LLVM 22.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/Loads.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/CallingConv.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <cstring>
62#include <iterator>
63#include <string>
64#include <tuple>
65#include <utility>
66
67using namespace llvm;
68
70 "jump-is-expensive", cl::init(false),
71 cl::desc("Do not create extra branches to split comparison logic."),
73
75 ("min-jump-table-entries", cl::init(4), cl::Hidden,
76 cl::desc("Set minimum number of entries to use a jump table."));
77
79 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80 cl::desc("Set maximum size of jump tables."));
81
82/// Minimum jump table density for normal functions.
84 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85 cl::desc("Minimum density for building a jump table in "
86 "a normal function"));
87
88/// Minimum jump table density for -Os or -Oz functions.
90 "optsize-jump-table-density", cl::init(40), cl::Hidden,
91 cl::desc("Minimum density for building a jump table in "
92 "an optsize function"));
93
95 "min-bit-test-cmps", cl::init(2), cl::Hidden,
96 cl::desc("Set minimum of largest number of comparisons "
97 "to use bit test for switch."));
98
99// FIXME: This option is only to test if the strict fp operation processed
100// correctly by preventing mutating strict fp operation to normal fp operation
101// during development. When the backend supports strict float operation, this
102// option will be meaningless.
103static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
104 cl::desc("Don't mutate strict-float node to a legalize node"),
105 cl::init(false), cl::Hidden);
106
107/// GetFPLibCall - Helper to return the right libcall for the given floating
108/// point type, or UNKNOWN_LIBCALL if there is none.
109RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
110 RTLIB::Libcall Call_F32,
111 RTLIB::Libcall Call_F64,
112 RTLIB::Libcall Call_F80,
113 RTLIB::Libcall Call_F128,
114 RTLIB::Libcall Call_PPCF128) {
115 return
116 VT == MVT::f32 ? Call_F32 :
117 VT == MVT::f64 ? Call_F64 :
118 VT == MVT::f80 ? Call_F80 :
119 VT == MVT::f128 ? Call_F128 :
120 VT == MVT::ppcf128 ? Call_PPCF128 :
121 RTLIB::UNKNOWN_LIBCALL;
122}
123
124/// getFPEXT - Return the FPEXT_*_* value for the given types, or
125/// UNKNOWN_LIBCALL if there is none.
126RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
127 if (OpVT == MVT::f16) {
128 if (RetVT == MVT::f32)
129 return FPEXT_F16_F32;
130 if (RetVT == MVT::f64)
131 return FPEXT_F16_F64;
132 if (RetVT == MVT::f80)
133 return FPEXT_F16_F80;
134 if (RetVT == MVT::f128)
135 return FPEXT_F16_F128;
136 } else if (OpVT == MVT::f32) {
137 if (RetVT == MVT::f64)
138 return FPEXT_F32_F64;
139 if (RetVT == MVT::f128)
140 return FPEXT_F32_F128;
141 if (RetVT == MVT::ppcf128)
142 return FPEXT_F32_PPCF128;
143 } else if (OpVT == MVT::f64) {
144 if (RetVT == MVT::f128)
145 return FPEXT_F64_F128;
146 else if (RetVT == MVT::ppcf128)
147 return FPEXT_F64_PPCF128;
148 } else if (OpVT == MVT::f80) {
149 if (RetVT == MVT::f128)
150 return FPEXT_F80_F128;
151 } else if (OpVT == MVT::bf16) {
152 if (RetVT == MVT::f32)
153 return FPEXT_BF16_F32;
154 }
155
156 return UNKNOWN_LIBCALL;
157}
158
159/// getFPROUND - Return the FPROUND_*_* value for the given types, or
160/// UNKNOWN_LIBCALL if there is none.
161RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
162 if (RetVT == MVT::f16) {
163 if (OpVT == MVT::f32)
164 return FPROUND_F32_F16;
165 if (OpVT == MVT::f64)
166 return FPROUND_F64_F16;
167 if (OpVT == MVT::f80)
168 return FPROUND_F80_F16;
169 if (OpVT == MVT::f128)
170 return FPROUND_F128_F16;
171 if (OpVT == MVT::ppcf128)
172 return FPROUND_PPCF128_F16;
173 } else if (RetVT == MVT::bf16) {
174 if (OpVT == MVT::f32)
175 return FPROUND_F32_BF16;
176 if (OpVT == MVT::f64)
177 return FPROUND_F64_BF16;
178 if (OpVT == MVT::f80)
179 return FPROUND_F80_BF16;
180 if (OpVT == MVT::f128)
181 return FPROUND_F128_BF16;
182 } else if (RetVT == MVT::f32) {
183 if (OpVT == MVT::f64)
184 return FPROUND_F64_F32;
185 if (OpVT == MVT::f80)
186 return FPROUND_F80_F32;
187 if (OpVT == MVT::f128)
188 return FPROUND_F128_F32;
189 if (OpVT == MVT::ppcf128)
190 return FPROUND_PPCF128_F32;
191 } else if (RetVT == MVT::f64) {
192 if (OpVT == MVT::f80)
193 return FPROUND_F80_F64;
194 if (OpVT == MVT::f128)
195 return FPROUND_F128_F64;
196 if (OpVT == MVT::ppcf128)
197 return FPROUND_PPCF128_F64;
198 } else if (RetVT == MVT::f80) {
199 if (OpVT == MVT::f128)
200 return FPROUND_F128_F80;
201 }
202
203 return UNKNOWN_LIBCALL;
204}
205
206/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
207/// UNKNOWN_LIBCALL if there is none.
208RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
209 if (OpVT == MVT::f16) {
210 if (RetVT == MVT::i32)
211 return FPTOSINT_F16_I32;
212 if (RetVT == MVT::i64)
213 return FPTOSINT_F16_I64;
214 if (RetVT == MVT::i128)
215 return FPTOSINT_F16_I128;
216 } else if (OpVT == MVT::f32) {
217 if (RetVT == MVT::i32)
218 return FPTOSINT_F32_I32;
219 if (RetVT == MVT::i64)
220 return FPTOSINT_F32_I64;
221 if (RetVT == MVT::i128)
222 return FPTOSINT_F32_I128;
223 } else if (OpVT == MVT::f64) {
224 if (RetVT == MVT::i32)
225 return FPTOSINT_F64_I32;
226 if (RetVT == MVT::i64)
227 return FPTOSINT_F64_I64;
228 if (RetVT == MVT::i128)
229 return FPTOSINT_F64_I128;
230 } else if (OpVT == MVT::f80) {
231 if (RetVT == MVT::i32)
232 return FPTOSINT_F80_I32;
233 if (RetVT == MVT::i64)
234 return FPTOSINT_F80_I64;
235 if (RetVT == MVT::i128)
236 return FPTOSINT_F80_I128;
237 } else if (OpVT == MVT::f128) {
238 if (RetVT == MVT::i32)
239 return FPTOSINT_F128_I32;
240 if (RetVT == MVT::i64)
241 return FPTOSINT_F128_I64;
242 if (RetVT == MVT::i128)
243 return FPTOSINT_F128_I128;
244 } else if (OpVT == MVT::ppcf128) {
245 if (RetVT == MVT::i32)
246 return FPTOSINT_PPCF128_I32;
247 if (RetVT == MVT::i64)
248 return FPTOSINT_PPCF128_I64;
249 if (RetVT == MVT::i128)
250 return FPTOSINT_PPCF128_I128;
251 }
252 return UNKNOWN_LIBCALL;
253}
254
255/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
256/// UNKNOWN_LIBCALL if there is none.
257RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
258 if (OpVT == MVT::f16) {
259 if (RetVT == MVT::i32)
260 return FPTOUINT_F16_I32;
261 if (RetVT == MVT::i64)
262 return FPTOUINT_F16_I64;
263 if (RetVT == MVT::i128)
264 return FPTOUINT_F16_I128;
265 } else if (OpVT == MVT::f32) {
266 if (RetVT == MVT::i32)
267 return FPTOUINT_F32_I32;
268 if (RetVT == MVT::i64)
269 return FPTOUINT_F32_I64;
270 if (RetVT == MVT::i128)
271 return FPTOUINT_F32_I128;
272 } else if (OpVT == MVT::f64) {
273 if (RetVT == MVT::i32)
274 return FPTOUINT_F64_I32;
275 if (RetVT == MVT::i64)
276 return FPTOUINT_F64_I64;
277 if (RetVT == MVT::i128)
278 return FPTOUINT_F64_I128;
279 } else if (OpVT == MVT::f80) {
280 if (RetVT == MVT::i32)
281 return FPTOUINT_F80_I32;
282 if (RetVT == MVT::i64)
283 return FPTOUINT_F80_I64;
284 if (RetVT == MVT::i128)
285 return FPTOUINT_F80_I128;
286 } else if (OpVT == MVT::f128) {
287 if (RetVT == MVT::i32)
288 return FPTOUINT_F128_I32;
289 if (RetVT == MVT::i64)
290 return FPTOUINT_F128_I64;
291 if (RetVT == MVT::i128)
292 return FPTOUINT_F128_I128;
293 } else if (OpVT == MVT::ppcf128) {
294 if (RetVT == MVT::i32)
295 return FPTOUINT_PPCF128_I32;
296 if (RetVT == MVT::i64)
297 return FPTOUINT_PPCF128_I64;
298 if (RetVT == MVT::i128)
299 return FPTOUINT_PPCF128_I128;
300 }
301 return UNKNOWN_LIBCALL;
302}
303
304/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
305/// UNKNOWN_LIBCALL if there is none.
306RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
307 if (OpVT == MVT::i32) {
308 if (RetVT == MVT::f16)
309 return SINTTOFP_I32_F16;
310 if (RetVT == MVT::f32)
311 return SINTTOFP_I32_F32;
312 if (RetVT == MVT::f64)
313 return SINTTOFP_I32_F64;
314 if (RetVT == MVT::f80)
315 return SINTTOFP_I32_F80;
316 if (RetVT == MVT::f128)
317 return SINTTOFP_I32_F128;
318 if (RetVT == MVT::ppcf128)
319 return SINTTOFP_I32_PPCF128;
320 } else if (OpVT == MVT::i64) {
321 if (RetVT == MVT::bf16)
322 return SINTTOFP_I64_BF16;
323 if (RetVT == MVT::f16)
324 return SINTTOFP_I64_F16;
325 if (RetVT == MVT::f32)
326 return SINTTOFP_I64_F32;
327 if (RetVT == MVT::f64)
328 return SINTTOFP_I64_F64;
329 if (RetVT == MVT::f80)
330 return SINTTOFP_I64_F80;
331 if (RetVT == MVT::f128)
332 return SINTTOFP_I64_F128;
333 if (RetVT == MVT::ppcf128)
334 return SINTTOFP_I64_PPCF128;
335 } else if (OpVT == MVT::i128) {
336 if (RetVT == MVT::f16)
337 return SINTTOFP_I128_F16;
338 if (RetVT == MVT::f32)
339 return SINTTOFP_I128_F32;
340 if (RetVT == MVT::f64)
341 return SINTTOFP_I128_F64;
342 if (RetVT == MVT::f80)
343 return SINTTOFP_I128_F80;
344 if (RetVT == MVT::f128)
345 return SINTTOFP_I128_F128;
346 if (RetVT == MVT::ppcf128)
347 return SINTTOFP_I128_PPCF128;
348 }
349 return UNKNOWN_LIBCALL;
350}
351
352/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
353/// UNKNOWN_LIBCALL if there is none.
354RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
355 if (OpVT == MVT::i32) {
356 if (RetVT == MVT::f16)
357 return UINTTOFP_I32_F16;
358 if (RetVT == MVT::f32)
359 return UINTTOFP_I32_F32;
360 if (RetVT == MVT::f64)
361 return UINTTOFP_I32_F64;
362 if (RetVT == MVT::f80)
363 return UINTTOFP_I32_F80;
364 if (RetVT == MVT::f128)
365 return UINTTOFP_I32_F128;
366 if (RetVT == MVT::ppcf128)
367 return UINTTOFP_I32_PPCF128;
368 } else if (OpVT == MVT::i64) {
369 if (RetVT == MVT::bf16)
370 return UINTTOFP_I64_BF16;
371 if (RetVT == MVT::f16)
372 return UINTTOFP_I64_F16;
373 if (RetVT == MVT::f32)
374 return UINTTOFP_I64_F32;
375 if (RetVT == MVT::f64)
376 return UINTTOFP_I64_F64;
377 if (RetVT == MVT::f80)
378 return UINTTOFP_I64_F80;
379 if (RetVT == MVT::f128)
380 return UINTTOFP_I64_F128;
381 if (RetVT == MVT::ppcf128)
382 return UINTTOFP_I64_PPCF128;
383 } else if (OpVT == MVT::i128) {
384 if (RetVT == MVT::f16)
385 return UINTTOFP_I128_F16;
386 if (RetVT == MVT::f32)
387 return UINTTOFP_I128_F32;
388 if (RetVT == MVT::f64)
389 return UINTTOFP_I128_F64;
390 if (RetVT == MVT::f80)
391 return UINTTOFP_I128_F80;
392 if (RetVT == MVT::f128)
393 return UINTTOFP_I128_F128;
394 if (RetVT == MVT::ppcf128)
395 return UINTTOFP_I128_PPCF128;
396 }
397 return UNKNOWN_LIBCALL;
398}
399
400RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
401 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
402 POWI_PPCF128);
403}
404
405RTLIB::Libcall RTLIB::getPOW(EVT RetVT) {
406 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
407}
408
409RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
410 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
411 LDEXP_PPCF128);
412}
413
414RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
415 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
416 FREXP_PPCF128);
417}
418
419RTLIB::Libcall RTLIB::getSIN(EVT RetVT) {
420 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
421}
422
423RTLIB::Libcall RTLIB::getCOS(EVT RetVT) {
424 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
425}
426
427RTLIB::Libcall RTLIB::getSINCOS(EVT RetVT) {
428 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
429 SINCOS_PPCF128);
430}
431
432RTLIB::Libcall RTLIB::getSINCOSPI(EVT RetVT) {
433 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
434 SINCOSPI_F128, SINCOSPI_PPCF128);
435}
436
437RTLIB::Libcall RTLIB::getSINCOS_STRET(EVT RetVT) {
438 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
439 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
440}
441
442RTLIB::Libcall RTLIB::getMODF(EVT RetVT) {
443 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
444 MODF_PPCF128);
445}
446
447RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
448 AtomicOrdering Order,
449 uint64_t MemSize) {
450 unsigned ModeN, ModelN;
451 switch (MemSize) {
452 case 1:
453 ModeN = 0;
454 break;
455 case 2:
456 ModeN = 1;
457 break;
458 case 4:
459 ModeN = 2;
460 break;
461 case 8:
462 ModeN = 3;
463 break;
464 case 16:
465 ModeN = 4;
466 break;
467 default:
468 return RTLIB::UNKNOWN_LIBCALL;
469 }
470
471 switch (Order) {
473 ModelN = 0;
474 break;
476 ModelN = 1;
477 break;
479 ModelN = 2;
480 break;
483 ModelN = 3;
484 break;
485 default:
486 return UNKNOWN_LIBCALL;
487 }
488
489 return LC[ModeN][ModelN];
490}
491
492RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
493 MVT VT) {
494 if (!VT.isScalarInteger())
495 return UNKNOWN_LIBCALL;
496 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
497
498#define LCALLS(A, B) \
499 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
500#define LCALL5(A) \
501 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
502 switch (Opc) {
503 case ISD::ATOMIC_CMP_SWAP: {
504 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
505 return getOutlineAtomicHelper(LC, Order, MemSize);
506 }
507 case ISD::ATOMIC_SWAP: {
508 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
509 return getOutlineAtomicHelper(LC, Order, MemSize);
510 }
511 case ISD::ATOMIC_LOAD_ADD: {
512 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
513 return getOutlineAtomicHelper(LC, Order, MemSize);
514 }
515 case ISD::ATOMIC_LOAD_OR: {
516 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
517 return getOutlineAtomicHelper(LC, Order, MemSize);
518 }
519 case ISD::ATOMIC_LOAD_CLR: {
520 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
521 return getOutlineAtomicHelper(LC, Order, MemSize);
522 }
523 case ISD::ATOMIC_LOAD_XOR: {
524 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
525 return getOutlineAtomicHelper(LC, Order, MemSize);
526 }
527 default:
528 return UNKNOWN_LIBCALL;
529 }
530#undef LCALLS
531#undef LCALL5
532}
533
534RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
535#define OP_TO_LIBCALL(Name, Enum) \
536 case Name: \
537 switch (VT.SimpleTy) { \
538 default: \
539 return UNKNOWN_LIBCALL; \
540 case MVT::i8: \
541 return Enum##_1; \
542 case MVT::i16: \
543 return Enum##_2; \
544 case MVT::i32: \
545 return Enum##_4; \
546 case MVT::i64: \
547 return Enum##_8; \
548 case MVT::i128: \
549 return Enum##_16; \
550 }
551
552 switch (Opc) {
553 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
554 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
555 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
556 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
557 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
558 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
559 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
560 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
561 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
562 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
563 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
564 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
565 }
566
567#undef OP_TO_LIBCALL
568
569 return UNKNOWN_LIBCALL;
570}
571
573 switch (ElementSize) {
574 case 1:
575 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
576 case 2:
577 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
578 case 4:
579 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
580 case 8:
581 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
582 case 16:
583 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
584 default:
585 return UNKNOWN_LIBCALL;
586 }
587}
588
590 switch (ElementSize) {
591 case 1:
592 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
593 case 2:
594 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
595 case 4:
596 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
597 case 8:
598 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
599 case 16:
600 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
601 default:
602 return UNKNOWN_LIBCALL;
603 }
604}
605
607 switch (ElementSize) {
608 case 1:
609 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
610 case 2:
611 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
612 case 4:
613 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
614 case 8:
615 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
616 case 16:
617 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
618 default:
619 return UNKNOWN_LIBCALL;
620 }
621}
622
624 RTLIB::LibcallImpl Impl) const {
625 switch (Impl) {
626 case RTLIB::impl___aeabi_dcmpeq__une:
627 case RTLIB::impl___aeabi_fcmpeq__une:
628 // Usage in the eq case, so we have to invert the comparison.
629 return ISD::SETEQ;
630 case RTLIB::impl___aeabi_dcmpeq__oeq:
631 case RTLIB::impl___aeabi_fcmpeq__oeq:
632 // Normal comparison to boolean value.
633 return ISD::SETNE;
634 case RTLIB::impl___aeabi_dcmplt:
635 case RTLIB::impl___aeabi_dcmple:
636 case RTLIB::impl___aeabi_dcmpge:
637 case RTLIB::impl___aeabi_dcmpgt:
638 case RTLIB::impl___aeabi_dcmpun:
639 case RTLIB::impl___aeabi_fcmplt:
640 case RTLIB::impl___aeabi_fcmple:
641 case RTLIB::impl___aeabi_fcmpge:
642 case RTLIB::impl___aeabi_fcmpgt:
643 /// The AEABI versions return a typical boolean value, so we can compare
644 /// against the integer result as simply != 0.
