69 "jump-is-expensive",
cl::init(
false),
70 cl::desc(
"Do not create extra branches to split comparison logic."),
75 cl::desc(
"Set minimum number of entries to use a jump table."));
79 cl::desc(
"Set maximum size of jump tables."));
84 cl::desc(
"Minimum density for building a jump table in "
85 "a normal function"));
90 cl::desc(
"Minimum density for building a jump table in "
91 "an optsize function"));
95 cl::desc(
"Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
103 cl::desc(
"Don't mutate strict-float node to a legalize node"),
109 RTLIB::Libcall Call_F32,
110 RTLIB::Libcall Call_F64,
111 RTLIB::Libcall Call_F80,
112 RTLIB::Libcall Call_F128,
113 RTLIB::Libcall Call_PPCF128) {
115 VT == MVT::f32 ? Call_F32 :
116 VT == MVT::f64 ? Call_F64 :
117 VT == MVT::f80 ? Call_F80 :
118 VT == MVT::f128 ? Call_F128 :
119 VT == MVT::ppcf128 ? Call_PPCF128 :
120 RTLIB::UNKNOWN_LIBCALL;
126 if (OpVT == MVT::f16) {
127 if (RetVT == MVT::f32)
128 return FPEXT_F16_F32;
129 if (RetVT == MVT::f64)
130 return FPEXT_F16_F64;
131 if (RetVT == MVT::f80)
132 return FPEXT_F16_F80;
133 if (RetVT == MVT::f128)
134 return FPEXT_F16_F128;
135 }
else if (OpVT == MVT::f32) {
136 if (RetVT == MVT::f64)
137 return FPEXT_F32_F64;
138 if (RetVT == MVT::f128)
139 return FPEXT_F32_F128;
140 if (RetVT == MVT::ppcf128)
141 return FPEXT_F32_PPCF128;
142 }
else if (OpVT == MVT::f64) {
143 if (RetVT == MVT::f128)
144 return FPEXT_F64_F128;
145 else if (RetVT == MVT::ppcf128)
146 return FPEXT_F64_PPCF128;
147 }
else if (OpVT == MVT::f80) {
148 if (RetVT == MVT::f128)
149 return FPEXT_F80_F128;
150 }
else if (OpVT == MVT::bf16) {
151 if (RetVT == MVT::f32)
152 return FPEXT_BF16_F32;
155 return UNKNOWN_LIBCALL;
161 if (RetVT == MVT::f16) {
162 if (OpVT == MVT::f32)
163 return FPROUND_F32_F16;
164 if (OpVT == MVT::f64)
165 return FPROUND_F64_F16;
166 if (OpVT == MVT::f80)
167 return FPROUND_F80_F16;
168 if (OpVT == MVT::f128)
169 return FPROUND_F128_F16;
170 if (OpVT == MVT::ppcf128)
171 return FPROUND_PPCF128_F16;
172 }
else if (RetVT == MVT::bf16) {
173 if (OpVT == MVT::f32)
174 return FPROUND_F32_BF16;
175 if (OpVT == MVT::f64)
176 return FPROUND_F64_BF16;
177 if (OpVT == MVT::f80)
178 return FPROUND_F80_BF16;
179 if (OpVT == MVT::f128)
180 return FPROUND_F128_BF16;
181 }
else if (RetVT == MVT::f32) {
182 if (OpVT == MVT::f64)
183 return FPROUND_F64_F32;
184 if (OpVT == MVT::f80)
185 return FPROUND_F80_F32;
186 if (OpVT == MVT::f128)
187 return FPROUND_F128_F32;
188 if (OpVT == MVT::ppcf128)
189 return FPROUND_PPCF128_F32;
190 }
else if (RetVT == MVT::f64) {
191 if (OpVT == MVT::f80)
192 return FPROUND_F80_F64;
193 if (OpVT == MVT::f128)
194 return FPROUND_F128_F64;
195 if (OpVT == MVT::ppcf128)
196 return FPROUND_PPCF128_F64;
197 }
else if (RetVT == MVT::f80) {
198 if (OpVT == MVT::f128)
199 return FPROUND_F128_F80;
202 return UNKNOWN_LIBCALL;
208 if (OpVT == MVT::f16) {
209 if (RetVT == MVT::i32)
210 return FPTOSINT_F16_I32;
211 if (RetVT == MVT::i64)
212 return FPTOSINT_F16_I64;
213 if (RetVT == MVT::i128)
