::nvvm_add_rm_f:
1887 case Intrinsic::nvvm_add_rn_f:
1888 case Intrinsic::nvvm_add_rp_f:
1889 case Intrinsic::nvvm_add_rz_f:
1890 case Intrinsic::nvvm_add_rm_ftz_f:
1891 case Intrinsic::nvvm_add_rn_ftz_f:
1892 case Intrinsic::nvvm_add_rp_ftz_f:
1893 case Intrinsic::nvvm_add_rz_ftz_f:
1894
1895 // NVVM div intrinsics with explicit rounding modes
1896 case Intrinsic::nvvm_div_rm_d:
1897 case Intrinsic::nvvm_div_rn_d:
1898 case Intrinsic::nvvm_div_rp_d:
1899 case Intrinsic::nvvm_div_rz_d:
1900 case Intrinsic::nvvm_div_rm_f:
1901 case Intrinsic::nvvm_div_rn_f:
1902 case Intrinsic::nvvm_div_rp_f:
1903 case Intrinsic::nvvm_div_rz_f:
1904 case Intrinsic::nvvm_div_rm_ftz_f:
1905 case Intrinsic::nvvm_div_rn_ftz_f:
1906 case Intrinsic::nvvm_div_rp_ftz_f:
1907 case Intrinsic::nvvm_div_rz_ftz_f:
1908
1909 // NVVM mul intrinsics with explicit rounding modes
1910 case Intrinsic::nvvm_mul_rm_d:
1911 case Intrinsic::nvvm_mul_rn_d:
1912 case Intrinsic::nvvm_mul_rp_d:
1913 case Intrinsic::nvvm_mul_rz_d:
1914 case Intrinsic::nvvm_mul_rm_f:
1915 case Intrinsic::nvvm_mul_rn_f:
1916 case Intrinsic::nvvm_mul_rp_f:
1917 case Intrinsic::nvvm_mul_rz_f:
1918 case Intrinsic::nvvm_mul_rm_ftz_f:
1919 case Intrinsic::nvvm_mul_rn_ftz_f:
1920 case Intrinsic::nvvm_mul_rp_ftz_f:
1921 case Intrinsic::nvvm_mul_rz_ftz_f:
1922
1923 // NVVM fma intrinsics with explicit rounding modes
1924 case Intrinsic::nvvm_fma_rm_d:
1925 case Intrinsic::nvvm_fma_rn_d:
1926 case Intrinsic::nvvm_fma_rp_d:
1927 case Intrinsic::nvvm_fma_rz_d:
1928 case Intrinsic::nvvm_fma_rm_f:
1929 case Intrinsic::nvvm_fma_rn_f:
1930 case Intrinsic::nvvm_fma_rp_f:
1931 case Intrinsic::nvvm_fma_rz_f:
1932 case Intrinsic::nvvm_fma_rm_ftz_f:
1933 case Intrinsic::nvvm_fma_rn_ftz_f:
1934 case Intrinsic::nvvm_fma_rp_ftz_f:
1935 case Intrinsic::nvvm_fma_rz_ftz_f:
1936
1937 // Sign operations are actually bitwise operations, they do not raise
1938 // exceptions even for SNANs.
1939 case Intrinsic::fabs:
1940 case Intrinsic::copysign:
1941 case Intrinsic::is_fpclass:
1942 // Non-constrained variants of rounding operations means default FP
1943 // environment, they can be folded in any case.
1944 case Intrinsic::ceil:
1945 case Intrinsic::floor:
1946 case Intrinsic::round:
1947 case Intrinsic::roundeven:
1948 case Intrinsic::trunc:
1949 case Intrinsic::nearbyint:
1950 case Intrinsic::rint:
1951 case Intrinsic::canonicalize:
1952
1953 // Constrained intrinsics can be folded if FP environment is known
1954 // to compiler.
1955 case Intrinsic::experimental_constrained_fma:
1956 case Intrinsic::experimental_constrained_fmuladd:
1957 case Intrinsic::experimental_constrained_fadd:
1958 case Intrinsic::experimental_constrained_fsub:
1959 case Intrinsic::experimental_constrained_fmul:
1960 case Intrinsic::experimental_constrained_fdiv:
1961 case Intrinsic::experimental_constrained_frem:
1962 case Intrinsic::experimental_constrained_ceil:
1963 case Intrinsic::experimental_constrained_floor:
1964 case Intrinsic::experimental_constrained_round:
1965 case Intrinsic::experimental_constrained_roundeven:
1966 case Intrinsic::experimental_constrained_trunc:
1967 case Intrinsic::experimental_constrained_nearbyint:
1968 case Intrinsic::experimental_constrained_rint:
1969 case Intrinsic::experimental_constrained_fcmp:
1970 case Intrinsic::experimental_constrained_fcmps:
1971 return true;
1972 default:
1973 return false;
1974 case Intrinsic::not_intrinsic: break;
1975 }
1976
1977 if (!F->hasName() || Call->isStrictFP())
1978 return false;
1979
1980 // In these cases, the check of the length is required. We don't want to
1981 // return true for a name like "cos\0blah" which strcmp would return equal to
1982 // "cos", but has length 8.
1983 StringRef Name = F->getName();
1984 switch (Name[0]) {
1985 default:
1986 return false;
1987 case 'a':
1988 return Name == "acos" || Name == "acosf" ||
1989 Name == "asin" || Name == "asinf" ||
1990 Name == "atan" || Name == "atanf" ||
1991 Name == "atan2" || Name == "atan2f";
1992 case 'c':
1993 return Name == "ceil" || Name == "ceilf" ||
1994 Name == "cos" || Name == "cosf" ||
1995 Name == "cosh" || Name == "coshf";
1996 case 'e':
1997 return Name == "exp" || Name == "expf" || Name == "exp2" ||
1998 Name == "exp2f" || Name == "erf" || Name == "erff";
1999 case 'f':
2000 return Name == "fabs" || Name == "fabsf" ||
2001 Name == "floor" || Name == "floorf" ||
2002 Name == "fmod" || Name == "fmodf";
2003 case 'i':
2004 return Name == "ilogb" || Name == "ilogbf";
2005 case 'l':
2006 return Name == "log" || Name == "logf" || Name == "logl" ||
2007 Name == "log2" || Name == "log2f" || Name == "log10" ||
2008 Name == "log10f" || Name == "logb" || Name == "logbf" ||
2009 Name == "log1p" || Name == "log1pf";
2010 case 'n':
2011 return Name == "nearbyint" || Name == "nearbyintf";
2012 case 'p':
2013 return Name == "pow" || Name == "powf";
2014 case 'r':
2015 return Name == "remainder" || Name == "remainderf" ||
2016 Name == "rint" || Name == "rintf" ||
2017 Name == "round" || Name == "roundf";
2018 case 's':
2019 return Name == "sin" || Name == "sinf" ||
2020 Name == "sinh" || Name == "sinhf" ||
2021 Name == "sqrt" || Name == "sqrtf";
2022 case 't':
2023 return Name == "tan" || Name == "tanf" ||
2024 Name == "tanh" || Name == "tanhf" ||
2025 Name == "trunc" || Name == "truncf";
2026 case '_':
2027 // Check for various function names that get used for the math functions
2028 // when the header files are preprocessed with the macro
2029 // __FINITE_MATH_ONLY__ enabled.
2030 // The '12' here is the length of the shortest name that can match.
2031 // We need to check the size before looking at Name[1] and Name[2]
2032 // so we may as well check a limit that will eliminate mismatches.
2033 if (Name.size() < 12 || Name[1] != '_')
2034 return false;
2035 switch (Name[2]) {
2036 default:
2037 return false;
2038 case 'a':
2039 return Name == "__acos_finite" || Name == "__acosf_finite" ||
2040 Name == "__asin_finite" || Name == "__asinf_finite" ||
2041 Name == "__atan2_finite" || Name == "__atan2f_finite";
2042 case 'c':
2043 return Name == "__cosh_finite" || Name == "__coshf_finite";
2044 case 'e':
2045 return Name == "__exp_finite" || Name == "__expf_finite" ||
2046 Name == "__exp2_finite" || Name == "__exp2f_finite";
2047 case 'l':
2048 return Name == "__log_finite" || Name == "__logf_finite" ||
2049 Name == "__log10_finite" || Name == "__log10f_finite";
2050 case 'p':
2051 return Name == "__pow_finite" || Name == "__powf_finite";
2052 case 's':
2053 return Name == "__sinh_finite" || Name == "__sinhf_finite";
2054 }
2055 }
2056}
2057
2058namespace {
2059
2060Constant *GetConstantFoldFPValue(double V, Type *Ty) {
2061 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2062 APFloat APF(V);
2063 bool unused;
2064 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
2065 return ConstantFP::get(Ty->getContext(), APF);
2066 }
2067 if (Ty->isDoubleTy())
2068 return ConstantFP::get(Ty->getContext(), APFloat(V));
2069 llvm_unreachable("Can only constant fold half/float/double");
2070}
2071
2072#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2073Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
2074 if (Ty->isFP128Ty())
2075 return ConstantFP::get(Ty, V);
2076 llvm_unreachable("Can only constant fold fp128");
2077}
2078#endif
2079
2080/// Clear the floating-point exception state.
2081inline void llvm_fenv_clearexcept() {
2082#if HAVE_DECL_FE_ALL_EXCEPT
2083 feclearexcept(FE_ALL_EXCEPT);
2084#endif
2085 errno = 0;
2086}
2087
2088/// Test if a floating-point exception was raised.
2089inline bool llvm_fenv_testexcept() {
2090 int errno_val = errno;
2091 if (errno_val == ERANGE || errno_val == EDOM)
2092 return true;
2093#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2094 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2095 return true;
2096#endif
2097 return false;
2098}
2099
2100static APFloat FTZPreserveSign(const APFloat &V) {
2101 if (V.isDenormal())
2102 return APFloat::getZero(V.getSemantics(), V.isNegative());
2103 return V;
2104}
2105
2106static APFloat FlushToPositiveZero(const APFloat &V) {
2107 if (V.isDenormal())
2108 return APFloat::getZero(V.getSemantics(), false);
2109 return V;
2110}
2111
2112static APFloat FlushWithDenormKind(const APFloat &V,
2113 DenormalMode::DenormalModeKind DenormKind) {
2116 switch (DenormKind) {
2118 return V;
2120 return FTZPreserveSign(V);
2122 return FlushToPositiveZero(V);
2123 default:
2124 llvm_unreachable("Invalid denormal mode!");
2125 }
2126}
2127
2128Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
2129 DenormalMode DenormMode = DenormalMode::getIEEE()) {
2130 if (!DenormMode.isValid() ||
2131 DenormMode.Input == DenormalMode::DenormalModeKind::Dynamic ||
2132 DenormMode.Output == DenormalMode::DenormalModeKind::Dynamic)
2133 return nullptr;
2134
2135 llvm_fenv_clearexcept();
2136 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2137 double Result = NativeFP(Input.convertToDouble());
2138 if (llvm_fenv_testexcept()) {
2139 llvm_fenv_clearexcept();
2140 return nullptr;
2141 }
2142
2143 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2144 if (DenormMode.Output == DenormalMode::DenormalModeKind::IEEE)
2145 return Output;
2146 const auto *CFP = static_cast<ConstantFP *>(Output);
2147 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2148 return ConstantFP::get(Ty->getContext(), Res);
2149}
2150
2151#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2152Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
2153 Type *Ty) {
2154 llvm_fenv_clearexcept();
2155 float128 Result = NativeFP(V.convertToQuad());
2156 if (llvm_fenv_testexcept()) {
2157 llvm_fenv_clearexcept();
2158 return nullptr;
2159 }
2160
2161 return GetConstantFoldFPValue128(Result, Ty);
2162}
2163#endif
2164
2165Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
2166 const APFloat &V, const APFloat &W, Type *Ty) {
2167 llvm_fenv_clearexcept();
2168 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
2169 if (llvm_fenv_testexcept()) {
2170 llvm_fenv_clearexcept();
2171 return nullptr;
2172 }
2173
2174 return GetConstantFoldFPValue(Result, Ty);
2175}
2176
2177Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
2178 auto *OpVT = cast<VectorType>(Op->getType());
2179
2180 // This is the same as the underlying binops - poison propagates.
2181 if (Op->containsPoisonElement())
2182 return PoisonValue::get(OpVT->getElementType());
2183
2184 // Shortcut non-accumulating reductions.
2185 if (Constant *SplatVal = Op->getSplatValue()) {
2186 switch (IID) {
2187 case Intrinsic::vector_reduce_and:
2188 case Intrinsic::vector_reduce_or:
2189 case Intrinsic::vector_reduce_smin:
2190 case Intrinsic::vector_reduce_smax:
2191 case Intrinsic::vector_reduce_umin:
2192 case Intrinsic::vector_reduce_umax:
2193 return SplatVal;
2194 case Intrinsic::vector_reduce_add:
2195 if (SplatVal->isNullValue())
2196 return SplatVal;
2197 break;
2198 case Intrinsic::vector_reduce_mul:
2199 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2200 return SplatVal;
2201 break;
2202 case Intrinsic::vector_reduce_xor:
2203 if (SplatVal->isNullValue())
2204 return SplatVal;
2205 if (OpVT->getElementCount().isKnownMultipleOf(2))
2206 return Constant::getNullValue(OpVT->getElementType());
2207 break;
2208 }
2209 }
2210
2212 if (!VT)
2213 return nullptr;
2214
2215 // TODO: Handle undef.
