LLVM 20.0.0git
PPCISelLowering.h
Go to the documentation of this file.
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that PPC uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16
17#include "PPCInstrInfo.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Type.h"
32#include <optional>
33#include <utility>
34
35namespace llvm {
36
37 namespace PPCISD {
38
39 // When adding a NEW PPCISD node please add it to the correct position in
40 // the enum. The order of elements in this enum matters!
41 // Values that are added after this entry:
42 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
43 // are considered memory opcodes and are treated differently than entries
44 // that come before it. For example, ADD or MUL should be placed before
45 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
46 // after it.
47 enum NodeType : unsigned {
48 // Start the numbering where the builtin ops and target ops leave off.
50
51 /// FSEL - Traditional three-operand fsel node.
52 ///
54
55 /// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
58
59 /// FCFID - The FCFID instruction, taking an f64 operand and producing
60 /// and f64 value containing the FP representation of the integer that
61 /// was temporarily in the f64 operand.
63
64 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
65 /// unsigned integers and single-precision outputs.
69
70 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
71 /// operand, producing an f64 value containing the integer representation
72 /// of that FP value.
75
76 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
77 /// unsigned integers with round toward zero.
80
81 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
82 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
84
85 /// Reciprocal estimate instructions (unary FP ops).
88
89 /// Test instruction for software square root.
91
92 /// Square root instruction.
94
95 /// VPERM - The PPC VPERM Instruction.
96 ///
98
99 /// XXSPLT - The PPC VSX splat instructions
100 ///
102
103 /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
104 /// converting immediate single precision numbers to double precision
105 /// vector or scalar.
107
108 /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
109 ///
111
112 /// VECINSERT - The PPC vector insert instruction
113 ///
115
116 /// VECSHL - The PPC vector shift left instruction
117 ///
119
120 /// XXPERMDI - The PPC XXPERMDI instruction
121 ///
124
125 /// The CMPB instruction (takes two operands of i32 or i64).
127
128 /// Hi/Lo - These represent the high and low 16-bit parts of a global
129 /// address respectively. These nodes have two operands, the first of
130 /// which must be a TargetGlobalAddress, and the second of which must be a
131 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
132 /// though these are usually folded into other nodes.
135
136 /// The following two target-specific nodes are used for calls through
137 /// function pointers in the 64-bit SVR4 ABI.
138
139 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
140 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
141 /// compute an allocation on the stack.
143
144 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
145 /// compute an offset from native SP to the address of the most recent
146 /// dynamic alloca.
148
149 /// To avoid stack clash, allocation is performed by block and each block is
150 /// probed.
152
153 /// The result of the mflr at function entry, used for PIC code.
155
156 /// These nodes represent PPC shifts.
157 ///
158 /// For scalar types, only the last `n + 1` bits of the shift amounts
159 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
160 /// for exact behaviors.
161 ///
162 /// For vector types, only the last n bits are used. See vsld.
166
167 /// FNMSUB - Negated multiply-subtract instruction.
169
170 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
171 /// word and shift left immediate.
173
174 /// The combination of sra[wd]i and addze used to implemented signed
175 /// integer division by a power of 2. The first operand is the dividend,
176 /// and the second is the constant shift amount (representing the
177 /// divisor).
179
180 /// CALL - A direct function call.
181 /// CALL_NOP is a call with the special NOP which follows 64-bit
182 /// CALL_NOTOC the caller does not use the TOC.
183 /// SVR4 calls and 32-bit/64-bit AIX calls.
187
188 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
189 /// MTCTR instruction.
191
192 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
193 /// BCTRL instruction.
195
196 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
197 /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
198 /// and 64-bit AIX.
200
201 /// The variants that implicitly define rounding mode for calls with
202 /// strictfp semantics.
208
209 /// Return with a glue operand, matched by 'blr'
211
212 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
213 /// This copies the bits corresponding to the specified CRREG into the
214 /// resultant GPR. Bits corresponding to other CR regs are undefined.
216
217 /// Direct move from a VSX register to a GPR
219
220 /// Direct move from a GPR to a VSX register (algebraic)
222
223 /// Direct move from a GPR to a VSX register (zero)
225
226 /// Direct move of 2 consecutive GPR to a VSX register.
228
229 /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
230 /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
231 /// unsupported for this target.
232 /// Merge 2 GPRs to a single SPE register.
234
235 /// Extract SPE register component, second argument is high or low.
237
238 /// Extract a subvector from signed integer vector and convert to FP.
239 /// It is primarily used to convert a (widened) illegal integer vector
240 /// type to a legal floating point vector type.
241 /// For example v2i32 -> widened to v4i32 -> v2f64
243
244 /// Extract a subvector from unsigned integer vector and convert to FP.
245 /// As with SINT_VEC_TO_FP, used for converting illegal types.
247
248 /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
249 /// place the value into the least significant element of the most
250 /// significant doubleword in the vector. This is not element zero for
251 /// anything smaller than a doubleword on either endianness. This node has
252 /// the same semantics as SCALAR_TO_VECTOR except that the value remains in
253 /// the aforementioned location in the vector register.
255
256 // FIXME: Remove these once the ANDI glue bug is fixed:
257 /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
258 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
259 /// implement truncation of i32 or i64 to i1.
262
263 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
264 // target (returns (Lo, Hi)). It takes a chain operand.
266
267 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
269
270 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
272
273 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
274 /// instructions. For lack of better number, we use the opcode number
275 /// encoding for the OPC field to identify the compare. For example, 838
276 /// is VCMPGTSH.
278
279 /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the
280 /// altivec VCMP*_rec instructions. For lack of better number, we use the
281 /// opcode number encoding for the OPC field to identify the compare. For
282 /// example, 838 is VCMPGTSH.
284
285 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
286 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
287 /// condition register to branch on, OPC is the branch opcode to use (e.g.
288 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
289 /// an optional input flag argument.
291
292 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
293 /// loops.
296
297 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
298 /// towards zero. Used only as part of the long double-to-int
299 /// conversion sequence.
301
302 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
304
305 /// TC_RETURN - A tail call return.
306 /// operand #0 chain
307 /// operand #1 callee (register or absolute)
308 /// operand #2 stack adjustment
309 /// operand #3 optional in flag
311
312 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
315
316 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
317 /// for non-position independent code on PPC32.
319
320 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
321 /// local dynamic TLS and position indendepent code on PPC32.
323
324 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
325 /// TLS model, produces an ADDIS8 instruction that adds the GOT
326 /// base to sym\@got\@tprel\@ha.
328
329 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
330 /// TLS model, produces a LD instruction with base register G8RReg
331 /// and offset sym\@got\@tprel\@l. This completes the addition that
332 /// finds the offset of "sym" relative to the thread pointer.
334
335 /// G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec
336 /// and local-exec TLS models, produces an ADD instruction that adds
337 /// the contents of G8RReg to the thread pointer. Symbol contains a
338 /// relocation sym\@tls which is to be replaced by the thread pointer
339 /// and identifies to the linker that the instruction is part of a
340 /// TLS sequence.
