LLVM 22.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/Loads.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/CallingConv.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <cstring>
62#include <string>
63#include <tuple>
64#include <utility>
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81/// Minimum jump table density for normal functions.
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87/// Minimum jump table density for -Os or -Oz functions.
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
94 "min-bit-test-cmps", cl::init(2), cl::Hidden,
95 cl::desc("Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
97
98// FIXME: This option is only to test if the strict fp operation processed
99// correctly by preventing mutating strict fp operation to normal fp operation
100// during development. When the backend supports strict float operation, this
101// option will be meaningless.
102static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
103 cl::desc("Don't mutate strict-float node to a legalize node"),
104 cl::init(false), cl::Hidden);
105
106/// GetFPLibCall - Helper to return the right libcall for the given floating
107/// point type, or UNKNOWN_LIBCALL if there is none.
108RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
109 RTLIB::Libcall Call_F32,
110 RTLIB::Libcall Call_F64,
111 RTLIB::Libcall Call_F80,
112 RTLIB::Libcall Call_F128,
113 RTLIB::Libcall Call_PPCF128) {
114 return
115 VT == MVT::f32 ? Call_F32 :
116 VT == MVT::f64 ? Call_F64 :
117 VT == MVT::f80 ? Call_F80 :
118 VT == MVT::f128 ? Call_F128 :
119 VT == MVT::ppcf128 ? Call_PPCF128 :
120 RTLIB::UNKNOWN_LIBCALL;
121}
122
123/// getFPEXT - Return the FPEXT_*_* value for the given types, or
124/// UNKNOWN_LIBCALL if there is none.
125RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
126 if (OpVT == MVT::f16) {
127 if (RetVT == MVT::f32)
128 return FPEXT_F16_F32;
129 if (RetVT == MVT::f64)
130 return FPEXT_F16_F64;
131 if (RetVT == MVT::f80)
132 return FPEXT_F16_F80;
133 if (RetVT == MVT::f128)
134 return FPEXT_F16_F128;
135 } else if (OpVT == MVT::f32) {
136 if (RetVT == MVT::f64)
137 return FPEXT_F32_F64;
138 if (RetVT == MVT::f128)
139 return FPEXT_F32_F128;
140 if (RetVT == MVT::ppcf128)
141 return FPEXT_F32_PPCF128;
142 } else if (OpVT == MVT::f64) {
143 if (RetVT == MVT::f128)
144 return FPEXT_F64_F128;
145 else if (RetVT == MVT::ppcf128)
146 return FPEXT_F64_PPCF128;
147 } else if (OpVT == MVT::f80) {
148 if (RetVT == MVT::f128)
149 return FPEXT_F80_F128;
150 } else if (OpVT == MVT::bf16) {
151 if (RetVT == MVT::f32)
152 return FPEXT_BF16_F32;
153 }
154
155 return UNKNOWN_LIBCALL;
156}
157
158/// getFPROUND - Return the FPROUND_*_* value for the given types, or
159/// UNKNOWN_LIBCALL if there is none.
160RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
161 if (RetVT == MVT::f16) {
162 if (OpVT == MVT::f32)
163 return FPROUND_F32_F16;
164 if (OpVT == MVT::f64)
165 return FPROUND_F64_F16;
166 if (OpVT == MVT::f80)
167 return FPROUND_F80_F16;
168 if (OpVT == MVT::f128)
169 return FPROUND_F128_F16;
170 if (OpVT == MVT::ppcf128)
171 return FPROUND_PPCF128_F16;
172 } else if (RetVT == MVT::bf16) {
173 if (OpVT == MVT::f32)
174 return FPROUND_F32_BF16;
175 if (OpVT == MVT::f64)
176 return FPROUND_F64_BF16;
177 if (OpVT == MVT::f80)
178 return FPROUND_F80_BF16;
179 if (OpVT == MVT::f128)
180 return FPROUND_F128_BF16;
181 } else if (RetVT == MVT::f32) {
182 if (OpVT == MVT::f64)
183 return FPROUND_F64_F32;
184 if (OpVT == MVT::f80)
185 return FPROUND_F80_F32;
186 if (OpVT == MVT::f128)
187 return FPROUND_F128_F32;
188 if (OpVT == MVT::ppcf128)
189 return FPROUND_PPCF128_F32;
190 } else if (RetVT == MVT::f64) {
191 if (OpVT == MVT::f80)
192 return FPROUND_F80_F64;
193 if (OpVT == MVT::f128)
194 return FPROUND_F128_F64;
195 if (OpVT == MVT::ppcf128)
196 return FPROUND_PPCF128_F64;
197 } else if (RetVT == MVT::f80) {
198 if (OpVT == MVT::f128)
199 return FPROUND_F128_F80;
200 }
201
202 return UNKNOWN_LIBCALL;
203}
204
205/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
206/// UNKNOWN_LIBCALL if there is none.
207RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
208 if (OpVT == MVT::f16) {
209 if (RetVT == MVT::i32)
210 return FPTOSINT_F16_I32;
211 if (RetVT == MVT::i64)
212 return FPTOSINT_F16_I64;
213 if (RetVT == MVT::i128)
214 return FPTOSINT_F16_I128;
215 } else if (OpVT == MVT::f32) {
216 if (RetVT == MVT::i32)
217 return FPTOSINT_F32_I32;
218 if (RetVT == MVT::i64)
219 return FPTOSINT_F32_I64;
220 if (RetVT == MVT::i128)
221 return FPTOSINT_F32_I128;
222 } else if (OpVT == MVT::f64) {
223 if (RetVT == MVT::i32)
224 return FPTOSINT_F64_I32;
225 if (RetVT == MVT::i64)
226 return FPTOSINT_F64_I64;
227 if (RetVT == MVT::i128)
228 return FPTOSINT_F64_I128;
229 } else if (OpVT == MVT::f80) {
230 if (RetVT == MVT::i32)
231 return FPTOSINT_F80_I32;
232 if (RetVT == MVT::i64)
233 return FPTOSINT_F80_I64;
234 if (RetVT == MVT::i128)
235 return FPTOSINT_F80_I128;
236 } else if (OpVT == MVT::f128) {
237 if (RetVT == MVT::i32)
238 return FPTOSINT_F128_I32;
239 if (RetVT == MVT::i64)
240 return FPTOSINT_F128_I64;
241 if (RetVT == MVT::i128)
242 return FPTOSINT_F128_I128;
243 } else if (OpVT == MVT::ppcf128) {
244 if (RetVT == MVT::i32)
245 return FPTOSINT_PPCF128_I32;
246 if (RetVT == MVT::i64)
247 return FPTOSINT_PPCF128_I64;
248 if (RetVT == MVT::i128)
249 return FPTOSINT_PPCF128_I128;
250 }
251 return UNKNOWN_LIBCALL;
252}
253
254/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
255/// UNKNOWN_LIBCALL if there is none.
256RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
257 if (OpVT == MVT::f16) {
258 if (RetVT == MVT::i32)
259 return FPTOUINT_F16_I32;
260 if (RetVT == MVT::i64)
261 return FPTOUINT_F16_I64;
262 if (RetVT == MVT::i128)
263 return FPTOUINT_F16_I128;
264 } else if (OpVT == MVT::f32) {
265 if (RetVT == MVT::i32)
266 return FPTOUINT_F32_I32;
267 if (RetVT == MVT::i64)
268 return FPTOUINT_F32_I64;
269 if (RetVT == MVT::i128)
270 return FPTOUINT_F32_I128;
271 } else if (OpVT == MVT::f64) {
272 if (RetVT == MVT::i32)
273 return FPTOUINT_F64_I32;
274 if (RetVT == MVT::i64)
275 return FPTOUINT_F64_I64;
276 if (RetVT == MVT::i128)
277 return FPTOUINT_F64_I128;
278 } else if (OpVT == MVT::f80) {
279 if (RetVT == MVT::i32)
280 return FPTOUINT_F80_I32;
281 if (RetVT == MVT::i64)
282 return FPTOUINT_F80_I64;
283 if (RetVT == MVT::i128)
284 return FPTOUINT_F80_I128;
285 } else if (OpVT == MVT::f128) {
286 if (RetVT == MVT::i32)
287 return FPTOUINT_F128_I32;
288 if (RetVT == MVT::i64)
289 return FPTOUINT_F128_I64;
290 if (RetVT == MVT::i128)
291 return FPTOUINT_F128_I128;
292 } else if (OpVT == MVT::ppcf128) {
293 if (RetVT == MVT::i32)
294 return FPTOUINT_PPCF128_I32;
295 if (RetVT == MVT::i64)
296 return FPTOUINT_PPCF128_I64;
297 if (RetVT == MVT::i128)
298 return FPTOUINT_PPCF128_I128;
299 }
300 return UNKNOWN_LIBCALL;
301}
302
303/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
304/// UNKNOWN_LIBCALL if there is none.
305RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
306 if (OpVT == MVT::i32) {
307 if (RetVT == MVT::f16)
308 return SINTTOFP_I32_F16;
309 if (RetVT == MVT::f32)
310 return SINTTOFP_I32_F32;
311 if (RetVT == MVT::f64)
312 return SINTTOFP_I32_F64;
313 if (RetVT == MVT::f80)
314 return SINTTOFP_I32_F80;
315 if (RetVT == MVT::f128)
316 return SINTTOFP_I32_F128;
317 if (RetVT == MVT::ppcf128)
318 return SINTTOFP_I32_PPCF128;
319 } else if (OpVT == MVT::i64) {
320 if (RetVT == MVT::bf16)
321 return SINTTOFP_I64_BF16;
322 if (RetVT == MVT::f16)
323 return SINTTOFP_I64_F16;
324 if (RetVT == MVT::f32)
325 return SINTTOFP_I64_F32;
326 if (RetVT == MVT::f64)
327 return SINTTOFP_I64_F64;
328 if (RetVT == MVT::f80)
329 return SINTTOFP_I64_F80;
330 if (RetVT == MVT::f128)
331 return SINTTOFP_I64_F128;
332 if (RetVT == MVT::ppcf128)
333 return SINTTOFP_I64_PPCF128;
334 } else if (OpVT == MVT::i128) {
335 if (RetVT == MVT::f16)
336 return SINTTOFP_I128_F16;
337 if (RetVT == MVT::f32)
338 return SINTTOFP_I128_F32;
339 if (RetVT == MVT::f64)
340 return SINTTOFP_I128_F64;
341 if (RetVT == MVT::f80)
342 return SINTTOFP_I128_F80;
343 if (RetVT == MVT::f128)
344 return SINTTOFP_I128_F128;
345 if (RetVT == MVT::ppcf128)
346 return SINTTOFP_I128_PPCF128;
347 }
348 return UNKNOWN_LIBCALL;
349}
350
351/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
352/// UNKNOWN_LIBCALL if there is none.
353RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
354 if (OpVT == MVT::i32) {
355 if (RetVT == MVT::f16)
356 return UINTTOFP_I32_F16;
357 if (RetVT == MVT::f32)
358 return UINTTOFP_I32_F32;
359 if (RetVT == MVT::f64)
360 return UINTTOFP_I32_F64;
361 if (RetVT == MVT::f80)
362 return UINTTOFP_I32_F80;
363 if (RetVT == MVT::f128)
364 return UINTTOFP_I32_F128;
365 if (RetVT == MVT::ppcf128)
366 return UINTTOFP_I32_PPCF128;
367 } else if (OpVT == MVT::i64) {
368 if (RetVT == MVT::bf16)
369 return UINTTOFP_I64_BF16;
370 if (RetVT == MVT::f16)
371 return UINTTOFP_I64_F16;
372 if (RetVT == MVT::f32)
373 return UINTTOFP_I64_F32;
374 if (RetVT == MVT::f64)
375 return UINTTOFP_I64_F64;
376 if (RetVT == MVT::f80)
377 return UINTTOFP_I64_F80;
378 if (RetVT == MVT::f128)
379 return UINTTOFP_I64_F128;
380 if (RetVT == MVT::ppcf128)
381 return UINTTOFP_I64_PPCF128;
382 } else if (OpVT == MVT::i128) {
383 if (RetVT == MVT::f16)
384 return UINTTOFP_I128_F16;
385 if (RetVT == MVT::f32)
386 return UINTTOFP_I128_F32;
387 if (RetVT == MVT::f64)
388 return UINTTOFP_I128_F64;
389 if (RetVT == MVT::f80)
390 return UINTTOFP_I128_F80;
391 if (RetVT == MVT::f128)
392 return UINTTOFP_I128_F128;
393 if (RetVT == MVT::ppcf128)
394 return UINTTOFP_I128_PPCF128;
395 }
396 return UNKNOWN_LIBCALL;
397}
398
399RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
400 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
401 POWI_PPCF128);
402}
403
404RTLIB::Libcall RTLIB::getPOW(EVT RetVT) {
405 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
406}
407
408RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
409 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
410 LDEXP_PPCF128);
411}
412
413RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
414 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
415 FREXP_PPCF128);
416}
417
418RTLIB::Libcall RTLIB::getSIN(EVT RetVT) {
419 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
420}
421
422RTLIB::Libcall RTLIB::getCOS(EVT RetVT) {
423 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
424}
425
426RTLIB::Libcall RTLIB::getSINCOS(EVT RetVT) {
427 // TODO: Tablegen should generate this function
428 if (RetVT.isVector()) {
429 if (!RetVT.isSimple())
430 return RTLIB::UNKNOWN_LIBCALL;
431 switch (RetVT.getSimpleVT().SimpleTy) {
432 case MVT::v4f32:
433 return RTLIB::SINCOS_V4F32;
434 case MVT::v2f64:
435 return RTLIB::SINCOS_V2F64;
436 case MVT::nxv4f32:
437 return RTLIB::SINCOS_NXV4F32;
438 case MVT::nxv2f64:
439 return RTLIB::SINCOS_NXV2F64;
440 default:
441 return RTLIB::UNKNOWN_LIBCALL;
442 }
443 }
444
445 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
446 SINCOS_PPCF128);
447}
448
449RTLIB::Libcall RTLIB::getSINCOSPI(EVT RetVT) {
450 // TODO: Tablegen should generate this function
451 if (RetVT.isVector()) {
452 if (!RetVT.isSimple())
453 return RTLIB::UNKNOWN_LIBCALL;
454 switch (RetVT.getSimpleVT().SimpleTy) {
455 case MVT::v4f32:
456 return RTLIB::SINCOSPI_V4F32;
457 case MVT::v2f64:
458 return RTLIB::SINCOSPI_V2F64;
459 case MVT::nxv4f32:
460 return RTLIB::SINCOSPI_NXV4F32;
461 case MVT::nxv2f64:
462 return RTLIB::SINCOSPI_NXV2F64;
463 default:
464 return RTLIB::UNKNOWN_LIBCALL;
465 }
466 }
467
468 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
469 SINCOSPI_F128, SINCOSPI_PPCF128);
470}
471
472RTLIB::Libcall RTLIB::getSINCOS_STRET(EVT RetVT) {
473 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
474 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
475}
476
477RTLIB::Libcall RTLIB::getMODF(EVT RetVT) {
478 // TODO: Tablegen should generate this function
479 if (RetVT.isVector()) {
480 if (!RetVT.isSimple())
481 return RTLIB::UNKNOWN_LIBCALL;
482 switch (RetVT.getSimpleVT().SimpleTy) {
483 case MVT::v4f32:
484 return RTLIB::MODF_V4F32;
485 case MVT::v2f64:
486 return RTLIB::MODF_V2F64;
487 case MVT::nxv4f32:
488 return RTLIB::MODF_NXV4F32;
489 case MVT::nxv2f64:
490 return RTLIB::MODF_NXV2F64;
491 default:
492 return RTLIB::UNKNOWN_LIBCALL;
493 }
494 }
495
496 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
497 MODF_PPCF128);
498}
499
500RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
501 AtomicOrdering Order,
502 uint64_t MemSize) {
503 unsigned ModeN, ModelN;
504 switch (MemSize) {
505 case 1:
506 ModeN = 0;
507 break;
508 case 2:
509 ModeN = 1;
510 break;
511 case 4:
512 ModeN = 2;
513 break;
514 case 8:
515 ModeN = 3;
516 break;
517 case 16:
518 ModeN = 4;
519 break;
520 default:
521 return RTLIB::UNKNOWN_LIBCALL;
522 }
523
524 switch (Order) {
526 ModelN = 0;
527 break;
529 ModelN = 1;
530 break;
532 ModelN = 2;
533 break;
536 ModelN = 3;
537 break;
538 default:
539 return UNKNOWN_LIBCALL;
540 }
541
542 return LC[ModeN][ModelN];
543}
544
545RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
546 MVT VT) {
547 if (!VT.isScalarInteger())
548 return UNKNOWN_LIBCALL;
549 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
550
551#define LCALLS(A, B) \
552 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
553#define LCALL5(A) \
554 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
555 switch (Opc) {
556 case ISD::ATOMIC_CMP_SWAP: {
557 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
558 return getOutlineAtomicHelper(LC, Order, MemSize);
559 }
560 case ISD::ATOMIC_SWAP: {
561 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
562 return getOutlineAtomicHelper(LC, Order, MemSize);
563 }
564 case ISD::ATOMIC_LOAD_ADD: {
565 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
566 return getOutlineAtomicHelper(LC, Order, MemSize);
567 }
568 case ISD::ATOMIC_LOAD_OR: {
569 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
570 return getOutlineAtomicHelper(LC, Order, MemSize);
571 }
572 case ISD::ATOMIC_LOAD_CLR: {
573 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
574 return getOutlineAtomicHelper(LC, Order, MemSize);
575 }
576 case ISD::ATOMIC_LOAD_XOR: {
577 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
578 return getOutlineAtomicHelper(LC, Order, MemSize);
579 }
580 default:
581 return UNKNOWN_LIBCALL;
582 }
583#undef LCALLS
584#undef LCALL5
585}
586
587RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
588#define OP_TO_LIBCALL(Name, Enum) \
589 case Name: \
590 switch (VT.SimpleTy) { \
591 default: \
592 return UNKNOWN_LIBCALL; \
593 case MVT::i8: \
594 return Enum##_1; \
595 case MVT::i16: \
596 return Enum##_2; \
597 case MVT::i32: \
598 return Enum##_4; \
599 case MVT::i64: \
600 return Enum##_8; \
601 case MVT::i128: \
602 return Enum##_16; \
603 }
604
605 switch (Opc) {
606 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
607 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
608 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
609 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
610 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
611 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
612 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
613 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
614 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
615 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
616 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
617 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
618 }
619
620#undef OP_TO_LIBCALL
621
622 return UNKNOWN_LIBCALL;
623}
624
626 switch (ElementSize) {
627 case 1:
628 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
629 case 2:
630 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
631 case 4:
632 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
633 case 8:
634 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
635 case 16:
636 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
637 default:
638 return UNKNOWN_LIBCALL;
639 }
640}
641
643 switch (ElementSize) {
644 case 1:
645 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
646 case 2:
647 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
648 case 4:
649 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
650 case 8:
651 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
652 case 16:
653 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
654 default:
655 return UNKNOWN_LIBCALL;
656 }
657}
658
660 switch (ElementSize) {
661 case 1:
662 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
663 case 2:
664 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
665 case 4:
666 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
667 case 8:
668 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
669 case 16:
670 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
671 default:
672 return UNKNOWN_LIBCALL;
673 }
674}
675
677 RTLIB::LibcallImpl Impl) const {
678 switch (Impl) {
679 case RTLIB::impl___aeabi_dcmpeq__une:
680 case RTLIB::impl___aeabi_fcmpeq__une:
681 // Usage in the eq case, so we have to invert the comparison.