214 return FPTOSINT_F16_I128;
215 }
else if (OpVT == MVT::f32) {
216 if (RetVT == MVT::i32)
217 return FPTOSINT_F32_I32;
218 if (RetVT == MVT::i64)
219 return FPTOSINT_F32_I64;
220 if (RetVT == MVT::i128)
221 return FPTOSINT_F32_I128;
222 }
else if (OpVT == MVT::f64) {
223 if (RetVT == MVT::i32)
224 return FPTOSINT_F64_I32;
225 if (RetVT == MVT::i64)
226 return FPTOSINT_F64_I64;
227 if (RetVT == MVT::i128)
228 return FPTOSINT_F64_I128;
229 }
else if (OpVT == MVT::f80) {
230 if (RetVT == MVT::i32)
231 return FPTOSINT_F80_I32;
232 if (RetVT == MVT::i64)
233 return FPTOSINT_F80_I64;
234 if (RetVT == MVT::i128)
235 return FPTOSINT_F80_I128;
236 }
else if (OpVT == MVT::f128) {
237 if (RetVT == MVT::i32)
238 return FPTOSINT_F128_I32;
239 if (RetVT == MVT::i64)
240 return FPTOSINT_F128_I64;
241 if (RetVT == MVT::i128)
242 return FPTOSINT_F128_I128;
243 }
else if (OpVT == MVT::ppcf128) {
244 if (RetVT == MVT::i32)
245 return FPTOSINT_PPCF128_I32;
246 if (RetVT == MVT::i64)
247 return FPTOSINT_PPCF128_I64;
248 if (RetVT == MVT::i128)
249 return FPTOSINT_PPCF128_I128;
251 return UNKNOWN_LIBCALL;
257 if (OpVT == MVT::f16) {
258 if (RetVT == MVT::i32)
259 return FPTOUINT_F16_I32;
260 if (RetVT == MVT::i64)
261 return FPTOUINT_F16_I64;
262 if (RetVT == MVT::i128)
263 return FPTOUINT_F16_I128;
264 }
else if (OpVT == MVT::f32) {
265 if (RetVT == MVT::i32)
266 return FPTOUINT_F32_I32;
267 if (RetVT == MVT::i64)
268 return FPTOUINT_F32_I64;
269 if (RetVT == MVT::i128)
270 return FPTOUINT_F32_I128;
271 }
else if (OpVT == MVT::f64) {
272 if (RetVT == MVT::i32)
273 return FPTOUINT_F64_I32;
274 if (RetVT == MVT::i64)
275 return FPTOUINT_F64_I64;
276 if (RetVT == MVT::i128)
277 return FPTOUINT_F64_I128;
278 }
else if (OpVT == MVT::f80) {
279 if (RetVT == MVT::i32)
280 return FPTOUINT_F80_I32;
281 if (RetVT == MVT::i64)
282 return FPTOUINT_F80_I64;
283 if (RetVT == MVT::i128)
284 return FPTOUINT_F80_I128;
285 }
else if (OpVT == MVT::f128) {
286 if (RetVT == MVT::i32)
287 return FPTOUINT_F128_I32;
288 if (RetVT == MVT::i64)
289 return FPTOUINT_F128_I64;
290 if (RetVT == MVT::i128)
291 return FPTOUINT_F128_I128;
292 }
else if (OpVT == MVT::ppcf128) {
293 if (RetVT == MVT::i32)
294 return FPTOUINT_PPCF128_I32;
295 if (RetVT == MVT::i64)
296 return FPTOUINT_PPCF128_I64;
297 if (RetVT == MVT::i128)
298 return FPTOUINT_PPCF128_I128;
300 return UNKNOWN_LIBCALL;
306 if (OpVT == MVT::i32) {
307 if (RetVT == MVT::f16)
308 return SINTTOFP_I32_F16;
309 if (RetVT == MVT::f32)
310 return SINTTOFP_I32_F32;
311 if (RetVT == MVT::f64)
312 return SINTTOFP_I32_F64;
313 if (RetVT == MVT::f80)
314 return SINTTOFP_I32_F80;
315 if (RetVT == MVT::f128)
316 return SINTTOFP_I32_F128;
317 if (RetVT == MVT::ppcf128)
318 return SINTTOFP_I32_PPCF128;
319 }
else if (OpVT == MVT::i64) {
320 if (RetVT == MVT::bf16)
321 return SINTTOFP_I64_BF16;
322 if (RetVT == MVT::f16)
323 return SINTTOFP_I64_F16;
324 if (RetVT == MVT::f32)
325 return SINTTOFP_I64_F32;
326 if (RetVT == MVT::f64)
327 return SINTTOFP_I64_F64;
328 if (RetVT == MVT::f80)
