LLVM 22.0.0git
ConstantFolding.cpp
Go to the documentation of this file.
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/Operator.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
59#include <cassert>
60#include <cerrno>
61#include <cfenv>
62#include <cmath>
63#include <cstdint>
64
65using namespace llvm;
66
68 "disable-fp-call-folding",
69 cl::desc("Disable constant-folding of FP intrinsics and libcalls."),
70 cl::init(false), cl::Hidden);
71
72namespace {
73
74//===----------------------------------------------------------------------===//
75// Constant Folding internal helper functions
76//===----------------------------------------------------------------------===//
77
78static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
79 Constant *C, Type *SrcEltTy,
80 unsigned NumSrcElts,
81 const DataLayout &DL) {
82 // Now that we know that the input value is a vector of integers, just shift
83 // and insert them into our result.
84 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
85 for (unsigned i = 0; i != NumSrcElts; ++i) {
86 Constant *Element;
87 if (DL.isLittleEndian())
88 Element = C->getAggregateElement(NumSrcElts - i - 1);
89 else
90 Element = C->getAggregateElement(i);
91
92 if (isa_and_nonnull<UndefValue>(Element)) {
93 Result <<= BitShift;
94 continue;
95 }
96
97 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
98 if (!ElementCI)
99 return ConstantExpr::getBitCast(C, DestTy);
100
101 Result <<= BitShift;
102 Result |= ElementCI->getValue().zext(Result.getBitWidth());
103 }
104
105 return nullptr;
106}
107
108/// Constant fold bitcast, symbolically evaluating it with DataLayout.
109/// This always returns a non-null constant, but it may be a
110/// ConstantExpr if unfoldable.
111Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
112 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
113 "Invalid constantexpr bitcast!");
114
115 // Catch the obvious splat cases.
116 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
117 return Res;
118
119 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
120 // Handle a vector->scalar integer/fp cast.
121 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
122 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
123 Type *SrcEltTy = VTy->getElementType();
124
125 // If the vector is a vector of floating point, convert it to vector of int
126 // to simplify things.
127 if (SrcEltTy->isFloatingPointTy()) {
128 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
129 auto *SrcIVTy = FixedVectorType::get(
130 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
131 // Ask IR to do the conversion now that #elts line up.
132 C = ConstantExpr::getBitCast(C, SrcIVTy);
133 }
134
135 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
136 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
137 SrcEltTy, NumSrcElts, DL))
138 return CE;
139
140 if (isa<IntegerType>(DestTy))
141 return ConstantInt::get(DestTy, Result);
142
143 APFloat FP(DestTy->getFltSemantics(), Result);
144 return ConstantFP::get(DestTy->getContext(), FP);
145 }
146 }
147
148 // The code below only handles casts to vectors currently.
149 auto *DestVTy = dyn_cast<VectorType>(DestTy);
150 if (!DestVTy)
151 return ConstantExpr::getBitCast(C, DestTy);
152
153 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
154 // vector so the code below can handle it uniformly.
155 if (!isa<VectorType>(C->getType()) &&
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159 }
160
161 // Some of what follows may extend to cover scalable vectors but the current
162 // implementation is fixed length specific.
163 if (!isa<FixedVectorType>(C->getType()))
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 // If this is a bitcast from constant vector -> vector, fold it.
169 return ConstantExpr::getBitCast(C, DestTy);
170
171 // If the element types match, IR can fold it.
172 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
173 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
174 if (NumDstElt == NumSrcElt)
175 return ConstantExpr::getBitCast(C, DestTy);
176
177 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
178 Type *DstEltTy = DestVTy->getElementType();
179
180 // Otherwise, we're changing the number of elements in a vector, which
181 // requires endianness information to do the right thing. For example,
182 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
183 // folds to (little endian):
184 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
185 // and to (big endian):
186 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
187
188 // First thing is first. We only want to think about integer here, so if
189 // we have something in FP form, recast it as integer.
190 if (DstEltTy->isFloatingPointTy()) {
191 // Fold to an vector of integers with same size as our FP type.
192 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
193 auto *DestIVTy = FixedVectorType::get(
194 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
195 // Recursively handle this integer conversion, if possible.
196 C = FoldBitCast(C, DestIVTy, DL);
197
198 // Finally, IR can handle this now that #elts line up.
199 return ConstantExpr::getBitCast(C, DestTy);
200 }
201
202 // Okay, we know the destination is integer, if the input is FP, convert
203 // it to integer first.
204 if (SrcEltTy->isFloatingPointTy()) {
205 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
206 auto *SrcIVTy = FixedVectorType::get(
207 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
208 // Ask IR to do the conversion now that #elts line up.
209 C = ConstantExpr::getBitCast(C, SrcIVTy);
210 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
212 "Constant folding cannot fail for plain fp->int bitcast!");
213 }
214
215 // Now we know that the input and output vectors are both integer vectors
216 // of the same size, and that their #elements is not the same. Do the
217 // conversion here, which depends on whether the input or output has
218 // more elements.
219 bool isLittleEndian = DL.isLittleEndian();
220
222 if (NumDstElt < NumSrcElt) {
223 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
225 unsigned Ratio = NumSrcElt/NumDstElt;
226 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
227 unsigned SrcElt = 0;
228 for (unsigned i = 0; i != NumDstElt; ++i) {
229 // Build each element of the result.
230 Constant *Elt = Zero;
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (unsigned j = 0; j != Ratio; ++j) {
233 Constant *Src = C->getAggregateElement(SrcElt++);
236 cast<VectorType>(C->getType())->getElementType());
237 else
239 if (!Src) // Reject constantexpr elements.
240 return ConstantExpr::getBitCast(C, DestTy);
241
242 // Zero extend the element to the right size.
243 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
244 DL);
245 assert(Src && "Constant folding cannot fail on plain integers");
246
247 // Shift it to the right place, depending on endianness.
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
250 DL);
251 assert(Src && "Constant folding cannot fail on plain integers");
252
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
254
255 // Mix it in.
256 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
257 assert(Elt && "Constant folding cannot fail on plain integers");
258 }
259 Result.push_back(Elt);
260 }
261 return ConstantVector::get(Result);
262 }
263
264 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
267
268 // Loop over each source value, expanding into multiple results.
269 for (unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element = C->getAggregateElement(i);
271
272 if (!Element) // Reject constantexpr elements.
273 return ConstantExpr::getBitCast(C, DestTy);
274
275 if (isa<UndefValue>(Element)) {
276 // Correctly Propagate undef values.
277 Result.append(Ratio, UndefValue::get(DstEltTy));
278 continue;
279 }
280
281 auto *Src = dyn_cast<ConstantInt>(Element);
282 if (!Src)
283 return ConstantExpr::getBitCast(C, DestTy);
284
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (unsigned j = 0; j != Ratio; ++j) {
287 // Shift the piece of the value into the right place, depending on
288 // endianness.
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
291
292 // Truncate and remember this piece.
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
294 }
295 }
296
297 return ConstantVector::get(Result);
298}
299
300} // end anonymous namespace
301
302/// If this constant is a constant offset from a global, return the global and
303/// the constant. Because of constantexprs, this function is recursive.
305 APInt &Offset, const DataLayout &DL,
306 DSOLocalEquivalent **DSOEquiv) {
307 if (DSOEquiv)
308 *DSOEquiv = nullptr;
309
310 // Trivial case, constant is the global.
311 if ((GV = dyn_cast<GlobalValue>(C))) {
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
318 if (DSOEquiv)
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
321 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
322 Offset = APInt(BitWidth, 0);
323 return true;
324 }
325
326 // Otherwise, if this isn't a constant expr, bail out.
327 auto *CE = dyn_cast<ConstantExpr>(C);
328 if (!CE) return false;
329
330 // Look through ptr->int and ptr->ptr casts.
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
334 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
335 DSOEquiv);
336
337 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
338 auto *GEP = dyn_cast<GEPOperator>(CE);
339 if (!GEP)
340 return false;
341
342 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
343 APInt TmpOffset(BitWidth, 0);
344
345 // If the base isn't a global+constant, we aren't either.
346 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
347 DSOEquiv))
348 return false;
349
350 // Otherwise, add any offset that our operands provide.
351 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
352 return false;
353
354 Offset = TmpOffset;
355 return true;
356}
357
359 const DataLayout &DL) {
360 do {
361 Type *SrcTy = C->getType();
362 if (SrcTy == DestTy)
363 return C;
364
365 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
367 if (!TypeSize::isKnownGE(SrcSize, DestSize))
368 return nullptr;
369
370 // Catch the obvious splat cases (since all-zeros can coerce non-integral
371 // pointers legally).
372 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
373 return Res;
374
375 // If the type sizes are the same and a cast is legal, just directly
376 // cast the constant.
377 // But be careful not to coerce non-integral pointers illegally.
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
380 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
381 Instruction::CastOps Cast = Instruction::BitCast;
382 // If we are going from a pointer to int or vice versa, we spell the cast
383 // differently.
384 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
387 Cast = Instruction::PtrToInt;
388
389 if (CastInst::castIsValid(Cast, C, DestTy))
390 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
391 }
392
393 // If this isn't an aggregate type, there is nothing we can do to drill down
394 // and find a bitcastable constant.
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
396 return nullptr;
397
398 // We're simulating a load through a pointer that was bitcast to point to
399 // a different type, so we can try to walk down through the initial
400 // elements of an aggregate to see if some part of the aggregate is
401 // castable to implement the "load" semantic model.
402 if (SrcTy->isStructTy()) {
403 // Struct types might have leading zero-length elements like [0 x i32],
404 // which are certainly not what we are looking for, so skip them.
405 unsigned Elem = 0;
406 Constant *ElemC;
407 do {
408 ElemC = C->getAggregateElement(Elem++);
409 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
410 C = ElemC;
411 } else {
412 // For non-byte-sized vector elements, the first element is not
413 // necessarily located at the vector base address.
414 if (auto *VT = dyn_cast<VectorType>(SrcTy))
415 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
416 return nullptr;
417
418 C = C->getAggregateElement(0u);
419 }
420 } while (C);
421
422 return nullptr;
423}
424
425namespace {
426
427/// Recursive helper to read bits out of global. C is the constant being copied
428/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
429/// results into and BytesLeft is the number of bytes left in
430/// the CurPtr buffer. DL is the DataLayout.
431bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
432 unsigned BytesLeft, const DataLayout &DL) {
433 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
434 "Out of range access");
435
436 // Reading type padding, return zero.
437 if (ByteOffset >= DL.getTypeStoreSize(C->getType()))
438 return true;
439
440 // If this element is zero or undefined, we can just return since *CurPtr is
441 // zero initialized.
443 return true;
444
445 if (auto *CI = dyn_cast<ConstantInt>(C)) {
446 if ((CI->getBitWidth() & 7) != 0)
447 return false;
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
450
451 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!DL.isLittleEndian())
454 n = IntBytes - n - 1;
455 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
456 ++ByteOffset;
457 }
458 return true;
459 }
460
461 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
462 if (CFP->getType()->isDoubleTy()) {
463 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
464 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
465 }
466 if (CFP->getType()->isFloatTy()){
467 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
468 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
469 }
470 if (CFP->getType()->isHalfTy()){
471 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
472 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
473 }
474 return false;
475 }
476
477 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
478 const StructLayout *SL = DL.getStructLayout(CS->getType());
479 unsigned Index = SL->getElementContainingOffset(ByteOffset);
480 uint64_t CurEltOffset = SL->getElementOffset(Index);
481 ByteOffset -= CurEltOffset;
482
483 while (true) {
484 // If the element access is to the element itself and not to tail padding,
485 // read the bytes from the element.
486 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
490 BytesLeft, DL))
491 return false;
492
493 ++Index;
494
495 // Check to see if we read from the last struct element, if so we're done.
496 if (Index == CS->getType()->getNumElements())
497 return true;
498
499 // If we read all of the bytes we needed from this element we're done.
500 uint64_t NextEltOffset = SL->getElementOffset(Index);
501
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
503 return true;
504
505 // Move to the next element of the struct.
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 ByteOffset = 0;
509 CurEltOffset = NextEltOffset;
510 }
511 // not reached.
512 }
513
516 uint64_t NumElts, EltSize;
517 Type *EltTy;
518 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize = DL.getTypeAllocSize(EltTy);
522 } else {
523 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
524 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
525 // TODO: For non-byte-sized vectors, current implementation assumes there is
526 // padding to the next byte boundary between elements.
527 if (!DL.typeSizeEqualsStoreSize(EltTy))
528 return false;
529
530 EltSize = DL.getTypeStoreSize(EltTy);
531 }
532 uint64_t Index = ByteOffset / EltSize;
533 uint64_t Offset = ByteOffset - Index * EltSize;
534
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
537 BytesLeft, DL))
538 return false;
539
540 uint64_t BytesWritten = EltSize - Offset;
541 assert(BytesWritten <= EltSize && "Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
543 return true;
544
545 Offset = 0;
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
548 }
549 return true;
550 }
551
552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
553 if (CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
555 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
556 BytesLeft, DL);
557 }
558 }
559
560 // Otherwise, unknown initializer type.
561 return false;
562}
563
564Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
565 int64_t Offset, const DataLayout &DL) {
566 // Bail out early. Not expect to load from scalable global variable.
567 if (isa<ScalableVectorType>(LoadTy))
568 return nullptr;
569
570 auto *IntType = dyn_cast<IntegerType>(LoadTy);
571
572 // If this isn't an integer load we can't fold it directly.
573 if (!IntType) {
574 // If this is a non-integer load, we can try folding it as an int load and
575 // then bitcast the result. This can be useful for union cases. Note
576 // that address spaces don't matter here since we're not going to result in
577 // an actual new load.
578 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
579 !LoadTy->isVectorTy())
580 return nullptr;
581
582 Type *MapTy = Type::getIntNTy(C->getContext(),
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
584 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
585 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
586 // Materializing a zero can be done trivially without a bitcast
587 return Constant::getNullValue(LoadTy);
588 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
589 Res = FoldBitCast(Res, CastTy, DL);
590 if (LoadTy->isPtrOrPtrVectorTy()) {
591 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
592 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
593 return Constant::getNullValue(LoadTy);
594 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
595 // Be careful not to replace a load of an addrspace value with an inttoptr here
596 return nullptr;
597 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
598 }
599 return Res;
600 }
601 return nullptr;
602 }
603
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
606 return nullptr;
607
608 // If we're not accessing anything in this constant, the result is undefined.
609 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
610 return PoisonValue::get(IntType);
611
612 // TODO: We should be able to support scalable types.
613 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
614 if (InitializerSize.isScalable())
615 return nullptr;
616
617 // If we're not accessing anything in this constant, the result is undefined.
618 if (Offset >= (int64_t)InitializerSize.getFixedValue())
619 return PoisonValue::get(IntType);
620
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
624
625 // If we're loading off the beginning of the global, some bytes may be valid.
626 if (Offset < 0) {
627 CurPtr += -Offset;
628 BytesLeft += Offset;
629 Offset = 0;
630 }
631
632 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
633 return nullptr;
634
635 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
636 if (DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
641 }
642 } else {
643 ResultVal = RawBytes[0];
644 for (unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal <<= 8;
646 ResultVal |= RawBytes[i];
647 }
648 }
649
650 return ConstantInt::get(IntType->getContext(), ResultVal);
651}
652
653} // anonymous namespace
654
655// If GV is a constant with an initializer read its representation starting
656// at Offset and return it as a constant array of unsigned char. Otherwise
657// return null.
660 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
661 return nullptr;
662
663 const DataLayout &DL = GV->getDataLayout();
664 Constant *Init = const_cast<Constant *>(GV->getInitializer());
665 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
666 if (InitSize < Offset)
667 return nullptr;
668
669 uint64_t NBytes = InitSize - Offset;
670 if (NBytes > UINT16_MAX)
671 // Bail for large initializers in excess of 64K to avoid allocating
672 // too much memory.
673 // Offset is assumed to be less than or equal than InitSize (this
674 // is enforced in ReadDataFromGlobal).
675 return nullptr;
676
677 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
678 unsigned char *CurPtr = RawBytes.data();
679
680 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
681 return nullptr;
682
683 return ConstantDataArray::get(GV->getContext(), RawBytes);
684}
685
686/// If this Offset points exactly to the start of an aggregate element, return
687/// that element, otherwise return nullptr.
689 const DataLayout &DL) {
690 if (Offset.isZero())
691 return Base;
692
694 return nullptr;
695
696 Type *ElemTy = Base->getType();
697 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
698 if (!Offset.isZero() || !Indices[0].isZero())
699 return nullptr;
700
701 Constant *C = Base;
702 for (const APInt &Index : drop_begin(Indices)) {
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
704 return nullptr;
705
706 C = C->getAggregateElement(Index.getZExtValue());
707 if (!C)
708 return nullptr;
709 }
710
711 return C;
712}
713
715 const APInt &Offset,
716 const DataLayout &DL) {
717 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
718 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
719 return Result;
720
721 // Explicitly check for out-of-bounds access, so we return poison even if the
722 // constant is a uniform value.
723 TypeSize Size = DL.getTypeAllocSize(C->getType());
724 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
725 return PoisonValue::get(Ty);
726
727 // Try an offset-independent fold of a uniform value.
728 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
729 return Result;
730
731 // Try hard to fold loads from bitcasted strange and non-type-safe things.
732 if (Offset.getSignificantBits() <= 64)
733 if (Constant *Result =
734 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
735 return Result;
736
737 return nullptr;
738}
739
744
747 const DataLayout &DL) {
748 // We can only fold loads from constant globals with a definitive initializer.
749 // Check this upfront, to skip expensive offset calculations.
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
752 return nullptr;
753
754 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
755 DL, Offset, /* AllowNonInbounds */ true));
756
757 if (C == GV)
758 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
759 Offset, DL))
760 return Result;
761
762 // If this load comes from anywhere in a uniform constant global, the value
763 // is always the same, regardless of the loaded offset.
764 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
765}
766
768 const DataLayout &DL) {
769 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
770 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
771}
772
774 const DataLayout &DL) {
775 if (isa<PoisonValue>(C))
776 return PoisonValue::get(Ty);
777 if (isa<UndefValue>(C))
778 return UndefValue::get(Ty);
779 // If padding is needed when storing C to memory, then it isn't considered as
780 // uniform.
781 if (!DL.typeSizeEqualsStoreSize(C->getType()))
782 return nullptr;
783 if (C->isNullValue() && !Ty->isX86_AMXTy())
784 return Constant::getNullValue(Ty);
785 if (C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
787 return Constant::getAllOnesValue(Ty);
788 return nullptr;
789}
790
791namespace {
792
793/// One of Op0/Op1 is a constant expression.
794/// Attempt to symbolically evaluate the result of a binary operator merging
795/// these together. If target data info is available, it is provided as DL,
796/// otherwise DL is null.
797Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
798 const DataLayout &DL) {
799 // SROA
800
801 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
802 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
803 // bits.
804
805 if (Opc == Instruction::And) {
806 KnownBits Known0 = computeKnownBits(Op0, DL);
807 KnownBits Known1 = computeKnownBits(Op1, DL);
808 if ((Known1.One | Known0.Zero).isAllOnes()) {
809 // All the bits of Op0 that the 'and' could be masking are already zero.
810 return Op0;
811 }
812 if ((Known0.One | Known1.Zero).isAllOnes()) {
813 // All the bits of Op1 that the 'and' could be masking are already zero.
814 return Op1;
815 }
816
817 Known0 &= Known1;
818 if (Known0.isConstant())
819 return ConstantInt::get(Op0->getType(), Known0.getConstant());
820 }
821
822 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
823 // constant. This happens frequently when iterating over a global array.
824 if (Opc == Instruction::Sub) {
825 GlobalValue *GV1, *GV2;
826 APInt Offs1, Offs2;
827
828 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
829 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
830 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
831
832 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
833 // PtrToInt may change the bitwidth so we have convert to the right size
834 // first.
835 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
836 Offs2.zextOrTrunc(OpSize));
837 }
838 }
839
840 return nullptr;
841}
842
843/// If array indices are not pointer-sized integers, explicitly cast them so
844/// that they aren't implicitly casted by the getelementptr.
845Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
846 Type *ResultTy, GEPNoWrapFlags NW,
847 std::optional<ConstantRange> InRange,
848 const DataLayout &DL, const TargetLibraryInfo *TLI) {
849 Type *IntIdxTy = DL.getIndexType(ResultTy);
850 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
851
852 bool Any = false;
854 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
855 if ((i == 1 ||
857 SrcElemTy, Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
859 Any = true;
860 Type *NewType =
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
863 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
864 DL);
865 if (!NewIdx)
866 return nullptr;
867 NewIdxs.push_back(NewIdx);
868 } else
869 NewIdxs.push_back(Ops[i]);
870 }
871
872 if (!Any)
873 return nullptr;
874
875 Constant *C =
876 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
877 return ConstantFoldConstant(C, DL, TLI);
878}
879
880/// If we can symbolically evaluate the GEP constant expression, do so.
881Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
883 const DataLayout &DL,
884 const TargetLibraryInfo *TLI) {
885 Type *SrcElemTy = GEP->getSourceElementType();
886 Type *ResTy = GEP->getType();
887 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
888 return nullptr;
889
890 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
891 GEP->getInRange(), DL, TLI))
892 return C;
893
894 Constant *Ptr = Ops[0];
895 if (!Ptr->getType()->isPointerTy())
896 return nullptr;
897
898 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
899
900 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
901 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
902 return nullptr;
903
904 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906 BitWidth,
907 DL.getIndexedOffsetInType(
908 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
909 /*isSigned=*/true, /*implicitTrunc=*/true);
910
911 std::optional<ConstantRange> InRange = GEP->getInRange();
912 if (InRange)
913 InRange = InRange->sextOrTrunc(BitWidth);
914
915 // If this is a GEP of a GEP, fold it all into a single GEP.
916 GEPNoWrapFlags NW = GEP->getNoWrapFlags();
917 bool Overflow = false;
918 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
919 NW &= GEP->getNoWrapFlags();
920
921 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
922
923 // Do not try the incorporate the sub-GEP if some index is not a number.
924 bool AllConstantInt = true;
925 for (Value *NestedOp : NestedOps)
926 if (!isa<ConstantInt>(NestedOp)) {
927 AllConstantInt = false;
928 break;
929 }
930 if (!AllConstantInt)
931 break;
932
933 // Adjust inrange offset and intersect inrange attributes
934 if (auto GEPRange = GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(BitWidth).subtract(Offset);
936 InRange =
937 InRange ? InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
938 }
939
940 Ptr = cast<Constant>(GEP->getOperand(0));
941 SrcElemTy = GEP->getSourceElementType();
942 Offset = Offset.sadd_ov(
943 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
944 /*isSigned=*/true, /*implicitTrunc=*/true),
945 Overflow);
946 }
947
948 // Preserving nusw (without inbounds) also requires that the offset
949 // additions did not overflow.
950 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
952
953 // If the base value for this address is a literal integer value, fold the
954 // getelementptr to the resulting integer value casted to the pointer type.
955 APInt BaseIntVal(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
956 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
957 if (CE->getOpcode() == Instruction::IntToPtr) {
958 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
959 BaseIntVal = Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
960 }
961 }
962
963 if ((Ptr->isNullValue() || BaseIntVal != 0) &&
964 !DL.mustNotIntroduceIntToPtr(Ptr->getType())) {
965
966 // If the index size is smaller than the pointer size, add to the low
967 // bits only.
968 BaseIntVal.insertBits(BaseIntVal.trunc(BitWidth) + Offset, 0);
969 Constant *C = ConstantInt::get(Ptr->getContext(), BaseIntVal);
970 return ConstantExpr::getIntToPtr(C, ResTy);
971 }
972
973 // Try to infer inbounds for GEPs of globals.
974 if (!NW.isInBounds() && Offset.isNonNegative()) {
975 bool CanBeNull, CanBeFreed;
976 uint64_t DerefBytes =
977 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
980 }
981
982 // nusw + nneg -> nuw
983 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
985
986 // Otherwise canonicalize this to a single ptradd.
987 LLVMContext &Ctx = Ptr->getContext();
989 ConstantInt::get(Ctx, Offset), NW,
990 InRange);
991}
992
993/// Attempt to constant fold an instruction with the
994/// specified opcode and operands. If successful, the constant result is
995/// returned, if not, null is returned. Note that this function can fail when
996/// attempting to fold instructions like loads and stores, which have no
997/// constant expression form.
998Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1000 const DataLayout &DL,
1001 const TargetLibraryInfo *TLI,
1002 bool AllowNonDeterministic) {
1003 Type *DestTy = InstOrCE->getType();
1004
1005 if (Instruction::isUnaryOp(Opcode))
1006 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1007
1008 if (Instruction::isBinaryOp(Opcode)) {
1009 switch (Opcode) {
1010 default:
1011 break;
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1017 // Handle floating point instructions separately to account for denormals
1018 // TODO: If a constant expression is being folded rather than an
1019 // instruction, denormals will not be flushed/treated as zero
1020 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1021 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1022 AllowNonDeterministic);
1023 }
1024 }
1025 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1026 }
1027
1028 if (Instruction::isCast(Opcode))
1029 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1030
1031 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1032 Type *SrcElemTy = GEP->getSourceElementType();
1034 return nullptr;
1035
1036 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1037 return C;
1038
1039 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1040 GEP->getNoWrapFlags(),
1041 GEP->getInRange());
1042 }
1043
1044 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1045 return CE->getWithOperands(Ops);
1046
1047 switch (Opcode) {
1048 default: return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1051 auto *C = cast<CmpInst>(InstOrCE);
1052 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1053 DL, TLI, C);
1054 }
1055 case Instruction::Freeze:
1056 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1057 case Instruction::Call:
1058 if (auto *F = dyn_cast<Function>(Ops.back())) {
1059 const auto *Call = cast<CallBase>(InstOrCE);
1061 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1062 AllowNonDeterministic);
1063 }
1064 return nullptr;
1065 case Instruction::Select:
1066 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1071 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1072 case Instruction::InsertElement:
1073 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1074 case Instruction::InsertValue:
1076 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1077 case Instruction::ShuffleVector:
1079 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1080 case Instruction::Load: {
1081 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1082 if (LI->isVolatile())
1083 return nullptr;
1084 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1085 }
1086 }
1087}
1088
1089} // end anonymous namespace
1090
1091//===----------------------------------------------------------------------===//
1092// Constant Folding public APIs
1093//===----------------------------------------------------------------------===//
1094
1095namespace {
1096
1097Constant *
1098ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1099 const TargetLibraryInfo *TLI,
1102 return const_cast<Constant *>(C);
1103
1105 for (const Use &OldU : C->operands()) {
1106 Constant *OldC = cast<Constant>(&OldU);
1107 Constant *NewC = OldC;
1108 // Recursively fold the ConstantExpr's operands. If we have already folded
1109 // a ConstantExpr, we don't have to process it again.
1110 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1111 auto It = FoldedOps.find(OldC);
1112 if (It == FoldedOps.end()) {
1113 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1114 FoldedOps.insert({OldC, NewC});
1115 } else {
1116 NewC = It->second;
1117 }
1118 }
1119 Ops.push_back(NewC);
1120 }
1121
1122 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1123 if (Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1125 return Res;
1126 return const_cast<Constant *>(C);
1127 }
1128
1130 return ConstantVector::get(Ops);
1131}
1132
1133} // end anonymous namespace
1134
1136 const DataLayout &DL,
1137 const TargetLibraryInfo *TLI) {
1138 // Handle PHI nodes quickly here...
1139 if (auto *PN = dyn_cast<PHINode>(I)) {
1140 Constant *CommonValue = nullptr;
1141
1143 for (Value *Incoming : PN->incoming_values()) {
1144 // If the incoming value is undef then skip it. Note that while we could
1145 // skip the value if it is equal to the phi node itself we choose not to
1146 // because that would break the rule that constant folding only applies if
1147 // all operands are constants.
1149 continue;
1150 // If the incoming value is not a constant, then give up.
1151 auto *C = dyn_cast<Constant>(Incoming);
1152 if (!C)
1153 return nullptr;
1154 // Fold the PHI's operands.
1155 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1156 // If the incoming value is a different constant to
1157 // the one we saw previously, then give up.
1158 if (CommonValue && C != CommonValue)
1159 return nullptr;
1160 CommonValue = C;
1161 }
1162
1163 // If we reach here, all incoming values are the same constant or undef.
1164 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1165 }
1166
1167 // Scan the operand list, checking to see if they are all constants, if so,
1168 // hand off to ConstantFoldInstOperandsImpl.
1169 if (!all_of(I->operands(), [](const Use &U) { return isa<Constant>(U); }))
1170 return nullptr;
1171
1174 for (const Use &OpU : I->operands()) {
1175 auto *Op = cast<Constant>(&OpU);
1176 // Fold the Instruction's operands.
1177 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1178 Ops.push_back(Op);
1179 }
1180
1181 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1182}
1183
1185 const TargetLibraryInfo *TLI) {
1187 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1188}
1189
1192 const DataLayout &DL,
1193 const TargetLibraryInfo *TLI,
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1196 AllowNonDeterministic);
1197}
1198
1200 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1201 const TargetLibraryInfo *TLI, const Instruction *I) {
1202 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1203 // fold: icmp (inttoptr x), null -> icmp x, 0
1204 // fold: icmp null, (inttoptr x) -> icmp 0, x
1205 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1206 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1207 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1208 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1209 //
1210 // FIXME: The following comment is out of data and the DataLayout is here now.
1211 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1212 // around to know if bit truncation is happening.
1213 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1214 if (Ops1->isNullValue()) {
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1217 // Convert the integer value to the right size to ensure we get the
1218 // proper extension or truncation.
1219 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1220 /*IsSigned*/ false, DL)) {
1221 Constant *Null = Constant::getNullValue(C->getType());
1222 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1223 }
1224 }
1225
1226 // icmp only compares the address part of the pointer, so only do this
1227 // transform if the integer size matches the address size.
1228 if (CE0->getOpcode() == Instruction::PtrToInt ||
1229 CE0->getOpcode() == Instruction::PtrToAddr) {
1230 Type *AddrTy = DL.getAddressType(CE0->getOperand(0)->getType());
1231 if (CE0->getType() == AddrTy) {
1232 Constant *C = CE0->getOperand(0);
1233 Constant *Null = Constant::getNullValue(C->getType());
1234 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1235 }
1236 }
1237 }
1238
1239 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1240 if (CE0->getOpcode() == CE1->getOpcode()) {
1241 if (CE0->getOpcode() == Instruction::IntToPtr) {
1242 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1243
1244 // Convert the integer value to the right size to ensure we get the
1245 // proper extension or truncation.
1246 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1247 /*IsSigned*/ false, DL);
1248 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1249 /*IsSigned*/ false, DL);
1250 if (C0 && C1)
1251 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1252 }
1253
1254 // icmp only compares the address part of the pointer, so only do this
1255 // transform if the integer size matches the address size.
1256 if (CE0->getOpcode() == Instruction::PtrToInt ||
1257 CE0->getOpcode() == Instruction::PtrToAddr) {
1258 Type *AddrTy = DL.getAddressType(CE0->getOperand(0)->getType());
1259 if (CE0->getType() == AddrTy &&
1260 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1262 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1263 }
1264 }
1265 }
1266 }
1267
1268 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1269 // offset1 pred offset2, for the case where the offset is inbounds. This
1270 // only works for equality and unsigned comparison, as inbounds permits
1271 // crossing the sign boundary. However, the offset comparison itself is
1272 // signed.
1273 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1274 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1275 APInt Offset0(IndexWidth, 0);
1276 bool IsEqPred = ICmpInst::isEquality(Predicate);
1277 Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets(
1278 DL, Offset0, /*AllowNonInbounds=*/IsEqPred,
1279 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1280 /*LookThroughIntToPtr=*/IsEqPred);
1281 APInt Offset1(IndexWidth, 0);
1282 Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets(
1283 DL, Offset1, /*AllowNonInbounds=*/IsEqPred,
1284 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1285 /*LookThroughIntToPtr=*/IsEqPred);
1286 if (Stripped0 == Stripped1)
1287 return ConstantInt::getBool(
1288 Ops0->getContext(),
1289 ICmpInst::compare(Offset0, Offset1,
1290 ICmpInst::getSignedPredicate(Predicate)));
1291 }
1292 } else if (isa<ConstantExpr>(Ops1)) {
1293 // If RHS is a constant expression, but the left side isn't, swap the
1294 // operands and try again.
1295 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1296 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1297 }
1298
1299 if (CmpInst::isFPPredicate(Predicate)) {
1300 // Flush any denormal constant float input according to denormal handling
1301 // mode.
1302 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1303 if (!Ops0)
1304 return nullptr;
1305 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1306 if (!Ops1)
1307 return nullptr;
1308 }
1309
1310 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1311}
1312
1314 const DataLayout &DL) {
1316
1317 return ConstantFoldUnaryInstruction(Opcode, Op);
1318}
1319
1321 Constant *RHS,
1322 const DataLayout &DL) {
1324 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1325 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1326 return C;
1327
1329 return ConstantExpr::get(Opcode, LHS, RHS);
1330 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1331}
1332
1335 switch (Mode) {
1337 return nullptr;
1338 case DenormalMode::IEEE:
1339 return ConstantFP::get(Ty->getContext(), APF);
1341 return ConstantFP::get(
1342 Ty->getContext(),
1345 return ConstantFP::get(Ty->getContext(),
1346 APFloat::getZero(APF.getSemantics(), false));
1347 default:
1348 break;
1349 }
1350
1351 llvm_unreachable("unknown denormal mode");
1352}
1353
1354/// Return the denormal mode that can be assumed when executing a floating point
1355/// operation at \p CtxI.
1357 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1358 return DenormalMode::getDynamic();
1359 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1360}
1361
1363 const Instruction *Inst,
1364 bool IsOutput) {
1365 const APFloat &APF = CFP->getValueAPF();
1366 if (!APF.isDenormal())
1367 return CFP;
1368
1370 return flushDenormalConstant(CFP->getType(), APF,
1371 IsOutput ? Mode.Output : Mode.Input);
1372}
1373
1375 bool IsOutput) {
1376 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1377 return flushDenormalConstantFP(CFP, Inst, IsOutput);
1378
1380 return Operand;
1381
1382 Type *Ty = Operand->getType();
1383 VectorType *VecTy = dyn_cast<VectorType>(Ty);
1384 if (VecTy) {
1385 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1386 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1387 if (!Folded)
1388 return nullptr;
1389 return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1390 }
1391
1392 Ty = VecTy->getElementType();
1393 }
1394
1395 if (isa<ConstantExpr>(Operand))
1396 return Operand;
1397
1398 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1400 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1401 Constant *Element = CV->getAggregateElement(i);
1402 if (isa<UndefValue>(Element)) {
1403 NewElts.push_back(Element);
1404 continue;
1405 }
1406
1407 ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1408 if (!CFP)
1409 return nullptr;
1410
1411 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1412 if (!Folded)
1413 return nullptr;
1414 NewElts.push_back(Folded);
1415 }
1416
1417 return ConstantVector::get(NewElts);
1418 }
1419
1420 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1422 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1423 const APFloat &Elt = CDV->getElementAsAPFloat(I);
1424 if (!Elt.isDenormal()) {
1425 NewElts.push_back(ConstantFP::get(Ty, Elt));
1426 } else {
1427 DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1428 ConstantFP *Folded =
1429 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1430 if (!Folded)
1431 return nullptr;
1432 NewElts.push_back(Folded);
1433 }
1434 }
1435
1436 return ConstantVector::get(NewElts);
1437 }
1438
1439 return nullptr;
1440}
1441
1443 Constant *RHS, const DataLayout &DL,
1444 const Instruction *I,
1445 bool AllowNonDeterministic) {
1446 if (Instruction::isBinaryOp(Opcode)) {
1447 // Flush denormal inputs if needed.
1448 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1449 if (!Op0)
1450 return nullptr;
1451 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1452 if (!Op1)
1453 return nullptr;
1454
1455 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1456 // may change due to future optimization. Don't constant fold them if
1457 // non-deterministic results are not allowed.
1458 if (!AllowNonDeterministic)
1460 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1461 FP->hasAllowContract() || FP->hasAllowReciprocal())
1462 return nullptr;
1463
1464 // Calculate constant result.
1465 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1466 if (!C)
1467 return nullptr;
1468
1469 // Flush denormal output if needed.
1470 C = FlushFPConstant(C, I, /* IsOutput */ true);
1471 if (!C)
1472 return nullptr;
1473
1474 // The precise NaN value is non-deterministic.
1475 if (!AllowNonDeterministic && C->isNaN())
1476 return nullptr;
1477
1478 return C;
1479 }
1480 // If instruction lacks a parent/function and the denormal mode cannot be
1481 // determined, use the default (IEEE).
1482 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1483}
1484
1486 Type *DestTy, const DataLayout &DL) {
1487 assert(Instruction::isCast(Opcode));
1488
1489 if (auto *CE = dyn_cast<ConstantExpr>(C))
1490 if (CE->isCast())
1491 if (unsigned NewOp = CastInst::isEliminableCastPair(
1492 Instruction::CastOps(CE->getOpcode()),
1493 Instruction::CastOps(Opcode), CE->getOperand(0)->getType(),
1494 C->getType(), DestTy, &DL))
1495 return ConstantFoldCastOperand(NewOp, CE->getOperand(0), DestTy, DL);
1496
1497 switch (Opcode) {
1498 default:
1499 llvm_unreachable("Missing case");
1500 case Instruction::PtrToAddr:
1501 case Instruction::PtrToInt:
1502 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1503 Constant *FoldedValue = nullptr;
1504 // If the input is an inttoptr, eliminate the pair. This requires knowing
1505 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1506 if (CE->getOpcode() == Instruction::IntToPtr) {
1507 // zext/trunc the inttoptr to pointer/address size.
1508 Type *MidTy = Opcode == Instruction::PtrToInt
1509 ? DL.getAddressType(CE->getType())
1510 : DL.getIntPtrType(CE->getType());
1511 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), MidTy,
1512 /*IsSigned=*/false, DL);
1513 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1514 // If we have GEP, we can perform the following folds:
1515 // (ptrtoint/ptrtoaddr (gep null, x)) -> x
1516 // (ptrtoint/ptrtoaddr (gep (gep null, x), y) -> x + y, etc.
1517 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1518 APInt BaseOffset(BitWidth, 0);
1519 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1520 DL, BaseOffset, /*AllowNonInbounds=*/true));
1521 if (Base->isNullValue()) {
1522 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1523 } else {
1524 // ptrtoint/ptrtoaddr (gep i8, Ptr, (sub 0, V))
1525 // -> sub (ptrtoint/ptrtoaddr Ptr), V
1526 if (GEP->getNumIndices() == 1 &&
1527 GEP->getSourceElementType()->isIntegerTy(8)) {
1528 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1529 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1530 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1531 if (Sub && Sub->getType() == IntIdxTy &&
1532 Sub->getOpcode() == Instruction::Sub &&
1533 Sub->getOperand(0)->isNullValue())
1534 FoldedValue = ConstantExpr::getSub(
1535 ConstantExpr::getCast(Opcode, Ptr, IntIdxTy),
1536 Sub->getOperand(1));
1537 }
1538 }
1539 }
1540 if (FoldedValue) {
1541 // Do a zext or trunc to get to the ptrtoint/ptrtoaddr dest size.
1542 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1543 DL);
1544 }
1545 }
1546 break;
1547 case Instruction::IntToPtr:
1548 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1549 // the int size is >= the ptr size and the address spaces are the same.
1550 // This requires knowing the width of a pointer, so it can't be done in
1551 // ConstantExpr::getCast.