342
343 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
344 /// model, produces an ADDIS8 instruction that adds the GOT base
345 /// register to sym\@got\@tlsgd\@ha.
347
348 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
349 /// model, produces an ADDI8 instruction that adds G8RReg to
350 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
351 /// ADDIS_TLSGD_L_ADDR until after register assignment.
353
354 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
355 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
356 /// ADDIS_TLSGD_L_ADDR until after register assignment.
358
359 /// %x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on
360 /// 32-bit AIX, produces a call to .__get_tpointer to retrieve the thread
361 /// pointer. At the end of the call, the thread pointer is found in R3.
363
364 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
365 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
366 /// register assignment.
368
369 /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
370 /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
371 /// Op that combines two register copies of TOC entries
372 /// (region handle into R3 and variable offset into R4) followed by a
373 /// GET_TLS_ADDR node which will be expanded to a call to .__tls_get_addr.
374 /// This node is used in 64-bit mode as well (in which case the result is
375 /// G8RC and inputs are X3/X4).
377
378 /// %x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model,
379 /// produces a call to .__tls_get_mod(_$TLSML\@ml).
381
382 /// [GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle)
383 /// Op that requires a single input of the module handle TOC entry in R3,
384 /// and generates a GET_TLS_MOD_AIX node which will be expanded into a call
385 /// to .__tls_get_mod. This node is used in both 32-bit and 64-bit modes.
386 /// The only difference is the register class.
388
389 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
390 /// model, produces an ADDIS8 instruction that adds the GOT base
391 /// register to sym\@got\@tlsld\@ha.
393
394 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
395 /// model, produces an ADDI8 instruction that adds G8RReg to
396 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
397 /// ADDIS_TLSLD_L_ADDR until after register assignment.
399
400 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
401 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
402 /// ADDIS_TLSLD_L_ADDR until after register assignment.
404
405 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
406 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
407 /// following register assignment.
409
410 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
411 /// model, produces an ADDIS8 instruction that adds X3 to
412 /// sym\@dtprel\@ha.
414
415 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
416 /// model, produces an ADDI8 instruction that adds G8RReg to
417 /// sym\@got\@dtprel\@l.
419
420 /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS
421 /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel.
423
424 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
425 /// during instruction selection to optimize a BUILD_VECTOR into
426 /// operations on splats. This is necessary to avoid losing these
427 /// optimizations due to constant folding.
429
430 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
431 /// operand identifies the operating system entry point.
433
434 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
436
437 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
438 /// history rolling buffer entry.
440
441 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
443
444 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
445 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
446 /// or stxvd2x instruction. The chain is necessary because the
447 /// sequence replaces a load and needs to provide the same number
448 /// of outputs.
450
451 /// An SDNode for swaps that are not associated with any loads/stores
452 /// and thereby have no chain.
454
455 /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
456 /// lower (IDX=1) half of v4f32 to v2f64.
458
459 /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
460 /// either through an add like PADDI or through a PC Relative load like
461 /// PLD.
463
464 /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for
465 /// TLS global address when using dynamic access models. This can be done
466 /// through an add like PADDI.
468
469 /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address
470 /// when using local exec access models, and when prefixed instructions are
471 /// available. This is used with ADD_TLS to produce an add like PADDI.
473
474 /// ACC_BUILD = Build an accumulator register from 4 VSX registers.
476
477 /// PAIR_BUILD = Build a vector pair register from 2 VSX registers.
479
480 /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of
481 /// an accumulator or pair register. This node is needed because
482 /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same
483 /// element type.
485
486 /// XXMFACC = This corresponds to the xxmfacc instruction.
488
489 // Constrained conversion from floating point to int
494
495 /// Constrained integer-to-floating-point conversion instructions.
500
501 /// Constrained floating point add in round-to-zero mode.
503
504 // NOTE: The nodes below may require PC-Rel specific patterns if the
505 // address could be PC-Relative. When adding new nodes below, consider
506 // whether or not the address can be PC-Relative and add the corresponding
507 // PC-relative patterns and tests.
508
509 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
510 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
511 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
512 /// i32.
514
515 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
516 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
517 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
518 /// or i32.
520
521 /// STFIWX - The STFIWX instruction. The first operand is an input token
522 /// chain, then an f64 value to store, then an address to store it to.
524
525 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
526 /// load which sign-extends from a 32-bit integer value into the
527 /// destination 64-bit register.
529
530 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
531 /// load which zero-extends from a 32-bit integer value into the
532 /// destination 64-bit register.
534
535 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
536 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
537 /// This can be used for converting loaded integers to floating point.
539
540 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
541 /// chain, then an f64 value to store, then an address to store it to,
542 /// followed by a byte-width for the store.
544
545 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
546 /// Maps directly to an lxvd2x instruction that will be followed by
547 /// an xxswapd.
549
550 /// LXVRZX - Load VSX Vector Rightmost and Zero Extend
551 /// This node represents v1i128 BUILD_VECTOR of a zero extending load
552 /// instruction from <byte, halfword, word, or doubleword> to i128.
553 /// Allows utilization of the Load VSX Vector Rightmost Instructions.
555
556 /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
557 /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
558 /// the vector type to load vector in big-endian element order.
560
561 /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
562 /// v2f32 value into the lower half of a VSR register.
564
565 /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
566 /// instructions such as LXVDSX, LXVWSX.
568
569 /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
570 /// that zero-extends.
572
573 /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
574 /// that sign-extends.
576
577 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
578 /// Maps directly to an stxvd2x instruction that will be preceded by
579 /// an xxswapd.
581
582 /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
583 /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
584 /// the vector type to store vector in big-endian element order.
586
587 /// Store scalar integers from VSR.
589
590 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
591 /// except they ensure that the compare input is zero-extended for
592 /// sub-word versions because the atomic loads zero-extend.
595
596 /// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr
597 /// The store conditional instruction ST[BHWD]ARX that produces a glue
598 /// result to attach it to a conditional branch.
600
601 /// GPRC = TOC_ENTRY GA, TOC
602 /// Loads the entry for GA from the TOC, where the TOC base is given by
603 /// the last operand.
605 };
606
607 } // end namespace PPCISD
608
609 /// Define some predicates that are used for node matching.
610 namespace PPC {
611
612 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
613 /// VPKUHUM instruction.
614 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
615 SelectionDAG &DAG);
616
617 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
618 /// VPKUWUM instruction.
619 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
620 SelectionDAG &DAG);
621
622 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
623 /// VPKUDUM instruction.
624 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
625 SelectionDAG &DAG);
626
627 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
628 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
629 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
630 unsigned ShuffleKind, SelectionDAG &DAG);
631
632 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
633 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
634 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
635 unsigned ShuffleKind, SelectionDAG &DAG);
636
637 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
638 /// a VMRGEW or VMRGOW instruction
639 bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
640 unsigned ShuffleKind, SelectionDAG &DAG);
641 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
642 /// for a XXSLDWI instruction.
643 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
644 bool &Swap, bool IsLE);
645
646 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
647 /// for a XXBRH instruction.