329 return SINTTOFP_I64_F80;
330 if (RetVT == MVT::f128)
331 return SINTTOFP_I64_F128;
332 if (RetVT == MVT::ppcf128)
333 return SINTTOFP_I64_PPCF128;
334 }
else if (OpVT == MVT::i128) {
335 if (RetVT == MVT::f16)
336 return SINTTOFP_I128_F16;
337 if (RetVT == MVT::f32)
338 return SINTTOFP_I128_F32;
339 if (RetVT == MVT::f64)
340 return SINTTOFP_I128_F64;
341 if (RetVT == MVT::f80)
342 return SINTTOFP_I128_F80;
343 if (RetVT == MVT::f128)
344 return SINTTOFP_I128_F128;
345 if (RetVT == MVT::ppcf128)
346 return SINTTOFP_I128_PPCF128;
348 return UNKNOWN_LIBCALL;
354 if (OpVT == MVT::i32) {
355 if (RetVT == MVT::f16)
356 return UINTTOFP_I32_F16;
357 if (RetVT == MVT::f32)
358 return UINTTOFP_I32_F32;
359 if (RetVT == MVT::f64)
360 return UINTTOFP_I32_F64;
361 if (RetVT == MVT::f80)
362 return UINTTOFP_I32_F80;
363 if (RetVT == MVT::f128)
364 return UINTTOFP_I32_F128;
365 if (RetVT == MVT::ppcf128)
366 return UINTTOFP_I32_PPCF128;
367 }
else if (OpVT == MVT::i64) {
368 if (RetVT == MVT::bf16)
369 return UINTTOFP_I64_BF16;
370 if (RetVT == MVT::f16)
371 return UINTTOFP_I64_F16;
372 if (RetVT == MVT::f32)
373 return UINTTOFP_I64_F32;
374 if (RetVT == MVT::f64)
375 return UINTTOFP_I64_F64;
376 if (RetVT == MVT::f80)
377 return UINTTOFP_I64_F80;
378 if (RetVT == MVT::f128)
379 return UINTTOFP_I64_F128;
380 if (RetVT == MVT::ppcf128)
381 return UINTTOFP_I64_PPCF128;
382 }
else if (OpVT == MVT::i128) {
383 if (RetVT == MVT::f16)
384 return UINTTOFP_I128_F16;
385 if (RetVT == MVT::f32)
386 return UINTTOFP_I128_F32;
387 if (RetVT == MVT::f64)
388 return UINTTOFP_I128_F64;
389 if (RetVT == MVT::f80)
390 return UINTTOFP_I128_F80;
391 if (RetVT == MVT::f128)
392 return UINTTOFP_I128_F128;
393 if (RetVT == MVT::ppcf128)
394 return UINTTOFP_I128_PPCF128;
396 return UNKNOWN_LIBCALL;
400 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
405 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
409 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
414 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
419 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
423 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
430 return RTLIB::UNKNOWN_LIBCALL;
433 return RTLIB::SINCOS_V4F32;
435 return RTLIB::SINCOS_V2F64;
437 return RTLIB::SINCOS_NXV4F32;
439 return RTLIB::SINCOS_NXV2F64;
441 return RTLIB::UNKNOWN_LIBCALL;
445 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
453 return RTLIB::UNKNOWN_LIBCALL;
456 return RTLIB::SINCOSPI_V4F32;
458 return RTLIB::SINCOSPI_V2F64;
460 return RTLIB::SINCOSPI_NXV4F32;
462 return RTLIB::SINCOSPI_NXV2F64;
464 return RTLIB::UNKNOWN_LIBCALL;
468 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
469 SINCOSPI_F128, SINCOSPI_PPCF128);
473 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
474 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
481 return RTLIB::UNKNOWN_LIBCALL;
484 return RTLIB::MODF_V4F32;
486 return RTLIB::MODF_V2F64;
488 return RTLIB::MODF_NXV4F32;
490 return RTLIB::MODF_NXV2F64;
492 return RTLIB::UNKNOWN_LIBCALL;
496 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
