LLVM 20.0.0git
AMDGPULibCalls.cpp
Go to the documentation of this file.
1//===- AMDGPULibCalls.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file does AMD library function optimizations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
15#include "AMDGPULibFunc.h"
16#include "GCNSubtarget.h"
21#include "llvm/IR/Dominators.h"
22#include "llvm/IR/IRBuilder.h"
24#include "llvm/IR/IntrinsicsAMDGPU.h"
25#include "llvm/IR/MDBuilder.h"
28#include <cmath>
29
30#define DEBUG_TYPE "amdgpu-simplifylib"
31
32using namespace llvm;
33using namespace llvm::PatternMatch;
34
35static cl::opt<bool> EnablePreLink("amdgpu-prelink",
36 cl::desc("Enable pre-link mode optimizations"),
37 cl::init(false),
39
40static cl::list<std::string> UseNative("amdgpu-use-native",
41 cl::desc("Comma separated list of functions to replace with native, or all"),
44
45#define MATH_PI numbers::pi
46#define MATH_E numbers::e
47#define MATH_SQRT2 numbers::sqrt2
48#define MATH_SQRT1_2 numbers::inv_sqrt2
49
50namespace llvm {
51
53private:
54 const TargetLibraryInfo *TLInfo = nullptr;
55 AssumptionCache *AC = nullptr;
56 DominatorTree *DT = nullptr;
57
59
60 bool UnsafeFPMath = false;
61
62 // -fuse-native.
63 bool AllNative = false;
64
65 bool useNativeFunc(const StringRef F) const;
66
67 // Return a pointer (pointer expr) to the function if function definition with
68 // "FuncName" exists. It may create a new function prototype in pre-link mode.
69 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
70
71 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
72
73 bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
74
75 /* Specialized optimizations */
76
77 // pow/powr/pown
78 bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
79
80 // rootn
81 bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
82
83 // -fuse-native for sincos
84 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
85
86 // evaluate calls if calls' arguments are constants.
87 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1,
88 Constant *copr0, Constant *copr1);
89 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
90
91 /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value
92 /// of cos, sincos call).
93 std::tuple<Value *, Value *, Value *> insertSinCos(Value *Arg,
94 FastMathFlags FMF,
96 FunctionCallee Fsincos);
97
98 // sin/cos
99 bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
100
101 // __read_pipe/__write_pipe
102 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
103 const FuncInfo &FInfo);
104
105 // Get a scalar native builtin single argument FP function
106 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
107
108 /// Substitute a call to a known libcall with an intrinsic call. If \p
109 /// AllowMinSize is true, allow the replacement in a minsize function.
110 bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
111 bool AllowMinSizeF32 = false,
112 bool AllowF64 = false,
113 bool AllowStrictFP = false);
114 void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
115 Intrinsic::ID IntrID);
116
117 bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
118 Intrinsic::ID IntrID,
119 bool AllowMinSizeF32 = false,
120 bool AllowF64 = false,
121 bool AllowStrictFP = false);
122
123protected:
124 bool isUnsafeMath(const FPMathOperator *FPOp) const;
125 bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const;
126
128
129 static void replaceCall(Instruction *I, Value *With) {
130 I->replaceAllUsesWith(With);
131 I->eraseFromParent();
132 }
133
134 static void replaceCall(FPMathOperator *I, Value *With) {
135 replaceCall(cast<Instruction>(I), With);
136 }
137
138public:
139 AMDGPULibCalls() = default;
140
141 bool fold(CallInst *CI);
142
144 void initNativeFuncs();
145
146 // Replace a normal math function call with that native version
147 bool useNative(CallInst *CI);
148};
149
150} // end namespace llvm
151
152template <typename IRB>
153static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
154 const Twine &Name = "") {
155 CallInst *R = B.CreateCall(Callee, Arg, Name);
156 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
157 R->setCallingConv(F->getCallingConv());
158 return R;
159}
160
161template <typename IRB>
162static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
163 Value *Arg2, const Twine &Name = "") {
164 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
165 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
166 R->setCallingConv(F->getCallingConv());
167 return R;
168}
169
171 Type *PowNExpTy = Type::getInt32Ty(FT->getContext());
172 if (VectorType *VecTy = dyn_cast<VectorType>(FT->getReturnType()))
173 PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount());
174
175 return FunctionType::get(FT->getReturnType(),
176 {FT->getParamType(0), PowNExpTy}, false);
177}
178
179// Data structures for table-driven optimizations.
180// FuncTbl works for both f32 and f64 functions with 1 input argument
181
183 double result;
184 double input;
185};
186
187/* a list of {result, input} */
188static const TableEntry tbl_acos[] = {
189 {MATH_PI / 2.0, 0.0},
190 {MATH_PI / 2.0, -0.0},
191 {0.0, 1.0},
192 {MATH_PI, -1.0}
193};
194static const TableEntry tbl_acosh[] = {
195 {0.0, 1.0}
196};
197static const TableEntry tbl_acospi[] = {
198 {0.5, 0.0},
199 {0.5, -0.0},
200 {0.0, 1.0},
201 {1.0, -1.0}
202};
203static const TableEntry tbl_asin[] = {
204 {0.0, 0.0},
205 {-0.0, -0.0},
206 {MATH_PI / 2.0, 1.0},
207 {-MATH_PI / 2.0, -1.0}
208};
209static const TableEntry tbl_asinh[] = {
210 {0.0, 0.0},
211 {-0.0, -0.0}
212};
213static const TableEntry tbl_asinpi[] = {
214 {0.0, 0.0},
215 {-0.0, -0.0},
216 {0.5, 1.0},
217 {-0.5, -1.0}
218};
219static const TableEntry tbl_atan[] = {
220 {0.0, 0.0},
221 {-0.0, -0.0},
222 {MATH_PI / 4.0, 1.0},
223 {-MATH_PI / 4.0, -1.0}
224};
225static const TableEntry tbl_atanh[] = {
226 {0.0, 0.0},
227 {-0.0, -0.0}
228};
229static const TableEntry tbl_atanpi[] = {
230 {0.0, 0.0},
231 {-0.0, -0.0},
232 {0.25, 1.0},
233 {-0.25, -1.0}
234};
235static const TableEntry tbl_cbrt[] = {
236 {0.0, 0.0},
237 {-0.0, -0.0},
238 {1.0, 1.0},
239 {-1.0, -1.0},
240};
241static const TableEntry tbl_cos[] = {
242 {1.0, 0.0},
243 {1.0, -0.0}
244};
245static const TableEntry tbl_cosh[] = {
246 {1.0, 0.0},
247 {1.0, -0.0}
248};
249static const TableEntry tbl_cospi[] = {
250 {1.0, 0.0},
251 {1.0, -0.0}
252};
253static const TableEntry tbl_erfc[] = {
254 {1.0, 0.0},
255 {1.0, -0.0}
256};
257static const TableEntry tbl_erf[] = {
258 {0.0, 0.0},
259 {-0.0, -0.0}
260};
261static const TableEntry tbl_exp[] = {
262 {1.0, 0.0},
263 {1.0, -0.0},
264 {MATH_E, 1.0}
265};
266static const TableEntry tbl_exp2[] = {
267 {1.0, 0.0},
268 {1.0, -0.0},
269 {2.0, 1.0}
270};
271static const TableEntry tbl_exp10[] = {
272 {1.0, 0.0},
273 {1.0, -0.0},
274 {10.0, 1.0}
275};
276static const TableEntry tbl_expm1[] = {
277 {0.0, 0.0},
278 {-0.0, -0.0}
279};
280static const TableEntry tbl_log[] = {
281 {0.0, 1.0},
282 {1.0, MATH_E}
283};
284static const TableEntry tbl_log2[] = {
285 {0.0, 1.0},
286 {1.0, 2.0}
287};
288static const TableEntry tbl_log10[] = {
289 {0.0, 1.0},
290 {1.0, 10.0}
291};
292static const TableEntry tbl_rsqrt[] = {
293 {1.0, 1.0},
294 {MATH_SQRT1_2, 2.0}
295};
