70 "jump-is-expensive",
cl::init(
false),
71 cl::desc(
"Do not create extra branches to split comparison logic."),
76 cl::desc(
"Set minimum number of entries to use a jump table."));
80 cl::desc(
"Set maximum size of jump tables."));
85 cl::desc(
"Minimum density for building a jump table in "
86 "a normal function"));
91 cl::desc(
"Minimum density for building a jump table in "
92 "an optsize function"));
96 cl::desc(
"Set minimum of largest number of comparisons "
97 "to use bit test for switch."));
104 cl::desc(
"Don't mutate strict-float node to a legalize node"),
110 RTLIB::Libcall Call_F32,
111 RTLIB::Libcall Call_F64,
112 RTLIB::Libcall Call_F80,
113 RTLIB::Libcall Call_F128,
114 RTLIB::Libcall Call_PPCF128) {
116 VT == MVT::f32 ? Call_F32 :
117 VT == MVT::f64 ? Call_F64 :
118 VT == MVT::f80 ? Call_F80 :
119 VT == MVT::f128 ? Call_F128 :
120 VT == MVT::ppcf128 ? Call_PPCF128 :
121 RTLIB::UNKNOWN_LIBCALL;
127 if (OpVT == MVT::f16) {
128 if (RetVT == MVT::f32)
129 return FPEXT_F16_F32;
130 if (RetVT == MVT::f64)
131 return FPEXT_F16_F64;
132 if (RetVT == MVT::f80)
133 return FPEXT_F16_F80;
134 if (RetVT == MVT::f128)
135 return FPEXT_F16_F128;
136 }
else if (OpVT == MVT::f32) {
137 if (RetVT == MVT::f64)
138 return FPEXT_F32_F64;
139 if (RetVT == MVT::f128)
140 return FPEXT_F32_F128;
141 if (RetVT == MVT::ppcf128)
142 return FPEXT_F32_PPCF128;
143 }
else if (OpVT == MVT::f64) {
144 if (RetVT == MVT::f128)
145 return FPEXT_F64_F128;
146 else if (RetVT == MVT::ppcf128)
147 return FPEXT_F64_PPCF128;
148 }
else if (OpVT == MVT::f80) {
149 if (RetVT == MVT::f128)
150 return FPEXT_F80_F128;
151 }
else if (OpVT == MVT::bf16) {
152 if (RetVT == MVT::f32)
153 return FPEXT_BF16_F32;
156 return UNKNOWN_LIBCALL;
162 if (RetVT == MVT::f16) {
163 if (OpVT == MVT::f32)
164 return FPROUND_F32_F16;
165 if (OpVT == MVT::f64)
166 return FPROUND_F64_F16;
167 if (OpVT == MVT::f80)
168 return FPROUND_F80_F16;
169 if (OpVT == MVT::f128)
170 return FPROUND_F128_F16;
171 if (OpVT == MVT::ppcf128)
172 return FPROUND_PPCF128_F16;
173 }
else if (RetVT == MVT::bf16) {
174 if (OpVT == MVT::f32)
175 return FPROUND_F32_BF16;
176 if (OpVT == MVT::f64)
177 return FPROUND_F64_BF16;
178 if (OpVT == MVT::f80)
179 return FPROUND_F80_BF16;
180 if (OpVT == MVT::f128)
181 return FPROUND_F128_BF16;
182 }
else if (RetVT == MVT::f32) {
183 if (OpVT == MVT::f64)
184 return FPROUND_F64_F32;
185 if (OpVT == MVT::f80)
186 return FPROUND_F80_F32;
187 if (OpVT == MVT::f128)
188 return FPROUND_F128_F32;
189 if (OpVT == MVT::ppcf128)
190 return FPROUND_PPCF128_F32;
191 }
else if (RetVT == MVT::f64) {
192 if (OpVT == MVT::f80)
193 return FPROUND_F80_F64;
194 if (OpVT == MVT::f128)
195 return FPROUND_F128_F64;
196 if (OpVT == MVT::ppcf128)
197 return FPROUND_PPCF128_F64;
198 }
else if (RetVT == MVT::f80) {
199 if (OpVT == MVT::f128)
200 return FPROUND_F128_F80;
203 return UNKNOWN_LIBCALL;
209 if (OpVT == MVT::f16) {
