LLVM 22.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/Loads.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/CallingConv.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <cstring>
62#include <string>
63#include <tuple>
64#include <utility>
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81/// Minimum jump table density for normal functions.
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87/// Minimum jump table density for -Os or -Oz functions.
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
94 "min-bit-test-cmps", cl::init(2), cl::Hidden,
95 cl::desc("Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
97
98// FIXME: This option is only to test if the strict fp operation processed
99// correctly by preventing mutating strict fp operation to normal fp operation
100// during development. When the backend supports strict float operation, this
101// option will be meaningless.
102static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
103 cl::desc("Don't mutate strict-float node to a legalize node"),
104 cl::init(false), cl::Hidden);
105
106LLVM_ABI RTLIB::Libcall RTLIB::getSHL(EVT VT) {
107 if (VT == MVT::i16)
108 return RTLIB::SHL_I16;
109 if (VT == MVT::i32)
110 return RTLIB::SHL_I32;
111 if (VT == MVT::i64)
112 return RTLIB::SHL_I64;
113 if (VT == MVT::i128)
114 return RTLIB::SHL_I128;
115
116 return RTLIB::UNKNOWN_LIBCALL;
117}
118
119LLVM_ABI RTLIB::Libcall RTLIB::getSRL(EVT VT) {
120 if (VT == MVT::i16)
121 return RTLIB::SRL_I16;
122 if (VT == MVT::i32)
123 return RTLIB::SRL_I32;
124 if (VT == MVT::i64)
125 return RTLIB::SRL_I64;
126 if (VT == MVT::i128)
127 return RTLIB::SRL_I128;
128
129 return RTLIB::UNKNOWN_LIBCALL;
130}
131
132LLVM_ABI RTLIB::Libcall RTLIB::getSRA(EVT VT) {
133 if (VT == MVT::i16)
134 return RTLIB::SRA_I16;
135 if (VT == MVT::i32)
136 return RTLIB::SRA_I32;
137 if (VT == MVT::i64)
138 return RTLIB::SRA_I64;
139 if (VT == MVT::i128)
140 return RTLIB::SRA_I128;
141
142 return RTLIB::UNKNOWN_LIBCALL;
143}
144
145LLVM_ABI RTLIB::Libcall RTLIB::getMUL(EVT VT) {
146 if (VT == MVT::i16)
147 return RTLIB::MUL_I16;
148 if (VT == MVT::i32)
149 return RTLIB::MUL_I32;
150 if (VT == MVT::i64)
151 return RTLIB::MUL_I64;
152 if (VT == MVT::i128)
153 return RTLIB::MUL_I128;
154 return RTLIB::UNKNOWN_LIBCALL;
155}
156
157LLVM_ABI RTLIB::Libcall RTLIB::getMULO(EVT VT) {
158 if (VT == MVT::i32)
159 return RTLIB::MULO_I32;
160 if (VT == MVT::i64)
161 return RTLIB::MULO_I64;
162 if (VT == MVT::i128)
163 return RTLIB::MULO_I128;
164 return RTLIB::UNKNOWN_LIBCALL;
165}
166
167LLVM_ABI RTLIB::Libcall RTLIB::getSDIV(EVT VT) {
168 if (VT == MVT::i16)
169 return RTLIB::SDIV_I16;
170 if (VT == MVT::i32)
171 return RTLIB::SDIV_I32;
172 if (VT == MVT::i64)
173 return RTLIB::SDIV_I64;
174 if (VT == MVT::i128)
175 return RTLIB::SDIV_I128;
176 return RTLIB::UNKNOWN_LIBCALL;
177}
178
179LLVM_ABI RTLIB::Libcall RTLIB::getUDIV(EVT VT) {
180 if (VT == MVT::i16)
181 return RTLIB::UDIV_I16;
182 if (VT == MVT::i32)
183 return RTLIB::UDIV_I32;
184 if (VT == MVT::i64)
185 return RTLIB::UDIV_I64;
186 if (VT == MVT::i128)
187 return RTLIB::UDIV_I128;
188 return RTLIB::UNKNOWN_LIBCALL;
189}
190
191LLVM_ABI RTLIB::Libcall RTLIB::getSREM(EVT VT) {
192 if (VT == MVT::i16)
193 return RTLIB::SREM_I16;
194 if (VT == MVT::i32)
195 return RTLIB::SREM_I32;
196 if (VT == MVT::i64)
197 return RTLIB::SREM_I64;
198 if (VT == MVT::i128)
199 return RTLIB::SREM_I128;
200 return RTLIB::UNKNOWN_LIBCALL;
201}
202
203LLVM_ABI RTLIB::Libcall RTLIB::getUREM(EVT VT) {
204 if (VT == MVT::i16)
205 return RTLIB::UREM_I16;
206 if (VT == MVT::i32)
207 return RTLIB::UREM_I32;
208 if (VT == MVT::i64)
209 return RTLIB::UREM_I64;
210 if (VT == MVT::i128)
211 return RTLIB::UREM_I128;
212 return RTLIB::UNKNOWN_LIBCALL;
213}
214
215LLVM_ABI RTLIB::Libcall RTLIB::getCTPOP(EVT VT) {
216 if (VT == MVT::i32)
217 return RTLIB::CTPOP_I32;
218 if (VT == MVT::i64)
219 return RTLIB::CTPOP_I64;
220 if (VT == MVT::i128)
221 return RTLIB::CTPOP_I128;
222 return RTLIB::UNKNOWN_LIBCALL;
223}
224
225/// GetFPLibCall - Helper to return the right libcall for the given floating
226/// point type, or UNKNOWN_LIBCALL if there is none.
227RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
228 RTLIB::Libcall Call_F32,
229 RTLIB::Libcall Call_F64,
230 RTLIB::Libcall Call_F80,
231 RTLIB::Libcall Call_F128,
232 RTLIB::Libcall Call_PPCF128) {
233 return
234 VT == MVT::f32 ? Call_F32 :
235 VT == MVT::f64 ? Call_F64 :
236 VT == MVT::f80 ? Call_F80 :
237 VT == MVT::f128 ? Call_F128 :
238 VT == MVT::ppcf128 ? Call_PPCF128 :
239 RTLIB::UNKNOWN_LIBCALL;
240}
241
242/// getFPEXT - Return the FPEXT_*_* value for the given types, or
243/// UNKNOWN_LIBCALL if there is none.
244RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
245 if (OpVT == MVT::f16) {
246 if (RetVT == MVT::f32)
247 return FPEXT_F16_F32;
248 if (RetVT == MVT::f64)
249 return FPEXT_F16_F64;
250 if (RetVT == MVT::f80)
251 return FPEXT_F16_F80;
252 if (RetVT == MVT::f128)
253 return FPEXT_F16_F128;
254 } else if (OpVT == MVT::f32) {
255 if (RetVT == MVT::f64)
256 return FPEXT_F32_F64;
257 if (RetVT == MVT::f128)
258 return FPEXT_F32_F128;
259 if (RetVT == MVT::ppcf128)
260 return FPEXT_F32_PPCF128;
261 } else if (OpVT == MVT::f64) {
262 if (RetVT == MVT::f128)
263 return FPEXT_F64_F128;
264 else if (RetVT == MVT::ppcf128)
265 return FPEXT_F64_PPCF128;
266 } else if (OpVT == MVT::f80) {
267 if (RetVT == MVT::f128)
268 return FPEXT_F80_F128;
269 } else if (OpVT == MVT::bf16) {
270 if (RetVT == MVT::f32)
271 return FPEXT_BF16_F32;
272 }
273
274 return UNKNOWN_LIBCALL;
275}
276
277/// getFPROUND - Return the FPROUND_*_* value for the given types, or
278/// UNKNOWN_LIBCALL if there is none.
279RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
280 if (RetVT == MVT::f16) {
281 if (OpVT == MVT::f32)
282 return FPROUND_F32_F16;
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F16;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F16;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F16;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F16;
291 } else if (RetVT == MVT::bf16) {
292 if (OpVT == MVT::f32)
293 return FPROUND_F32_BF16;
294 if (OpVT == MVT::f64)
295 return FPROUND_F64_BF16;
296 if (OpVT == MVT::f80)
297 return FPROUND_F80_BF16;
298 if (OpVT == MVT::f128)
299 return FPROUND_F128_BF16;
300 } else if (RetVT == MVT::f32) {
301 if (OpVT == MVT::f64)
302 return FPROUND_F64_F32;
303 if (OpVT == MVT::f80)
304 return FPROUND_F80_F32;
305 if (OpVT == MVT::f128)
306 return FPROUND_F128_F32;
307 if (OpVT == MVT::ppcf128)
308 return FPROUND_PPCF128_F32;
309 } else if (RetVT == MVT::f64) {
310 if (OpVT == MVT::f80)
311 return FPROUND_F80_F64;
312 if (OpVT == MVT::f128)
313 return FPROUND_F128_F64;
314 if (OpVT == MVT::ppcf128)
315 return FPROUND_PPCF128_F64;
316 } else if (RetVT == MVT::f80) {
317 if (OpVT == MVT::f128)
318 return FPROUND_F128_F80;
319 }
320
321 return UNKNOWN_LIBCALL;
322}
323
324/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
325/// UNKNOWN_LIBCALL if there is none.
326RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
327 if (OpVT == MVT::f16) {
328 if (RetVT == MVT::i32)
329 return FPTOSINT_F16_I32;
330 if (RetVT == MVT::i64)
331 return FPTOSINT_F16_I64;
332 if (RetVT == MVT::i128)
333 return FPTOSINT_F16_I128;
334 } else if (OpVT == MVT::f32) {
335 if (RetVT == MVT::i32)
336 return FPTOSINT_F32_I32;
337 if (RetVT == MVT::i64)
338 return FPTOSINT_F32_I64;
339 if (RetVT == MVT::i128)
340 return FPTOSINT_F32_I128;
341 } else if (OpVT == MVT::f64) {
342 if (RetVT == MVT::i32)
343 return FPTOSINT_F64_I32;
344 if (RetVT == MVT::i64)
345 return FPTOSINT_F64_I64;
346 if (RetVT == MVT::i128)
347 return FPTOSINT_F64_I128;
348 } else if (OpVT == MVT::f80) {
349 if (RetVT == MVT::i32)
350 return FPTOSINT_F80_I32;
351 if (RetVT == MVT::i64)
352 return FPTOSINT_F80_I64;
353 if (RetVT == MVT::i128)
354 return FPTOSINT_F80_I128;
355 } else if (OpVT == MVT::f128) {
356 if (RetVT == MVT::i32)
357 return FPTOSINT_F128_I32;
358 if (RetVT == MVT::i64)
359 return FPTOSINT_F128_I64;
360 if (RetVT == MVT::i128)
361 return FPTOSINT_F128_I128;
362 } else if (OpVT == MVT::ppcf128) {
363 if (RetVT == MVT::i32)
364 return FPTOSINT_PPCF128_I32;
365 if (RetVT == MVT::i64)
366 return FPTOSINT_PPCF128_I64;
367 if (RetVT == MVT::i128)
368 return FPTOSINT_PPCF128_I128;
369 }
370 return UNKNOWN_LIBCALL;
371}
372
373/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
374/// UNKNOWN_LIBCALL if there is none.
375RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
376 if (OpVT == MVT::f16) {
377 if (RetVT == MVT::i32)
378 return FPTOUINT_F16_I32;
379 if (RetVT == MVT::i64)
380 return FPTOUINT_F16_I64;
381 if (RetVT == MVT::i128)
382 return FPTOUINT_F16_I128;
383 } else if (OpVT == MVT::f32) {
384 if (RetVT == MVT::i32)
385 return FPTOUINT_F32_I32;
386 if (RetVT == MVT::i64)
387 return FPTOUINT_F32_I64;
388 if (RetVT == MVT::i128)
389 return FPTOUINT_F32_I128;
390 } else if (OpVT == MVT::f64) {
391 if (RetVT == MVT::i32)
392 return FPTOUINT_F64_I32;
393 if (RetVT == MVT::i64)
394 return FPTOUINT_F64_I64;
395 if (RetVT == MVT::i128)
396 return FPTOUINT_F64_I128;
397 } else if (OpVT == MVT::f80) {
398 if (RetVT == MVT::i32)
399 return FPTOUINT_F80_I32;
400 if (RetVT == MVT::i64)
401 return FPTOUINT_F80_I64;
402 if (RetVT == MVT::i128)
403 return FPTOUINT_F80_I128;
404 } else if (OpVT == MVT::f128) {
405 if (RetVT == MVT::i32)
406 return FPTOUINT_F128_I32;
407 if (RetVT == MVT::i64)
408 return FPTOUINT_F128_I64;
409 if (RetVT == MVT::i128)
410 return FPTOUINT_F128_I128;
411 } else if (OpVT == MVT::ppcf128) {
412 if (RetVT == MVT::i32)
413 return FPTOUINT_PPCF128_I32;
414 if (RetVT == MVT::i64)
415 return FPTOUINT_PPCF128_I64;
416 if (RetVT == MVT::i128)
417 return FPTOUINT_PPCF128_I128;
418 }
419 return UNKNOWN_LIBCALL;
420}
421
422/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
423/// UNKNOWN_LIBCALL if there is none.
424RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
425 if (OpVT == MVT::i32) {
426 if (RetVT == MVT::f16)
427 return SINTTOFP_I32_F16;
428 if (RetVT == MVT::f32)
429 return SINTTOFP_I32_F32;
430 if (RetVT == MVT::f64)
431 return SINTTOFP_I32_F64;
432 if (RetVT == MVT::f80)
433 return SINTTOFP_I32_F80;
434 if (RetVT == MVT::f128)
435 return SINTTOFP_I32_F128;
436 if (RetVT == MVT::ppcf128)
437 return SINTTOFP_I32_PPCF128;
438 } else if (OpVT == MVT::i64) {
439 if (RetVT == MVT::bf16)
440 return SINTTOFP_I64_BF16;
441 if (RetVT == MVT::f16)
442 return SINTTOFP_I64_F16;
443 if (RetVT == MVT::f32)
444 return SINTTOFP_I64_F32;
445 if (RetVT == MVT::f64)
446 return SINTTOFP_I64_F64;
447 if (RetVT == MVT::f80)
448 return SINTTOFP_I64_F80;
449 if (RetVT == MVT::f128)
450 return SINTTOFP_I64_F128;
451 if (RetVT == MVT::ppcf128)
452 return SINTTOFP_I64_PPCF128;
453 } else if (OpVT == MVT::i128) {
454 if (RetVT == MVT::f16)
455 return SINTTOFP_I128_F16;
456 if (RetVT == MVT::f32)
457 return SINTTOFP_I128_F32;
458 if (RetVT == MVT::f64)
459 return SINTTOFP_I128_F64;
460 if (RetVT == MVT::f80)
461 return SINTTOFP_I128_F80;
462 if (RetVT == MVT::f128)
463 return SINTTOFP_I128_F128;
464 if (RetVT == MVT::ppcf128)
465 return SINTTOFP_I128_PPCF128;
466 }
467 return UNKNOWN_LIBCALL;
468}
469
470/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
471/// UNKNOWN_LIBCALL if there is none.
472RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
473 if (OpVT == MVT::i32) {
474 if (RetVT == MVT::f16)
475 return UINTTOFP_I32_F16;
476 if (RetVT == MVT::f32)
477 return UINTTOFP_I32_F32;
478 if (RetVT == MVT::f64)
479 return UINTTOFP_I32_F64;
480 if (RetVT == MVT::f80)
481 return UINTTOFP_I32_F80;
482 if (RetVT == MVT::f128)
483 return UINTTOFP_I32_F128;
484 if (RetVT == MVT::ppcf128)
485 return UINTTOFP_I32_PPCF128;
486 } else if (OpVT == MVT::i64) {
487 if (RetVT == MVT::bf16)
488 return UINTTOFP_I64_BF16;
489 if (RetVT == MVT::f16)
490 return UINTTOFP_I64_F16;
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I64_F32;
493 if (RetVT == MVT::f64)
494 return UINTTOFP_I64_F64;
495 if (RetVT == MVT::f80)
496 return UINTTOFP_I64_F80;
497 if (RetVT == MVT::f128)
498 return UINTTOFP_I64_F128;
499 if (RetVT == MVT::ppcf128)
500 return UINTTOFP_I64_PPCF128;
501 } else if (OpVT == MVT::i128) {
502 if (RetVT == MVT::f16)
503 return UINTTOFP_I128_F16;
504 if (RetVT == MVT::f32)
505 return UINTTOFP_I128_F32;
506 if (RetVT == MVT::f64)
507 return UINTTOFP_I128_F64;
508 if (RetVT == MVT::f80)
509 return UINTTOFP_I128_F80;
510 if (RetVT == MVT::f128)
511 return UINTTOFP_I128_F128;
512 if (RetVT == MVT::ppcf128)
513 return UINTTOFP_I128_PPCF128;
514 }
515 return UNKNOWN_LIBCALL;
516}
517
518RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
519 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
520 POWI_PPCF128);
521}
522
523RTLIB::Libcall RTLIB::getPOW(EVT RetVT) {
524 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
525}
526
527RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
528 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
529 LDEXP_PPCF128);
530}
531
532RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
533 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
534 FREXP_PPCF128);
535}
536
537RTLIB::Libcall RTLIB::getSIN(EVT RetVT) {
538 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
539}
540
541RTLIB::Libcall RTLIB::getCOS(EVT RetVT) {
542 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
543}
544
545RTLIB::Libcall RTLIB::getSINCOS(EVT RetVT) {
546 // TODO: Tablegen should generate this function
547 if (RetVT.isVector()) {
548 if (!RetVT.isSimple())
549 return RTLIB::UNKNOWN_LIBCALL;
550 switch (RetVT.getSimpleVT().SimpleTy) {
551 case MVT::v4f32:
552 return RTLIB::SINCOS_V4F32;
553 case MVT::v2f64:
554 return RTLIB::SINCOS_V2F64;
555 case MVT::nxv4f32:
556 return RTLIB::SINCOS_NXV4F32;
557 case MVT::nxv2f64:
558 return RTLIB::SINCOS_NXV2F64;
559 default:
560 return RTLIB::UNKNOWN_LIBCALL;
561 }
562 }
563
564 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
565 SINCOS_PPCF128);
566}
567
568RTLIB::Libcall RTLIB::getSINCOSPI(EVT RetVT) {
569 // TODO: Tablegen should generate this function
570 if (RetVT.isVector()) {
571 if (!RetVT.isSimple())
572 return RTLIB::UNKNOWN_LIBCALL;
573 switch (RetVT.getSimpleVT().SimpleTy) {
574 case MVT::v4f32:
575 return RTLIB::SINCOSPI_V4F32;
576 case MVT::v2f64:
577 return RTLIB::SINCOSPI_V2F64;
578 case MVT::nxv4f32:
579 return RTLIB::SINCOSPI_NXV4F32;
580 case MVT::nxv2f64:
581 return RTLIB::SINCOSPI_NXV2F64;
582 default:
583 return RTLIB::UNKNOWN_LIBCALL;
584 }
585 }
586
587 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
588 SINCOSPI_F128, SINCOSPI_PPCF128);
589}
590
591RTLIB::Libcall RTLIB::getSINCOS_STRET(EVT RetVT) {
592 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
593 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
594}
595
596RTLIB::Libcall RTLIB::getREM(EVT VT) {
597 // TODO: Tablegen should generate this function
598 if (VT.isVector()) {
599 if (!VT.isSimple())
600 return RTLIB::UNKNOWN_LIBCALL;
601 switch (VT.getSimpleVT().SimpleTy) {
602 case MVT::v4f32:
603 return RTLIB::REM_V4F32;
604 case MVT::v2f64:
605 return RTLIB::REM_V2F64;
606 case MVT::nxv4f32:
607 return RTLIB::REM_NXV4F32;
608 case MVT::nxv2f64:
609 return RTLIB::REM_NXV2F64;
610 default:
611 return RTLIB::UNKNOWN_LIBCALL;
612 }
613 }
614
615 return getFPLibCall(VT, REM_F32, REM_F64, REM_F80, REM_F128, REM_PPCF128);
616}
617
618RTLIB::Libcall RTLIB::getMODF(EVT RetVT) {
619 // TODO: Tablegen should generate this function
620 if (RetVT.isVector()) {
621 if (!RetVT.isSimple())
622 return RTLIB::UNKNOWN_LIBCALL;
623 switch (RetVT.getSimpleVT().SimpleTy) {
624 case MVT::v4f32:
625 return RTLIB::MODF_V4F32;
626 case MVT::v2f64:
627 return RTLIB::MODF_V2F64;
628 case MVT::nxv4f32:
629 return RTLIB::MODF_NXV4F32;
630 case MVT::nxv2f64:
631 return RTLIB::MODF_NXV2F64;
632 default:
633 return RTLIB::UNKNOWN_LIBCALL;
634 }
635 }
636
637 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
638 MODF_PPCF128);
639}
640
641RTLIB::Libcall RTLIB::getLROUND(EVT VT) {
642 if (VT == MVT::f32)
643 return RTLIB::LROUND_F32;
644 if (VT == MVT::f64)
645 return RTLIB::LROUND_F64;
646 if (VT == MVT::f80)
647 return RTLIB::LROUND_F80;
648 if (VT == MVT::f128)
649 return RTLIB::LROUND_F128;
650 if (VT == MVT::ppcf128)
651 return RTLIB::LROUND_PPCF128;
652
653 return RTLIB::UNKNOWN_LIBCALL;
654}
655
656RTLIB::Libcall RTLIB::getLLROUND(EVT VT) {
657 if (VT == MVT::f32)
658 return RTLIB::LLROUND_F32;
659 if (VT == MVT::f64)
660 return RTLIB::LLROUND_F64;
661 if (VT == MVT::f80)
662 return RTLIB::LLROUND_F80;
663 if (VT == MVT::f128)
664 return RTLIB::LLROUND_F128;
665 if (VT == MVT::ppcf128)
666 return RTLIB::LLROUND_PPCF128;
667
668 return RTLIB::UNKNOWN_LIBCALL;
669}
670
671RTLIB::Libcall RTLIB::getLRINT(EVT VT) {
672 if (VT == MVT::f32)
673 return RTLIB::LRINT_F32;
674 if (VT == MVT::f64)
675 return RTLIB::LRINT_F64;
676 if (VT == MVT::f80)
677 return RTLIB::LRINT_F80;
678 if (VT == MVT::f128)
679 return RTLIB::LRINT_F128;
680 if (VT == MVT::ppcf128)
681 return RTLIB::LRINT_PPCF128;
682 return RTLIB::UNKNOWN_LIBCALL;
683}
684
685RTLIB::Libcall RTLIB::getLLRINT(EVT VT) {
686 if (VT == MVT::f32)
687 return RTLIB::LLRINT_F32;
688 if (VT == MVT::f64)
689 return RTLIB::LLRINT_F64;
690 if (VT == MVT::f80)
691 return RTLIB::LLRINT_F80;
692 if (VT == MVT::f128)
693 return RTLIB::LLRINT_F128;