296static const TableEntry tbl_sin[] = {
297 {0.0, 0.0},
298 {-0.0, -0.0}
299};
300static const TableEntry tbl_sinh[] = {
301 {0.0, 0.0},
302 {-0.0, -0.0}
303};
304static const TableEntry tbl_sinpi[] = {
305 {0.0, 0.0},
306 {-0.0, -0.0}
307};
308static const TableEntry tbl_sqrt[] = {
309 {0.0, 0.0},
310 {1.0, 1.0},
311 {MATH_SQRT2, 2.0}
312};
313static const TableEntry tbl_tan[] = {
314 {0.0, 0.0},
315 {-0.0, -0.0}
316};
317static const TableEntry tbl_tanh[] = {
318 {0.0, 0.0},
319 {-0.0, -0.0}
320};
321static const TableEntry tbl_tanpi[] = {
322 {0.0, 0.0},
323 {-0.0, -0.0}
324};
325static const TableEntry tbl_tgamma[] = {
326 {1.0, 1.0},
327 {1.0, 2.0},
328 {2.0, 3.0},
329 {6.0, 4.0}
330};
331
333 switch(id) {
334 case AMDGPULibFunc::EI_DIVIDE:
335 case AMDGPULibFunc::EI_COS:
336 case AMDGPULibFunc::EI_EXP:
337 case AMDGPULibFunc::EI_EXP2:
338 case AMDGPULibFunc::EI_EXP10:
339 case AMDGPULibFunc::EI_LOG:
340 case AMDGPULibFunc::EI_LOG2:
341 case AMDGPULibFunc::EI_LOG10:
342 case AMDGPULibFunc::EI_POWR:
343 case AMDGPULibFunc::EI_RECIP:
344 case AMDGPULibFunc::EI_RSQRT:
345 case AMDGPULibFunc::EI_SIN:
346 case AMDGPULibFunc::EI_SINCOS:
347 case AMDGPULibFunc::EI_SQRT:
348 case AMDGPULibFunc::EI_TAN:
349 return true;
350 default:;
351 }
352 return false;
353}
354
356
358 switch(id) {
359 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
360 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
361 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
362 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
363 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
364 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
365 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
366 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
367 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
368 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
369 case AMDGPULibFunc::EI_NCOS:
370 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
371 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
372 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
373 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
374 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
375 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
376 case AMDGPULibFunc::EI_NEXP2:
377 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
378 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
379 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
380 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
381 case AMDGPULibFunc::EI_NLOG2:
382 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
383 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
384 case AMDGPULibFunc::EI_NRSQRT:
385 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
386 case AMDGPULibFunc::EI_NSIN:
387 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
388 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
389 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
390 case AMDGPULibFunc::EI_NSQRT:
391 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
392 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
393 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
394 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
395 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
396 default:;
397 }
398 return TableRef();
399}
400
401static inline int getVecSize(const AMDGPULibFunc& FInfo) {
402 return FInfo.getLeads()[0].VectorSize;
403}
404
405static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
406 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
407}
408
409FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
410 // If we are doing PreLinkOpt, the function is external. So it is safe to
411 // use getOrInsertFunction() at this stage.
412
414 : AMDGPULibFunc::getFunction(M, fInfo);
415}
416
417bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
418 FuncInfo &FInfo) {
419 return AMDGPULibFunc::parse(FMangledName, FInfo);
420}
421
423 return UnsafeFPMath || FPOp->isFast();
424}
425
427 return UnsafeFPMath ||
428 (FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs());
429}
430
432 const FPMathOperator *FPOp) const {
433 // TODO: Refine to approxFunc or contract
434 return isUnsafeMath(FPOp);
435}
436
438 UnsafeFPMath = F.getFnAttribute("unsafe-fp-math").getValueAsBool();
442}
443
444bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
445 return AllNative || llvm::is_contained(UseNative, F);
446}
447
449 AllNative = useNativeFunc("all") ||
450 (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
451 UseNative.begin()->empty());
452}
453
454bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
455 bool native_sin = useNativeFunc("sin");
456 bool native_cos = useNativeFunc("cos");
457
458 if (native_sin && native_cos) {
459 Module *M = aCI->getModule();
460 Value *opr0 = aCI->getArgOperand(0);
461
462 AMDGPULibFunc nf;
463 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
464 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
465
468 FunctionCallee sinExpr = getFunction(M, nf);
469
472 FunctionCallee cosExpr = getFunction(M, nf);
473 if (sinExpr && cosExpr) {
474 Value *sinval =
475 CallInst::Create(sinExpr, opr0, "splitsin", aCI->getIterator());
476 Value *cosval =
477 CallInst::Create(cosExpr, opr0, "splitcos", aCI->getIterator());
478 new StoreInst(cosval, aCI->getArgOperand(1), aCI->getIterator());
479
480 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
481 << " with native version of sin/cos");
482
483 replaceCall(aCI, sinval);
484 return true;
485 }
486 }
487 return false;
488}
489
491 Function *Callee = aCI->getCalledFunction();
492 if (!Callee || aCI->isNoBuiltin())
493 return false;
494
495 FuncInfo FInfo;
496 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
497 FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
498 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
499 !(AllNative || useNativeFunc(FInfo.getName()))) {
500 return false;
501 }
502
503 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
504 return sincosUseNative(aCI, FInfo);
505
507 FunctionCallee F = getFunction(aCI->getModule(), FInfo);
508 if (!F)
509 return false;
510
511 aCI->setCalledFunction(F);
512 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
513 << " with native version");
514 return true;
515}
516
517// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
518// builtin, with appended type size and alignment arguments, where 2 or 4
519// indicates the original number of arguments. The library has optimized version
520// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
521// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
522// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
523// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
524bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
525 const FuncInfo &FInfo) {
526 auto *Callee = CI->getCalledFunction();
527 if (!Callee->isDeclaration())
528 return false;
529
530 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
531 auto *M = Callee->getParent();
532 std::string Name = std::string(Callee->getName());
533 auto NumArg = CI->arg_size();
534 if (NumArg != 4 && NumArg != 6)
535 return false;
536 ConstantInt *PacketSize =
