69 "jump-is-expensive",
cl::init(
false),
70 cl::desc(
"Do not create extra branches to split comparison logic."),
75 cl::desc(
"Set minimum number of entries to use a jump table."));
79 cl::desc(
"Set maximum size of jump tables."));
84 cl::desc(
"Minimum density for building a jump table in "
85 "a normal function"));
90 cl::desc(
"Minimum density for building a jump table in "
91 "an optsize function"));
95 cl::desc(
"Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
103 cl::desc(
"Don't mutate strict-float node to a legalize node"),
108 return RTLIB::SHL_I16;
110 return RTLIB::SHL_I32;
112 return RTLIB::SHL_I64;
114 return RTLIB::SHL_I128;
116 return RTLIB::UNKNOWN_LIBCALL;
121 return RTLIB::SRL_I16;
123 return RTLIB::SRL_I32;
125 return RTLIB::SRL_I64;
127 return RTLIB::SRL_I128;
129 return RTLIB::UNKNOWN_LIBCALL;
134 return RTLIB::SRA_I16;
136 return RTLIB::SRA_I32;
138 return RTLIB::SRA_I64;
140 return RTLIB::SRA_I128;
142 return RTLIB::UNKNOWN_LIBCALL;
147 return RTLIB::MUL_I16;
149 return RTLIB::MUL_I32;
151 return RTLIB::MUL_I64;
153 return RTLIB::MUL_I128;
154 return RTLIB::UNKNOWN_LIBCALL;
159 return RTLIB::MULO_I32;
161 return RTLIB::MULO_I64;
163 return RTLIB::MULO_I128;
164 return RTLIB::UNKNOWN_LIBCALL;
169 return RTLIB::SDIV_I16;
171 return RTLIB::SDIV_I32;
173 return RTLIB::SDIV_I64;
175 return RTLIB::SDIV_I128;
176 return RTLIB::UNKNOWN_LIBCALL;
181 return RTLIB::UDIV_I16;
183 return RTLIB::UDIV_I32;
185 return RTLIB::UDIV_I64;
187 return RTLIB::UDIV_I128;
188 return RTLIB::UNKNOWN_LIBCALL;
193 return RTLIB::SREM_I16;
195 return RTLIB::SREM_I32;
197 return RTLIB::SREM_I64;
199 return RTLIB::SREM_I128;
200 return RTLIB::UNKNOWN_LIBCALL;
205 return RTLIB::UREM_I16;
207 return RTLIB::UREM_I32;
209 return RTLIB::UREM_I64;
211 return RTLIB::UREM_I128;
212 return RTLIB::UNKNOWN_LIBCALL;
217 return RTLIB::CTPOP_I32;
219 return RTLIB::CTPOP_I64;
221 return RTLIB::CTPOP_I128;
222 return RTLIB::UNKNOWN_LIBCALL;
228 RTLIB::Libcall Call_F32,
229 RTLIB::Libcall Call_F64,
230 RTLIB::Libcall Call_F80,
231 RTLIB::Libcall Call_F128,
232 RTLIB::Libcall Call_PPCF128) {
234 VT == MVT::f32 ? Call_F32 :
235 VT == MVT::f64 ? Call_F64 :
236 VT == MVT::f80 ? Call_F80 :
237 VT == MVT::f128 ? Call_F128 :
238 VT == MVT::ppcf128 ? Call_PPCF128 :
239 RTLIB::UNKNOWN_LIBCALL;
245 if (OpVT == MVT::f16) {
246 if (RetVT == MVT::f32)
247 return FPEXT_F16_F32;
248 if (RetVT == MVT::f64)
249 return FPEXT_F16_F64;
250 if (RetVT == MVT::f80)
251 return FPEXT_F16_F80;
252 if (RetVT == MVT::f128)
253 return FPEXT_F16_F128;
254 }
else if (OpVT == MVT::f32) {
255 if (RetVT == MVT::f64)
256 return FPEXT_F32_F64;
257 if (RetVT == MVT::f128)
258 return FPEXT_F32_F128;
259 if (RetVT == MVT::ppcf128)
260 return FPEXT_F32_PPCF128;
261 }
else if (OpVT == MVT::f64) {
262 if (RetVT == MVT::f128)
263 return FPEXT_F64_F128;
264 else if (RetVT == MVT::ppcf128)
265 return FPEXT_F64_PPCF128;
266 }
else if (OpVT == MVT::f80) {
267 if (RetVT == MVT::f128)
268 return FPEXT_F80_F128;
269 }
else if (OpVT == MVT::bf16) {
270 if (RetVT == MVT::f32)
271 return FPEXT_BF16_F32;
274 return UNKNOWN_LIBCALL;
280 if (RetVT == MVT::f16) {
281 if (OpVT == MVT::f32)
282 return FPROUND_F32_F16;
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F16;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F16;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F16;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F16;