1552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1553 if (CE->getOpcode() == Instruction::PtrToInt) {
1554 Constant *SrcPtr = CE->getOperand(0);
1555 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1556 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1557
1558 if (MidIntSize >= SrcPtrSize) {
1559 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1560 if (SrcAS == DestTy->getPointerAddressSpace())
1561 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1562 }
1563 }
1564 }
1565 break;
1566 case Instruction::Trunc:
1567 case Instruction::ZExt:
1568 case Instruction::SExt:
1569 case Instruction::FPTrunc:
1570 case Instruction::FPExt:
1571 case Instruction::UIToFP:
1572 case Instruction::SIToFP:
1573 case Instruction::FPToUI:
1574 case Instruction::FPToSI:
1575 case Instruction::AddrSpaceCast:
1576 break;
1577 case Instruction::BitCast:
1578 return FoldBitCast(C, DestTy, DL);
1579 }
1580
1582 return ConstantExpr::getCast(Opcode, C, DestTy);
1583 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1584}
1585
1587 bool IsSigned, const DataLayout &DL) {
1588 Type *SrcTy = C->getType();
1589 if (SrcTy == DestTy)
1590 return C;
1591 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1592 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1593 if (IsSigned)
1594 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1595 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1596}
1597
1598//===----------------------------------------------------------------------===//
1599// Constant Folding for Calls
1600//
1601
1603 if (Call->isNoBuiltin())
1604 return false;
1605 if (Call->getFunctionType() != F->getFunctionType())
1606 return false;
1607
1608 // Allow FP calls (both libcalls and intrinsics) to avoid being folded.
1609 // This can be useful for GPU targets or in cross-compilation scenarios
1610 // when the exact target FP behaviour is required, and the host compiler's
1611 // behaviour may be slightly different from the device's run-time behaviour.
1612 if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() ||
1613 any_of(F->args(), [](const Argument &Arg) {
1614 return Arg.getType()->isFloatingPointTy();
1615 })))
1616 return false;
1617
1618 switch (F->getIntrinsicID()) {
1619 // Operations that do not operate floating-point numbers and do not depend on
1620 // FP environment can be folded even in strictfp functions.
1621 case Intrinsic::bswap:
1622 case Intrinsic::ctpop:
1623 case Intrinsic::ctlz:
1624 case Intrinsic::cttz:
1625 case Intrinsic::fshl:
1626 case Intrinsic::fshr:
1627 case Intrinsic::launder_invariant_group:
1628 case Intrinsic::strip_invariant_group:
1629 case Intrinsic::masked_load:
1630 case Intrinsic::get_active_lane_mask:
1631 case Intrinsic::abs:
1632 case Intrinsic::smax:
1633 case Intrinsic::smin:
1634 case Intrinsic::umax:
1635 case Intrinsic::umin:
1636 case Intrinsic::scmp:
1637 case Intrinsic::ucmp:
1638 case Intrinsic::sadd_with_overflow:
1639 case Intrinsic::uadd_with_overflow:
1640 case Intrinsic::ssub_with_overflow:
1641 case Intrinsic::usub_with_overflow:
1642 case Intrinsic::smul_with_overflow:
1643 case Intrinsic::umul_with_overflow:
1644 case Intrinsic::sadd_sat:
1645 case Intrinsic::uadd_sat:
1646 case Intrinsic::ssub_sat:
1647 case Intrinsic::usub_sat:
1648 case Intrinsic::smul_fix:
1649 case Intrinsic::smul_fix_sat:
1650 case Intrinsic::bitreverse:
1651 case Intrinsic::is_constant:
1652 case Intrinsic::vector_reduce_add:
1653 case Intrinsic::vector_reduce_mul:
1654 case Intrinsic::vector_reduce_and:
1655 case Intrinsic::vector_reduce_or:
1656 case Intrinsic::vector_reduce_xor:
1657 case Intrinsic::vector_reduce_smin:
1658 case Intrinsic::vector_reduce_smax:
1659 case Intrinsic::vector_reduce_umin:
1660 case Intrinsic::vector_reduce_umax:
1661 case Intrinsic::vector_extract:
1662 case Intrinsic::vector_insert:
1663 case Intrinsic::vector_interleave2:
1664 case Intrinsic::vector_interleave3:
1665 case Intrinsic::vector_interleave4:
1666 case Intrinsic::vector_interleave5:
1667 case Intrinsic::vector_interleave6:
1668 case Intrinsic::vector_interleave7:
1669 case Intrinsic::vector_interleave8:
1670 case Intrinsic::vector_deinterleave2:
1671 case Intrinsic::vector_deinterleave3:
1672 case Intrinsic::vector_deinterleave4:
1673 case Intrinsic::vector_deinterleave5:
1674 case Intrinsic::vector_deinterleave6:
1675 case Intrinsic::vector_deinterleave7:
1676 case Intrinsic::vector_deinterleave8:
1677 // Target intrinsics
1678 case Intrinsic::amdgcn_perm:
1679 case Intrinsic::amdgcn_wave_reduce_umin:
1680 case Intrinsic::amdgcn_wave_reduce_umax:
1681 case Intrinsic::amdgcn_wave_reduce_max:
1682 case Intrinsic::amdgcn_wave_reduce_min:
1683 case Intrinsic::amdgcn_wave_reduce_add:
1684 case Intrinsic::amdgcn_wave_reduce_sub:
1685 case Intrinsic::amdgcn_wave_reduce_and:
1686 case Intrinsic::amdgcn_wave_reduce_or:
1687 case Intrinsic::amdgcn_wave_reduce_xor:
1688 case Intrinsic::amdgcn_s_wqm:
1689 case Intrinsic::amdgcn_s_quadmask:
1690 case Intrinsic::amdgcn_s_bitreplicate:
1691 case Intrinsic::arm_mve_vctp8:
1692 case Intrinsic::arm_mve_vctp16:
1693 case Intrinsic::arm_mve_vctp32:
1694 case Intrinsic::arm_mve_vctp64:
1695 case Intrinsic::aarch64_sve_convert_from_svbool:
1696 case Intrinsic::wasm_alltrue:
1697 case Intrinsic::wasm_anytrue:
1698 case Intrinsic::wasm_dot:
1699 // WebAssembly float semantics are always known
1700 case Intrinsic::wasm_trunc_signed:
1701 case Intrinsic::wasm_trunc_unsigned:
1702 return true;
1703
1704 // Floating point operations cannot be folded in strictfp functions in
1705 // general case. They can be folded if FP environment is known to compiler.
1706 case Intrinsic::minnum:
1707 case Intrinsic::maxnum:
1708 case Intrinsic::minimum:
1709 case Intrinsic::maximum:
1710 case Intrinsic::minimumnum:
1711 case Intrinsic::maximumnum:
1712 case Intrinsic::log:
1713 case Intrinsic::log2:
1714 case Intrinsic::log10:
1715 case Intrinsic::exp:
1716 case Intrinsic::exp2:
1717 case Intrinsic::exp10:
1718 case Intrinsic::sqrt:
1719 case Intrinsic::sin:
1720 case Intrinsic::cos:
1721 case Intrinsic::sincos:
1722 case Intrinsic::sinh:
1723 case Intrinsic::cosh:
1724 case Intrinsic::atan:
1725 case Intrinsic::pow:
1726 case Intrinsic::powi:
1727 case Intrinsic::ldexp:
1728 case Intrinsic::fma:
1729 case Intrinsic::fmuladd:
1730 case Intrinsic::frexp:
1731 case Intrinsic::fptoui_sat:
1732 case Intrinsic::fptosi_sat:
1733 case Intrinsic::convert_from_fp16:
1734 case Intrinsic::convert_to_fp16:
1735 case Intrinsic::amdgcn_cos:
1736 case Intrinsic::amdgcn_cubeid:
1737 case Intrinsic::amdgcn_cubema:
1738 case Intrinsic::amdgcn_cubesc:
1739 case Intrinsic::amdgcn_cubetc:
1740 case Intrinsic::amdgcn_fmul_legacy:
1741 case Intrinsic::amdgcn_fma_legacy:
1742 case Intrinsic::amdgcn_fract:
1743 case Intrinsic::amdgcn_sin:
1744 // The intrinsics below depend on rounding mode in MXCSR.
1745 case Intrinsic::x86_sse_cvtss2si:
1746 case Intrinsic::x86_sse_cvtss2si64:
1747 case Intrinsic::x86_sse_cvttss2si:
1748 case Intrinsic::x86_sse_cvttss2si64:
1749 case Intrinsic::x86_sse2_cvtsd2si:
1750 case Intrinsic::x86_sse2_cvtsd2si64:
1751 case Intrinsic::x86_sse2_cvttsd2si:
1752 case Intrinsic::x86_sse2_cvttsd2si64:
1753 case Intrinsic::x86_avx512_vcvtss2si32:
1754 case Intrinsic::x86_avx512_vcvtss2si64:
1755 case Intrinsic::x86_avx512_cvttss2si:
1756 case Intrinsic::x86_avx512_cvttss2si64:
1757 case Intrinsic::x86_avx512_vcvtsd2si32:
1758 case Intrinsic::x86_avx512_vcvtsd2si64:
1759 case Intrinsic::x86_avx512_cvttsd2si:
1760 case Intrinsic::x86_avx512_cvttsd2si64:
1761 case Intrinsic::x86_avx512_vcvtss2usi32:
1762 case Intrinsic::x86_avx512_vcvtss2usi64:
1763 case Intrinsic::x86_avx512_cvttss2usi:
1764 case Intrinsic::x86_avx512_cvttss2usi64:
1765 case Intrinsic::x86_avx512_vcvtsd2usi32:
1766 case Intrinsic::x86_avx512_vcvtsd2usi64:
1767 case Intrinsic::x86_avx512_cvttsd2usi:
1768 case Intrinsic::x86_avx512_cvttsd2usi64:
1769
1770 // NVVM FMax intrinsics
1771 case Intrinsic::nvvm_fmax_d:
1772 case Intrinsic::nvvm_fmax_f:
1773 case Intrinsic::nvvm_fmax_ftz_f:
1774 case Intrinsic::nvvm_fmax_ftz_nan_f:
1775 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1776 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1777 case Intrinsic::nvvm_fmax_nan_f:
1778 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1779 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1780
1781 // NVVM FMin intrinsics
1782 case Intrinsic::nvvm_fmin_d:
1783 case Intrinsic::nvvm_fmin_f:
1784 case Intrinsic::nvvm_fmin_ftz_f:
1785 case Intrinsic::nvvm_fmin_ftz_nan_f:
1786 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1787 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1788 case Intrinsic::nvvm_fmin_nan_f:
1789 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1790 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1791
1792 // NVVM float/double to int32/uint32 conversion intrinsics
1793 case Intrinsic::nvvm_f2i_rm:
1794 case Intrinsic::nvvm_f2i_rn:
1795 case Intrinsic::nvvm_f2i_rp:
1796 case Intrinsic::nvvm_f2i_rz:
1797 case Intrinsic::nvvm_f2i_rm_ftz:
1798 case Intrinsic::nvvm_f2i_rn_ftz:
1799 case Intrinsic::nvvm_f2i_rp_ftz:
1800 case Intrinsic::nvvm_f2i_rz_ftz:
1801 case Intrinsic::nvvm_f2ui_rm:
1802 case Intrinsic::nvvm_f2ui_rn:
1803 case Intrinsic::nvvm_f2ui_rp:
1804 case Intrinsic::nvvm_f2ui_rz:
1805 case Intrinsic::nvvm_f2ui_rm_ftz:
1806 case Intrinsic::nvvm_f2ui_rn_ftz:
1807 case Intrinsic::nvvm_f2ui_rp_ftz:
1808 case Intrinsic::nvvm_f2ui_rz_ftz:
1809 case Intrinsic::nvvm_d2i_rm:
1810 case Intrinsic::nvvm_d2i_rn:
1811 case Intrinsic::nvvm_d2i_rp:
1812 case Intrinsic::nvvm_d2i_rz:
1813 case Intrinsic::nvvm_d2ui_rm:
1814 case Intrinsic::nvvm_d2ui_rn:
1815 case Intrinsic::nvvm_d2ui_rp:
1816 case Intrinsic::nvvm_d2ui_rz:
1817
1818 // NVVM float/double to int64/uint64 conversion intrinsics
1819 case Intrinsic::nvvm_f2ll_rm:
1820 case Intrinsic::nvvm_f2ll_rn:
1821 case Intrinsic::nvvm_f2ll_rp:
1822 case Intrinsic::nvvm_f2ll_rz:
1823 case Intrinsic::nvvm_f2ll_rm_ftz:
1824 case Intrinsic::nvvm_f2ll_rn_ftz:
1825 case Intrinsic::nvvm_f2ll_rp_ftz:
1826 case Intrinsic::nvvm_f2ll_rz_ftz:
1827 case Intrinsic::nvvm_f2ull_rm:
1828 case Intrinsic::nvvm_f2ull_rn:
1829 case Intrinsic::nvvm_f2ull_rp:
1830 case Intrinsic::nvvm_f2ull_rz:
1831 case Intrinsic::nvvm_f2ull_rm_ftz:
1832 case Intrinsic::nvvm_f2ull_rn_ftz:
1833 case Intrinsic::nvvm_f2ull_rp_ftz:
1834 case Intrinsic::nvvm_f2ull_rz_ftz:
1835 case Intrinsic::nvvm_d2ll_rm:
1836 case Intrinsic::nvvm_d2ll_rn:
1837 case Intrinsic::nvvm_d2ll_rp:
1838 case Intrinsic::nvvm_d2ll_rz:
1839 case Intrinsic::nvvm_d2ull_rm:
1840 case Intrinsic::nvvm_d2ull_rn:
1841 case Intrinsic::nvvm_d2ull_rp:
1842 case Intrinsic::nvvm_d2ull_rz:
1843
1844 // NVVM math intrinsics:
1845 case Intrinsic::nvvm_ceil_d:
1846 case Intrinsic::nvvm_ceil_f:
1847 case Intrinsic::nvvm_ceil_ftz_f:
1848
1849 case Intrinsic::nvvm_fabs:
1850 case Intrinsic::nvvm_fabs_ftz:
1851
1852 case Intrinsic::nvvm_floor_d:
1853 case Intrinsic::nvvm_floor_f:
1854 case Intrinsic::nvvm_floor_ftz_f:
1855
1856 case Intrinsic::nvvm_rcp_rm_d:
1857 case Intrinsic::nvvm_rcp_rm_f:
1858 case Intrinsic::nvvm_rcp_rm_ftz_f:
1859 case Intrinsic::nvvm_rcp_rn_d:
1860 case Intrinsic::nvvm_rcp_rn_f:
1861 case Intrinsic::nvvm_rcp_rn_ftz_f:
1862 case Intrinsic::nvvm_rcp_rp_d:
1863 case Intrinsic::nvvm_rcp_rp_f:
1864 case Intrinsic::nvvm_rcp_rp_ftz_f:
1865 case Intrinsic::nvvm_rcp_rz_d:
1866 case Intrinsic::nvvm_rcp_rz_f:
1867 case Intrinsic::nvvm_rcp_rz_ftz_f:
1868
1869 case Intrinsic::nvvm_round_d:
1870 case Intrinsic::nvvm_round_f:
1871 case Intrinsic::nvvm_round_ftz_f:
1872
1873 case Intrinsic::nvvm_saturate_d:
1874 case Intrinsic::nvvm_saturate_f:
1875 case Intrinsic::nvvm_saturate_ftz_f:
1876
1877 case Intrinsic::nvvm_sqrt_f:
1878 case Intrinsic::nvvm_sqrt_rn_d:
1879 case Intrinsic::nvvm_sqrt_rn_f:
1880 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1881 return !Call->isStrictFP();
1882
1883 // NVVM add intrinsics with explicit rounding modes
1884 case Intrinsic::nvvm_add_rm_d:
1885 case Intrinsic::nvvm_add_rn_d:
1886 case Intrinsic::nvvm_add_rp_d:
1887 case Intrinsic::nvvm_add_rz_d:
1888 case Intrinsic::nvvm_add_rm_f:
1889 case Intrinsic::nvvm_add_rn_f:
1890 case Intrinsic::nvvm_add_rp_f:
1891 case Intrinsic::nvvm_add_rz_f:
1892 case Intrinsic::nvvm_add_rm_ftz_f:
1893 case Intrinsic::nvvm_add_rn_ftz_f:
1894 case Intrinsic::nvvm_add_rp_ftz_f:
1895 case Intrinsic::nvvm_add_rz_ftz_f:
1896
1897 // NVVM div intrinsics with explicit rounding modes
1898 case Intrinsic::nvvm_div_rm_d:
1899 case Intrinsic::nvvm_div_rn_d:
1900 case Intrinsic::nvvm_div_rp_d:
1901 case Intrinsic::nvvm_div_rz_d:
1902 case Intrinsic::nvvm_div_rm_f:
1903 case Intrinsic::nvvm_div_rn_f:
1904 case Intrinsic::nvvm_div_rp_f:
1905 case Intrinsic::nvvm_div_rz_f:
1906 case Intrinsic::nvvm_div_rm_ftz_f:
1907 case Intrinsic::nvvm_div_rn_ftz_f:
1908 case Intrinsic::nvvm_div_rp_ftz_f:
1909 case Intrinsic::nvvm_div_rz_ftz_f:
1910
1911 // NVVM mul intrinsics with explicit rounding modes
1912 case Intrinsic::nvvm_mul_rm_d:
1913 case Intrinsic::nvvm_mul_rn_d:
1914 case Intrinsic::nvvm_mul_rp_d:
1915 case Intrinsic::nvvm_mul_rz_d:
1916 case Intrinsic::nvvm_mul_rm_f:
1917 case Intrinsic::nvvm_mul_rn_f:
1918 case Intrinsic::nvvm_mul_rp_f:
1919 case Intrinsic::nvvm_mul_rz_f:
1920 case Intrinsic::nvvm_mul_rm_ftz_f:
1921 case Intrinsic::nvvm_mul_rn_ftz_f:
1922 case Intrinsic::nvvm_mul_rp_ftz_f:
1923 case Intrinsic::nvvm_mul_rz_ftz_f:
1924
1925 // NVVM fma intrinsics with explicit rounding modes
1926 case Intrinsic::nvvm_fma_rm_d:
1927 case Intrinsic::nvvm_fma_rn_d:
1928 case Intrinsic::nvvm_fma_rp_d:
1929 case Intrinsic::nvvm_fma_rz_d:
1930 case Intrinsic::nvvm_fma_rm_f:
1931 case Intrinsic::nvvm_fma_rn_f:
1932 case Intrinsic::nvvm_fma_rp_f:
1933 case Intrinsic::nvvm_fma_rz_f:
1934 case Intrinsic::nvvm_fma_rm_ftz_f:
1935 case Intrinsic::nvvm_fma_rn_ftz_f:
1936 case Intrinsic::nvvm_fma_rp_ftz_f:
1937 case Intrinsic::nvvm_fma_rz_ftz_f:
1938
1939 // Sign operations are actually bitwise operations, they do not raise
1940 // exceptions even for SNANs.
1941 case Intrinsic::fabs:
1942 case Intrinsic::copysign:
1943 case Intrinsic::is_fpclass:
1944 // Non-constrained variants of rounding operations means default FP
1945 // environment, they can be folded in any case.
1946 case Intrinsic::ceil:
1947 case Intrinsic::floor:
1948 case Intrinsic::round:
1949 case Intrinsic::roundeven:
1950 case Intrinsic::trunc:
1951 case Intrinsic::nearbyint:
1952 case Intrinsic::rint:
1953 case Intrinsic::canonicalize:
1954
1955 // Constrained intrinsics can be folded if FP environment is known
1956 // to compiler.