537 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 2));
538 ConstantInt *PacketAlign =
539 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 1));
540 if (!PacketSize || !PacketAlign)
541 return false;
542
543 unsigned Size = PacketSize->getZExtValue();
544 Align Alignment = PacketAlign->getAlignValue();
545 if (Alignment != Size)
546 return false;
547
548 unsigned PtrArgLoc = CI->arg_size() - 3;
549 Value *PtrArg = CI->getArgOperand(PtrArgLoc);
550 Type *PtrTy = PtrArg->getType();
551
553 for (unsigned I = 0; I != PtrArgLoc; ++I)
554 ArgTys.push_back(CI->getArgOperand(I)->getType());
555 ArgTys.push_back(PtrTy);
556
557 Name = Name + "_" + std::to_string(Size);
558 auto *FTy = FunctionType::get(Callee->getReturnType(),
559 ArrayRef<Type *>(ArgTys), false);
560 AMDGPULibFunc NewLibFunc(Name, FTy);
562 if (!F)
563 return false;
564
566 for (unsigned I = 0; I != PtrArgLoc; ++I)
567 Args.push_back(CI->getArgOperand(I));
568 Args.push_back(PtrArg);
569
570 auto *NCI = B.CreateCall(F, Args);
571 NCI->setAttributes(CI->getAttributes());
572 CI->replaceAllUsesWith(NCI);
573 CI->dropAllReferences();
574 CI->eraseFromParent();
575
576 return true;
577}
578
579static bool isKnownIntegral(const Value *V, const DataLayout &DL,
580 FastMathFlags FMF) {
581 if (isa<PoisonValue>(V))
582 return true;
583 if (isa<UndefValue>(V))
584 return false;
585
586 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
587 return CF->getValueAPF().isInteger();
588
589 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
590 const Constant *CV = dyn_cast<Constant>(V);
591 if (VFVTy && CV) {
592 unsigned NumElts = VFVTy->getNumElements();
593 for (unsigned i = 0; i != NumElts; ++i) {
594 Constant *Elt = CV->getAggregateElement(i);
595 if (!Elt)
596 return false;
597 if (isa<PoisonValue>(Elt))
598 continue;
599
600 const ConstantFP *CFP = dyn_cast<ConstantFP>(Elt);
601 if (!CFP || !CFP->getValue().isInteger())
602 return false;
603 }
604
605 return true;
606 }
607
608 const Instruction *I = dyn_cast<Instruction>(V);
609 if (!I)
610 return false;
611
612 switch (I->getOpcode()) {
613 case Instruction::SIToFP:
614 case Instruction::UIToFP:
615 // TODO: Could check nofpclass(inf) on incoming argument
616 if (FMF.noInfs())
617 return true;
618
619 // Need to check int size cannot produce infinity, which computeKnownFPClass
620 // knows how to do already.
621 return isKnownNeverInfinity(I, /*Depth=*/0, SimplifyQuery(DL));
622 case Instruction::Call: {
623 const CallInst *CI = cast<CallInst>(I);
624 switch (CI->getIntrinsicID()) {
625 case Intrinsic::trunc:
626 case Intrinsic::floor:
627 case Intrinsic::ceil:
628 case Intrinsic::rint:
629 case Intrinsic::nearbyint:
630 case Intrinsic::round:
631 case Intrinsic::roundeven:
632 return (FMF.noInfs() && FMF.noNaNs()) ||
633 isKnownNeverInfOrNaN(I, /*Depth=*/0, SimplifyQuery(DL));
634 default:
635 break;
636 }
637
638 break;
639 }
640 default:
641 break;
642 }
643
644 return false;
645}
646
647// This function returns false if no change; return true otherwise.
649 Function *Callee = CI->getCalledFunction();
650 // Ignore indirect calls.
651 if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin())
652 return false;
653
654 FuncInfo FInfo;
655 if (!parseFunctionName(Callee->getName(), FInfo))
656 return false;
657
658 // Further check the number of arguments to see if they match.
659 // TODO: Check calling convention matches too
660 if (!FInfo.isCompatibleSignature(CI->getFunctionType()))
661 return false;
662
663 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n');
664
665 if (TDOFold(CI, FInfo))
666 return true;
667
668 IRBuilder<> B(CI);
669 if (CI->isStrictFP())
670 B.setIsFPConstrained(true);
671
672 if (FPMathOperator *FPOp = dyn_cast<FPMathOperator>(CI)) {
673 // Under unsafe-math, evaluate calls if possible.
674 // According to Brian Sumner, we can do this for all f32 function calls
675 // using host's double function calls.
676 if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo))
677 return true;
678
679 // Copy fast flags from the original call.
680 FastMathFlags FMF = FPOp->getFastMathFlags();
681 B.setFastMathFlags(FMF);
682
683 // Specialized optimizations for each function call.
684 //
685 // TODO: Handle native functions
686 switch (FInfo.getId()) {
688 if (FMF.none())
689 return false;
690 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp,
691 FMF.approxFunc());
693 if (FMF.none())
694 return false;
695 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2,
696 FMF.approxFunc());
698 if (FMF.none())
699 return false;
700 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log,
701 FMF.approxFunc());
703 if (FMF.none())
704 return false;
705 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2,
706 FMF.approxFunc());
708 if (FMF.none())
709 return false;
710 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10,
711 FMF.approxFunc());
713 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum,
714 true, true);
716 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum,
717 true, true);
719 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true,
720 true);
722 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd,
723 true, true);
725 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true,
726 true, true);
728 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign,
729 true, true, true);
731 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true,
732 true);
734 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true,
735 true);
737 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true,
738 true);
740 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true,
741 true);
743 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true,
744 true);
746 if (!shouldReplaceLibcallWithIntrinsic(CI, true, true))
747 return false;
748
749 Value *Arg1 = CI->getArgOperand(1);
750 if (VectorType *VecTy = dyn_cast<VectorType>(CI->getType());
751 VecTy && !isa<VectorType>(Arg1->getType())) {
752 Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1);
753 CI->setArgOperand(1, SplatArg1);
754 }
755
757 CI->getModule(), Intrinsic::ldexp,
758 {CI->getType(), CI->getArgOperand(1)->getType()}));
759 return true;
760 }
762 Module *M = Callee->getParent();
763 AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo);
764 FunctionCallee PowrFunc = getFunction(M, PowrInfo);
765 CallInst *Call = cast<CallInst>(FPOp);
766
767 // pow(x, y) -> powr(x, y) for x >= -0.0
768 // TODO: Account for flags on current call
769 if (PowrFunc &&
771 FPOp->getOperand(0), /*Depth=*/0,
772 SimplifyQuery(M->getDataLayout(), TLInfo, DT, AC, Call))) {
773 Call->setCalledFunction(PowrFunc);
774 return fold_pow(FPOp, B, PowrInfo) || true;
775 }
776
777 // pow(x, y) -> pown(x, y) for known integral y
778 if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(),
779 FPOp->getFastMathFlags())) {
780 FunctionType *PownType = getPownType(CI->getFunctionType());
781 AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true);
782 FunctionCallee PownFunc = getFunction(M, PownInfo);
783 if (PownFunc) {
784 // TODO: If the incoming integral value is an sitofp/uitofp, it won't
785 // fold out without a known range. We can probably take the source
786 // value directly.