210 if (RetVT == MVT::i32)
211 return FPTOSINT_F16_I32;
212 if (RetVT == MVT::i64)
213 return FPTOSINT_F16_I64;
214 if (RetVT == MVT::i128)
215 return FPTOSINT_F16_I128;
216 }
else if (OpVT == MVT::f32) {
217 if (RetVT == MVT::i32)
218 return FPTOSINT_F32_I32;
219 if (RetVT == MVT::i64)
220 return FPTOSINT_F32_I64;
221 if (RetVT == MVT::i128)
222 return FPTOSINT_F32_I128;
223 }
else if (OpVT == MVT::f64) {
224 if (RetVT == MVT::i32)
225 return FPTOSINT_F64_I32;
226 if (RetVT == MVT::i64)
227 return FPTOSINT_F64_I64;
228 if (RetVT == MVT::i128)
229 return FPTOSINT_F64_I128;
230 }
else if (OpVT == MVT::f80) {
231 if (RetVT == MVT::i32)
232 return FPTOSINT_F80_I32;
233 if (RetVT == MVT::i64)
234 return FPTOSINT_F80_I64;
235 if (RetVT == MVT::i128)
236 return FPTOSINT_F80_I128;
237 }
else if (OpVT == MVT::f128) {
238 if (RetVT == MVT::i32)
239 return FPTOSINT_F128_I32;
240 if (RetVT == MVT::i64)
241 return FPTOSINT_F128_I64;
242 if (RetVT == MVT::i128)
243 return FPTOSINT_F128_I128;
244 }
else if (OpVT == MVT::ppcf128) {
245 if (RetVT == MVT::i32)
246 return FPTOSINT_PPCF128_I32;
247 if (RetVT == MVT::i64)
248 return FPTOSINT_PPCF128_I64;
249 if (RetVT == MVT::i128)
250 return FPTOSINT_PPCF128_I128;
252 return UNKNOWN_LIBCALL;
258 if (OpVT == MVT::f16) {
259 if (RetVT == MVT::i32)
260 return FPTOUINT_F16_I32;
261 if (RetVT == MVT::i64)
262 return FPTOUINT_F16_I64;
263 if (RetVT == MVT::i128)
264 return FPTOUINT_F16_I128;
265 }
else if (OpVT == MVT::f32) {
266 if (RetVT == MVT::i32)
267 return FPTOUINT_F32_I32;
268 if (RetVT == MVT::i64)
269 return FPTOUINT_F32_I64;
270 if (RetVT == MVT::i128)
271 return FPTOUINT_F32_I128;
272 }
else if (OpVT == MVT::f64) {
273 if (RetVT == MVT::i32)
274 return FPTOUINT_F64_I32;
275 if (RetVT == MVT::i64)
276 return FPTOUINT_F64_I64;
277 if (RetVT == MVT::i128)
278 return FPTOUINT_F64_I128;
279 }
else if (OpVT == MVT::f80) {
280 if (RetVT == MVT::i32)
281 return FPTOUINT_F80_I32;
282 if (RetVT == MVT::i64)
283 return FPTOUINT_F80_I64;
284 if (RetVT == MVT::i128)
285 return FPTOUINT_F80_I128;
286 }
else if (OpVT == MVT::f128) {
287 if (RetVT == MVT::i32)
288 return FPTOUINT_F128_I32;
289 if (RetVT == MVT::i64)
290 return FPTOUINT_F128_I64;
291 if (RetVT == MVT::i128)
292 return FPTOUINT_F128_I128;
293 }
else if (OpVT == MVT::ppcf128) {
294 if (RetVT == MVT::i32)
295 return FPTOUINT_PPCF128_I32;
296 if (RetVT == MVT::i64)
297 return FPTOUINT_PPCF128_I64;
298 if (RetVT == MVT::i128)
299 return FPTOUINT_PPCF128_I128;
301 return UNKNOWN_LIBCALL;
307 if (OpVT == MVT::i32) {
308 if (RetVT == MVT::f16)
309 return SINTTOFP_I32_F16;
310 if (RetVT == MVT::f32)
311 return SINTTOFP_I32_F32;
312 if (RetVT == MVT::f64)
313 return SINTTOFP_I32_F64;
314 if (RetVT == MVT::f80)
315 return SINTTOFP_I32_F80;
316 if (RetVT == MVT::f128)
317 return SINTTOFP_I32_F128;
318 if (RetVT == MVT::ppcf128)
319 return SINTTOFP_I32_PPCF128;
320 }