682 return ISD::SETEQ;
683 case RTLIB::impl___aeabi_dcmpeq__oeq:
684 case RTLIB::impl___aeabi_fcmpeq__oeq:
685 // Normal comparison to boolean value.
686 return ISD::SETNE;
687 case RTLIB::impl___aeabi_dcmplt:
688 case RTLIB::impl___aeabi_dcmple:
689 case RTLIB::impl___aeabi_dcmpge:
690 case RTLIB::impl___aeabi_dcmpgt:
691 case RTLIB::impl___aeabi_dcmpun:
692 case RTLIB::impl___aeabi_fcmplt:
693 case RTLIB::impl___aeabi_fcmple:
694 case RTLIB::impl___aeabi_fcmpge:
695 case RTLIB::impl___aeabi_fcmpgt:
696 /// The AEABI versions return a typical boolean value, so we can compare
697 /// against the integer result as simply != 0.
698 return ISD::SETNE;
699 default:
700 break;
701 }
702
703 // Assume libgcc/compiler-rt behavior. Most of the cases are really aliases of
704 // each other, and return a 3-way comparison style result of -1, 0, or 1
705 // depending on lt/eq/gt.
706 //
707 // FIXME: It would be cleaner to directly express this as a 3-way comparison
708 // soft FP libcall instead of individual compares.
709 RTLIB::Libcall LC = RTLIB::RuntimeLibcallsInfo::getLibcallFromImpl(Impl);
710 switch (LC) {
711 case RTLIB::OEQ_F32:
712 case RTLIB::OEQ_F64:
713 case RTLIB::OEQ_F128:
714 case RTLIB::OEQ_PPCF128:
715 return ISD::SETEQ;
716 case RTLIB::UNE_F32:
717 case RTLIB::UNE_F64:
718 case RTLIB::UNE_F128:
719 case RTLIB::UNE_PPCF128:
720 return ISD::SETNE;
721 case RTLIB::OGE_F32:
722 case RTLIB::OGE_F64:
723 case RTLIB::OGE_F128:
724 case RTLIB::OGE_PPCF128:
725 return ISD::SETGE;
726 case RTLIB::OLT_F32:
727 case RTLIB::OLT_F64:
728 case RTLIB::OLT_F128:
729 case RTLIB::OLT_PPCF128:
730 return ISD::SETLT;
731 case RTLIB::OLE_F32:
732 case RTLIB::OLE_F64:
733 case RTLIB::OLE_F128:
734 case RTLIB::OLE_PPCF128:
735 return ISD::SETLE;
736 case RTLIB::OGT_F32:
737 case RTLIB::OGT_F64:
738 case RTLIB::OGT_F128:
739 case RTLIB::OGT_PPCF128:
740 return ISD::SETGT;
741 case RTLIB::UO_F32:
742 case RTLIB::UO_F64:
743 case RTLIB::UO_F128:
744 case RTLIB::UO_PPCF128:
745 return ISD::SETNE;
746 default:
747 llvm_unreachable("not a compare libcall");
748 }
749}
750
751/// NOTE: The TargetMachine owns TLOF.
753 const TargetSubtargetInfo &STI)
754 : TM(tm),
755 RuntimeLibcallInfo(TM.getTargetTriple(), TM.Options.ExceptionModel,
756 TM.Options.FloatABIType, TM.Options.EABIVersion,
757 TM.Options.MCOptions.getABIName(), TM.Options.VecLib),
758 Libcalls(RuntimeLibcallInfo) {
759 initActions();
760
761 // Perform these initializations only once.
767 HasExtractBitsInsn = false;
768 JumpIsExpensive = JumpIsExpensiveOverride;
770 EnableExtLdPromotion = false;
771 StackPointerRegisterToSaveRestore = 0;
772 BooleanContents = UndefinedBooleanContent;
773 BooleanFloatContents = UndefinedBooleanContent;
774 BooleanVectorContents = UndefinedBooleanContent;
775 SchedPreferenceInfo = Sched::ILP;
778 MaxBytesForAlignment = 0;
779 MaxAtomicSizeInBitsSupported = 0;
780
781 // Assume that even with libcalls, no target supports wider than 128 bit
782 // division.
783 MaxDivRemBitWidthSupported = 128;
784
785 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
786
787 MinCmpXchgSizeInBits = 0;
788 SupportsUnalignedAtomics = false;
789
790 MinimumBitTestCmps = MinimumBitTestCmpsOverride;
791}
792
793// Define the virtual destructor out-of-line to act as a key method to anchor
794// debug info (see coding standards).
796
798 // All operations default to being supported.
799 memset(OpActions, 0, sizeof(OpActions));
800 memset(LoadExtActions, 0, sizeof(LoadExtActions));
801 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
802 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
803 memset(CondCodeActions, 0, sizeof(CondCodeActions));
804 llvm::fill(RegClassForVT, nullptr);
805 llvm::fill(TargetDAGCombineArray, 0);
806
807 // Let extending atomic loads be unsupported by default.
808 for (MVT ValVT : MVT::all_valuetypes())
809 for (MVT MemVT : MVT::all_valuetypes())
811 Expand);
812
813 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
814 // remove this and targets should individually set these types if not legal.
817 for (MVT VT : {MVT::i2, MVT::i4})
818 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
819 }
820 for (MVT AVT : MVT::all_valuetypes()) {
821 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
822 setTruncStoreAction(AVT, VT, Expand);
825 }
826 }
827 for (unsigned IM = (unsigned)ISD::PRE_INC;
828 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
829 for (MVT VT : {MVT::i2, MVT::i4}) {
834 }
835 }
836
837 for (MVT VT : MVT::fp_valuetypes()) {
838 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
839 if (IntVT.isValid()) {
840 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
841 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
842 }
843 }
844
845 // Set default actions for various operations.
846 for (MVT VT : MVT::all_valuetypes()) {
847 // Default all indexed load / store to expand.
848 for (unsigned IM = (unsigned)ISD::PRE_INC;
849 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
854 }
855
856 // Most backends expect to see the node which just returns the value loaded.
857 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
858
859 // These operations default to expand.
861 ISD::FMINNUM, ISD::FMAXNUM,
862 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
863 ISD::FMINIMUM, ISD::FMAXIMUM,
864 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
877 ISD::IS_FPCLASS, ISD::FCBRT,
878 ISD::FLOG, ISD::FLOG2,
879 ISD::FLOG10, ISD::FEXP,
880 ISD::FEXP2, ISD::FEXP10,
881 ISD::FFLOOR, ISD::FNEARBYINT,
882 ISD::FCEIL, ISD::FRINT,
883 ISD::FTRUNC, ISD::FROUNDEVEN,
884 ISD::FTAN, ISD::FACOS,
885 ISD::FASIN, ISD::FATAN,
886 ISD::FCOSH, ISD::FSINH,
887 ISD::FTANH, ISD::FATAN2,
889 VT, Expand);
890
891 // Overflow operations default to expand
894 VT, Expand);
895
896 // Carry-using overflow operations default to expand.
899 VT, Expand);
900
901 // ADDC/ADDE/SUBC/SUBE default to expand.
903 Expand);
904
905 // [US]CMP default to expand
907
908 // Halving adds
911 Expand);
912
913 // Absolute difference
915
916 // Saturated trunc
920
921 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
923 Expand);
924
926
927 // These library functions default to expand.
928 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP,
929 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
930 VT, Expand);
931
932 // These operations default to expand for vector types.
933 if (VT.isVector())
938 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
939 VT, Expand);
940
941 // Constrained floating-point operations default to expand.
942#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
943 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
944#include "llvm/IR/ConstrainedOps.def"
945
946 // For most targets @llvm.get.dynamic.area.offset just returns 0.
947 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
948
949 // Vector reduction default to expand.
951 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
952 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
953 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
954 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
955 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
956 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
957 VT, Expand);
958
959 // Named vector shuffles default to expand.
961
962 // Only some target support this vector operation. Most need to expand it.
964
965 // VP operations default to expand.
966#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
967 setOperationAction(ISD::SDOPC, VT, Expand);
968#include "llvm/IR/VPIntrinsics.def"
969
970 // Masked vector extracts default to expand.
971 setOperationAction(ISD::VECTOR_FIND_LAST_ACTIVE, VT, Expand);
972
975
976 // FP environment operations default to expand.
977 setOperationAction(ISD::GET_FPENV, VT, Expand);
978 setOperationAction(ISD::SET_FPENV, VT, Expand);
979 setOperationAction(ISD::RESET_FPENV, VT, Expand);
980
981 setOperationAction(ISD::MSTORE, VT, Expand);
982 }
983
984 // Most targets ignore the @llvm.prefetch intrinsic.
985 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
986
987 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
988 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
989
990 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
991 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
992
993 // ConstantFP nodes default to expand. Targets can either change this to
994 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
995 // to optimize expansions for certain constants.
997 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
998 Expand);
999
1000 // Insert custom handling default for llvm.canonicalize.*.
1002 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
1003
1004 // FIXME: Query RuntimeLibCalls to make the decision.
1005 setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
1006 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
1007
1008 setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
1009 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
1010 MVT::f16, Promote);
1011 // Default ISD::TRAP to expand (which turns it into abort).
1012 setOperationAction(ISD::TRAP, MVT::Other, Expand);
1013
1014 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
1015 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
1016 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
1017
1018 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
1019
1020 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
1021 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
1022
1023 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1024 setOperationAction(ISD::GET_FPMODE, VT, Expand);
1025 setOperationAction(ISD::SET_FPMODE, VT, Expand);
1026 }
1027 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
1028
1029 // This one by default will call __clear_cache unless the target
1030 // wants something different.