694 if (VT == MVT::ppcf128)
695 return RTLIB::LLRINT_PPCF128;
696 return RTLIB::UNKNOWN_LIBCALL;
697}
698
699RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
700 AtomicOrdering Order,
701 uint64_t MemSize) {
702 unsigned ModeN, ModelN;
703 switch (MemSize) {
704 case 1:
705 ModeN = 0;
706 break;
707 case 2:
708 ModeN = 1;
709 break;
710 case 4:
711 ModeN = 2;
712 break;
713 case 8:
714 ModeN = 3;
715 break;
716 case 16:
717 ModeN = 4;
718 break;
719 default:
720 return RTLIB::UNKNOWN_LIBCALL;
721 }
722
723 switch (Order) {
725 ModelN = 0;
726 break;
728 ModelN = 1;
729 break;
731 ModelN = 2;
732 break;
735 ModelN = 3;
736 break;
737 default:
738 return UNKNOWN_LIBCALL;
739 }
740
741 return LC[ModeN][ModelN];
742}
743
744RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
745 MVT VT) {
746 if (!VT.isScalarInteger())
747 return UNKNOWN_LIBCALL;
748 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
749
750#define LCALLS(A, B) \
751 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
752#define LCALL5(A) \
753 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
754 switch (Opc) {
755 case ISD::ATOMIC_CMP_SWAP: {
756 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
757 return getOutlineAtomicHelper(LC, Order, MemSize);
758 }
759 case ISD::ATOMIC_SWAP: {
760 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
761 return getOutlineAtomicHelper(LC, Order, MemSize);
762 }
763 case ISD::ATOMIC_LOAD_ADD: {
764 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
765 return getOutlineAtomicHelper(LC, Order, MemSize);
766 }
767 case ISD::ATOMIC_LOAD_OR: {
768 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
769 return getOutlineAtomicHelper(LC, Order, MemSize);
770 }
771 case ISD::ATOMIC_LOAD_CLR: {
772 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
773 return getOutlineAtomicHelper(LC, Order, MemSize);
774 }
775 case ISD::ATOMIC_LOAD_XOR: {
776 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
777 return getOutlineAtomicHelper(LC, Order, MemSize);
778 }
779 default:
780 return UNKNOWN_LIBCALL;
781 }
782#undef LCALLS
783#undef LCALL5
784}
785
786RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
787#define OP_TO_LIBCALL(Name, Enum) \
788 case Name: \
789 switch (VT.SimpleTy) { \
790 default: \
791 return UNKNOWN_LIBCALL; \
792 case MVT::i8: \
793 return Enum##_1; \
794 case MVT::i16: \
795 return Enum##_2; \
796 case MVT::i32: \
797 return Enum##_4; \
798 case MVT::i64: \
799 return Enum##_8; \
800 case MVT::i128: \
801 return Enum##_16; \
802 }
803
804 switch (Opc) {
805 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
806 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
807 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
808 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
809 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
810 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
811 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
812 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
813 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
814 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
815 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
816 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
817 }
818
819#undef OP_TO_LIBCALL
820
821 return UNKNOWN_LIBCALL;
822}
823
825 switch (ElementSize) {
826 case 1:
827 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
828 case 2:
829 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
830 case 4:
831 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
832 case 8:
833 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
834 case 16:
835 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
836 default:
837 return UNKNOWN_LIBCALL;
838 }
839}
840
842 switch (ElementSize) {
843 case 1:
844 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
845 case 2:
846 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
847 case 4:
848 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
849 case 8:
850 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
851 case 16:
852 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
853 default:
854 return UNKNOWN_LIBCALL;
855 }
856}
857
859 switch (ElementSize) {
860 case 1:
861 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
862 case 2:
863 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
864 case 4:
865 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
866 case 8:
867 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
868 case 16:
869 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
870 default:
871 return UNKNOWN_LIBCALL;
872 }
873}
874
876 RTLIB::LibcallImpl Impl) const {
877 switch (Impl) {
878 case RTLIB::impl___aeabi_dcmpeq__une:
879 case RTLIB::impl___aeabi_fcmpeq__une:
880 // Usage in the eq case, so we have to invert the comparison.
881 return ISD::SETEQ;
882 case RTLIB::impl___aeabi_dcmpeq__oeq:
883 case RTLIB::impl___aeabi_fcmpeq__oeq:
884 // Normal comparison to boolean value.
885 return ISD::SETNE;
886 case RTLIB::impl___aeabi_dcmplt:
887 case RTLIB::impl___aeabi_dcmple:
888 case RTLIB::impl___aeabi_dcmpge:
889 case RTLIB::impl___aeabi_dcmpgt:
890 case RTLIB::impl___aeabi_dcmpun:
891 case RTLIB::impl___aeabi_fcmplt:
892 case RTLIB::impl___aeabi_fcmple:
893 case RTLIB::impl___aeabi_fcmpge:
894 case RTLIB::impl___aeabi_fcmpgt:
895 /// The AEABI versions return a typical boolean value, so we can compare
896 /// against the integer result as simply != 0.
897 return ISD::SETNE;
898 default:
899 break;
900 }
901
902 // Assume libgcc/compiler-rt behavior. Most of the cases are really aliases of
903 // each other, and return a 3-way comparison style result of -1, 0, or 1
904 // depending on lt/eq/gt.
905 //
906 // FIXME: It would be cleaner to directly express this as a 3-way comparison
907 // soft FP libcall instead of individual compares.
908 RTLIB::Libcall LC = RTLIB::RuntimeLibcallsInfo::getLibcallFromImpl(Impl);
909 switch (LC) {
910 case RTLIB::OEQ_F32:
911 case RTLIB::OEQ_F64:
912 case RTLIB::OEQ_F128:
913 case RTLIB::OEQ_PPCF128:
914 return ISD::SETEQ;
915 case RTLIB::UNE_F32:
916 case RTLIB::UNE_F64:
917 case RTLIB::UNE_F128:
918 case RTLIB::UNE_PPCF128:
919 return ISD::SETNE;
920 case RTLIB::OGE_F32:
921 case RTLIB::OGE_F64:
922 case RTLIB::OGE_F128:
923 case RTLIB::OGE_PPCF128:
924 return ISD::SETGE;
925 case RTLIB::OLT_F32:
926 case RTLIB::OLT_F64:
927 case RTLIB::OLT_F128:
928 case RTLIB::OLT_PPCF128:
929 return ISD::SETLT;
930 case RTLIB::OLE_F32:
931 case RTLIB::OLE_F64:
932 case RTLIB::OLE_F128:
933 case RTLIB::OLE_PPCF128:
934 return ISD::SETLE;
935 case RTLIB::OGT_F32:
936 case RTLIB::OGT_F64:
937 case RTLIB::OGT_F128:
938 case RTLIB::OGT_PPCF128:
939 return ISD::SETGT;
940 case RTLIB::UO_F32:
941 case RTLIB::UO_F64:
942 case RTLIB::UO_F128:
943 case RTLIB::UO_PPCF128:
944 return ISD::SETNE;
945 default:
946 llvm_unreachable("not a compare libcall");
947 }
948}
949
950/// NOTE: The TargetMachine owns TLOF.
952 const TargetSubtargetInfo &STI)
953 : TM(tm),
954 RuntimeLibcallInfo(TM.getTargetTriple(), TM.Options.ExceptionModel,
955 TM.Options.FloatABIType, TM.Options.EABIVersion,
956 TM.Options.MCOptions.getABIName(), TM.Options.VecLib),
957 Libcalls(RuntimeLibcallInfo, STI) {
958 initActions();
959
960 // Perform these initializations only once.
966 HasExtractBitsInsn = false;
967 JumpIsExpensive = JumpIsExpensiveOverride;
969 EnableExtLdPromotion = false;
970 StackPointerRegisterToSaveRestore = 0;
971 BooleanContents = UndefinedBooleanContent;
972 BooleanFloatContents = UndefinedBooleanContent;
973 BooleanVectorContents = UndefinedBooleanContent;
974 SchedPreferenceInfo = Sched::ILP;
977 MaxBytesForAlignment = 0;
978 MaxAtomicSizeInBitsSupported = 0;
979
980 // Assume that even with libcalls, no target supports wider than 128 bit
981 // division.
982 MaxDivRemBitWidthSupported = 128;
983
984 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
985
986 MinCmpXchgSizeInBits = 0;
987 SupportsUnalignedAtomics = false;
988
989 MinimumBitTestCmps = MinimumBitTestCmpsOverride;
990}
991
992// Define the virtual destructor out-of-line to act as a key method to anchor
993// debug info (see coding standards).
995
997 // All operations default to being supported.
998 memset(OpActions, 0, sizeof(OpActions));
999 memset(LoadExtActions, 0, sizeof(LoadExtActions));
1000 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
1001 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
1002 memset(CondCodeActions, 0, sizeof(CondCodeActions));
1003 llvm::fill(RegClassForVT, nullptr);
1004 llvm::fill(TargetDAGCombineArray, 0);
1005
1006 // Let extending atomic loads be unsupported by default.
1007 for (MVT ValVT : MVT::all_valuetypes())
1008 for (MVT MemVT : MVT::all_valuetypes())
1010 Expand);
1011
1012 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
1013 // remove this and targets should individually set these types if not legal.