787 Value *CastedArg =
788 B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1));
789 // Have to drop any nofpclass attributes on the original call site.
790 Call->removeParamAttrs(
792 Call->setCalledFunction(PownFunc);
793 Call->setArgOperand(1, CastedArg);
794 return fold_pow(FPOp, B, PownInfo) || true;
795 }
796 }
797
798 return fold_pow(FPOp, B, FInfo);
799 }
802 return fold_pow(FPOp, B, FInfo);
804 return fold_rootn(FPOp, B, FInfo);
806 // TODO: Allow with strictfp + constrained intrinsic
807 return tryReplaceLibcallWithSimpleIntrinsic(
808 B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false);
811 return fold_sincos(FPOp, B, FInfo);
812 default:
813 break;
814 }
815 } else {
816 // Specialized optimizations for each function call
817 switch (FInfo.getId()) {
822 return fold_read_write_pipe(CI, B, FInfo);
823 default:
824 break;
825 }
826 }
827
828 return false;
829}
830
831bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
832 // Table-Driven optimization
833 const TableRef tr = getOptTable(FInfo.getId());
834 if (tr.empty())
835 return false;
836
837 int const sz = (int)tr.size();
838 Value *opr0 = CI->getArgOperand(0);
839
840 if (getVecSize(FInfo) > 1) {
841 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
843 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
844 ConstantFP *eltval = dyn_cast<ConstantFP>(
845 CV->getElementAsConstant((unsigned)eltNo));
846 assert(eltval && "Non-FP arguments in math function!");
847 bool found = false;
848 for (int i=0; i < sz; ++i) {
849 if (eltval->isExactlyValue(tr[i].input)) {
850 DVal.push_back(tr[i].result);
851 found = true;
852 break;
853 }
854 }
855 if (!found) {
856 // This vector constants not handled yet.
857 return false;
858 }
859 }
860 LLVMContext &context = CI->getParent()->getParent()->getContext();
861 Constant *nval;
862 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
864 for (double D : DVal)
865 FVal.push_back((float)D);
866 ArrayRef<float> tmp(FVal);
867 nval = ConstantDataVector::get(context, tmp);
868 } else { // F64
869 ArrayRef<double> tmp(DVal);
870 nval = ConstantDataVector::get(context, tmp);
871 }
872 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
873 replaceCall(CI, nval);
874 return true;
875 }
876 } else {
877 // Scalar version
878 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
879 for (int i = 0; i < sz; ++i) {
880 if (CF->isExactlyValue(tr[i].input)) {
881 Value *nval = ConstantFP::get(CF->getType(), tr[i].result);
882 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
883 replaceCall(CI, nval);
884 return true;
885 }
886 }
887 }
888 }
889
890 return false;
891}
892
893namespace llvm {
894static double log2(double V) {
895#if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
896 return ::log2(V);
897#else
898 return log(V) / numbers::ln2;
899#endif
900}
901} // namespace llvm
902
903bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B,
904 const FuncInfo &FInfo) {
905 assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
906 FInfo.getId() == AMDGPULibFunc::EI_POWR ||
907 FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
908 "fold_pow: encounter a wrong function call");
909
910 Module *M = B.GetInsertBlock()->getModule();
911 Type *eltType = FPOp->getType()->getScalarType();
912 Value *opr0 = FPOp->getOperand(0);
913 Value *opr1 = FPOp->getOperand(1);
914
915 const APFloat *CF = nullptr;
916 const APInt *CINT = nullptr;
917 if (!match(opr1, m_APFloatAllowPoison(CF)))
918 match(opr1, m_APIntAllowPoison(CINT));
919
920 // 0x1111111 means that we don't do anything for this call.
921 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
922
923 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) {
924 // pow/powr/pown(x, 0) == 1
925 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n");
926 Constant *cnval = ConstantFP::get(eltType, 1.0);
927 if (getVecSize(FInfo) > 1) {
928 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
929 }
930 replaceCall(FPOp, cnval);
931 return true;
932 }
933 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
934 // pow/powr/pown(x, 1.0) = x
935 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n");
936 replaceCall(FPOp, opr0);
937 return true;
938 }
939 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
940 // pow/powr/pown(x, 2.0) = x*x
941 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * "
942 << *opr0 << "\n");
943 Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
944 replaceCall(FPOp, nval);
945 return true;
946 }
947 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
948 // pow/powr/pown(x, -1.0) = 1.0/x
949 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n");
950 Constant *cnval = ConstantFP::get(eltType, 1.0);
951 if (getVecSize(FInfo) > 1) {
952 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
953 }
954 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
955 replaceCall(FPOp, nval);
956 return true;
957 }
958
959 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
960 // pow[r](x, [-]0.5) = sqrt(x)
961 bool issqrt = CF->isExactlyValue(0.5);
962 if (FunctionCallee FPExpr =
963 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
965 FInfo))) {
966 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName()
967 << '(' << *opr0 << ")\n");
968 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
969 : "__pow2rsqrt");
970 replaceCall(FPOp, nval);
971 return true;
972 }
973 }
974
975 if (!isUnsafeFiniteOnlyMath(FPOp))
976 return false;
977
978 // Unsafe Math optimization
979
980 // Remember that ci_opr1 is set if opr1 is integral
981 if (CF) {
982 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
983 ? (double)CF->convertToFloat()
984 : CF->convertToDouble();
985 int ival = (int)dval;
986 if ((double)ival == dval) {
987 ci_opr1 = ival;
988 } else
989 ci_opr1 = 0x11111111;
990 }
991
992 // pow/powr/pown(x, c) = [1/](x*x*..x); where
993 // trunc(c) == c && the number of x == c && |c| <= 12
994 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
995 if (abs_opr1 <= 12) {
996 Constant *cnval;
997 Value *nval;
998 if (abs_opr1 == 0) {
999 cnval = ConstantFP::get(eltType, 1.0);
1000 if (getVecSize(FInfo) > 1) {
1001 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1002 }
1003 nval = cnval;
1004 } else {
1005 Value *valx2 = nullptr;
1006 nval = nullptr;
1007 while (abs_opr1 > 0) {
1008 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
1009 if (abs_opr1 & 1) {
1010 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
1011 }
1012 abs_opr1 >>= 1;
1013 }
1014 }
1015
1016 if (ci_opr1 < 0) {
1017 cnval = ConstantFP::get(eltType, 1.0);
1018 if (getVecSize(FInfo) > 1) {
1019 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1020 }
1021 nval = B.CreateFDiv(cnval, nval, "__1powprod");
1022 }
1023 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1024 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1025 << ")\n");
1026 replaceCall(FPOp, nval);
1027 return true;
1028 }
1029
1030 // If we should use the generic intrinsic instead of emitting a libcall
1031 const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy();
1032
1033 // powr ---> exp2(y * log2(x))
1034 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1035 FunctionCallee ExpExpr;
1036 if (ShouldUseIntrinsic)
1037 ExpExpr = Intrinsic::getDeclaration(M, Intrinsic::exp2, {FPOp->getType()});
1038 else {
1039 ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1040 if (!ExpExpr)
1041 return false;
1042 }
1043
1044 bool needlog = false;
1045 bool needabs = false;
1046 bool needcopysign = false;
1047 Constant *cnval = nullptr;
1048 if (getVecSize(FInfo) == 1) {
1049 CF = nullptr;
1050 match(opr0, m_APFloatAllowPoison(CF));
1051
1052 if (CF) {
1053 double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1054 ? (double)CF->convertToFloat()
1055 : CF->convertToDouble();
1056
1057 V = log2(std::abs(V));
1058 cnval = ConstantFP::get(eltType, V);
1059 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1060 CF->isNegative();
1061 } else {
1062 needlog = true;
1063 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1064 }
1065 } else {
1066 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1067
1068 if (!CDV) {
1069 needlog = true;
1070 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1071 } else {
1072 assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1073 "Wrong vector size detected");
1074
1076 for (int i=0; i < getVecSize(FInfo); ++i) {
1077 double V = CDV->getElementAsAPFloat(i).convertToDouble();
1078 if (V < 0.0) needcopysign = true;
1079 V = log2(std::abs(V));
1080 DVal.push_back(V);
1081 }
1082 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1084 for (double D : DVal)
1085 FVal.push_back((float)D);
1086 ArrayRef<float> tmp(FVal);
1087 cnval = ConstantDataVector::get(M->getContext(), tmp);
1088 } else {
1089 ArrayRef<double> tmp(DVal);
1090 cnval = ConstantDataVector::get(M->getContext(), tmp);
1091 }
1092 }
1093 }
1094
1095 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1096 // We cannot handle corner cases for a general pow() function, give up
1097 // unless y is a constant integral value. Then proceed as if it were pown.