648 bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
649
650 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
651 /// for a XXBRW instruction.
652 bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
653
654 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
655 /// for a XXBRD instruction.
656 bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
657
658 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
659 /// for a XXBRQ instruction.
660 bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
661
662 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
663 /// for a XXPERMDI instruction.
664 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
665 bool &Swap, bool IsLE);
666
667 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
668 /// shift amount, otherwise return -1.
669 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
670 SelectionDAG &DAG);
671
672 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
673 /// specifies a splat of a single element that is suitable for input to
674 /// VSPLTB/VSPLTH/VSPLTW.
675 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
676
677 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
678 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
679 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
680 /// vector into the other. This function will also set a couple of
681 /// output parameters for how much the source vector needs to be shifted and
682 /// what byte number needs to be specified for the instruction to put the
683 /// element in the desired location of the target vector.
684 bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
685 unsigned &InsertAtByte, bool &Swap, bool IsLE);
686
687 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
688 /// appropriate for PPC mnemonics (which have a big endian bias - namely
689 /// elements are counted from the left of the vector register).
690 unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
691 SelectionDAG &DAG);
692
693 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
694 /// formed by using a vspltis[bhw] instruction of the specified element
695 /// size, return the constant being splatted. The ByteSize field indicates
696 /// the number of bytes of each element [124] -> [bhw].
697 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
698
699 // Flags for computing the optimal addressing mode for loads and stores.
702
703 // Extension mode for integer loads.
705 MOF_ZExt = 1 << 1,
706 MOF_NoExt = 1 << 2,
707
708 // Address computation flags.
709 MOF_NotAddNorCst = 1 << 5, // Not const. or sum of ptr and scalar.
710 MOF_RPlusSImm16 = 1 << 6, // Reg plus signed 16-bit constant.
711 MOF_RPlusLo = 1 << 7, // Reg plus signed 16-bit relocation
712 MOF_RPlusSImm16Mult4 = 1 << 8, // Reg plus 16-bit signed multiple of 4.
713 MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16.
714 MOF_RPlusSImm34 = 1 << 10, // Reg plus 34-bit signed constant.
715 MOF_RPlusR = 1 << 11, // Sum of two variables.
716 MOF_PCRel = 1 << 12, // PC-Relative relocation.
717 MOF_AddrIsSImm32 = 1 << 13, // A simple 32-bit constant.
718
719 // The in-memory type.
720 MOF_SubWordInt = 1 << 15,
721 MOF_WordInt = 1 << 16,
723 MOF_ScalarFloat = 1 << 18, // Scalar single or double precision.
724 MOF_Vector = 1 << 19, // Vector types and quad precision scalars.
725 MOF_Vector256 = 1 << 20,
726
727 // Subtarget features.
731 MOF_SubtargetSPE = 1 << 25
732 };
733
734 // The addressing modes for loads and stores.
735 enum AddrMode {
743 };
744 } // end namespace PPC
745
747 const PPCSubtarget &Subtarget;
748
749 public:
750 explicit PPCTargetLowering(const PPCTargetMachine &TM,
751 const PPCSubtarget &STI);
752
753 /// getTargetNodeName() - This method returns the name of a target specific
754 /// DAG node.
755 const char *getTargetNodeName(unsigned Opcode) const override;
756
757 bool isSelectSupported(SelectSupportKind Kind) const override {
758 // PowerPC does not support scalar condition selects on vectors.
760 }
761
762 /// getPreferredVectorAction - The code we generate when vector types are
763 /// legalized by promoting the integer element type is often much worse
764 /// than code we generate if we widen the type for applicable vector types.
765 /// The issue with promoting is that the vector is scalaraized, individual
766 /// elements promoted and then the vector is rebuilt. So say we load a pair
767 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
768 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
769 /// then the VPERM for the shuffle. All in all a very slow sequence.
771 const override {
772 // Default handling for scalable and single-element vectors.
773 if (VT.isScalableVector() || VT.getVectorNumElements() == 1)
775
776 // Split and promote vNi1 vectors so we don't produce v256i1/v512i1
777 // types as those are only for MMA instructions.
778 if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16)
779 return TypeSplitVector;
780 if (VT.getScalarSizeInBits() == 1)
781 return TypePromoteInteger;
782
783 // Widen vectors that have reasonably sized elements.
784 if (VT.getScalarSizeInBits() % 8 == 0)
785 return TypeWidenVector;
787 }
788
789 bool useSoftFloat() const override;
790
791 bool hasSPE() const;
792
793 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
794 return MVT::i32;
795 }
796
797 bool isCheapToSpeculateCttz(Type *Ty) const override {
798 return true;
799 }
800
801 bool isCheapToSpeculateCtlz(Type *Ty) const override {
802 return true;
803 }
804
805 bool
807 unsigned ElemSizeInBits,
808 unsigned &Index) const override;
809
810 bool isCtlzFast() const override {
811 return true;
812 }
813
814 bool isEqualityCmpFoldedWithSignedCmp() const override {
815 return false;
816 }
817
818 bool hasAndNotCompare(SDValue) const override {
819 return true;
820 }
821
822 bool preferIncOfAddToSubOfNot(EVT VT) const override;
823
824 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
825 return VT.isScalarInteger();
826 }
827
829 bool OptForSize, NegatibleCost &Cost,
830 unsigned Depth = 0) const override;
831
832 /// getSetCCResultType - Return the ISD::SETCC ValueType
834 EVT VT) const override;
835
836 /// Return true if target always benefits from combining into FMA for a
837 /// given value type. This must typically return false on targets where FMA
838 /// takes more cycles to execute than FADD.
839 bool enableAggressiveFMAFusion(EVT VT) const override;
840
841 /// getPreIndexedAddressParts - returns true by value, base pointer and
842 /// offset pointer and addressing mode by reference if the node's address
843 /// can be legally represented as pre-indexed load / store address.
847 SelectionDAG &DAG) const override;
848
849 /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
850 /// it can be more efficiently represented as [r+imm].
852 SelectionDAG &DAG) const;
853
854 /// SelectAddressRegReg - Given the specified addressed, check to see if it
855 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
856 /// is non-zero, only accept displacement which is not suitable for [r+imm].
857 /// Returns false if it can be represented by [r+imm], which are preferred.
859 SelectionDAG &DAG,
860 MaybeAlign EncodingAlignment = std::nullopt) const;
861
862 /// SelectAddressRegImm - Returns true if the address N can be represented
863 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
864 /// is not better represented as reg+reg. If \p EncodingAlignment is
865 /// non-zero, only accept displacements suitable for instruction encoding
866 /// requirement, i.e. multiples of 4 for DS form.
868 SelectionDAG &DAG,
869 MaybeAlign EncodingAlignment) const;
871 SelectionDAG &DAG) const;
872
873 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
874 /// represented as an indexed [r+r] operation.
876 SelectionDAG &DAG) const;
877
878 /// SelectAddressPCRel - Represent the specified address as pc relative to
879 /// be represented as [pc+imm]
881
883
884 /// LowerOperation - Provide custom lowering hooks for some operations.