2216 auto *EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(0U));
2217 if (!EltC)
2218 return nullptr;
2219
2220 APInt Acc = EltC->getValue();
2221 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
2222 if (!(EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(I))))
2223 return nullptr;
2224 const APInt &X = EltC->getValue();
2225 switch (IID) {
2226 case Intrinsic::vector_reduce_add:
2227 Acc = Acc + X;
2228 break;
2229 case Intrinsic::vector_reduce_mul:
2230 Acc = Acc * X;
2231 break;
2232 case Intrinsic::vector_reduce_and:
2233 Acc = Acc & X;
2234 break;
2235 case Intrinsic::vector_reduce_or:
2236 Acc = Acc | X;
2237 break;
2238 case Intrinsic::vector_reduce_xor:
2239 Acc = Acc ^ X;
2240 break;
2241 case Intrinsic::vector_reduce_smin:
2242 Acc = APIntOps::smin(Acc, X);
2243 break;
2244 case Intrinsic::vector_reduce_smax:
2245 Acc = APIntOps::smax(Acc, X);
2246 break;
2247 case Intrinsic::vector_reduce_umin:
2248 Acc = APIntOps::umin(Acc, X);
2249 break;
2250 case Intrinsic::vector_reduce_umax:
2251 Acc = APIntOps::umax(Acc, X);
2252 break;
2253 }
2254 }
2255
2256 return ConstantInt::get(Op->getContext(), Acc);
2257}
2258
2259/// Attempt to fold an SSE floating point to integer conversion of a constant
2260/// floating point. If roundTowardZero is false, the default IEEE rounding is
2261/// used (toward nearest, ties to even). This matches the behavior of the
2262/// non-truncating SSE instructions in the default rounding mode. The desired
2263/// integer type Ty is used to select how many bits are available for the
2264/// result. Returns null if the conversion cannot be performed, otherwise
2265/// returns the Constant value resulting from the conversion.
2266Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2267 Type *Ty, bool IsSigned) {
2268 // All of these conversion intrinsics form an integer of at most 64bits.
2269 unsigned ResultWidth = Ty->getIntegerBitWidth();
2270 assert(ResultWidth <= 64 &&
2271 "Can only constant fold conversions to 64 and 32 bit ints");
2272
2273 uint64_t UIntVal;
2274 bool isExact = false;
2278 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2279 IsSigned, mode, &isExact);
2280 if (status != APFloat::opOK &&
2281 (!roundTowardZero || status != APFloat::opInexact))
2282 return nullptr;
2283 return ConstantInt::get(Ty, UIntVal, IsSigned);
2284}
2285
2286double getValueAsDouble(ConstantFP *Op) {
2287 Type *Ty = Op->getType();
2288
2289 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2290 return Op->getValueAPF().convertToDouble();
2291
2292 bool unused;
2293 APFloat APF = Op->getValueAPF();
2295 return APF.convertToDouble();
2296}
2297
2298static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2299 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2300 C = &CI->getValue();
2301 return true;
2302 }
2303 if (isa<UndefValue>(Op)) {
2304 C = nullptr;
2305 return true;
2306 }
2307 return false;
2308}
2309
2310/// Checks if the given intrinsic call, which evaluates to constant, is allowed
2311/// to be folded.
2312///
2313/// \param CI Constrained intrinsic call.
2314/// \param St Exception flags raised during constant evaluation.
2315static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2316 APFloat::opStatus St) {
2317 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2318 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2319
2320 // If the operation does not change exception status flags, it is safe
2321 // to fold.
2322 if (St == APFloat::opStatus::opOK)
2323 return true;
2324
2325 // If evaluation raised FP exception, the result can depend on rounding
2326 // mode. If the latter is unknown, folding is not possible.
2327 if (ORM == RoundingMode::Dynamic)
2328 return false;
2329
2330 // If FP exceptions are ignored, fold the call, even if such exception is
2331 // raised.
2332 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2333 return true;
2334
2335 // Leave the calculation for runtime so that exception flags be correctly set
2336 // in hardware.
2337 return false;
2338}
2339
2340/// Returns the rounding mode that should be used for constant evaluation.
2341static RoundingMode
2342getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2343 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2344 if (!ORM || *ORM == RoundingMode::Dynamic)
2345 // Even if the rounding mode is unknown, try evaluating the operation.
2346 // If it does not raise inexact exception, rounding was not applied,
2347 // so the result is exact and does not depend on rounding mode. Whether
2348 // other FP exceptions are raised, it does not depend on rounding mode.
2350 return *ORM;
2351}
2352
2353/// Try to constant fold llvm.canonicalize for the given caller and value.
2354static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2355 const APFloat &Src) {
2356 // Zero, positive and negative, is always OK to fold.
2357 if (Src.isZero()) {
2358 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2359 return ConstantFP::get(
2360 CI->getContext(),
2361 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2362 }
2363
2364 if (!Ty->isIEEELikeFPTy())
2365 return nullptr;
2366
2367 // Zero is always canonical and the sign must be preserved.
2368 //
2369 // Denorms and nans may have special encodings, but it should be OK to fold a
2370 // totally average number.
2371 if (Src.isNormal() || Src.isInfinity())
2372 return ConstantFP::get(CI->getContext(), Src);
2373
2374 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2375 DenormalMode DenormMode =
2376 CI->getFunction()->getDenormalMode(Src.getSemantics());
2377
2378 if (DenormMode == DenormalMode::getIEEE())
2379 return ConstantFP::get(CI->getContext(), Src);
2380
2381 if (DenormMode.Input == DenormalMode::Dynamic)
2382 return nullptr;
2383
2384 // If we know if either input or output is flushed, we can fold.
2385 if ((DenormMode.Input == DenormalMode::Dynamic &&
2386 DenormMode.Output == DenormalMode::IEEE) ||
2387 (DenormMode.Input == DenormalMode::IEEE &&
2388 DenormMode.Output == DenormalMode::Dynamic))
2389 return nullptr;
2390
2391 bool IsPositive =
2392 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2393 (DenormMode.Output == DenormalMode::PositiveZero &&
2394 DenormMode.Input == DenormalMode::IEEE));
2395
2396 return ConstantFP::get(CI->getContext(),
2397 APFloat::getZero(Src.getSemantics(), !IsPositive));
2398 }
2399
2400 return nullptr;
2401}
2402
2403static Constant *ConstantFoldScalarCall1(StringRef Name,
2404 Intrinsic::ID IntrinsicID,
2405 Type *Ty,
2406 ArrayRef<Constant *> Operands,
2407 const TargetLibraryInfo *TLI,
2408 const CallBase *Call) {
2409 assert(Operands.size() == 1 && "Wrong number of operands.");
2410
2411 if (IntrinsicID == Intrinsic::is_constant) {
2412 // We know we have a "Constant" argument. But we want to only
2413 // return true for manifest constants, not those that depend on
2414 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2415 if (Operands[0]->isManifestConstant())
2416 return ConstantInt::getTrue(Ty->getContext());
2417 return nullptr;
2418 }
2419
2420 if (isa<UndefValue>(Operands[0])) {
2421 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2422 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2423 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2424 if (IntrinsicID == Intrinsic::cos ||
2425 IntrinsicID == Intrinsic::ctpop ||
2426 IntrinsicID == Intrinsic::fptoui_sat ||
2427 IntrinsicID == Intrinsic::fptosi_sat ||
2428 IntrinsicID == Intrinsic::canonicalize)
2429 return Constant::getNullValue(Ty);
2430 if (IntrinsicID == Intrinsic::bswap ||
2431 IntrinsicID == Intrinsic::bitreverse ||
2432 IntrinsicID == Intrinsic::launder_invariant_group ||
2433 IntrinsicID == Intrinsic::strip_invariant_group)
2434 return Operands[0];
2435 }
2436
2437 if (isa<ConstantPointerNull>(Operands[0])) {
2438 // launder(null) == null == strip(null) iff in addrspace 0
2439 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2440 IntrinsicID == Intrinsic::strip_invariant_group) {
2441 // If instruction is not yet put in a basic block (e.g. when cloning
2442 // a function during inlining), Call's caller may not be available.
2443 // So check Call's BB first before querying Call->getCaller.
2444 const Function *Caller =
2445 Call->getParent() ? Call->getCaller() : nullptr;
2446 if (Caller &&
2448 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2449 return Operands[0];
2450 }
2451 return nullptr;
2452 }
2453 }
2454
2455 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2456 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2457 APFloat Val(Op->getValueAPF());
2458
2459 bool lost = false;
2461
2462 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2463 }
2464
2465 APFloat U = Op->getValueAPF();
2466
2467 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2468 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2469 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2470
2471 if (U.isNaN())
2472 return nullptr;
2473
2474 unsigned Width = Ty->getIntegerBitWidth();
2475 APSInt Int(Width, !Signed);
2476 bool IsExact = false;
2478 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2479
2481 return ConstantInt::get(Ty, Int);
2482
2483 return nullptr;
2484 }
2485
2486 if (IntrinsicID == Intrinsic::fptoui_sat ||
2487 IntrinsicID == Intrinsic::fptosi_sat) {
2488 // convertToInteger() already has the desired saturation semantics.
2489 APSInt Int(Ty->getIntegerBitWidth(),
2490 IntrinsicID == Intrinsic::fptoui_sat);
2491 bool IsExact;
2492 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2493 return ConstantInt::get(Ty, Int);
2494 }
2495
2496 if (IntrinsicID == Intrinsic::canonicalize)
2497 return constantFoldCanonicalize(Ty, Call, U);
2498
2499#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2500 if (Ty->isFP128Ty()) {
2501 if (IntrinsicID == Intrinsic::log) {
2502 float128 Result = logf128(Op->getValueAPF().convertToQuad());
2503 return GetConstantFoldFPValue128(Result, Ty);
2504 }
2505
2506 LibFunc Fp128Func = NotLibFunc;
2507 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2508 Fp128Func == LibFunc_logl)
2509 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2510 }
2511#endif
2512
2513 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2514 !Ty->isIntegerTy())
2515 return nullptr;
2516
2517 // Use internal versions of these intrinsics.
2518
2519 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2520 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2521 return ConstantFP::get(Ty->getContext(), U);
2522 }
2523
2524 if (IntrinsicID == Intrinsic::round) {
2525 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2526 return ConstantFP::get(Ty->getContext(), U);
2527 }
2528
2529 if (IntrinsicID == Intrinsic::roundeven) {
2530 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2531 return ConstantFP::get(Ty->getContext(), U);
2532 }
2533
2534 if (IntrinsicID == Intrinsic::ceil) {
2535 U.roundToIntegral(APFloat::rmTowardPositive);
2536 return ConstantFP::get(Ty->getContext(), U);
2537 }
2538
2539 if (IntrinsicID == Intrinsic::floor) {
2540 U.roundToIntegral(APFloat::rmTowardNegative);
2541 return ConstantFP::get(Ty->getContext(), U);
2542 }
2543
2544 if (IntrinsicID == Intrinsic::trunc) {
2545 U.roundToIntegral(APFloat::rmTowardZero);
2546 return ConstantFP::get(Ty->getContext(), U);
2547 }
2548
2549 if (IntrinsicID == Intrinsic::fabs) {
2550 U.clearSign();
2551 return ConstantFP::get(Ty->getContext(), U);
2552 }
2553
2554 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2555 // The v_fract instruction behaves like the OpenCL spec, which defines
2556 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2557 // there to prevent fract(-small) from returning 1.0. It returns the
2558 // largest positive floating-point number less than 1.0."
2559 APFloat FloorU(U);
2560 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2561 APFloat FractU(U - FloorU);
2562 APFloat AlmostOne(U.getSemantics(), 1);
2563 AlmostOne.next(/*nextDown*/ true);
2564 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2565 }
2566
2567 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2568 // raise FP exceptions, unless the argument is signaling NaN.