645 return ISD::SETNE;
646 default:
647 break;
648 }
649
650 // Assume libgcc/compiler-rt behavior. Most of the cases are really aliases of
651 // each other, and return a 3-way comparison style result of -1, 0, or 1
652 // depending on lt/eq/gt.
653 //
654 // FIXME: It would be cleaner to directly express this as a 3-way comparison
655 // soft FP libcall instead of individual compares.
656 RTLIB::Libcall LC = RTLIB::RuntimeLibcallsInfo::getLibcallFromImpl(Impl);
657 switch (LC) {
658 case RTLIB::OEQ_F32:
659 case RTLIB::OEQ_F64:
660 case RTLIB::OEQ_F128:
661 case RTLIB::OEQ_PPCF128:
662 return ISD::SETEQ;
663 case RTLIB::UNE_F32:
664 case RTLIB::UNE_F64:
665 case RTLIB::UNE_F128:
666 case RTLIB::UNE_PPCF128:
667 return ISD::SETNE;
668 case RTLIB::OGE_F32:
669 case RTLIB::OGE_F64:
670 case RTLIB::OGE_F128:
671 case RTLIB::OGE_PPCF128:
672 return ISD::SETGE;
673 case RTLIB::OLT_F32:
674 case RTLIB::OLT_F64:
675 case RTLIB::OLT_F128:
676 case RTLIB::OLT_PPCF128:
677 return ISD::SETLT;
678 case RTLIB::OLE_F32:
679 case RTLIB::OLE_F64:
680 case RTLIB::OLE_F128:
681 case RTLIB::OLE_PPCF128:
682 return ISD::SETLE;
683 case RTLIB::OGT_F32:
684 case RTLIB::OGT_F64:
685 case RTLIB::OGT_F128:
686 case RTLIB::OGT_PPCF128:
687 return ISD::SETGT;
688 case RTLIB::UO_F32:
689 case RTLIB::UO_F64:
690 case RTLIB::UO_F128:
691 case RTLIB::UO_PPCF128:
692 return ISD::SETNE;
693 default:
694 llvm_unreachable("not a compare libcall");
695 }
696}
697
698/// NOTE: The TargetMachine owns TLOF.
700 : TM(tm), Libcalls(TM.getTargetTriple(), TM.Options.ExceptionModel,
701 TM.Options.FloatABIType, TM.Options.EABIVersion,
702 TM.Options.MCOptions.getABIName()) {
703 initActions();
704
705 // Perform these initializations only once.
711 HasExtractBitsInsn = false;
712 JumpIsExpensive = JumpIsExpensiveOverride;
714 EnableExtLdPromotion = false;
715 StackPointerRegisterToSaveRestore = 0;
716 BooleanContents = UndefinedBooleanContent;
717 BooleanFloatContents = UndefinedBooleanContent;
718 BooleanVectorContents = UndefinedBooleanContent;
719 SchedPreferenceInfo = Sched::ILP;
722 MaxBytesForAlignment = 0;
723 MaxAtomicSizeInBitsSupported = 0;
724
725 // Assume that even with libcalls, no target supports wider than 128 bit
726 // division.
727 MaxDivRemBitWidthSupported = 128;
728
729 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
730
731 MinCmpXchgSizeInBits = 0;
732 SupportsUnalignedAtomics = false;
733
734 MinimumBitTestCmps = MinimumBitTestCmpsOverride;
735}
736
737// Define the virtual destructor out-of-line to act as a key method to anchor
738// debug info (see coding standards).
740
742 // All operations default to being supported.
743 memset(OpActions, 0, sizeof(OpActions));
744 memset(LoadExtActions, 0, sizeof(LoadExtActions));
745 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
746 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
747 memset(CondCodeActions, 0, sizeof(CondCodeActions));
748 llvm::fill(RegClassForVT, nullptr);
749 llvm::fill(TargetDAGCombineArray, 0);
750
751 // Let extending atomic loads be unsupported by default.
752 for (MVT ValVT : MVT::all_valuetypes())
753 for (MVT MemVT : MVT::all_valuetypes())
755 Expand);
756
757 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
758 // remove this and targets should individually set these types if not legal.
761 for (MVT VT : {MVT::i2, MVT::i4})
762 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
763 }
764 for (MVT AVT : MVT::all_valuetypes()) {
765 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
766 setTruncStoreAction(AVT, VT, Expand);
769 }
770 }
771 for (unsigned IM = (unsigned)ISD::PRE_INC;
772 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
773 for (MVT VT : {MVT::i2, MVT::i4}) {
778 }
779 }
780
781 for (MVT VT : MVT::fp_valuetypes()) {
782 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
783 if (IntVT.isValid()) {
784 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
785 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
786 }
787 }
788
789 // Set default actions for various operations.
790 for (MVT VT : MVT::all_valuetypes()) {
791 // Default all indexed load / store to expand.
792 for (unsigned IM = (unsigned)ISD::PRE_INC;
793 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
798 }
799
800 // Most backends expect to see the node which just returns the value loaded.
801 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
802
803 // These operations default to expand.
805 ISD::FMINNUM, ISD::FMAXNUM,
806 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
807 ISD::FMINIMUM, ISD::FMAXIMUM,
808 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
821 ISD::IS_FPCLASS, ISD::FCBRT,
822 ISD::FLOG, ISD::FLOG2,
823 ISD::FLOG10, ISD::FEXP,
824 ISD::FEXP2, ISD::FEXP10,
825 ISD::FFLOOR, ISD::FNEARBYINT,
826 ISD::FCEIL, ISD::FRINT,
827 ISD::FTRUNC, ISD::FROUNDEVEN,
828 ISD::FTAN, ISD::FACOS,
829 ISD::FASIN, ISD::FATAN,
830 ISD::FCOSH, ISD::FSINH,
831 ISD::FTANH, ISD::FATAN2,
833 VT, Expand);
834
835 // Overflow operations default to expand
838 VT, Expand);
839
840 // Carry-using overflow operations default to expand.
843 VT, Expand);
844
845 // ADDC/ADDE/SUBC/SUBE default to expand.
847 Expand);
848
849 // [US]CMP default to expand
851
852 // Halving adds
855 Expand);
856
857 // Absolute difference
859
860 // Saturated trunc
864
865 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
867 Expand);
868
870
871 // These library functions default to expand.
872 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP,
873 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
874 VT, Expand);
875
876 // These operations default to expand for vector types.
877 if (VT.isVector())
882 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
883 VT, Expand);
884
885 // Constrained floating-point operations default to expand.
886#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
887 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
888#include "llvm/IR/ConstrainedOps.def"
889
890 // For most targets @llvm.get.dynamic.area.offset just returns 0.
891 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
892
893 // Vector reduction default to expand.
895 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
896 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
897 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
898 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
899 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
900 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
901 VT, Expand);
902
903 // Named vector shuffles default to expand.
905
906 // Only some target support this vector operation. Most need to expand it.
908
909 // VP operations default to expand.
910#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
911 setOperationAction(ISD::SDOPC, VT, Expand);
912#include "llvm/IR/VPIntrinsics.def"
913
914 // Masked vector extracts default to expand.
915 setOperationAction(ISD::VECTOR_FIND_LAST_ACTIVE, VT, Expand);
916
919
920 // FP environment operations default to expand.
921 setOperationAction(ISD::GET_FPENV, VT, Expand);
922 setOperationAction(ISD::SET_FPENV, VT, Expand);
923 setOperationAction(ISD::RESET_FPENV, VT, Expand);
924
925 setOperationAction(ISD::MSTORE, VT, Expand);
926 }
927
928 // Most targets ignore the @llvm.prefetch intrinsic.
929 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
930
931 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
932 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
933
934 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
935 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
936
937 // ConstantFP nodes default to expand. Targets can either change this to
938 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
939 // to optimize expansions for certain constants.
941 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
942 Expand);
943
944 // Insert custom handling default for llvm.canonicalize.*.
946 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
947
948 // FIXME: Query RuntimeLibCalls to make the decision.
949 setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
950 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
951
952 setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
953 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
954 MVT::f16, Promote);
955 // Default ISD::TRAP to expand (which turns it into abort).
956 setOperationAction(ISD::TRAP, MVT::Other, Expand);
957
958 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
959 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
960 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
961
962 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
963
964 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
965 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
966
967 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
968 setOperationAction(ISD::GET_FPMODE, VT, Expand);
969 setOperationAction(ISD::SET_FPMODE, VT, Expand);
970 }
971 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
972
973 // This one by default will call __clear_cache unless the target
974 // wants something different.
976}
977
979 EVT) const {
980 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
981}
982
984 const DataLayout &DL) const {
985 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
986 if (LHSTy.isVector())
987 return LHSTy;
988 MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
989 // If any possible shift value won't fit in the prefered type, just use
990 // something safe. Assume it will be legalized when the shift is expanded.
991 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
992 ShiftVT = MVT::i32;
993 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
994 "ShiftVT is still too small!");
995 return ShiftVT;
996}
997
998bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
999 assert(isTypeLegal(VT));
1000 switch (Op) {
1001 default:
1002 return false;
1003 case ISD::SDIV:
1004 case ISD::UDIV:
1005 case ISD::SREM:
1006 case ISD::UREM:
1007 return true;
1008 }
1009}
1010
1012 unsigned DestAS) const {
1013 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1014}
1015
1017 Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1018 const ConstantRange *VScaleRange) const {
1019 // Find the smallest "sensible" element type to use for the expansion.