885 ///
886 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
887
888 /// ReplaceNodeResults - Replace the results of node with an illegal result
889 /// type with new values built out of custom code.
890 ///
892 SelectionDAG &DAG) const override;
893
894 SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
895 SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
896
897 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
898
899 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
900 SmallVectorImpl<SDNode *> &Created) const override;
901
902 Register getRegisterByName(const char* RegName, LLT VT,
903 const MachineFunction &MF) const override;
904
906 KnownBits &Known,
907 const APInt &DemandedElts,
908 const SelectionDAG &DAG,
909 unsigned Depth = 0) const override;
910
911 Align getPrefLoopAlignment(MachineLoop *ML) const override;
912
913 bool shouldInsertFencesForAtomic(const Instruction *I) const override {
914 return true;
915 }
916
918 AtomicOrdering Ord) const override;
920 AtomicOrdering Ord) const override;
921
922 bool shouldInlineQuadwordAtomics() const;
923
925 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
926
929
931 AtomicRMWInst *AI, Value *AlignedAddr,
932 Value *Incr, Value *Mask,
933 Value *ShiftAmt,
934 AtomicOrdering Ord) const override;
937 Value *AlignedAddr, Value *CmpVal,
938 Value *NewVal, Value *Mask,
939 AtomicOrdering Ord) const override;
940
943 MachineBasicBlock *MBB) const override;
946 unsigned AtomicSize,
947 unsigned BinOpcode,
948 unsigned CmpOpcode = 0,
949 unsigned CmpPred = 0) const;
952 bool is8bit,
953 unsigned Opcode,
954 unsigned CmpOpcode = 0,
955 unsigned CmpPred = 0) const;
956
958 MachineBasicBlock *MBB) const;
959
961 MachineBasicBlock *MBB) const;
962
964 MachineBasicBlock *MBB) const;
965
966 bool hasInlineStackProbe(const MachineFunction &MF) const override;
967
968 unsigned getStackProbeSize(const MachineFunction &MF) const;
969
970 ConstraintType getConstraintType(StringRef Constraint) const override;
971
972 /// Examine constraint string and operand type and determine a weight value.
973 /// The operand object must already have been set up with the operand type.
975 AsmOperandInfo &info, const char *constraint) const override;
976
977 std::pair<unsigned, const TargetRegisterClass *>
979 StringRef Constraint, MVT VT) const override;
980
981 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
982 /// function arguments in the caller parameter area. This is the actual
983 /// alignment, not its logarithm.
985 const DataLayout &DL) const override;
986
987 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
988 /// vector. If it is invalid, don't add anything to Ops.
990 std::vector<SDValue> &Ops,
991 SelectionDAG &DAG) const override;
992
994 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
995 if (ConstraintCode == "es")
997 else if (ConstraintCode == "Q")
999 else if (ConstraintCode == "Z")
1001 else if (ConstraintCode == "Zy")
1003 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1004 }
1005
1008 SelectionDAG &DAG) const override;
1009
1010 /// isLegalAddressingMode - Return true if the addressing mode represented
1011 /// by AM is legal for this target, for a load/store of the specified type.
1012 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1013 Type *Ty, unsigned AS,
1014 Instruction *I = nullptr) const override;
1015
1016 /// isLegalICmpImmediate - Return true if the specified immediate is legal
1017 /// icmp immediate, that is the target has icmp instructions which can
1018 /// compare a register against the immediate without having to materialize
1019 /// the immediate into a register.
1020 bool isLegalICmpImmediate(int64_t Imm) const override;
1021
1022 /// isLegalAddImmediate - Return true if the specified immediate is legal
1023 /// add immediate, that is the target has add instructions which can
1024 /// add a register and the immediate without having to materialize
1025 /// the immediate into a register.
1026 bool isLegalAddImmediate(int64_t Imm) const override;
1027
1028 /// isTruncateFree - Return true if it's free to truncate a value of
1029 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
1030 /// register X1 to i32 by referencing its sub-register R1.
1031 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1032 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1033
1034 bool isZExtFree(SDValue Val, EVT VT2) const override;
1035
1036 bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
1037
1038 /// Returns true if it is beneficial to convert a load of a constant
1039 /// to just the constant itself.
1041 Type *Ty) const override;
1042
1043 bool convertSelectOfConstantsToMath(EVT VT) const override {
1044 return true;
1045 }
1046
1047 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1048 SDValue C) const override;
1049
1051 EVT VT) const override {
1052 // Only handle float load/store pair because float(fpr) load/store
1053 // instruction has more cycles than integer(gpr) load/store in PPC.
1054 if (Opc != ISD::LOAD && Opc != ISD::STORE)
1055 return false;
1056 if (VT != MVT::f32 && VT != MVT::f64)
1057 return false;
1058
1059 return true;
1060 }
1061
1062 // Returns true if the address of the global is stored in TOC entry.
1063 bool isAccessedAsGotIndirect(SDValue N) const;
1064
1065 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
1066
1067 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
1068 const CallInst &I,
1069 MachineFunction &MF,
1070 unsigned Intrinsic) const override;
1071
1072 /// It returns EVT::Other if the type should be determined using generic
1073 /// target-independent logic.
1075 const AttributeList &FuncAttributes) const override;
1076
1077 /// Is unaligned memory access allowed for the given type, and is it fast
1078 /// relative to software emulation.
1080 EVT VT, unsigned AddrSpace, Align Alignment = Align(1),
1082 unsigned *Fast = nullptr) const override;
1083
1084 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
1085 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
1086 /// expanded to FMAs when this method returns true, otherwise fmuladd is
1087 /// expanded to fmul + fadd.
1089 EVT VT) const override;
1090
1091 bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
1092
1093 /// isProfitableToHoist - Check if it is profitable to hoist instruction
1094 /// \p I to its dominator block.
1095 /// For example, it is not profitable if \p I and it's only user can form a
1096 /// FMA instruction, because Powerpc prefers FMADD.
1097 bool isProfitableToHoist(Instruction *I) const override;
1098
1099 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1100
1101 // Should we expand the build vector with shuffles?
1102 bool
1104 unsigned DefinedValues) const override;
1105
1106 // Keep the zero-extensions for arguments to libcalls.
1107 bool shouldKeepZExtForFP16Conv() const override { return true; }
1108
1109 /// createFastISel - This method returns a target-specific FastISel object,
1110 /// or null if the target does not support "fast" instruction selection.
1112 const TargetLibraryInfo *LibInfo) const override;
1113
1114 /// Returns true if an argument of type Ty needs to be passed in a
1115 /// contiguous block of registers in calling convention CallConv.
1117 Type *Ty, CallingConv::ID CallConv, bool isVarArg,
1118 const DataLayout &DL) const override {
1119 // We support any array type as "consecutive" block in the parameter
1120 // save area. The element type defines the alignment requirement and
1121 // whether the argument should go in GPRs, FPRs, or VRs if available.
1122 //
1123 // Note that clang uses this capability both to implement the ELFv2
1124 // homogeneous float/vector aggregate ABI, and to avoid having to use
1125 // "byval" when passing aggregates that might fully fit in registers.