2569
2570 std::optional<APFloat::roundingMode> RM;
2571 switch (IntrinsicID) {
2572 default:
2573 break;
2574 case Intrinsic::experimental_constrained_nearbyint:
2575 case Intrinsic::experimental_constrained_rint: {
2577 RM = CI->getRoundingMode();
2578 if (!RM || *RM == RoundingMode::Dynamic)
2579 return nullptr;
2580 break;
2581 }
2582 case Intrinsic::experimental_constrained_round:
2584 break;
2585 case Intrinsic::experimental_constrained_ceil:
2587 break;
2588 case Intrinsic::experimental_constrained_floor:
2590 break;
2591 case Intrinsic::experimental_constrained_trunc:
2593 break;
2594 }
2595 if (RM) {
2597 if (U.isFinite()) {
2598 APFloat::opStatus St = U.roundToIntegral(*RM);
2599 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2600 St == APFloat::opInexact) {
2601 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2602 if (EB == fp::ebStrict)
2603 return nullptr;
2604 }
2605 } else if (U.isSignaling()) {
2606 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2607 if (EB && *EB != fp::ebIgnore)
2608 return nullptr;
2609 U = APFloat::getQNaN(U.getSemantics());
2610 }
2611 return ConstantFP::get(Ty->getContext(), U);
2612 }
2613
2614 // NVVM float/double to signed/unsigned int32/int64 conversions:
2615 switch (IntrinsicID) {
2616 // f2i
2617 case Intrinsic::nvvm_f2i_rm:
2618 case Intrinsic::nvvm_f2i_rn:
2619 case Intrinsic::nvvm_f2i_rp:
2620 case Intrinsic::nvvm_f2i_rz:
2621 case Intrinsic::nvvm_f2i_rm_ftz:
2622 case Intrinsic::nvvm_f2i_rn_ftz:
2623 case Intrinsic::nvvm_f2i_rp_ftz:
2624 case Intrinsic::nvvm_f2i_rz_ftz:
2625 // f2ui
2626 case Intrinsic::nvvm_f2ui_rm:
2627 case Intrinsic::nvvm_f2ui_rn:
2628 case Intrinsic::nvvm_f2ui_rp:
2629 case Intrinsic::nvvm_f2ui_rz:
2630 case Intrinsic::nvvm_f2ui_rm_ftz:
2631 case Intrinsic::nvvm_f2ui_rn_ftz:
2632 case Intrinsic::nvvm_f2ui_rp_ftz:
2633 case Intrinsic::nvvm_f2ui_rz_ftz:
2634 // d2i
2635 case Intrinsic::nvvm_d2i_rm:
2636 case Intrinsic::nvvm_d2i_rn:
2637 case Intrinsic::nvvm_d2i_rp:
2638 case Intrinsic::nvvm_d2i_rz:
2639 // d2ui
2640 case Intrinsic::nvvm_d2ui_rm:
2641 case Intrinsic::nvvm_d2ui_rn:
2642 case Intrinsic::nvvm_d2ui_rp:
2643 case Intrinsic::nvvm_d2ui_rz:
2644 // f2ll
2645 case Intrinsic::nvvm_f2ll_rm:
2646 case Intrinsic::nvvm_f2ll_rn:
2647 case Intrinsic::nvvm_f2ll_rp:
2648 case Intrinsic::nvvm_f2ll_rz:
2649 case Intrinsic::nvvm_f2ll_rm_ftz:
2650 case Intrinsic::nvvm_f2ll_rn_ftz:
2651 case Intrinsic::nvvm_f2ll_rp_ftz:
2652 case Intrinsic::nvvm_f2ll_rz_ftz:
2653 // f2ull
2654 case Intrinsic::nvvm_f2ull_rm:
2655 case Intrinsic::nvvm_f2ull_rn:
2656 case Intrinsic::nvvm_f2ull_rp:
2657 case Intrinsic::nvvm_f2ull_rz:
2658 case Intrinsic::nvvm_f2ull_rm_ftz:
2659 case Intrinsic::nvvm_f2ull_rn_ftz:
2660 case Intrinsic::nvvm_f2ull_rp_ftz:
2661 case Intrinsic::nvvm_f2ull_rz_ftz:
2662 // d2ll
2663 case Intrinsic::nvvm_d2ll_rm:
2664 case Intrinsic::nvvm_d2ll_rn:
2665 case Intrinsic::nvvm_d2ll_rp:
2666 case Intrinsic::nvvm_d2ll_rz:
2667 // d2ull
2668 case Intrinsic::nvvm_d2ull_rm:
2669 case Intrinsic::nvvm_d2ull_rn:
2670 case Intrinsic::nvvm_d2ull_rp:
2671 case Intrinsic::nvvm_d2ull_rz: {
2672 // In float-to-integer conversion, NaN inputs are converted to 0.
2673 if (U.isNaN()) {
2674 // In float-to-integer conversion, NaN inputs are converted to 0
2675 // when the source and destination bitwidths are both less than 64.
2676 if (nvvm::FPToIntegerIntrinsicNaNZero(IntrinsicID))
2677 return ConstantInt::get(Ty, 0);
2678
2679 // Otherwise, the most significant bit is set.
2680 unsigned BitWidth = Ty->getIntegerBitWidth();
2681 uint64_t Val = 1ULL << (BitWidth - 1);
2682 return ConstantInt::get(Ty, APInt(BitWidth, Val, /*IsSigned=*/false));
2683 }
2684
2685 APFloat::roundingMode RMode =
2687 bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2688 bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2689
2690 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2691 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2692
2693 // Return max/min value for integers if the result is +/-inf or
2694 // is too large to fit in the result's integer bitwidth.
2695 bool IsExact = false;
2696 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2697 return ConstantInt::get(Ty, ResInt);
2698 }
2699 }
2700
2701 /// We only fold functions with finite arguments. Folding NaN and inf is
2702 /// likely to be aborted with an exception anyway, and some host libms
2703 /// have known errors raising exceptions.
2704 if (!U.isFinite())
2705 return nullptr;
2706
2707 /// Currently APFloat versions of these functions do not exist, so we use
2708 /// the host native double versions. Float versions are not called
2709 /// directly but for all these it is true (float)(f((double)arg)) ==
2710 /// f(arg). Long double not supported yet.
2711 const APFloat &APF = Op->getValueAPF();
2712
2713 switch (IntrinsicID) {
2714 default: break;
2715 case Intrinsic::log:
2716 return ConstantFoldFP(log, APF, Ty);
2717 case Intrinsic::log2:
2718 // TODO: What about hosts that lack a C99 library?
2719 return ConstantFoldFP(log2, APF, Ty);
2720 case Intrinsic::log10:
2721 // TODO: What about hosts that lack a C99 library?
2722 return ConstantFoldFP(log10, APF, Ty);
2723 case Intrinsic::exp:
2724 return ConstantFoldFP(exp, APF, Ty);
2725 case Intrinsic::exp2:
2726 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2727 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2728 case Intrinsic::exp10:
2729 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2730 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2731 case Intrinsic::sin:
2732 return ConstantFoldFP(sin, APF, Ty);
2733 case Intrinsic::cos:
2734 return ConstantFoldFP(cos, APF, Ty);
2735 case Intrinsic::sinh:
2736 return ConstantFoldFP(sinh, APF, Ty);
2737 case Intrinsic::cosh:
2738 return ConstantFoldFP(cosh, APF, Ty);
2739 case Intrinsic::atan:
2740 // Implement optional behavior from C's Annex F for +/-0.0.
2741 if (U.isZero())
2742 return ConstantFP::get(Ty->getContext(), U);
2743 return ConstantFoldFP(atan, APF, Ty);
2744 case Intrinsic::sqrt:
2745 return ConstantFoldFP(sqrt, APF, Ty);
2746
2747 // NVVM Intrinsics:
2748 case Intrinsic::nvvm_ceil_ftz_f:
2749 case Intrinsic::nvvm_ceil_f:
2750 case Intrinsic::nvvm_ceil_d:
2751 return ConstantFoldFP(
2752 ceil, APF, Ty,
2754 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2755
2756 case Intrinsic::nvvm_fabs_ftz:
2757 case Intrinsic::nvvm_fabs:
2758 return ConstantFoldFP(
2759 fabs, APF, Ty,
2761 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2762
2763 case Intrinsic::nvvm_floor_ftz_f:
2764 case Intrinsic::nvvm_floor_f:
2765 case Intrinsic::nvvm_floor_d:
2766 return ConstantFoldFP(
2767 floor, APF, Ty,
2769 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2770
2771 case Intrinsic::nvvm_rcp_rm_ftz_f:
2772 case Intrinsic::nvvm_rcp_rn_ftz_f:
2773 case Intrinsic::nvvm_rcp_rp_ftz_f:
2774 case Intrinsic::nvvm_rcp_rz_ftz_f:
2775 case Intrinsic::nvvm_rcp_rm_d:
2776 case Intrinsic::nvvm_rcp_rm_f:
2777 case Intrinsic::nvvm_rcp_rn_d:
2778 case Intrinsic::nvvm_rcp_rn_f:
2779 case Intrinsic::nvvm_rcp_rp_d:
2780 case Intrinsic::nvvm_rcp_rp_f:
2781 case Intrinsic::nvvm_rcp_rz_d:
2782 case Intrinsic::nvvm_rcp_rz_f: {
2783 APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
2784 bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);
2785
2786 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2788 APFloat::opStatus Status = Res.divide(Denominator, RoundMode);
2789
2791 if (IsFTZ)
2792 Res = FTZPreserveSign(Res);
2793 return ConstantFP::get(Ty->getContext(), Res);
2794 }
2795 return nullptr;
2796 }
2797
2798 case Intrinsic::nvvm_round_ftz_f:
2799 case Intrinsic::nvvm_round_f:
2800 case Intrinsic::nvvm_round_d: {
2801 // nvvm_round is lowered to PTX cvt.rni, which will round to nearest
2802 // integer, choosing even integer if source is equidistant between two
2803 // integers, so the semantics are closer to "rint" rather than "round".
2804 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2805 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2807 return ConstantFP::get(Ty->getContext(), V);
2808 }
2809
2810 case Intrinsic::nvvm_saturate_ftz_f:
2811 case Intrinsic::nvvm_saturate_d:
2812 case Intrinsic::nvvm_saturate_f: {
2813 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2814 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2815 if (V.isNegative() || V.isZero() || V.isNaN())
2816 return ConstantFP::getZero(Ty);
2818 if (V > One)
2819 return ConstantFP::get(Ty->getContext(), One);
2820 return ConstantFP::get(Ty->getContext(), APF);
2821 }
2822
2823 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2824 case Intrinsic::nvvm_sqrt_f:
2825 case Intrinsic::nvvm_sqrt_rn_d:
2826 case Intrinsic::nvvm_sqrt_rn_f:
2827 if (APF.isNegative())
2828 return nullptr;
2829 return ConstantFoldFP(
2830 sqrt, APF, Ty,
2832 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2833
2834 // AMDGCN Intrinsics:
2835 case Intrinsic::amdgcn_cos:
2836 case Intrinsic::amdgcn_sin: {
2837 double V = getValueAsDouble(Op);
2838 if (V < -256.0 || V > 256.0)
2839 // The gfx8 and gfx9 architectures handle arguments outside the range
2840 // [-256, 256] differently. This should be a rare case so bail out
2841 // rather than trying to handle the difference.
2842 return nullptr;
2843 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2844 double V4 = V * 4.0;
2845 if (V4 == floor(V4)) {
2846 // Force exact results for quarter-integer inputs.
2847 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2848 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2849 } else {
2850 if (IsCos)
2851 V = cos(V * 2.0 * numbers::pi);
2852 else
2853 V = sin(V * 2.0 * numbers::pi);
2854 }
2855 return GetConstantFoldFPValue(V, Ty);
2856 }
2857 }
2858
2859 if (!TLI)
2860 return nullptr;
2861
2862 LibFunc Func = NotLibFunc;
2863 if (!TLI->getLibFunc(Name, Func))
2864 return nullptr;
2865
2866 switch (Func) {
2867 default:
2868 break;
2869 case LibFunc_acos:
2870 case LibFunc_acosf:
2871 case LibFunc_acos_finite:
2872 case LibFunc_acosf_finite:
2873 if (TLI->has(Func))
2874 return ConstantFoldFP(acos, APF, Ty);
2875 break;
2876 case LibFunc_asin:
2877 case LibFunc_asinf:
2878 case LibFunc_asin_finite:
2879 case LibFunc_asinf_finite:
2880 if (TLI->has(Func))
2881 return ConstantFoldFP(asin, APF, Ty);
2882 break;
2883 case LibFunc_atan:
2884 case LibFunc_atanf:
2885 // Implement optional behavior from C's Annex F for +/-0.0.