1020 ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1021 if (EC.isScalable())
1022 CR = CR.umul_sat(*VScaleRange);
1023
1024 if (ZeroIsPoison)
1025 CR = CR.subtract(APInt(64, 1));
1026
1027 unsigned EltWidth = RetTy->getScalarSizeInBits();
1028 EltWidth = std::min(EltWidth, CR.getActiveBits());
1029 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1030
1031 return EltWidth;
1032}
1033
1035 // If the command-line option was specified, ignore this request.
1036 if (!JumpIsExpensiveOverride.getNumOccurrences())
1037 JumpIsExpensive = isExpensive;
1038}
1039
1042 // If this is a simple type, use the ComputeRegisterProp mechanism.
1043 if (VT.isSimple()) {
1044 MVT SVT = VT.getSimpleVT();
1045 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1046 MVT NVT = TransformToType[SVT.SimpleTy];
1047 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1048
1049 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1050 LA == TypeSoftPromoteHalf ||
1051 (NVT.isVector() ||
1052 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1053 "Promote may not follow Expand or Promote");
1054
1055 if (LA == TypeSplitVector)
1056 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1057 if (LA == TypeScalarizeVector)
1058 return LegalizeKind(LA, SVT.getVectorElementType());
1059 return LegalizeKind(LA, NVT);
1060 }
1061
1062 // Handle Extended Scalar Types.
1063 if (!VT.isVector()) {
1064 assert(VT.isInteger() && "Float types must be simple");
1065 unsigned BitSize = VT.getSizeInBits();
1066 // First promote to a power-of-two size, then expand if necessary.
1067 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1068 EVT NVT = VT.getRoundIntegerType(Context);
1069 assert(NVT != VT && "Unable to round integer VT");
1070 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1071 // Avoid multi-step promotion.
1072 if (NextStep.first == TypePromoteInteger)
1073 return NextStep;
1074 // Return rounded integer type.
1075 return LegalizeKind(TypePromoteInteger, NVT);
1076 }
1077
1079 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1080 }
1081
1082 // Handle vector types.
1083 ElementCount NumElts = VT.getVectorElementCount();
1084 EVT EltVT = VT.getVectorElementType();
1085
1086 // Vectors with only one element are always scalarized.
1087 if (NumElts.isScalar())
1088 return LegalizeKind(TypeScalarizeVector, EltVT);
1089
1090 // Try to widen vector elements until the element type is a power of two and
1091 // promote it to a legal type later on, for example:
1092 // <3 x i8> -> <4 x i8> -> <4 x i32>
1093 if (EltVT.isInteger()) {
1094 // Vectors with a number of elements that is not a power of two are always
1095 // widened, for example <3 x i8> -> <4 x i8>.
1096 if (!VT.isPow2VectorType()) {
1097 NumElts = NumElts.coefficientNextPowerOf2();
1098 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1099 return LegalizeKind(TypeWidenVector, NVT);
1100 }
1101
1102 // Examine the element type.
1103 LegalizeKind LK = getTypeConversion(Context, EltVT);
1104
1105 // If type is to be expanded, split the vector.
1106 // <4 x i140> -> <2 x i140>
1107 if (LK.first == TypeExpandInteger) {
1108 if (NumElts.isScalable() && NumElts.getKnownMinValue() == 1)
1111 VT.getHalfNumVectorElementsVT(Context));
1112 }
1113
1114 // Promote the integer element types until a legal vector type is found
1115 // or until the element integer type is too big. If a legal type was not
1116 // found, fallback to the usual mechanism of widening/splitting the
1117 // vector.
1118 EVT OldEltVT = EltVT;
1119 while (true) {
1120 // Increase the bitwidth of the element to the next pow-of-two
1121 // (which is greater than 8 bits).
1122 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1123 .getRoundIntegerType(Context);
1124
1125 // Stop trying when getting a non-simple element type.
1126 // Note that vector elements may be greater than legal vector element
1127 // types. Example: X86 XMM registers hold 64bit element on 32bit
1128 // systems.
1129 if (!EltVT.isSimple())
1130 break;
1131
1132 // Build a new vector type and check if it is legal.
1133 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1134 // Found a legal promoted vector type.
1135 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1137 EVT::getVectorVT(Context, EltVT, NumElts));
1138 }
1139
1140 // Reset the type to the unexpanded type if we did not find a legal vector
1141 // type with a promoted vector element type.
1142 EltVT = OldEltVT;
1143 }
1144
1145 // Try to widen the vector until a legal type is found.
1146 // If there is no wider legal type, split the vector.
1147 while (true) {
1148 // Round up to the next power of 2.
1149 NumElts = NumElts.coefficientNextPowerOf2();
1150
1151 // If there is no simple vector type with this many elements then there
1152 // cannot be a larger legal vector type. Note that this assumes that
1153 // there are no skipped intermediate vector types in the simple types.
1154 if (!EltVT.isSimple())
1155 break;
1156 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1157 if (LargerVector == MVT())
1158 break;
1159
1160 // If this type is legal then widen the vector.
1161 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1162 return LegalizeKind(TypeWidenVector, LargerVector);
1163 }
1164
1165 // Widen odd vectors to next power of two.
1166 if (!VT.isPow2VectorType()) {
1167 EVT NVT = VT.getPow2VectorType(Context);
1168 return LegalizeKind(TypeWidenVector, NVT);
1169 }
1170
1173
1174 // Vectors with illegal element types are expanded.
1175 EVT NVT = EVT::getVectorVT(Context, EltVT,
1177 return LegalizeKind(TypeSplitVector, NVT);
1178}
1179
1180static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1181 unsigned &NumIntermediates,
1182 MVT &RegisterVT,
1183 TargetLoweringBase *TLI) {
1184 // Figure out the right, legal destination reg to copy into.
1186 MVT EltTy = VT.getVectorElementType();
1187
1188 unsigned NumVectorRegs = 1;
1189
1190 // Scalable vectors cannot be scalarized, so splitting or widening is
1191 // required.
1192 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1194 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1195
1196 // FIXME: We don't support non-power-of-2-sized vectors for now.
1197 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1198 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1199 // Split EC to unit size (scalable property is preserved).
1200 NumVectorRegs = EC.getKnownMinValue();
1201 EC = ElementCount::getFixed(1);
1202 }
1203
1204 // Divide the input until we get to a supported size. This will
1205 // always end up with an EC that represent a scalar or a scalable
1206 // scalar.
1207 while (EC.getKnownMinValue() > 1 &&
1208 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1209 EC = EC.divideCoefficientBy(2);
1210 NumVectorRegs <<= 1;
1211 }
1212
1213 NumIntermediates = NumVectorRegs;
1214
1215 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1216 if (!TLI->isTypeLegal(NewVT))
1217 NewVT = EltTy;
1218 IntermediateVT = NewVT;
1219
1220 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1221
1222 // Convert sizes such as i33 to i64.
1223 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1224
1225 MVT DestVT = TLI->getRegisterType(NewVT);
1226 RegisterVT = DestVT;
1227 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1228 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1229
1230 // Otherwise, promotion or legal types use the same number of registers as
1231 // the vector decimated to the appropriate level.
1232 return NumVectorRegs;
1233}
1234
1235/// isLegalRC - Return true if the value types that can be represented by the
1236/// specified register class are all legal.
1238 const TargetRegisterClass &RC) const {
1239 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1240 if (isTypeLegal(*I))
1241 return true;
1242 return false;
1243}
1244
1245/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1246/// sequence of memory operands that is recognized by PrologEpilogInserter.
1249 MachineBasicBlock *MBB) const {
1250 MachineInstr *MI = &InitialMI;
1251 MachineFunction &MF = *MI->getMF();
1252 MachineFrameInfo &MFI = MF.getFrameInfo();
1253
1254 // We're handling multiple types of operands here:
1255 // PATCHPOINT MetaArgs - live-in, read only, direct
1256 // STATEPOINT Deopt Spill - live-through, read only, indirect
1257 // STATEPOINT Deopt Alloca - live-through, read only, direct
1258 // (We're currently conservative and mark the deopt slots read/write in
1259 // practice.)
1260 // STATEPOINT GC Spill - live-through, read/write, indirect
1261 // STATEPOINT GC Alloca - live-through, read/write, direct
1262 // The live-in vs live-through is handled already (the live through ones are
1263 // all stack slots), but we need to handle the different type of stackmap
1264 // operands and memory effects here.
1265
1266 if (llvm::none_of(MI->operands(),
1267 [](MachineOperand &Operand) { return Operand.isFI(); }))
1268 return MBB;
1269
1270 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1271
1272 // Inherit previous memory operands.
1273 MIB.cloneMemRefs(*MI);
1274
1275 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1276 MachineOperand &MO = MI->getOperand(i);
1277 if (!MO.isFI()) {
1278 // Index of Def operand this Use it tied to.
1279 // Since Defs are coming before Uses, if Use is tied, then
1280 // index of Def must be smaller that index of that Use.
1281 // Also, Defs preserve their position in new MI.
1282 unsigned TiedTo = i;
1283 if (MO.isReg() && MO.isTied())
1284 TiedTo = MI->findTiedOperandIdx(i);
1285 MIB.add(MO);
1286 if (TiedTo < i)
1287 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1288 continue;
1289 }
1290
1291 // foldMemoryOperand builds a new MI after replacing a single FI operand
1292 // with the canonical set of five x86 addressing-mode operands.