291 }
else if (RetVT == MVT::bf16) {
292 if (OpVT == MVT::f32)
293 return FPROUND_F32_BF16;
294 if (OpVT == MVT::f64)
295 return FPROUND_F64_BF16;
296 if (OpVT == MVT::f80)
297 return FPROUND_F80_BF16;
298 if (OpVT == MVT::f128)
299 return FPROUND_F128_BF16;
300 }
else if (RetVT == MVT::f32) {
301 if (OpVT == MVT::f64)
302 return FPROUND_F64_F32;
303 if (OpVT == MVT::f80)
304 return FPROUND_F80_F32;
305 if (OpVT == MVT::f128)
306 return FPROUND_F128_F32;
307 if (OpVT == MVT::ppcf128)
308 return FPROUND_PPCF128_F32;
309 }
else if (RetVT == MVT::f64) {
310 if (OpVT == MVT::f80)
311 return FPROUND_F80_F64;
312 if (OpVT == MVT::f128)
313 return FPROUND_F128_F64;
314 if (OpVT == MVT::ppcf128)
315 return FPROUND_PPCF128_F64;
316 }
else if (RetVT == MVT::f80) {
317 if (OpVT == MVT::f128)
318 return FPROUND_F128_F80;
321 return UNKNOWN_LIBCALL;
327 if (OpVT == MVT::f16) {
328 if (RetVT == MVT::i32)
329 return FPTOSINT_F16_I32;
330 if (RetVT == MVT::i64)
331 return FPTOSINT_F16_I64;
332 if (RetVT == MVT::i128)
333 return FPTOSINT_F16_I128;
334 }
else if (OpVT == MVT::f32) {
335 if (RetVT == MVT::i32)
336 return FPTOSINT_F32_I32;
337 if (RetVT == MVT::i64)
338 return FPTOSINT_F32_I64;
339 if (RetVT == MVT::i128)
340 return FPTOSINT_F32_I128;
341 }
else if (OpVT == MVT::f64) {
342 if (RetVT == MVT::i32)
343 return FPTOSINT_F64_I32;
344 if (RetVT == MVT::i64)
345 return FPTOSINT_F64_I64;
346 if (RetVT == MVT::i128)
347 return FPTOSINT_F64_I128;
348 }
else if (OpVT == MVT::f80) {
349 if (RetVT == MVT::i32)
350 return FPTOSINT_F80_I32;
351 if (RetVT == MVT::i64)
352 return FPTOSINT_F80_I64;
353 if (RetVT == MVT::i128)
354 return FPTOSINT_F80_I128;
355 }
else if (OpVT == MVT::f128) {
356 if (RetVT == MVT::i32)
357 return FPTOSINT_F128_I32;
358 if (RetVT == MVT::i64)
359 return FPTOSINT_F128_I64;
360 if (RetVT == MVT::i128)
361 return FPTOSINT_F128_I128;
362 }
else if (OpVT == MVT::ppcf128) {
363 if (RetVT == MVT::i32)
364 return FPTOSINT_PPCF128_I32;
365 if (RetVT == MVT::i64)
366 return FPTOSINT_PPCF128_I64;
367 if (RetVT == MVT::i128)
368 return FPTOSINT_PPCF128_I128;
370 return UNKNOWN_LIBCALL;
376 if (OpVT == MVT::f16) {
377 if (RetVT == MVT::i32)
378 return FPTOUINT_F16_I32;
379 if (RetVT == MVT::i64)
380 return FPTOUINT_F16_I64;
381 if (RetVT == MVT::i128)
382 return FPTOUINT_F16_I128;
383 }
else if (OpVT == MVT::f32) {
384 if (RetVT == MVT::i32)
385 return FPTOUINT_F32_I32;
386 if (RetVT == MVT::i64)
387 return FPTOUINT_F32_I64;
388 if (RetVT == MVT::i128)
389 return FPTOUINT_F32_I128;
390 }
else if (OpVT == MVT::f64) {
391 if (RetVT == MVT::i32)
392 return FPTOUINT_F64_I32;
393 if (RetVT == MVT::i64)
394 return FPTOUINT_F64_I64;
395 if (RetVT == MVT::i128)
396 return FPTOUINT_F64_I128;
397 }
else if (OpVT == MVT::f80) {
398 if (RetVT == MVT::i32)
399 return FPTOUINT_F80_I32;
400 if (RetVT == MVT::i64)
401 return FPTOUINT_F80_I64;
402 if (RetVT == MVT::i128)
403 return FPTOUINT_F80_I128;
404 }
else if (OpVT == MVT::f128) {
405 if (RetVT == MVT::i32)
406 return FPTOUINT_F128_I32;
407 if (RetVT == MVT::i64)
408 return FPTOUINT_F128_I64;
409 if (RetVT == MVT::i128)
410 return FPTOUINT_F128_I128;
411 }
else if (OpVT == MVT::ppcf128) {
412 if (RetVT == MVT::i32)
413 return FPTOUINT_PPCF128_I32;
414 if (RetVT == MVT::i64)