503 unsigned ModeN, ModelN;
521 return RTLIB::UNKNOWN_LIBCALL;
539 return UNKNOWN_LIBCALL;
542 return LC[ModeN][ModelN];
548 return UNKNOWN_LIBCALL;
551#define LCALLS(A, B) \
552 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
554 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
556 case ISD::ATOMIC_CMP_SWAP: {
557 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_CAS)};
560 case ISD::ATOMIC_SWAP: {
561 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_SWP)};
564 case ISD::ATOMIC_LOAD_ADD: {
565 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDADD)};
568 case ISD::ATOMIC_LOAD_OR: {
569 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDSET)};
572 case ISD::ATOMIC_LOAD_CLR: {
573 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDCLR)};
576 case ISD::ATOMIC_LOAD_XOR: {
577 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDEOR)};
581 return UNKNOWN_LIBCALL;
588#define OP_TO_LIBCALL(Name, Enum) \
590 switch (VT.SimpleTy) { \
592 return UNKNOWN_LIBCALL; \
607 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
622 return UNKNOWN_LIBCALL;
626 switch (ElementSize) {
628 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
630 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
632 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
634 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
636 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
638 return UNKNOWN_LIBCALL;
643 switch (ElementSize) {
645 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
647 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
649 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
651 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
653 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
655 return UNKNOWN_LIBCALL;
660 switch (ElementSize) {
662 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
664 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
666 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
668 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
670 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
672 return UNKNOWN_LIBCALL;
677 RTLIB::LibcallImpl Impl)
const {
679 case RTLIB::impl___aeabi_dcmpeq__une:
680 case RTLIB::impl___aeabi_fcmpeq__une:
683 case RTLIB::impl___aeabi_dcmpeq__oeq:
684 case RTLIB::impl___aeabi_fcmpeq__oeq:
687 case RTLIB::impl___aeabi_dcmplt:
688 case RTLIB::impl___aeabi_dcmple:
689 case RTLIB::impl___aeabi_dcmpge:
690 case RTLIB::impl___aeabi_dcmpgt:
691 case RTLIB::impl___aeabi_dcmpun:
692 case RTLIB::impl___aeabi_fcmplt:
693 case RTLIB::impl___aeabi_fcmple:
694 case RTLIB::impl___aeabi_fcmpge:
695 case RTLIB::impl___aeabi_fcmpgt:
713 case RTLIB::OEQ_F128:
714 case RTLIB::OEQ_PPCF128:
718 case RTLIB::UNE_F128:
719 case RTLIB::UNE_PPCF128:
723 case RTLIB::OGE_F128:
724 case RTLIB::OGE_PPCF128:
728 case RTLIB::OLT_F128:
729 case RTLIB::OLT_PPCF128:
733 case RTLIB::OLE_F128:
734 case RTLIB::OLE_PPCF128:
738 case RTLIB::OGT_F128:
739 case RTLIB::OGT_PPCF128:
744 case RTLIB::UO_PPCF128:
755 RuntimeLibcallInfo(TM.getTargetTriple(), TM.
Options.ExceptionModel,
758 Libcalls(RuntimeLibcallInfo) {
767 HasExtractBitsInsn =
false;
771 StackPointerRegisterToSaveRestore = 0;
778 MaxBytesForAlignment = 0;
779 MaxAtomicSizeInBitsSupported = 0;
783 MaxDivRemBitWidthSupported = 128;
787 MinCmpXchgSizeInBits = 0;
788 SupportsUnalignedAtomics =
false;
799 memset(OpActions, 0,
sizeof(OpActions));
800 memset(LoadExtActions, 0,
sizeof(LoadExtActions));
801 memset(TruncStoreActions, 0,
sizeof(TruncStoreActions));
802 memset(IndexedModeActions, 0,
sizeof(IndexedModeActions));
803 memset(CondCodeActions, 0,
sizeof(CondCodeActions));
817 for (
MVT VT : {MVT::i2, MVT::i4})
818 OpActions[(
unsigned)VT.SimpleTy][NT] =
Expand;
821 for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
829 for (
MVT VT : {MVT::i2, MVT::i4}) {
861 ISD::FMINNUM, ISD::FMAXNUM,
862 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
863 ISD::FMINIMUM, ISD::FMAXIMUM,
864 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
878 ISD::FLOG, ISD::FLOG2,
879 ISD::FLOG10, ISD::FEXP,
880 ISD::FEXP2, ISD::FEXP10,
881 ISD::FFLOOR, ISD::FNEARBYINT,
882 ISD::FCEIL, ISD::FRINT,
883 ISD::FTRUNC, ISD::FROUNDEVEN,
884 ISD::FTAN, ISD::FACOS,
885 ISD::FASIN, ISD::FATAN,
886 ISD::FCOSH, ISD::FSINH,
887 ISD::FTANH, ISD::FATAN2,
929 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
938 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
942#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
943 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
944#include "llvm/IR/ConstrainedOps.def"
951 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
952 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
953 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
954 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
955 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
956 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
966#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
967 setOperationAction(ISD::SDOPC, VT, Expand);
968#include "llvm/IR/VPIntrinsics.def"
997 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1002 {MVT::f16, MVT::f32, MVT::f64, MVT::f128},
Expand);
1006 {MVT::f32, MVT::f64, MVT::f128},
LibCall);
1009 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
1023 for (
MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1050 "ShiftVT is still too small!");
1068 unsigned DestAS)
const {
1069 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1077 if (EC.isScalable())
1093 JumpIsExpensive = isExpensive;
1109 "Promote may not follow Expand or Promote");
1112 return LegalizeKind(LA,
EVT(SVT).getHalfNumVectorElementsVT(Context));
1125 assert(NVT != VT &&
"Unable to round integer VT");
1174 EVT OldEltVT = EltVT;
1191 if (NVT !=
MVT() && ValueTypeActions.getTypeAction(NVT) ==
TypeLegal)
1213 if (LargerVector ==
MVT())
1217 if (ValueTypeActions.getTypeAction(LargerVector) ==
TypeLegal)
1237 unsigned &NumIntermediates,
1244 unsigned NumVectorRegs = 1;
1250 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1256 NumVectorRegs = EC.getKnownMinValue();
1263 while (EC.getKnownMinValue() > 1 &&
1265 EC = EC.divideCoefficientBy(2);
1266 NumVectorRegs <<= 1;
1269 NumIntermediates = NumVectorRegs;
1274 IntermediateVT = NewVT;
1282 RegisterVT = DestVT;
1283 if (
EVT(DestVT).bitsLT(NewVT))
1288 return NumVectorRegs;
1295 for (
const auto *
I =
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
1331 for (
unsigned i = 0; i <
MI->getNumOperands(); ++i) {
1338 unsigned TiedTo = i;
1340 TiedTo =
MI->findTiedOperandIdx(i);
1357 assert(
MI->getOpcode() == TargetOpcode::STATEPOINT &&
"sanity");
1358 MIB.
addImm(StackMaps::IndirectMemRefOp);
1365 MIB.
addImm(StackMaps::DirectMemRefOp);
1370 assert(MIB->
mayLoad() &&
"Folded a stackmap use to a non-load!");
1377 if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
1386 MI->eraseFromParent();
1396std::pair<const TargetRegisterClass *, uint8_t>
1401 return std::make_pair(RC, 0);
1410 for (
unsigned i : SuperRegRC.