2886 if (U.isZero())
2887 return ConstantFP::get(Ty->getContext(), U);
2888 if (TLI->has(Func))
2889 return ConstantFoldFP(atan, APF, Ty);
2890 break;
2891 case LibFunc_ceil:
2892 case LibFunc_ceilf:
2893 if (TLI->has(Func)) {
2894 U.roundToIntegral(APFloat::rmTowardPositive);
2895 return ConstantFP::get(Ty->getContext(), U);
2896 }
2897 break;
2898 case LibFunc_cos:
2899 case LibFunc_cosf:
2900 if (TLI->has(Func))
2901 return ConstantFoldFP(cos, APF, Ty);
2902 break;
2903 case LibFunc_cosh:
2904 case LibFunc_coshf:
2905 case LibFunc_cosh_finite:
2906 case LibFunc_coshf_finite:
2907 if (TLI->has(Func))
2908 return ConstantFoldFP(cosh, APF, Ty);
2909 break;
2910 case LibFunc_exp:
2911 case LibFunc_expf:
2912 case LibFunc_exp_finite:
2913 case LibFunc_expf_finite:
2914 if (TLI->has(Func))
2915 return ConstantFoldFP(exp, APF, Ty);
2916 break;
2917 case LibFunc_exp2:
2918 case LibFunc_exp2f:
2919 case LibFunc_exp2_finite:
2920 case LibFunc_exp2f_finite:
2921 if (TLI->has(Func))
2922 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2923 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2924 break;
2925 case LibFunc_fabs:
2926 case LibFunc_fabsf:
2927 if (TLI->has(Func)) {
2928 U.clearSign();
2929 return ConstantFP::get(Ty->getContext(), U);
2930 }
2931 break;
2932 case LibFunc_floor:
2933 case LibFunc_floorf:
2934 if (TLI->has(Func)) {
2935 U.roundToIntegral(APFloat::rmTowardNegative);
2936 return ConstantFP::get(Ty->getContext(), U);
2937 }
2938 break;
2939 case LibFunc_log:
2940 case LibFunc_logf:
2941 case LibFunc_log_finite:
2942 case LibFunc_logf_finite:
2943 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2944 return ConstantFoldFP(log, APF, Ty);
2945 break;
2946 case LibFunc_log2:
2947 case LibFunc_log2f:
2948 case LibFunc_log2_finite:
2949 case LibFunc_log2f_finite:
2950 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2951 // TODO: What about hosts that lack a C99 library?
2952 return ConstantFoldFP(log2, APF, Ty);
2953 break;
2954 case LibFunc_log10:
2955 case LibFunc_log10f:
2956 case LibFunc_log10_finite:
2957 case LibFunc_log10f_finite:
2958 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2959 // TODO: What about hosts that lack a C99 library?
2960 return ConstantFoldFP(log10, APF, Ty);
2961 break;
2962 case LibFunc_ilogb:
2963 case LibFunc_ilogbf:
2964 if (!APF.isZero() && TLI->has(Func))
2965 return ConstantInt::get(Ty, ilogb(APF), true);
2966 break;
2967 case LibFunc_logb:
2968 case LibFunc_logbf:
2969 if (!APF.isZero() && TLI->has(Func))
2970 return ConstantFoldFP(logb, APF, Ty);
2971 break;
2972 case LibFunc_log1p:
2973 case LibFunc_log1pf:
2974 // Implement optional behavior from C's Annex F for +/-0.0.
2975 if (U.isZero())
2976 return ConstantFP::get(Ty->getContext(), U);
2977 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2978 return ConstantFoldFP(log1p, APF, Ty);
2979 break;
2980 case LibFunc_logl:
2981 return nullptr;
2982 case LibFunc_erf:
2983 case LibFunc_erff:
2984 if (TLI->has(Func))
2985 return ConstantFoldFP(erf, APF, Ty);
2986 break;
2987 case LibFunc_nearbyint:
2988 case LibFunc_nearbyintf:
2989 case LibFunc_rint:
2990 case LibFunc_rintf:
2991 if (TLI->has(Func)) {
2992 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2993 return ConstantFP::get(Ty->getContext(), U);
2994 }
2995 break;
2996 case LibFunc_round:
2997 case LibFunc_roundf:
2998 if (TLI->has(Func)) {
2999 U.roundToIntegral(APFloat::rmNearestTiesToAway);
3000 return ConstantFP::get(Ty->getContext(), U);
3001 }
3002 break;
3003 case LibFunc_sin:
3004 case LibFunc_sinf:
3005 if (TLI->has(Func))
3006 return ConstantFoldFP(sin, APF, Ty);
3007 break;
3008 case LibFunc_sinh:
3009 case LibFunc_sinhf:
3010 case LibFunc_sinh_finite:
3011 case LibFunc_sinhf_finite:
3012 if (TLI->has(Func))
3013 return ConstantFoldFP(sinh, APF, Ty);
3014 break;
3015 case LibFunc_sqrt:
3016 case LibFunc_sqrtf:
3017 if (!APF.isNegative() && TLI->has(Func))
3018 return ConstantFoldFP(sqrt, APF, Ty);
3019 break;
3020 case LibFunc_tan:
3021 case LibFunc_tanf:
3022 if (TLI->has(Func))
3023 return ConstantFoldFP(tan, APF, Ty);
3024 break;
3025 case LibFunc_tanh:
3026 case LibFunc_tanhf:
3027 if (TLI->has(Func))
3028 return ConstantFoldFP(tanh, APF, Ty);
3029 break;
3030 case LibFunc_trunc:
3031 case LibFunc_truncf:
3032 if (TLI->has(Func)) {
3033 U.roundToIntegral(APFloat::rmTowardZero);
3034 return ConstantFP::get(Ty->getContext(), U);
3035 }
3036 break;
3037 }
3038 return nullptr;
3039 }
3040
3041 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3042 switch (IntrinsicID) {
3043 case Intrinsic::bswap:
3044 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
3045 case Intrinsic::ctpop:
3046 return ConstantInt::get(Ty, Op->getValue().popcount());
3047 case Intrinsic::bitreverse:
3048 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
3049 case Intrinsic::convert_from_fp16: {
3050 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
3051
3052 bool lost = false;
3053 APFloat::opStatus status = Val.convert(
3054 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
3055
3056 // Conversion is always precise.
3057 (void)status;
3058 assert(status != APFloat::opInexact && !lost &&
3059 "Precision lost during fp16 constfolding");
3060
3061 return ConstantFP::get(Ty->getContext(), Val);
3062 }
3063
3064 case Intrinsic::amdgcn_s_wqm: {
3065 uint64_t Val = Op->getZExtValue();
3066 Val |= (Val & 0x5555555555555555ULL) << 1 |
3067 ((Val >> 1) & 0x5555555555555555ULL);
3068 Val |= (Val & 0x3333333333333333ULL) << 2 |
3069 ((Val >> 2) & 0x3333333333333333ULL);
3070 return ConstantInt::get(Ty, Val);
3071 }
3072
3073 case Intrinsic::amdgcn_s_quadmask: {
3074 uint64_t Val = Op->getZExtValue();
3075 uint64_t QuadMask = 0;
3076 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
3077 if (!(Val & 0xF))
3078 continue;
3079
3080 QuadMask |= (1ULL << I);
3081 }
3082 return ConstantInt::get(Ty, QuadMask);
3083 }
3084
3085 case Intrinsic::amdgcn_s_bitreplicate: {
3086 uint64_t Val = Op->getZExtValue();
3087 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3088 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3089 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3090 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3091 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3092 Val = Val | Val << 1;
3093 return ConstantInt::get(Ty, Val);
3094 }
3095 }
3096 }
3097
3098 if (Operands[0]->getType()->isVectorTy()) {
3099 auto *Op = cast<Constant>(Operands[0]);
3100 switch (IntrinsicID) {
3101 default: break;
3102 case Intrinsic::vector_reduce_add:
3103 case Intrinsic::vector_reduce_mul:
3104 case Intrinsic::vector_reduce_and:
3105 case Intrinsic::vector_reduce_or:
3106 case Intrinsic::vector_reduce_xor:
3107 case Intrinsic::vector_reduce_smin:
3108 case Intrinsic::vector_reduce_smax:
3109 case Intrinsic::vector_reduce_umin:
3110 case Intrinsic::vector_reduce_umax:
3111 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3112 return C;
3113 break;
3114 case Intrinsic::x86_sse_cvtss2si:
3115 case Intrinsic::x86_sse_cvtss2si64:
3116 case Intrinsic::x86_sse2_cvtsd2si:
3117 case Intrinsic::x86_sse2_cvtsd2si64:
3118 if (ConstantFP *FPOp =
3119 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3120 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3121 /*roundTowardZero=*/false, Ty,
3122 /*IsSigned*/true);
3123 break;
3124 case Intrinsic::x86_sse_cvttss2si:
3125 case Intrinsic::x86_sse_cvttss2si64:
3126 case Intrinsic::x86_sse2_cvttsd2si:
3127 case Intrinsic::x86_sse2_cvttsd2si64:
3128 if (ConstantFP *FPOp =
3129 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3130 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3131 /*roundTowardZero=*/true, Ty,
3132 /*IsSigned*/true);
3133 break;
3134
3135 case Intrinsic::wasm_anytrue:
3136 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3137 : ConstantInt::get(Ty, 1);
3138
3139 case Intrinsic::wasm_alltrue:
3140 // Check each element individually
3141 unsigned E = cast<FixedVectorType>(Op->getType())->getNumElements();
3142 for (unsigned I = 0; I != E; ++I) {
3143 Constant *Elt = Op->getAggregateElement(I);
3144 // Return false as soon as we find a non-true element.
3145 if (Elt && Elt->isZeroValue())
3146 return ConstantInt::get(Ty, 0);
3147 // Bail as soon as we find an element we cannot prove to be true.
3148 if (!Elt || !isa<ConstantInt>(Elt))
3149 return nullptr;
3150 }
3151
3152 return ConstantInt::get(Ty, 1);
3153 }
3154 }
3155
3156 return nullptr;
3157}
3158
3159static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
3163 FCmpInst::Predicate Cond = FCmp->getPredicate();
3164 if (FCmp->isSignaling()) {
3165 if (Op1.isNaN() || Op2.isNaN())
3167 } else {
3168 if (Op1.isSignaling() || Op2.isSignaling())
3170 }
3171 bool Result = FCmpInst::compare(Op1, Op2, Cond);
3172 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
3173 return ConstantInt::get(Call->getType()->getScalarType(), Result);
3174 return nullptr;
3175}
3176
3177static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
3178 ArrayRef<Constant *> Operands,
3179 const TargetLibraryInfo *TLI) {
3180 if (!TLI)
3181 return nullptr;
3182
3183 LibFunc Func = NotLibFunc;
3184 if (!TLI->getLibFunc(Name, Func))
3185 return nullptr;
3186
3187 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
3188 if (!Op1)
3189 return nullptr;
3190
3191 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
3192 if (!Op2)
3193 return nullptr;
3194
3195 const APFloat &Op1V = Op1->getValueAPF();
3196 const APFloat &Op2V = Op2->getValueAPF();
3197
3198 switch (Func) {
3199 default:
3200 break;
3201 case LibFunc_pow:
3202 case LibFunc_powf:
3203 case LibFunc_pow_finite:
3204 case LibFunc_powf_finite:
3205 if (TLI->has(Func))
3206 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3207 break;
3208 case LibFunc_fmod:
3209 case LibFunc_fmodf:
3210 if (TLI->has(Func)) {
3211 APFloat V = Op1->getValueAPF();
3212 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
3213 return ConstantFP::get(Ty->getContext(), V);
3214 }
3215 break;
3216 case LibFunc_remainder:
3217 case LibFunc_remainderf:
3218 if (TLI->has(Func)) {
3219 APFloat V = Op1->getValueAPF();
3220 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
3221 return ConstantFP::get(Ty->getContext(), V);
3222 }
3223 break;
3224 case LibFunc_atan2:
3225 case LibFunc_atan2f:
3226 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
3227 // (Solaris), so we do not assume a known result for that.
3228 if (Op1V.isZero() && Op2V.isZero())
3229 return nullptr;
3230 [[fallthrough]];
3231 case LibFunc_atan2_finite:
3232 case LibFunc_atan2f_finite:
3233 if (TLI->has(Func))
3234 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3235 break;
3236 }
3237
3238 return nullptr;
3239}
3240
3241static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
3242 ArrayRef<Constant *> Operands,
3243 const CallBase *Call) {
3244 assert(Operands.size() == 2 && "Wrong number of operands.");
3245
3246 if (Ty->isFloatingPointTy()) {
3247 // TODO: We should have undef handling for all of the FP intrinsics that
3248 // are attempted to be folded in this function.
3249 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
3250 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
3251 switch (IntrinsicID) {
3252 case Intrinsic::maxnum:
3253 case Intrinsic::minnum:
3254 case Intrinsic::maximum:
3255 case Intrinsic::minimum:
3256 case Intrinsic::maximumnum:
3257 case Intrinsic::minimumnum:
3258 case Intrinsic::nvvm_fmax_d:
3259 case Intrinsic::nvvm_fmin_d:
3260 // If one argument is undef, return the other argument.
3261 if (IsOp0Undef)
3262 return Operands[1];
3263 if (IsOp1Undef)
3264 return Operands[0];
3265 break;
3266
3267 case Intrinsic::nvvm_fmax_f:
3268 case Intrinsic::nvvm_fmax_ftz_f:
3269 case Intrinsic::nvvm_fmax_ftz_nan_f:
3270 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3271 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3272 case Intrinsic::nvvm_fmax_nan_f:
3273 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3274 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3275
3276 case Intrinsic::nvvm_fmin_f:
3277 case Intrinsic::nvvm_fmin_ftz_f:
3278 case Intrinsic::nvvm_fmin_ftz_nan_f:
3279 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3280 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3281 case Intrinsic::nvvm_fmin_nan_f:
3282 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3283 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3284 // If one arg is undef, the other arg can be returned only if it is
3285 // constant, as we may need to flush it to sign-preserving zero or
3286 // canonicalize the NaN.