else if (OpVT == MVT::i64) {
321 if (RetVT == MVT::bf16)
322 return SINTTOFP_I64_BF16;
323 if (RetVT == MVT::f16)
324 return SINTTOFP_I64_F16;
325 if (RetVT == MVT::f32)
326 return SINTTOFP_I64_F32;
327 if (RetVT == MVT::f64)
328 return SINTTOFP_I64_F64;
329 if (RetVT == MVT::f80)
330 return SINTTOFP_I64_F80;
331 if (RetVT == MVT::f128)
332 return SINTTOFP_I64_F128;
333 if (RetVT == MVT::ppcf128)
334 return SINTTOFP_I64_PPCF128;
335 }
else if (OpVT == MVT::i128) {
336 if (RetVT == MVT::f16)
337 return SINTTOFP_I128_F16;
338 if (RetVT == MVT::f32)
339 return SINTTOFP_I128_F32;
340 if (RetVT == MVT::f64)
341 return SINTTOFP_I128_F64;
342 if (RetVT == MVT::f80)
343 return SINTTOFP_I128_F80;
344 if (RetVT == MVT::f128)
345 return SINTTOFP_I128_F128;
346 if (RetVT == MVT::ppcf128)
347 return SINTTOFP_I128_PPCF128;
349 return UNKNOWN_LIBCALL;
355 if (OpVT == MVT::i32) {
356 if (RetVT == MVT::f16)
357 return UINTTOFP_I32_F16;
358 if (RetVT == MVT::f32)
359 return UINTTOFP_I32_F32;
360 if (RetVT == MVT::f64)
361 return UINTTOFP_I32_F64;
362 if (RetVT == MVT::f80)
363 return UINTTOFP_I32_F80;
364 if (RetVT == MVT::f128)
365 return UINTTOFP_I32_F128;
366 if (RetVT == MVT::ppcf128)
367 return UINTTOFP_I32_PPCF128;
368 }
else if (OpVT == MVT::i64) {
369 if (RetVT == MVT::bf16)
370 return UINTTOFP_I64_BF16;
371 if (RetVT == MVT::f16)
372 return UINTTOFP_I64_F16;
373 if (RetVT == MVT::f32)
374 return UINTTOFP_I64_F32;
375 if (RetVT == MVT::f64)
376 return UINTTOFP_I64_F64;
377 if (RetVT == MVT::f80)
378 return UINTTOFP_I64_F80;
379 if (RetVT == MVT::f128)
380 return UINTTOFP_I64_F128;
381 if (RetVT == MVT::ppcf128)
382 return UINTTOFP_I64_PPCF128;
383 }
else if (OpVT == MVT::i128) {
384 if (RetVT == MVT::f16)
385 return UINTTOFP_I128_F16;
386 if (RetVT == MVT::f32)
387 return UINTTOFP_I128_F32;
388 if (RetVT == MVT::f64)
389 return UINTTOFP_I128_F64;
390 if (RetVT == MVT::f80)
391 return UINTTOFP_I128_F80;
392 if (RetVT == MVT::f128)
393 return UINTTOFP_I128_F128;
394 if (RetVT == MVT::ppcf128)
395 return UINTTOFP_I128_PPCF128;
397 return UNKNOWN_LIBCALL;
401 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
406 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
410 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
415 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
420 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
424 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
428 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
433 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
434 SINCOSPI_F128, SINCOSPI_PPCF128);
438 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
439 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
443 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
450 unsigned ModeN, ModelN;
468 return RTLIB::UNKNOWN_LIBCALL;
486 return UNKNOWN_LIBCALL;
489 return LC[ModeN][ModelN];
495 return UNKNOWN_LIBCALL;