1098 if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags()))
1099 return false;
1100 }
1101
1102 Value *nval;
1103 if (needabs) {
1104 nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs");
1105 } else {
1106 nval = cnval ? cnval : opr0;
1107 }
1108 if (needlog) {
1109 FunctionCallee LogExpr;
1110 if (ShouldUseIntrinsic) {
1111 LogExpr =
1112 Intrinsic::getDeclaration(M, Intrinsic::log2, {FPOp->getType()});
1113 } else {
1114 LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1115 if (!LogExpr)
1116 return false;
1117 }
1118
1119 nval = CreateCallEx(B,LogExpr, nval, "__log2");
1120 }
1121
1122 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1123 // convert int(32) to fp(f32 or f64)
1124 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1125 }
1126 nval = B.CreateFMul(opr1, nval, "__ylogx");
1127 nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1128
1129 if (needcopysign) {
1130 Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits());
1131 Type *nTy = FPOp->getType()->getWithNewType(nTyS);
1132 unsigned size = nTy->getScalarSizeInBits();
1133 Value *opr_n = FPOp->getOperand(1);
1134 if (opr_n->getType()->getScalarType()->isIntegerTy())
1135 opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou");
1136 else
1137 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1138
1139 Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1140 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1141 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1142 nval = B.CreateBitCast(nval, opr0->getType());
1143 }
1144
1145 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1146 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1147 replaceCall(FPOp, nval);
1148
1149 return true;
1150}
1151
1152bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B,
1153 const FuncInfo &FInfo) {
1154 Value *opr0 = FPOp->getOperand(0);
1155 Value *opr1 = FPOp->getOperand(1);
1156
1157 const APInt *CINT = nullptr;
1158 if (!match(opr1, m_APIntAllowPoison(CINT)))
1159 return false;
1160
1161 Function *Parent = B.GetInsertBlock()->getParent();
1162
1163 int ci_opr1 = (int)CINT->getSExtValue();
1164 if (ci_opr1 == 1 && !Parent->hasFnAttribute(Attribute::StrictFP)) {
1165 // rootn(x, 1) = x
1166 //
1167 // TODO: Insert constrained canonicalize for strictfp case.
1168 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << '\n');
1169 replaceCall(FPOp, opr0);
1170 return true;
1171 }
1172
1173 Module *M = B.GetInsertBlock()->getModule();
1174
1175 CallInst *CI = cast<CallInst>(FPOp);
1176 if (ci_opr1 == 2 &&
1177 shouldReplaceLibcallWithIntrinsic(CI,
1178 /*AllowMinSizeF32=*/true,
1179 /*AllowF64=*/true)) {
1180 // rootn(x, 2) = sqrt(x)
1181 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 << ")\n");
1182
1183 CallInst *NewCall = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1184 NewCall->takeName(CI);
1185
1186 // OpenCL rootn has a looser ulp of 2 requirement than sqrt, so add some
1187 // metadata.
1188 MDBuilder MDHelper(M->getContext());
1189 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1190 NewCall->setMetadata(LLVMContext::MD_fpmath, FPMD);
1191
1192 replaceCall(CI, NewCall);
1193 return true;
1194 }
1195
1196 if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1197 if (FunctionCallee FPExpr =
1198 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1199 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0
1200 << ")\n");
1201 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1202 replaceCall(FPOp, nval);
1203 return true;
1204 }
1205 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1206 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n");
1207 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1208 opr0,
1209 "__rootn2div");
1210 replaceCall(FPOp, nval);
1211 return true;
1212 }
1213
1214 if (ci_opr1 == -2 &&
1215 shouldReplaceLibcallWithIntrinsic(CI,
1216 /*AllowMinSizeF32=*/true,
1217 /*AllowF64=*/true)) {
1218 // rootn(x, -2) = rsqrt(x)
1219
1220 // The original rootn had looser ulp requirements than the resultant sqrt
1221 // and fdiv.
1222 MDBuilder MDHelper(M->getContext());
1223 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1224
1225 // TODO: Could handle strictfp but need to fix strict sqrt emission
1226 FastMathFlags FMF = FPOp->getFastMathFlags();
1227 FMF.setAllowContract(true);
1228
1229 CallInst *Sqrt = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1230 Instruction *RSqrt = cast<Instruction>(
1231 B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), Sqrt));
1232 Sqrt->setFastMathFlags(FMF);
1233 RSqrt->setFastMathFlags(FMF);
1234 RSqrt->setMetadata(LLVMContext::MD_fpmath, FPMD);
1235
1236 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0
1237 << ")\n");
1238 replaceCall(CI, RSqrt);
1239 return true;
1240 }
1241
1242 return false;
1243}
1244
1245// Get a scalar native builtin single argument FP function
1246FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1247 const FuncInfo &FInfo) {
1248 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1249 return nullptr;
1250 FuncInfo nf = FInfo;
1252 return getFunction(M, nf);
1253}
1254
1255// Some library calls are just wrappers around llvm intrinsics, but compiled
1256// conservatively. Preserve the flags from the original call site by
1257// substituting them with direct calls with all the flags.