1032}
1033
1035 EVT) const {
1036 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1037}
1038
1040 const DataLayout &DL) const {
1041 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1042 if (LHSTy.isVector())
1043 return LHSTy;
1044 MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
1045 // If any possible shift value won't fit in the prefered type, just use
1046 // something safe. Assume it will be legalized when the shift is expanded.
1047 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1048 ShiftVT = MVT::i32;
1049 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1050 "ShiftVT is still too small!");
1051 return ShiftVT;
1052}
1053
1054bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1055 assert(isTypeLegal(VT));
1056 switch (Op) {
1057 default:
1058 return false;
1059 case ISD::SDIV:
1060 case ISD::UDIV:
1061 case ISD::SREM:
1062 case ISD::UREM:
1063 return true;
1064 }
1065}
1066
1068 unsigned DestAS) const {
1069 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1070}
1071
1073 Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1074 const ConstantRange *VScaleRange) const {
1075 // Find the smallest "sensible" element type to use for the expansion.
1076 ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1077 if (EC.isScalable())
1078 CR = CR.umul_sat(*VScaleRange);
1079
1080 if (ZeroIsPoison)
1081 CR = CR.subtract(APInt(64, 1));
1082
1083 unsigned EltWidth = RetTy->getScalarSizeInBits();
1084 EltWidth = std::min(EltWidth, CR.getActiveBits());
1085 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1086
1087 return EltWidth;
1088}
1089
1091 // If the command-line option was specified, ignore this request.
1092 if (!JumpIsExpensiveOverride.getNumOccurrences())
1093 JumpIsExpensive = isExpensive;
1094}
1095
1098 // If this is a simple type, use the ComputeRegisterProp mechanism.
1099 if (VT.isSimple()) {
1100 MVT SVT = VT.getSimpleVT();
1101 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1102 MVT NVT = TransformToType[SVT.SimpleTy];
1103 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1104
1105 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1106 LA == TypeSoftPromoteHalf ||
1107 (NVT.isVector() ||
1108 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1109 "Promote may not follow Expand or Promote");
1110
1111 if (LA == TypeSplitVector)
1112 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1113 if (LA == TypeScalarizeVector)
1114 return LegalizeKind(LA, SVT.getVectorElementType());
1115 return LegalizeKind(LA, NVT);
1116 }
1117
1118 // Handle Extended Scalar Types.
1119 if (!VT.isVector()) {
1120 assert(VT.isInteger() && "Float types must be simple");
1121 unsigned BitSize = VT.getSizeInBits();
1122 // First promote to a power-of-two size, then expand if necessary.
1123 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1124 EVT NVT = VT.getRoundIntegerType(Context);
1125 assert(NVT != VT && "Unable to round integer VT");
1126 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1127 // Avoid multi-step promotion.
1128 if (NextStep.first == TypePromoteInteger)
1129 return NextStep;
1130 // Return rounded integer type.
1131 return LegalizeKind(TypePromoteInteger, NVT);
1132 }
1133
1135 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1136 }
1137
1138 // Handle vector types.
1139 ElementCount NumElts = VT.getVectorElementCount();
1140 EVT EltVT = VT.getVectorElementType();
1141
1142 // Vectors with only one element are always scalarized.
1143 if (NumElts.isScalar())
1144 return LegalizeKind(TypeScalarizeVector, EltVT);
1145
1146 // Try to widen vector elements until the element type is a power of two and
1147 // promote it to a legal type later on, for example:
1148 // <3 x i8> -> <4 x i8> -> <4 x i32>
1149 if (EltVT.isInteger()) {
1150 // Vectors with a number of elements that is not a power of two are always
1151 // widened, for example <3 x i8> -> <4 x i8>.
1152 if (!VT.isPow2VectorType()) {
1153 NumElts = NumElts.coefficientNextPowerOf2();
1154 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1155 return LegalizeKind(TypeWidenVector, NVT);
1156 }
1157
1158 // Examine the element type.
1159 LegalizeKind LK = getTypeConversion(Context, EltVT);
1160
1161 // If type is to be expanded, split the vector.
1162 // <4 x i140> -> <2 x i140>
1163 if (LK.first == TypeExpandInteger) {
1164 if (NumElts.isScalable() && NumElts.getKnownMinValue() == 1)
1167 VT.getHalfNumVectorElementsVT(Context));
1168 }
1169
1170 // Promote the integer element types until a legal vector type is found
1171 // or until the element integer type is too big. If a legal type was not
1172 // found, fallback to the usual mechanism of widening/splitting the
1173 // vector.
1174 EVT OldEltVT = EltVT;
1175 while (true) {
1176 // Increase the bitwidth of the element to the next pow-of-two
1177 // (which is greater than 8 bits).
1178 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1179 .getRoundIntegerType(Context);
1180
1181 // Stop trying when getting a non-simple element type.
1182 // Note that vector elements may be greater than legal vector element
1183 // types. Example: X86 XMM registers hold 64bit element on 32bit
1184 // systems.
1185 if (!EltVT.isSimple())
1186 break;
1187
1188 // Build a new vector type and check if it is legal.
1189 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1190 // Found a legal promoted vector type.
1191 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1193 EVT::getVectorVT(Context, EltVT, NumElts));
1194 }
1195
1196 // Reset the type to the unexpanded type if we did not find a legal vector
1197 // type with a promoted vector element type.
1198 EltVT = OldEltVT;
1199 }
1200
1201 // Try to widen the vector until a legal type is found.
1202 // If there is no wider legal type, split the vector.
1203 while (true) {
1204 // Round up to the next power of 2.
1205 NumElts = NumElts.coefficientNextPowerOf2();
1206
1207 // If there is no simple vector type with this many elements then there
1208 // cannot be a larger legal vector type. Note that this assumes that
1209 // there are no skipped intermediate vector types in the simple types.
1210 if (!EltVT.isSimple())
1211 break;
1212 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1213 if (LargerVector == MVT())
1214 break;
1215
1216 // If this type is legal then widen the vector.
1217 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1218 return LegalizeKind(TypeWidenVector, LargerVector);
1219 }
1220
1221 // Widen odd vectors to next power of two.
1222 if (!VT.isPow2VectorType()) {
1223 EVT NVT = VT.getPow2VectorType(Context);
1224 return LegalizeKind(TypeWidenVector, NVT);
1225 }
1226
1229
1230 // Vectors with illegal element types are expanded.
1231 EVT NVT = EVT::getVectorVT(Context, EltVT,
1233 return LegalizeKind(TypeSplitVector, NVT);
1234}
1235
1236static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1237 unsigned &NumIntermediates,
1238 MVT &RegisterVT,
1239 TargetLoweringBase *TLI) {
1240 // Figure out the right, legal destination reg to copy into.
1242 MVT EltTy = VT.getVectorElementType();
1243
1244 unsigned NumVectorRegs = 1;
1245
1246 // Scalable vectors cannot be scalarized, so splitting or widening is
1247 // required.
1248 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1250 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1251
1252 // FIXME: We don't support non-power-of-2-sized vectors for now.
1253 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1254 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1255 // Split EC to unit size (scalable property is preserved).
1256 NumVectorRegs = EC.getKnownMinValue();
1257 EC = ElementCount::getFixed(1);
1258 }
1259
1260 // Divide the input until we get to a supported size. This will
1261 // always end up with an EC that represent a scalar or a scalable
1262 // scalar.
1263 while (EC.getKnownMinValue() > 1 &&
1264 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1265 EC = EC.divideCoefficientBy(2);
1266 NumVectorRegs <<= 1;
1267 }
1268
1269 NumIntermediates = NumVectorRegs;
1270
1271 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1272 if (!TLI->isTypeLegal(NewVT))
1273 NewVT = EltTy;
1274 IntermediateVT = NewVT;
1275
1276 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1277
1278 // Convert sizes such as i33 to i64.
1279 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1280
1281 MVT DestVT = TLI->getRegisterType(NewVT);
1282 RegisterVT = DestVT;
1283 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1284 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1285
1286 // Otherwise, promotion or legal types use the same number of registers as
1287 // the vector decimated to the appropriate level.
1288 return NumVectorRegs;
1289}
1290
1291/// isLegalRC - Return true if the value types that can be represented by the
1292/// specified register class are all legal.
1294 const TargetRegisterClass &RC) const {
1295 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1296 if (isTypeLegal(*I))
1297 return true;
1298 return false;
1299}
1300
1301/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1302/// sequence of memory operands that is recognized by PrologEpilogInserter.
1305 MachineBasicBlock *MBB) const {
1306 MachineInstr *MI = &InitialMI;
1307 MachineFunction &MF = *MI->getMF();
1308 MachineFrameInfo &MFI = MF.getFrameInfo();
1309
1310 // We're handling multiple types of operands here:
1311 // PATCHPOINT MetaArgs - live-in, read only, direct
1312 // STATEPOINT Deopt Spill - live-through, read only, indirect
1313 // STATEPOINT Deopt Alloca - live-through, read only, direct
1314 // (We're currently conservative and mark the deopt slots read/write in
1315 // practice.)
1316 // STATEPOINT GC Spill - live-through, read/write, indirect
1317 // STATEPOINT GC Alloca - live-through, read/write, direct
1318 // The live-in vs live-through is handled already (the live through ones are
1319 // all stack slots), but we need to handle the different type of stackmap
1320 // operands and memory effects here.
1321
1322 if (llvm::none_of(MI->operands(),
1323 [](MachineOperand &Operand) { return Operand.isFI(); }))
1324 return MBB;
1325
1326 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1327
1328 // Inherit previous memory operands.