1293 int FI = MO.getIndex();
1294
1295 // Add frame index operands recognized by stackmaps.cpp
1297 // indirect-mem-ref tag, size, #FI, offset.
1298 // Used for spills inserted by StatepointLowering. This codepath is not
1299 // used for patchpoints/stackmaps at all, for these spilling is done via
1300 // foldMemoryOperand callback only.
1301 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1302 MIB.addImm(StackMaps::IndirectMemRefOp);
1303 MIB.addImm(MFI.getObjectSize(FI));
1304 MIB.add(MO);
1305 MIB.addImm(0);
1306 } else {
1307 // direct-mem-ref tag, #FI, offset.
1308 // Used by patchpoint, and direct alloca arguments to statepoints
1309 MIB.addImm(StackMaps::DirectMemRefOp);
1310 MIB.add(MO);
1311 MIB.addImm(0);
1312 }
1313
1314 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1315
1316 // Add a new memory operand for this FI.
1317 assert(MFI.getObjectOffset(FI) != -1);
1318
1319 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1320 // PATCHPOINT should be updated to do the same. (TODO)
1321 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1322 auto Flags = MachineMemOperand::MOLoad;
1324 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1326 MIB->addMemOperand(MF, MMO);
1327 }
1328 }
1329 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1330 MI->eraseFromParent();
1331 return MBB;
1332}
1333
1334/// findRepresentativeClass - Return the largest legal super-reg register class
1335/// of the register class for the specified type and its associated "cost".
1336// This function is in TargetLowering because it uses RegClassForVT which would
1337// need to be moved to TargetRegisterInfo and would necessitate moving
1338// isTypeLegal over as well - a massive change that would just require
1339// TargetLowering having a TargetRegisterInfo class member that it would use.
1340std::pair<const TargetRegisterClass *, uint8_t>
1342 MVT VT) const {
1343 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1344 if (!RC)
1345 return std::make_pair(RC, 0);
1346
1347 // Compute the set of all super-register classes.
1348 BitVector SuperRegRC(TRI->getNumRegClasses());
1349 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1350 SuperRegRC.setBitsInMask(RCI.getMask());
1351
1352 // Find the first legal register class with the largest spill size.
1353 const TargetRegisterClass *BestRC = RC;
1354 for (unsigned i : SuperRegRC.set_bits()) {
1355 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1356 // We want the largest possible spill size.
1357 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1358 continue;
1359 if (!isLegalRC(*TRI, *SuperRC))
1360 continue;
1361 BestRC = SuperRC;
1362 }
1363 return std::make_pair(BestRC, 1);
1364}
1365
1366/// computeRegisterProperties - Once all of the register classes are added,
1367/// this allows us to compute derived properties we expose.
1369 const TargetRegisterInfo *TRI) {
1370 // Everything defaults to needing one register.
1371 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1372 NumRegistersForVT[i] = 1;
1373 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1374 }
1375 // ...except isVoid, which doesn't need any registers.
1376 NumRegistersForVT[MVT::isVoid] = 0;
1377
1378 // Find the largest integer register class.
1379 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1380 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1381 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1382
1383 // Every integer value type larger than this largest register takes twice as
1384 // many registers to represent as the previous ValueType.
1385 for (unsigned ExpandedReg = LargestIntReg + 1;
1386 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1387 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1388 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1389 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1390 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1392 }
1393
1394 // Inspect all of the ValueType's smaller than the largest integer
1395 // register to see which ones need promotion.
1396 unsigned LegalIntReg = LargestIntReg;
1397 for (unsigned IntReg = LargestIntReg - 1;
1398 IntReg >= (unsigned)MVT::i1; --IntReg) {
1399 MVT IVT = (MVT::SimpleValueType)IntReg;
1400 if (isTypeLegal(IVT)) {
1401 LegalIntReg = IntReg;
1402 } else {
1403 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1404 (MVT::SimpleValueType)LegalIntReg;
1405 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1406 }
1407 }
1408
1409 // ppcf128 type is really two f64's.
1410 if (!isTypeLegal(MVT::ppcf128)) {
1411 if (isTypeLegal(MVT::f64)) {
1412 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1413 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1414 TransformToType[MVT::ppcf128] = MVT::f64;
1415 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1416 } else {
1417 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1418 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1419 TransformToType[MVT::ppcf128] = MVT::i128;
1420 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1421 }
1422 }
1423
1424 // Decide how to handle f128. If the target does not have native f128 support,
1425 // expand it to i128 and we will be generating soft float library calls.
1426 if (!isTypeLegal(MVT::f128)) {
1427 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1428 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1429 TransformToType[MVT::f128] = MVT::i128;
1430 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1431 }
1432
1433 // Decide how to handle f80. If the target does not have native f80 support,
1434 // expand it to i96 and we will be generating soft float library calls.
1435 if (!isTypeLegal(MVT::f80)) {
1436 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1437 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1438 TransformToType[MVT::f80] = MVT::i32;
1439 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1440 }
1441
1442 // Decide how to handle f64. If the target does not have native f64 support,
1443 // expand it to i64 and we will be generating soft float library calls.
1444 if (!isTypeLegal(MVT::f64)) {
1445 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1446 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1447 TransformToType[MVT::f64] = MVT::i64;
1448 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1449 }
1450
1451 // Decide how to handle f32. If the target does not have native f32 support,
1452 // expand it to i32 and we will be generating soft float library calls.
1453 if (!isTypeLegal(MVT::f32)) {
1454 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1455 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1456 TransformToType[MVT::f32] = MVT::i32;
1457 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1458 }
1459
1460 // Decide how to handle f16. If the target does not have native f16 support,
1461 // promote it to f32, because there are no f16 library calls (except for
1462 // conversions).
1463 if (!isTypeLegal(MVT::f16)) {
1464 // Allow targets to control how we legalize half.
1465 bool SoftPromoteHalfType = softPromoteHalfType();
1466 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1467
1468 if (!UseFPRegsForHalfType) {
1469 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1470 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1471 } else {
1472 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1473 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1474 }
1475 TransformToType[MVT::f16] = MVT::f32;
1476 if (SoftPromoteHalfType) {
1477 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1478 } else {
1479 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1480 }
1481 }
1482
1483 // Decide how to handle bf16. If the target does not have native bf16 support,
1484 // promote it to f32, because there are no bf16 library calls (except for
1485 // converting from f32 to bf16).
1486 if (!isTypeLegal(MVT::bf16)) {
1487 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1488 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1489 TransformToType[MVT::bf16] = MVT::f32;
1490 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1491 }
1492
1493 // Loop over all of the vector value types to see which need transformations.
1494 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1495 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1496 MVT VT = (MVT::SimpleValueType) i;
1497 if (isTypeLegal(VT))
1498 continue;
1499
1500 MVT EltVT = VT.getVectorElementType();
1502 bool IsLegalWiderType = false;
1503 bool IsScalable = VT.isScalableVector();
1504 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1505 switch (PreferredAction) {
1506 case TypePromoteInteger: {
1507 MVT::SimpleValueType EndVT = IsScalable ?
1508 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1509 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1510 // Try to promote the elements of integer vectors. If no legal
1511 // promotion was found, fall through to the widen-vector method.
1512 for (unsigned nVT = i + 1;
1513 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1514 MVT SVT = (MVT::SimpleValueType) nVT;
1515 // Promote vectors of integers to vectors with the same number
1516 // of elements, with a wider element type.
1517 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1518 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1519 TransformToType[i] = SVT;
1520 RegisterTypeForVT[i] = SVT;
1521 NumRegistersForVT[i] = 1;
1522 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1523 IsLegalWiderType = true;
1524 break;
1525 }
1526 }
1527 if (IsLegalWiderType)
1528 break;
1529 [[fallthrough]];
1530 }
1531
1532 case TypeWidenVector:
1533 if (isPowerOf2_32(EC.getKnownMinValue())) {
1534 // Try to widen the vector.
1535 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1536 MVT SVT = (MVT::SimpleValueType) nVT;
1537 if (SVT.getVectorElementType() == EltVT &&
1538 SVT.isScalableVector() == IsScalable &&
1540 EC.getKnownMinValue() &&
1541 isTypeLegal(SVT)) {
1542 TransformToType[i] = SVT;
1543 RegisterTypeForVT[i] = SVT;
1544 NumRegistersForVT[i] = 1;
1545 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1546 IsLegalWiderType = true;
1547 break;
1548 }
1549 }
1550 if (IsLegalWiderType)
1551 break;
1552 } else {
1553 // Only widen to the next power of 2 to keep consistency with EVT.
1554 MVT NVT = VT.getPow2VectorType();
1555 if (isTypeLegal(NVT)) {
1556 TransformToType[i] = NVT;
1557 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1558 RegisterTypeForVT[i] = NVT;
1559 NumRegistersForVT[i] = 1;
1560 break;
1561 }
1562 }
1563 [[fallthrough]];
1564
1565 case TypeSplitVector:
1566 case TypeScalarizeVector: {
1567 MVT IntermediateVT;
1568 MVT RegisterVT;
1569 unsigned NumIntermediates;
1570 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1571 NumIntermediates, RegisterVT, this);
1572 NumRegistersForVT[i] = NumRegisters;
1573 assert(NumRegistersForVT[i] == NumRegisters &&
1574 "NumRegistersForVT size cannot represent NumRegisters!");
1575 RegisterTypeForVT[i] = RegisterVT;
1576
1577 MVT NVT = VT.getPow2VectorType();
1578 if (NVT == VT) {
1579 // Type is already a power of 2. The default action is to split.