1258bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
1259 bool AllowMinSizeF32,
1260 bool AllowF64,
1261 bool AllowStrictFP) {
1262 Type *FltTy = CI->getType()->getScalarType();
1263 const bool IsF32 = FltTy->isFloatTy();
1264
1265 // f64 intrinsics aren't implemented for most operations.
1266 if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy()))
1267 return false;
1268
1269 // We're implicitly inlining by replacing the libcall with the intrinsic, so
1270 // don't do it for noinline call sites.
1271 if (CI->isNoInline())
1272 return false;
1273
1274 const Function *ParentF = CI->getFunction();
1275 // TODO: Handle strictfp
1276 if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP))
1277 return false;
1278
1279 if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize())
1280 return false;
1281 return true;
1282}
1283
1284void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B,
1285 CallInst *CI,
1286 Intrinsic::ID IntrID) {
1287 if (CI->arg_size() == 2) {
1288 Value *Arg0 = CI->getArgOperand(0);
1289 Value *Arg1 = CI->getArgOperand(1);
1290 VectorType *Arg0VecTy = dyn_cast<VectorType>(Arg0->getType());
1291 VectorType *Arg1VecTy = dyn_cast<VectorType>(Arg1->getType());
1292 if (Arg0VecTy && !Arg1VecTy) {
1293 Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1);
1294 CI->setArgOperand(1, SplatRHS);
1295 } else if (!Arg0VecTy && Arg1VecTy) {
1296 Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0);
1297 CI->setArgOperand(0, SplatLHS);
1298 }
1299 }
1300
1302 Intrinsic::getDeclaration(CI->getModule(), IntrID, {CI->getType()}));
1303}
1304
1305bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic(
1306 IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32,
1307 bool AllowF64, bool AllowStrictFP) {
1308 if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64,
1309 AllowStrictFP))
1310 return false;
1311 replaceLibCallWithSimpleIntrinsic(B, CI, IntrID);
1312 return true;
1313}
1314
1315std::tuple<Value *, Value *, Value *>
1316AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B,
1317 FunctionCallee Fsincos) {
1318 DebugLoc DL = B.getCurrentDebugLocation();
1319 Function *F = B.GetInsertBlock()->getParent();
1320 B.SetInsertPointPastAllocas(F);
1321
1322 AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_");
1323
1324 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1325 // If the argument is an instruction, it must dominate all uses so put our
1326 // sincos call there. Otherwise, right after the allocas works well enough
1327 // if it's an argument or constant.
1328
1329 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1330
1331 // SetInsertPoint unwelcomely always tries to set the debug loc.
1332 B.SetCurrentDebugLocation(DL);
1333 }
1334
1335 Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1);
1336
1337 // The allocaInst allocates the memory in private address space. This need
1338 // to be addrspacecasted to point to the address space of cos pointer type.
1339 // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1340 Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy);
1341
1342 CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc);
1343
1344 // TODO: Is it worth trying to preserve the location for the cos calls for the
1345 // load?
1346
1347 LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1348 return {SinCos, LoadCos, SinCos};
1349}
1350
1351// fold sin, cos -> sincos.
1352bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B,
1353 const FuncInfo &fInfo) {
1354 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1355 fInfo.getId() == AMDGPULibFunc::EI_COS);
1356
1357 if ((getArgType(fInfo) != AMDGPULibFunc::F32 &&
1358 getArgType(fInfo) != AMDGPULibFunc::F64) ||
1359 fInfo.getPrefix() != AMDGPULibFunc::NOPFX)
1360 return false;
1361
1362 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1363
1364 Value *CArgVal = FPOp->getOperand(0);
1365 CallInst *CI = cast<CallInst>(FPOp);
1366
1367 Function *F = B.GetInsertBlock()->getParent();
1368 Module *M = F->getParent();
1369
1370 // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer
1371 // implementation. Prefer the private form if available.
1372 AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo);
1373 SinCosLibFuncPrivate.getLeads()[0].PtrKind =
1375
1376 AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo);
1377 SinCosLibFuncGeneric.getLeads()[0].PtrKind =
1379
1380 FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate);
1381 FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric);
1382 FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric;
1383 if (!FSinCos)
1384 return false;
1385
1386 SmallVector<CallInst *> SinCalls;
1387 SmallVector<CallInst *> CosCalls;
1388 SmallVector<CallInst *> SinCosCalls;
1389 FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN,
1390 fInfo);
1391 const std::string PairName = PartnerInfo.mangle();
1392
1393 StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName;
1394 StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName();
1395 const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle();
1396 const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle();
1397
1398 // Intersect the two sets of flags.
1399 FastMathFlags FMF = FPOp->getFastMathFlags();
1400 MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath);
1401
1402 SmallVector<DILocation *> MergeDbgLocs = {CI->getDebugLoc()};
1403
1404 for (User* U : CArgVal->users()) {
1405 CallInst *XI = dyn_cast<CallInst>(U);
1406 if (!XI || XI->getFunction() != F || XI->isNoBuiltin())
1407 continue;
1408
1409 Function *UCallee = XI->getCalledFunction();
1410 if (!UCallee)
1411 continue;
1412
1413 bool Handled = true;
1414
1415 if (UCallee->getName() == SinName)
1416 SinCalls.push_back(XI);
1417 else if (UCallee->getName() == CosName)
1418 CosCalls.push_back(XI);
1419 else if (UCallee->getName() == SinCosPrivateName ||
1420 UCallee->getName() == SinCosGenericName)
1421 SinCosCalls.push_back(XI);
1422 else
1423 Handled = false;
1424
1425 if (Handled) {
1426 MergeDbgLocs.push_back(XI->getDebugLoc());
1427 auto *OtherOp = cast<FPMathOperator>(XI);
1428 FMF &= OtherOp->getFastMathFlags();
1430 FPMath, XI->getMetadata(LLVMContext::MD_fpmath));
1431 }
1432 }
1433
1434 if (SinCalls.empty() || CosCalls.empty())
1435 return false;
1436
1437 B.setFastMathFlags(FMF);
1438 B.setDefaultFPMathTag(FPMath);
1439 DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs);
1440 B.SetCurrentDebugLocation(DbgLoc);
1441
1442 auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos);
1443
1444 auto replaceTrigInsts = [](ArrayRef<CallInst *> Calls, Value *Res) {
1445 for (CallInst *C : Calls)
1446 C->replaceAllUsesWith(Res);
1447
1448 // Leave the other dead instructions to avoid clobbering iterators.
1449 };
1450
1451 replaceTrigInsts(SinCalls, Sin);
1452 replaceTrigInsts(CosCalls, Cos);
1453 replaceTrigInsts(SinCosCalls, SinCos);
1454
1455 // It's safe to delete the original now.
1456 CI->eraseFromParent();
1457 return true;
1458}
1459
1460bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0,
1461 double &Res1, Constant *copr0,
1462 Constant *copr1) {
1463 // By default, opr0/opr1/opr3 holds values of float/double type.
1464 // If they are not float/double, each function has to its
1465 // operand separately.