498#define LCALLS(A, B) \
499 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
501 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
503 case ISD::ATOMIC_CMP_SWAP: {
504 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_CAS)};
507 case ISD::ATOMIC_SWAP: {
508 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_SWP)};
511 case ISD::ATOMIC_LOAD_ADD: {
512 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDADD)};
515 case ISD::ATOMIC_LOAD_OR: {
516 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDSET)};
519 case ISD::ATOMIC_LOAD_CLR: {
520 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDCLR)};
523 case ISD::ATOMIC_LOAD_XOR: {
524 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDEOR)};
528 return UNKNOWN_LIBCALL;
535#define OP_TO_LIBCALL(Name, Enum) \
537 switch (VT.SimpleTy) { \
539 return UNKNOWN_LIBCALL; \
554 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
569 return UNKNOWN_LIBCALL;
573 switch (ElementSize) {
575 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
577 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
579 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
581 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
583 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
585 return UNKNOWN_LIBCALL;
590 switch (ElementSize) {
592 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
594 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
596 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
598 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
600 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
602 return UNKNOWN_LIBCALL;
607 switch (ElementSize) {
609 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
611 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
613 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
615 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
617 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
619 return UNKNOWN_LIBCALL;
624 RTLIB::LibcallImpl Impl)
const {
626 case RTLIB::impl___aeabi_dcmpeq__une:
627 case RTLIB::impl___aeabi_fcmpeq__une:
630 case RTLIB::impl___aeabi_dcmpeq__oeq:
631 case RTLIB::impl___aeabi_fcmpeq__oeq:
634 case RTLIB::impl___aeabi_dcmplt:
635 case RTLIB::impl___aeabi_dcmple:
636 case RTLIB::impl___aeabi_dcmpge:
637 case RTLIB::impl___aeabi_dcmpgt:
638 case RTLIB::impl___aeabi_dcmpun:
639 case RTLIB::impl___aeabi_fcmplt:
640 case RTLIB::impl___aeabi_fcmple:
641 case RTLIB::impl___aeabi_fcmpge:
642 case RTLIB::impl___aeabi_fcmpgt:
660 case RTLIB::OEQ_F128:
661 case RTLIB::OEQ_PPCF128:
665 case RTLIB::UNE_F128:
666 case RTLIB::UNE_PPCF128:
670 case RTLIB::OGE_F128:
671 case RTLIB::OGE_PPCF128:
675 case RTLIB::OLT_F128:
676 case RTLIB::OLT_PPCF128:
680 case RTLIB::OLE_F128:
681 case RTLIB::OLE_PPCF128:
685 case RTLIB::OGT_F128:
686 case RTLIB::OGT_PPCF128:
691 case RTLIB::UO_PPCF128:
700 : TM(tm), Libcalls(TM.getTargetTriple(), TM.