3287 if (!IsOp0Undef && !IsOp1Undef)
3288 break;
3289 if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
3290 if (Op->isNaN()) {
3291 APInt NVCanonicalNaN(32, 0x7fffffff);
3292 return ConstantFP::get(
3293 Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3294 }
3295 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
3296 return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
3297 else
3298 return Op;
3299 }
3300 break;
3301 }
3302 }
3303
3304 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3305 const APFloat &Op1V = Op1->getValueAPF();
3306
3307 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3308 if (Op2->getType() != Op1->getType())
3309 return nullptr;
3310 const APFloat &Op2V = Op2->getValueAPF();
3311
3312 if (const auto *ConstrIntr =
3314 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3315 APFloat Res = Op1V;
3317 switch (IntrinsicID) {
3318 default:
3319 return nullptr;
3320 case Intrinsic::experimental_constrained_fadd:
3321 St = Res.add(Op2V, RM);
3322 break;
3323 case Intrinsic::experimental_constrained_fsub:
3324 St = Res.subtract(Op2V, RM);
3325 break;
3326 case Intrinsic::experimental_constrained_fmul:
3327 St = Res.multiply(Op2V, RM);
3328 break;
3329 case Intrinsic::experimental_constrained_fdiv:
3330 St = Res.divide(Op2V, RM);
3331 break;
3332 case Intrinsic::experimental_constrained_frem:
3333 St = Res.mod(Op2V);
3334 break;
3335 case Intrinsic::experimental_constrained_fcmp:
3336 case Intrinsic::experimental_constrained_fcmps:
3337 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3338 }
3339 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3340 St))
3341 return ConstantFP::get(Ty->getContext(), Res);
3342 return nullptr;
3343 }
3344
3345 switch (IntrinsicID) {
3346 default:
3347 break;
3348 case Intrinsic::copysign:
3349 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
3350 case Intrinsic::minnum:
3351 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
3352 case Intrinsic::maxnum:
3353 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
3354 case Intrinsic::minimum:
3355 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
3356 case Intrinsic::maximum:
3357 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
3358 case Intrinsic::minimumnum:
3359 return ConstantFP::get(Ty->getContext(), minimumnum(Op1V, Op2V));
3360 case Intrinsic::maximumnum:
3361 return ConstantFP::get(Ty->getContext(), maximumnum(Op1V, Op2V));
3362
3363 case Intrinsic::nvvm_fmax_d:
3364 case Intrinsic::nvvm_fmax_f:
3365 case Intrinsic::nvvm_fmax_ftz_f:
3366 case Intrinsic::nvvm_fmax_ftz_nan_f:
3367 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3368 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3369 case Intrinsic::nvvm_fmax_nan_f:
3370 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3371 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3372
3373 case Intrinsic::nvvm_fmin_d:
3374 case Intrinsic::nvvm_fmin_f:
3375 case Intrinsic::nvvm_fmin_ftz_f:
3376 case Intrinsic::nvvm_fmin_ftz_nan_f:
3377 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3378 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3379 case Intrinsic::nvvm_fmin_nan_f:
3380 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3381 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3382
3383 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3384 IntrinsicID == Intrinsic::nvvm_fmin_d);
3385 bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3386 bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3387 bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3388
3389 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3390 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3391
3392 bool XorSign = false;
3393 if (IsXorSignAbs) {
3394 XorSign = A.isNegative() ^ B.isNegative();
3395 A = abs(A);
3396 B = abs(B);
3397 }
3398
3399 bool IsFMax = false;
3400 switch (IntrinsicID) {
3401 case Intrinsic::nvvm_fmax_d:
3402 case Intrinsic::nvvm_fmax_f:
3403 case Intrinsic::nvvm_fmax_ftz_f:
3404 case Intrinsic::nvvm_fmax_ftz_nan_f:
3405 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3406 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3407 case Intrinsic::nvvm_fmax_nan_f:
3408 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3409 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3410 IsFMax = true;
3411 break;
3412 }
3413 APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3414
3415 if (ShouldCanonicalizeNaNs) {
3416 APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3417 if (A.isNaN() && B.isNaN())
3418 return ConstantFP::get(Ty, NVCanonicalNaN);
3419 else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3420 return ConstantFP::get(Ty, NVCanonicalNaN);
3421 }
3422
3423 if (A.isNaN() && B.isNaN())
3424 return Operands[1];
3425 else if (A.isNaN())
3426 Res = B;
3427 else if (B.isNaN())
3428 Res = A;
3429
3430 if (IsXorSignAbs && XorSign != Res.isNegative())
3431 Res.changeSign();
3432
3433 return ConstantFP::get(Ty->getContext(), Res);
3434 }
3435
3436 case Intrinsic::nvvm_add_rm_f:
3437 case Intrinsic::nvvm_add_rn_f:
3438 case Intrinsic::nvvm_add_rp_f:
3439 case Intrinsic::nvvm_add_rz_f:
3440 case Intrinsic::nvvm_add_rm_d:
3441 case Intrinsic::nvvm_add_rn_d:
3442 case Intrinsic::nvvm_add_rp_d:
3443 case Intrinsic::nvvm_add_rz_d:
3444 case Intrinsic::nvvm_add_rm_ftz_f:
3445 case Intrinsic::nvvm_add_rn_ftz_f:
3446 case Intrinsic::nvvm_add_rp_ftz_f:
3447 case Intrinsic::nvvm_add_rz_ftz_f: {
3448
3449 bool IsFTZ = nvvm::FAddShouldFTZ(IntrinsicID);
3450 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3451 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3452
3453 APFloat::roundingMode RoundMode =
3454 nvvm::GetFAddRoundingMode(IntrinsicID);
3455
3456 APFloat Res = A;
3457 APFloat::opStatus Status = Res.add(B, RoundMode);
3458
3459 if (!Res.isNaN() &&
3461 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3462 return ConstantFP::get(Ty->getContext(), Res);
3463 }
3464 return nullptr;
3465 }
3466
3467 case Intrinsic::nvvm_mul_rm_f:
3468 case Intrinsic::nvvm_mul_rn_f:
3469 case Intrinsic::nvvm_mul_rp_f:
3470 case Intrinsic::nvvm_mul_rz_f:
3471 case Intrinsic::nvvm_mul_rm_d:
3472 case Intrinsic::nvvm_mul_rn_d:
3473 case Intrinsic::nvvm_mul_rp_d:
3474 case Intrinsic::nvvm_mul_rz_d:
3475 case Intrinsic::nvvm_mul_rm_ftz_f:
3476 case Intrinsic::nvvm_mul_rn_ftz_f:
3477 case Intrinsic::nvvm_mul_rp_ftz_f:
3478 case Intrinsic::nvvm_mul_rz_ftz_f: {
3479
3480 bool IsFTZ = nvvm::FMulShouldFTZ(IntrinsicID);
3481 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3482 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3483
3484 APFloat::roundingMode RoundMode =
3485 nvvm::GetFMulRoundingMode(IntrinsicID);
3486
3487 APFloat Res = A;
3488 APFloat::opStatus Status = Res.multiply(B, RoundMode);
3489
3490 if (!Res.isNaN() &&
3492 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3493 return ConstantFP::get(Ty->getContext(), Res);
3494 }
3495 return nullptr;
3496 }
3497
3498 case Intrinsic::nvvm_div_rm_f:
3499 case Intrinsic::nvvm_div_rn_f:
3500 case Intrinsic::nvvm_div_rp_f:
3501 case Intrinsic::nvvm_div_rz_f:
3502 case Intrinsic::nvvm_div_rm_d:
3503 case Intrinsic::nvvm_div_rn_d:
3504 case Intrinsic::nvvm_div_rp_d:
3505 case Intrinsic::nvvm_div_rz_d:
3506 case Intrinsic::nvvm_div_rm_ftz_f:
3507 case Intrinsic::nvvm_div_rn_ftz_f:
3508 case Intrinsic::nvvm_div_rp_ftz_f:
3509 case Intrinsic::nvvm_div_rz_ftz_f: {
3510 bool IsFTZ = nvvm::FDivShouldFTZ(IntrinsicID);
3511 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3512 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3513 APFloat::roundingMode RoundMode =
3514 nvvm::GetFDivRoundingMode(IntrinsicID);
3515
3516 APFloat Res = A;
3517 APFloat::opStatus Status = Res.divide(B, RoundMode);
3518 if (!Res.isNaN() &&
3520 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3521 return ConstantFP::get(Ty->getContext(), Res);
3522 }
3523 return nullptr;
3524 }
3525 }
3526
3527 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3528 return nullptr;
3529
3530 switch (IntrinsicID) {
3531 default:
3532 break;
3533 case Intrinsic::pow:
3534 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3535 case Intrinsic::amdgcn_fmul_legacy:
3536 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3537 // NaN or infinity, gives +0.0.
3538 if (Op1V.isZero() || Op2V.isZero())
3539 return ConstantFP::getZero(Ty);
3540 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3541 }
3542
3543 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3544 switch (IntrinsicID) {
3545 case Intrinsic::ldexp: {
3546 return ConstantFP::get(
3547 Ty->getContext(),
3548 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3549 }
3550 case Intrinsic::is_fpclass: {
3551 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3552 bool Result =
3553 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3554 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3555 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3556 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3557 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3558 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3559 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3560 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3561 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3562 ((Mask & fcPosInf) && Op1V.isPosInfinity());
3563 return ConstantInt::get(Ty, Result);
3564 }
3565 case Intrinsic::powi: {
3566 int Exp = static_cast<int>(Op2C->getSExtValue());
3567 switch (Ty->getTypeID()) {
3568 case Type::HalfTyID:
3569 case Type::FloatTyID: {
3570 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3571 if (Ty->isHalfTy()) {
3572 bool Unused;
3574 &Unused);
3575 }
3576 return ConstantFP::get(Ty->getContext(), Res);
3577 }
3578 case Type::DoubleTyID:
3579 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3580 default:
3581 return nullptr;
3582 }
3583 }
3584 default:
3585 break;
3586 }
3587 }
3588 return nullptr;
3589 }
3590
3591 if (Operands[0]->getType()->isIntegerTy() &&
3592 Operands[1]->getType()->isIntegerTy()) {
3593 const APInt *C0, *C1;
3594 if (!getConstIntOrUndef(Operands[0], C0) ||
3595 !getConstIntOrUndef(Operands[1], C1))
3596 return nullptr;
3597
3598 switch (IntrinsicID) {
3599 default: break;
3600 case Intrinsic::smax:
3601 case Intrinsic::smin:
3602 case Intrinsic::umax:
3603 case Intrinsic::umin:
3604 if (!C0 && !C1)
3605 return UndefValue::get(Ty);
3606 if (!C0 || !C1)
3607 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3608 return ConstantInt::get(
3609 Ty, ICmpInst::compare(*C0, *C1,
3610 MinMaxIntrinsic::getPredicate(IntrinsicID))
3611 ? *C0
3612 : *C1);
3613
3614 case Intrinsic::scmp:
3615 case Intrinsic::ucmp:
3616 if (!C0 || !C1)
3617 return ConstantInt::get(Ty, 0);
3618
3619 int Res;
3620 if (IntrinsicID == Intrinsic::scmp)
3621 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3622 else
3623 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3624 return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3625
3626 case Intrinsic::usub_with_overflow:
3627 case Intrinsic::ssub_with_overflow:
3628 // X - undef -> { 0, false }
3629 // undef - X -> { 0, false }
3630 if (!C0 || !C1)
3631 return Constant::getNullValue(Ty);
3632 [[fallthrough]];
3633 case Intrinsic::uadd_with_overflow:
3634 case Intrinsic::sadd_with_overflow:
3635 // X + undef -> { -1, false }
3636 // undef + x -> { -1, false }
3637 if (!C0 || !C1) {
3638 return ConstantStruct::get(
3639 cast<StructType>(Ty),
3640 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3641 Constant::getNullValue(Ty->getStructElementType(1))});
3642 }
3643 [[fallthrough]];
3644 case Intrinsic::smul_with_overflow:
3645 case Intrinsic::umul_with_overflow: {
3646 // undef * X -> { 0, false }
3647 // X * undef -> { 0, false }
3648 if (!C0 || !C1)
3649 return Constant::getNullValue(Ty);
3650
3651 APInt Res;
3652 bool Overflow;
3653 switch (IntrinsicID) {
3654 default: llvm_unreachable("Invalid case");
3655 case Intrinsic::sadd_with_overflow:
3656 Res = C0->sadd_ov(*C1, Overflow);
3657 break;
3658 case Intrinsic::uadd_with_overflow:
3659 Res = C0->uadd_ov(*C1, Overflow);
3660 break;
3661 case Intrinsic::ssub_with_overflow:
3662 Res = C0->ssub_ov(*C1, Overflow);
3663 break;
3664 case Intrinsic::usub_with_overflow:
3665 Res = C0->usub_ov(*C1, Overflow);
3666 break;
3667 case Intrinsic::smul_with_overflow:
3668 Res = C0->smul_ov(*C1, Overflow);
3669 break;
3670 case Intrinsic::umul_with_overflow:
3671 Res = C0->umul_ov(*C1, Overflow);
3672 break;
3673 }
3674 Constant *Ops[] = {
3675 ConstantInt::get(Ty->getContext(), Res),
3676 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3677 };
3679 }
3680 case Intrinsic::uadd_sat:
3681 case Intrinsic::sadd_sat:
3682 if (!C0 && !C1)
3683 return UndefValue::get(Ty);
3684 if (!C0 || !C1)
3685 return Constant::getAllOnesValue(Ty);
3686 if (IntrinsicID == Intrinsic::uadd_sat)
3687 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3688 else
3689 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3690 case Intrinsic::usub_sat:
3691 case Intrinsic::ssub_sat:
3692 if (!C0 && !C1)
3693 return UndefValue::get(Ty);
3694 if (!C0 || !C1)
3695 return Constant::getNullValue(Ty);
3696 if (IntrinsicID == Intrinsic::usub_sat)
3697 return ConstantInt::get(Ty, C0->usub_sat(*C1));
3698 else
3699 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3700 case Intrinsic::cttz:
3701 case Intrinsic::ctlz:
3702 assert(C1 && "Must be constant int");
3703
3704 // cttz(0, 1) and ctlz(0, 1) are poison.