1126 return Ty->isArrayTy();
1127 }
1128
1129 /// If a physical register, this returns the register that receives the
1130 /// exception address on entry to an EH pad.
1131 Register
1132 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1133
1134 /// If a physical register, this returns the register that receives the
1135 /// exception typeid on entry to a landing pad.
1136 Register
1137 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1138
1139 /// Override to support customized stack guard loading.
1140 bool useLoadStackGuardNode() const override;
1141 void insertSSPDeclarations(Module &M) const override;
1142 Value *getSDagStackGuard(const Module &M) const override;
1143
1144 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1145 bool ForCodeSize) const override;
1146
1147 unsigned getJumpTableEncoding() const override;
1148 bool isJumpTableRelative() const override;
1150 SelectionDAG &DAG) const override;
1152 unsigned JTI,
1153 MCContext &Ctx) const override;
1154
1155 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
1156 /// compute the address flags of the node, get the optimal address mode
1157 /// based on the flags, and set the Base and Disp based on the address mode.
1159 SDValue &Disp, SDValue &Base,
1160 SelectionDAG &DAG,
1161 MaybeAlign Align) const;
1162 /// SelectForceXFormMode - Given the specified address, force it to be
1163 /// represented as an indexed [r+r] operation (an XForm instruction).
1165 SelectionDAG &DAG) const;
1166
1168 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1169 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
1170 const override;
1171 /// Structure that collects some common arguments that get passed around
1172 /// between the functions for call lowering.
1173 struct CallFlags {
1175 const bool IsTailCall : 1;
1176 const bool IsVarArg : 1;
1177 const bool IsPatchPoint : 1;
1178 const bool IsIndirect : 1;
1179 const bool HasNest : 1;
1180 const bool NoMerge : 1;
1181
1183 bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
1187 };
1188
1190 bool IsVarArg) const;
1191 bool supportsTailCallFor(const CallBase *CB) const;
1192
1193 private:
1194 struct ReuseLoadInfo {
1195 SDValue Ptr;
1196 SDValue Chain;
1197 SDValue ResChain;
1199 bool IsDereferenceable = false;
1200 bool IsInvariant = false;
1201 Align Alignment;
1202 AAMDNodes AAInfo;
1203 const MDNode *Ranges = nullptr;
1204
1205 ReuseLoadInfo() = default;
1206
1207 MachineMemOperand::Flags MMOFlags() const {
1209 if (IsDereferenceable)
1211 if (IsInvariant)
1213 return F;
1214 }
1215 };
1216
1217 // Map that relates a set of common address flags to PPC addressing modes.
1218 std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap;
1219 void initializeAddrModeMap();
1220
1221 bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1222 SelectionDAG &DAG,
1224 void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
1225 SelectionDAG &DAG) const;
1226
1227 void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1228 SelectionDAG &DAG, const SDLoc &dl) const;
1229 SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1230 const SDLoc &dl) const;
1231
1232 bool directMoveIsProfitable(const SDValue &Op) const;
1233 SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1234 const SDLoc &dl) const;
1235
1236 SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1237 const SDLoc &dl) const;
1238
1239 SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1240
1241 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1242 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1243
1244 bool IsEligibleForTailCallOptimization(
1245 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1246 CallingConv::ID CallerCC, bool isVarArg,
1247 const SmallVectorImpl<ISD::InputArg> &Ins) const;
1248
1249 bool IsEligibleForTailCallOptimization_64SVR4(
1250 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1251 CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg,
1252 const SmallVectorImpl<ISD::OutputArg> &Outs,
1253 const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc,
1254 bool isCalleeExternalSymbol) const;
1255
1256 bool isEligibleForTCO(const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1257 CallingConv::ID CallerCC, const CallBase *CB,
1258 bool isVarArg,
1259 const SmallVectorImpl<ISD::OutputArg> &Outs,
1260 const SmallVectorImpl<ISD::InputArg> &Ins,
1261 const Function *CallerFunc,
1262 bool isCalleeExternalSymbol) const;
1263
1264 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1265 SDValue Chain, SDValue &LROpOut,
1266 SDValue &FPOpOut,
1267 const SDLoc &dl) const;
1268
1269 SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1270
1271 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1272 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1273 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1274 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1275 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1276 SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const;
1277 SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const;
1278 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1279 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1280 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1281 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1282 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1283 SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
1284 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1285 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1286 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1287 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1288 SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1289 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1290 SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1291 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1292 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1293 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1294 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1295 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1296 const SDLoc &dl) const;
1297 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1298 SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1299 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1300 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1301 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1302 SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const;
1303 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1304 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1305 SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask,
1306 EVT VT, SDValue V1, SDValue V2) const;
1307 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1308 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1309 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1310 SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1311 SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1312 SDValue LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
1313 SDValue lowerToLibCall(const char *LibCallName, SDValue Op,
1314 SelectionDAG &DAG) const;
1315 SDValue lowerLibCallBasedOnType(const char *LibCallFloatName,
1316 const char *LibCallDoubleName, SDValue Op,
1317 SelectionDAG &DAG) const;
1318 bool isLowringToMASSFiniteSafe(SDValue Op) const;
1319 bool isLowringToMASSSafe(SDValue Op) const;
1320 bool isScalarMASSConversionEnabled() const;
1321 SDValue lowerLibCallBase(const char *LibCallDoubleName,
1322 const char *LibCallFloatName,
1323 const char *LibCallDoubleNameFinite,
1324 const char *LibCallFloatNameFinite, SDValue Op,
1325 SelectionDAG &DAG) const;
1326 SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const;
1327 SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const;
1328 SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const;
1329 SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const;
1330 SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const;
1331 SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const;
1332 SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const;
1333 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1334 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1335 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1336 SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1337 SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
1338
1339 SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1340 SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1341
1342 SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
1343 CallingConv::ID CallConv, bool isVarArg,
1344 const SmallVectorImpl<ISD::InputArg> &Ins,
1345 const SDLoc &dl, SelectionDAG &DAG,
1346 SmallVectorImpl<SDValue> &InVals) const;
1347
1348 SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
1349 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1350 SDValue InGlue, SDValue Chain, SDValue CallSeqStart,
1351 SDValue &Callee, int SPDiff, unsigned NumBytes,
1352 const SmallVectorImpl<ISD::InputArg> &Ins,
1353 SmallVectorImpl<SDValue> &InVals,
1354 const CallBase *CB) const;
1355
1356 SDValue
1357 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1358 const SmallVectorImpl<ISD::InputArg> &Ins,
1359 const SDLoc &dl, SelectionDAG &DAG,
1360 SmallVectorImpl<SDValue> &InVals) const override;
1361
1362 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1363 SmallVectorImpl<SDValue> &InVals) const override;
1364
1365 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1366 bool isVarArg,
1367 const SmallVectorImpl<ISD::OutputArg> &Outs,
1368 LLVMContext &Context) const override;
1369
1370 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1371 const SmallVectorImpl<ISD::OutputArg> &Outs,
1372 const SmallVectorImpl<SDValue> &OutVals,
1373 const SDLoc &dl, SelectionDAG &DAG) const override;
1374
1375 SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1376 SelectionDAG &DAG, SDValue ArgVal,
1377 const SDLoc &dl) const;
1378
1379 SDValue LowerFormalArguments_AIX(
1380 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1381 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1382 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1383 SDValue LowerFormalArguments_64SVR4(