1329 MIB.cloneMemRefs(*MI);
1330
1331 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1332 MachineOperand &MO = MI->getOperand(i);
1333 if (!MO.isFI()) {
1334 // Index of Def operand this Use it tied to.
1335 // Since Defs are coming before Uses, if Use is tied, then
1336 // index of Def must be smaller that index of that Use.
1337 // Also, Defs preserve their position in new MI.
1338 unsigned TiedTo = i;
1339 if (MO.isReg() && MO.isTied())
1340 TiedTo = MI->findTiedOperandIdx(i);
1341 MIB.add(MO);
1342 if (TiedTo < i)
1343 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1344 continue;
1345 }
1346
1347 // foldMemoryOperand builds a new MI after replacing a single FI operand
1348 // with the canonical set of five x86 addressing-mode operands.
1349 int FI = MO.getIndex();
1350
1351 // Add frame index operands recognized by stackmaps.cpp
1353 // indirect-mem-ref tag, size, #FI, offset.
1354 // Used for spills inserted by StatepointLowering. This codepath is not
1355 // used for patchpoints/stackmaps at all, for these spilling is done via
1356 // foldMemoryOperand callback only.
1357 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1358 MIB.addImm(StackMaps::IndirectMemRefOp);
1359 MIB.addImm(MFI.getObjectSize(FI));
1360 MIB.add(MO);
1361 MIB.addImm(0);
1362 } else {
1363 // direct-mem-ref tag, #FI, offset.
1364 // Used by patchpoint, and direct alloca arguments to statepoints
1365 MIB.addImm(StackMaps::DirectMemRefOp);
1366 MIB.add(MO);
1367 MIB.addImm(0);
1368 }
1369
1370 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1371
1372 // Add a new memory operand for this FI.
1373 assert(MFI.getObjectOffset(FI) != -1);
1374
1375 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1376 // PATCHPOINT should be updated to do the same. (TODO)
1377 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1378 auto Flags = MachineMemOperand::MOLoad;
1380 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1382 MIB->addMemOperand(MF, MMO);
1383 }
1384 }
1385 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1386 MI->eraseFromParent();
1387 return MBB;
1388}
1389
1390/// findRepresentativeClass - Return the largest legal super-reg register class
1391/// of the register class for the specified type and its associated "cost".
1392// This function is in TargetLowering because it uses RegClassForVT which would
1393// need to be moved to TargetRegisterInfo and would necessitate moving
1394// isTypeLegal over as well - a massive change that would just require
1395// TargetLowering having a TargetRegisterInfo class member that it would use.
1396std::pair<const TargetRegisterClass *, uint8_t>
1398 MVT VT) const {
1399 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1400 if (!RC)
1401 return std::make_pair(RC, 0);
1402
1403 // Compute the set of all super-register classes.
1404 BitVector SuperRegRC(TRI->getNumRegClasses());
1405 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1406 SuperRegRC.setBitsInMask(RCI.getMask());
1407
1408 // Find the first legal register class with the largest spill size.
1409 const TargetRegisterClass *BestRC = RC;
1410 for (unsigned i : SuperRegRC.set_bits()) {
1411 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1412 // We want the largest possible spill size.
1413 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1414 continue;
1415 if (!isLegalRC(*TRI, *SuperRC))
1416 continue;
1417 BestRC = SuperRC;
1418 }
1419 return std::make_pair(BestRC, 1);
1420}
1421
1422/// computeRegisterProperties - Once all of the register classes are added,
1423/// this allows us to compute derived properties we expose.
1425 const TargetRegisterInfo *TRI) {
1426 // Everything defaults to needing one register.
1427 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1428 NumRegistersForVT[i] = 1;
1429 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1430 }
1431 // ...except isVoid, which doesn't need any registers.
1432 NumRegistersForVT[MVT::isVoid] = 0;
1433
1434 // Find the largest integer register class.
1435 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1436 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1437 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1438
1439 // Every integer value type larger than this largest register takes twice as
1440 // many registers to represent as the previous ValueType.
1441 for (unsigned ExpandedReg = LargestIntReg + 1;
1442 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1443 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1444 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1445 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1446 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1448 }
1449
1450 // Inspect all of the ValueType's smaller than the largest integer
1451 // register to see which ones need promotion.
1452 unsigned LegalIntReg = LargestIntReg;
1453 for (unsigned IntReg = LargestIntReg - 1;
1454 IntReg >= (unsigned)MVT::i1; --IntReg) {
1455 MVT IVT = (MVT::SimpleValueType)IntReg;
1456 if (isTypeLegal(IVT)) {
1457 LegalIntReg = IntReg;
1458 } else {
1459 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1460 (MVT::SimpleValueType)LegalIntReg;
1461 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1462 }
1463 }
1464
1465 // ppcf128 type is really two f64's.
1466 if (!isTypeLegal(MVT::ppcf128)) {
1467 if (isTypeLegal(MVT::f64)) {
1468 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1469 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1470 TransformToType[MVT::ppcf128] = MVT::f64;
1471 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1472 } else {
1473 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1474 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1475 TransformToType[MVT::ppcf128] = MVT::i128;
1476 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1477 }
1478 }
1479
1480 // Decide how to handle f128. If the target does not have native f128 support,
1481 // expand it to i128 and we will be generating soft float library calls.
1482 if (!isTypeLegal(MVT::f128)) {
1483 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1484 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1485 TransformToType[MVT::f128] = MVT::i128;
1486 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1487 }
1488
1489 // Decide how to handle f80. If the target does not have native f80 support,
1490 // expand it to i96 and we will be generating soft float library calls.
1491 if (!isTypeLegal(MVT::f80)) {
1492 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1493 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1494 TransformToType[MVT::f80] = MVT::i32;
1495 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1496 }
1497
1498 // Decide how to handle f64. If the target does not have native f64 support,
1499 // expand it to i64 and we will be generating soft float library calls.
1500 if (!isTypeLegal(MVT::f64)) {
1501 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1502 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1503 TransformToType[MVT::f64] = MVT::i64;
1504 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1505 }
1506
1507 // Decide how to handle f32. If the target does not have native f32 support,
1508 // expand it to i32 and we will be generating soft float library calls.
1509 if (!isTypeLegal(MVT::f32)) {
1510 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1511 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1512 TransformToType[MVT::f32] = MVT::i32;
1513 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1514 }
1515
1516 // Decide how to handle f16. If the target does not have native f16 support,
1517 // promote it to f32, because there are no f16 library calls (except for
1518 // conversions).
1519 if (!isTypeLegal(MVT::f16)) {
1520 // Allow targets to control how we legalize half.
1521 bool SoftPromoteHalfType = softPromoteHalfType();
1522 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1523
1524 if (!UseFPRegsForHalfType) {
1525 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1526 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1527 } else {
1528 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1529 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1530 }
1531 TransformToType[MVT::f16] = MVT::f32;
1532 if (SoftPromoteHalfType) {
1533 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1534 } else {
1535 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1536 }
1537 }
1538
1539 // Decide how to handle bf16. If the target does not have native bf16 support,
1540 // promote it to f32, because there are no bf16 library calls (except for
1541 // converting from f32 to bf16).
1542 if (!isTypeLegal(MVT::bf16)) {
1543 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1544 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1545 TransformToType[MVT::bf16] = MVT::f32;
1546 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1547 }
1548
1549 // Loop over all of the vector value types to see which need transformations.
1550 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1551 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1552 MVT VT = (MVT::SimpleValueType) i;
1553 if (isTypeLegal(VT))
1554 continue;
1555
1556 MVT EltVT = VT.getVectorElementType();
1558 bool IsLegalWiderType = false;
1559 bool IsScalable = VT.isScalableVector();
1560 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1561 switch (PreferredAction) {
1562 case TypePromoteInteger: {
1563 MVT::SimpleValueType EndVT = IsScalable ?
1564 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1565 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1566 // Try to promote the elements of integer vectors. If no legal
1567 // promotion was found, fall through to the widen-vector method.
1568 for (unsigned nVT = i + 1;
1569 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1570 MVT SVT = (MVT::SimpleValueType) nVT;
1571 // Promote vectors of integers to vectors with the same number
1572 // of elements, with a wider element type.
1573 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1574 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1575 TransformToType[i] = SVT;
1576 RegisterTypeForVT[i] = SVT;
1577 NumRegistersForVT[i] = 1;
1578 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1579 IsLegalWiderType = true;
1580 break;
1581 }
1582 }
1583 if (IsLegalWiderType)
1584 break;
1585 [[fallthrough]];
1586 }
1587
1588 case TypeWidenVector:
1589 if (isPowerOf2_32(EC.getKnownMinValue())) {
1590 // Try to widen the vector.
1591 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1592 MVT SVT = (MVT::SimpleValueType) nVT;
1593 if (SVT.getVectorElementType() == EltVT &&
1594 SVT.isScalableVector() == IsScalable &&
1596 EC.getKnownMinValue() &&
1597 isTypeLegal(SVT)) {
1598 TransformToType[i] = SVT;
1599 RegisterTypeForVT[i] = SVT;
1600 NumRegistersForVT[i] = 1;
1601 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1602 IsLegalWiderType = true;
1603 break;
1604 }
1605 }
1606 if (IsLegalWiderType)
1607 break;
1608 } else {
1609 // Only widen to the next power of 2 to keep consistency with EVT.