415 return FPTOUINT_PPCF128_I64;
416 if (RetVT == MVT::i128)
417 return FPTOUINT_PPCF128_I128;
419 return UNKNOWN_LIBCALL;
425 if (OpVT == MVT::i32) {
426 if (RetVT == MVT::f16)
427 return SINTTOFP_I32_F16;
428 if (RetVT == MVT::f32)
429 return SINTTOFP_I32_F32;
430 if (RetVT == MVT::f64)
431 return SINTTOFP_I32_F64;
432 if (RetVT == MVT::f80)
433 return SINTTOFP_I32_F80;
434 if (RetVT == MVT::f128)
435 return SINTTOFP_I32_F128;
436 if (RetVT == MVT::ppcf128)
437 return SINTTOFP_I32_PPCF128;
438 }
else if (OpVT == MVT::i64) {
439 if (RetVT == MVT::bf16)
440 return SINTTOFP_I64_BF16;
441 if (RetVT == MVT::f16)
442 return SINTTOFP_I64_F16;
443 if (RetVT == MVT::f32)
444 return SINTTOFP_I64_F32;
445 if (RetVT == MVT::f64)
446 return SINTTOFP_I64_F64;
447 if (RetVT == MVT::f80)
448 return SINTTOFP_I64_F80;
449 if (RetVT == MVT::f128)
450 return SINTTOFP_I64_F128;
451 if (RetVT == MVT::ppcf128)
452 return SINTTOFP_I64_PPCF128;
453 }
else if (OpVT == MVT::i128) {
454 if (RetVT == MVT::f16)
455 return SINTTOFP_I128_F16;
456 if (RetVT == MVT::f32)
457 return SINTTOFP_I128_F32;
458 if (RetVT == MVT::f64)
459 return SINTTOFP_I128_F64;
460 if (RetVT == MVT::f80)
461 return SINTTOFP_I128_F80;
462 if (RetVT == MVT::f128)
463 return SINTTOFP_I128_F128;
464 if (RetVT == MVT::ppcf128)
465 return SINTTOFP_I128_PPCF128;
467 return UNKNOWN_LIBCALL;
473 if (OpVT == MVT::i32) {
474 if (RetVT == MVT::f16)
475 return UINTTOFP_I32_F16;
476 if (RetVT == MVT::f32)
477 return UINTTOFP_I32_F32;
478 if (RetVT == MVT::f64)
479 return UINTTOFP_I32_F64;
480 if (RetVT == MVT::f80)
481 return UINTTOFP_I32_F80;
482 if (RetVT == MVT::f128)
483 return UINTTOFP_I32_F128;
484 if (RetVT == MVT::ppcf128)
485 return UINTTOFP_I32_PPCF128;
486 }
else if (OpVT == MVT::i64) {
487 if (RetVT == MVT::bf16)
488 return UINTTOFP_I64_BF16;
489 if (RetVT == MVT::f16)
490 return UINTTOFP_I64_F16;
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I64_F32;
493 if (RetVT == MVT::f64)
494 return UINTTOFP_I64_F64;
495 if (RetVT == MVT::f80)
496 return UINTTOFP_I64_F80;
497 if (RetVT == MVT::f128)
498 return UINTTOFP_I64_F128;
499 if (RetVT == MVT::ppcf128)
500 return UINTTOFP_I64_PPCF128;
501 }
else if (OpVT == MVT::i128) {
502 if (RetVT == MVT::f16)
503 return UINTTOFP_I128_F16;
504 if (RetVT == MVT::f32)
505 return UINTTOFP_I128_F32;
506 if (RetVT == MVT::f64)
507 return UINTTOFP_I128_F64;
508 if (RetVT == MVT::f80)
509 return UINTTOFP_I128_F80;
510 if (RetVT == MVT::f128)
511 return UINTTOFP_I128_F128;
512 if (RetVT == MVT::ppcf128)
513 return UINTTOFP_I128_PPCF128;
515 return UNKNOWN_LIBCALL;
519 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
524 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
528 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
533 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
538 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
542 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
549 return RTLIB::UNKNOWN_LIBCALL;
552 return RTLIB::SINCOS_V4F32;
554 return RTLIB::SINCOS_V2F64;
556 return RTLIB::SINCOS_NXV4F32;
558 return RTLIB::SINCOS_NXV2F64;
560 return RTLIB::UNKNOWN_LIBCALL;
564 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
572 return RTLIB::UNKNOWN_LIBCALL;
575 return RTLIB::SINCOSPI_V4F32;
577 return RTLIB::SINCOSPI_V2F64;
579 return RTLIB::SINCOSPI_NXV4F32;
581 return RTLIB::SINCOSPI_NXV2F64;