3705 if (C1->isOne() && (!C0 || C0->isZero()))
3706 return PoisonValue::get(Ty);
3707 if (!C0)
3708 return Constant::getNullValue(Ty);
3709 if (IntrinsicID == Intrinsic::cttz)
3710 return ConstantInt::get(Ty, C0->countr_zero());
3711 else
3712 return ConstantInt::get(Ty, C0->countl_zero());
3713
3714 case Intrinsic::abs:
3715 assert(C1 && "Must be constant int");
3716 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3717
3718 // Undef or minimum val operand with poison min --> poison
3719 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3720 return PoisonValue::get(Ty);
3721
3722 // Undef operand with no poison min --> 0 (sign bit must be clear)
3723 if (!C0)
3724 return Constant::getNullValue(Ty);
3725
3726 return ConstantInt::get(Ty, C0->abs());
3727 case Intrinsic::amdgcn_wave_reduce_umin:
3728 case Intrinsic::amdgcn_wave_reduce_umax:
3729 case Intrinsic::amdgcn_wave_reduce_max:
3730 case Intrinsic::amdgcn_wave_reduce_min:
3731 case Intrinsic::amdgcn_wave_reduce_add:
3732 case Intrinsic::amdgcn_wave_reduce_sub:
3733 case Intrinsic::amdgcn_wave_reduce_and:
3734 case Intrinsic::amdgcn_wave_reduce_or:
3735 case Intrinsic::amdgcn_wave_reduce_xor:
3736 return dyn_cast<Constant>(Operands[0]);
3737 }
3738
3739 return nullptr;
3740 }
3741
3742 // Support ConstantVector in case we have an Undef in the top.
3743 if ((isa<ConstantVector>(Operands[0]) ||
3744 isa<ConstantDataVector>(Operands[0])) &&
3745 // Check for default rounding mode.
3746 // FIXME: Support other rounding modes?
3747 isa<ConstantInt>(Operands[1]) &&
3748 cast<ConstantInt>(Operands[1])->getValue() == 4) {
3749 auto *Op = cast<Constant>(Operands[0]);
3750 switch (IntrinsicID) {
3751 default: break;
3752 case Intrinsic::x86_avx512_vcvtss2si32:
3753 case Intrinsic::x86_avx512_vcvtss2si64:
3754 case Intrinsic::x86_avx512_vcvtsd2si32:
3755 case Intrinsic::x86_avx512_vcvtsd2si64:
3756 if (ConstantFP *FPOp =
3757 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3758 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3759 /*roundTowardZero=*/false, Ty,
3760 /*IsSigned*/true);
3761 break;
3762 case Intrinsic::x86_avx512_vcvtss2usi32:
3763 case Intrinsic::x86_avx512_vcvtss2usi64:
3764 case Intrinsic::x86_avx512_vcvtsd2usi32:
3765 case Intrinsic::x86_avx512_vcvtsd2usi64:
3766 if (ConstantFP *FPOp =
3767 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3768 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3769 /*roundTowardZero=*/false, Ty,
3770 /*IsSigned*/false);
3771 break;
3772 case Intrinsic::x86_avx512_cvttss2si:
3773 case Intrinsic::x86_avx512_cvttss2si64:
3774 case Intrinsic::x86_avx512_cvttsd2si:
3775 case Intrinsic::x86_avx512_cvttsd2si64:
3776 if (ConstantFP *FPOp =
3777 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3778 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3779 /*roundTowardZero=*/true, Ty,
3780 /*IsSigned*/true);
3781 break;
3782 case Intrinsic::x86_avx512_cvttss2usi:
3783 case Intrinsic::x86_avx512_cvttss2usi64:
3784 case Intrinsic::x86_avx512_cvttsd2usi:
3785 case Intrinsic::x86_avx512_cvttsd2usi64:
3786 if (ConstantFP *FPOp =
3787 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3788 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3789 /*roundTowardZero=*/true, Ty,
3790 /*IsSigned*/false);
3791 break;
3792 }
3793 }
3794 return nullptr;
3795}
3796
3797static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3798 const APFloat &S0,
3799 const APFloat &S1,
3800 const APFloat &S2) {
3801 unsigned ID;
3802 const fltSemantics &Sem = S0.getSemantics();
3803 APFloat MA(Sem), SC(Sem), TC(Sem);
3804 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3805 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3806 // S2 < 0
3807 ID = 5;
3808 SC = -S0;
3809 } else {
3810 ID = 4;
3811 SC = S0;
3812 }
3813 MA = S2;
3814 TC = -S1;
3815 } else if (abs(S1) >= abs(S0)) {
3816 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3817 // S1 < 0
3818 ID = 3;
3819 TC = -S2;
3820 } else {
3821 ID = 2;
3822 TC = S2;
3823 }
3824 MA = S1;
3825 SC = S0;
3826 } else {
3827 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3828 // S0 < 0
3829 ID = 1;
3830 SC = S2;
3831 } else {
3832 ID = 0;
3833 SC = -S2;
3834 }
3835 MA = S0;
3836 TC = -S1;
3837 }
3838 switch (IntrinsicID) {
3839 default:
3840 llvm_unreachable("unhandled amdgcn cube intrinsic");
3841 case Intrinsic::amdgcn_cubeid:
3842 return APFloat(Sem, ID);
3843 case Intrinsic::amdgcn_cubema:
3844 return MA + MA;
3845 case Intrinsic::amdgcn_cubesc:
3846 return SC;
3847 case Intrinsic::amdgcn_cubetc:
3848 return TC;
3849 }
3850}
3851
3852static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3853 Type *Ty) {
3854 const APInt *C0, *C1, *C2;
3855 if (!getConstIntOrUndef(Operands[0], C0) ||
3856 !getConstIntOrUndef(Operands[1], C1) ||
3857 !getConstIntOrUndef(Operands[2], C2))
3858 return nullptr;
3859
3860 if (!C2)
3861 return UndefValue::get(Ty);
3862
3863 APInt Val(32, 0);
3864 unsigned NumUndefBytes = 0;
3865 for (unsigned I = 0; I < 32; I += 8) {
3866 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3867 unsigned B = 0;
3868
3869 if (Sel >= 13)
3870 B = 0xff;
3871 else if (Sel == 12)
3872 B = 0x00;
3873 else {
3874 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3875 if (!Src)
3876 ++NumUndefBytes;
3877 else if (Sel < 8)
3878 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3879 else
3880 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3881 }
3882
3883 Val.insertBits(B, I, 8);
3884 }
3885
3886 if (NumUndefBytes == 4)
3887 return UndefValue::get(Ty);
3888
3889 return ConstantInt::get(Ty, Val);
3890}
3891
3892static Constant *ConstantFoldScalarCall3(StringRef Name,
3893 Intrinsic::ID IntrinsicID,
3894 Type *Ty,
3895 ArrayRef<Constant *> Operands,
3896 const TargetLibraryInfo *TLI,
3897 const CallBase *Call) {
3898 assert(Operands.size() == 3 && "Wrong number of operands.");
3899
3900 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3901 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3902 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3903 const APFloat &C1 = Op1->getValueAPF();
3904 const APFloat &C2 = Op2->getValueAPF();
3905 const APFloat &C3 = Op3->getValueAPF();
3906
3907 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3908 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3909 APFloat Res = C1;
3911 switch (IntrinsicID) {
3912 default:
3913 return nullptr;
3914 case Intrinsic::experimental_constrained_fma:
3915 case Intrinsic::experimental_constrained_fmuladd:
3916 St = Res.fusedMultiplyAdd(C2, C3, RM);
3917 break;
3918 }
3919 if (mayFoldConstrained(
3920 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3921 return ConstantFP::get(Ty->getContext(), Res);
3922 return nullptr;
3923 }
3924
3925 switch (IntrinsicID) {
3926 default: break;
3927 case Intrinsic::amdgcn_fma_legacy: {
3928 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3929 // NaN or infinity, gives +0.0.
3930 if (C1.isZero() || C2.isZero()) {
3931 // It's tempting to just return C3 here, but that would give the
3932 // wrong result if C3 was -0.0.
3933 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3934 }
3935 [[fallthrough]];
3936 }
3937 case Intrinsic::fma:
3938 case Intrinsic::fmuladd: {
3939 APFloat V = C1;
3941 return ConstantFP::get(Ty->getContext(), V);
3942 }
3943
3944 case Intrinsic::nvvm_fma_rm_f:
3945 case Intrinsic::nvvm_fma_rn_f:
3946 case Intrinsic::nvvm_fma_rp_f:
3947 case Intrinsic::nvvm_fma_rz_f:
3948 case Intrinsic::nvvm_fma_rm_d:
3949 case Intrinsic::nvvm_fma_rn_d:
3950 case Intrinsic::nvvm_fma_rp_d:
3951 case Intrinsic::nvvm_fma_rz_d:
3952 case Intrinsic::nvvm_fma_rm_ftz_f:
3953 case Intrinsic::nvvm_fma_rn_ftz_f:
3954 case Intrinsic::nvvm_fma_rp_ftz_f:
3955 case Intrinsic::nvvm_fma_rz_ftz_f: {
3956 bool IsFTZ = nvvm::FMAShouldFTZ(IntrinsicID);
3957 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3958 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3959 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3960
3961 APFloat::roundingMode RoundMode =
3962 nvvm::GetFMARoundingMode(IntrinsicID);
3963
3964 APFloat Res = A;
3965 APFloat::opStatus Status = Res.fusedMultiplyAdd(B, C, RoundMode);
3966
3967 if (!Res.isNaN() &&
3969 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3970 return ConstantFP::get(Ty->getContext(), Res);
3971 }
3972 return nullptr;
3973 }
3974
3975 case Intrinsic::amdgcn_cubeid:
3976 case Intrinsic::amdgcn_cubema:
3977 case Intrinsic::amdgcn_cubesc:
3978 case Intrinsic::amdgcn_cubetc: {
3979 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3980 return ConstantFP::get(Ty->getContext(), V);
3981 }
3982 }
3983 }
3984 }
3985 }
3986
3987 if (IntrinsicID == Intrinsic::smul_fix ||
3988 IntrinsicID == Intrinsic::smul_fix_sat) {
3989 const APInt *C0, *C1;
3990 if (!getConstIntOrUndef(Operands[0], C0) ||
3991 !getConstIntOrUndef(Operands[1], C1))
3992 return nullptr;
3993
3994 // undef * C -> 0
3995 // C * undef -> 0
3996 if (!C0 || !C1)
3997 return Constant::getNullValue(Ty);
3998
3999 // This code performs rounding towards negative infinity in case the result
4000 // cannot be represented exactly for the given scale. Targets that do care
4001 // about rounding should use a target hook for specifying how rounding
4002 // should be done, and provide their own folding to be consistent with
4003 // rounding. This is the same approach as used by
4004 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
4005 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
4006 unsigned Width = C0->getBitWidth();
4007 assert(Scale < Width && "Illegal scale.");
4008 unsigned ExtendedWidth = Width * 2;
4009 APInt Product =
4010 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
4011 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4012 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
4013 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
4014 Product = APIntOps::smin(Product, Max);
4015 Product = APIntOps::smax(Product, Min);
4016 }
4017 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
4018 }
4019
4020 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4021 const APInt *C0, *C1, *C2;
4022 if (!getConstIntOrUndef(Operands[0], C0) ||
4023 !getConstIntOrUndef(Operands[1], C1) ||
4024 !getConstIntOrUndef(Operands[2], C2))
4025 return nullptr;
4026
4027 bool IsRight = IntrinsicID == Intrinsic::fshr;
4028 if (!C2)
4029 return Operands[IsRight ? 1 : 0];
4030 if (!C0 && !C1)
4031 return UndefValue::get(Ty);
4032
4033 // The shift amount is interpreted as modulo the bitwidth. If the shift
4034 // amount is effectively 0, avoid UB due to oversized inverse shift below.