1466 double opr0 = 0.0, opr1 = 0.0;
1467 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1468 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1469 if (fpopr0) {
1470 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1471 ? fpopr0->getValueAPF().convertToDouble()
1472 : (double)fpopr0->getValueAPF().convertToFloat();
1473 }
1474
1475 if (fpopr1) {
1476 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1477 ? fpopr1->getValueAPF().convertToDouble()
1478 : (double)fpopr1->getValueAPF().convertToFloat();
1479 }
1480
1481 switch (FInfo.getId()) {
1482 default : return false;
1483
1485 Res0 = acos(opr0);
1486 return true;
1487
1489 // acosh(x) == log(x + sqrt(x*x - 1))
1490 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1491 return true;
1492
1494 Res0 = acos(opr0) / MATH_PI;
1495 return true;
1496
1498 Res0 = asin(opr0);
1499 return true;
1500
1502 // asinh(x) == log(x + sqrt(x*x + 1))
1503 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1504 return true;
1505
1507 Res0 = asin(opr0) / MATH_PI;
1508 return true;
1509
1511 Res0 = atan(opr0);
1512 return true;
1513
1515 // atanh(x) == (log(x+1) - log(x-1))/2;
1516 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1517 return true;
1518
1520 Res0 = atan(opr0) / MATH_PI;
1521 return true;
1522
1524 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1525 return true;
1526
1528 Res0 = cos(opr0);
1529 return true;
1530
1532 Res0 = cosh(opr0);
1533 return true;
1534
1536 Res0 = cos(MATH_PI * opr0);
1537 return true;
1538
1540 Res0 = exp(opr0);
1541 return true;
1542
1544 Res0 = pow(2.0, opr0);
1545 return true;
1546
1548 Res0 = pow(10.0, opr0);
1549 return true;
1550
1552 Res0 = log(opr0);
1553 return true;
1554
1556 Res0 = log(opr0) / log(2.0);
1557 return true;
1558
1560 Res0 = log(opr0) / log(10.0);
1561 return true;
1562
1564 Res0 = 1.0 / sqrt(opr0);
1565 return true;
1566
1568 Res0 = sin(opr0);
1569 return true;
1570
1572 Res0 = sinh(opr0);
1573 return true;
1574
1576 Res0 = sin(MATH_PI * opr0);
1577 return true;
1578
1580 Res0 = tan(opr0);
1581 return true;
1582
1584 Res0 = tanh(opr0);
1585 return true;
1586
1588 Res0 = tan(MATH_PI * opr0);
1589 return true;
1590
1591 // two-arg functions
1594 Res0 = pow(opr0, opr1);
1595 return true;
1596
1598 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1599 double val = (double)iopr1->getSExtValue();
1600 Res0 = pow(opr0, val);
1601 return true;
1602 }
1603 return false;
1604 }
1605
1607 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1608 double val = (double)iopr1->getSExtValue();
1609 Res0 = pow(opr0, 1.0 / val);
1610 return true;
1611 }
1612 return false;
1613 }
1614
1615 // with ptr arg
1617 Res0 = sin(opr0);
1618 Res1 = cos(opr0);
1619 return true;
1620 }
1621
1622 return false;
1623}
1624
1625bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1626 int numArgs = (int)aCI->arg_size();
1627 if (numArgs > 3)
1628 return false;
1629
1630 Constant *copr0 = nullptr;
1631 Constant *copr1 = nullptr;
1632 if (numArgs > 0) {
1633 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1634 return false;
1635 }
1636
1637 if (numArgs > 1) {
1638 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1639 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1640 return false;
1641 }
1642 }
1643
1644 // At this point, all arguments to aCI are constants.
1645
1646 // max vector size is 16, and sincos will generate two results.
1647 double DVal0[16], DVal1[16];
1648 int FuncVecSize = getVecSize(FInfo);
1649 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1650 if (FuncVecSize == 1) {
1651 if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) {
1652 return false;
1653 }
1654 } else {
1655 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1656 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1657 for (int i = 0; i < FuncVecSize; ++i) {
1658 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1659 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1660 if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) {
1661 return false;
1662 }
1663 }
1664 }
1665
1666 LLVMContext &context = aCI->getContext();
1667 Constant *nval0, *nval1;
1668 if (FuncVecSize == 1) {
1669 nval0 = ConstantFP::get(aCI->getType(), DVal0[0]);
1670 if (hasTwoResults)
1671 nval1 = ConstantFP::get(aCI->getType(), DVal1[0]);
1672 } else {
1673 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1674 SmallVector <float, 0> FVal0, FVal1;
1675 for (int i = 0; i < FuncVecSize; ++i)
1676 FVal0.push_back((float)DVal0[i]);
1677 ArrayRef<float> tmp0(FVal0);
1678 nval0 = ConstantDataVector::get(context, tmp0);
1679 if (hasTwoResults) {
1680 for (int i = 0; i < FuncVecSize; ++i)
1681 FVal1.push_back((float)DVal1[i]);
1682 ArrayRef<float> tmp1(FVal1);
1683 nval1 = ConstantDataVector::get(context, tmp1);
1684 }
1685 } else {
1686 ArrayRef<double> tmp0(DVal0);
1687 nval0 = ConstantDataVector::get(context, tmp0);
1688 if (hasTwoResults) {
1689 ArrayRef<double> tmp1(DVal1);
1690 nval1 = ConstantDataVector::get(context, tmp1);
1691 }
1692 }
1693 }
1694
1695 if (hasTwoResults) {
1696 // sincos
1697 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1698 "math function with ptr arg not supported yet");
1699 new StoreInst(nval1, aCI->getArgOperand(1), aCI->getIterator());
1700 }
1701
1702 replaceCall(aCI, nval0);
1703 return true;
1704}
1705
1708 AMDGPULibCalls Simplifier;
1709 Simplifier.initNativeFuncs();
1710 Simplifier.initFunction(F, AM);
1711
1712 bool Changed = false;
1713
1714 LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1715 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1716
1717 for (auto &BB : F) {
1718 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1719 // Ignore non-calls.
1720 CallInst *CI = dyn_cast<CallInst>(I);
1721 ++I;
1722
1723 if (CI) {
1724 if (Simplifier.fold(CI))
1725 Changed = true;
1726 }
1727 }
1728 }
1729 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1730}
1731
1734 if (UseNative.empty())
1735 return PreservedAnalyses::all();
1736
1737 AMDGPULibCalls Simplifier;
1738 Simplifier.initNativeFuncs();
1739 Simplifier.initFunction(F, AM);
1740
1741 bool Changed = false;
1742 for (auto &BB : F) {
1743 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1744 // Ignore non-calls.