583 return RTLIB::UNKNOWN_LIBCALL;
587 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
588 SINCOSPI_F128, SINCOSPI_PPCF128);
592 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
593 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
600 return RTLIB::UNKNOWN_LIBCALL;
603 return RTLIB::REM_V4F32;
605 return RTLIB::REM_V2F64;
607 return RTLIB::REM_NXV4F32;
609 return RTLIB::REM_NXV2F64;
611 return RTLIB::UNKNOWN_LIBCALL;
615 return getFPLibCall(VT, REM_F32, REM_F64, REM_F80, REM_F128, REM_PPCF128);
622 return RTLIB::UNKNOWN_LIBCALL;
625 return RTLIB::MODF_V4F32;
627 return RTLIB::MODF_V2F64;
629 return RTLIB::MODF_NXV4F32;
631 return RTLIB::MODF_NXV2F64;
633 return RTLIB::UNKNOWN_LIBCALL;
637 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
643 return RTLIB::LROUND_F32;
645 return RTLIB::LROUND_F64;
647 return RTLIB::LROUND_F80;
649 return RTLIB::LROUND_F128;
650 if (VT == MVT::ppcf128)
651 return RTLIB::LROUND_PPCF128;
653 return RTLIB::UNKNOWN_LIBCALL;
658 return RTLIB::LLROUND_F32;
660 return RTLIB::LLROUND_F64;
662 return RTLIB::LLROUND_F80;
664 return RTLIB::LLROUND_F128;
665 if (VT == MVT::ppcf128)
666 return RTLIB::LLROUND_PPCF128;
668 return RTLIB::UNKNOWN_LIBCALL;
673 return RTLIB::LRINT_F32;
675 return RTLIB::LRINT_F64;
677 return RTLIB::LRINT_F80;
679 return RTLIB::LRINT_F128;
680 if (VT == MVT::ppcf128)
681 return RTLIB::LRINT_PPCF128;
682 return RTLIB::UNKNOWN_LIBCALL;
687 return RTLIB::LLRINT_F32;
689 return RTLIB::LLRINT_F64;
691 return RTLIB::LLRINT_F80;
693 return RTLIB::LLRINT_F128;
694 if (VT == MVT::ppcf128)
695 return RTLIB::LLRINT_PPCF128;
696 return RTLIB::UNKNOWN_LIBCALL;
702 unsigned ModeN, ModelN;
720 return RTLIB::UNKNOWN_LIBCALL;
738 return UNKNOWN_LIBCALL;
741 return LC[ModeN][ModelN];
747 return UNKNOWN_LIBCALL;
750#define LCALLS(A, B) \
751 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
753 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
755 case ISD::ATOMIC_CMP_SWAP: {
756 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_CAS)};
759 case ISD::ATOMIC_SWAP: {
760 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_SWP)};
763 case ISD::ATOMIC_LOAD_ADD: {
764 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDADD)};
767 case ISD::ATOMIC_LOAD_OR: {
768 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDSET)};
771 case ISD::ATOMIC_LOAD_CLR: {
772 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDCLR)};
775 case ISD::ATOMIC_LOAD_XOR: {
776 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDEOR)};
780 return UNKNOWN_LIBCALL;
787#define OP_TO_LIBCALL(Name, Enum) \
789 switch (VT.SimpleTy) { \
791 return UNKNOWN_LIBCALL; \
806 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
821 return UNKNOWN_LIBCALL;
825 switch (ElementSize) {
827 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
829 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
831 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
833 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
835 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
837 return UNKNOWN_LIBCALL;
842 switch (ElementSize) {
844 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
846 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
848 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
850 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