4035 unsigned BitWidth = C2->getBitWidth();
4036 unsigned ShAmt = C2->urem(BitWidth);
4037 if (!ShAmt)
4038 return Operands[IsRight ? 1 : 0];
4039
4040 // (C0 << ShlAmt) | (C1 >> LshrAmt)
4041 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
4042 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
4043 if (!C0)
4044 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
4045 if (!C1)
4046 return ConstantInt::get(Ty, C0->shl(ShlAmt));
4047 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
4048 }
4049
4050 if (IntrinsicID == Intrinsic::amdgcn_perm)
4051 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4052
4053 return nullptr;
4054}
4055
4056static Constant *ConstantFoldScalarCall(StringRef Name,
4057 Intrinsic::ID IntrinsicID,
4058 Type *Ty,
4059 ArrayRef<Constant *> Operands,
4060 const TargetLibraryInfo *TLI,
4061 const CallBase *Call) {
4062 if (IntrinsicID != Intrinsic::not_intrinsic &&
4063 any_of(Operands, IsaPred<PoisonValue>) &&
4064 intrinsicPropagatesPoison(IntrinsicID))
4065 return PoisonValue::get(Ty);
4066
4067 if (Operands.size() == 1)
4068 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
4069
4070 if (Operands.size() == 2) {
4071 if (Constant *FoldedLibCall =
4072 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4073 return FoldedLibCall;
4074 }
4075 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
4076 }
4077
4078 if (Operands.size() == 3)
4079 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
4080
4081 return nullptr;
4082}
4083
4084static Constant *ConstantFoldFixedVectorCall(
4085 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
4086 ArrayRef<Constant *> Operands, const DataLayout &DL,
4087 const TargetLibraryInfo *TLI, const CallBase *Call) {
4089 SmallVector<Constant *, 4> Lane(Operands.size());
4090 Type *Ty = FVTy->getElementType();
4091
4092 switch (IntrinsicID) {
4093 case Intrinsic::masked_load: {
4094 auto *SrcPtr = Operands[0];
4095 auto *Mask = Operands[1];
4096 auto *Passthru = Operands[2];
4097
4098 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
4099
4100 SmallVector<Constant *, 32> NewElements;
4101 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4102 auto *MaskElt = Mask->getAggregateElement(I);
4103 if (!MaskElt)
4104 break;
4105 auto *PassthruElt = Passthru->getAggregateElement(I);
4106 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
4107 if (isa<UndefValue>(MaskElt)) {
4108 if (PassthruElt)
4109 NewElements.push_back(PassthruElt);
4110 else if (VecElt)
4111 NewElements.push_back(VecElt);
4112 else
4113 return nullptr;
4114 }
4115 if (MaskElt->isNullValue()) {
4116 if (!PassthruElt)
4117 return nullptr;
4118 NewElements.push_back(PassthruElt);
4119 } else if (MaskElt->isOneValue()) {
4120 if (!VecElt)
4121 return nullptr;
4122 NewElements.push_back(VecElt);
4123 } else {
4124 return nullptr;
4125 }
4126 }
4127 if (NewElements.size() != FVTy->getNumElements())
4128 return nullptr;
4129 return ConstantVector::get(NewElements);
4130 }
4131 case Intrinsic::arm_mve_vctp8:
4132 case Intrinsic::arm_mve_vctp16:
4133 case Intrinsic::arm_mve_vctp32:
4134 case Intrinsic::arm_mve_vctp64: {
4135 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
4136 unsigned Lanes = FVTy->getNumElements();
4137 uint64_t Limit = Op->getZExtValue();
4138
4140 for (unsigned i = 0; i < Lanes; i++) {
4141 if (i < Limit)
4143 else
4145 }
4146 return ConstantVector::get(NCs);
4147 }
4148 return nullptr;
4149 }
4150 case Intrinsic::get_active_lane_mask: {
4151 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4152 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4153 if (Op0 && Op1) {
4154 unsigned Lanes = FVTy->getNumElements();
4155 uint64_t Base = Op0->getZExtValue();
4156 uint64_t Limit = Op1->getZExtValue();
4157
4159 for (unsigned i = 0; i < Lanes; i++) {
4160 if (Base + i < Limit)
4162 else
4164 }
4165 return ConstantVector::get(NCs);
4166 }
4167 return nullptr;
4168 }
4169 case Intrinsic::vector_extract: {
4170 auto *Idx = dyn_cast<ConstantInt>(Operands[1]);
4171 Constant *Vec = Operands[0];
4172 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4173 return nullptr;
4174
4175 unsigned NumElements = FVTy->getNumElements();
4176 unsigned VecNumElements =
4177 cast<FixedVectorType>(Vec->getType())->getNumElements();
4178 unsigned StartingIndex = Idx->getZExtValue();
4179
4180 // Extracting entire vector is nop
4181 if (NumElements == VecNumElements && StartingIndex == 0)
4182 return Vec;
4183
4184 for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E;
4185 ++I) {
4186 Constant *Elt = Vec->getAggregateElement(I);
4187 if (!Elt)
4188 return nullptr;
4189 Result[I - StartingIndex] = Elt;
4190 }
4191
4192 return ConstantVector::get(Result);
4193 }
4194 case Intrinsic::vector_insert: {
4195 Constant *Vec = Operands[0];
4196 Constant *SubVec = Operands[1];
4197 auto *Idx = dyn_cast<ConstantInt>(Operands[2]);
4198 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4199 return nullptr;
4200
4201 unsigned SubVecNumElements =
4202 cast<FixedVectorType>(SubVec->getType())->getNumElements();
4203 unsigned VecNumElements =
4204 cast<FixedVectorType>(Vec->getType())->getNumElements();
4205 unsigned IdxN = Idx->getZExtValue();
4206 // Replacing entire vector with a subvec is nop
4207 if (SubVecNumElements == VecNumElements && IdxN == 0)
4208 return SubVec;
4209
4210 for (unsigned I = 0; I < VecNumElements; ++I) {
4211 Constant *Elt;
4212 if (I < IdxN + SubVecNumElements)
4213 Elt = SubVec->getAggregateElement(I - IdxN);
4214 else
4215 Elt = Vec->getAggregateElement(I);
4216 if (!Elt)
4217 return nullptr;
4218 Result[I] = Elt;
4219 }
4220 return ConstantVector::get(Result);
4221 }
4222 case Intrinsic::vector_interleave2:
4223 case Intrinsic::vector_interleave3:
4224 case Intrinsic::vector_interleave4:
4225 case Intrinsic::vector_interleave5:
4226 case Intrinsic::vector_interleave6:
4227 case Intrinsic::vector_interleave7:
4228 case Intrinsic::vector_interleave8: {
4229 unsigned NumElements =
4230 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4231 unsigned NumOperands = Operands.size();
4232 for (unsigned I = 0; I < NumElements; ++I) {
4233 for (unsigned J = 0; J < NumOperands; ++J) {
4234 Constant *Elt = Operands[J]->getAggregateElement(I);
4235 if (!Elt)
4236 return nullptr;
4237 Result[NumOperands * I + J] = Elt;
4238 }
4239 }
4240 return ConstantVector::get(Result);
4241 }
4242 case Intrinsic::wasm_dot: {
4243 unsigned NumElements =
4244 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4245
4246 assert(NumElements == 8 && Result.size() == 4 &&
4247 "wasm dot takes i16x8 and produces i32x4");
4248 assert(Ty->isIntegerTy());
4249 int32_t MulVector[8];
4250
4251 for (unsigned I = 0; I < NumElements; ++I) {
4252 ConstantInt *Elt0 =
4253 cast<ConstantInt>(Operands[0]->getAggregateElement(I));
4254 ConstantInt *Elt1 =
4255 cast<ConstantInt>(Operands[1]->getAggregateElement(I));
4256
4257 MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
4258 }
4259 for (unsigned I = 0; I < Result.size(); I++) {
4260 int64_t IAdd = (int64_t)MulVector[I * 2] + (int64_t)MulVector[I * 2 + 1];
4261 Result[I] = ConstantInt::get(Ty, IAdd);
4262 }
4263
4264 return ConstantVector::get(Result);
4265 }
4266 default:
4267 break;
4268 }
4269
4270 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4271 // Gather a column of constants.
4272 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
4273 // Some intrinsics use a scalar type for certain arguments.
4274 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
4275 Lane[J] = Operands[J];
4276 continue;
4277 }
4278
4279 Constant *Agg = Operands[J]->getAggregateElement(I);
4280 if (!Agg)
4281 return nullptr;
4282
4283 Lane[J] = Agg;
4284 }
4285
4286 // Use the regular scalar folding to simplify this column.
4287 Constant *Folded =
4288 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
4289 if (!Folded)
4290 return nullptr;
4291 Result[I] = Folded;
4292 }
4293
4294 return ConstantVector::get(Result);
4295}
4296
4297static Constant *ConstantFoldScalableVectorCall(
4298 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
4299 ArrayRef<Constant *> Operands, const DataLayout &DL,
4300 const TargetLibraryInfo *TLI, const CallBase *Call) {
4301 switch (IntrinsicID) {
4302 case Intrinsic::aarch64_sve_convert_from_svbool: {
4303 auto *Src = dyn_cast<Constant>(Operands[0]);
4304 if (!Src || !Src->isNullValue())
4305 break;
4306
4307 return ConstantInt::getFalse(SVTy);
4308 }
4309 case Intrinsic::get_active_lane_mask: {
4310 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4311 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4312 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4313 return ConstantVector::getNullValue(SVTy);
4314 break;
4315 }
4316 case Intrinsic::vector_interleave2:
4317 case Intrinsic::vector_interleave3:
4318 case Intrinsic::vector_interleave4:
4319 case Intrinsic::vector_interleave5:
4320 case Intrinsic::vector_interleave6:
4321 case Intrinsic::vector_interleave7:
4322 case Intrinsic::vector_interleave8: {
4323 Constant *SplatVal = Operands[0]->getSplatValue();
4324 if (!SplatVal)
4325 return nullptr;
4326
4327 if (!llvm::all_equal(Operands))
4328 return nullptr;
4329
4330 return ConstantVector::getSplat(SVTy->getElementCount(), SplatVal);
4331 }
4332 default:
4333 break;
4334 }
4335
4336 // If trivially vectorizable, try folding it via the scalar call if all
4337 // operands are splats.
4338
4339 // TODO: ConstantFoldFixedVectorCall should probably check this too?
4340 if (!isTriviallyVectorizable(IntrinsicID))
4341 return nullptr;
4342
4344 for (auto [I, Op] : enumerate(Operands)) {
4345 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, I, /*TTI=*/nullptr)) {
4346 SplatOps.push_back(Op);
4347 continue;
4348 }
4349 Constant *Splat = Op->getSplatValue();
4350 if (!Splat)
4351 return nullptr;
4352 SplatOps.push_back(Splat);
4353 }
4354 Constant *Folded = ConstantFoldScalarCall(
4355 Name, IntrinsicID, SVTy->getElementType(), SplatOps, TLI, Call);
4356 if (!Folded)
4357 return nullptr;
4358 return ConstantVector::getSplat(SVTy->getElementCount(), Folded);
4359}
4360
4361static std::pair<Constant *, Constant *>
4362ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
4363 if (isa<PoisonValue>(Op))
4364 return {Op, PoisonValue::get(IntTy)};
4365
4366 auto *ConstFP = dyn_cast<ConstantFP>(Op);
4367 if (!ConstFP)
4368 return {};
4369
4370 const APFloat &U = ConstFP->getValueAPF();
4371 int FrexpExp;
4372 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
4373 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4374
4375 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
4376 // using undef.
4377 Constant *Result1 = FrexpMant.isFinite()
4378 ? ConstantInt::getSigned(IntTy, FrexpExp)
4379 : ConstantInt::getNullValue(IntTy);
4380 return {Result0, Result1};
4381}
4382
4383/// Handle intrinsics that return tuples, which may be tuples of vectors.