1610 MVT NVT = VT.getPow2VectorType();
1611 if (isTypeLegal(NVT)) {
1612 TransformToType[i] = NVT;
1613 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1614 RegisterTypeForVT[i] = NVT;
1615 NumRegistersForVT[i] = 1;
1616 break;
1617 }
1618 }
1619 [[fallthrough]];
1620
1621 case TypeSplitVector:
1622 case TypeScalarizeVector: {
1623 MVT IntermediateVT;
1624 MVT RegisterVT;
1625 unsigned NumIntermediates;
1626 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1627 NumIntermediates, RegisterVT, this);
1628 NumRegistersForVT[i] = NumRegisters;
1629 assert(NumRegistersForVT[i] == NumRegisters &&
1630 "NumRegistersForVT size cannot represent NumRegisters!");
1631 RegisterTypeForVT[i] = RegisterVT;
1632
1633 MVT NVT = VT.getPow2VectorType();
1634 if (NVT == VT) {
1635 // Type is already a power of 2. The default action is to split.
1636 TransformToType[i] = MVT::Other;
1637 if (PreferredAction == TypeScalarizeVector)
1638 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1639 else if (PreferredAction == TypeSplitVector)
1640 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1641 else if (EC.getKnownMinValue() > 1)
1642 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1643 else
1644 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1647 } else {
1648 TransformToType[i] = NVT;
1649 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1650 }
1651 break;
1652 }
1653 default:
1654 llvm_unreachable("Unknown vector legalization action!");
1655 }
1656 }
1657
1658 // Determine the 'representative' register class for each value type.
1659 // An representative register class is the largest (meaning one which is
1660 // not a sub-register class / subreg register class) legal register class for
1661 // a group of value types. For example, on i386, i8, i16, and i32
1662 // representative would be GR32; while on x86_64 it's GR64.
1663 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1664 const TargetRegisterClass* RRC;
1665 uint8_t Cost;
1667 RepRegClassForVT[i] = RRC;
1668 RepRegClassCostForVT[i] = Cost;
1669 }
1670}
1671
1673 EVT VT) const {
1674 assert(!VT.isVector() && "No default SetCC type for vectors!");
1675 return getPointerTy(DL).SimpleTy;
1676}
1677
1679 return MVT::i32; // return the default value
1680}
1681
1682/// getVectorTypeBreakdown - Vector types are broken down into some number of
1683/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1684/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1685/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1686///
1687/// This method returns the number of registers needed, and the VT for each
1688/// register. It also returns the VT and quantity of the intermediate values
1689/// before they are promoted/expanded.
1691 EVT VT, EVT &IntermediateVT,
1692 unsigned &NumIntermediates,
1693 MVT &RegisterVT) const {
1694 ElementCount EltCnt = VT.getVectorElementCount();
1695
1696 // If there is a wider vector type with the same element type as this one,
1697 // or a promoted vector type that has the same number of elements which
1698 // are wider, then we should convert to that legal vector type.
1699 // This handles things like <2 x float> -> <4 x float> and
1700 // <4 x i1> -> <4 x i32>.
1701 LegalizeTypeAction TA = getTypeAction(Context, VT);
1702 if (!EltCnt.isScalar() &&
1703 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1704 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1705 if (isTypeLegal(RegisterEVT)) {
1706 IntermediateVT = RegisterEVT;
1707 RegisterVT = RegisterEVT.getSimpleVT();
1708 NumIntermediates = 1;
1709 return 1;
1710 }
1711 }
1712
1713 // Figure out the right, legal destination reg to copy into.
1714 EVT EltTy = VT.getVectorElementType();
1715
1716 unsigned NumVectorRegs = 1;
1717
1718 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1719 // types like done elsewhere in SelectionDAG.
1720 if (EltCnt.isScalable()) {
1721 LegalizeKind LK;
1722 EVT PartVT = VT;
1723 do {
1724 // Iterate until we've found a legal (part) type to hold VT.
1725 LK = getTypeConversion(Context, PartVT);
1726 PartVT = LK.second;
1727 } while (LK.first != TypeLegal);
1728
1729 if (!PartVT.isVector()) {
1731 "Don't know how to legalize this scalable vector type");
1732 }
1733
1734 NumIntermediates =
1737 IntermediateVT = PartVT;
1738 RegisterVT = getRegisterType(Context, IntermediateVT);
1739 return NumIntermediates;
1740 }
1741
1742 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1743 // we could break down into LHS/RHS like LegalizeDAG does.
1744 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1745 NumVectorRegs = EltCnt.getKnownMinValue();
1746 EltCnt = ElementCount::getFixed(1);
1747 }
1748
1749 // Divide the input until we get to a supported size. This will always
1750 // end with a scalar if the target doesn't support vectors.
1751 while (EltCnt.getKnownMinValue() > 1 &&
1752 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1753 EltCnt = EltCnt.divideCoefficientBy(2);
1754 NumVectorRegs <<= 1;
1755 }
1756
1757 NumIntermediates = NumVectorRegs;
1758
1759 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1760 if (!isTypeLegal(NewVT))
1761 NewVT = EltTy;
1762 IntermediateVT = NewVT;
1763
1764 MVT DestVT = getRegisterType(Context, NewVT);
1765 RegisterVT = DestVT;
1766
1767 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1768 TypeSize NewVTSize = NewVT.getSizeInBits();
1769 // Convert sizes such as i33 to i64.
1771 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1772 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1773 }
1774
1775 // Otherwise, promotion or legal types use the same number of registers as
1776 // the vector decimated to the appropriate level.
1777 return NumVectorRegs;
1778}
1779
1781 uint64_t NumCases,
1783 ProfileSummaryInfo *PSI,
1784 BlockFrequencyInfo *BFI) const {
1785 // FIXME: This function check the maximum table size and density, but the
1786 // minimum size is not checked. It would be nice if the minimum size is
1787 // also combined within this function. Currently, the minimum size check is
1788 // performed in findJumpTable() in SelectionDAGBuiler and
1789 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1790 const bool OptForSize =
1791 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1792 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1793 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1794
1795 // Check whether the number of cases is small enough and
1796 // the range is dense enough for a jump table.
1797 return (OptForSize || Range <= MaxJumpTableSize) &&
1798 (NumCases * 100 >= Range * MinDensity);
1799}
1800
1802 EVT ConditionVT) const {
1803 return getRegisterType(Context, ConditionVT);
1804}
1805
1806/// Get the EVTs and ArgFlags collections that represent the legalized return
1807/// type of the given function. This does not require a DAG or a return value,
1808/// and is suitable for use before any DAGs for the function are constructed.
1809/// TODO: Move this out of TargetLowering.cpp.
1811 AttributeList attr,
1813 const TargetLowering &TLI, const DataLayout &DL) {
1815 ComputeValueTypes(DL, ReturnType, Types);
1816 unsigned NumValues = Types.size();
1817 if (NumValues == 0) return;
1818
1819 for (Type *Ty : Types) {
1820 EVT VT = TLI.getValueType(DL, Ty);
1821 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1822
1823 if (attr.hasRetAttr(Attribute::SExt))
1824 ExtendKind = ISD::SIGN_EXTEND;
1825 else if (attr.hasRetAttr(Attribute::ZExt))
1826 ExtendKind = ISD::ZERO_EXTEND;
1827
1828 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1829 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1830
1831 unsigned NumParts =
1832 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1833 MVT PartVT =
1834 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1835
1836 // 'inreg' on function refers to return value
1838 if (attr.hasRetAttr(Attribute::InReg))
1839 Flags.setInReg();
1840
1841 // Propagate extension type if any
1842 if (attr.hasRetAttr(Attribute::SExt))
1843 Flags.setSExt();
1844 else if (attr.hasRetAttr(Attribute::ZExt))
1845 Flags.setZExt();
1846
1847 for (unsigned i = 0; i < NumParts; ++i)
1848 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, Ty, 0, 0));
1849 }
1850}
1851
1853 const DataLayout &DL) const {
1854 return DL.getABITypeAlign(Ty);
1855}
1856
1858 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1859 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1860 // Check if the specified alignment is sufficient based on the data layout.
1861 // TODO: While using the data layout works in practice, a better solution
1862 // would be to implement this check directly (make this a virtual function).
1863 // For example, the ABI alignment may change based on software platform while
1864 // this function should only be affected by hardware implementation.
1865 Type *Ty = VT.getTypeForEVT(Context);
1866 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1867 // Assume that an access that meets the ABI-specified alignment is fast.
1868 if (Fast != nullptr)
1869 *Fast = 1;
1870 return true;
1871 }
1872
1873 // This is a misaligned access.