1384 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1385 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1386 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1387 SDValue LowerFormalArguments_32SVR4(
1388 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1389 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1390 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1391
1392 SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1393 SDValue CallSeqStart,
1394 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1395 const SDLoc &dl) const;
1396
1397 SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1398 const SmallVectorImpl<ISD::OutputArg> &Outs,
1399 const SmallVectorImpl<SDValue> &OutVals,
1400 const SmallVectorImpl<ISD::InputArg> &Ins,
1401 const SDLoc &dl, SelectionDAG &DAG,
1402 SmallVectorImpl<SDValue> &InVals,
1403 const CallBase *CB) const;
1404 SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1405 const SmallVectorImpl<ISD::OutputArg> &Outs,
1406 const SmallVectorImpl<SDValue> &OutVals,
1407 const SmallVectorImpl<ISD::InputArg> &Ins,
1408 const SDLoc &dl, SelectionDAG &DAG,
1409 SmallVectorImpl<SDValue> &InVals,
1410 const CallBase *CB) const;
1411 SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
1412 const SmallVectorImpl<ISD::OutputArg> &Outs,
1413 const SmallVectorImpl<SDValue> &OutVals,
1414 const SmallVectorImpl<ISD::InputArg> &Ins,
1415 const SDLoc &dl, SelectionDAG &DAG,
1416 SmallVectorImpl<SDValue> &InVals,
1417 const CallBase *CB) const;
1418
1419 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1420 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1421 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1422
1423 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1424 SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1425 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1426 SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1427 SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1428 SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1429 SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1430 SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1431 SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1432 SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1433 SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
1434 SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1435 SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1436 SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
1437 SelectionDAG &DAG) const;
1438 SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1439 DAGCombinerInfo &DCI) const;
1440
1441 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1442 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1443 /// (2) keeping the result of comparison in GPR has performance benefit.
1444 SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1445
1446 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1447 int &RefinementSteps, bool &UseOneConstNR,
1448 bool Reciprocal) const override;
1449 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1450 int &RefinementSteps) const override;
1451 SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
1452 const DenormalMode &Mode) const override;
1453 SDValue getSqrtResultForDenormInput(SDValue Operand,
1454 SelectionDAG &DAG) const override;
1455 unsigned combineRepeatedFPDivisors() const override;
1456
1457 SDValue
1458 combineElementTruncationToVectorTruncation(SDNode *N,
1459 DAGCombinerInfo &DCI) const;
1460
1461 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1462 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1463 /// essentially any shuffle of v8i16 vectors that just inserts one element
1464 /// from one vector into the other.
1465 SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1466
1467 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1468 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1469 /// essentially v16i8 vector version of VINSERTH.
1470 SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1471
1472 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
1473 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
1474 SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1475
1476 // Return whether the call instruction can potentially be optimized to a
1477 // tail call. This will cause the optimizers to attempt to move, or
1478 // duplicate return instructions to help enable tail call optimizations.
1479 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1480 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1481
1482 /// getAddrModeForFlags - Based on the set of address flags, select the most
1483 /// optimal instruction format to match by.
1484 PPC::AddrMode getAddrModeForFlags(unsigned Flags) const;
1485
1486 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
1487 /// the address flags of the load/store instruction that is to be matched.
1488 /// The address flags are stored in a map, which is then searched
1489 /// through to determine the optimal load/store instruction format.
1490 unsigned computeMOFlags(const SDNode *Parent, SDValue N,
1491 SelectionDAG &DAG) const;
1492 }; // end class PPCTargetLowering
1493
1494 namespace PPC {
1495
1496 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1497 const TargetLibraryInfo *LibInfo);
1498
1499 } // end namespace PPC
1500
1501 bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1502 bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1503 bool isIntS34Immediate(SDNode *N, int64_t &Imm);
1504 bool isIntS34Immediate(SDValue Op, int64_t &Imm);
1505
1506 bool convertToNonDenormSingle(APInt &ArgAPInt);
1507 bool convertToNonDenormSingle(APFloat &ArgAPFloat);
1508 bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat);
1509
1510} // end namespace llvm
1511
1512#endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
IRTranslator LLVM IR MI
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
This file contains the declarations for metadata subclasses.
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
Definition: APInt.h:78
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:495
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:696
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1236
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:91
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
Metadata node.
Definition: Metadata.h:1069
Machine Value Type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
Representation of each machine instruction.
Definition: MachineInstr.h:69
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOInvariant
The memory access always returns the same value (or traps).
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
MachineBasicBlock * emitEHSjLjLongJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
CCAssignFn * ccAssignFnForCall(CallingConv::ID CC, bool Return, bool IsVarArg) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
isTruncateFree - Return true if it's free to truncate a value of type Ty1 to type Ty2.
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isFPExtFree(EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
SelectForceXFormMode - Given the specified address, force it to be represented as an indexed [r+r] op...
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
bool hasInlineStackProbe(const MachineFunction &MF) const override
MachineBasicBlock * emitEHSjLjSetJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
const char * getTargetNodeName(unsigned Opcode) const override
getTargetNodeName() - This method returns the name of a target specific DAG node.
bool supportsTailCallFor(const CallBase *CB) const
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
MachineBasicBlock * emitProbedAlloca(MachineInstr &MI, MachineBasicBlock *MBB) const
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
MachineBasicBlock * EmitPartwordAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, bool is8bit, unsigned Opcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const override
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign EncodingAlignment) const
SelectAddressRegImm - Returns true if the address N can be represented by a base register plus a sign...
bool shouldInsertFencesForAtomic(const Instruction *I) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
bool isCtlzFast() const override
Return true if ctlz instruction is fast.
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override
Returns true if an argument of type Ty needs to be passed in a contiguous block of registers in calli...
bool isSelectSupported(SelectSupportKind Kind) const override
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const override
Target-specific splitting of values into parts that fit a register storing a legal type.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
LowerAsmOperandForConstraint - Lower the specified operand into the Ops vector.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
ReplaceNodeResults - Replace the results of node with an illegal result type with new values built ou...
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, MaybeAlign EncodingAlignment=std::nullopt) const
SelectAddressRegReg - Given the specified addressed, check to see if it can be more efficiently repre...
MachineBasicBlock * EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, unsigned AtomicSize, unsigned BinOpcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
bool hasAndNotCompare(SDValue) const override
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const override
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressRegRegOnly - Given the specified addressed, force it to be represented as an indexed [r+...
bool useSoftFloat() const override
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override
Examine constraint string and operand type and determine a weight value.
uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override
getByValTypeAlignment - Return the desired alignment for ByVal aggregate function arguments in the ca...