4384static Constant *
4385ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
4386 StructType *StTy, ArrayRef<Constant *> Operands,
4387 const DataLayout &DL, const TargetLibraryInfo *TLI,
4388 const CallBase *Call) {
4389
4390 switch (IntrinsicID) {
4391 case Intrinsic::frexp: {
4392 Type *Ty0 = StTy->getContainedType(0);
4393 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
4394
4395 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
4396 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
4397 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
4398
4399 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
4400 Constant *Lane = Operands[0]->getAggregateElement(I);
4401 std::tie(Results0[I], Results1[I]) =
4402 ConstantFoldScalarFrexpCall(Lane, Ty1);
4403 if (!Results0[I])
4404 return nullptr;
4405 }
4406
4407 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
4408 ConstantVector::get(Results1));
4409 }
4410
4411 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4412 if (!Result0)
4413 return nullptr;
4414 return ConstantStruct::get(StTy, Result0, Result1);
4415 }
4416 case Intrinsic::sincos: {
4417 Type *Ty = StTy->getContainedType(0);
4418 Type *TyScalar = Ty->getScalarType();
4419
4420 auto ConstantFoldScalarSincosCall =
4421 [&](Constant *Op) -> std::pair<Constant *, Constant *> {
4422 Constant *SinResult =
4423 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
4424 Constant *CosResult =
4425 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
4426 return std::make_pair(SinResult, CosResult);
4427 };
4428
4429 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4430 SmallVector<Constant *> SinResults(FVTy->getNumElements());
4431 SmallVector<Constant *> CosResults(FVTy->getNumElements());
4432
4433 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4434 Constant *Lane = Operands[0]->getAggregateElement(I);
4435 std::tie(SinResults[I], CosResults[I]) =
4436 ConstantFoldScalarSincosCall(Lane);
4437 if (!SinResults[I] || !CosResults[I])
4438 return nullptr;
4439 }
4440
4441 return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
4442 ConstantVector::get(CosResults));
4443 }
4444
4445 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4446 if (!SinResult || !CosResult)
4447 return nullptr;
4448 return ConstantStruct::get(StTy, SinResult, CosResult);
4449 }
4450 case Intrinsic::vector_deinterleave2:
4451 case Intrinsic::vector_deinterleave3:
4452 case Intrinsic::vector_deinterleave4:
4453 case Intrinsic::vector_deinterleave5:
4454 case Intrinsic::vector_deinterleave6:
4455 case Intrinsic::vector_deinterleave7:
4456 case Intrinsic::vector_deinterleave8: {
4457 unsigned NumResults = StTy->getNumElements();
4458 auto *Vec = Operands[0];
4459 auto *VecTy = cast<VectorType>(Vec->getType());
4460
4461 ElementCount ResultEC =
4462 VecTy->getElementCount().divideCoefficientBy(NumResults);
4463
4464 if (auto *EltC = Vec->getSplatValue()) {
4465 auto *ResultVec = ConstantVector::getSplat(ResultEC, EltC);
4466 SmallVector<Constant *, 8> Results(NumResults, ResultVec);
4467 return ConstantStruct::get(StTy, Results);
4468 }
4469
4470 if (!ResultEC.isFixed())
4471 return nullptr;
4472
4473 unsigned NumElements = ResultEC.getFixedValue();
4475 SmallVector<Constant *> Elements(NumElements);
4476 for (unsigned I = 0; I != NumResults; ++I) {
4477 for (unsigned J = 0; J != NumElements; ++J) {
4478 Constant *Elt = Vec->getAggregateElement(J * NumResults + I);
4479 if (!Elt)
4480 return nullptr;
4481 Elements[J] = Elt;
4482 }
4483 Results[I] = ConstantVector::get(Elements);
4484 }
4485 return ConstantStruct::get(StTy, Results);
4486 }
4487 default:
4488 // TODO: Constant folding of vector intrinsics that fall through here does
4489 // not work (e.g. overflow intrinsics)
4490 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
4491 }
4492
4493 return nullptr;
4494}
4495
4496} // end anonymous namespace
4497
4499 Constant *RHS, Type *Ty,
4502 // Ensure we check flags like StrictFP that might prevent this from getting
4503 // folded before generating a result.
4504 if (Call && !canConstantFoldCallTo(Call, Call->getCalledFunction()))
4505 return nullptr;
4506 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, Call);
4507}
4508
4510 ArrayRef<Constant *> Operands,
4511 const TargetLibraryInfo *TLI,
4512 bool AllowNonDeterministic) {
4513 if (Call->isNoBuiltin())
4514 return nullptr;
4515 if (!F->hasName())
4516 return nullptr;
4517
4518 // If this is not an intrinsic and not recognized as a library call, bail out.
4519 Intrinsic::ID IID = F->getIntrinsicID();
4520 if (IID == Intrinsic::not_intrinsic) {
4521 if (!TLI)
4522 return nullptr;
4523 LibFunc LibF;
4524 if (!TLI->getLibFunc(*F, LibF))
4525 return nullptr;
4526 }
4527
4528 // Conservatively assume that floating-point libcalls may be
4529 // non-deterministic.
4530 Type *Ty = F->getReturnType();
4531 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4532 return nullptr;
4533
4534 StringRef Name = F->getName();
4535 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
4536 return ConstantFoldFixedVectorCall(
4537 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
4538
4539 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
4540 return ConstantFoldScalableVectorCall(
4541 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
4542
4543 if (auto *StTy = dyn_cast<StructType>(Ty))
4544 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4545 F->getDataLayout(), TLI, Call);
4546
4547 // TODO: If this is a library function, we already discovered that above,
4548 // so we should pass the LibFunc, not the name (and it might be better
4549 // still to separate intrinsic handling from libcalls).
4550 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
4551}
4552
4554 const TargetLibraryInfo *TLI) {
4555 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
4556 // (and to some extent ConstantFoldScalarCall).
4557 if (Call->isNoBuiltin() || Call->isStrictFP())
4558 return false;
4559 Function *F = Call->getCalledFunction();
4560 if (!F)
4561 return false;
4562
4563 LibFunc Func;
4564 if (!TLI || !TLI->getLibFunc(*F, Func))
4565 return false;
4566
4567 if (Call->arg_size() == 1) {
4568 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
4569 const APFloat &Op = OpC->getValueAPF();
4570 switch (Func) {
4571 case LibFunc_logl:
4572 case LibFunc_log:
4573 case LibFunc_logf:
4574 case LibFunc_log2l:
4575 case LibFunc_log2:
4576 case LibFunc_log2f:
4577 case LibFunc_log10l:
4578 case LibFunc_log10:
4579 case LibFunc_log10f:
4580 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
4581
4582 case LibFunc_ilogb:
4583 return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
4584
4585 case LibFunc_expl:
4586 case LibFunc_exp:
4587 case LibFunc_expf:
4588 // FIXME: These boundaries are slightly conservative.
4589 if (OpC->getType()->isDoubleTy())
4590 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
4591 if (OpC->getType()->isFloatTy())
4592 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
4593 break;
4594
4595 case LibFunc_exp2l:
4596 case LibFunc_exp2:
4597 case LibFunc_exp2f:
4598 // FIXME: These boundaries are slightly conservative.
4599 if (OpC->getType()->isDoubleTy())
4600 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
4601 if (OpC->getType()->isFloatTy())
4602 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
4603 break;
4604
4605 case LibFunc_sinl:
4606 case LibFunc_sin:
4607 case LibFunc_sinf:
4608 case LibFunc_cosl:
4609 case LibFunc_cos:
4610 case LibFunc_cosf:
4611 return !Op.isInfinity();
4612
4613 case LibFunc_tanl:
4614 case LibFunc_tan:
4615 case LibFunc_tanf: {
4616 // FIXME: Stop using the host math library.
4617 // FIXME: The computation isn't done in the right precision.
4618 Type *Ty = OpC->getType();
4619 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4620 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
4621 break;
4622 }
4623
4624 case LibFunc_atan:
4625 case LibFunc_atanf:
4626 case LibFunc_atanl:
4627 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4628 return true;
4629
4630 case LibFunc_asinl:
4631 case LibFunc_asin:
4632 case LibFunc_asinf:
4633 case LibFunc_acosl:
4634 case LibFunc_acos:
4635 case LibFunc_acosf:
4636 return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
4637 Op > APFloat::getOne(Op.getSemantics()));
4638
4639 case LibFunc_sinh:
4640 case LibFunc_cosh:
4641 case LibFunc_sinhf:
4642 case LibFunc_coshf:
4643 case LibFunc_sinhl:
4644 case LibFunc_coshl:
4645 // FIXME: These boundaries are slightly conservative.
4646 if (OpC->getType()->isDoubleTy())
4647 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4648 if (OpC->getType()->isFloatTy())
4649 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4650 break;
4651
4652 case LibFunc_sqrtl:
4653 case LibFunc_sqrt:
4654 case LibFunc_sqrtf:
4655 return Op.isNaN() || Op.isZero() || !Op.isNegative();
4656
4657 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4658 // maybe others?
4659 default:
4660 break;
4661 }
4662 }
4663 }
4664
4665 if (Call->arg_size() == 2) {
4666 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4667 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4668 if (Op0C && Op1C) {
4669 const APFloat &Op0 = Op0C->getValueAPF();
4670 const APFloat &Op1 = Op1C->getValueAPF();
4671
4672 switch (Func) {
4673 case LibFunc_powl:
4674 case LibFunc_pow:
4675 case LibFunc_powf: {
4676 // FIXME: Stop using the host math library.
4677 // FIXME: The computation isn't done in the right precision.
4678 Type *Ty = Op0C->getType();
4679 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4680 if (Ty == Op1C->getType())
4681 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4682 }
4683 break;
4684 }
4685
4686 case LibFunc_fmodl:
4687 case LibFunc_fmod:
4688 case LibFunc_fmodf:
4689 case LibFunc_remainderl:
4690 case LibFunc_remainder:
4691 case LibFunc_remainderf:
4692 return Op0.isNaN() || Op1.isNaN() ||
4693 (!Op0.isInfinity() && !Op1.isZero());
4694
4695 case LibFunc_atan2:
4696 case LibFunc_atan2f:
4697 case LibFunc_atan2l:
4698 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4699 // GLIBC and MSVC do not appear to raise an error on those, we
4700 // cannot rely on that behavior. POSIX and C11 say that a domain error
4701 // may occur, so allow for that possibility.
4702 return !Op0.isZero() || !Op1.isZero();
4703
4704 default:
4705 break;
4706 }
4707 }
4708 }
4709
4710 return false;
4711}
4712
4714 unsigned CastOp, const DataLayout &DL,
4715 PreservedCastFlags *Flags) {
4716 switch (CastOp) {
4717 case Instruction::BitCast:
4718 // Bitcast is always lossless.
4719 return ConstantFoldCastOperand(Instruction::BitCast, C, InvCastTo, DL);
4720 case Instruction::Trunc: {
4721 auto *ZExtC = ConstantFoldCastOperand(Instruction::ZExt, C, InvCastTo, DL);
4722 if (Flags) {
4723 // Truncation back on ZExt value is always NUW.
4724 Flags->NUW = true;
4725 // Test positivity of C.
4726 auto *SExtC =
4727 ConstantFoldCastOperand(Instruction::SExt, C, InvCastTo, DL);
4728 Flags->NSW = ZExtC == SExtC;
4729 }
4730 return ZExtC;
4731 }
4732 case Instruction::SExt:
4733 case Instruction::ZExt: {
4734 auto *InvC = ConstantExpr::getTrunc(C, InvCastTo);
4735 auto *CastInvC = ConstantFoldCastOperand(CastOp, InvC, C->getType(), DL);
4736 // Must satisfy CastOp(InvC) == C.
4737 if (!CastInvC || CastInvC != C)
4738 return nullptr;
4739 if (Flags && CastOp == Instruction::ZExt) {
4740 auto *SExtInvC =
4741 ConstantFoldCastOperand(Instruction::SExt, InvC, C->getType(), DL);
4742 // Test positivity of InvC.
4743 Flags->NNeg = CastInvC == SExtInvC;
4744 }
4745 return InvC;
4746 }
4747 default:
4748 return nullptr;
4749 }
4750}
4751
4753 const DataLayout &DL,
4754 PreservedCastFlags *Flags) {
4755 return getLosslessInvCast(C, DestTy, Instruction::ZExt, DL, Flags);
4756}
4757
4759 const DataLayout &DL,
4760 PreservedCastFlags *Flags) {
4761 return getLosslessInvCast(C, DestTy, Instruction::SExt, DL, Flags);
4762}
4763
4764void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
Hexagon Common GEP
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition APFloat.h:342
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:347
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:346
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
static constexpr roundingMode rmNearestTiesToAway
Definition APFloat.h:349
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1102
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
void copySign(const APFloat &RHS)
Definition APFloat.h:1284
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6053
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1172
bool isNegative() const
Definition APFloat.h:1431
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6112
bool isPosInfinity() const
Definition APFloat.h:1444
bool isNormal() const
Definition APFloat.h:1435
bool isDenormal() const
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1163
const fltSemantics & getSemantics() const
Definition APFloat.h:1439
bool isNonZero() const
Definition APFloat.h:1440
bool isFinite() const
Definition APFloat.h:1436
bool isNaN() const
Definition APFloat.h:1429
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6143
bool isSignaling() const
Definition APFloat.h:1433
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1217
bool isZero() const
Definition APFloat.h:1427
APInt bitcastToAPInt() const
Definition APFloat.h:1335
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1314
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1208
bool isNegInfinity() const
Definition APFloat.h:1445
opStatus roundToIntegral(roundingMode RM)
Definition APFloat.h:1230
void changeSign()
Definition APFloat.h:1279
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1061
bool isInfinity() const
Definition APFloat.h:1428
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
Definition APInt.cpp:520
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1796
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1640
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1599
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:770
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:715
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
Definition Constants.h:1387
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1274
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:952
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:806
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
bool isInBounds() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:712
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:743
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:295
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition Type.h:200
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:881
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
const ParentTy * getParent() const
Definition ilist_node.h:34
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2249
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2254
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2259
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2264
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr double pi
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:345
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition APFloat.h:1545
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1516
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1611
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1525
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2108
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1638
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60