1745 CallInst *CI = dyn_cast<CallInst>(I);
1746 ++I;
1747 if (CI && Simplifier.useNative(CI))
1748 Changed = true;
1749 }
1750 }
1751 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1752}
static bool isKnownIntegral(const Value *V, const DataLayout &DL, FastMathFlags FMF)
static const TableEntry tbl_log[]
static const TableEntry tbl_tgamma[]
static AMDGPULibFunc::EType getArgType(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_expm1[]
static const TableEntry tbl_asinpi[]
static const TableEntry tbl_cos[]
#define MATH_SQRT2
static const TableEntry tbl_exp10[]
static CallInst * CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, const Twine &Name="")
static CallInst * CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, Value *Arg2, const Twine &Name="")
static const TableEntry tbl_rsqrt[]
static const TableEntry tbl_atanh[]
static const TableEntry tbl_cosh[]
static const TableEntry tbl_asin[]
static const TableEntry tbl_sinh[]
static const TableEntry tbl_acos[]
static const TableEntry tbl_tan[]
static const TableEntry tbl_cospi[]
static const TableEntry tbl_tanpi[]
static cl::opt< bool > EnablePreLink("amdgpu-prelink", cl::desc("Enable pre-link mode optimizations"), cl::init(false), cl::Hidden)
static bool HasNative(AMDGPULibFunc::EFuncId id)
ArrayRef< TableEntry > TableRef
static int getVecSize(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_sin[]
static const TableEntry tbl_atan[]
static const TableEntry tbl_log2[]
static const TableEntry tbl_acospi[]
static const TableEntry tbl_sqrt[]
static const TableEntry tbl_asinh[]
#define MATH_E
static TableRef getOptTable(AMDGPULibFunc::EFuncId id)
static const TableEntry tbl_acosh[]
static const TableEntry tbl_exp[]
static const TableEntry tbl_cbrt[]
static const TableEntry tbl_sinpi[]
static const TableEntry tbl_atanpi[]
#define MATH_PI
static FunctionType * getPownType(FunctionType *FT)
static const TableEntry tbl_erf[]
static const TableEntry tbl_log10[]
#define MATH_SQRT1_2
static const TableEntry tbl_erfc[]
static cl::list< std::string > UseNative("amdgpu-use-native", cl::desc("Comma separated list of functions to replace with native, or all"), cl::CommaSeparated, cl::ValueOptional, cl::Hidden)
static const TableEntry tbl_tanh[]
static const TableEntry tbl_exp2[]
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:64
std::string Name
uint64_t Size
AMD GCN specific subclass of TargetSubtarget.
loop term fold
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
FunctionAnalysisManager FAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static void replaceCall(FPMathOperator *I, Value *With)
bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const
bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const
bool fold(CallInst *CI)
static void replaceCall(Instruction *I, Value *With)
bool useNative(CallInst *CI)
void initFunction(Function &F, FunctionAnalysisManager &FAM)
AMDGPULibCalls()=default
bool isUnsafeMath(const FPMathOperator *FPOp) const
static unsigned getEPtrKindFromAddrSpace(unsigned AS)
Wrapper class for AMDGPULIbFuncImpl.
static bool parse(StringRef MangledName, AMDGPULibFunc &Ptr)
std::string getName() const
Get unmangled name for mangled library function and name for unmangled library function.
static FunctionCallee getOrInsertFunction(llvm::Module *M, const AMDGPULibFunc &fInfo)
void setPrefix(ENamePrefix PFX)
EFuncId getId() const
bool isCompatibleSignature(const FunctionType *FuncTy) const
bool isMangled() const
Param * getLeads()
Get leading parameters for mangled lib functions.
void setId(EFuncId Id)
ENamePrefix getPrefix() const
bool isNegative() const
Definition: APFloat.h:1360
double convertToDouble() const
Converts this APFloat to host double value.
Definition: APFloat.cpp:5396
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: APFloat.h:1343
float convertToFloat() const
Converts this APFloat to host float value.
Definition: APFloat.cpp:5424
bool isZero() const
Definition: APFloat.h:1356
bool isInteger() const
Definition: APFloat.h:1377
Class for arbitrary precision integers.
Definition: APInt.h:78
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1520
an instruction to allocate memory on the stack
Definition: Instructions.h:61
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:424
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:405
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Definition: InstrTypes.h:1965
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
Definition: InstrTypes.h:1971
bool isNoInline() const
Return true if the call should not be inlined.
Definition: InstrTypes.h:1974
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1410
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1415
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1323
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
unsigned arg_size() const
Definition: InstrTypes.h:1408
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1542
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1504
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
unsigned getNumElements() const
Return the number of elements in the array or vector.
Definition: Constants.cpp:2817
Constant * getElementAsConstant(unsigned i) const
Return a Constant for a specified index's element.
Definition: Constants.cpp:3159
APFloat getElementAsAPFloat(unsigned i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
Definition: Constants.cpp:3122
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:767
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
Definition: Constants.cpp:3027
static Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
Definition: Constants.cpp:2966
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:269
const APFloat & getValue() const
Definition: Constants.h:313
const APFloat & getValueAPF() const
Definition: Constants.h:312
bool isExactlyValue(const APFloat &V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: Constants.cpp:1100
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:155
Align getAlignValue() const
Return the constant as an llvm::Align, interpreting 0 as Align(1).
Definition: Constants.h:173
This is an important base class in LLVM.
Definition: Constant.h:42
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:432
Debug location.
static DILocation * getMergedLocations(ArrayRef< DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
A debug info location.
Definition: DebugLoc.h:33
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:202
bool isFast() const
Test if this operation allows all non-strict floating-point transforms.
Definition: Operator.h:273
bool hasNoNaNs() const
Test if this operation's arguments and results are assumed not-NaN.
Definition: Operator.h:289
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:320
bool hasNoInfs() const
Test if this operation's arguments and results are assumed not-infinite.
Definition: Operator.h:294
bool hasApproxFunc() const
Test if this operation allows approximations of math library functions or intrinsics.
Definition: Operator.h:315
float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
void setAllowContract(bool B=true)
Definition: FMF.h:91
bool noInfs() const
Definition: FMF.h:67
bool none() const
Definition: FMF.h:58
bool approxFunc() const
Definition: FMF.h:71
bool noNaNs() const
Definition: FMF.h:66
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:168
FunctionType * getFunctionType()
Definition: DerivedTypes.h:185
Class to represent function types.
Definition: DerivedTypes.h:103
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:702
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:743
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2686
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:466
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:66
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:92
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:70
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:381
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1642
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:174
Metadata node.
Definition: Metadata.h:1069
static MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1173
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:114
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
bool empty() const
Definition: SmallVector.h:94
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:290
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:153
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:142
Type * getWithNewType(Type *EltTy) const
Given vector type, change the element type, whilst keeping the old number of elements.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:156
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:224
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:343
void dropAllReferences()
Drop all references to operands.
Definition: User.h:299
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Base class of all SIMD vector types.
Definition: DerivedTypes.h:403
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
@ FLAT_ADDRESS
Address space for flat memory.
@ PRIVATE_ADDRESS
Address space for private memory.
AttributeMask typeIncompatible(Type *Ty, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1539
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:305
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
Definition: PatternMatch.h:322
@ ValueOptional
Definition: CommandLine.h:130
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
@ CommaSeparated
Definition: CommandLine.h:163
constexpr double ln2
Definition: MathExtras.h:49
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static double log2(double V)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
bool isKnownNeverInfinity(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point value can never contain a NaN or infinity.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1886
bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39