1016 for (MVT VT : {MVT::i2, MVT::i4})
1017 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
1018 }
1019 for (MVT AVT : MVT::all_valuetypes()) {
1020 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1021 setTruncStoreAction(AVT, VT, Expand);
1024 }
1025 }
1026 for (unsigned IM = (unsigned)ISD::PRE_INC;
1027 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1028 for (MVT VT : {MVT::i2, MVT::i4}) {
1033 }
1034 }
1035
1036 for (MVT VT : MVT::fp_valuetypes()) {
1037 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
1038 if (IntVT.isValid()) {
1039 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
1040 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
1041 }
1042 }
1043
1044 // Set default actions for various operations.
1045 for (MVT VT : MVT::all_valuetypes()) {
1046 // Default all indexed load / store to expand.
1047 for (unsigned IM = (unsigned)ISD::PRE_INC;
1048 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1053 }
1054
1055 // Most backends expect to see the node which just returns the value loaded.
1056 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
1057
1058 // These operations default to expand.
1060 ISD::FMINNUM, ISD::FMAXNUM,
1061 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
1062 ISD::FMINIMUM, ISD::FMAXIMUM,
1063 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
1076 ISD::IS_FPCLASS, ISD::FCBRT,
1077 ISD::FLOG, ISD::FLOG2,
1078 ISD::FLOG10, ISD::FEXP,
1079 ISD::FEXP2, ISD::FEXP10,
1080 ISD::FFLOOR, ISD::FNEARBYINT,
1081 ISD::FCEIL, ISD::FRINT,
1082 ISD::FTRUNC, ISD::FROUNDEVEN,
1083 ISD::FTAN, ISD::FACOS,
1084 ISD::FASIN, ISD::FATAN,
1085 ISD::FCOSH, ISD::FSINH,
1086 ISD::FTANH, ISD::FATAN2,
1087 ISD::FMULADD},
1088 VT, Expand);
1089
1090 // Overflow operations default to expand
1093 VT, Expand);
1094
1095 // Carry-using overflow operations default to expand.
1098 VT, Expand);
1099
1100 // ADDC/ADDE/SUBC/SUBE default to expand.
1102 Expand);
1103
1104 // [US]CMP default to expand
1106
1107 // Halving adds
1110 Expand);
1111
1112 // Absolute difference
1114
1115 // Saturated trunc
1119
1120 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
1122 Expand);
1123
1125
1126 // These library functions default to expand.
1127 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP,
1128 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
1129 VT, Expand);
1130
1131 // These operations default to expand for vector types.
1132 if (VT.isVector())
1137 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
1138 VT, Expand);
1139
1140 // Constrained floating-point operations default to expand.
1141#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1142 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1143#include "llvm/IR/ConstrainedOps.def"
1144
1145 // For most targets @llvm.get.dynamic.area.offset just returns 0.
1146 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
1147
1148 // Vector reduction default to expand.
1150 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
1151 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
1152 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
1153 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
1154 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
1155 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
1156 VT, Expand);
1157
1158 // Named vector shuffles default to expand.
1160
1161 // Only some target support this vector operation. Most need to expand it.
1163
1164 // VP operations default to expand.
1165#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
1166 setOperationAction(ISD::SDOPC, VT, Expand);
1167#include "llvm/IR/VPIntrinsics.def"
1168
1169 // Masked vector extracts default to expand.
1170 setOperationAction(ISD::VECTOR_FIND_LAST_ACTIVE, VT, Expand);
1171
1174
1175 // FP environment operations default to expand.
1176 setOperationAction(ISD::GET_FPENV, VT, Expand);
1177 setOperationAction(ISD::SET_FPENV, VT, Expand);
1178 setOperationAction(ISD::RESET_FPENV, VT, Expand);
1179
1180 setOperationAction(ISD::MSTORE, VT, Expand);
1181 }
1182
1183 // Most targets ignore the @llvm.prefetch intrinsic.
1184 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
1185
1186 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
1187 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
1188
1189 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
1190 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
1191
1192 // ConstantFP nodes default to expand. Targets can either change this to
1193 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
1194 // to optimize expansions for certain constants.
1196 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1197 Expand);
1198
1199 // Insert custom handling default for llvm.canonicalize.*.
1201 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
1202
1203 // FIXME: Query RuntimeLibCalls to make the decision.
1204 setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
1205 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
1206
1207 setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
1208 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
1209 MVT::f16, Promote);
1210 // Default ISD::TRAP to expand (which turns it into abort).
1211 setOperationAction(ISD::TRAP, MVT::Other, Expand);
1212
1213 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
1214 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
1215 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
1216
1217 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
1218
1219 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
1220 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
1221
1222 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1223 setOperationAction(ISD::GET_FPMODE, VT, Expand);
1224 setOperationAction(ISD::SET_FPMODE, VT, Expand);
1225 }
1226 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
1227
1228 // This one by default will call __clear_cache unless the target
1229 // wants something different.
1231}
1232
1234 EVT) const {
1235 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1236}
1237
1239 const DataLayout &DL) const {
1240 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1241 if (LHSTy.isVector())
1242 return LHSTy;
1243 MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
1244 // If any possible shift value won't fit in the prefered type, just use
1245 // something safe. Assume it will be legalized when the shift is expanded.
1246 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1247 ShiftVT = MVT::i32;
1248 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1249 "ShiftVT is still too small!");
1250 return ShiftVT;
1251}
1252
1253bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1254 assert(isTypeLegal(VT));
1255 switch (Op) {
1256 default:
1257 return false;
1258 case ISD::SDIV:
1259 case ISD::UDIV:
1260 case ISD::SREM:
1261 case ISD::UREM:
1262 return true;
1263 }
1264}
1265
1267 unsigned DestAS) const {
1268 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1269}
1270
1272 Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1273 const ConstantRange *VScaleRange) const {
1274 // Find the smallest "sensible" element type to use for the expansion.
1275 ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1276 if (EC.isScalable())
1277 CR = CR.umul_sat(*VScaleRange);
1278
1279 if (ZeroIsPoison)
1280 CR = CR.subtract(APInt(64, 1));
1281
1282 unsigned EltWidth = RetTy->getScalarSizeInBits();
1283 EltWidth = std::min(EltWidth, CR.getActiveBits());
1284 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1285
1286 return EltWidth;
1287}
1288
1290 // If the command-line option was specified, ignore this request.
1291 if (!JumpIsExpensiveOverride.getNumOccurrences())
1292 JumpIsExpensive = isExpensive;
1293}
1294
1297 // If this is a simple type, use the ComputeRegisterProp mechanism.
1298 if (VT.isSimple()) {
1299 MVT SVT = VT.getSimpleVT();
1300 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1301 MVT NVT = TransformToType[SVT.SimpleTy];
1302 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1303
1304 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1305 LA == TypeSoftPromoteHalf ||
1306 (NVT.isVector() ||
1307 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1308 "Promote may not follow Expand or Promote");
1309
1310 if (LA == TypeSplitVector)
1311 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1312 if (LA == TypeScalarizeVector)
1313 return LegalizeKind(LA, SVT.getVectorElementType());
1314 return LegalizeKind(LA, NVT);
1315 }
1316
1317 // Handle Extended Scalar Types.
1318 if (!VT.isVector()) {
1319 assert(VT.isInteger() && "Float types must be simple");
1320 unsigned BitSize = VT.getSizeInBits();
1321 // First promote to a power-of-two size, then expand if necessary.
1322 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1323 EVT NVT = VT.getRoundIntegerType(Context);
1324 assert(NVT != VT && "Unable to round integer VT");
1325 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1326 // Avoid multi-step promotion.
1327 if (NextStep.first == TypePromoteInteger)
1328 return NextStep;
1329 // Return rounded integer type.
1330 return LegalizeKind(TypePromoteInteger, NVT);
1331 }
1332
1334 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1335 }
1336
1337 // Handle vector types.
1338 ElementCount NumElts = VT.getVectorElementCount();
1339 EVT EltVT = VT.getVectorElementType();
1340
1341 // Vectors with only one element are always scalarized.
1342 if (NumElts.isScalar())
1343 return LegalizeKind(TypeScalarizeVector, EltVT);
1344
1345 // Try to widen vector elements until the element type is a power of two and
1346 // promote it to a legal type later on, for example:
1347 // <3 x i8> -> <4 x i8> -> <4 x i32>
1348 if (EltVT.isInteger()) {
1349 // Vectors with a number of elements that is not a power of two are always
1350 // widened, for example <3 x i8> -> <4 x i8>.
1351 if (!VT.isPow2VectorType()) {
1352 NumElts = NumElts.coefficientNextPowerOf2();
1353 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1354 return LegalizeKind(TypeWidenVector, NVT);
1355 }
1356
1357 // Examine the element type.
1358 LegalizeKind LK = getTypeConversion(Context, EltVT);
1359
1360 // If type is to be expanded, split the vector.
1361 // <4 x i140> -> <2 x i140>
1362 if (LK.first == TypeExpandInteger) {
1363 if (NumElts.isScalable() && NumElts.getKnownMinValue() == 1)
1366 VT.getHalfNumVectorElementsVT(Context));
1367 }
1368
1369 // Promote the integer element types until a legal vector type is found
1370 // or until the element integer type is too big. If a legal type was not
1371 // found, fallback to the usual mechanism of widening/splitting the
1372 // vector.
1373 EVT OldEltVT = EltVT;
1374 while (true) {
1375 // Increase the bitwidth of the element to the next pow-of-two
1376 // (which is greater than 8 bits).
1377 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1378 .getRoundIntegerType(Context);
1379
1380 // Stop trying when getting a non-simple element type.
1381 // Note that vector elements may be greater than legal vector element
1382 // types. Example: X86 XMM registers hold 64bit element on 32bit
1383 // systems.
1384 if (!EltVT.isSimple())
1385 break;
1386
1387 // Build a new vector type and check if it is legal.
1388 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1389 // Found a legal promoted vector type.
1390 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1392 EVT::getVectorVT(Context, EltVT, NumElts));
1393 }
1394
1395 // Reset the type to the unexpanded type if we did not find a legal vector
1396 // type with a promoted vector element type.
1397 EltVT = OldEltVT;
1398 }
1399
1400 // Try to widen the vector until a legal type is found.
1401 // If there is no wider legal type, split the vector.
1402 while (true) {
1403 // Round up to the next power of 2.
1404 NumElts = NumElts.coefficientNextPowerOf2();
1405
1406 // If there is no simple vector type with this many elements then there
1407 // cannot be a larger legal vector type. Note that this assumes that
1408 // there are no skipped intermediate vector types in the simple types.
1409 if (!EltVT.isSimple())
1410 break;
1411 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1412 if (LargerVector == MVT())
1413 break;
1414
1415 // If this type is legal then widen the vector.
1416 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1417 return LegalizeKind(TypeWidenVector, LargerVector);
1418 }
1419
1420 // Widen odd vectors to next power of two.