1957 case Intrinsic::experimental_constrained_fma:
1958 case Intrinsic::experimental_constrained_fmuladd:
1959 case Intrinsic::experimental_constrained_fadd:
1960 case Intrinsic::experimental_constrained_fsub:
1961 case Intrinsic::experimental_constrained_fmul:
1962 case Intrinsic::experimental_constrained_fdiv:
1963 case Intrinsic::experimental_constrained_frem:
1964 case Intrinsic::experimental_constrained_ceil:
1965 case Intrinsic::experimental_constrained_floor:
1966 case Intrinsic::experimental_constrained_round:
1967 case Intrinsic::experimental_constrained_roundeven:
1968 case Intrinsic::experimental_constrained_trunc:
1969 case Intrinsic::experimental_constrained_nearbyint:
1970 case Intrinsic::experimental_constrained_rint:
1971 case Intrinsic::experimental_constrained_fcmp:
1972 case Intrinsic::experimental_constrained_fcmps:
1973 return true;
1974 default:
1975 return false;
1976 case Intrinsic::not_intrinsic: break;
1977 }
1978
1979 if (!F->hasName() || Call->isStrictFP())
1980 return false;
1981
1982 // In these cases, the check of the length is required. We don't want to
1983 // return true for a name like "cos\0blah" which strcmp would return equal to
1984 // "cos", but has length 8.
1985 StringRef Name = F->getName();
1986 switch (Name[0]) {
1987 default:
1988 return false;
1989 // clang-format off
1990 case 'a':
1991 return Name == "acos" || Name == "acosf" ||
1992 Name == "asin" || Name == "asinf" ||
1993 Name == "atan" || Name == "atanf" ||
1994 Name == "atan2" || Name == "atan2f";
1995 case 'c':
1996 return Name == "ceil" || Name == "ceilf" ||
1997 Name == "cos" || Name == "cosf" ||
1998 Name == "cosh" || Name == "coshf";
1999 case 'e':
2000 return Name == "exp" || Name == "expf" || Name == "exp2" ||
2001 Name == "exp2f" || Name == "erf" || Name == "erff";
2002 case 'f':
2003 return Name == "fabs" || Name == "fabsf" ||
2004 Name == "floor" || Name == "floorf" ||
2005 Name == "fmod" || Name == "fmodf";
2006 case 'i':
2007 return Name == "ilogb" || Name == "ilogbf";
2008 case 'l':
2009 return Name == "log" || Name == "logf" || Name == "logl" ||
2010 Name == "log2" || Name == "log2f" || Name == "log10" ||
2011 Name == "log10f" || Name == "logb" || Name == "logbf" ||
2012 Name == "log1p" || Name == "log1pf";
2013 case 'n':
2014 return Name == "nearbyint" || Name == "nearbyintf";
2015 case 'p':
2016 return Name == "pow" || Name == "powf";
2017 case 'r':
2018 return Name == "remainder" || Name == "remainderf" ||
2019 Name == "rint" || Name == "rintf" ||
2020 Name == "round" || Name == "roundf" ||
2021 Name == "roundeven" || Name == "roundevenf";
2022 case 's':
2023 return Name == "sin" || Name == "sinf" ||
2024 Name == "sinh" || Name == "sinhf" ||
2025 Name == "sqrt" || Name == "sqrtf";
2026 case 't':
2027 return Name == "tan" || Name == "tanf" ||
2028 Name == "tanh" || Name == "tanhf" ||
2029 Name == "trunc" || Name == "truncf";
2030 case '_':
2031 // Check for various function names that get used for the math functions
2032 // when the header files are preprocessed with the macro
2033 // __FINITE_MATH_ONLY__ enabled.
2034 // The '12' here is the length of the shortest name that can match.
2035 // We need to check the size before looking at Name[1] and Name[2]
2036 // so we may as well check a limit that will eliminate mismatches.
2037 if (Name.size() < 12 || Name[1] != '_')
2038 return false;
2039 switch (Name[2]) {
2040 default:
2041 return false;
2042 case 'a':
2043 return Name == "__acos_finite" || Name == "__acosf_finite" ||
2044 Name == "__asin_finite" || Name == "__asinf_finite" ||
2045 Name == "__atan2_finite" || Name == "__atan2f_finite";
2046 case 'c':
2047 return Name == "__cosh_finite" || Name == "__coshf_finite";
2048 case 'e':
2049 return Name == "__exp_finite" || Name == "__expf_finite" ||
2050 Name == "__exp2_finite" || Name == "__exp2f_finite";
2051 case 'l':
2052 return Name == "__log_finite" || Name == "__logf_finite" ||
2053 Name == "__log10_finite" || Name == "__log10f_finite";
2054 case 'p':
2055 return Name == "__pow_finite" || Name == "__powf_finite";
2056 case 's':
2057 return Name == "__sinh_finite" || Name == "__sinhf_finite";
2058 }
2059 // clang-format on
2060 }
2061}
2062
2063namespace {
2064
2065Constant *GetConstantFoldFPValue(double V, Type *Ty) {
2066 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2067 APFloat APF(V);
2068 bool unused;
2069 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
2070 return ConstantFP::get(Ty->getContext(), APF);
2071 }
2072 if (Ty->isDoubleTy())
2073 return ConstantFP::get(Ty->getContext(), APFloat(V));
2074 llvm_unreachable("Can only constant fold half/float/double");
2075}
2076
2077#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2078Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
2079 if (Ty->isFP128Ty())
2080 return ConstantFP::get(Ty, V);
2081 llvm_unreachable("Can only constant fold fp128");
2082}
2083#endif
2084
2085/// Clear the floating-point exception state.
2086inline void llvm_fenv_clearexcept() {
2087#if HAVE_DECL_FE_ALL_EXCEPT
2088 feclearexcept(FE_ALL_EXCEPT);
2089#endif
2090 errno = 0;
2091}
2092
2093/// Test if a floating-point exception was raised.
2094inline bool llvm_fenv_testexcept() {
2095 int errno_val = errno;
2096 if (errno_val == ERANGE || errno_val == EDOM)
2097 return true;
2098#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2099 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2100 return true;
2101#endif
2102 return false;
2103}
2104
2105static APFloat FTZPreserveSign(const APFloat &V) {
2106 if (V.isDenormal())
2107 return APFloat::getZero(V.getSemantics(), V.isNegative());
2108 return V;
2109}
2110
2111static APFloat FlushToPositiveZero(const APFloat &V) {
2112 if (V.isDenormal())
2113 return APFloat::getZero(V.getSemantics(), false);
2114 return V;
2115}
2116
2117static APFloat FlushWithDenormKind(const APFloat &V,
2118 DenormalMode::DenormalModeKind DenormKind) {
2121 switch (DenormKind) {
2123 return V;
2125 return FTZPreserveSign(V);
2127 return FlushToPositiveZero(V);
2128 default:
2129 llvm_unreachable("Invalid denormal mode!");
2130 }
2131}
2132
2133Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
2134 DenormalMode DenormMode = DenormalMode::getIEEE()) {
2135 if (!DenormMode.isValid() ||
2136 DenormMode.Input == DenormalMode::DenormalModeKind::Dynamic ||
2137 DenormMode.Output == DenormalMode::DenormalModeKind::Dynamic)
2138 return nullptr;
2139
2140 llvm_fenv_clearexcept();
2141 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2142 double Result = NativeFP(Input.convertToDouble());
2143 if (llvm_fenv_testexcept()) {
2144 llvm_fenv_clearexcept();
2145 return nullptr;
2146 }
2147
2148 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2149 if (DenormMode.Output == DenormalMode::DenormalModeKind::IEEE)
2150 return Output;
2151 const auto *CFP = static_cast<ConstantFP *>(Output);
2152 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2153 return ConstantFP::get(Ty->getContext(), Res);
2154}
2155
2156#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2157Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
2158 Type *Ty) {
2159 llvm_fenv_clearexcept();
2160 float128 Result = NativeFP(V.convertToQuad());
2161 if (llvm_fenv_testexcept()) {
2162 llvm_fenv_clearexcept();
2163 return nullptr;
2164 }
2165
2166 return GetConstantFoldFPValue128(Result, Ty);
2167}
2168#endif
2169
2170Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
2171 const APFloat &V, const APFloat &W, Type *Ty) {
2172 llvm_fenv_clearexcept();
2173 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
2174 if (llvm_fenv_testexcept()) {
2175 llvm_fenv_clearexcept();
2176 return nullptr;
2177 }
2178
2179 return GetConstantFoldFPValue(Result, Ty);
2180}
2181
2182Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
2183 auto *OpVT = cast<VectorType>(Op->getType());
2184
2185 // This is the same as the underlying binops - poison propagates.
2186 if (Op->containsPoisonElement())
2187 return PoisonValue::get(OpVT->getElementType());
2188
2189 // Shortcut non-accumulating reductions.
2190 if (Constant *SplatVal = Op->getSplatValue()) {
2191 switch (IID) {
2192 case Intrinsic::vector_reduce_and:
2193 case Intrinsic::vector_reduce_or:
2194 case Intrinsic::vector_reduce_smin:
2195 case Intrinsic::vector_reduce_smax:
2196 case Intrinsic::vector_reduce_umin:
2197 case Intrinsic::vector_reduce_umax:
2198 return SplatVal;
2199 case Intrinsic::vector_reduce_add:
2200 if (SplatVal->isNullValue())
2201 return SplatVal;
2202 break;
2203 case Intrinsic::vector_reduce_mul:
2204 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2205 return SplatVal;
2206 break;
2207 case Intrinsic::vector_reduce_xor:
2208 if (SplatVal->isNullValue())
2209 return SplatVal;
2210 if (OpVT->getElementCount().isKnownMultipleOf(2))
2211 return Constant::getNullValue(OpVT->getElementType());
2212 break;
2213 }
2214 }
2215
2217 if (!VT)
2218 return nullptr;
2219
2220 // TODO: Handle undef.
2221 auto *EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(0U));
2222 if (!EltC)
2223 return nullptr;
2224
2225 APInt Acc = EltC->getValue();
2226 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
2227 if (!(EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(I))))
2228 return nullptr;
2229 const APInt &X = EltC->getValue();
2230 switch (IID) {
2231 case Intrinsic::vector_reduce_add:
2232 Acc = Acc + X;
2233 break;
2234 case Intrinsic::vector_reduce_mul:
2235 Acc = Acc * X;
2236 break;
2237 case Intrinsic::vector_reduce_and:
2238 Acc = Acc & X;
2239 break;
2240 case Intrinsic::vector_reduce_or:
2241 Acc = Acc | X;
2242 break;
2243 case Intrinsic::vector_reduce_xor:
2244 Acc = Acc ^ X;
2245 break;
2246 case Intrinsic::vector_reduce_smin:
2247 Acc = APIntOps::smin(Acc, X);
2248 break;
2249 case Intrinsic::vector_reduce_smax:
2250 Acc = APIntOps::smax(Acc, X);
2251 break;
2252 case Intrinsic::vector_reduce_umin:
2253 Acc = APIntOps::umin(Acc, X);
2254 break;
2255 case Intrinsic::vector_reduce_umax:
2256 Acc = APIntOps::umax(Acc, X);
2257 break;
2258 }
2259 }
2260
2261 return ConstantInt::get(Op->getContext(), Acc);
2262}
2263
2264/// Attempt to fold an SSE floating point to integer conversion of a constant
2265/// floating point. If roundTowardZero is false, the default IEEE rounding is
2266/// used (toward nearest, ties to even). This matches the behavior of the
2267/// non-truncating SSE instructions in the default rounding mode. The desired
2268/// integer type Ty is used to select how many bits are available for the
2269/// result. Returns null if the conversion cannot be performed, otherwise
2270/// returns the Constant value resulting from the conversion.
2271Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2272 Type *Ty, bool IsSigned) {
2273 // All of these conversion intrinsics form an integer of at most 64bits.
2274 unsigned ResultWidth = Ty->getIntegerBitWidth();
2275 assert(ResultWidth <= 64 &&
2276 "Can only constant fold conversions to 64 and 32 bit ints");
2277
2278 uint64_t UIntVal;
2279 bool isExact = false;
2283 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2284 IsSigned, mode, &isExact);
2285 if (status != APFloat::opOK &&
2286 (!roundTowardZero || status != APFloat::opInexact))
2287 return nullptr;
2288 return ConstantInt::get(Ty, UIntVal, IsSigned);
2289}
2290
2291double getValueAsDouble(ConstantFP *Op) {
2292 Type *Ty = Op->getType();
2293
2294 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2295 return Op->getValueAPF().convertToDouble();
2296
2297 bool unused;
2298 APFloat APF = Op->getValueAPF();
2300 return APF.convertToDouble();
2301}
2302
2303static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2304 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2305 C = &CI->getValue();
2306 return true;
2307 }
2308 if (isa<UndefValue>(Op)) {
2309 C = nullptr;
2310 return true;
2311 }
2312 return false;
2313}
2314
2315/// Checks if the given intrinsic call, which evaluates to constant, is allowed
2316/// to be folded.
2317///
2318/// \param CI Constrained intrinsic call.
2319/// \param St Exception flags raised during constant evaluation.
2320static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2321 APFloat::opStatus St) {
2322 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2323 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2324
2325 // If the operation does not change exception status flags, it is safe
2326 // to fold.
2327 if (St == APFloat::opStatus::opOK)
2328 return true;
2329
2330 // If evaluation raised FP exception, the result can depend on rounding
2331 // mode. If the latter is unknown, folding is not possible.
2332 if (ORM == RoundingMode::Dynamic)
2333 return false;
2334
2335 // If FP exceptions are ignored, fold the call, even if such exception is
2336 // raised.
2337 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2338 return true;
2339
2340 // Leave the calculation for runtime so that exception flags be correctly set
2341 // in hardware.
2342 return false;
2343}
2344
2345/// Returns the rounding mode that should be used for constant evaluation.
2346static RoundingMode
2347getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2348 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2349 if (!ORM || *ORM == RoundingMode::Dynamic)
2350 // Even if the rounding mode is unknown, try evaluating the operation.
2351 // If it does not raise inexact exception, rounding was not applied,
2352 // so the result is exact and does not depend on rounding mode. Whether
2353 // other FP exceptions are raised, it does not depend on rounding mode.
2355 return *ORM;
2356}
2357
2358/// Try to constant fold llvm.canonicalize for the given caller and value.
2359static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2360 const APFloat &Src) {
2361 // Zero, positive and negative, is always OK to fold.
2362 if (Src.isZero()) {
2363 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2364 return ConstantFP::get(
2365 CI->getContext(),
2366 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2367 }
2368
2369 if (!Ty->isIEEELikeFPTy())
2370 return nullptr;
2371
2372 // Zero is always canonical and the sign must be preserved.
2373 //
2374 // Denorms and nans may have special encodings, but it should be OK to fold a
2375 // totally average number.
2376 if (Src.isNormal() || Src.isInfinity())
2377 return ConstantFP::get(CI->getContext(), Src);
2378
2379 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2380 DenormalMode DenormMode =
2381 CI->getFunction()->getDenormalMode(Src.getSemantics());
2382
2383 if (DenormMode == DenormalMode::getIEEE())
2384 return ConstantFP::get(CI->getContext(), Src);
2385
2386 if (DenormMode.Input == DenormalMode::Dynamic)
2387 return nullptr;
2388
2389 // If we know if either input or output is flushed, we can fold.
2390 if ((DenormMode.Input == DenormalMode::Dynamic &&
2391 DenormMode.Output == DenormalMode::IEEE) ||
2392 (DenormMode.Input == DenormalMode::IEEE &&
2393 DenormMode.Output == DenormalMode::Dynamic))
2394 return nullptr;
2395
2396 bool IsPositive =
2397 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2398 (DenormMode.Output == DenormalMode::PositiveZero &&
2399 DenormMode.Input == DenormalMode::IEEE));
2400
2401 return ConstantFP::get(CI->getContext(),
2402 APFloat::getZero(Src.getSemantics(), !IsPositive));
2403 }
2404
2405 return nullptr;
2406}
2407
2408static Constant *ConstantFoldScalarCall1(StringRef Name,
2409 Intrinsic::ID IntrinsicID,
2410 Type *Ty,
2411 ArrayRef<Constant *> Operands,
2412 const TargetLibraryInfo *TLI,
2413 const CallBase *Call) {
2414 assert(Operands.size() == 1 && "Wrong number of operands.");
2415
2416 if (IntrinsicID == Intrinsic::is_constant) {
2417 // We know we have a "Constant" argument. But we want to only
2418 // return true for manifest constants, not those that depend on
2419 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2420 if (Operands[0]->isManifestConstant())
2421 return ConstantInt::getTrue(Ty->getContext());
2422 return nullptr;
2423 }
2424
2425 if (isa<UndefValue>(Operands[0])) {
2426 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2427 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2428 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2429 if (IntrinsicID == Intrinsic::cos ||
2430 IntrinsicID == Intrinsic::ctpop ||
2431 IntrinsicID == Intrinsic::fptoui_sat ||
2432 IntrinsicID == Intrinsic::fptosi_sat ||
2433 IntrinsicID == Intrinsic::canonicalize)
2434 return Constant::getNullValue(Ty);
2435 if (IntrinsicID == Intrinsic::bswap ||
2436 IntrinsicID == Intrinsic::bitreverse ||
2437 IntrinsicID == Intrinsic::launder_invariant_group ||
2438 IntrinsicID == Intrinsic::strip_invariant_group)
2439 return Operands[0];
2440 }
2441
2442 if (isa<ConstantPointerNull>(Operands[0])) {
2443 // launder(null) == null == strip(null) iff in addrspace 0
2444 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2445 IntrinsicID == Intrinsic::strip_invariant_group) {
2446 // If instruction is not yet put in a basic block (e.g. when cloning
2447 // a function during inlining), Call's caller may not be available.
2448 // So check Call's BB first before querying Call->getCaller.
2449 const Function *Caller =
2450 Call->getParent() ? Call->getCaller() : nullptr;
2451 if (Caller &&
2453 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2454 return Operands[0];
2455 }
2456 return nullptr;
2457 }
2458 }
2459
2460 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2461 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2462 APFloat Val(Op->getValueAPF());
2463
2464 bool lost = false;
2466
2467 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2468 }
2469
2470 APFloat U = Op->getValueAPF();
2471
2472 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2473 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2474 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2475
2476 if (U.isNaN())
2477 return nullptr;
2478
2479 unsigned Width = Ty->getIntegerBitWidth();
2480 APSInt Int(Width, !Signed);
2481 bool IsExact = false;
2483 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2484
2486 return ConstantInt::get(Ty, Int);
2487
2488 return nullptr;
2489 }
2490
2491 if (IntrinsicID == Intrinsic::fptoui_sat ||
2492 IntrinsicID == Intrinsic::fptosi_sat) {
2493 // convertToInteger() already has the desired saturation semantics.
2494 APSInt Int(Ty->getIntegerBitWidth(),
2495 IntrinsicID == Intrinsic::fptoui_sat);
2496 bool IsExact;
2497 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2498 return ConstantInt::get(Ty, Int);
2499 }
2500
2501 if (IntrinsicID == Intrinsic::canonicalize)
2502 return constantFoldCanonicalize(Ty, Call, U);
2503
2504#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2505 if (Ty->isFP128Ty()) {
2506 if (IntrinsicID == Intrinsic::log) {
2507 float128 Result = logf128(Op->getValueAPF().convertToQuad());
2508 return GetConstantFoldFPValue128(Result, Ty);
2509 }
2510
2511 LibFunc Fp128Func = NotLibFunc;
2512 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2513 Fp128Func == LibFunc_logl)
2514 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2515 }
2516#endif
2517
2518 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2519 !Ty->isIntegerTy())
2520 return nullptr;
2521
2522 // Use internal versions of these intrinsics.
2523
2524 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint ||
2525 IntrinsicID == Intrinsic::roundeven) {
2526 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2527 return ConstantFP::get(Ty->getContext(), U);
2528 }
2529
2530 if (IntrinsicID == Intrinsic::round) {
2531 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2532 return ConstantFP::get(Ty->getContext(), U);
2533 }
2534
2535 if (IntrinsicID == Intrinsic::roundeven) {
2536 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2537 return ConstantFP::get(Ty->getContext(), U);
2538 }
2539
2540 if (IntrinsicID == Intrinsic::ceil) {
2541 U.roundToIntegral(APFloat::rmTowardPositive);
2542 return ConstantFP::get(Ty->getContext(), U);
2543 }
2544
2545 if (IntrinsicID == Intrinsic::floor) {
2546 U.roundToIntegral(APFloat::rmTowardNegative);
2547 return ConstantFP::get(Ty->getContext(), U);
2548 }
2549
2550 if (IntrinsicID == Intrinsic::trunc) {
2551 U.roundToIntegral(APFloat::rmTowardZero);
2552 return ConstantFP::get(Ty->getContext(), U);
2553 }
2554
2555 if (IntrinsicID == Intrinsic::fabs) {
2556 U.clearSign();
2557 return ConstantFP::get(Ty->getContext(), U);
2558 }
2559
2560 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2561 // The v_fract instruction behaves like the OpenCL spec, which defines
2562 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2563 // there to prevent fract(-small) from returning 1.0. It returns the
2564 // largest positive floating-point number less than 1.0."