852 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
854 return UNKNOWN_LIBCALL;
859 switch (ElementSize) {
861 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
863 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
865 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
867 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
869 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
871 return UNKNOWN_LIBCALL;
876 RTLIB::LibcallImpl Impl)
const {
878 case RTLIB::impl___aeabi_dcmpeq__une:
879 case RTLIB::impl___aeabi_fcmpeq__une:
882 case RTLIB::impl___aeabi_dcmpeq__oeq:
883 case RTLIB::impl___aeabi_fcmpeq__oeq:
886 case RTLIB::impl___aeabi_dcmplt:
887 case RTLIB::impl___aeabi_dcmple:
888 case RTLIB::impl___aeabi_dcmpge:
889 case RTLIB::impl___aeabi_dcmpgt:
890 case RTLIB::impl___aeabi_dcmpun:
891 case RTLIB::impl___aeabi_fcmplt:
892 case RTLIB::impl___aeabi_fcmple:
893 case RTLIB::impl___aeabi_fcmpge:
894 case RTLIB::impl___aeabi_fcmpgt:
912 case RTLIB::OEQ_F128:
913 case RTLIB::OEQ_PPCF128:
917 case RTLIB::UNE_F128:
918 case RTLIB::UNE_PPCF128:
922 case RTLIB::OGE_F128:
923 case RTLIB::OGE_PPCF128:
927 case RTLIB::OLT_F128:
928 case RTLIB::OLT_PPCF128:
932 case RTLIB::OLE_F128:
933 case RTLIB::OLE_PPCF128:
937 case RTLIB::OGT_F128:
938 case RTLIB::OGT_PPCF128:
943 case RTLIB::UO_PPCF128:
954 RuntimeLibcallInfo(TM.getTargetTriple(), TM.
Options.ExceptionModel,
957 Libcalls(RuntimeLibcallInfo, STI) {
966 HasExtractBitsInsn =
false;
970 StackPointerRegisterToSaveRestore = 0;
977 MaxBytesForAlignment = 0;
978 MaxAtomicSizeInBitsSupported = 0;
982 MaxDivRemBitWidthSupported = 128;
986 MinCmpXchgSizeInBits = 0;
987 SupportsUnalignedAtomics =
false;
998 memset(OpActions, 0,
sizeof(OpActions));
999 memset(LoadExtActions, 0,
sizeof(LoadExtActions));
1000 memset(TruncStoreActions, 0,
sizeof(TruncStoreActions));
1001 memset(IndexedModeActions, 0,
sizeof(IndexedModeActions));
1002 memset(CondCodeActions, 0,
sizeof(CondCodeActions));
1016 for (
MVT VT : {MVT::i2, MVT::i4})
1017 OpActions[(
unsigned)VT.SimpleTy][NT] =
Expand;
1020 for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1028 for (
MVT VT : {MVT::i2, MVT::i4}) {
1060 ISD::FMINNUM, ISD::FMAXNUM,
1061 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
1062 ISD::FMINIMUM, ISD::FMAXIMUM,
1063 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
1077 ISD::FLOG, ISD::FLOG2,
1078 ISD::FLOG10, ISD::FEXP,
1079 ISD::FEXP2, ISD::FEXP10,
1080 ISD::FFLOOR, ISD::FNEARBYINT,
1081 ISD::FCEIL, ISD::FRINT,
1082 ISD::FTRUNC, ISD::FROUNDEVEN,
1083 ISD::FTAN, ISD::FACOS,
1084 ISD::FASIN, ISD::FATAN,
1085 ISD::FCOSH, ISD::FSINH,
1086 ISD::FTANH, ISD::FATAN2,
1128 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
1137 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
1141#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1142 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1143#include "llvm/IR/ConstrainedOps.def"
1150 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
1151 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
1152 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
1153 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
1154 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
1155 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
1165#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