1421 if (!VT.isPow2VectorType()) {
1422 EVT NVT = VT.getPow2VectorType(Context);
1423 return LegalizeKind(TypeWidenVector, NVT);
1424 }
1425
1428
1429 // Vectors with illegal element types are expanded.
1430 EVT NVT = EVT::getVectorVT(Context, EltVT,
1432 return LegalizeKind(TypeSplitVector, NVT);
1433}
1434
1435static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1436 unsigned &NumIntermediates,
1437 MVT &RegisterVT,
1438 TargetLoweringBase *TLI) {
1439 // Figure out the right, legal destination reg to copy into.
1441 MVT EltTy = VT.getVectorElementType();
1442
1443 unsigned NumVectorRegs = 1;
1444
1445 // Scalable vectors cannot be scalarized, so splitting or widening is
1446 // required.
1447 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1449 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1450
1451 // FIXME: We don't support non-power-of-2-sized vectors for now.
1452 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1453 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1454 // Split EC to unit size (scalable property is preserved).
1455 NumVectorRegs = EC.getKnownMinValue();
1456 EC = ElementCount::getFixed(1);
1457 }
1458
1459 // Divide the input until we get to a supported size. This will
1460 // always end up with an EC that represent a scalar or a scalable
1461 // scalar.
1462 while (EC.getKnownMinValue() > 1 &&
1463 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1464 EC = EC.divideCoefficientBy(2);
1465 NumVectorRegs <<= 1;
1466 }
1467
1468 NumIntermediates = NumVectorRegs;
1469
1470 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1471 if (!TLI->isTypeLegal(NewVT))
1472 NewVT = EltTy;
1473 IntermediateVT = NewVT;
1474
1475 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1476
1477 // Convert sizes such as i33 to i64.
1478 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1479
1480 MVT DestVT = TLI->getRegisterType(NewVT);
1481 RegisterVT = DestVT;
1482 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1483 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1484
1485 // Otherwise, promotion or legal types use the same number of registers as
1486 // the vector decimated to the appropriate level.
1487 return NumVectorRegs;
1488}
1489
1490/// isLegalRC - Return true if the value types that can be represented by the
1491/// specified register class are all legal.
1493 const TargetRegisterClass &RC) const {
1494 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1495 if (isTypeLegal(*I))
1496 return true;
1497 return false;
1498}
1499
1500/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1501/// sequence of memory operands that is recognized by PrologEpilogInserter.
1504 MachineBasicBlock *MBB) const {
1505 MachineInstr *MI = &InitialMI;
1506 MachineFunction &MF = *MI->getMF();
1507 MachineFrameInfo &MFI = MF.getFrameInfo();
1508
1509 // We're handling multiple types of operands here:
1510 // PATCHPOINT MetaArgs - live-in, read only, direct
1511 // STATEPOINT Deopt Spill - live-through, read only, indirect
1512 // STATEPOINT Deopt Alloca - live-through, read only, direct
1513 // (We're currently conservative and mark the deopt slots read/write in
1514 // practice.)
1515 // STATEPOINT GC Spill - live-through, read/write, indirect
1516 // STATEPOINT GC Alloca - live-through, read/write, direct
1517 // The live-in vs live-through is handled already (the live through ones are
1518 // all stack slots), but we need to handle the different type of stackmap
1519 // operands and memory effects here.
1520
1521 if (llvm::none_of(MI->operands(),
1522 [](MachineOperand &Operand) { return Operand.isFI(); }))
1523 return MBB;
1524
1525 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1526
1527 // Inherit previous memory operands.
1528 MIB.cloneMemRefs(*MI);
1529
1530 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1531 MachineOperand &MO = MI->getOperand(i);
1532 if (!MO.isFI()) {
1533 // Index of Def operand this Use it tied to.
1534 // Since Defs are coming before Uses, if Use is tied, then
1535 // index of Def must be smaller that index of that Use.
1536 // Also, Defs preserve their position in new MI.
1537 unsigned TiedTo = i;
1538 if (MO.isReg() && MO.isTied())
1539 TiedTo = MI->findTiedOperandIdx(i);
1540 MIB.add(MO);
1541 if (TiedTo < i)
1542 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1543 continue;
1544 }
1545
1546 // foldMemoryOperand builds a new MI after replacing a single FI operand
1547 // with the canonical set of five x86 addressing-mode operands.
1548 int FI = MO.getIndex();
1549
1550 // Add frame index operands recognized by stackmaps.cpp
1552 // indirect-mem-ref tag, size, #FI, offset.
1553 // Used for spills inserted by StatepointLowering. This codepath is not
1554 // used for patchpoints/stackmaps at all, for these spilling is done via
1555 // foldMemoryOperand callback only.
1556 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1557 MIB.addImm(StackMaps::IndirectMemRefOp);
1558 MIB.addImm(MFI.getObjectSize(FI));
1559 MIB.add(MO);
1560 MIB.addImm(0);
1561 } else {
1562 // direct-mem-ref tag, #FI, offset.
1563 // Used by patchpoint, and direct alloca arguments to statepoints
1564 MIB.addImm(StackMaps::DirectMemRefOp);
1565 MIB.add(MO);
1566 MIB.addImm(0);
1567 }
1568
1569 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1570
1571 // Add a new memory operand for this FI.
1572 assert(MFI.getObjectOffset(FI) != -1);
1573
1574 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1575 // PATCHPOINT should be updated to do the same. (TODO)
1576 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1577 auto Flags = MachineMemOperand::MOLoad;
1579 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1581 MIB->addMemOperand(MF, MMO);
1582 }
1583 }
1584 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1585 MI->eraseFromParent();
1586 return MBB;
1587}
1588
1589/// findRepresentativeClass - Return the largest legal super-reg register class
1590/// of the register class for the specified type and its associated "cost".
1591// This function is in TargetLowering because it uses RegClassForVT which would
1592// need to be moved to TargetRegisterInfo and would necessitate moving
1593// isTypeLegal over as well - a massive change that would just require
1594// TargetLowering having a TargetRegisterInfo class member that it would use.
1595std::pair<const TargetRegisterClass *, uint8_t>
1597 MVT VT) const {
1598 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1599 if (!RC)
1600 return std::make_pair(RC, 0);
1601
1602 // Compute the set of all super-register classes.
1603 BitVector SuperRegRC(TRI->getNumRegClasses());
1604 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1605 SuperRegRC.setBitsInMask(RCI.getMask());
1606
1607 // Find the first legal register class with the largest spill size.
1608 const TargetRegisterClass *BestRC = RC;
1609 for (unsigned i : SuperRegRC.set_bits()) {
1610 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1611 // We want the largest possible spill size.
1612 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1613 continue;
1614 if (!isLegalRC(*TRI, *SuperRC))
1615 continue;
1616 BestRC = SuperRC;
1617 }
1618 return std::make_pair(BestRC, 1);
1619}
1620
1621/// computeRegisterProperties - Once all of the register classes are added,
1622/// this allows us to compute derived properties we expose.
1624 const TargetRegisterInfo *TRI) {
1625 // Everything defaults to needing one register.
1626 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1627 NumRegistersForVT[i] = 1;
1628 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1629 }
1630 // ...except isVoid, which doesn't need any registers.
1631 NumRegistersForVT[MVT::isVoid] = 0;
1632
1633 // Find the largest integer register class.
1634 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1635 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1636 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1637
1638 // Every integer value type larger than this largest register takes twice as
1639 // many registers to represent as the previous ValueType.
1640 for (unsigned ExpandedReg = LargestIntReg + 1;
1641 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1642 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1643 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1644 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1645 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1647 }
1648
1649 // Inspect all of the ValueType's smaller than the largest integer
1650 // register to see which ones need promotion.
1651 unsigned LegalIntReg = LargestIntReg;
1652 for (unsigned IntReg = LargestIntReg - 1;
1653 IntReg >= (unsigned)MVT::i1; --IntReg) {
1654 MVT IVT = (MVT::SimpleValueType)IntReg;
1655 if (isTypeLegal(IVT)) {
1656 LegalIntReg = IntReg;
1657 } else {
1658 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1659 (MVT::SimpleValueType)LegalIntReg;
1660 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1661 }
1662 }
1663
1664 // ppcf128 type is really two f64's.
1665 if (!isTypeLegal(MVT::ppcf128)) {
1666 if (isTypeLegal(MVT::f64)) {
1667 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1668 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1669 TransformToType[MVT::ppcf128] = MVT::f64;
1670 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1671 } else {
1672 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1673 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1674 TransformToType[MVT::ppcf128] = MVT::i128;
1675 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1676 }
1677 }
1678
1679 // Decide how to handle f128. If the target does not have native f128 support,
1680 // expand it to i128 and we will be generating soft float library calls.
1681 if (!isTypeLegal(MVT::f128)) {
1682 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1683 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1684 TransformToType[MVT::f128] = MVT::i128;
1685 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1686 }
1687
1688 // Decide how to handle f80. If the target does not have native f80 support,
1689 // expand it to i96 and we will be generating soft float library calls.
1690 if (!isTypeLegal(MVT::f80)) {
1691 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1692 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1693 TransformToType[MVT::f80] = MVT::i32;
1694 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1695 }
1696
1697 // Decide how to handle f64. If the target does not have native f64 support,
1698 // expand it to i64 and we will be generating soft float library calls.
1699 if (!isTypeLegal(MVT::f64)) {
1700 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1701 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1702 TransformToType[MVT::f64] = MVT::i64;
1703 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1704 }
1705
1706 // Decide how to handle f32. If the target does not have native f32 support,
1707 // expand it to i32 and we will be generating soft float library calls.
1708 if (!isTypeLegal(MVT::f32)) {
1709 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1710 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1711 TransformToType[MVT::f32] = MVT::i32;
1712 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1713 }
1714
1715 // Decide how to handle f16. If the target does not have native f16 support,
1716 // promote it to f32, because there are no f16 library calls (except for
1717 // conversions).
1718 if (!isTypeLegal(MVT::f16)) {
1719 // Allow targets to control how we legalize half.
1720 bool SoftPromoteHalfType = softPromoteHalfType();
1721 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1722
1723 if (!UseFPRegsForHalfType) {
1724 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1725 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1726 } else {
1727 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1728 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1729 }
1730 TransformToType[MVT::f16] = MVT::f32;
1731 if (SoftPromoteHalfType) {
1732 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1733 } else {
1734 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1735 }
1736 }
1737
1738 // Decide how to handle bf16. If the target does not have native bf16 support,
1739 // promote it to f32, because there are no bf16 library calls (except for
1740 // converting from f32 to bf16).
1741 if (!isTypeLegal(MVT::bf16)) {
1742 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1743 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1744 TransformToType[MVT::bf16] = MVT::f32;
1745 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1746 }
1747
1748 // Loop over all of the vector value types to see which need transformations.