2565 APFloat FloorU(U);
2566 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2567 APFloat FractU(U - FloorU);
2568 APFloat AlmostOne(U.getSemantics(), 1);
2569 AlmostOne.next(/*nextDown*/ true);
2570 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2571 }
2572
2573 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2574 // raise FP exceptions, unless the argument is signaling NaN.
2575
2576 std::optional<APFloat::roundingMode> RM;
2577 switch (IntrinsicID) {
2578 default:
2579 break;
2580 case Intrinsic::experimental_constrained_nearbyint:
2581 case Intrinsic::experimental_constrained_rint: {
2583 RM = CI->getRoundingMode();
2584 if (!RM || *RM == RoundingMode::Dynamic)
2585 return nullptr;
2586 break;
2587 }
2588 case Intrinsic::experimental_constrained_round:
2590 break;
2591 case Intrinsic::experimental_constrained_ceil:
2593 break;
2594 case Intrinsic::experimental_constrained_floor:
2596 break;
2597 case Intrinsic::experimental_constrained_trunc:
2599 break;
2600 }
2601 if (RM) {
2603 if (U.isFinite()) {
2604 APFloat::opStatus St = U.roundToIntegral(*RM);
2605 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2606 St == APFloat::opInexact) {
2607 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2608 if (EB == fp::ebStrict)
2609 return nullptr;
2610 }
2611 } else if (U.isSignaling()) {
2612 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2613 if (EB && *EB != fp::ebIgnore)
2614 return nullptr;
2615 U = APFloat::getQNaN(U.getSemantics());
2616 }
2617 return ConstantFP::get(Ty->getContext(), U);
2618 }
2619
2620 // NVVM float/double to signed/unsigned int32/int64 conversions:
2621 switch (IntrinsicID) {
2622 // f2i
2623 case Intrinsic::nvvm_f2i_rm:
2624 case Intrinsic::nvvm_f2i_rn:
2625 case Intrinsic::nvvm_f2i_rp:
2626 case Intrinsic::nvvm_f2i_rz:
2627 case Intrinsic::nvvm_f2i_rm_ftz:
2628 case Intrinsic::nvvm_f2i_rn_ftz:
2629 case Intrinsic::nvvm_f2i_rp_ftz:
2630 case Intrinsic::nvvm_f2i_rz_ftz:
2631 // f2ui
2632 case Intrinsic::nvvm_f2ui_rm:
2633 case Intrinsic::nvvm_f2ui_rn:
2634 case Intrinsic::nvvm_f2ui_rp:
2635 case Intrinsic::nvvm_f2ui_rz:
2636 case Intrinsic::nvvm_f2ui_rm_ftz:
2637 case Intrinsic::nvvm_f2ui_rn_ftz:
2638 case Intrinsic::nvvm_f2ui_rp_ftz:
2639 case Intrinsic::nvvm_f2ui_rz_ftz:
2640 // d2i
2641 case Intrinsic::nvvm_d2i_rm:
2642 case Intrinsic::nvvm_d2i_rn:
2643 case Intrinsic::nvvm_d2i_rp:
2644 case Intrinsic::nvvm_d2i_rz:
2645 // d2ui
2646 case Intrinsic::nvvm_d2ui_rm:
2647 case Intrinsic::nvvm_d2ui_rn:
2648 case Intrinsic::nvvm_d2ui_rp:
2649 case Intrinsic::nvvm_d2ui_rz:
2650 // f2ll
2651 case Intrinsic::nvvm_f2ll_rm:
2652 case Intrinsic::nvvm_f2ll_rn:
2653 case Intrinsic::nvvm_f2ll_rp:
2654 case Intrinsic::nvvm_f2ll_rz:
2655 case Intrinsic::nvvm_f2ll_rm_ftz:
2656 case Intrinsic::nvvm_f2ll_rn_ftz:
2657 case Intrinsic::nvvm_f2ll_rp_ftz:
2658 case Intrinsic::nvvm_f2ll_rz_ftz:
2659 // f2ull
2660 case Intrinsic::nvvm_f2ull_rm:
2661 case Intrinsic::nvvm_f2ull_rn:
2662 case Intrinsic::nvvm_f2ull_rp:
2663 case Intrinsic::nvvm_f2ull_rz:
2664 case Intrinsic::nvvm_f2ull_rm_ftz:
2665 case Intrinsic::nvvm_f2ull_rn_ftz:
2666 case Intrinsic::nvvm_f2ull_rp_ftz:
2667 case Intrinsic::nvvm_f2ull_rz_ftz:
2668 // d2ll
2669 case Intrinsic::nvvm_d2ll_rm:
2670 case Intrinsic::nvvm_d2ll_rn:
2671 case Intrinsic::nvvm_d2ll_rp:
2672 case Intrinsic::nvvm_d2ll_rz:
2673 // d2ull
2674 case Intrinsic::nvvm_d2ull_rm:
2675 case Intrinsic::nvvm_d2ull_rn:
2676 case Intrinsic::nvvm_d2ull_rp:
2677 case Intrinsic::nvvm_d2ull_rz: {
2678 // In float-to-integer conversion, NaN inputs are converted to 0.
2679 if (U.isNaN()) {
2680 // In float-to-integer conversion, NaN inputs are converted to 0
2681 // when the source and destination bitwidths are both less than 64.
2682 if (nvvm::FPToIntegerIntrinsicNaNZero(IntrinsicID))
2683 return ConstantInt::get(Ty, 0);
2684
2685 // Otherwise, the most significant bit is set.
2686 unsigned BitWidth = Ty->getIntegerBitWidth();
2687 uint64_t Val = 1ULL << (BitWidth - 1);
2688 return ConstantInt::get(Ty, APInt(BitWidth, Val, /*IsSigned=*/false));
2689 }
2690
2691 APFloat::roundingMode RMode =
2693 bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2694 bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2695
2696 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2697 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2698
2699 // Return max/min value for integers if the result is +/-inf or
2700 // is too large to fit in the result's integer bitwidth.
2701 bool IsExact = false;
2702 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2703 return ConstantInt::get(Ty, ResInt);
2704 }
2705 }
2706
2707 /// We only fold functions with finite arguments. Folding NaN and inf is
2708 /// likely to be aborted with an exception anyway, and some host libms
2709 /// have known errors raising exceptions.
2710 if (!U.isFinite())
2711 return nullptr;
2712
2713 /// Currently APFloat versions of these functions do not exist, so we use
2714 /// the host native double versions. Float versions are not called
2715 /// directly but for all these it is true (float)(f((double)arg)) ==
2716 /// f(arg). Long double not supported yet.
2717 const APFloat &APF = Op->getValueAPF();
2718
2719 switch (IntrinsicID) {
2720 default: break;
2721 case Intrinsic::log:
2722 return ConstantFoldFP(log, APF, Ty);
2723 case Intrinsic::log2:
2724 // TODO: What about hosts that lack a C99 library?
2725 return ConstantFoldFP(log2, APF, Ty);
2726 case Intrinsic::log10:
2727 // TODO: What about hosts that lack a C99 library?
2728 return ConstantFoldFP(log10, APF, Ty);
2729 case Intrinsic::exp:
2730 return ConstantFoldFP(exp, APF, Ty);
2731 case Intrinsic::exp2:
2732 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2733 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2734 case Intrinsic::exp10:
2735 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2736 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2737 case Intrinsic::sin:
2738 return ConstantFoldFP(sin, APF, Ty);
2739 case Intrinsic::cos:
2740 return ConstantFoldFP(cos, APF, Ty);
2741 case Intrinsic::sinh:
2742 return ConstantFoldFP(sinh, APF, Ty);
2743 case Intrinsic::cosh:
2744 return ConstantFoldFP(cosh, APF, Ty);
2745 case Intrinsic::atan:
2746 // Implement optional behavior from C's Annex F for +/-0.0.
2747 if (U.isZero())
2748 return ConstantFP::get(Ty->getContext(), U);
2749 return ConstantFoldFP(atan, APF, Ty);
2750 case Intrinsic::sqrt:
2751 return ConstantFoldFP(sqrt, APF, Ty);
2752
2753 // NVVM Intrinsics:
2754 case Intrinsic::nvvm_ceil_ftz_f:
2755 case Intrinsic::nvvm_ceil_f:
2756 case Intrinsic::nvvm_ceil_d:
2757 return ConstantFoldFP(
2758 ceil, APF, Ty,
2760 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2761
2762 case Intrinsic::nvvm_fabs_ftz:
2763 case Intrinsic::nvvm_fabs:
2764 return ConstantFoldFP(
2765 fabs, APF, Ty,
2767 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2768
2769 case Intrinsic::nvvm_floor_ftz_f:
2770 case Intrinsic::nvvm_floor_f:
2771 case Intrinsic::nvvm_floor_d:
2772 return ConstantFoldFP(
2773 floor, APF, Ty,
2775 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2776
2777 case Intrinsic::nvvm_rcp_rm_ftz_f:
2778 case Intrinsic::nvvm_rcp_rn_ftz_f:
2779 case Intrinsic::nvvm_rcp_rp_ftz_f:
2780 case Intrinsic::nvvm_rcp_rz_ftz_f:
2781 case Intrinsic::nvvm_rcp_rm_d:
2782 case Intrinsic::nvvm_rcp_rm_f:
2783 case Intrinsic::nvvm_rcp_rn_d:
2784 case Intrinsic::nvvm_rcp_rn_f:
2785 case Intrinsic::nvvm_rcp_rp_d:
2786 case Intrinsic::nvvm_rcp_rp_f:
2787 case Intrinsic::nvvm_rcp_rz_d:
2788 case Intrinsic::nvvm_rcp_rz_f: {
2789 APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
2790 bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);
2791
2792 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2794 APFloat::opStatus Status = Res.divide(Denominator, RoundMode);
2795
2797 if (IsFTZ)
2798 Res = FTZPreserveSign(Res);
2799 return ConstantFP::get(Ty->getContext(), Res);
2800 }
2801 return nullptr;
2802 }
2803
2804 case Intrinsic::nvvm_round_ftz_f:
2805 case Intrinsic::nvvm_round_f:
2806 case Intrinsic::nvvm_round_d: {
2807 // nvvm_round is lowered to PTX cvt.rni, which will round to nearest
2808 // integer, choosing even integer if source is equidistant between two
2809 // integers, so the semantics are closer to "rint" rather than "round".
2810 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2811 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2813 return ConstantFP::get(Ty->getContext(), V);
2814 }
2815
2816 case Intrinsic::nvvm_saturate_ftz_f:
2817 case Intrinsic::nvvm_saturate_d:
2818 case Intrinsic::nvvm_saturate_f: {
2819 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2820 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2821 if (V.isNegative() || V.isZero() || V.isNaN())
2822 return ConstantFP::getZero(Ty);
2824 if (V > One)
2825 return ConstantFP::get(Ty->getContext(), One);
2826 return ConstantFP::get(Ty->getContext(), APF);
2827 }
2828
2829 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2830 case Intrinsic::nvvm_sqrt_f:
2831 case Intrinsic::nvvm_sqrt_rn_d:
2832 case Intrinsic::nvvm_sqrt_rn_f:
2833 if (APF.isNegative())
2834 return nullptr;
2835 return ConstantFoldFP(
2836 sqrt, APF, Ty,
2838 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2839
2840 // AMDGCN Intrinsics:
2841 case Intrinsic::amdgcn_cos:
2842 case Intrinsic::amdgcn_sin: {
2843 double V = getValueAsDouble(Op);
2844 if (V < -256.0 || V > 256.0)
2845 // The gfx8 and gfx9 architectures handle arguments outside the range
2846 // [-256, 256] differently. This should be a rare case so bail out
2847 // rather than trying to handle the difference.
2848 return nullptr;
2849 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2850 double V4 = V * 4.0;
2851 if (V4 == floor(V4)) {
2852 // Force exact results for quarter-integer inputs.
2853 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2854 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2855 } else {
2856 if (IsCos)
2857 V = cos(V * 2.0 * numbers::pi);
2858 else
2859 V = sin(V * 2.0 * numbers::pi);
2860 }
2861 return GetConstantFoldFPValue(V, Ty);
2862 }
2863 }
2864
2865 if (!TLI)
2866 return nullptr;
2867
2868 LibFunc Func = NotLibFunc;
2869 if (!TLI->getLibFunc(Name, Func))
2870 return nullptr;
2871
2872 switch (Func) {
2873 default:
2874 break;
2875 case LibFunc_acos:
2876 case LibFunc_acosf:
2877 case LibFunc_acos_finite:
2878 case LibFunc_acosf_finite:
2879 if (TLI->has(Func))
2880 return ConstantFoldFP(acos, APF, Ty);
2881 break;
2882 case LibFunc_asin:
2883 case LibFunc_asinf:
2884 case LibFunc_asin_finite:
2885 case LibFunc_asinf_finite:
2886 if (TLI->has(Func))
2887 return ConstantFoldFP(asin, APF, Ty);
2888 break;
2889 case LibFunc_atan:
2890 case LibFunc_atanf:
2891 // Implement optional behavior from C's Annex F for +/-0.0.
2892 if (U.isZero())
2893 return ConstantFP::get(Ty->getContext(), U);
2894 if (TLI->has(Func))
2895 return ConstantFoldFP(atan, APF, Ty);
2896 break;
2897 case LibFunc_ceil:
2898 case LibFunc_ceilf:
2899 if (TLI->has(Func)) {
2900 U.roundToIntegral(APFloat::rmTowardPositive);
2901 return ConstantFP::get(Ty->getContext(), U);
2902 }
2903 break;
2904 case LibFunc_cos:
2905 case LibFunc_cosf:
2906 if (TLI->has(Func))
2907 return ConstantFoldFP(cos, APF, Ty);
2908 break;
2909 case LibFunc_cosh:
2910 case LibFunc_coshf:
2911 case LibFunc_cosh_finite:
2912 case LibFunc_coshf_finite:
2913 if (TLI->has(Func))
2914 return ConstantFoldFP(cosh, APF, Ty);
2915 break;
2916 case LibFunc_exp:
2917 case LibFunc_expf:
2918 case LibFunc_exp_finite:
2919 case LibFunc_expf_finite:
2920 if (TLI->has(Func))
2921 return ConstantFoldFP(exp, APF, Ty);
2922 break;
2923 case LibFunc_exp2:
2924 case LibFunc_exp2f:
2925 case LibFunc_exp2_finite:
2926 case LibFunc_exp2f_finite:
2927 if (TLI->has(Func))
2928 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2929 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2930 break;
2931 case LibFunc_fabs:
2932 case LibFunc_fabsf:
2933 if (TLI->has(Func)) {
2934 U.clearSign();
2935 return ConstantFP::get(Ty->getContext(), U);
2936 }
2937 break;
2938 case LibFunc_floor:
2939 case LibFunc_floorf:
2940 if (TLI->has(Func)) {
2941 U.roundToIntegral(APFloat::rmTowardNegative);
2942 return ConstantFP::get(Ty->getContext(), U);
2943 }
2944 break;
2945 case LibFunc_log:
2946 case LibFunc_logf:
2947 case LibFunc_log_finite:
2948 case LibFunc_logf_finite:
2949 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2950 return ConstantFoldFP(log, APF, Ty);
2951 break;
2952 case LibFunc_log2:
2953 case LibFunc_log2f:
2954 case LibFunc_log2_finite:
2955 case LibFunc_log2f_finite:
2956 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2957 // TODO: What about hosts that lack a C99 library?
2958 return ConstantFoldFP(log2, APF, Ty);
2959 break;
2960 case LibFunc_log10:
2961 case LibFunc_log10f:
2962 case LibFunc_log10_finite:
2963 case LibFunc_log10f_finite:
2964 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2965 // TODO: What about hosts that lack a C99 library?
2966 return ConstantFoldFP(log10, APF, Ty);
2967 break;
2968 case LibFunc_ilogb:
2969 case LibFunc_ilogbf:
2970 if (!APF.isZero() && TLI->has(Func))
2971 return ConstantInt::get(Ty, ilogb(APF), true);
2972 break;
2973 case LibFunc_logb:
2974 case LibFunc_logbf:
2975 if (!APF.isZero() && TLI->has(Func))
2976 return ConstantFoldFP(logb, APF, Ty);
2977 break;
2978 case LibFunc_log1p:
2979 case LibFunc_log1pf:
2980 // Implement optional behavior from C's Annex F for +/-0.0.
2981 if (U.isZero())
2982 return ConstantFP::get(Ty->getContext(), U);
2983 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2984 return ConstantFoldFP(log1p, APF, Ty);
2985 break;
2986 case LibFunc_logl:
2987 return nullptr;
2988 case LibFunc_erf:
2989 case LibFunc_erff:
2990 if (TLI->has(Func))
2991 return ConstantFoldFP(erf, APF, Ty);
2992 break;
2993 case LibFunc_nearbyint:
2994 case LibFunc_nearbyintf:
2995 case LibFunc_rint:
2996 case LibFunc_rintf:
2997 case LibFunc_roundeven:
2998 case LibFunc_roundevenf:
2999 if (TLI->has(Func)) {
3000 U.roundToIntegral(APFloat::rmNearestTiesToEven);
3001 return ConstantFP::get(Ty->getContext(), U);
3002 }
3003 break;
3004 case LibFunc_round:
3005 case LibFunc_roundf:
3006 if (TLI->has(Func)) {
3007 U.roundToIntegral(APFloat::rmNearestTiesToAway);
3008 return ConstantFP::get(Ty->getContext(), U);
3009 }
3010 break;
3011 case LibFunc_sin:
3012 case LibFunc_sinf:
3013 if (TLI->has(Func))
3014 return ConstantFoldFP(sin, APF, Ty);
3015 break;
3016 case LibFunc_sinh:
3017 case LibFunc_sinhf:
3018 case LibFunc_sinh_finite:
3019 case LibFunc_sinhf_finite:
3020 if (TLI->has(Func))
3021 return ConstantFoldFP(sinh, APF, Ty);
3022 break;
3023 case LibFunc_sqrt:
3024 case LibFunc_sqrtf:
3025 if (!APF.isNegative() && TLI->has(Func))
3026 return ConstantFoldFP(sqrt, APF, Ty);
3027 break;
3028 case LibFunc_tan:
3029 case LibFunc_tanf:
3030 if (TLI->has(Func))
3031 return ConstantFoldFP(tan, APF, Ty);
3032 break;
3033 case LibFunc_tanh:
3034 case LibFunc_tanhf:
3035 if (TLI->has(Func))
3036 return ConstantFoldFP(tanh, APF, Ty);
3037 break;
3038 case LibFunc_trunc:
3039 case LibFunc_truncf:
3040 if (TLI->has(Func)) {
3041 U.roundToIntegral(APFloat::rmTowardZero);
3042 return ConstantFP::get(Ty->getContext(), U);
3043 }
3044 break;
3045 }
3046 return nullptr;
3047 }
3048
3049 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3050 switch (IntrinsicID) {
3051 case Intrinsic::bswap:
3052 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
3053 case Intrinsic::ctpop:
3054 return ConstantInt::get(Ty, Op->getValue().popcount());
3055 case Intrinsic::bitreverse:
3056 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
3057 case Intrinsic::convert_from_fp16: {
3058 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
3059
3060 bool lost = false;
3061 APFloat::opStatus status = Val.convert(
3062 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
3063
3064 // Conversion is always precise.