set_bits()) {
1413 if (
TRI->getSpillSize(*SuperRC) <=
TRI->getSpillSize(*BestRC))
1419 return std::make_pair(BestRC, 1);
1428 NumRegistersForVT[i] = 1;
1432 NumRegistersForVT[MVT::isVoid] = 0;
1435 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1436 for (; RegClassForVT[LargestIntReg] ==
nullptr; --LargestIntReg)
1437 assert(LargestIntReg != MVT::i1 &&
"No integer registers defined!");
1441 for (
unsigned ExpandedReg = LargestIntReg + 1;
1442 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1443 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1452 unsigned LegalIntReg = LargestIntReg;
1453 for (
unsigned IntReg = LargestIntReg - 1;
1454 IntReg >= (
unsigned)MVT::i1; --IntReg) {
1457 LegalIntReg = IntReg;
1459 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1468 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1469 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1470 TransformToType[MVT::ppcf128] = MVT::f64;
1473 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1474 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1475 TransformToType[MVT::ppcf128] = MVT::i128;
1483 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1484 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1485 TransformToType[MVT::f128] = MVT::i128;
1492 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1493 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1494 TransformToType[MVT::f80] = MVT::i32;
1501 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1502 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1503 TransformToType[MVT::f64] = MVT::i64;
1510 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1511 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1512 TransformToType[MVT::f32] = MVT::i32;
1524 if (!UseFPRegsForHalfType) {
1525 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1526 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1528 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1529 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1531 TransformToType[MVT::f16] = MVT::f32;
1532 if (SoftPromoteHalfType) {
1543 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1544 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1545 TransformToType[MVT::bf16] = MVT::f32;
1550 for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1551 i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1558 bool IsLegalWiderType =
false;
1561 switch (PreferredAction) {
1564 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1565 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1568 for (
unsigned nVT = i + 1;
1575 TransformToType[i] = SVT;
1576 RegisterTypeForVT[i] = SVT;
1577 NumRegistersForVT[i] = 1;
1579 IsLegalWiderType =
true;
1583 if (IsLegalWiderType)
1591 for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1596 EC.getKnownMinValue() &&
1598 TransformToType[i] = SVT;
1599 RegisterTypeForVT[i] = SVT;
1600 NumRegistersForVT[i] = 1;
1602 IsLegalWiderType =
true;
1606 if (IsLegalWiderType)
1612 TransformToType[i] = NVT;
1614 RegisterTypeForVT[i] = NVT;
1615 NumRegistersForVT[i] = 1;
1625 unsigned NumIntermediates;
1627 NumIntermediates, RegisterVT,
this);
1628 NumRegistersForVT[i] = NumRegisters;
1629 assert(NumRegistersForVT[i] == NumRegisters &&
1630 "NumRegistersForVT size cannot represent NumRegisters!");
1631 RegisterTypeForVT[i] = RegisterVT;
1636 TransformToType[i] = MVT::Other;
1641 else if (EC.getKnownMinValue() > 1)
1644 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1648 TransformToType[i] = NVT;
1667 RepRegClassForVT[i] = RRC;
1668 RepRegClassCostForVT[i] =
Cost;
1691 EVT VT,
EVT &IntermediateVT,
1692 unsigned &NumIntermediates,
1693 MVT &RegisterVT)
const {
1706 IntermediateVT = RegisterEVT;
1708 NumIntermediates = 1;
1716 unsigned NumVectorRegs = 1;
1731 "Don't know how to legalize this scalable vector type");
1737 IntermediateVT = PartVT;
1739 return NumIntermediates;
1754 NumVectorRegs <<= 1;
1757 NumIntermediates = NumVectorRegs;
1762 IntermediateVT = NewVT;
1765 RegisterVT = DestVT;
1767 if (
EVT(DestVT).bitsLT(NewVT)) {
1777 return NumVectorRegs;
1790 const bool OptForSize =
1797 return (OptForSize ||
Range <= MaxJumpTableSize) &&
1798 (NumCases * 100 >=
Range * MinDensity);
1802 EVT ConditionVT)
const {
1816 unsigned NumValues = Types.size();
1817 if (NumValues == 0)
return;
1819 for (
Type *Ty : Types) {
1823 if (attr.hasRetAttr(Attribute::SExt))
1825 else if (attr.hasRetAttr(Attribute::ZExt))
1838 if (attr.hasRetAttr(Attribute::InReg))
1842 if (attr.hasRetAttr(Attribute::SExt))
1844 else if (attr.hasRetAttr(Attribute::ZExt))
1847 for (
unsigned i = 0; i < NumParts; ++i)
1854 return DL.getABITypeAlign(Ty);
1866 if (VT.