1749 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1750 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1751 MVT VT = (MVT::SimpleValueType) i;
1752 if (isTypeLegal(VT))
1753 continue;
1754
1755 MVT EltVT = VT.getVectorElementType();
1757 bool IsLegalWiderType = false;
1758 bool IsScalable = VT.isScalableVector();
1759 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1760 switch (PreferredAction) {
1761 case TypePromoteInteger: {
1762 MVT::SimpleValueType EndVT = IsScalable ?
1763 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1764 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1765 // Try to promote the elements of integer vectors. If no legal
1766 // promotion was found, fall through to the widen-vector method.
1767 for (unsigned nVT = i + 1;
1768 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1769 MVT SVT = (MVT::SimpleValueType) nVT;
1770 // Promote vectors of integers to vectors with the same number
1771 // of elements, with a wider element type.
1772 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1773 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1774 TransformToType[i] = SVT;
1775 RegisterTypeForVT[i] = SVT;
1776 NumRegistersForVT[i] = 1;
1777 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1778 IsLegalWiderType = true;
1779 break;
1780 }
1781 }
1782 if (IsLegalWiderType)
1783 break;
1784 [[fallthrough]];
1785 }
1786
1787 case TypeWidenVector:
1788 if (isPowerOf2_32(EC.getKnownMinValue())) {
1789 // Try to widen the vector.
1790 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1791 MVT SVT = (MVT::SimpleValueType) nVT;
1792 if (SVT.getVectorElementType() == EltVT &&
1793 SVT.isScalableVector() == IsScalable &&
1795 EC.getKnownMinValue() &&
1796 isTypeLegal(SVT)) {
1797 TransformToType[i] = SVT;
1798 RegisterTypeForVT[i] = SVT;
1799 NumRegistersForVT[i] = 1;
1800 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1801 IsLegalWiderType = true;
1802 break;
1803 }
1804 }
1805 if (IsLegalWiderType)
1806 break;
1807 } else {
1808 // Only widen to the next power of 2 to keep consistency with EVT.
1809 MVT NVT = VT.getPow2VectorType();
1810 if (isTypeLegal(NVT)) {
1811 TransformToType[i] = NVT;
1812 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1813 RegisterTypeForVT[i] = NVT;
1814 NumRegistersForVT[i] = 1;
1815 break;
1816 }
1817 }
1818 [[fallthrough]];
1819
1820 case TypeSplitVector:
1821 case TypeScalarizeVector: {
1822 MVT IntermediateVT;
1823 MVT RegisterVT;
1824 unsigned NumIntermediates;
1825 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1826 NumIntermediates, RegisterVT, this);
1827 NumRegistersForVT[i] = NumRegisters;
1828 assert(NumRegistersForVT[i] == NumRegisters &&
1829 "NumRegistersForVT size cannot represent NumRegisters!");
1830 RegisterTypeForVT[i] = RegisterVT;
1831
1832 MVT NVT = VT.getPow2VectorType();
1833 if (NVT == VT) {
1834 // Type is already a power of 2. The default action is to split.
1835 TransformToType[i] = MVT::Other;
1836 if (PreferredAction == TypeScalarizeVector)
1837 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1838 else if (PreferredAction == TypeSplitVector)
1839 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1840 else if (EC.getKnownMinValue() > 1)
1841 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1842 else
1843 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1846 } else {
1847 TransformToType[i] = NVT;
1848 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1849 }
1850 break;
1851 }
1852 default:
1853 llvm_unreachable("Unknown vector legalization action!");
1854 }
1855 }
1856
1857 // Determine the 'representative' register class for each value type.
1858 // An representative register class is the largest (meaning one which is
1859 // not a sub-register class / subreg register class) legal register class for
1860 // a group of value types. For example, on i386, i8, i16, and i32
1861 // representative would be GR32; while on x86_64 it's GR64.
1862 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1863 const TargetRegisterClass* RRC;
1864 uint8_t Cost;
1866 RepRegClassForVT[i] = RRC;
1867 RepRegClassCostForVT[i] = Cost;
1868 }
1869}
1870
1872 EVT VT) const {
1873 assert(!VT.isVector() && "No default SetCC type for vectors!");
1874 return getPointerTy(DL).SimpleTy;
1875}
1876
1878 return MVT::i32; // return the default value
1879}
1880
1881/// getVectorTypeBreakdown - Vector types are broken down into some number of
1882/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1883/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1884/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1885///
1886/// This method returns the number of registers needed, and the VT for each
1887/// register. It also returns the VT and quantity of the intermediate values
1888/// before they are promoted/expanded.
1890 EVT VT, EVT &IntermediateVT,
1891 unsigned &NumIntermediates,
1892 MVT &RegisterVT) const {
1893 ElementCount EltCnt = VT.getVectorElementCount();
1894
1895 // If there is a wider vector type with the same element type as this one,
1896 // or a promoted vector type that has the same number of elements which
1897 // are wider, then we should convert to that legal vector type.
1898 // This handles things like <2 x float> -> <4 x float> and
1899 // <4 x i1> -> <4 x i32>.
1900 LegalizeTypeAction TA = getTypeAction(Context, VT);
1901 if (!EltCnt.isScalar() &&
1902 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1903 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1904 if (isTypeLegal(RegisterEVT)) {
1905 IntermediateVT = RegisterEVT;
1906 RegisterVT = RegisterEVT.getSimpleVT();
1907 NumIntermediates = 1;
1908 return 1;
1909 }
1910 }
1911
1912 // Figure out the right, legal destination reg to copy into.
1913 EVT EltTy = VT.getVectorElementType();
1914
1915 unsigned NumVectorRegs = 1;
1916
1917 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1918 // types like done elsewhere in SelectionDAG.
1919 if (EltCnt.isScalable()) {
1920 LegalizeKind LK;
1921 EVT PartVT = VT;
1922 do {
1923 // Iterate until we've found a legal (part) type to hold VT.
1924 LK = getTypeConversion(Context, PartVT);
1925 PartVT = LK.second;
1926 } while (LK.first != TypeLegal);
1927
1928 if (!PartVT.isVector()) {
1930 "Don't know how to legalize this scalable vector type");
1931 }
1932
1933 NumIntermediates =
1936 IntermediateVT = PartVT;
1937 RegisterVT = getRegisterType(Context, IntermediateVT);
1938 return NumIntermediates;
1939 }
1940
1941 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1942 // we could break down into LHS/RHS like LegalizeDAG does.
1943 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1944 NumVectorRegs = EltCnt.getKnownMinValue();
1945 EltCnt = ElementCount::getFixed(1);
1946 }
1947
1948 // Divide the input until we get to a supported size. This will always
1949 // end with a scalar if the target doesn't support vectors.
1950 while (EltCnt.getKnownMinValue() > 1 &&
1951 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1952 EltCnt = EltCnt.divideCoefficientBy(2);
1953 NumVectorRegs <<= 1;
1954 }
1955
1956 NumIntermediates = NumVectorRegs;
1957
1958 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1959 if (!isTypeLegal(NewVT))
1960 NewVT = EltTy;
1961 IntermediateVT = NewVT;
1962
1963 MVT DestVT = getRegisterType(Context, NewVT);
1964 RegisterVT = DestVT;
1965
1966 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1967 TypeSize NewVTSize = NewVT.getSizeInBits();
1968 // Convert sizes such as i33 to i64.
1970 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1971 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1972 }
1973
1974 // Otherwise, promotion or legal types use the same number of registers as
1975 // the vector decimated to the appropriate level.
1976 return NumVectorRegs;
1977}
1978
1980 uint64_t NumCases,
1982 ProfileSummaryInfo *PSI,
1983 BlockFrequencyInfo *BFI) const {
1984 // FIXME: This function check the maximum table size and density, but the
1985 // minimum size is not checked. It would be nice if the minimum size is
1986 // also combined within this function. Currently, the minimum size check is
1987 // performed in findJumpTable() in SelectionDAGBuiler and
1988 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1989 const bool OptForSize =
1990 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1991 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1992 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1993
1994 // Check whether the number of cases is small enough and
1995 // the range is dense enough for a jump table.
1996 return (OptForSize || Range <= MaxJumpTableSize) &&
1997 (NumCases * 100 >= Range * MinDensity);
1998}
1999
2001 EVT ConditionVT) const {
2002 return getRegisterType(Context, ConditionVT);
2003}
2004
2005/// Get the EVTs and ArgFlags collections that represent the legalized return
2006/// type of the given function. This does not require a DAG or a return value,
2007/// and is suitable for use before any DAGs for the function are constructed.
2008/// TODO: Move this out of TargetLowering.cpp.
2010 AttributeList attr,
2012 const TargetLowering &TLI, const DataLayout &DL) {
2014 ComputeValueTypes(DL, ReturnType, Types);
2015 unsigned NumValues = Types.size();
2016 if (NumValues == 0) return;
2017
2018 for (Type *Ty : Types) {
2019 EVT VT = TLI.getValueType(DL, Ty);
2020 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2021
2022 if (attr.hasRetAttr(Attribute::SExt))
2023 ExtendKind = ISD::SIGN_EXTEND;
2024 else if (attr.hasRetAttr(Attribute::ZExt))
2025 ExtendKind = ISD::ZERO_EXTEND;
2026
2027 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2028 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
2029
2030 unsigned NumParts =
2031 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
2032 MVT PartVT =
2033 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
2034
2035 // 'inreg' on function refers to return value
2037 if (attr.hasRetAttr(Attribute::InReg))
2038 Flags.setInReg();
2039
2040 // Propagate extension type if any
2041 if (attr.hasRetAttr(Attribute::SExt))
2042 Flags.setSExt();
2043 else if (attr.hasRetAttr(Attribute::ZExt))
2044 Flags.setZExt();
2045
2046 for (unsigned i = 0; i < NumParts; ++i)
2047 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, Ty, 0, 0));
2048 }
2049}
2050
2052 const DataLayout &DL) const {
2053 return DL.getABITypeAlign(Ty);
2054}
2055
2057 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
2058 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
2059 // Check if the specified alignment is sufficient based on the data layout.
2060 // TODO: While using the data layout works in practice, a better solution
2061 // would be to implement this check directly (make this a virtual function).
2062 // For example, the ABI alignment may change based on software platform while
2063 // this function should only be affected by hardware implementation.
2064 Type *Ty = VT.getTypeForEVT(Context);
2065 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
2066 // Assume that an access that meets the ABI-specified alignment is fast.
2067 if (Fast != nullptr)
2068 *Fast = 1;
2069 return true;
2070 }
2071
2072 // This is a misaligned access.