3065 (void)status;
3066 assert(status != APFloat::opInexact && !lost &&
3067 "Precision lost during fp16 constfolding");
3068
3069 return ConstantFP::get(Ty->getContext(), Val);
3070 }
3071
3072 case Intrinsic::amdgcn_s_wqm: {
3073 uint64_t Val = Op->getZExtValue();
3074 Val |= (Val & 0x5555555555555555ULL) << 1 |
3075 ((Val >> 1) & 0x5555555555555555ULL);
3076 Val |= (Val & 0x3333333333333333ULL) << 2 |
3077 ((Val >> 2) & 0x3333333333333333ULL);
3078 return ConstantInt::get(Ty, Val);
3079 }
3080
3081 case Intrinsic::amdgcn_s_quadmask: {
3082 uint64_t Val = Op->getZExtValue();
3083 uint64_t QuadMask = 0;
3084 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
3085 if (!(Val & 0xF))
3086 continue;
3087
3088 QuadMask |= (1ULL << I);
3089 }
3090 return ConstantInt::get(Ty, QuadMask);
3091 }
3092
3093 case Intrinsic::amdgcn_s_bitreplicate: {
3094 uint64_t Val = Op->getZExtValue();
3095 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3096 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3097 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3098 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3099 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3100 Val = Val | Val << 1;
3101 return ConstantInt::get(Ty, Val);
3102 }
3103 }
3104 }
3105
3106 if (Operands[0]->getType()->isVectorTy()) {
3107 auto *Op = cast<Constant>(Operands[0]);
3108 switch (IntrinsicID) {
3109 default: break;
3110 case Intrinsic::vector_reduce_add:
3111 case Intrinsic::vector_reduce_mul:
3112 case Intrinsic::vector_reduce_and:
3113 case Intrinsic::vector_reduce_or:
3114 case Intrinsic::vector_reduce_xor:
3115 case Intrinsic::vector_reduce_smin:
3116 case Intrinsic::vector_reduce_smax:
3117 case Intrinsic::vector_reduce_umin:
3118 case Intrinsic::vector_reduce_umax:
3119 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3120 return C;
3121 break;
3122 case Intrinsic::x86_sse_cvtss2si:
3123 case Intrinsic::x86_sse_cvtss2si64:
3124 case Intrinsic::x86_sse2_cvtsd2si:
3125 case Intrinsic::x86_sse2_cvtsd2si64:
3126 if (ConstantFP *FPOp =
3127 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3128 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3129 /*roundTowardZero=*/false, Ty,
3130 /*IsSigned*/true);
3131 break;
3132 case Intrinsic::x86_sse_cvttss2si:
3133 case Intrinsic::x86_sse_cvttss2si64:
3134 case Intrinsic::x86_sse2_cvttsd2si:
3135 case Intrinsic::x86_sse2_cvttsd2si64:
3136 if (ConstantFP *FPOp =
3137 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3138 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3139 /*roundTowardZero=*/true, Ty,
3140 /*IsSigned*/true);
3141 break;
3142
3143 case Intrinsic::wasm_anytrue:
3144 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3145 : ConstantInt::get(Ty, 1);
3146
3147 case Intrinsic::wasm_alltrue:
3148 // Check each element individually
3149 unsigned E = cast<FixedVectorType>(Op->getType())->getNumElements();
3150 for (unsigned I = 0; I != E; ++I) {
3151 Constant *Elt = Op->getAggregateElement(I);
3152 // Return false as soon as we find a non-true element.
3153 if (Elt && Elt->isZeroValue())
3154 return ConstantInt::get(Ty, 0);
3155 // Bail as soon as we find an element we cannot prove to be true.
3156 if (!Elt || !isa<ConstantInt>(Elt))
3157 return nullptr;
3158 }
3159
3160 return ConstantInt::get(Ty, 1);
3161 }
3162 }
3163
3164 return nullptr;
3165}
3166
3167static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
3171 FCmpInst::Predicate Cond = FCmp->getPredicate();
3172 if (FCmp->isSignaling()) {
3173 if (Op1.isNaN() || Op2.isNaN())
3175 } else {
3176 if (Op1.isSignaling() || Op2.isSignaling())
3178 }
3179 bool Result = FCmpInst::compare(Op1, Op2, Cond);
3180 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
3181 return ConstantInt::get(Call->getType()->getScalarType(), Result);
3182 return nullptr;
3183}
3184
3185static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
3186 ArrayRef<Constant *> Operands,
3187 const TargetLibraryInfo *TLI) {
3188 if (!TLI)
3189 return nullptr;
3190
3191 LibFunc Func = NotLibFunc;
3192 if (!TLI->getLibFunc(Name, Func))
3193 return nullptr;
3194
3195 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
3196 if (!Op1)
3197 return nullptr;
3198
3199 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
3200 if (!Op2)
3201 return nullptr;
3202
3203 const APFloat &Op1V = Op1->getValueAPF();
3204 const APFloat &Op2V = Op2->getValueAPF();
3205
3206 switch (Func) {
3207 default:
3208 break;
3209 case LibFunc_pow:
3210 case LibFunc_powf:
3211 case LibFunc_pow_finite:
3212 case LibFunc_powf_finite:
3213 if (TLI->has(Func))
3214 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3215 break;
3216 case LibFunc_fmod:
3217 case LibFunc_fmodf:
3218 if (TLI->has(Func)) {
3219 APFloat V = Op1->getValueAPF();
3220 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
3221 return ConstantFP::get(Ty->getContext(), V);
3222 }
3223 break;
3224 case LibFunc_remainder:
3225 case LibFunc_remainderf:
3226 if (TLI->has(Func)) {
3227 APFloat V = Op1->getValueAPF();
3228 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
3229 return ConstantFP::get(Ty->getContext(), V);
3230 }
3231 break;
3232 case LibFunc_atan2:
3233 case LibFunc_atan2f:
3234 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
3235 // (Solaris), so we do not assume a known result for that.
3236 if (Op1V.isZero() && Op2V.isZero())
3237 return nullptr;
3238 [[fallthrough]];
3239 case LibFunc_atan2_finite:
3240 case LibFunc_atan2f_finite:
3241 if (TLI->has(Func))
3242 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3243 break;
3244 }
3245
3246 return nullptr;
3247}
3248
3249static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
3250 ArrayRef<Constant *> Operands,
3251 const CallBase *Call) {
3252 assert(Operands.size() == 2 && "Wrong number of operands.");
3253
3254 if (Ty->isFloatingPointTy()) {
3255 // TODO: We should have undef handling for all of the FP intrinsics that
3256 // are attempted to be folded in this function.
3257 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
3258 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
3259 switch (IntrinsicID) {
3260 case Intrinsic::maxnum:
3261 case Intrinsic::minnum:
3262 case Intrinsic::maximum:
3263 case Intrinsic::minimum:
3264 case Intrinsic::maximumnum:
3265 case Intrinsic::minimumnum:
3266 case Intrinsic::nvvm_fmax_d:
3267 case Intrinsic::nvvm_fmin_d:
3268 // If one argument is undef, return the other argument.
3269 if (IsOp0Undef)
3270 return Operands[1];
3271 if (IsOp1Undef)
3272 return Operands[0];
3273 break;
3274
3275 case Intrinsic::nvvm_fmax_f:
3276 case Intrinsic::nvvm_fmax_ftz_f:
3277 case Intrinsic::nvvm_fmax_ftz_nan_f:
3278 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3279 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3280 case Intrinsic::nvvm_fmax_nan_f:
3281 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3282 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3283
3284 case Intrinsic::nvvm_fmin_f:
3285 case Intrinsic::nvvm_fmin_ftz_f:
3286 case Intrinsic::nvvm_fmin_ftz_nan_f:
3287 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3288 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3289 case Intrinsic::nvvm_fmin_nan_f:
3290 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3291 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3292 // If one arg is undef, the other arg can be returned only if it is
3293 // constant, as we may need to flush it to sign-preserving zero or
3294 // canonicalize the NaN.
3295 if (!IsOp0Undef && !IsOp1Undef)
3296 break;
3297 if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
3298 if (Op->isNaN()) {
3299 APInt NVCanonicalNaN(32, 0x7fffffff);
3300 return ConstantFP::get(
3301 Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3302 }
3303 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
3304 return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
3305 else
3306 return Op;
3307 }
3308 break;
3309 }
3310 }
3311
3312 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3313 const APFloat &Op1V = Op1->getValueAPF();
3314
3315 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3316 if (Op2->getType() != Op1->getType())
3317 return nullptr;
3318 const APFloat &Op2V = Op2->getValueAPF();
3319
3320 if (const auto *ConstrIntr =
3322 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3323 APFloat Res = Op1V;
3325 switch (IntrinsicID) {
3326 default:
3327 return nullptr;
3328 case Intrinsic::experimental_constrained_fadd:
3329 St = Res.add(Op2V, RM);
3330 break;
3331 case Intrinsic::experimental_constrained_fsub:
3332 St = Res.subtract(Op2V, RM);
3333 break;
3334 case Intrinsic::experimental_constrained_fmul:
3335 St = Res.multiply(Op2V, RM);
3336 break;
3337 case Intrinsic::experimental_constrained_fdiv:
3338 St = Res.divide(Op2V, RM);
3339 break;
3340 case Intrinsic::experimental_constrained_frem:
3341 St = Res.mod(Op2V);
3342 break;
3343 case Intrinsic::experimental_constrained_fcmp:
3344 case Intrinsic::experimental_constrained_fcmps:
3345 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3346 }
3347 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3348 St))
3349 return ConstantFP::get(Ty->getContext(), Res);
3350 return nullptr;
3351 }
3352
3353 switch (IntrinsicID) {
3354 default:
3355 break;
3356 case Intrinsic::copysign:
3357 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
3358 case Intrinsic::minnum:
3359 if (Op1V.isSignaling() || Op2V.isSignaling())
3360 return nullptr;
3361 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
3362 case Intrinsic::maxnum:
3363 if (Op1V.isSignaling() || Op2V.isSignaling())
3364 return nullptr;
3365 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
3366 case Intrinsic::minimum:
3367 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
3368 case Intrinsic::maximum:
3369 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
3370 case Intrinsic::minimumnum:
3371 return ConstantFP::get(Ty->getContext(), minimumnum(Op1V, Op2V));
3372 case Intrinsic::maximumnum:
3373 return ConstantFP::get(Ty->getContext(), maximumnum(Op1V, Op2V));
3374
3375 case Intrinsic::nvvm_fmax_d:
3376 case Intrinsic::nvvm_fmax_f:
3377 case Intrinsic::nvvm_fmax_ftz_f:
3378 case Intrinsic::nvvm_fmax_ftz_nan_f:
3379 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3380 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3381 case Intrinsic::nvvm_fmax_nan_f:
3382 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3383 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3384
3385 case Intrinsic::nvvm_fmin_d:
3386 case Intrinsic::nvvm_fmin_f:
3387 case Intrinsic::nvvm_fmin_ftz_f:
3388 case Intrinsic::nvvm_fmin_ftz_nan_f:
3389 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3390 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3391 case Intrinsic::nvvm_fmin_nan_f:
3392 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3393 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3394
3395 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3396 IntrinsicID == Intrinsic::nvvm_fmin_d);
3397 bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3398 bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3399 bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3400
3401 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3402 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3403
3404 bool XorSign = false;
3405 if (IsXorSignAbs) {
3406 XorSign = A.isNegative() ^ B.isNegative();
3407 A = abs(A);
3408 B = abs(B);
3409 }
3410
3411 bool IsFMax = false;
3412 switch (IntrinsicID) {
3413 case Intrinsic::nvvm_fmax_d:
3414 case Intrinsic::nvvm_fmax_f:
3415 case Intrinsic::nvvm_fmax_ftz_f:
3416 case Intrinsic::nvvm_fmax_ftz_nan_f:
3417 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3418 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3419 case Intrinsic::nvvm_fmax_nan_f:
3420 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3421 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3422 IsFMax = true;
3423 break;
3424 }
3425 APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3426
3427 if (ShouldCanonicalizeNaNs) {
3428 APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3429 if (A.isNaN() && B.isNaN())
3430 return ConstantFP::get(Ty, NVCanonicalNaN);
3431 else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3432 return ConstantFP::get(Ty, NVCanonicalNaN);
3433 }
3434
3435 if (A.isNaN() && B.isNaN())
3436 return Operands[1];
3437 else if (A.isNaN())
3438 Res = B;
3439 else if (B.isNaN())
3440 Res = A;
3441
3442 if (IsXorSignAbs && XorSign != Res.isNegative())
3443 Res.changeSign();
3444
3445 return ConstantFP::get(Ty->getContext(), Res);
3446 }
3447
3448 case Intrinsic::nvvm_add_rm_f:
3449 case Intrinsic::nvvm_add_rn_f:
3450 case Intrinsic::nvvm_add_rp_f:
3451 case Intrinsic::nvvm_add_rz_f:
3452 case Intrinsic::nvvm_add_rm_d:
3453 case Intrinsic::nvvm_add_rn_d:
3454 case Intrinsic::nvvm_add_rp_d:
3455 case Intrinsic::nvvm_add_rz_d:
3456 case Intrinsic::nvvm_add_rm_ftz_f:
3457 case Intrinsic::nvvm_add_rn_ftz_f:
3458 case Intrinsic::nvvm_add_rp_ftz_f:
3459 case Intrinsic::nvvm_add_rz_ftz_f: {
3460
3461 bool IsFTZ = nvvm::FAddShouldFTZ(IntrinsicID);
3462 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3463 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3464
3465 APFloat::roundingMode RoundMode =
3466 nvvm::GetFAddRoundingMode(IntrinsicID);
3467
3468 APFloat Res = A;
3469 APFloat::opStatus Status = Res.add(B, RoundMode);
3470
3471 if (!Res.isNaN() &&
3473 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3474 return ConstantFP::get(Ty->getContext(), Res);
3475 }
3476 return nullptr;
3477 }
3478
3479 case Intrinsic::nvvm_mul_rm_f:
3480 case Intrinsic::nvvm_mul_rn_f:
3481 case Intrinsic::nvvm_mul_rp_f:
3482 case Intrinsic::nvvm_mul_rz_f:
3483 case Intrinsic::nvvm_mul_rm_d:
3484 case Intrinsic::nvvm_mul_rn_d:
3485 case Intrinsic::nvvm_mul_rp_d:
3486 case Intrinsic::nvvm_mul_rz_d:
3487 case Intrinsic::nvvm_mul_rm_ftz_f:
3488 case Intrinsic::nvvm_mul_rn_ftz_f:
3489 case Intrinsic::nvvm_mul_rp_ftz_f:
3490 case Intrinsic::nvvm_mul_rz_ftz_f: {
3491
3492 bool IsFTZ = nvvm::FMulShouldFTZ(IntrinsicID);
3493 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3494 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3495
3496 APFloat::roundingMode RoundMode =
3497 nvvm::GetFMulRoundingMode(IntrinsicID);
3498
3499 APFloat Res = A;
3500 APFloat::opStatus Status = Res.multiply(B, RoundMode);
3501
3502 if (!Res.isNaN() &&
3504 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3505 return ConstantFP::get(Ty->getContext(), Res);
3506 }
3507 return nullptr;
3508 }
3509
3510 case Intrinsic::nvvm_div_rm_f:
3511 case Intrinsic::nvvm_div_rn_f:
3512 case Intrinsic::nvvm_div_rp_f:
3513 case Intrinsic::nvvm_div_rz_f:
3514 case Intrinsic::nvvm_div_rm_d:
3515 case Intrinsic::nvvm_div_rn_d:
3516 case Intrinsic::nvvm_div_rp_d:
3517 case Intrinsic::nvvm_div_rz_d:
3518 case Intrinsic::nvvm_div_rm_ftz_f:
3519 case Intrinsic::nvvm_div_rn_ftz_f:
3520 case Intrinsic::nvvm_div_rp_ftz_f:
3521 case Intrinsic::nvvm_div_rz_ftz_f: {
3522 bool IsFTZ = nvvm::FDivShouldFTZ(IntrinsicID);
3523 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3524 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3525 APFloat::roundingMode RoundMode =
3526 nvvm::GetFDivRoundingMode(IntrinsicID);
3527
3528 APFloat Res = A;
3529 APFloat::opStatus Status = Res.divide(B, RoundMode);
3530 if (!Res.isNaN() &&
3532 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3533 return ConstantFP::get(Ty->getContext(), Res);
3534 }
3535 return nullptr;
3536 }
3537 }
3538
3539 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3540 return nullptr;
3541
3542 switch (IntrinsicID) {
3543 default:
3544 break;
3545 case Intrinsic::pow:
3546 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3547 case Intrinsic::amdgcn_fmul_legacy:
3548 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3549 // NaN or infinity, gives +0.0.
3550 if (Op1V.isZero() || Op2V.isZero())
3551 return ConstantFP::getZero(Ty);
3552 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3553 }
3554
3555 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3556 switch (IntrinsicID) {
3557 case Intrinsic::ldexp: {
3558 return ConstantFP::get(
3559 Ty->getContext(),
3560 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3561 }
3562 case Intrinsic::is_fpclass: {
3563 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3564 bool Result =
3565 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3566 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3567 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3568 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3569 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3570 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3571 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3572 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3573 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3574 ((Mask & fcPosInf) && Op1V.isPosInfinity());
3575 return ConstantInt::get(Ty, Result);
3576 }
3577 case Intrinsic::powi: {
3578 int Exp = static_cast<int>(Op2C->getSExtValue());
3579 switch (Ty->getTypeID()) {
3580 case Type::HalfTyID:
3581 case Type::FloatTyID: {
3582 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3583 if (Ty->isHalfTy()) {
3584 bool Unused;
3586 &Unused);
3587 }
3588 return ConstantFP::get(Ty->getContext(), Res);
3589 }
3590 case Type::DoubleTyID:
3591 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3592 default:
3593 return nullptr;
3594 }
3595 }
3596 default:
3597 break;
3598 }
3599 }
3600 return nullptr;
3601 }
3602
3603 if (Operands[0]->getType()->isIntegerTy() &&
3604 Operands[1]->getType()->isIntegerTy()) {
3605 const APInt *C0, *C1;
3606 if (!getConstIntOrUndef(Operands[0], C0) ||
3607 !getConstIntOrUndef(Operands[1], C1))
3608 return nullptr;
3609
3610 switch (IntrinsicID) {
3611 default: break;
3612 case Intrinsic::smax:
3613 case Intrinsic::smin:
3614 case Intrinsic::umax:
3615 case Intrinsic::umin:
3616 if (!C0 && !C1)
3617 return UndefValue::get(Ty);
3618 if (!C0 || !C1)
3619 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3620 return ConstantInt::get(
3621 Ty, ICmpInst::compare(*C0, *C1,
3622 MinMaxIntrinsic::getPredicate(IntrinsicID))
3623 ? *C0
3624 : *C1);
3625
3626 case Intrinsic::scmp:
3627 case Intrinsic::ucmp:
3628 if (!C0 || !C1)
3629 return ConstantInt::get(Ty, 0);
3630
3631 int Res;
3632 if (IntrinsicID == Intrinsic::scmp)
3633 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3634 else
3635 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3636 return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3637
3638 case Intrinsic::usub_with_overflow:
3639 case Intrinsic::ssub_with_overflow:
3640 // X - undef -> { 0, false }
3641 // undef - X -> { 0, false }
3642 if (!C0 || !C1)
3643 return Constant::getNullValue(Ty);
3644 [[fallthrough]];
3645 case Intrinsic::uadd_with_overflow:
3646 case Intrinsic::sadd_with_overflow:
3647 // X + undef -> { -1, false }
3648 // undef + x -> { -1, false }
3649 if (!C0 || !C1) {
3650 return ConstantStruct::get(
3651 cast<StructType>(Ty),
3652 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3653 Constant::getNullValue(Ty->getStructElementType(1))});
3654 }
3655 [[fallthrough]];
3656 case Intrinsic::smul_with_overflow:
3657 case Intrinsic::umul_with_overflow: {
3658 // undef * X -> { 0, false }
3659 // X * undef -> { 0, false }
3660 if (!C0 || !C1)
3661 return Constant::getNullValue(Ty);
3662
3663 APInt Res;
3664 bool Overflow;
3665 switch (IntrinsicID) {
3666 default: llvm_unreachable("Invalid case");
3667 case Intrinsic::sadd_with_overflow:
3668 Res = C0->sadd_ov(*C1, Overflow);
3669 break;
3670 case Intrinsic::uadd_with_overflow:
3671 Res = C0->uadd_ov(*C1, Overflow);
3672 break;
3673 case Intrinsic::ssub_with_overflow:
3674 Res = C0->ssub_ov(*C1, Overflow);
3675 break;
3676 case Intrinsic::usub_with_overflow:
3677 Res = C0->usub_ov(*C1, Overflow);
3678 break;
3679 case Intrinsic::smul_with_overflow:
3680 Res = C0->smul_ov(*C1, Overflow);
3681 break;
3682 case Intrinsic::umul_with_overflow:
3683 Res = C0->umul_ov(*C1, Overflow);
3684 break;
3685 }
3686 Constant *Ops[] = {
3687 ConstantInt::get(Ty->getContext(), Res),
3688 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3689 };
3691 }
3692 case Intrinsic::uadd_sat:
3693 case Intrinsic::sadd_sat:
3694 if (!C0 && !C1)
3695 return UndefValue::get(Ty);
3696 if (!C0 || !C1)
3697 return Constant::getAllOnesValue(Ty);
3698 if (IntrinsicID == Intrinsic::uadd_sat)
3699 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3700 else
3701 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3702 case Intrinsic::usub_sat:
3703 case Intrinsic::ssub_sat:
3704 if (!C0 && !C1)
3705 return UndefValue::get(Ty);
3706 if (!C0 || !C1)
3707 return Constant::getNullValue(Ty);
3708 if (IntrinsicID == Intrinsic::usub_sat)
3709 return ConstantInt::get(Ty, C0->usub_sat(*C1));
3710 else
3711 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3712 case Intrinsic::cttz:
3713 case Intrinsic::ctlz:
3714 assert(C1 && "Must be constant int");
3715
3716 // cttz(0, 1) and ctlz(0, 1) are poison.