1874 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1875}
1876
1878 LLVMContext &Context, const DataLayout &DL, EVT VT,
1879 const MachineMemOperand &MMO, unsigned *Fast) const {
1880 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1881 MMO.getAlign(), MMO.getFlags(), Fast);
1882}
1883
1885 const DataLayout &DL, EVT VT,
1886 unsigned AddrSpace, Align Alignment,
1888 unsigned *Fast) const {
1889 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1890 Flags, Fast);
1891}
1892
1894 const DataLayout &DL, EVT VT,
1895 const MachineMemOperand &MMO,
1896 unsigned *Fast) const {
1897 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1898 MMO.getFlags(), Fast);
1899}
1900
1902 const DataLayout &DL, LLT Ty,
1903 const MachineMemOperand &MMO,
1904 unsigned *Fast) const {
1905 EVT VT = getApproximateEVTForLLT(Ty, Context);
1906 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1907 MMO.getFlags(), Fast);
1908}
1909
1910//===----------------------------------------------------------------------===//
1911// TargetTransformInfo Helpers
1912//===----------------------------------------------------------------------===//
1913
1915 enum InstructionOpcodes {
1916#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1917#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1918#include "llvm/IR/Instruction.def"
1919 };
1920 switch (static_cast<InstructionOpcodes>(Opcode)) {
1921 case Ret: return 0;
1922 case Br: return 0;
1923 case Switch: return 0;
1924 case IndirectBr: return 0;
1925 case Invoke: return 0;
1926 case CallBr: return 0;
1927 case Resume: return 0;
1928 case Unreachable: return 0;
1929 case CleanupRet: return 0;
1930 case CatchRet: return 0;
1931 case CatchPad: return 0;
1932 case CatchSwitch: return 0;
1933 case CleanupPad: return 0;
1934 case FNeg: return ISD::FNEG;
1935 case Add: return ISD::ADD;
1936 case FAdd: return ISD::FADD;
1937 case Sub: return ISD::SUB;
1938 case FSub: return ISD::FSUB;
1939 case Mul: return ISD::MUL;
1940 case FMul: return ISD::FMUL;
1941 case UDiv: return ISD::UDIV;
1942 case SDiv: return ISD::SDIV;
1943 case FDiv: return ISD::FDIV;
1944 case URem: return ISD::UREM;
1945 case SRem: return ISD::SREM;
1946 case FRem: return ISD::FREM;
1947 case Shl: return ISD::SHL;
1948 case LShr: return ISD::SRL;
1949 case AShr: return ISD::SRA;
1950 case And: return ISD::AND;
1951 case Or: return ISD::OR;
1952 case Xor: return ISD::XOR;
1953 case Alloca: return 0;
1954 case Load: return ISD::LOAD;
1955 case Store: return ISD::STORE;
1956 case GetElementPtr: return 0;
1957 case Fence: return 0;
1958 case AtomicCmpXchg: return 0;
1959 case AtomicRMW: return 0;
1960 case Trunc: return ISD::TRUNCATE;
1961 case ZExt: return ISD::ZERO_EXTEND;
1962 case SExt: return ISD::SIGN_EXTEND;
1963 case FPToUI: return ISD::FP_TO_UINT;
1964 case FPToSI: return ISD::FP_TO_SINT;
1965 case UIToFP: return ISD::UINT_TO_FP;
1966 case SIToFP: return ISD::SINT_TO_FP;
1967 case FPTrunc: return ISD::FP_ROUND;
1968 case FPExt: return ISD::FP_EXTEND;
1969 case PtrToAddr: return ISD::BITCAST;
1970 case PtrToInt: return ISD::BITCAST;
1971 case IntToPtr: return ISD::BITCAST;
1972 case BitCast: return ISD::BITCAST;
1973 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1974 case ICmp: return ISD::SETCC;
1975 case FCmp: return ISD::SETCC;
1976 case PHI: return 0;
1977 case Call: return 0;
1978 case Select: return ISD::SELECT;
1979 case UserOp1: return 0;
1980 case UserOp2: return 0;
1981 case VAArg: return 0;
1982 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1983 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1984 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1985 case ExtractValue: return ISD::MERGE_VALUES;
1986 case InsertValue: return ISD::MERGE_VALUES;
1987 case LandingPad: return 0;
1988 case Freeze: return ISD::FREEZE;
1989 }
1990
1991 llvm_unreachable("Unknown instruction type encountered!");
1992}
1993
1995 switch (ID) {
1996 case Intrinsic::exp:
1997 return ISD::FEXP;
1998 case Intrinsic::exp2:
1999 return ISD::FEXP2;
2000 case Intrinsic::log:
2001 return ISD::FLOG;
2002 default:
2003 return ISD::DELETED_NODE;
2004 }
2005}
2006
2007Value *
2009 bool UseTLS) const {
2010 // compiler-rt provides a variable with a magic name. Targets that do not
2011 // link with compiler-rt may also provide such a variable.
2012 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2013 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
2014 auto UnsafeStackPtr =
2015 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
2016
2017 const DataLayout &DL = M->getDataLayout();
2018 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
2019
2020 if (!UnsafeStackPtr) {
2021 auto TLSModel = UseTLS ?
2024 // The global variable is not defined yet, define it ourselves.
2025 // We use the initial-exec TLS model because we do not support the
2026 // variable living anywhere other than in the main executable.
2027 UnsafeStackPtr = new GlobalVariable(
2028 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
2029 UnsafeStackPtrVar, nullptr, TLSModel);
2030 } else {
2031 // The variable exists, check its type and attributes.
2032 //
2033 // FIXME: Move to IR verifier.
2034 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2035 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
2036 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2037 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
2038 (UseTLS ? "" : "not ") + "be thread-local");
2039 }
2040 return UnsafeStackPtr;
2041}
2042
2043Value *
2045 // FIXME: Can this triple check be replaced with SAFESTACK_POINTER_ADDRESS
2046 // being available?
2047 if (!TM.getTargetTriple().isAndroid())
2048 return getDefaultSafeStackPointerLocation(IRB, true);
2049
2050 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2051 auto *PtrTy = PointerType::getUnqual(M->getContext());
2052
2053 const char *SafestackPointerAddressName =
2054 getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
2055 if (!SafestackPointerAddressName) {
2056 M->getContext().emitError(
2057 "no libcall available for safestack pointer address");
2058 return PoisonValue::get(PtrTy);
2059 }
2060
2061 // Android provides a libc function to retrieve the address of the current
2062 // thread's unsafe stack pointer.
2063 FunctionCallee Fn =
2064 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2065 return IRB.CreateCall(Fn);
2066}
2067
2068//===----------------------------------------------------------------------===//
2069// Loop Strength Reduction hooks
2070//===----------------------------------------------------------------------===//
2071
2072/// isLegalAddressingMode - Return true if the addressing mode represented
2073/// by AM is legal for this target, for a load/store of the specified type.
2075 const AddrMode &AM, Type *Ty,
2076 unsigned AS, Instruction *I) const {
2077 // The default implementation of this implements a conservative RISCy, r+r and
2078 // r+i addr mode.
2079
2080 // Scalable offsets not supported
2081 if (AM.ScalableOffset)
2082 return false;
2083
2084 // Allows a sign-extended 16-bit immediate field.
2085 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2086 return false;
2087
2088 // No global is ever allowed as a base.
2089 if (AM.BaseGV)
2090 return false;
2091
2092 // Only support r+r,
2093 switch (AM.Scale) {
2094 case 0: // "r+i" or just "i", depending on HasBaseReg.
2095 break;
2096 case 1:
2097 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2098 return false;
2099 // Otherwise we have r+r or r+i.
2100 break;
2101 case 2:
2102 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2103 return false;
2104 // Allow 2*r as r+r.
2105 break;
2106 default: // Don't allow n * r
2107 return false;
2108 }
2109
2110 return true;
2111}
2112
2113//===----------------------------------------------------------------------===//
2114// Stack Protector
2115//===----------------------------------------------------------------------===//
2116
2117// For OpenBSD return its special guard variable. Otherwise return nullptr,
2118// so that SelectionDAG handle SSP.
2120 RTLIB::LibcallImpl GuardLocalImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2121 if (GuardLocalImpl != RTLIB::impl___guard_local)
2122 return nullptr;
2123
2124 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2125 const DataLayout &DL = M.getDataLayout();
2126 PointerType *PtrTy =
2127 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2128 GlobalVariable *G =
2129 M.getOrInsertGlobal(getLibcallImplName(GuardLocalImpl), PtrTy);
2130 G->setVisibility(GlobalValue::HiddenVisibility);
2131 return G;
2132}
2133
2134// Currently only support "standard" __stack_chk_guard.
2135// TODO: add LOAD_STACK_GUARD support.
2137 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2138 if (StackGuardImpl == RTLIB::Unsupported)
2139 return;
2140
2141 StringRef StackGuardVarName = getLibcallImplName(StackGuardImpl);
2142 M.getOrInsertGlobal(
2143 StackGuardVarName, PointerType::getUnqual(M.getContext()), [=, &M]() {
2144 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2145 false, GlobalVariable::ExternalLinkage,
2146 nullptr, StackGuardVarName);
2147
2148 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2149 if (M.getDirectAccessExternalData() &&
2150 !TM.getTargetTriple().isOSCygMing() &&
2151 !(TM.getTargetTriple().isPPC64() &&
2152 TM.getTargetTriple().isOSFreeBSD()) &&
2153 (!TM.getTargetTriple().isOSDarwin() ||
2154 TM.getRelocationModel() == Reloc::Static))
2155 GV->setDSOLocal(true);
2156
2157 return GV;
2158 });
2159}
2160
2161// Currently only support "standard" __stack_chk_guard.
2162// TODO: add LOAD_STACK_GUARD support.
2164 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2165 if (GuardVarImpl == RTLIB::Unsupported)
2166 return nullptr;
2167 return M.getNamedValue(getLibcallImplName(GuardVarImpl));
2168}
2169
2171 // MSVC CRT has a function to validate security cookie.
2172 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2173 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
2174 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2175 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2176 return nullptr;
2177}
2178
2182
2186
2187unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2188 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2189}
2190
2194
2198
2202
2204 return MinimumBitTestCmps;
2205}
2206
2208 MinimumBitTestCmps = Val;
2209}
2210
2212 if (TM.Options.LoopAlignment)
2213 return Align(TM.Options.LoopAlignment);
2214 return PrefLoopAlignment;
2215}
2216
2218 MachineBasicBlock *MBB) const {
2219 return MaxBytesForAlignment;
2220}
2221
2222//===----------------------------------------------------------------------===//
2223// Reciprocal Estimates
2224//===----------------------------------------------------------------------===//
2225
2226/// Get the reciprocal estimate attribute string for a function that will
2227/// override the target defaults.
2229 const Function &F = MF.getFunction();
2230 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2231}
2232
2233/// Construct a string for the given reciprocal operation of the given type.
2234/// This string should match the corresponding option to the front-end's
2235/// "-mrecip" flag assuming those strings have been passed through in an
2236/// attribute string. For example, "vec-divf" for a division of a vXf32.
2237static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2238 std::string Name = VT.isVector() ? "vec-" : "";
2239
2240 Name += IsSqrt ? "sqrt" : "div";
2241
2242 // TODO: Handle other float types?