2073 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
2074}
2075
2077 LLVMContext &Context, const DataLayout &DL, EVT VT,
2078 const MachineMemOperand &MMO, unsigned *Fast) const {
2079 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
2080 MMO.getAlign(), MMO.getFlags(), Fast);
2081}
2082
2084 const DataLayout &DL, EVT VT,
2085 unsigned AddrSpace, Align Alignment,
2087 unsigned *Fast) const {
2088 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
2089 Flags, Fast);
2090}
2091
2093 const DataLayout &DL, EVT VT,
2094 const MachineMemOperand &MMO,
2095 unsigned *Fast) const {
2096 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2097 MMO.getFlags(), Fast);
2098}
2099
2101 const DataLayout &DL, LLT Ty,
2102 const MachineMemOperand &MMO,
2103 unsigned *Fast) const {
2104 EVT VT = getApproximateEVTForLLT(Ty, Context);
2105 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2106 MMO.getFlags(), Fast);
2107}
2108
2109//===----------------------------------------------------------------------===//
2110// TargetTransformInfo Helpers
2111//===----------------------------------------------------------------------===//
2112
2114 enum InstructionOpcodes {
2115#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2116#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2117#include "llvm/IR/Instruction.def"
2118 };
2119 switch (static_cast<InstructionOpcodes>(Opcode)) {
2120 case Ret: return 0;
2121 case Br: return 0;
2122 case Switch: return 0;
2123 case IndirectBr: return 0;
2124 case Invoke: return 0;
2125 case CallBr: return 0;
2126 case Resume: return 0;
2127 case Unreachable: return 0;
2128 case CleanupRet: return 0;
2129 case CatchRet: return 0;
2130 case CatchPad: return 0;
2131 case CatchSwitch: return 0;
2132 case CleanupPad: return 0;
2133 case FNeg: return ISD::FNEG;
2134 case Add: return ISD::ADD;
2135 case FAdd: return ISD::FADD;
2136 case Sub: return ISD::SUB;
2137 case FSub: return ISD::FSUB;
2138 case Mul: return ISD::MUL;
2139 case FMul: return ISD::FMUL;
2140 case UDiv: return ISD::UDIV;
2141 case SDiv: return ISD::SDIV;
2142 case FDiv: return ISD::FDIV;
2143 case URem: return ISD::UREM;
2144 case SRem: return ISD::SREM;
2145 case FRem: return ISD::FREM;
2146 case Shl: return ISD::SHL;
2147 case LShr: return ISD::SRL;
2148 case AShr: return ISD::SRA;
2149 case And: return ISD::AND;
2150 case Or: return ISD::OR;
2151 case Xor: return ISD::XOR;
2152 case Alloca: return 0;
2153 case Load: return ISD::LOAD;
2154 case Store: return ISD::STORE;
2155 case GetElementPtr: return 0;
2156 case Fence: return 0;
2157 case AtomicCmpXchg: return 0;
2158 case AtomicRMW: return 0;
2159 case Trunc: return ISD::TRUNCATE;
2160 case ZExt: return ISD::ZERO_EXTEND;
2161 case SExt: return ISD::SIGN_EXTEND;
2162 case FPToUI: return ISD::FP_TO_UINT;
2163 case FPToSI: return ISD::FP_TO_SINT;
2164 case UIToFP: return ISD::UINT_TO_FP;
2165 case SIToFP: return ISD::SINT_TO_FP;
2166 case FPTrunc: return ISD::FP_ROUND;
2167 case FPExt: return ISD::FP_EXTEND;
2168 case PtrToAddr: return ISD::BITCAST;
2169 case PtrToInt: return ISD::BITCAST;
2170 case IntToPtr: return ISD::BITCAST;
2171 case BitCast: return ISD::BITCAST;
2172 case AddrSpaceCast: return ISD::ADDRSPACECAST;
2173 case ICmp: return ISD::SETCC;
2174 case FCmp: return ISD::SETCC;
2175 case PHI: return 0;
2176 case Call: return 0;
2177 case Select: return ISD::SELECT;
2178 case UserOp1: return 0;
2179 case UserOp2: return 0;
2180 case VAArg: return 0;
2181 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
2182 case InsertElement: return ISD::INSERT_VECTOR_ELT;
2183 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
2184 case ExtractValue: return ISD::MERGE_VALUES;
2185 case InsertValue: return ISD::MERGE_VALUES;
2186 case LandingPad: return 0;
2187 case Freeze: return ISD::FREEZE;
2188 }
2189
2190 llvm_unreachable("Unknown instruction type encountered!");
2191}
2192
2194 switch (ID) {
2195 case Intrinsic::exp:
2196 return ISD::FEXP;
2197 case Intrinsic::exp2:
2198 return ISD::FEXP2;
2199 case Intrinsic::log:
2200 return ISD::FLOG;
2201 default:
2202 return ISD::DELETED_NODE;
2203 }
2204}
2205
2206Value *
2208 bool UseTLS) const {
2209 // compiler-rt provides a variable with a magic name. Targets that do not
2210 // link with compiler-rt may also provide such a variable.
2211 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2212 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
2213 auto UnsafeStackPtr =
2214 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
2215
2216 const DataLayout &DL = M->getDataLayout();
2217 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
2218
2219 if (!UnsafeStackPtr) {
2220 auto TLSModel = UseTLS ?
2223 // The global variable is not defined yet, define it ourselves.
2224 // We use the initial-exec TLS model because we do not support the
2225 // variable living anywhere other than in the main executable.
2226 UnsafeStackPtr = new GlobalVariable(
2227 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
2228 UnsafeStackPtrVar, nullptr, TLSModel);
2229 } else {
2230 // The variable exists, check its type and attributes.
2231 //
2232 // FIXME: Move to IR verifier.
2233 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2234 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
2235 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2236 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
2237 (UseTLS ? "" : "not ") + "be thread-local");
2238 }
2239 return UnsafeStackPtr;
2240}
2241
2242Value *
2244 // FIXME: Can this triple check be replaced with SAFESTACK_POINTER_ADDRESS
2245 // being available?
2246 if (!TM.getTargetTriple().isAndroid())
2247 return getDefaultSafeStackPointerLocation(IRB, true);
2248
2249 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2250 auto *PtrTy = PointerType::getUnqual(M->getContext());
2251
2252 const char *SafestackPointerAddressName =
2253 getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
2254 if (!SafestackPointerAddressName) {
2255 M->getContext().emitError(
2256 "no libcall available for safestack pointer address");
2257 return PoisonValue::get(PtrTy);
2258 }
2259
2260 // Android provides a libc function to retrieve the address of the current
2261 // thread's unsafe stack pointer.
2262 FunctionCallee Fn =
2263 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2264 return IRB.CreateCall(Fn);
2265}
2266
2267//===----------------------------------------------------------------------===//
2268// Loop Strength Reduction hooks
2269//===----------------------------------------------------------------------===//
2270
2271/// isLegalAddressingMode - Return true if the addressing mode represented
2272/// by AM is legal for this target, for a load/store of the specified type.
2274 const AddrMode &AM, Type *Ty,
2275 unsigned AS, Instruction *I) const {
2276 // The default implementation of this implements a conservative RISCy, r+r and
2277 // r+i addr mode.
2278
2279 // Scalable offsets not supported
2280 if (AM.ScalableOffset)
2281 return false;
2282
2283 // Allows a sign-extended 16-bit immediate field.
2284 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2285 return false;
2286
2287 // No global is ever allowed as a base.
2288 if (AM.BaseGV)
2289 return false;
2290
2291 // Only support r+r,
2292 switch (AM.Scale) {
2293 case 0: // "r+i" or just "i", depending on HasBaseReg.
2294 break;
2295 case 1:
2296 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2297 return false;
2298 // Otherwise we have r+r or r+i.
2299 break;
2300 case 2:
2301 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2302 return false;
2303 // Allow 2*r as r+r.
2304 break;
2305 default: // Don't allow n * r
2306 return false;
2307 }
2308
2309 return true;
2310}
2311
2312//===----------------------------------------------------------------------===//
2313// Stack Protector
2314//===----------------------------------------------------------------------===//
2315
2316// For OpenBSD return its special guard variable. Otherwise return nullptr,
2317// so that SelectionDAG handle SSP.
2319 RTLIB::LibcallImpl GuardLocalImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2320 if (GuardLocalImpl != RTLIB::impl___guard_local)
2321 return nullptr;
2322
2323 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2324 const DataLayout &DL = M.getDataLayout();
2325 PointerType *PtrTy =
2326 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2327 GlobalVariable *G =
2328 M.getOrInsertGlobal(getLibcallImplName(GuardLocalImpl), PtrTy);
2329 G->setVisibility(GlobalValue::HiddenVisibility);
2330 return G;
2331}
2332
2333// Currently only support "standard" __stack_chk_guard.
2334// TODO: add LOAD_STACK_GUARD support.
2336 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2337 if (StackGuardImpl == RTLIB::Unsupported)
2338 return;
2339
2340 StringRef StackGuardVarName = getLibcallImplName(StackGuardImpl);
2341 M.getOrInsertGlobal(
2342 StackGuardVarName, PointerType::getUnqual(M.getContext()), [=, &M]() {
2343 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2344 false, GlobalVariable::ExternalLinkage,
2345 nullptr, StackGuardVarName);
2346
2347 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2348 if (M.getDirectAccessExternalData() &&
2349 !TM.getTargetTriple().isOSCygMing() &&
2350 !(TM.getTargetTriple().isPPC64() &&
2351 TM.getTargetTriple().isOSFreeBSD()) &&
2352 (!TM.getTargetTriple().isOSDarwin() ||
2353 TM.getRelocationModel() == Reloc::Static))
2354 GV->setDSOLocal(true);
2355
2356 return GV;
2357 });
2358}
2359
2360// Currently only support "standard" __stack_chk_guard.
2361// TODO: add LOAD_STACK_GUARD support.
2363 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2364 if (GuardVarImpl == RTLIB::Unsupported)
2365 return nullptr;
2366 return M.getNamedValue(getLibcallImplName(GuardVarImpl));
2367}
2368
2370 // MSVC CRT has a function to validate security cookie.
2371 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2372 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
2373 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2374 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2375 return nullptr;
2376}
2377
2381
2385
2386unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2387 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2388}
2389
2393
2397
2401
2403 return MinimumBitTestCmps;
2404}
2405
2407 MinimumBitTestCmps = Val;
2408}
2409
2411 if (TM.Options.LoopAlignment)
2412 return Align(TM.Options.LoopAlignment);
2413 return PrefLoopAlignment;
2414}
2415
2417 MachineBasicBlock *MBB) const {
2418 return MaxBytesForAlignment;
2419}
2420
2421//===----------------------------------------------------------------------===//
2422// Reciprocal Estimates
2423//===----------------------------------------------------------------------===//
2424
2425/// Get the reciprocal estimate attribute string for a function that will
2426/// override the target defaults.
2428 const Function &F = MF.getFunction();
2429 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2430}
2431
2432/// Construct a string for the given reciprocal operation of the given type.