1166 setOperationAction(ISD::SDOPC, VT, Expand);
1167#include "llvm/IR/VPIntrinsics.def"
1196 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1201 {MVT::f16, MVT::f32, MVT::f64, MVT::f128},
Expand);
1205 {MVT::f32, MVT::f64, MVT::f128},
LibCall);
1208 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
1222 for (
MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1249 "ShiftVT is still too small!");
1267 unsigned DestAS)
const {
1268 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1276 if (EC.isScalable())
1292 JumpIsExpensive = isExpensive;
1308 "Promote may not follow Expand or Promote");
1311 return LegalizeKind(LA,
EVT(SVT).getHalfNumVectorElementsVT(Context));
1324 assert(NVT != VT &&
"Unable to round integer VT");
1373 EVT OldEltVT = EltVT;
1390 if (NVT !=
MVT() && ValueTypeActions.getTypeAction(NVT) ==
TypeLegal)
1412 if (LargerVector ==
MVT())
1416 if (ValueTypeActions.getTypeAction(LargerVector) ==
TypeLegal)
1436 unsigned &NumIntermediates,
1443 unsigned NumVectorRegs = 1;
1449 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1455 NumVectorRegs = EC.getKnownMinValue();
1462 while (EC.getKnownMinValue() > 1 &&
1464 EC = EC.divideCoefficientBy(2);
1465 NumVectorRegs <<= 1;
1468 NumIntermediates = NumVectorRegs;
1473 IntermediateVT = NewVT;
1481 RegisterVT = DestVT;
1482 if (
EVT(DestVT).bitsLT(NewVT))
1487 return NumVectorRegs;
1494 for (
const auto *
I =
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
1530 for (
unsigned i = 0; i <
MI->getNumOperands(); ++i) {
1537 unsigned TiedTo = i;
1539 TiedTo =
MI->findTiedOperandIdx(i);
1556 assert(
MI->getOpcode() == TargetOpcode::STATEPOINT &&
"sanity");
1557 MIB.
addImm(StackMaps::IndirectMemRefOp);
1564 MIB.
addImm(StackMaps::DirectMemRefOp);
1569 assert(MIB->
mayLoad() &&
"Folded a stackmap use to a non-load!");
1576 if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
1585 MI->eraseFromParent();
1595std::pair<const TargetRegisterClass *, uint8_t>
1600 return std::make_pair(RC, 0);
1609 for (
unsigned i : SuperRegRC.
set_bits()) {
1612 if (
TRI->getSpillSize(*SuperRC) <=
TRI->getSpillSize(*BestRC))
1618 return std::make_pair(BestRC, 1);
1627 NumRegistersForVT[i] = 1;
1631 NumRegistersForVT[MVT::isVoid] = 0;
1634 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1635 for (; RegClassForVT[LargestIntReg] ==
nullptr; --LargestIntReg)
1636 assert(LargestIntReg != MVT::i1 &&
"No integer registers defined!");
1640 for (
unsigned ExpandedReg = LargestIntReg + 1;
1641 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1642 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1651 unsigned LegalIntReg = LargestIntReg;
1652 for (
unsigned IntReg = LargestIntReg - 1;
1653 IntReg >= (
unsigned)MVT::i1; --IntReg) {
1656 LegalIntReg = IntReg;
1658 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1667 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1668 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1669 TransformToType[MVT::ppcf128] = MVT::f64;
1672 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1673 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1674 TransformToType[MVT::ppcf128] = MVT::i128;
1682 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1683 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1684 TransformToType[MVT::f128] = MVT::i128;