3717 if (C1->isOne() && (!C0 || C0->isZero()))
3718 return PoisonValue::get(Ty);
3719 if (!C0)
3720 return Constant::getNullValue(Ty);
3721 if (IntrinsicID == Intrinsic::cttz)
3722 return ConstantInt::get(Ty, C0->countr_zero());
3723 else
3724 return ConstantInt::get(Ty, C0->countl_zero());
3725
3726 case Intrinsic::abs:
3727 assert(C1 && "Must be constant int");
3728 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3729
3730 // Undef or minimum val operand with poison min --> poison
3731 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3732 return PoisonValue::get(Ty);
3733
3734 // Undef operand with no poison min --> 0 (sign bit must be clear)
3735 if (!C0)
3736 return Constant::getNullValue(Ty);
3737
3738 return ConstantInt::get(Ty, C0->abs());
3739 case Intrinsic::amdgcn_wave_reduce_umin:
3740 case Intrinsic::amdgcn_wave_reduce_umax:
3741 case Intrinsic::amdgcn_wave_reduce_max:
3742 case Intrinsic::amdgcn_wave_reduce_min:
3743 case Intrinsic::amdgcn_wave_reduce_add:
3744 case Intrinsic::amdgcn_wave_reduce_sub:
3745 case Intrinsic::amdgcn_wave_reduce_and:
3746 case Intrinsic::amdgcn_wave_reduce_or:
3747 case Intrinsic::amdgcn_wave_reduce_xor:
3748 return dyn_cast<Constant>(Operands[0]);
3749 }
3750
3751 return nullptr;
3752 }
3753
3754 // Support ConstantVector in case we have an Undef in the top.
3755 if ((isa<ConstantVector>(Operands[0]) ||
3756 isa<ConstantDataVector>(Operands[0])) &&
3757 // Check for default rounding mode.
3758 // FIXME: Support other rounding modes?
3759 isa<ConstantInt>(Operands[1]) &&
3760 cast<ConstantInt>(Operands[1])->getValue() == 4) {
3761 auto *Op = cast<Constant>(Operands[0]);
3762 switch (IntrinsicID) {
3763 default: break;
3764 case Intrinsic::x86_avx512_vcvtss2si32:
3765 case Intrinsic::x86_avx512_vcvtss2si64:
3766 case Intrinsic::x86_avx512_vcvtsd2si32:
3767 case Intrinsic::x86_avx512_vcvtsd2si64:
3768 if (ConstantFP *FPOp =
3769 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3770 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3771 /*roundTowardZero=*/false, Ty,
3772 /*IsSigned*/true);
3773 break;
3774 case Intrinsic::x86_avx512_vcvtss2usi32:
3775 case Intrinsic::x86_avx512_vcvtss2usi64:
3776 case Intrinsic::x86_avx512_vcvtsd2usi32:
3777 case Intrinsic::x86_avx512_vcvtsd2usi64:
3778 if (ConstantFP *FPOp =
3779 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3780 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3781 /*roundTowardZero=*/false, Ty,
3782 /*IsSigned*/false);
3783 break;
3784 case Intrinsic::x86_avx512_cvttss2si:
3785 case Intrinsic::x86_avx512_cvttss2si64:
3786 case Intrinsic::x86_avx512_cvttsd2si:
3787 case Intrinsic::x86_avx512_cvttsd2si64:
3788 if (ConstantFP *FPOp =
3789 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3790 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3791 /*roundTowardZero=*/true, Ty,
3792 /*IsSigned*/true);
3793 break;
3794 case Intrinsic::x86_avx512_cvttss2usi:
3795 case Intrinsic::x86_avx512_cvttss2usi64:
3796 case Intrinsic::x86_avx512_cvttsd2usi:
3797 case Intrinsic::x86_avx512_cvttsd2usi64:
3798 if (ConstantFP *FPOp =
3799 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3800 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3801 /*roundTowardZero=*/true, Ty,
3802 /*IsSigned*/false);
3803 break;
3804 }
3805 }
3806 return nullptr;
3807}
3808
3809static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3810 const APFloat &S0,
3811 const APFloat &S1,
3812 const APFloat &S2) {
3813 unsigned ID;
3814 const fltSemantics &Sem = S0.getSemantics();
3815 APFloat MA(Sem), SC(Sem), TC(Sem);
3816 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3817 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3818 // S2 < 0
3819 ID = 5;
3820 SC = -S0;
3821 } else {
3822 ID = 4;
3823 SC = S0;
3824 }
3825 MA = S2;
3826 TC = -S1;
3827 } else if (abs(S1) >= abs(S0)) {
3828 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3829 // S1 < 0
3830 ID = 3;
3831 TC = -S2;
3832 } else {
3833 ID = 2;
3834 TC = S2;
3835 }
3836 MA = S1;
3837 SC = S0;
3838 } else {
3839 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3840 // S0 < 0
3841 ID = 1;
3842 SC = S2;
3843 } else {
3844 ID = 0;
3845 SC = -S2;
3846 }
3847 MA = S0;
3848 TC = -S1;
3849 }
3850 switch (IntrinsicID) {
3851 default:
3852 llvm_unreachable("unhandled amdgcn cube intrinsic");
3853 case Intrinsic::amdgcn_cubeid:
3854 return APFloat(Sem, ID);
3855 case Intrinsic::amdgcn_cubema:
3856 return MA + MA;
3857 case Intrinsic::amdgcn_cubesc:
3858 return SC;
3859 case Intrinsic::amdgcn_cubetc:
3860 return TC;
3861 }
3862}
3863
3864static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3865 Type *Ty) {
3866 const APInt *C0, *C1, *C2;
3867 if (!getConstIntOrUndef(Operands[0], C0) ||
3868 !getConstIntOrUndef(Operands[1], C1) ||
3869 !getConstIntOrUndef(Operands[2], C2))
3870 return nullptr;
3871
3872 if (!C2)
3873 return UndefValue::get(Ty);
3874
3875 APInt Val(32, 0);
3876 unsigned NumUndefBytes = 0;
3877 for (unsigned I = 0; I < 32; I += 8) {
3878 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3879 unsigned B = 0;
3880
3881 if (Sel >= 13)
3882 B = 0xff;
3883 else if (Sel == 12)
3884 B = 0x00;
3885 else {
3886 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3887 if (!Src)
3888 ++NumUndefBytes;
3889 else if (Sel < 8)
3890 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3891 else
3892 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3893 }
3894
3895 Val.insertBits(B, I, 8);
3896 }
3897
3898 if (NumUndefBytes == 4)
3899 return UndefValue::get(Ty);
3900
3901 return ConstantInt::get(Ty, Val);
3902}
3903
3904static Constant *ConstantFoldScalarCall3(StringRef Name,
3905 Intrinsic::ID IntrinsicID,
3906 Type *Ty,
3907 ArrayRef<Constant *> Operands,
3908 const TargetLibraryInfo *TLI,
3909 const CallBase *Call) {
3910 assert(Operands.size() == 3 && "Wrong number of operands.");
3911
3912 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3913 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3914 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3915 const APFloat &C1 = Op1->getValueAPF();
3916 const APFloat &C2 = Op2->getValueAPF();
3917 const APFloat &C3 = Op3->getValueAPF();
3918
3919 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3920 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3921 APFloat Res = C1;
3923 switch (IntrinsicID) {
3924 default:
3925 return nullptr;
3926 case Intrinsic::experimental_constrained_fma:
3927 case Intrinsic::experimental_constrained_fmuladd:
3928 St = Res.fusedMultiplyAdd(C2, C3, RM);
3929 break;
3930 }
3931 if (mayFoldConstrained(
3932 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3933 return ConstantFP::get(Ty->getContext(), Res);
3934 return nullptr;
3935 }
3936
3937 switch (IntrinsicID) {
3938 default: break;
3939 case Intrinsic::amdgcn_fma_legacy: {
3940 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3941 // NaN or infinity, gives +0.0.
3942 if (C1.isZero() || C2.isZero()) {
3943 // It's tempting to just return C3 here, but that would give the
3944 // wrong result if C3 was -0.0.
3945 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3946 }
3947 [[fallthrough]];
3948 }
3949 case Intrinsic::fma:
3950 case Intrinsic::fmuladd: {
3951 APFloat V = C1;
3953 return ConstantFP::get(Ty->getContext(), V);
3954 }
3955
3956 case Intrinsic::nvvm_fma_rm_f:
3957 case Intrinsic::nvvm_fma_rn_f:
3958 case Intrinsic::nvvm_fma_rp_f:
3959 case Intrinsic::nvvm_fma_rz_f:
3960 case Intrinsic::nvvm_fma_rm_d:
3961 case Intrinsic::nvvm_fma_rn_d:
3962 case Intrinsic::nvvm_fma_rp_d:
3963 case Intrinsic::nvvm_fma_rz_d:
3964 case Intrinsic::nvvm_fma_rm_ftz_f:
3965 case Intrinsic::nvvm_fma_rn_ftz_f:
3966 case Intrinsic::nvvm_fma_rp_ftz_f:
3967 case Intrinsic::nvvm_fma_rz_ftz_f: {
3968 bool IsFTZ = nvvm::FMAShouldFTZ(IntrinsicID);
3969 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3970 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3971 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3972
3973 APFloat::roundingMode RoundMode =
3974 nvvm::GetFMARoundingMode(IntrinsicID);
3975
3976 APFloat Res = A;
3977 APFloat::opStatus Status = Res.fusedMultiplyAdd(B, C, RoundMode);
3978
3979 if (!Res.isNaN() &&
3981 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3982 return ConstantFP::get(Ty->getContext(), Res);
3983 }
3984 return nullptr;
3985 }
3986
3987 case Intrinsic::amdgcn_cubeid:
3988 case Intrinsic::amdgcn_cubema:
3989 case Intrinsic::amdgcn_cubesc:
3990 case Intrinsic::amdgcn_cubetc: {
3991 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3992 return ConstantFP::get(Ty->getContext(), V);
3993 }
3994 }
3995 }
3996 }
3997 }
3998
3999 if (IntrinsicID == Intrinsic::smul_fix ||
4000 IntrinsicID == Intrinsic::smul_fix_sat) {
4001 const APInt *C0, *C1;
4002 if (!getConstIntOrUndef(Operands[0], C0) ||
4003 !getConstIntOrUndef(Operands[1], C1))
4004 return nullptr;
4005
4006 // undef * C -> 0
4007 // C * undef -> 0
4008 if (!C0 || !C1)
4009 return Constant::getNullValue(Ty);
4010
4011 // This code performs rounding towards negative infinity in case the result
4012 // cannot be represented exactly for the given scale. Targets that do care
4013 // about rounding should use a target hook for specifying how rounding
4014 // should be done, and provide their own folding to be consistent with
4015 // rounding. This is the same approach as used by
4016 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
4017 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
4018 unsigned Width = C0->getBitWidth();
4019 assert(Scale < Width && "Illegal scale.");
4020 unsigned ExtendedWidth = Width * 2;
4021 APInt Product =
4022 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
4023 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4024 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
4025 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
4026 Product = APIntOps::smin(Product, Max);
4027 Product = APIntOps::smax(Product, Min);
4028 }
4029 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
4030 }
4031
4032 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4033 const APInt *C0, *C1, *C2;
4034 if (!getConstIntOrUndef(Operands[0], C0) ||
4035 !getConstIntOrUndef(Operands[1], C1) ||
4036 !getConstIntOrUndef(Operands[2], C2))
4037 return nullptr;
4038
4039 bool IsRight = IntrinsicID == Intrinsic::fshr;
4040 if (!C2)
4041 return Operands[IsRight ? 1 : 0];
4042 if (!C0 && !C1)
4043 return UndefValue::get(Ty);
4044
4045 // The shift amount is interpreted as modulo the bitwidth. If the shift
4046 // amount is effectively 0, avoid UB due to oversized inverse shift below.
4047 unsigned BitWidth = C2->getBitWidth();
4048 unsigned ShAmt = C2->urem(BitWidth);
4049 if (!ShAmt)
4050 return Operands[IsRight ? 1 : 0];
4051
4052 // (C0 << ShlAmt) | (C1 >> LshrAmt)
4053 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
4054 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
4055 if (!C0)
4056 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
4057 if (!C1)
4058 return ConstantInt::get(Ty, C0->shl(ShlAmt));
4059 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
4060 }
4061
4062 if (IntrinsicID == Intrinsic::amdgcn_perm)
4063 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4064
4065 return nullptr;
4066}
4067
4068static Constant *ConstantFoldScalarCall(StringRef Name,
4069 Intrinsic::ID IntrinsicID,
4070 Type *Ty,
4071 ArrayRef<Constant *> Operands,
4072 const TargetLibraryInfo *TLI,
4073 const CallBase *Call) {
4074 if (IntrinsicID != Intrinsic::not_intrinsic &&
4075 any_of(Operands, IsaPred<PoisonValue>) &&
4076 intrinsicPropagatesPoison(IntrinsicID))
4077 return PoisonValue::get(Ty);
4078
4079 if (Operands.size() == 1)
4080 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
4081
4082 if (Operands.size() == 2) {
4083 if (Constant *FoldedLibCall =
4084 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4085 return FoldedLibCall;
4086 }
4087 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
4088 }
4089
4090 if (Operands.size() == 3)
4091 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
4092
4093 return nullptr;
4094}
4095
4096static Constant *ConstantFoldFixedVectorCall(
4097 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
4098 ArrayRef<Constant *> Operands, const DataLayout &DL,
4099 const TargetLibraryInfo *TLI, const CallBase *Call) {
4101 SmallVector<Constant *, 4> Lane(Operands.size());
4102 Type *Ty = FVTy->getElementType();
4103
4104 switch (IntrinsicID) {
4105 case Intrinsic::masked_load: {
4106 auto *SrcPtr = Operands[0];
4107 auto *Mask = Operands[1];
4108 auto *Passthru = Operands[2];
4109
4110 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
4111
4112 SmallVector<Constant *, 32> NewElements;
4113 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4114 auto *MaskElt = Mask->getAggregateElement(I);
4115 if (!MaskElt)
4116 break;
4117 auto *PassthruElt = Passthru->getAggregateElement(I);
4118 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
4119 if (isa<UndefValue>(MaskElt)) {
4120 if (PassthruElt)
4121 NewElements.push_back(PassthruElt);
4122 else if (VecElt)
4123 NewElements.push_back(VecElt);
4124 else
4125 return nullptr;
4126 }
4127 if (MaskElt->isNullValue()) {
4128 if (!PassthruElt)
4129 return nullptr;
4130 NewElements.push_back(PassthruElt);
4131 } else if (MaskElt->isOneValue()) {
4132 if (!VecElt)
4133 return nullptr;
4134 NewElements.push_back(VecElt);
4135 } else {
4136 return nullptr;
4137 }
4138 }
4139 if (NewElements.size() != FVTy->getNumElements())
4140 return nullptr;
4141 return ConstantVector::get(NewElements);
4142 }
4143 case Intrinsic::arm_mve_vctp8:
4144 case Intrinsic::arm_mve_vctp16:
4145 case Intrinsic::arm_mve_vctp32:
4146 case Intrinsic::arm_mve_vctp64: {
4147 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
4148 unsigned Lanes = FVTy->getNumElements();
4149 uint64_t Limit = Op->getZExtValue();
4150
4152 for (unsigned i = 0; i < Lanes; i++) {
4153 if (i < Limit)
4155 else
4157 }
4158 return ConstantVector::get(NCs);
4159 }
4160 return nullptr;
4161 }
4162 case Intrinsic::get_active_lane_mask: {
4163 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4164 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4165 if (Op0 && Op1) {
4166 unsigned Lanes = FVTy->getNumElements();
4167 uint64_t Base = Op0->getZExtValue();
4168 uint64_t Limit = Op1->getZExtValue();
4169
4171 for (unsigned i = 0; i < Lanes; i++) {
4172 if (Base + i < Limit)
4174 else
4176 }
4177 return ConstantVector::get(NCs);
4178 }
4179 return nullptr;
4180 }
4181 case Intrinsic::vector_extract: {
4182 auto *Idx = dyn_cast<ConstantInt>(Operands[1]);
4183 Constant *Vec = Operands[0];
4184 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4185 return nullptr;
4186
4187 unsigned NumElements = FVTy->getNumElements();
4188 unsigned VecNumElements =
4189 cast<FixedVectorType>(Vec->getType())->getNumElements();
4190 unsigned StartingIndex = Idx->getZExtValue();
4191
4192 // Extracting entire vector is nop
4193 if (NumElements == VecNumElements && StartingIndex == 0)
4194 return Vec;
4195
4196 for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E;
4197 ++I) {
4198 Constant *Elt = Vec->getAggregateElement(I);
4199 if (!Elt)
4200 return nullptr;
4201 Result[I - StartingIndex] = Elt;
4202 }
4203
4204 return ConstantVector::get(Result);
4205 }
4206 case Intrinsic::vector_insert: {
4207 Constant *Vec = Operands[0];
4208 Constant *SubVec = Operands[1];
4209 auto *Idx = dyn_cast<ConstantInt>(Operands[2]);
4210 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4211 return nullptr;
4212
4213 unsigned SubVecNumElements =
4214 cast<FixedVectorType>(SubVec->getType())->getNumElements();
4215 unsigned VecNumElements =
4216 cast<FixedVectorType>(Vec->getType())->getNumElements();
4217 unsigned IdxN = Idx->getZExtValue();
4218 // Replacing entire vector with a subvec is nop
4219 if (SubVecNumElements == VecNumElements && IdxN == 0)
4220 return SubVec;
4221
4222 for (unsigned I = 0; I < VecNumElements; ++I) {
4223 Constant *Elt;
4224 if (I < IdxN + SubVecNumElements)
4225 Elt = SubVec->getAggregateElement(I - IdxN);
4226 else
4227 Elt = Vec->getAggregateElement(I);
4228 if (!Elt)
4229 return nullptr;
4230 Result[I] = Elt;
4231 }
4232 return ConstantVector::get(Result);
4233 }
4234 case Intrinsic::vector_interleave2:
4235 case Intrinsic::vector_interleave3:
4236 case Intrinsic::vector_interleave4:
4237 case Intrinsic::vector_interleave5:
4238 case Intrinsic::vector_interleave6:
4239 case Intrinsic::vector_interleave7:
4240 case Intrinsic::vector_interleave8: {
4241 unsigned NumElements =
4242 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4243 unsigned NumOperands = Operands.size();
4244 for (unsigned I = 0; I < NumElements; ++I) {
4245 for (unsigned J = 0; J < NumOperands; ++J) {
4246 Constant *Elt = Operands[J]->getAggregateElement(I);
4247 if (!Elt)
4248 return nullptr;
4249 Result[NumOperands * I + J] = Elt;
4250 }
4251 }
4252 return ConstantVector::get(Result);
4253 }
4254 case Intrinsic::wasm_dot: {
4255 unsigned NumElements =
4256 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4257
4258 assert(NumElements == 8 && Result.size() == 4 &&
4259 "wasm dot takes i16x8 and produces i32x4");
4260 assert(Ty->isIntegerTy());
4261 int32_t MulVector[8];
4262
4263 for (unsigned I = 0; I < NumElements; ++I) {
4264 ConstantInt *Elt0 =
4265 cast<ConstantInt>(Operands[0]->getAggregateElement(I));
4266 ConstantInt *Elt1 =
4267 cast<ConstantInt>(Operands[1]->getAggregateElement(I));
4268
4269 MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
4270 }
4271 for (unsigned I = 0; I < Result.size(); I++) {
4272 int64_t IAdd = (int64_t)MulVector[I * 2] + (int64_t)MulVector[I * 2 + 1];
4273 Result[I] = ConstantInt::get(Ty, IAdd);
4274 }
4275
4276 return ConstantVector::get(Result);
4277 }
4278 default:
4279 break;
4280 }
4281
4282 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4283 // Gather a column of constants.