2243 if (VT.getScalarType() == MVT::f64) {
2244 Name += "d";
2245 } else if (VT.getScalarType() == MVT::f16) {
2246 Name += "h";
2247 } else {
2248 assert(VT.getScalarType() == MVT::f32 &&
2249 "Unexpected FP type for reciprocal estimate");
2250 Name += "f";
2251 }
2252
2253 return Name;
2254}
2255
2256/// Return the character position and value (a single numeric character) of a
2257/// customized refinement operation in the input string if it exists. Return
2258/// false if there is no customized refinement step count.
2259static bool parseRefinementStep(StringRef In, size_t &Position,
2260 uint8_t &Value) {
2261 const char RefStepToken = ':';
2262 Position = In.find(RefStepToken);
2263 if (Position == StringRef::npos)
2264 return false;
2265
2266 StringRef RefStepString = In.substr(Position + 1);
2267 // Allow exactly one numeric character for the additional refinement
2268 // step parameter.
2269 if (RefStepString.size() == 1) {
2270 char RefStepChar = RefStepString[0];
2271 if (isDigit(RefStepChar)) {
2272 Value = RefStepChar - '0';
2273 return true;
2274 }
2275 }
2276 report_fatal_error("Invalid refinement step for -recip.");
2277}
2278
2279/// For the input attribute string, return one of the ReciprocalEstimate enum
2280/// status values (enabled, disabled, or not specified) for this operation on
2281/// the specified data type.
2282static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2283 if (Override.empty())
2285
2286 SmallVector<StringRef, 4> OverrideVector;
2287 Override.split(OverrideVector, ',');
2288 unsigned NumArgs = OverrideVector.size();
2289
2290 // Check if "all", "none", or "default" was specified.
2291 if (NumArgs == 1) {
2292 // Look for an optional setting of the number of refinement steps needed
2293 // for this type of reciprocal operation.
2294 size_t RefPos;
2295 uint8_t RefSteps;
2296 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2297 // Split the string for further processing.
2298 Override = Override.substr(0, RefPos);
2299 }
2300
2301 // All reciprocal types are enabled.
2302 if (Override == "all")
2304
2305 // All reciprocal types are disabled.
2306 if (Override == "none")
2308
2309 // Target defaults for enablement are used.
2310 if (Override == "default")
2312 }
2313
2314 // The attribute string may omit the size suffix ('f'/'d').
2315 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2316 std::string VTNameNoSize = VTName;
2317 VTNameNoSize.pop_back();
2318 static const char DisabledPrefix = '!';
2319
2320 for (StringRef RecipType : OverrideVector) {
2321 size_t RefPos;
2322 uint8_t RefSteps;
2323 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2324 RecipType = RecipType.substr(0, RefPos);
2325
2326 // Ignore the disablement token for string matching.
2327 bool IsDisabled = RecipType[0] == DisabledPrefix;
2328 if (IsDisabled)
2329 RecipType = RecipType.substr(1);
2330
2331 if (RecipType == VTName || RecipType == VTNameNoSize)
2334 }
2335
2337}
2338
2339/// For the input attribute string, return the customized refinement step count
2340/// for this operation on the specified data type. If the step count does not
2341/// exist, return the ReciprocalEstimate enum value for unspecified.
2342static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2343 if (Override.empty())
2345
2346 SmallVector<StringRef, 4> OverrideVector;
2347 Override.split(OverrideVector, ',');
2348 unsigned NumArgs = OverrideVector.size();
2349
2350 // Check if "all", "default", or "none" was specified.
2351 if (NumArgs == 1) {
2352 // Look for an optional setting of the number of refinement steps needed
2353 // for this type of reciprocal operation.
2354 size_t RefPos;
2355 uint8_t RefSteps;
2356 if (!parseRefinementStep(Override, RefPos, RefSteps))
2358
2359 // Split the string for further processing.
2360 Override = Override.substr(0, RefPos);
2361 assert(Override != "none" &&
2362 "Disabled reciprocals, but specifed refinement steps?");
2363
2364 // If this is a general override, return the specified number of steps.
2365 if (Override == "all" || Override == "default")
2366 return RefSteps;
2367 }
2368
2369 // The attribute string may omit the size suffix ('f'/'d').
2370 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2371 std::string VTNameNoSize = VTName;
2372 VTNameNoSize.pop_back();
2373
2374 for (StringRef RecipType : OverrideVector) {
2375 size_t RefPos;
2376 uint8_t RefSteps;
2377 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2378 continue;
2379
2380 RecipType = RecipType.substr(0, RefPos);
2381 if (RecipType == VTName || RecipType == VTNameNoSize)
2382 return RefSteps;
2383 }
2384
2386}
2387
2392
2397
2402
2407
2409 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2410 const MachineMemOperand &MMO) const {
2411 // Single-element vectors are scalarized, so we should generally avoid having
2412 // any memory operations on such types, as they would get scalarized too.
2413 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2414 BitcastVT.getVectorNumElements() == 1)
2415 return false;
2416
2417 // Don't do if we could do an indexed load on the original type, but not on
2418 // the new one.
2419 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2420 return true;
2421
2422 MVT LoadMVT = LoadVT.getSimpleVT();
2423
2424 // Don't bother doing this if it's just going to be promoted again later, as
2425 // doing so might interfere with other combines.
2426 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2427 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2428 return false;
2429
2430 unsigned Fast = 0;
2431 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2432 MMO, &Fast) &&
2433 Fast;
2434}
2435
2439
2441 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2442 const TargetLibraryInfo *LibInfo) const {
2444 if (LI.isVolatile())
2446
2447 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2449
2450 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2452
2454 LI.getAlign(), DL, &LI, AC,
2455 /*DT=*/nullptr, LibInfo))
2457
2458 Flags |= getTargetMMOFlags(LI);
2459 return Flags;
2460}
2461
2464 const DataLayout &DL) const {
2466
2467 if (SI.isVolatile())
2469
2470 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2472
2473 // FIXME: Not preserving dereferenceable
2474 Flags |= getTargetMMOFlags(SI);
2475 return Flags;
2476}
2477
2480 const DataLayout &DL) const {
2482
2483 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2484 if (RMW->isVolatile())
2486 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2487 if (CmpX->isVolatile())
2489 } else
2490 llvm_unreachable("not an atomic instruction");
2491
2492 // FIXME: Not preserving dereferenceable
2493 Flags |= getTargetMMOFlags(AI);
2494 return Flags;
2495}
2496
2498 const VPIntrinsic &VPIntrin) const {
2500 Intrinsic::ID IntrinID = VPIntrin.getIntrinsicID();
2501
2502 switch (IntrinID) {
2503 default:
2504 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2505 "for it, but support must be explicitly enabled");
2506 case Intrinsic::vp_load:
2507 case Intrinsic::vp_gather:
2508 case Intrinsic::experimental_vp_strided_load:
2510 break;
2511 case Intrinsic::vp_store:
2512 case Intrinsic::vp_scatter:
2513 case Intrinsic::experimental_vp_strided_store:
2515 break;
2516 }
2517
2518 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2520
2521 Flags |= getTargetMMOFlags(VPIntrin);
2522 return Flags;
2523}
2524
2526 Instruction *Inst,
2527 AtomicOrdering Ord) const {
2528 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2529 return Builder.CreateFence(Ord);
2530 else
2531 return nullptr;
2532}
2533
2535 Instruction *Inst,
2536 AtomicOrdering Ord) const {
2537 if (isAcquireOrStronger(Ord))
2538 return Builder.CreateFence(Ord);
2539 else
2540 return nullptr;
2541}
2542
2543//===----------------------------------------------------------------------===//
2544// GlobalISel Hooks
2545//===----------------------------------------------------------------------===//
2546
2548 const TargetTransformInfo *TTI) const {
2549 auto &MF = *MI.getMF();
2550 auto &MRI = MF.getRegInfo();
2551 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2552 // this helper function computes the maximum number of uses we should consider
2553 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2554 // break even in terms of code size when the original MI has 2 users vs
2555 // choosing to potentially spill. Any more than 2 users we we have a net code
2556 // size increase. This doesn't take into account register pressure though.
2557 auto maxUses = [](unsigned RematCost) {
2558 // A cost of 1 means remats are basically free.
2559 if (RematCost == 1)
2560 return std::numeric_limits<unsigned>::max();
2561 if (RematCost == 2)
2562 return 2U;
2563
2564 // Remat is too expensive, only sink if there's one user.
2565 if (RematCost > 2)
2566 return 1U;
2567 llvm_unreachable("Unexpected remat cost");
2568 };
2569
2570 switch (MI.getOpcode()) {
2571 default:
2572 return false;
2573 // Constants-like instructions should be close to their users.
2574 // We don't want long live-ranges for them.
2575 case TargetOpcode::G_CONSTANT:
2576 case TargetOpcode::G_FCONSTANT:
2577 case TargetOpcode::G_FRAME_INDEX:
2578 case TargetOpcode::G_INTTOPTR:
2579 return true;
2580 case TargetOpcode::G_GLOBAL_VALUE: {
2581 unsigned RematCost = TTI->getGISelRematGlobalCost();
2582 Register Reg = MI.getOperand(0).getReg();
2583 unsigned MaxUses = maxUses(RematCost);
2584 if (MaxUses == UINT_MAX)
2585 return true; // Remats are "free" so always localize.
2586 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2587 }
2588 }
2589}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
#define LCALL5(A)
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition BitVector.h:723
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
static constexpr size_t npos
Definition StringRef.h:57
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
constexpr LeafTy coefficientNextPowerOf2() const
Definition TypeSize.h:260
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:861
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:859
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:863
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
InstructionCost Cost
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition Sequence.h:337
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition Sequence.h:109
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
TargetTransformInfo TTI
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition ValueTypes.h:477
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition ValueTypes.h:419
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
Matching combinators.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...