1580 TransformToType[i] = MVT::Other;
1581 if (PreferredAction == TypeScalarizeVector)
1582 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1583 else if (PreferredAction == TypeSplitVector)
1584 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1585 else if (EC.getKnownMinValue() > 1)
1586 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1587 else
1588 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1591 } else {
1592 TransformToType[i] = NVT;
1593 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1594 }
1595 break;
1596 }
1597 default:
1598 llvm_unreachable("Unknown vector legalization action!");
1599 }
1600 }
1601
1602 // Determine the 'representative' register class for each value type.
1603 // An representative register class is the largest (meaning one which is
1604 // not a sub-register class / subreg register class) legal register class for
1605 // a group of value types. For example, on i386, i8, i16, and i32
1606 // representative would be GR32; while on x86_64 it's GR64.
1607 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1608 const TargetRegisterClass* RRC;
1609 uint8_t Cost;
1611 RepRegClassForVT[i] = RRC;
1612 RepRegClassCostForVT[i] = Cost;
1613 }
1614}
1615
1617 EVT VT) const {
1618 assert(!VT.isVector() && "No default SetCC type for vectors!");
1619 return getPointerTy(DL).SimpleTy;
1620}
1621
1623 return MVT::i32; // return the default value
1624}
1625
1626/// getVectorTypeBreakdown - Vector types are broken down into some number of
1627/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1628/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1629/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1630///
1631/// This method returns the number of registers needed, and the VT for each
1632/// register. It also returns the VT and quantity of the intermediate values
1633/// before they are promoted/expanded.
1635 EVT VT, EVT &IntermediateVT,
1636 unsigned &NumIntermediates,
1637 MVT &RegisterVT) const {
1638 ElementCount EltCnt = VT.getVectorElementCount();
1639
1640 // If there is a wider vector type with the same element type as this one,
1641 // or a promoted vector type that has the same number of elements which
1642 // are wider, then we should convert to that legal vector type.
1643 // This handles things like <2 x float> -> <4 x float> and
1644 // <4 x i1> -> <4 x i32>.
1645 LegalizeTypeAction TA = getTypeAction(Context, VT);
1646 if (!EltCnt.isScalar() &&
1647 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1648 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1649 if (isTypeLegal(RegisterEVT)) {
1650 IntermediateVT = RegisterEVT;
1651 RegisterVT = RegisterEVT.getSimpleVT();
1652 NumIntermediates = 1;
1653 return 1;
1654 }
1655 }
1656
1657 // Figure out the right, legal destination reg to copy into.
1658 EVT EltTy = VT.getVectorElementType();
1659
1660 unsigned NumVectorRegs = 1;
1661
1662 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1663 // types like done elsewhere in SelectionDAG.
1664 if (EltCnt.isScalable()) {
1665 LegalizeKind LK;
1666 EVT PartVT = VT;
1667 do {
1668 // Iterate until we've found a legal (part) type to hold VT.
1669 LK = getTypeConversion(Context, PartVT);
1670 PartVT = LK.second;
1671 } while (LK.first != TypeLegal);
1672
1673 if (!PartVT.isVector()) {
1675 "Don't know how to legalize this scalable vector type");
1676 }
1677
1678 NumIntermediates =
1681 IntermediateVT = PartVT;
1682 RegisterVT = getRegisterType(Context, IntermediateVT);
1683 return NumIntermediates;
1684 }
1685
1686 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1687 // we could break down into LHS/RHS like LegalizeDAG does.
1688 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1689 NumVectorRegs = EltCnt.getKnownMinValue();
1690 EltCnt = ElementCount::getFixed(1);
1691 }
1692
1693 // Divide the input until we get to a supported size. This will always
1694 // end with a scalar if the target doesn't support vectors.
1695 while (EltCnt.getKnownMinValue() > 1 &&
1696 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1697 EltCnt = EltCnt.divideCoefficientBy(2);
1698 NumVectorRegs <<= 1;
1699 }
1700
1701 NumIntermediates = NumVectorRegs;
1702
1703 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1704 if (!isTypeLegal(NewVT))
1705 NewVT = EltTy;
1706 IntermediateVT = NewVT;
1707
1708 MVT DestVT = getRegisterType(Context, NewVT);
1709 RegisterVT = DestVT;
1710
1711 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1712 TypeSize NewVTSize = NewVT.getSizeInBits();
1713 // Convert sizes such as i33 to i64.
1715 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1716 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1717 }
1718
1719 // Otherwise, promotion or legal types use the same number of registers as
1720 // the vector decimated to the appropriate level.
1721 return NumVectorRegs;
1722}
1723
1725 uint64_t NumCases,
1727 ProfileSummaryInfo *PSI,
1728 BlockFrequencyInfo *BFI) const {
1729 // FIXME: This function check the maximum table size and density, but the
1730 // minimum size is not checked. It would be nice if the minimum size is
1731 // also combined within this function. Currently, the minimum size check is
1732 // performed in findJumpTable() in SelectionDAGBuiler and
1733 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1734 const bool OptForSize =
1735 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1736 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1737 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1738
1739 // Check whether the number of cases is small enough and
1740 // the range is dense enough for a jump table.
1741 return (OptForSize || Range <= MaxJumpTableSize) &&
1742 (NumCases * 100 >= Range * MinDensity);
1743}
1744
1746 EVT ConditionVT) const {
1747 return getRegisterType(Context, ConditionVT);
1748}
1749
1750/// Get the EVTs and ArgFlags collections that represent the legalized return
1751/// type of the given function. This does not require a DAG or a return value,
1752/// and is suitable for use before any DAGs for the function are constructed.
1753/// TODO: Move this out of TargetLowering.cpp.
1755 AttributeList attr,
1757 const TargetLowering &TLI, const DataLayout &DL) {
1759 ComputeValueTypes(DL, ReturnType, Types);
1760 unsigned NumValues = Types.size();
1761 if (NumValues == 0) return;
1762
1763 for (Type *Ty : Types) {
1764 EVT VT = TLI.getValueType(DL, Ty);
1765 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1766
1767 if (attr.hasRetAttr(Attribute::SExt))
1768 ExtendKind = ISD::SIGN_EXTEND;
1769 else if (attr.hasRetAttr(Attribute::ZExt))
1770 ExtendKind = ISD::ZERO_EXTEND;
1771
1772 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1773 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1774
1775 unsigned NumParts =
1776 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1777 MVT PartVT =
1778 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1779
1780 // 'inreg' on function refers to return value
1782 if (attr.hasRetAttr(Attribute::InReg))
1783 Flags.setInReg();
1784
1785 // Propagate extension type if any
1786 if (attr.hasRetAttr(Attribute::SExt))
1787 Flags.setSExt();
1788 else if (attr.hasRetAttr(Attribute::ZExt))
1789 Flags.setZExt();
1790
1791 for (unsigned i = 0; i < NumParts; ++i)
1792 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, Ty, 0, 0));
1793 }
1794}
1795
1797 const DataLayout &DL) const {
1798 return DL.getABITypeAlign(Ty);
1799}
1800
1802 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1803 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1804 // Check if the specified alignment is sufficient based on the data layout.
1805 // TODO: While using the data layout works in practice, a better solution
1806 // would be to implement this check directly (make this a virtual function).
1807 // For example, the ABI alignment may change based on software platform while
1808 // this function should only be affected by hardware implementation.
1809 Type *Ty = VT.getTypeForEVT(Context);
1810 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1811 // Assume that an access that meets the ABI-specified alignment is fast.
1812 if (Fast != nullptr)
1813 *Fast = 1;
1814 return true;
1815 }
1816
1817 // This is a misaligned access.