Options.ExceptionModel,
702 TM.
Options.MCOptions.getABIName()) {
711 HasExtractBitsInsn =
false;
715 StackPointerRegisterToSaveRestore = 0;
722 MaxBytesForAlignment = 0;
723 MaxAtomicSizeInBitsSupported = 0;
727 MaxDivRemBitWidthSupported = 128;
731 MinCmpXchgSizeInBits = 0;
732 SupportsUnalignedAtomics =
false;
743 memset(OpActions, 0,
sizeof(OpActions));
744 memset(LoadExtActions, 0,
sizeof(LoadExtActions));
745 memset(TruncStoreActions, 0,
sizeof(TruncStoreActions));
746 memset(IndexedModeActions, 0,
sizeof(IndexedModeActions));
747 memset(CondCodeActions, 0,
sizeof(CondCodeActions));
761 for (
MVT VT : {MVT::i2, MVT::i4})
762 OpActions[(
unsigned)VT.SimpleTy][NT] =
Expand;
765 for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
773 for (
MVT VT : {MVT::i2, MVT::i4}) {
805 ISD::FMINNUM, ISD::FMAXNUM,
806 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
807 ISD::FMINIMUM, ISD::FMAXIMUM,
808 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
822 ISD::FLOG, ISD::FLOG2,
823 ISD::FLOG10, ISD::FEXP,
824 ISD::FEXP2, ISD::FEXP10,
825 ISD::FFLOOR, ISD::FNEARBYINT,
826 ISD::FCEIL, ISD::FRINT,
827 ISD::FTRUNC, ISD::FROUNDEVEN,
828 ISD::FTAN, ISD::FACOS,
829 ISD::FASIN, ISD::FATAN,
830 ISD::FCOSH, ISD::FSINH,
831 ISD::FTANH, ISD::FATAN2,
873 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
882 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
886#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
887 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
888#include "llvm/IR/ConstrainedOps.def"
895 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
896 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
897 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
898 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
899 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
900 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
910#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
911 setOperationAction(ISD::SDOPC, VT, Expand);
912#include "llvm/IR/VPIntrinsics.def"
941 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
946 {MVT::f16, MVT::f32, MVT::f64, MVT::f128},
Expand);
950 {MVT::f32, MVT::f64, MVT::f128},
LibCall);
953 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
967 for (
MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
994 "ShiftVT is still too small!");
1012 unsigned DestAS)
const {
1013 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1021 if (EC.isScalable())
1037 JumpIsExpensive = isExpensive;
1053 "Promote may not follow Expand or Promote");
1056 return LegalizeKind(LA,
EVT(SVT).getHalfNumVectorElementsVT(Context));
1069 assert(NVT != VT &&
"Unable to round integer VT");
1118 EVT OldEltVT = EltVT;
1135 if (NVT !=
MVT() && ValueTypeActions.getTypeAction(NVT) ==
TypeLegal)
1157 if (LargerVector ==
MVT())
1161 if (ValueTypeActions.getTypeAction(LargerVector) ==
TypeLegal)
1181 unsigned &NumIntermediates,
1188 unsigned NumVectorRegs = 1;
1194 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1200 NumVectorRegs = EC.getKnownMinValue();
1207 while (EC.getKnownMinValue() > 1 &&
1209 EC = EC.divideCoefficientBy(2);
1210 NumVectorRegs <<= 1;
1213 NumIntermediates = NumVectorRegs;
1218 IntermediateVT = NewVT;
1226 RegisterVT = DestVT;
1227 if (
EVT(DestVT).bitsLT(NewVT))
1232 return NumVectorRegs;
1239 for (
const auto *
I =
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
1275 for (
unsigned i = 0; i <
MI->getNumOperands(); ++i) {
1282 unsigned TiedTo = i;
1284 TiedTo =
MI->findTiedOperandIdx(i);
1301 assert(
MI->getOpcode() == TargetOpcode::STATEPOINT &&
"sanity");
1302 MIB.
addImm(StackMaps::IndirectMemRefOp);
1309 MIB.
addImm(StackMaps::DirectMemRefOp);
1314 assert(MIB->
mayLoad() &&
"Folded a stackmap use to a non-load!");
1321 if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
1330 MI->eraseFromParent();
1340std::pair<const TargetRegisterClass *, uint8_t>
1345 return std::make_pair(RC, 0);
1354 for (
unsigned i : SuperRegRC.