isZeroSized() || Alignment >=
DL.getABITypeAlign(Ty)) {
1868 if (
Fast !=
nullptr)
1886 unsigned AddrSpace,
Align Alignment,
1888 unsigned *
Fast)
const {
1896 unsigned *
Fast)
const {
1904 unsigned *
Fast)
const {
1915 enum InstructionOpcodes {
1916#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1917#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1918#include "llvm/IR/Instruction.def"
1920 switch (
static_cast<InstructionOpcodes
>(Opcode)) {
1923 case Switch:
return 0;
1924 case IndirectBr:
return 0;
1925 case Invoke:
return 0;
1926 case CallBr:
return 0;
1927 case Resume:
return 0;
1928 case Unreachable:
return 0;
1929 case CleanupRet:
return 0;
1930 case CatchRet:
return 0;
1931 case CatchPad:
return 0;
1932 case CatchSwitch:
return 0;
1933 case CleanupPad:
return 0;
1934 case FNeg:
return ISD::FNEG;
1953 case Alloca:
return 0;
1954 case Load:
return ISD::LOAD;
1955 case Store:
return ISD::STORE;
1956 case GetElementPtr:
return 0;
1957 case Fence:
return 0;
1958 case AtomicCmpXchg:
return 0;
1959 case AtomicRMW:
return 0;
1968 case FPExt:
return ISD::FP_EXTEND;
1969 case PtrToAddr:
return ISD::BITCAST;
1970 case PtrToInt:
return ISD::BITCAST;
1971 case IntToPtr:
return ISD::BITCAST;
1972 case BitCast:
return ISD::BITCAST;
1973 case AddrSpaceCast:
return ISD::ADDRSPACECAST;
1977 case Call:
return 0;
1979 case UserOp1:
return 0;
1980 case UserOp2:
return 0;
1981 case VAArg:
return 0;
1987 case LandingPad:
return 0;
1996 case Intrinsic::exp:
1998 case Intrinsic::exp2:
2000 case Intrinsic::log:
2009 bool UseTLS)
const {
2013 const char *UnsafeStackPtrVar =
"__safestack_unsafe_stack_ptr";
2014 auto UnsafeStackPtr =
2018 PointerType *StackPtrTy =
DL.getAllocaPtrType(M->getContext());
2020 if (!UnsafeStackPtr) {
2029 UnsafeStackPtrVar,
nullptr,
TLSModel);
2034 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2036 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2038 (UseTLS ?
"" :
"not ") +
"be thread-local");
2040 return UnsafeStackPtr;
2047 if (!TM.getTargetTriple().isAndroid())
2053 const char *SafestackPointerAddressName =
2055 if (!SafestackPointerAddressName) {
2056 M->getContext().emitError(
2057 "no libcall available for safestack pointer address");
2064 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2120 RTLIB::LibcallImpl GuardLocalImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2121 if (GuardLocalImpl != RTLIB::impl___guard_local)
2137 RTLIB::LibcallImpl StackGuardImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2138 if (StackGuardImpl == RTLIB::Unsupported)
2142 M.getOrInsertGlobal(
2144 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2145 false, GlobalVariable::ExternalLinkage,
2146 nullptr, StackGuardVarName);
2149 if (M.getDirectAccessExternalData() &&
2150 !TM.getTargetTriple().isOSCygMing() &&
2151 !(TM.getTargetTriple().isPPC64() &&
2152 TM.getTargetTriple().isOSFreeBSD()) &&
2153 (!TM.getTargetTriple().isOSDarwin() ||
2154 TM.getRelocationModel() == Reloc::Static))
2155 GV->setDSOLocal(true);
2164 RTLIB::LibcallImpl GuardVarImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2165 if (GuardVarImpl == RTLIB::Unsupported)
2172 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2174 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2204 return MinimumBitTestCmps;
2208 MinimumBitTestCmps = Val;
2212 if (TM.Options.LoopAlignment)
2213 return Align(TM.Options.LoopAlignment);
2214 return PrefLoopAlignment;
2219 return MaxBytesForAlignment;
2230 return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
2238 std::string Name = VT.