1818 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1819}
1820
1822 LLVMContext &Context, const DataLayout &DL, EVT VT,
1823 const MachineMemOperand &MMO, unsigned *Fast) const {
1824 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1825 MMO.getAlign(), MMO.getFlags(), Fast);
1826}
1827
1829 const DataLayout &DL, EVT VT,
1830 unsigned AddrSpace, Align Alignment,
1832 unsigned *Fast) const {
1833 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1834 Flags, Fast);
1835}
1836
1838 const DataLayout &DL, EVT VT,
1839 const MachineMemOperand &MMO,
1840 unsigned *Fast) const {
1841 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1842 MMO.getFlags(), Fast);
1843}
1844
1846 const DataLayout &DL, LLT Ty,
1847 const MachineMemOperand &MMO,
1848 unsigned *Fast) const {
1849 EVT VT = getApproximateEVTForLLT(Ty, Context);
1850 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1851 MMO.getFlags(), Fast);
1852}
1853
1854//===----------------------------------------------------------------------===//
1855// TargetTransformInfo Helpers
1856//===----------------------------------------------------------------------===//
1857
1859 enum InstructionOpcodes {
1860#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1861#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1862#include "llvm/IR/Instruction.def"
1863 };
1864 switch (static_cast<InstructionOpcodes>(Opcode)) {
1865 case Ret: return 0;
1866 case Br: return 0;
1867 case Switch: return 0;
1868 case IndirectBr: return 0;
1869 case Invoke: return 0;
1870 case CallBr: return 0;
1871 case Resume: return 0;
1872 case Unreachable: return 0;
1873 case CleanupRet: return 0;
1874 case CatchRet: return 0;
1875 case CatchPad: return 0;
1876 case CatchSwitch: return 0;
1877 case CleanupPad: return 0;
1878 case FNeg: return ISD::FNEG;
1879 case Add: return ISD::ADD;
1880 case FAdd: return ISD::FADD;
1881 case Sub: return ISD::SUB;
1882 case FSub: return ISD::FSUB;
1883 case Mul: return ISD::MUL;
1884 case FMul: return ISD::FMUL;
1885 case UDiv: return ISD::UDIV;
1886 case SDiv: return ISD::SDIV;
1887 case FDiv: return ISD::FDIV;
1888 case URem: return ISD::UREM;
1889 case SRem: return ISD::SREM;
1890 case FRem: return ISD::FREM;
1891 case Shl: return ISD::SHL;
1892 case LShr: return ISD::SRL;
1893 case AShr: return ISD::SRA;
1894 case And: return ISD::AND;
1895 case Or: return ISD::OR;
1896 case Xor: return ISD::XOR;
1897 case Alloca: return 0;
1898 case Load: return ISD::LOAD;
1899 case Store: return ISD::STORE;
1900 case GetElementPtr: return 0;
1901 case Fence: return 0;
1902 case AtomicCmpXchg: return 0;
1903 case AtomicRMW: return 0;
1904 case Trunc: return ISD::TRUNCATE;
1905 case ZExt: return ISD::ZERO_EXTEND;
1906 case SExt: return ISD::SIGN_EXTEND;
1907 case FPToUI: return ISD::FP_TO_UINT;
1908 case FPToSI: return ISD::FP_TO_SINT;
1909 case UIToFP: return ISD::UINT_TO_FP;
1910 case SIToFP: return ISD::SINT_TO_FP;
1911 case FPTrunc: return ISD::FP_ROUND;
1912 case FPExt: return ISD::FP_EXTEND;
1913 case PtrToAddr: return ISD::BITCAST;
1914 case PtrToInt: return ISD::BITCAST;
1915 case IntToPtr: return ISD::BITCAST;
1916 case BitCast: return ISD::BITCAST;
1917 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1918 case ICmp: return ISD::SETCC;
1919 case FCmp: return ISD::SETCC;
1920 case PHI: return 0;
1921 case Call: return 0;
1922 case Select: return ISD::SELECT;
1923 case UserOp1: return 0;
1924 case UserOp2: return 0;
1925 case VAArg: return 0;
1926 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1927 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1928 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1929 case ExtractValue: return ISD::MERGE_VALUES;
1930 case InsertValue: return ISD::MERGE_VALUES;
1931 case LandingPad: return 0;
1932 case Freeze: return ISD::FREEZE;
1933 }
1934
1935 llvm_unreachable("Unknown instruction type encountered!");
1936}
1937
1939 switch (ID) {
1940 case Intrinsic::exp:
1941 return ISD::FEXP;
1942 case Intrinsic::exp2:
1943 return ISD::FEXP2;
1944 case Intrinsic::log:
1945 return ISD::FLOG;
1946 default:
1947 return ISD::DELETED_NODE;
1948 }
1949}
1950
1951Value *
1953 bool UseTLS) const {
1954 // compiler-rt provides a variable with a magic name. Targets that do not
1955 // link with compiler-rt may also provide such a variable.
1956 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1957 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1958 auto UnsafeStackPtr =
1959 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1960
1961 const DataLayout &DL = M->getDataLayout();
1962 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
1963
1964 if (!UnsafeStackPtr) {
1965 auto TLSModel = UseTLS ?
1968 // The global variable is not defined yet, define it ourselves.
1969 // We use the initial-exec TLS model because we do not support the
1970 // variable living anywhere other than in the main executable.
1971 UnsafeStackPtr = new GlobalVariable(
1972 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1973 UnsafeStackPtrVar, nullptr, TLSModel);
1974 } else {
1975 // The variable exists, check its type and attributes.
1976 //
1977 // FIXME: Move to IR verifier.
1978 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1979 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1980 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1981 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1982 (UseTLS ? "" : "not ") + "be thread-local");
1983 }
1984 return UnsafeStackPtr;
1985}
1986
1987Value *
1989 // FIXME: Can this triple check be replaced with SAFESTACK_POINTER_ADDRESS
1990 // being available?
1991 if (!TM.getTargetTriple().isAndroid())
1992 return getDefaultSafeStackPointerLocation(IRB, true);
1993
1994 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1995 auto *PtrTy = PointerType::getUnqual(M->getContext());
1996
1997 const char *SafestackPointerAddressName =
1998 getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
1999 if (!SafestackPointerAddressName) {
2000 M->getContext().emitError(
2001 "no libcall available for safestack pointer address");
2002 return PoisonValue::get(PtrTy);
2003 }
2004
2005 // Android provides a libc function to retrieve the address of the current
2006 // thread's unsafe stack pointer.
2007 FunctionCallee Fn =
2008 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2009 return IRB.CreateCall(Fn);
2010}
2011
2012//===----------------------------------------------------------------------===//
2013// Loop Strength Reduction hooks
2014//===----------------------------------------------------------------------===//
2015
2016/// isLegalAddressingMode - Return true if the addressing mode represented
2017/// by AM is legal for this target, for a load/store of the specified type.
2019 const AddrMode &AM, Type *Ty,
2020 unsigned AS, Instruction *I) const {
2021 // The default implementation of this implements a conservative RISCy, r+r and
2022 // r+i addr mode.
2023
2024 // Scalable offsets not supported
2025 if (AM.ScalableOffset)
2026 return false;
2027
2028 // Allows a sign-extended 16-bit immediate field.
2029 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2030 return false;
2031
2032 // No global is ever allowed as a base.
2033 if (AM.BaseGV)
2034 return false;
2035
2036 // Only support r+r,
2037 switch (AM.Scale) {
2038 case 0: // "r+i" or just "i", depending on HasBaseReg.
2039 break;
2040 case 1:
2041 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2042 return false;
2043 // Otherwise we have r+r or r+i.
2044 break;
2045 case 2:
2046 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2047 return false;
2048 // Allow 2*r as r+r.
2049 break;
2050 default: // Don't allow n * r
2051 return false;
2052 }
2053
2054 return true;
2055}
2056
2057//===----------------------------------------------------------------------===//
2058// Stack Protector
2059//===----------------------------------------------------------------------===//
2060
2061// For OpenBSD return its special guard variable. Otherwise return nullptr,
2062// so that SelectionDAG handle SSP.
2064 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2065 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2066 const DataLayout &DL = M.getDataLayout();
2067 PointerType *PtrTy =
2068 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2069 GlobalVariable *G = M.getOrInsertGlobal("__guard_local", PtrTy);
2070 G->setVisibility(GlobalValue::HiddenVisibility);
2071 return G;
2072 }
2073 return nullptr;
2074}
2075
2076// Currently only support "standard" __stack_chk_guard.
2077// TODO: add LOAD_STACK_GUARD support.
2079 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2080 if (StackGuardImpl == RTLIB::Unsupported)
2081 return;
2082
2083 StringRef StackGuardVarName = getLibcallImplName(StackGuardImpl);
2084 M.getOrInsertGlobal(
2085 StackGuardVarName, PointerType::getUnqual(M.getContext()), [=, &M]() {
2086 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2087 false, GlobalVariable::ExternalLinkage,
2088 nullptr, StackGuardVarName);
2089
2090 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2091 if (M.getDirectAccessExternalData() &&
2092 !TM.getTargetTriple().isOSCygMing() &&
2093 !(TM.getTargetTriple().isPPC64() &&
2094 TM.getTargetTriple().isOSFreeBSD()) &&
2095 (!TM.getTargetTriple().isOSDarwin() ||
2096 TM.getRelocationModel() == Reloc::Static))
2097 GV->setDSOLocal(true);
2098
2099 return GV;
2100 });
2101}
2102
2103// Currently only support "standard" __stack_chk_guard.
2104// TODO: add LOAD_STACK_GUARD support.
2106 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2107 if (GuardVarImpl == RTLIB::Unsupported)
2108 return nullptr;
2109 return M.getNamedValue(getLibcallImplName(GuardVarImpl));
2110}
2111
2113 // MSVC CRT has a function to validate security cookie.
2114 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2115 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
2116 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2117 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2118 return nullptr;
2119}
2120
2124
2128
2129unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2130 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2131}
2132
2136
2140
2144
2146 return MinimumBitTestCmps;
2147}
2148
2150 MinimumBitTestCmps = Val;
2151}
2152
2154 if (TM.Options.LoopAlignment)
2155 return Align(TM.Options.LoopAlignment);
2156 return PrefLoopAlignment;
2157}
2158
2160 MachineBasicBlock *MBB) const {
2161 return MaxBytesForAlignment;
2162}
2163
2164//===----------------------------------------------------------------------===//
2165// Reciprocal Estimates
2166//===----------------------------------------------------------------------===//
2167
2168/// Get the reciprocal estimate attribute string for a function that will
2169/// override the target defaults.
2171 const Function &F = MF.getFunction();
2172 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2173}
2174
2175/// Construct a string for the given reciprocal operation of the given type.
2176/// This string should match the corresponding option to the front-end's
2177/// "-mrecip" flag assuming those strings have been passed through in an
2178/// attribute string. For example, "vec-divf" for a division of a vXf32.
2179static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2180 std::string Name = VT.isVector() ? "vec-" : "";
2181
2182 Name += IsSqrt ? "sqrt" : "div";
2183
2184 // TODO: Handle other float types?
2185 if (VT.getScalarType() == MVT::f64) {
2186 Name += "d";
2187 } else if (VT.getScalarType() == MVT::f16) {
2188 Name += "h";
2189 } else {
2190 assert(VT.getScalarType() == MVT::f32 &&
2191 "Unexpected FP type for reciprocal estimate");
2192 Name += "f";
2193 }
2194
2195 return Name;
2196}
2197
2198/// Return the character position and value (a single numeric character) of a
2199/// customized refinement operation in the input string if it exists. Return
2200/// false if there is no customized refinement step count.