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
bool preferIncOfAddToSubOfNot(EVT VT) const override
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Returns true if it is beneficial to convert a load of a constant to just the constant itself.
const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const override
Returns a 0 terminated array of registers that can be safely used as scratch registers.
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override
getPreIndexedAddressParts - returns true by value, base pointer and offset pointer and addressing mod...
bool isProfitableToHoist(Instruction *I) const override
isProfitableToHoist - Check if it is profitable to hoist instruction I to its dominator block.
bool convertSelectOfConstantsToMath(EVT VT) const override
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override
Use bitwise logic to make pairs of compares more efficient.
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint, return the type of constraint it is for this target.
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const override
Return true if the target shall perform extract vector element and store given that the vector is kno...
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
bool isEqualityCmpFoldedWithSignedCmp() const override
Return true if instruction generated for equality comparison is folded with instruction generated for...
EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override
It returns EVT::Other if the type should be determined using generic target-independent logic.
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
getPreferredVectorAction - The code we generate when vector types are legalized by promoting the inte...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
bool useLoadStackGuardNode() const override
Override to support customized stack guard loading.
unsigned getStackProbeSize(const MachineFunction &MF) const
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool shouldKeepZExtForFP16Conv() const override
Does this target require the clearing of high-order bits in a register passed to the fp16 to fp conve...
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster than a pair of fmul and fadd i...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Is unaligned memory access allowed for the given type, and is it fast relative to software emulation.
bool shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const override
bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
Similar to the 16-bit case but for instructions that take a 34-bit displacement field (prefixed loads...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool isJumpTableRelative() const override
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
LowerOperation - Provide custom lowering hooks for some operations.
PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign Align) const
SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), compute the address flags of...
Value * getSDagStackGuard(const Module &M) const override
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
bool SelectAddressPCRel(SDValue N, SDValue &Base) const
SelectAddressPCRel - Represent the specified address as pc relative to be represented as [pc+imm].
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
getSetCCResultType - Return the ISD::SETCC ValueType
bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressEVXRegReg - Given the specified addressed, check to see if it can be more efficiently re...
bool isLegalICmpImmediate(int64_t Imm) const override
isLegalICmpImmediate - Return true if the specified immediate is legal icmp immediate,...
bool isAccessedAsGotIndirect(SDValue N) const
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const override
createFastISel - This method returns a target-specific FastISel object, or null if the target does no...
bool shouldInlineQuadwordAtomics() const
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
bool isLegalAddImmediate(int64_t Imm) const override
isLegalAddImmediate - Return true if the specified immediate is legal add immediate,...
Common code between 32-bit and 64-bit PowerPC targets.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:226
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Provides information about what library functions are available for the current target.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
SelectSupportKind
Enum that describes what type of support for selects the target has.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
NegatibleCost
Enum that specifies when a float negation is beneficial.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:248
LLVM Value Representation.
Definition: Value.h:74
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:1099
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1480
static const int FIRST_TARGET_MEMORY_OPCODE
FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific me...
Definition: ISDOpcodes.h:1492
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1552
static const int FIRST_TARGET_STRICTFP_OPCODE
FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions s...
Definition: ISDOpcodes.h:1486
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1583
@ SEXT_LD_SPLAT
VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that sign-extends.
@ FCTIDUZ
Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for unsigned integers with round ...
@ ADDI_TLSGD_L_ADDR
G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSGD_L and GET_TLS_ADDR unti...
@ FSQRT
Square root instruction.
@ STRICT_FCFID
Constrained integer-to-floating-point conversion instructions.
@ DYNALLOC
The following two target-specific nodes are used for calls through function pointers in the 64-bit SV...
@ COND_BRANCH
CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This corresponds to the COND_BRANCH pseudo ...
@ TLSLD_AIX
[GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle) Op that requires a single input of the module handle ...
@ CALL_RM
The variants that implicitly define rounding mode for calls with strictfp semantics.
@ STORE_VEC_BE
CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
@ BDNZ
CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based loops.
@ MTVSRZ
Direct move from a GPR to a VSX register (zero)
@ SRL
These nodes represent PPC shifts.
@ VECINSERT
VECINSERT - The PPC vector insert instruction.
@ LXSIZX
GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an integer smaller than 64 bits into ...
@ FNMSUB
FNMSUB - Negated multiply-subtract instruction.
@ RFEBB
CHAIN = RFEBB CHAIN, State - Return from event-based branch.
@ FCTIDZ
FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 operand, producing an f64 value...
@ SC
CHAIN = SC CHAIN, Imm128 - System call.
@ GET_TLS_ADDR
x3 = GET_TLS_ADDR x3, Symbol - For the general-dynamic TLS model, produces a call to __tls_get_addr(s...
@ XXSPLTI32DX
XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
@ ANDI_rec_1_EQ_BIT
i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the eq or gt bit of CR0 after ex...
@ FRE
Reciprocal estimate instructions (unary FP ops).
@ ADDIS_GOT_TPREL_HA
G8RC = ADDIS_GOT_TPREL_HA x2, Symbol - Used by the initial-exec TLS model, produces an ADDIS8 instruc...
@ CLRBHRB
CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
@ STORE_COND
CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr The store conditional instruction ST[BHWD]ARX that produces a...
@ SINT_VEC_TO_FP
Extract a subvector from signed integer vector and convert to FP.
@ EXTRACT_SPE
Extract SPE register component, second argument is high or low.
@ XXSWAPD
VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little endian.
@ ADDI_TLSLD_L_ADDR
G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSLD_L and GET_TLSLD_ADDR un...
@ ATOMIC_CMP_SWAP_8
ATOMIC_CMP_SWAP - the exact same as the target-independent nodes except they ensure that the compare ...
@ ST_VSR_SCAL_INT
Store scalar integers from VSR.
@ VCMP
RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* instructions.
@ BCTRL
CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a BCTRL instruction.
@ BUILD_SPE64
BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and EXTRACT_ELEMENT but take f64 arguments in...
@ LFIWZX
GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point load which zero-extends from a 32-bit inte...
@ RET_GLUE
Return with a glue operand, matched by 'blr'.
@ SCALAR_TO_VECTOR_PERMUTED
PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to place the value into the least sign...
@ EXTRACT_VSX_REG
EXTRACT_VSX_REG = Extract one of the underlying vsx registers of an accumulator or pair register.
@ STXSIX
STXSIX - The STXSI[bh]X instruction.
@ MAT_PCREL_ADDR
MAT_PCREL_ADDR = Materialize a PC Relative address.
@ MFOCRF
R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
@ XXSPLT
XXSPLT - The PPC VSX splat instructions.
@ TOC_ENTRY
GPRC = TOC_ENTRY GA, TOC Loads the entry for GA from the TOC, where the TOC base is given by the last...
@ XXPERMDI
XXPERMDI - The PPC XXPERMDI instruction.
@ ADDIS_DTPREL_HA
G8RC = ADDIS_DTPREL_HA x3, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction t...
@ ADD_TLS
G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec and local-exec TLS models,...