isVector() ?
"vec-" :
"";
2240 Name += IsSqrt ?
"sqrt" :
"div";
2249 "Unexpected FP type for reciprocal estimate");
2261 const char RefStepToken =
':';
2262 Position = In.find(RefStepToken);
2266 StringRef RefStepString = In.substr(Position + 1);
2269 if (RefStepString.
size() == 1) {
2270 char RefStepChar = RefStepString[0];
2272 Value = RefStepChar -
'0';
2283 if (Override.
empty())
2287 Override.
split(OverrideVector,
',');
2288 unsigned NumArgs = OverrideVector.
size();
2298 Override = Override.
substr(0, RefPos);
2302 if (Override ==
"all")
2306 if (Override ==
"none")
2310 if (Override ==
"default")
2316 std::string VTNameNoSize = VTName;
2317 VTNameNoSize.pop_back();
2318 static const char DisabledPrefix =
'!';
2320 for (
StringRef RecipType : OverrideVector) {
2324 RecipType = RecipType.substr(0, RefPos);
2327 bool IsDisabled = RecipType[0] == DisabledPrefix;
2329 RecipType = RecipType.substr(1);
2331 if (RecipType == VTName || RecipType == VTNameNoSize)
2343 if (Override.
empty())
2347 Override.
split(OverrideVector,
',');
2348 unsigned NumArgs = OverrideVector.
size();
2360 Override = Override.
substr(0, RefPos);
2361 assert(Override !=
"none" &&
2362 "Disabled reciprocals, but specifed refinement steps?");
2365 if (Override ==
"all" || Override ==
"default")
2371 std::string VTNameNoSize = VTName;
2372 VTNameNoSize.pop_back();
2374 for (
StringRef RecipType : OverrideVector) {
2380 RecipType = RecipType.substr(0, RefPos);
2381 if (RecipType == VTName || RecipType == VTNameNoSize)
2450 if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
2467 if (
SI.isVolatile())
2470 if (
SI.hasMetadata(LLVMContext::MD_nontemporal))
2484 if (RMW->isVolatile())
2487 if (CmpX->isVolatile())
2505 "for it, but support must be explicitly enabled");
2506 case Intrinsic::vp_load:
2507 case Intrinsic::vp_gather:
2508 case Intrinsic::experimental_vp_strided_load:
2511 case Intrinsic::vp_store:
2512 case Intrinsic::vp_scatter:
2513 case Intrinsic::experimental_vp_strided_store:
2518 if (VPIntrin.
hasMetadata(LLVMContext::MD_nontemporal))
2529 return Builder.CreateFence(Ord);
2538 return Builder.CreateFence(Ord);
2549 auto &MF = *
MI.getMF();
2550 auto &
MRI = MF.getRegInfo();
2557 auto maxUses = [](
unsigned RematCost) {
2560 return std::numeric_limits<unsigned>::max();
2570 switch (
MI.getOpcode()) {
2575 case TargetOpcode::G_CONSTANT:
2576 case TargetOpcode::G_FCONSTANT:
2577 case TargetOpcode::G_FRAME_INDEX:
2578 case TargetOpcode::G_INTTOPTR:
2580 case TargetOpcode::G_GLOBAL_VALUE: {
2581 unsigned RematCost =
TTI->getGISelRematGlobalCost();
2583 unsigned MaxUses = maxUses(RematCost);
2584 if (MaxUses == UINT_MAX)
2586 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file defines the SmallVector class.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
static constexpr size_t npos
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual ~TargetLoweringBase()
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...