2201static bool parseRefinementStep(StringRef In, size_t &Position,
2202 uint8_t &Value) {
2203 const char RefStepToken = ':';
2204 Position = In.find(RefStepToken);
2205 if (Position == StringRef::npos)
2206 return false;
2207
2208 StringRef RefStepString = In.substr(Position + 1);
2209 // Allow exactly one numeric character for the additional refinement
2210 // step parameter.
2211 if (RefStepString.size() == 1) {
2212 char RefStepChar = RefStepString[0];
2213 if (isDigit(RefStepChar)) {
2214 Value = RefStepChar - '0';
2215 return true;
2216 }
2217 }
2218 report_fatal_error("Invalid refinement step for -recip.");
2219}
2220
2221/// For the input attribute string, return one of the ReciprocalEstimate enum
2222/// status values (enabled, disabled, or not specified) for this operation on
2223/// the specified data type.
2224static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2225 if (Override.empty())
2227
2228 SmallVector<StringRef, 4> OverrideVector;
2229 Override.split(OverrideVector, ',');
2230 unsigned NumArgs = OverrideVector.size();
2231
2232 // Check if "all", "none", or "default" was specified.
2233 if (NumArgs == 1) {
2234 // Look for an optional setting of the number of refinement steps needed
2235 // for this type of reciprocal operation.
2236 size_t RefPos;
2237 uint8_t RefSteps;
2238 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2239 // Split the string for further processing.
2240 Override = Override.substr(0, RefPos);
2241 }
2242
2243 // All reciprocal types are enabled.
2244 if (Override == "all")
2246
2247 // All reciprocal types are disabled.
2248 if (Override == "none")
2250
2251 // Target defaults for enablement are used.
2252 if (Override == "default")
2254 }
2255
2256 // The attribute string may omit the size suffix ('f'/'d').
2257 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2258 std::string VTNameNoSize = VTName;
2259 VTNameNoSize.pop_back();
2260 static const char DisabledPrefix = '!';
2261
2262 for (StringRef RecipType : OverrideVector) {
2263 size_t RefPos;
2264 uint8_t RefSteps;
2265 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2266 RecipType = RecipType.substr(0, RefPos);
2267
2268 // Ignore the disablement token for string matching.
2269 bool IsDisabled = RecipType[0] == DisabledPrefix;
2270 if (IsDisabled)
2271 RecipType = RecipType.substr(1);
2272
2273 if (RecipType == VTName || RecipType == VTNameNoSize)
2276 }
2277
2279}
2280
2281/// For the input attribute string, return the customized refinement step count
2282/// for this operation on the specified data type. If the step count does not
2283/// exist, return the ReciprocalEstimate enum value for unspecified.
2284static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2285 if (Override.empty())
2287
2288 SmallVector<StringRef, 4> OverrideVector;
2289 Override.split(OverrideVector, ',');
2290 unsigned NumArgs = OverrideVector.size();
2291
2292 // Check if "all", "default", or "none" was specified.
2293 if (NumArgs == 1) {
2294 // Look for an optional setting of the number of refinement steps needed
2295 // for this type of reciprocal operation.
2296 size_t RefPos;
2297 uint8_t RefSteps;
2298 if (!parseRefinementStep(Override, RefPos, RefSteps))
2300
2301 // Split the string for further processing.
2302 Override = Override.substr(0, RefPos);
2303 assert(Override != "none" &&
2304 "Disabled reciprocals, but specifed refinement steps?");
2305
2306 // If this is a general override, return the specified number of steps.
2307 if (Override == "all" || Override == "default")
2308 return RefSteps;
2309 }
2310
2311 // The attribute string may omit the size suffix ('f'/'d').
2312 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2313 std::string VTNameNoSize = VTName;
2314 VTNameNoSize.pop_back();
2315
2316 for (StringRef RecipType : OverrideVector) {
2317 size_t RefPos;
2318 uint8_t RefSteps;
2319 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2320 continue;
2321
2322 RecipType = RecipType.substr(0, RefPos);
2323 if (RecipType == VTName || RecipType == VTNameNoSize)
2324 return RefSteps;
2325 }
2326
2328}
2329
2334
2339
2344
2349
2351 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2352 const MachineMemOperand &MMO) const {
2353 // Single-element vectors are scalarized, so we should generally avoid having
2354 // any memory operations on such types, as they would get scalarized too.
2355 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2356 BitcastVT.getVectorNumElements() == 1)
2357 return false;
2358
2359 // Don't do if we could do an indexed load on the original type, but not on
2360 // the new one.
2361 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2362 return true;
2363
2364 MVT LoadMVT = LoadVT.getSimpleVT();
2365
2366 // Don't bother doing this if it's just going to be promoted again later, as
2367 // doing so might interfere with other combines.
2368 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2369 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2370 return false;
2371
2372 unsigned Fast = 0;
2373 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2374 MMO, &Fast) &&
2375 Fast;
2376}
2377
2381
2383 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2384 const TargetLibraryInfo *LibInfo) const {
2386 if (LI.isVolatile())
2388
2389 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2391
2392 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2394
2396 LI.getAlign(), DL, &LI, AC,
2397 /*DT=*/nullptr, LibInfo))
2399
2400 Flags |= getTargetMMOFlags(LI);
2401 return Flags;
2402}
2403
2406 const DataLayout &DL) const {
2408
2409 if (SI.isVolatile())
2411
2412 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2414
2415 // FIXME: Not preserving dereferenceable
2416 Flags |= getTargetMMOFlags(SI);
2417 return Flags;
2418}
2419
2422 const DataLayout &DL) const {
2424
2425 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2426 if (RMW->isVolatile())
2428 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2429 if (CmpX->isVolatile())
2431 } else
2432 llvm_unreachable("not an atomic instruction");
2433
2434 // FIXME: Not preserving dereferenceable
2435 Flags |= getTargetMMOFlags(AI);
2436 return Flags;
2437}
2438
2440 const VPIntrinsic &VPIntrin) const {
2442 Intrinsic::ID IntrinID = VPIntrin.getIntrinsicID();
2443
2444 switch (IntrinID) {
2445 default:
2446 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2447 "for it, but support must be explicitly enabled");
2448 case Intrinsic::vp_load:
2449 case Intrinsic::vp_gather:
2450 case Intrinsic::experimental_vp_strided_load:
2452 break;
2453 case Intrinsic::vp_store:
2454 case Intrinsic::vp_scatter:
2455 case Intrinsic::experimental_vp_strided_store:
2457 break;
2458 }
2459
2460 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2462
2463 Flags |= getTargetMMOFlags(VPIntrin);
2464 return Flags;
2465}
2466
2468 Instruction *Inst,
2469 AtomicOrdering Ord) const {
2470 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2471 return Builder.CreateFence(Ord);
2472 else
2473 return nullptr;
2474}
2475
2477 Instruction *Inst,
2478 AtomicOrdering Ord) const {
2479 if (isAcquireOrStronger(Ord))
2480 return Builder.CreateFence(Ord);
2481 else
2482 return nullptr;
2483}
2484
2485//===----------------------------------------------------------------------===//
2486// GlobalISel Hooks
2487//===----------------------------------------------------------------------===//
2488
2490 const TargetTransformInfo *TTI) const {
2491 auto &MF = *MI.getMF();
2492 auto &MRI = MF.getRegInfo();
2493 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2494 // this helper function computes the maximum number of uses we should consider
2495 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2496 // break even in terms of code size when the original MI has 2 users vs
2497 // choosing to potentially spill. Any more than 2 users we we have a net code
2498 // size increase. This doesn't take into account register pressure though.
2499 auto maxUses = [](unsigned RematCost) {
2500 // A cost of 1 means remats are basically free.
2501 if (RematCost == 1)
2502 return std::numeric_limits<unsigned>::max();
2503 if (RematCost == 2)
2504 return 2U;
2505
2506 // Remat is too expensive, only sink if there's one user.
2507 if (RematCost > 2)
2508 return 1U;
2509 llvm_unreachable("Unexpected remat cost");
2510 };
2511
2512 switch (MI.getOpcode()) {
2513 default:
2514 return false;
2515 // Constants-like instructions should be close to their users.
2516 // We don't want long live-ranges for them.
2517 case TargetOpcode::G_CONSTANT:
2518 case TargetOpcode::G_FCONSTANT:
2519 case TargetOpcode::G_FRAME_INDEX:
2520 case TargetOpcode::G_INTTOPTR:
2521 return true;
2522 case TargetOpcode::G_GLOBAL_VALUE: {
2523 unsigned RematCost = TTI->getGISelRematGlobalCost();
2524 Register Reg = MI.getOperand(0).getReg();
2525 unsigned MaxUses = maxUses(RematCost);
2526 if (MaxUses == UINT_MAX)
2527 return true; // Remats are "free" so always localize.
2528 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2529 }
2530 }
2531}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
#define LCALL5(A)
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition BitVector.h:723
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:313
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:321
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
static constexpr size_t npos
Definition StringRef.h:57
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
constexpr LeafTy coefficientNextPowerOf2() const
Definition TypeSize.h:261
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:253
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:861
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:859
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:863
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
InstructionCost Cost
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition Sequence.h:337
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition Sequence.h:109
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
TargetTransformInfo TTI
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition ValueTypes.h:477
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition ValueTypes.h:419
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
Matching combinators.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...