set_bits()) {
1357 if (
TRI->getSpillSize(*SuperRC) <=
TRI->getSpillSize(*BestRC))
1363 return std::make_pair(BestRC, 1);
1372 NumRegistersForVT[i] = 1;
1376 NumRegistersForVT[MVT::isVoid] = 0;
1379 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1380 for (; RegClassForVT[LargestIntReg] ==
nullptr; --LargestIntReg)
1381 assert(LargestIntReg != MVT::i1 &&
"No integer registers defined!");
1385 for (
unsigned ExpandedReg = LargestIntReg + 1;
1386 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1387 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1396 unsigned LegalIntReg = LargestIntReg;
1397 for (
unsigned IntReg = LargestIntReg - 1;
1398 IntReg >= (
unsigned)MVT::i1; --IntReg) {
1401 LegalIntReg = IntReg;
1403 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1412 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1413 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1414 TransformToType[MVT::ppcf128] = MVT::f64;
1417 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1418 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1419 TransformToType[MVT::ppcf128] = MVT::i128;
1427 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1428 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1429 TransformToType[MVT::f128] = MVT::i128;
1436 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1437 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1438 TransformToType[MVT::f80] = MVT::i32;
1445 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1446 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1447 TransformToType[MVT::f64] = MVT::i64;
1454 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1455 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1456 TransformToType[MVT::f32] = MVT::i32;
1468 if (!UseFPRegsForHalfType) {
1469 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1470 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1472 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1473 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1475 TransformToType[MVT::f16] = MVT::f32;
1476 if (SoftPromoteHalfType) {
1487 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1488 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1489 TransformToType[MVT::bf16] = MVT::f32;
1494 for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1495 i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1502 bool IsLegalWiderType =
false;
1505 switch (PreferredAction) {
1508 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1509 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1512 for (
unsigned nVT = i + 1;
1519 TransformToType[i] = SVT;
1520 RegisterTypeForVT[i] = SVT;
1521 NumRegistersForVT[i] = 1;
1523 IsLegalWiderType =
true;
1527 if (IsLegalWiderType)
1535 for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1540 EC.getKnownMinValue() &&
1542 TransformToType[i] = SVT;
1543 RegisterTypeForVT[i] = SVT;
1544 NumRegistersForVT[i] = 1;
1546 IsLegalWiderType =
true;
1550 if (IsLegalWiderType)
1556 TransformToType[i] = NVT;
1558 RegisterTypeForVT[i] = NVT;
1559 NumRegistersForVT[i] = 1;
1569 unsigned NumIntermediates;
1571 NumIntermediates, RegisterVT,
this);
1572 NumRegistersForVT[i] = NumRegisters;
1573 assert(NumRegistersForVT[i] == NumRegisters &&
1574 "NumRegistersForVT size cannot represent NumRegisters!");
1575 RegisterTypeForVT[i] = RegisterVT;
1580 TransformToType[i] = MVT::Other;
1585 else if (EC.getKnownMinValue() > 1)
1588 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1592 TransformToType[i] = NVT;
1611 RepRegClassForVT[i] = RRC;
1612 RepRegClassCostForVT[i] =
Cost;
1635 EVT VT,
EVT &IntermediateVT,
1636 unsigned &NumIntermediates,
1637 MVT &RegisterVT)
const {
1650 IntermediateVT = RegisterEVT;
1652 NumIntermediates = 1;
1660 unsigned NumVectorRegs = 1;
1675 "Don't know how to legalize this scalable vector type");
1681 IntermediateVT = PartVT;
1683 return NumIntermediates;
1698 NumVectorRegs <<= 1;
1701 NumIntermediates = NumVectorRegs;
1706 IntermediateVT = NewVT;
1709 RegisterVT = DestVT;
1711 if (
EVT(DestVT).bitsLT(NewVT)) {
1721 return NumVectorRegs;
1734 const bool OptForSize =
1741 return (OptForSize ||
Range <= MaxJumpTableSize) &&
1742 (NumCases * 100 >=
Range * MinDensity);
1746 EVT ConditionVT)
const {
1760 unsigned NumValues = Types.size();
1761 if (NumValues == 0)
return;
1763 for (
Type *Ty : Types) {
1767 if (attr.hasRetAttr(Attribute::SExt))
1769 else if (attr.hasRetAttr(Attribute::ZExt))
1782 if (attr.hasRetAttr(Attribute::InReg))
1786 if (attr.hasRetAttr(Attribute::SExt))
1788 else if (attr.hasRetAttr(Attribute::ZExt))
1791 for (
unsigned i = 0; i < NumParts; ++i)
1798 return DL.getABITypeAlign(Ty);
1810 if (VT.