2433/// This string should match the corresponding option to the front-end's
2434/// "-mrecip" flag assuming those strings have been passed through in an
2435/// attribute string. For example, "vec-divf" for a division of a vXf32.
2436static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2437 std::string Name = VT.isVector() ? "vec-" : "";
2438
2439 Name += IsSqrt ? "sqrt" : "div";
2440
2441 // TODO: Handle other float types?
2442 if (VT.getScalarType() == MVT::f64) {
2443 Name += "d";
2444 } else if (VT.getScalarType() == MVT::f16) {
2445 Name += "h";
2446 } else {
2447 assert(VT.getScalarType() == MVT::f32 &&
2448 "Unexpected FP type for reciprocal estimate");
2449 Name += "f";
2450 }
2451
2452 return Name;
2453}
2454
2455/// Return the character position and value (a single numeric character) of a
2456/// customized refinement operation in the input string if it exists. Return
2457/// false if there is no customized refinement step count.
2458static bool parseRefinementStep(StringRef In, size_t &Position,
2459 uint8_t &Value) {
2460 const char RefStepToken = ':';
2461 Position = In.find(RefStepToken);
2462 if (Position == StringRef::npos)
2463 return false;
2464
2465 StringRef RefStepString = In.substr(Position + 1);
2466 // Allow exactly one numeric character for the additional refinement
2467 // step parameter.
2468 if (RefStepString.size() == 1) {
2469 char RefStepChar = RefStepString[0];
2470 if (isDigit(RefStepChar)) {
2471 Value = RefStepChar - '0';
2472 return true;
2473 }
2474 }
2475 report_fatal_error("Invalid refinement step for -recip.");
2476}
2477
2478/// For the input attribute string, return one of the ReciprocalEstimate enum
2479/// status values (enabled, disabled, or not specified) for this operation on
2480/// the specified data type.
2481static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2482 if (Override.empty())
2484
2485 SmallVector<StringRef, 4> OverrideVector;
2486 Override.split(OverrideVector, ',');
2487 unsigned NumArgs = OverrideVector.size();
2488
2489 // Check if "all", "none", or "default" was specified.
2490 if (NumArgs == 1) {
2491 // Look for an optional setting of the number of refinement steps needed
2492 // for this type of reciprocal operation.
2493 size_t RefPos;
2494 uint8_t RefSteps;
2495 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2496 // Split the string for further processing.
2497 Override = Override.substr(0, RefPos);
2498 }
2499
2500 // All reciprocal types are enabled.
2501 if (Override == "all")
2503
2504 // All reciprocal types are disabled.
2505 if (Override == "none")
2507
2508 // Target defaults for enablement are used.
2509 if (Override == "default")
2511 }
2512
2513 // The attribute string may omit the size suffix ('f'/'d').
2514 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2515 std::string VTNameNoSize = VTName;
2516 VTNameNoSize.pop_back();
2517 static const char DisabledPrefix = '!';
2518
2519 for (StringRef RecipType : OverrideVector) {
2520 size_t RefPos;
2521 uint8_t RefSteps;
2522 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2523 RecipType = RecipType.substr(0, RefPos);
2524
2525 // Ignore the disablement token for string matching.
2526 bool IsDisabled = RecipType[0] == DisabledPrefix;
2527 if (IsDisabled)
2528 RecipType = RecipType.substr(1);
2529
2530 if (RecipType == VTName || RecipType == VTNameNoSize)
2533 }
2534
2536}
2537
2538/// For the input attribute string, return the customized refinement step count
2539/// for this operation on the specified data type. If the step count does not
2540/// exist, return the ReciprocalEstimate enum value for unspecified.
2541static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2542 if (Override.empty())
2544
2545 SmallVector<StringRef, 4> OverrideVector;
2546 Override.split(OverrideVector, ',');
2547 unsigned NumArgs = OverrideVector.size();
2548
2549 // Check if "all", "default", or "none" was specified.
2550 if (NumArgs == 1) {
2551 // Look for an optional setting of the number of refinement steps needed
2552 // for this type of reciprocal operation.
2553 size_t RefPos;
2554 uint8_t RefSteps;
2555 if (!parseRefinementStep(Override, RefPos, RefSteps))
2557
2558 // Split the string for further processing.
2559 Override = Override.substr(0, RefPos);
2560 assert(Override != "none" &&
2561 "Disabled reciprocals, but specifed refinement steps?");
2562
2563 // If this is a general override, return the specified number of steps.
2564 if (Override == "all" || Override == "default")
2565 return RefSteps;
2566 }
2567
2568 // The attribute string may omit the size suffix ('f'/'d').
2569 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2570 std::string VTNameNoSize = VTName;
2571 VTNameNoSize.pop_back();
2572
2573 for (StringRef RecipType : OverrideVector) {
2574 size_t RefPos;
2575 uint8_t RefSteps;
2576 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2577 continue;
2578
2579 RecipType = RecipType.substr(0, RefPos);
2580 if (RecipType == VTName || RecipType == VTNameNoSize)
2581 return RefSteps;
2582 }
2583
2585}
2586
2591
2596
2601
2606
2608 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2609 const MachineMemOperand &MMO) const {
2610 // Single-element vectors are scalarized, so we should generally avoid having
2611 // any memory operations on such types, as they would get scalarized too.
2612 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2613 BitcastVT.getVectorNumElements() == 1)
2614 return false;
2615
2616 // Don't do if we could do an indexed load on the original type, but not on
2617 // the new one.
2618 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2619 return true;
2620
2621 MVT LoadMVT = LoadVT.getSimpleVT();
2622
2623 // Don't bother doing this if it's just going to be promoted again later, as
2624 // doing so might interfere with other combines.
2625 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2626 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2627 return false;
2628
2629 unsigned Fast = 0;
2630 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2631 MMO, &Fast) &&
2632 Fast;
2633}
2634
2638
2640 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2641 const TargetLibraryInfo *LibInfo) const {
2643 if (LI.isVolatile())
2645
2646 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2648
2649 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2651
2653 LI.getAlign(), DL, &LI, AC,
2654 /*DT=*/nullptr, LibInfo))
2656
2657 Flags |= getTargetMMOFlags(LI);
2658 return Flags;
2659}
2660
2663 const DataLayout &DL) const {
2665
2666 if (SI.isVolatile())
2668
2669 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2671
2672 // FIXME: Not preserving dereferenceable
2673 Flags |= getTargetMMOFlags(SI);
2674 return Flags;
2675}
2676
2679 const DataLayout &DL) const {
2681
2682 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2683 if (RMW->isVolatile())
2685 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2686 if (CmpX->isVolatile())
2688 } else
2689 llvm_unreachable("not an atomic instruction");
2690
2691 // FIXME: Not preserving dereferenceable
2692 Flags |= getTargetMMOFlags(AI);
2693 return Flags;
2694}
2695
2697 const VPIntrinsic &VPIntrin) const {
2699 Intrinsic::ID IntrinID = VPIntrin.getIntrinsicID();
2700
2701 switch (IntrinID) {
2702 default:
2703 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2704 "for it, but support must be explicitly enabled");
2705 case Intrinsic::vp_load:
2706 case Intrinsic::vp_gather:
2707 case Intrinsic::experimental_vp_strided_load:
2709 break;
2710 case Intrinsic::vp_store:
2711 case Intrinsic::vp_scatter:
2712 case Intrinsic::experimental_vp_strided_store:
2714 break;
2715 }
2716
2717 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2719
2720 Flags |= getTargetMMOFlags(VPIntrin);
2721 return Flags;
2722}
2723
2725 Instruction *Inst,
2726 AtomicOrdering Ord) const {
2727 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2728 return Builder.CreateFence(Ord);
2729 else
2730 return nullptr;
2731}
2732
2734 Instruction *Inst,
2735 AtomicOrdering Ord) const {
2736 if (isAcquireOrStronger(Ord))
2737 return Builder.CreateFence(Ord);
2738 else
2739 return nullptr;
2740}
2741
2742//===----------------------------------------------------------------------===//
2743// GlobalISel Hooks
2744//===----------------------------------------------------------------------===//
2745
2747 const TargetTransformInfo *TTI) const {
2748 auto &MF = *MI.getMF();
2749 auto &MRI = MF.getRegInfo();
2750 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2751 // this helper function computes the maximum number of uses we should consider
2752 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2753 // break even in terms of code size when the original MI has 2 users vs
2754 // choosing to potentially spill. Any more than 2 users we we have a net code
2755 // size increase. This doesn't take into account register pressure though.
2756 auto maxUses = [](unsigned RematCost) {
2757 // A cost of 1 means remats are basically free.
2758 if (RematCost == 1)
2759 return std::numeric_limits<unsigned>::max();
2760 if (RematCost == 2)
2761 return 2U;
2762
2763 // Remat is too expensive, only sink if there's one user.
2764 if (RematCost > 2)
2765 return 1U;
2766 llvm_unreachable("Unexpected remat cost");
2767 };
2768
2769 switch (MI.getOpcode()) {
2770 default:
2771 return false;
2772 // Constants-like instructions should be close to their users.
2773 // We don't want long live-ranges for them.
2774 case TargetOpcode::G_CONSTANT:
2775 case TargetOpcode::G_FCONSTANT:
2776 case TargetOpcode::G_FRAME_INDEX:
2777 case TargetOpcode::G_INTTOPTR:
2778 return true;
2779 case TargetOpcode::G_GLOBAL_VALUE: {
2780 unsigned RematCost = TTI->getGISelRematGlobalCost();
2781 Register Reg = MI.getOperand(0).getReg();
2782 unsigned MaxUses = maxUses(RematCost);
2783 if (MaxUses == UINT_MAX)
2784 return true; // Remats are "free" so always localize.
2785 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2786 }
2787 }
2788}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
#define LLVM_ABI
Definition Compiler.h:213
This file defines the DenseMap class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
#define LCALL5(A)
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition BitVector.h:726
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
static constexpr size_t npos
Definition StringRef.h:57
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
constexpr LeafTy coefficientNextPowerOf2() const
Definition TypeSize.h:260
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:861
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:859
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:863
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUREM(EVT VT)
LLVM_ABI Libcall getSHL(EVT VT)
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getREM(EVT VT)
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSDIV(EVT VT)
LLVM_ABI Libcall getSRL(EVT VT)
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSRA(EVT VT)
LLVM_ABI Libcall getUDIV(EVT VT)
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLLROUND(EVT VT)
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLROUND(EVT VT)
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLRINT(EVT RetVT)
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getLLRINT(EVT RetVT)
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSREM(EVT VT)
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getMUL(EVT VT)
LLVM_ABI Libcall getCTPOP(EVT VT)
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMULO(EVT VT)
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1757
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
InstructionCost Cost
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition Sequence.h:337
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition Sequence.h:109
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
TargetTransformInfo TTI
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition ValueTypes.h:477
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition ValueTypes.h:419
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
Matching combinators.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...