@ MTVSRA
Direct move from a GPR to a VSX register (algebraic)
@ VADD_SPLAT
VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded during instruction selection to optimi...
@ PPC32_GOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ ADDI_DTPREL_L
G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction ...
@ BCTRL_LOAD_TOC
CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl instruction and the TOC reload r...
@ PPC32_PICGOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ FCFID
FCFID - The FCFID instruction, taking an f64 operand and producing and f64 value containing the FP re...
@ CR6SET
ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
@ LBRX
GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a byte-swapping load instruction.
@ GET_TLS_MOD_AIX
x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model, produces a call to ....
@ LD_VSX_LH
VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a v2f32 value into the lower ha...
@ PROBED_ALLOCA
To avoid stack clash, allocation is performed by block and each block is probed.
@ XXMFACC
XXMFACC = This corresponds to the xxmfacc instruction.
@ ADDIS_TLSGD_HA
G8RC = ADDIS_TLSGD_HA x2, Symbol - For the general-dynamic TLS model, produces an ADDIS8 instruction ...
@ ACC_BUILD
ACC_BUILD = Build an accumulator register from 4 VSX registers.
@ GlobalBaseReg
The result of the mflr at function entry, used for PIC code.
@ LXVD2X
VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
@ XSMAXC
XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
@ CALL
CALL - A direct function call.
@ MTCTR
CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a MTCTR instruction.
@ TC_RETURN
TC_RETURN - A tail call return.
@ STFIWX
STFIWX - The STFIWX instruction.
@ LD_SPLAT
VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory instructions such as LXVDSX,...
@ VCMP_rec
RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the altivec VCMP*_rec instructions.
@ MFFS
F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
@ PADDI_DTPREL
G8RC = PADDI_DTPREL x3, Symbol - For the pc-rel based local-dynamic TLS model, produces a PADDI8 inst...
@ BUILD_FP128
Direct move of 2 consecutive GPR to a VSX register.
@ VEXTS
VEXTS, ByteWidth - takes an input in VSFRC and produces an output in VSFRC that is sign-extended from...
@ TLS_LOCAL_EXEC_MAT_ADDR
TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address when using local exec access ...
@ VPERM
VPERM - The PPC VPERM Instruction.
@ ADDIS_TLSLD_HA
G8RC = ADDIS_TLSLD_HA x2, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction th...
@ XXSPLTI_SP_TO_DP
XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for converting immediate single prec...
@ GET_TLSLD_ADDR
x3 = GET_TLSLD_ADDR x3, Symbol - For the local-dynamic TLS model, produces a call to __tls_get_addr(s...
@ ADDI_TLSGD_L
x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS model, produces an ADDI8 instruction t...
@ DYNAREAOFFSET
This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to compute an offset from native ...
@ PAIR_BUILD
PAIR_BUILD = Build a vector pair register from 2 VSX registers.
@ STRICT_FADDRTZ
Constrained floating point add in round-to-zero mode.
@ FTSQRT
Test instruction for software square root.
@ FP_EXTEND_HALF
FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or lower (IDX=1) half of v4f32 to v2f6...
@ CMPB
The CMPB instruction (takes two operands of i32 or i64).
@ VECSHL
VECSHL - The PPC vector shift left instruction.
@ ADDI_TLSLD_L
x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction tha...
@ FADDRTZ
F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding towards zero.
@ ZEXT_LD_SPLAT
VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that zero-extends.
@ SRA_ADDZE
The combination of sra[wd]i and addze used to implemented signed integer division by a power of 2.
@ EXTSWSLI
EXTSWSLI = The PPC extswsli instruction, which does an extend-sign word and shift left immediate.
@ STXVD2X
CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
@ TLSGD_AIX
GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY Op that combines two re...
@ UINT_VEC_TO_FP
Extract a subvector from unsigned integer vector and convert to FP.
@ GET_TPOINTER
x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on 32-bit AIX, produces a call to ...
@ LXVRZX
LXVRZX - Load VSX Vector Rightmost and Zero Extend This node represents v1i128 BUILD_VECTOR of a zero...
@ MFBHRBE
GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch history rolling buffer entry.
@ FCFIDU
Newer FCFID[US] integer-to-floating-point conversion instructions for unsigned integers and single-pr...
@ FSEL
FSEL - Traditional three-operand fsel node.
@ SWAP_NO_CHAIN
An SDNode for swaps that are not associated with any loads/stores and thereby have no chain.
@ LOAD_VEC_BE
VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
@ LFIWAX
GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point load which sign-extends from a 32-bit inte...
@ STBRX
CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a byte-swapping store instruction.
@ LD_GOT_TPREL_L
G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec TLS model, produces a LD instruction ...
@ MFVSR
Direct move from a VSX register to a GPR.
@ TLS_DYNAMIC_MAT_PCREL_ADDR
TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for TLS global address when using dyna...
@ Hi
Hi/Lo - These represent the high and low 16-bit parts of a global address respectively.
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG)
get_VSPLTI_elt - If this is a build_vector of constants which can be formed by using a vspltis[bhw] i...
bool isXXBRDShuffleMask(ShuffleVectorSDNode *N)
isXXBRDShuffleMask - Return true if this is a shuffle mask suitable for a XXBRD instruction.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo)
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for a VRGH* instruction with the ...
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a VPKUDUM instruction.
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for a VMRGEW or VMRGOW instructi...
bool isXXBRQShuffleMask(ShuffleVectorSDNode *N)
isXXBRQShuffleMask - Return true if this is a shuffle mask suitable for a XXBRQ instruction.
bool isXXBRWShuffleMask(ShuffleVectorSDNode *N)
isXXBRWShuffleMask - Return true if this is a shuffle mask suitable for a XXBRW instruction.
bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable for a XXPERMDI instruction.
bool isXXBRHShuffleMask(ShuffleVectorSDNode *N)
isXXBRHShuffleMask - Return true if this is a shuffle mask suitable for a XXBRH instruction.
unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, SelectionDAG &DAG)
getSplatIdxForPPCMnemonics - Return the splat index as a value that is appropriate for PPC mnemonics ...
bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable for a XXSLDWI instruction.
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift amount, otherwise return -1.
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for a VRGL* instruction with the ...
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, unsigned &InsertAtByte, bool &Swap, bool IsLE)
isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by the XXINSERTW instruction intr...
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize)
isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand specifies a splat of a singl...
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a VPKUWUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a VPKUHUM instruction.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat)
bool isIntS16Immediate(SDNode *N, int16_t &Imm)
isIntS16Immediate - This method tests to see if the node is either a 32-bit or 64-bit immediate,...
bool convertToNonDenormSingle(APInt &ArgAPInt)
AtomicOrdering
Atomic ordering for LLVM's memory model.
bool isIntS34Immediate(SDNode *N, int64_t &Imm)
isIntS34Immediate - This method tests if value of node given can be accurately represented as a sign ...
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
DWARFExpression::Operation Op
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:35
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:157
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Structure that collects some common arguments that get passed around between the functions for call l...
CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg, bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)