isZeroSized() || Alignment >=
DL.getABITypeAlign(Ty)) {
1812 if (
Fast !=
nullptr)
1830 unsigned AddrSpace,
Align Alignment,
1832 unsigned *
Fast)
const {
1840 unsigned *
Fast)
const {
1848 unsigned *
Fast)
const {
1859 enum InstructionOpcodes {
1860#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1861#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1862#include "llvm/IR/Instruction.def"
1864 switch (
static_cast<InstructionOpcodes
>(Opcode)) {
1867 case Switch:
return 0;
1868 case IndirectBr:
return 0;
1869 case Invoke:
return 0;
1870 case CallBr:
return 0;
1871 case Resume:
return 0;
1872 case Unreachable:
return 0;
1873 case CleanupRet:
return 0;
1874 case CatchRet:
return 0;
1875 case CatchPad:
return 0;
1876 case CatchSwitch:
return 0;
1877 case CleanupPad:
return 0;
1878 case FNeg:
return ISD::FNEG;
1897 case Alloca:
return 0;
1898 case Load:
return ISD::LOAD;
1899 case Store:
return ISD::STORE;
1900 case GetElementPtr:
return 0;
1901 case Fence:
return 0;
1902 case AtomicCmpXchg:
return 0;
1903 case AtomicRMW:
return 0;
1912 case FPExt:
return ISD::FP_EXTEND;
1913 case PtrToAddr:
return ISD::BITCAST;
1914 case PtrToInt:
return ISD::BITCAST;
1915 case IntToPtr:
return ISD::BITCAST;
1916 case BitCast:
return ISD::BITCAST;
1917 case AddrSpaceCast:
return ISD::ADDRSPACECAST;
1921 case Call:
return 0;
1923 case UserOp1:
return 0;
1924 case UserOp2:
return 0;
1925 case VAArg:
return 0;
1931 case LandingPad:
return 0;
1940 case Intrinsic::exp:
1942 case Intrinsic::exp2:
1944 case Intrinsic::log:
1953 bool UseTLS)
const {
1957 const char *UnsafeStackPtrVar =
"__safestack_unsafe_stack_ptr";
1958 auto UnsafeStackPtr =
1962 PointerType *StackPtrTy =
DL.getAllocaPtrType(M->getContext());
1964 if (!UnsafeStackPtr) {
1973 UnsafeStackPtrVar,
nullptr,
TLSModel);
1978 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1980 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1982 (UseTLS ?
"" :
"not ") +
"be thread-local");
1984 return UnsafeStackPtr;
1991 if (!TM.getTargetTriple().isAndroid())
1997 const char *SafestackPointerAddressName =
1999 if (!SafestackPointerAddressName) {
2000 M->getContext().emitError(
2001 "no libcall available for safestack pointer address");
2008 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2079 RTLIB::LibcallImpl StackGuardImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2080 if (StackGuardImpl == RTLIB::Unsupported)
2084 M.getOrInsertGlobal(
2086 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2087 false, GlobalVariable::ExternalLinkage,
2088 nullptr, StackGuardVarName);
2091 if (M.getDirectAccessExternalData() &&
2092 !TM.getTargetTriple().isOSCygMing() &&
2093 !(TM.getTargetTriple().isPPC64() &&
2094 TM.getTargetTriple().isOSFreeBSD()) &&
2095 (!TM.getTargetTriple().isOSDarwin() ||
2096 TM.getRelocationModel() == Reloc::Static))
2097 GV->setDSOLocal(true);
2106 RTLIB::LibcallImpl GuardVarImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2107 if (GuardVarImpl == RTLIB::Unsupported)
2114 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2116 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2146 return MinimumBitTestCmps;
2150 MinimumBitTestCmps = Val;
2154 if (TM.Options.LoopAlignment)
2155 return Align(TM.Options.LoopAlignment);
2156 return PrefLoopAlignment;
2161 return MaxBytesForAlignment;
2172 return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
2180 std::string Name = VT.
isVector() ?