1691 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1692 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1693 TransformToType[MVT::f80] = MVT::i32;
1700 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1701 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1702 TransformToType[MVT::f64] = MVT::i64;
1709 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1710 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1711 TransformToType[MVT::f32] = MVT::i32;
1723 if (!UseFPRegsForHalfType) {
1724 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1725 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1727 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1728 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1730 TransformToType[MVT::f16] = MVT::f32;
1731 if (SoftPromoteHalfType) {
1742 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1743 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1744 TransformToType[MVT::bf16] = MVT::f32;
1749 for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1750 i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1757 bool IsLegalWiderType =
false;
1760 switch (PreferredAction) {
1763 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1764 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1767 for (
unsigned nVT = i + 1;
1774 TransformToType[i] = SVT;
1775 RegisterTypeForVT[i] = SVT;
1776 NumRegistersForVT[i] = 1;
1778 IsLegalWiderType =
true;
1782 if (IsLegalWiderType)
1790 for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1795 EC.getKnownMinValue() &&
1797 TransformToType[i] = SVT;
1798 RegisterTypeForVT[i] = SVT;
1799 NumRegistersForVT[i] = 1;
1801 IsLegalWiderType =
true;
1805 if (IsLegalWiderType)
1811 TransformToType[i] = NVT;
1813 RegisterTypeForVT[i] = NVT;
1814 NumRegistersForVT[i] = 1;
1824 unsigned NumIntermediates;
1826 NumIntermediates, RegisterVT,
this);
1827 NumRegistersForVT[i] = NumRegisters;
1828 assert(NumRegistersForVT[i] == NumRegisters &&
1829 "NumRegistersForVT size cannot represent NumRegisters!");
1830 RegisterTypeForVT[i] = RegisterVT;
1835 TransformToType[i] = MVT::Other;
1840 else if (EC.getKnownMinValue() > 1)
1843 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1847 TransformToType[i] = NVT;
1866 RepRegClassForVT[i] = RRC;
1867 RepRegClassCostForVT[i] =
Cost;
1890 EVT VT,
EVT &IntermediateVT,
1891 unsigned &NumIntermediates,
1892 MVT &RegisterVT)
const {
1905 IntermediateVT = RegisterEVT;
1907 NumIntermediates = 1;
1915 unsigned NumVectorRegs = 1;
1930 "Don't know how to legalize this scalable vector type");
1936 IntermediateVT = PartVT;
1938 return NumIntermediates;
1953 NumVectorRegs <<= 1;
1956 NumIntermediates = NumVectorRegs;
1961 IntermediateVT = NewVT;
1964 RegisterVT = DestVT;
1966 if (
EVT(DestVT).bitsLT(NewVT)) {
1976 return NumVectorRegs;
1989 const bool OptForSize =
1996 return (OptForSize ||
Range <= MaxJumpTableSize) &&
1997 (NumCases * 100 >=
Range * MinDensity);
2001 EVT ConditionVT)
const {
2015 unsigned NumValues = Types.size();
2016 if (NumValues == 0)
return;
2018 for (
Type *Ty : Types) {
2022 if (attr.hasRetAttr(Attribute::SExt))
2024 else if (attr.hasRetAttr(Attribute::ZExt))
2037 if (attr.hasRetAttr(Attribute::InReg))
2041 if (attr.hasRetAttr(Attribute::SExt))
2043 else if (attr.hasRetAttr(Attribute::ZExt))
2046 for (
unsigned i = 0; i < NumParts; ++i)
2053 return DL.getABITypeAlign(Ty);
2065 if (VT.