4284 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
4285 // Some intrinsics use a scalar type for certain arguments.
4286 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
4287 Lane[J] = Operands[J];
4288 continue;
4289 }
4290
4291 Constant *Agg = Operands[J]->getAggregateElement(I);
4292 if (!Agg)
4293 return nullptr;
4294
4295 Lane[J] = Agg;
4296 }
4297
4298 // Use the regular scalar folding to simplify this column.
4299 Constant *Folded =
4300 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
4301 if (!Folded)
4302 return nullptr;
4303 Result[I] = Folded;
4304 }
4305
4306 return ConstantVector::get(Result);
4307}
4308
4309static Constant *ConstantFoldScalableVectorCall(
4310 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
4311 ArrayRef<Constant *> Operands, const DataLayout &DL,
4312 const TargetLibraryInfo *TLI, const CallBase *Call) {
4313 switch (IntrinsicID) {
4314 case Intrinsic::aarch64_sve_convert_from_svbool: {
4315 auto *Src = dyn_cast<Constant>(Operands[0]);
4316 if (!Src || !Src->isNullValue())
4317 break;
4318
4319 return ConstantInt::getFalse(SVTy);
4320 }
4321 case Intrinsic::get_active_lane_mask: {
4322 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4323 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4324 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4325 return ConstantVector::getNullValue(SVTy);
4326 break;
4327 }
4328 case Intrinsic::vector_interleave2:
4329 case Intrinsic::vector_interleave3:
4330 case Intrinsic::vector_interleave4:
4331 case Intrinsic::vector_interleave5:
4332 case Intrinsic::vector_interleave6:
4333 case Intrinsic::vector_interleave7:
4334 case Intrinsic::vector_interleave8: {
4335 Constant *SplatVal = Operands[0]->getSplatValue();
4336 if (!SplatVal)
4337 return nullptr;
4338
4339 if (!llvm::all_equal(Operands))
4340 return nullptr;
4341
4342 return ConstantVector::getSplat(SVTy->getElementCount(), SplatVal);
4343 }
4344 default:
4345 break;
4346 }
4347
4348 // If trivially vectorizable, try folding it via the scalar call if all
4349 // operands are splats.
4350
4351 // TODO: ConstantFoldFixedVectorCall should probably check this too?
4352 if (!isTriviallyVectorizable(IntrinsicID))
4353 return nullptr;
4354
4356 for (auto [I, Op] : enumerate(Operands)) {
4357 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, I, /*TTI=*/nullptr)) {
4358 SplatOps.push_back(Op);
4359 continue;
4360 }
4361 Constant *Splat = Op->getSplatValue();
4362 if (!Splat)
4363 return nullptr;
4364 SplatOps.push_back(Splat);
4365 }
4366 Constant *Folded = ConstantFoldScalarCall(
4367 Name, IntrinsicID, SVTy->getElementType(), SplatOps, TLI, Call);
4368 if (!Folded)
4369 return nullptr;
4370 return ConstantVector::getSplat(SVTy->getElementCount(), Folded);
4371}
4372
4373static std::pair<Constant *, Constant *>
4374ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
4375 if (isa<PoisonValue>(Op))
4376 return {Op, PoisonValue::get(IntTy)};
4377
4378 auto *ConstFP = dyn_cast<ConstantFP>(Op);
4379 if (!ConstFP)
4380 return {};
4381
4382 const APFloat &U = ConstFP->getValueAPF();
4383 int FrexpExp;
4384 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
4385 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4386
4387 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
4388 // using undef.
4389 Constant *Result1 = FrexpMant.isFinite()
4390 ? ConstantInt::getSigned(IntTy, FrexpExp)
4391 : ConstantInt::getNullValue(IntTy);
4392 return {Result0, Result1};
4393}
4394
4395/// Handle intrinsics that return tuples, which may be tuples of vectors.
4396static Constant *
4397ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
4398 StructType *StTy, ArrayRef<Constant *> Operands,
4399 const DataLayout &DL, const TargetLibraryInfo *TLI,
4400 const CallBase *Call) {
4401
4402 switch (IntrinsicID) {
4403 case Intrinsic::frexp: {
4404 Type *Ty0 = StTy->getContainedType(0);
4405 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
4406
4407 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
4408 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
4409 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
4410
4411 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
4412 Constant *Lane = Operands[0]->getAggregateElement(I);
4413 std::tie(Results0[I], Results1[I]) =
4414 ConstantFoldScalarFrexpCall(Lane, Ty1);
4415 if (!Results0[I])
4416 return nullptr;
4417 }
4418
4419 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
4420 ConstantVector::get(Results1));
4421 }
4422
4423 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4424 if (!Result0)
4425 return nullptr;
4426 return ConstantStruct::get(StTy, Result0, Result1);
4427 }
4428 case Intrinsic::sincos: {
4429 Type *Ty = StTy->getContainedType(0);
4430 Type *TyScalar = Ty->getScalarType();
4431
4432 auto ConstantFoldScalarSincosCall =
4433 [&](Constant *Op) -> std::pair<Constant *, Constant *> {
4434 Constant *SinResult =
4435 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
4436 Constant *CosResult =
4437 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
4438 return std::make_pair(SinResult, CosResult);
4439 };
4440
4441 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4442 SmallVector<Constant *> SinResults(FVTy->getNumElements());
4443 SmallVector<Constant *> CosResults(FVTy->getNumElements());
4444
4445 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4446 Constant *Lane = Operands[0]->getAggregateElement(I);
4447 std::tie(SinResults[I], CosResults[I]) =
4448 ConstantFoldScalarSincosCall(Lane);
4449 if (!SinResults[I] || !CosResults[I])
4450 return nullptr;
4451 }
4452
4453 return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
4454 ConstantVector::get(CosResults));
4455 }
4456
4457 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4458 if (!SinResult || !CosResult)
4459 return nullptr;
4460 return ConstantStruct::get(StTy, SinResult, CosResult);
4461 }
4462 case Intrinsic::vector_deinterleave2:
4463 case Intrinsic::vector_deinterleave3:
4464 case Intrinsic::vector_deinterleave4:
4465 case Intrinsic::vector_deinterleave5:
4466 case Intrinsic::vector_deinterleave6:
4467 case Intrinsic::vector_deinterleave7:
4468 case Intrinsic::vector_deinterleave8: {
4469 unsigned NumResults = StTy->getNumElements();
4470 auto *Vec = Operands[0];
4471 auto *VecTy = cast<VectorType>(Vec->getType());
4472
4473 ElementCount ResultEC =
4474 VecTy->getElementCount().divideCoefficientBy(NumResults);
4475
4476 if (auto *EltC = Vec->getSplatValue()) {
4477 auto *ResultVec = ConstantVector::getSplat(ResultEC, EltC);
4478 SmallVector<Constant *, 8> Results(NumResults, ResultVec);
4479 return ConstantStruct::get(StTy, Results);
4480 }
4481
4482 if (!ResultEC.isFixed())
4483 return nullptr;
4484
4485 unsigned NumElements = ResultEC.getFixedValue();
4487 SmallVector<Constant *> Elements(NumElements);
4488 for (unsigned I = 0; I != NumResults; ++I) {
4489 for (unsigned J = 0; J != NumElements; ++J) {
4490 Constant *Elt = Vec->getAggregateElement(J * NumResults + I);
4491 if (!Elt)
4492 return nullptr;
4493 Elements[J] = Elt;
4494 }
4495 Results[I] = ConstantVector::get(Elements);
4496 }
4497 return ConstantStruct::get(StTy, Results);
4498 }
4499 default:
4500 // TODO: Constant folding of vector intrinsics that fall through here does
4501 // not work (e.g. overflow intrinsics)
4502 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
4503 }
4504
4505 return nullptr;
4506}
4507
4508} // end anonymous namespace
4509
4511 Constant *RHS, Type *Ty,
4514 // Ensure we check flags like StrictFP that might prevent this from getting
4515 // folded before generating a result.
4516 if (Call && !canConstantFoldCallTo(Call, Call->getCalledFunction()))
4517 return nullptr;
4518 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, Call);
4519}
4520
4522 ArrayRef<Constant *> Operands,
4523 const TargetLibraryInfo *TLI,
4524 bool AllowNonDeterministic) {
4525 if (Call->isNoBuiltin())
4526 return nullptr;
4527 if (!F->hasName())
4528 return nullptr;
4529
4530 // If this is not an intrinsic and not recognized as a library call, bail out.
4531 Intrinsic::ID IID = F->getIntrinsicID();
4532 if (IID == Intrinsic::not_intrinsic) {
4533 if (!TLI)
4534 return nullptr;
4535 LibFunc LibF;
4536 if (!TLI->getLibFunc(*F, LibF))
4537 return nullptr;
4538 }
4539
4540 // Conservatively assume that floating-point libcalls may be
4541 // non-deterministic.
4542 Type *Ty = F->getReturnType();
4543 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4544 return nullptr;
4545
4546 StringRef Name = F->getName();
4547 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
4548 return ConstantFoldFixedVectorCall(
4549 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
4550
4551 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
4552 return ConstantFoldScalableVectorCall(
4553 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
4554
4555 if (auto *StTy = dyn_cast<StructType>(Ty))
4556 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4557 F->getDataLayout(), TLI, Call);
4558
4559 // TODO: If this is a library function, we already discovered that above,
4560 // so we should pass the LibFunc, not the name (and it might be better
4561 // still to separate intrinsic handling from libcalls).
4562 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
4563}
4564
4566 const TargetLibraryInfo *TLI) {
4567 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
4568 // (and to some extent ConstantFoldScalarCall).
4569 if (Call->isNoBuiltin() || Call->isStrictFP())
4570 return false;
4571 Function *F = Call->getCalledFunction();
4572 if (!F)
4573 return false;
4574
4575 LibFunc Func;
4576 if (!TLI || !TLI->getLibFunc(*F, Func))
4577 return false;
4578
4579 if (Call->arg_size() == 1) {
4580 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
4581 const APFloat &Op = OpC->getValueAPF();
4582 switch (Func) {
4583 case LibFunc_logl:
4584 case LibFunc_log:
4585 case LibFunc_logf:
4586 case LibFunc_log2l:
4587 case LibFunc_log2:
4588 case LibFunc_log2f:
4589 case LibFunc_log10l:
4590 case LibFunc_log10:
4591 case LibFunc_log10f:
4592 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
4593
4594 case LibFunc_ilogb:
4595 return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
4596
4597 case LibFunc_expl:
4598 case LibFunc_exp:
4599 case LibFunc_expf:
4600 // FIXME: These boundaries are slightly conservative.
4601 if (OpC->getType()->isDoubleTy())
4602 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
4603 if (OpC->getType()->isFloatTy())
4604 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
4605 break;
4606
4607 case LibFunc_exp2l:
4608 case LibFunc_exp2:
4609 case LibFunc_exp2f:
4610 // FIXME: These boundaries are slightly conservative.
4611 if (OpC->getType()->isDoubleTy())
4612 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
4613 if (OpC->getType()->isFloatTy())
4614 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
4615 break;
4616
4617 case LibFunc_sinl:
4618 case LibFunc_sin:
4619 case LibFunc_sinf:
4620 case LibFunc_cosl:
4621 case LibFunc_cos:
4622 case LibFunc_cosf:
4623 return !Op.isInfinity();
4624
4625 case LibFunc_tanl:
4626 case LibFunc_tan:
4627 case LibFunc_tanf: {
4628 // FIXME: Stop using the host math library.
4629 // FIXME: The computation isn't done in the right precision.
4630 Type *Ty = OpC->getType();
4631 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4632 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
4633 break;
4634 }
4635
4636 case LibFunc_atan:
4637 case LibFunc_atanf:
4638 case LibFunc_atanl:
4639 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4640 return true;
4641
4642 case LibFunc_asinl:
4643 case LibFunc_asin:
4644 case LibFunc_asinf:
4645 case LibFunc_acosl:
4646 case LibFunc_acos:
4647 case LibFunc_acosf:
4648 return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
4649 Op > APFloat::getOne(Op.getSemantics()));
4650
4651 case LibFunc_sinh:
4652 case LibFunc_cosh:
4653 case LibFunc_sinhf:
4654 case LibFunc_coshf:
4655 case LibFunc_sinhl:
4656 case LibFunc_coshl:
4657 // FIXME: These boundaries are slightly conservative.
4658 if (OpC->getType()->isDoubleTy())
4659 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4660 if (OpC->getType()->isFloatTy())
4661 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4662 break;
4663
4664 case LibFunc_sqrtl:
4665 case LibFunc_sqrt:
4666 case LibFunc_sqrtf:
4667 return Op.isNaN() || Op.isZero() || !Op.isNegative();
4668
4669 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4670 // maybe others?
4671 default:
4672 break;
4673 }
4674 }
4675 }
4676
4677 if (Call->arg_size() == 2) {
4678 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4679 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4680 if (Op0C && Op1C) {
4681 const APFloat &Op0 = Op0C->getValueAPF();
4682 const APFloat &Op1 = Op1C->getValueAPF();
4683
4684 switch (Func) {
4685 case LibFunc_powl:
4686 case LibFunc_pow:
4687 case LibFunc_powf: {
4688 // FIXME: Stop using the host math library.
4689 // FIXME: The computation isn't done in the right precision.
4690 Type *Ty = Op0C->getType();
4691 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4692 if (Ty == Op1C->getType())
4693 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4694 }
4695 break;
4696 }
4697
4698 case LibFunc_fmodl:
4699 case LibFunc_fmod:
4700 case LibFunc_fmodf:
4701 case LibFunc_remainderl:
4702 case LibFunc_remainder:
4703 case LibFunc_remainderf:
4704 return Op0.isNaN() || Op1.isNaN() ||
4705 (!Op0.isInfinity() && !Op1.isZero());
4706
4707 case LibFunc_atan2:
4708 case LibFunc_atan2f:
4709 case LibFunc_atan2l:
4710 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4711 // GLIBC and MSVC do not appear to raise an error on those, we
4712 // cannot rely on that behavior. POSIX and C11 say that a domain error
4713 // may occur, so allow for that possibility.
4714 return !Op0.isZero() || !Op1.isZero();
4715
4716 default:
4717 break;
4718 }
4719 }
4720 }
4721
4722 return false;
4723}
4724
4726 unsigned CastOp, const DataLayout &DL,
4727 PreservedCastFlags *Flags) {
4728 switch (CastOp) {
4729 case Instruction::BitCast:
4730 // Bitcast is always lossless.
4731 return ConstantFoldCastOperand(Instruction::BitCast, C, InvCastTo, DL);
4732 case Instruction::Trunc: {
4733 auto *ZExtC = ConstantFoldCastOperand(Instruction::ZExt, C, InvCastTo, DL);
4734 if (Flags) {
4735 // Truncation back on ZExt value is always NUW.
4736 Flags->NUW = true;
4737 // Test positivity of C.
4738 auto *SExtC =
4739 ConstantFoldCastOperand(Instruction::SExt, C, InvCastTo, DL);
4740 Flags->NSW = ZExtC == SExtC;
4741 }
4742 return ZExtC;
4743 }
4744 case Instruction::SExt:
4745 case Instruction::ZExt: {
4746 auto *InvC = ConstantExpr::getTrunc(C, InvCastTo);
4747 auto *CastInvC = ConstantFoldCastOperand(CastOp, InvC, C->getType(), DL);
4748 // Must satisfy CastOp(InvC) == C.
4749 if (!CastInvC || CastInvC != C)
4750 return nullptr;
4751 if (Flags && CastOp == Instruction::ZExt) {
4752 auto *SExtInvC =
4753 ConstantFoldCastOperand(Instruction::SExt, InvC, C->getType(), DL);
4754 // Test positivity of InvC.
4755 Flags->NNeg = CastInvC == SExtInvC;
4756 }
4757 return InvC;
4758 }
4759 default:
4760 return nullptr;
4761 }
4762}
4763
4765 const DataLayout &DL,
4766 PreservedCastFlags *Flags) {
4767 return getLosslessInvCast(C, DestTy, Instruction::ZExt, DL, Flags);
4768}
4769
4771 const DataLayout &DL,
4772 PreservedCastFlags *Flags) {
4773 return getLosslessInvCast(C, DestTy, Instruction::SExt, DL, Flags);
4774}
4775
4776void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
Hexagon Common GEP
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition APFloat.h:342
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:347
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:346
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
static constexpr roundingMode rmNearestTiesToAway
Definition APFloat.h:349
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1102
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
void copySign(const APFloat &RHS)
Definition APFloat.h:1284
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6053
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1172
bool isNegative() const
Definition APFloat.h:1431
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6112
bool isPosInfinity() const
Definition APFloat.h:1444
bool isNormal() const
Definition APFloat.h:1435
bool isDenormal() const
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1163
const fltSemantics & getSemantics() const
Definition APFloat.h:1439
bool isNonZero() const
Definition APFloat.h:1440
bool isFinite() const
Definition APFloat.h:1436
bool isNaN() const
Definition APFloat.h:1429
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6143
bool isSignaling() const
Definition APFloat.h:1433
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1217
bool isZero() const
Definition APFloat.h:1427
APInt bitcastToAPInt() const
Definition APFloat.h:1335
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1314
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1208
bool isNegInfinity() const
Definition APFloat.h:1445
opStatus roundToIntegral(roundingMode RM)
Definition APFloat.h:1230
void changeSign()
Definition APFloat.h:1279
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1061
bool isInfinity() const
Definition APFloat.h:1428
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
Definition APInt.cpp:520
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1796
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1640
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1599
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:770
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:720
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
Definition Constants.h:1397
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1284
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
const APFloat & getValueAPF() const
Definition Constants.h:325
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:136
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:174
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:957
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:806
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
bool isInBounds() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:723
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:754
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:295
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition Type.h:200
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:881
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
const ParentTy * getParent() const
Definition ilist_node.h:34
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2249
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2254
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2259
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2264
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr double pi
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2484
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:365
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition APFloat.h:1545
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1516
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1611
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1525
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2120
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1638
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60