"vec-" :
"";
2182 Name += IsSqrt ?
"sqrt" :
"div";
2191 "Unexpected FP type for reciprocal estimate");
2203 const char RefStepToken =
':';
2204 Position = In.find(RefStepToken);
2208 StringRef RefStepString = In.substr(Position + 1);
2211 if (RefStepString.
size() == 1) {
2212 char RefStepChar = RefStepString[0];
2214 Value = RefStepChar -
'0';
2225 if (Override.
empty())
2229 Override.
split(OverrideVector,
',');
2230 unsigned NumArgs = OverrideVector.
size();
2240 Override = Override.
substr(0, RefPos);
2244 if (Override ==
"all")
2248 if (Override ==
"none")
2252 if (Override ==
"default")
2258 std::string VTNameNoSize = VTName;
2259 VTNameNoSize.pop_back();
2260 static const char DisabledPrefix =
'!';
2262 for (
StringRef RecipType : OverrideVector) {
2266 RecipType = RecipType.substr(0, RefPos);
2269 bool IsDisabled = RecipType[0] == DisabledPrefix;
2271 RecipType = RecipType.substr(1);
2273 if (RecipType == VTName || RecipType == VTNameNoSize)
2285 if (Override.
empty())
2289 Override.
split(OverrideVector,
',');
2290 unsigned NumArgs = OverrideVector.
size();
2302 Override = Override.
substr(0, RefPos);
2303 assert(Override !=
"none" &&
2304 "Disabled reciprocals, but specifed refinement steps?");
2307 if (Override ==
"all" || Override ==
"default")
2313 std::string VTNameNoSize = VTName;
2314 VTNameNoSize.pop_back();
2316 for (
StringRef RecipType : OverrideVector) {
2322 RecipType = RecipType.substr(0, RefPos);
2323 if (RecipType == VTName || RecipType == VTNameNoSize)
2392 if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
2409 if (
SI.isVolatile())
2412 if (
SI.hasMetadata(LLVMContext::MD_nontemporal))
2426 if (RMW->isVolatile())
2429 if (CmpX->isVolatile())
2447 "for it, but support must be explicitly enabled");
2448 case Intrinsic::vp_load:
2449 case Intrinsic::vp_gather:
2450 case Intrinsic::experimental_vp_strided_load:
2453 case Intrinsic::vp_store:
2454 case Intrinsic::vp_scatter:
2455 case Intrinsic::experimental_vp_strided_store:
2460 if (VPIntrin.
hasMetadata(LLVMContext::MD_nontemporal))
2471 return Builder.CreateFence(Ord);
2480 return Builder.CreateFence(Ord);
2491 auto &MF = *
MI.getMF();
2492 auto &
MRI = MF.getRegInfo();
2499 auto maxUses = [](
unsigned RematCost) {
2502 return std::numeric_limits<unsigned>::max();
2512 switch (
MI.getOpcode()) {
2517 case TargetOpcode::G_CONSTANT:
2518 case TargetOpcode::G_FCONSTANT:
2519 case TargetOpcode::G_FRAME_INDEX:
2520 case TargetOpcode::G_INTTOPTR:
2522 case TargetOpcode::G_GLOBAL_VALUE: {
2523 unsigned RematCost =
TTI->getGISelRematGlobalCost();
2525 unsigned MaxUses = maxUses(RematCost);
2526 if (MaxUses == UINT_MAX)
2528 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file defines the SmallVector class.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
static constexpr size_t npos
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual ~TargetLoweringBase()
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...