isZeroSized() || Alignment >=
DL.getABITypeAlign(Ty)) {
2067 if (
Fast !=
nullptr)
2085 unsigned AddrSpace,
Align Alignment,
2087 unsigned *
Fast)
const {
2095 unsigned *
Fast)
const {
2103 unsigned *
Fast)
const {
2114 enum InstructionOpcodes {
2115#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2116#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2117#include "llvm/IR/Instruction.def"
2119 switch (
static_cast<InstructionOpcodes
>(Opcode)) {
2122 case Switch:
return 0;
2123 case IndirectBr:
return 0;
2124 case Invoke:
return 0;
2125 case CallBr:
return 0;
2126 case Resume:
return 0;
2127 case Unreachable:
return 0;
2128 case CleanupRet:
return 0;
2129 case CatchRet:
return 0;
2130 case CatchPad:
return 0;
2131 case CatchSwitch:
return 0;
2132 case CleanupPad:
return 0;
2133 case FNeg:
return ISD::FNEG;
2152 case Alloca:
return 0;
2153 case Load:
return ISD::LOAD;
2154 case Store:
return ISD::STORE;
2155 case GetElementPtr:
return 0;
2156 case Fence:
return 0;
2157 case AtomicCmpXchg:
return 0;
2158 case AtomicRMW:
return 0;
2167 case FPExt:
return ISD::FP_EXTEND;
2168 case PtrToAddr:
return ISD::BITCAST;
2169 case PtrToInt:
return ISD::BITCAST;
2170 case IntToPtr:
return ISD::BITCAST;
2171 case BitCast:
return ISD::BITCAST;
2172 case AddrSpaceCast:
return ISD::ADDRSPACECAST;
2176 case Call:
return 0;
2178 case UserOp1:
return 0;
2179 case UserOp2:
return 0;
2180 case VAArg:
return 0;
2186 case LandingPad:
return 0;
2195 case Intrinsic::exp:
2197 case Intrinsic::exp2:
2199 case Intrinsic::log:
2208 bool UseTLS)
const {
2212 const char *UnsafeStackPtrVar =
"__safestack_unsafe_stack_ptr";
2213 auto UnsafeStackPtr =
2217 PointerType *StackPtrTy =
DL.getAllocaPtrType(M->getContext());
2219 if (!UnsafeStackPtr) {
2228 UnsafeStackPtrVar,
nullptr,
TLSModel);
2233 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2235 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2237 (UseTLS ?
"" :
"not ") +
"be thread-local");
2239 return UnsafeStackPtr;
2246 if (!TM.getTargetTriple().isAndroid())
2252 const char *SafestackPointerAddressName =
2254 if (!SafestackPointerAddressName) {
2255 M->getContext().emitError(
2256 "no libcall available for safestack pointer address");
2263 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2319 RTLIB::LibcallImpl GuardLocalImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2320 if (GuardLocalImpl != RTLIB::impl___guard_local)
2336 RTLIB::LibcallImpl StackGuardImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2337 if (StackGuardImpl == RTLIB::Unsupported)
2341 M.getOrInsertGlobal(
2343 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2344 false, GlobalVariable::ExternalLinkage,
2345 nullptr, StackGuardVarName);
2348 if (M.getDirectAccessExternalData() &&
2349 !TM.getTargetTriple().isOSCygMing() &&
2350 !(TM.getTargetTriple().isPPC64() &&
2351 TM.getTargetTriple().isOSFreeBSD()) &&
2352 (!TM.getTargetTriple().isOSDarwin() ||
2353 TM.getRelocationModel() == Reloc::Static))
2354 GV->setDSOLocal(true);
2363 RTLIB::LibcallImpl GuardVarImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2364 if (GuardVarImpl == RTLIB::Unsupported)
2371 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2373 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2403 return MinimumBitTestCmps;
2407 MinimumBitTestCmps = Val;
2411 if (TM.Options.LoopAlignment)
2412 return Align(TM.Options.LoopAlignment);
2413 return PrefLoopAlignment;
2418 return MaxBytesForAlignment;
2429 return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
2437 std::string Name = VT.
isVector() ?
"vec-" :
"";
2439 Name += IsSqrt ?
"sqrt" :
"div";
2448 "Unexpected FP type for reciprocal estimate");
2460 const char RefStepToken =
':';
2461 Position = In.find(RefStepToken);
2465 StringRef RefStepString = In.substr(Position + 1);
2468 if (RefStepString.
size() == 1) {
2469 char RefStepChar = RefStepString[0];
2471 Value = RefStepChar -
'0';
2482 if (Override.
empty())
2486 Override.
split(OverrideVector,
',');
2487 unsigned NumArgs = OverrideVector.
size();
2497 Override = Override.
substr(0, RefPos);
2501 if (Override ==
"all")
2505 if (Override ==
"none")
2509 if (Override ==
"default")
2515 std::string VTNameNoSize = VTName;
2516 VTNameNoSize.pop_back();
2517 static const char DisabledPrefix =
'!';
2519 for (
StringRef RecipType : OverrideVector) {
2523 RecipType = RecipType.substr(0, RefPos);
2526 bool IsDisabled = RecipType[0] == DisabledPrefix;
2528 RecipType = RecipType.substr(1);
2530 if (RecipType == VTName || RecipType == VTNameNoSize)
2542 if (Override.
empty())
2546 Override.
split(OverrideVector,
',');
2547 unsigned NumArgs = OverrideVector.
size();
2559 Override = Override.
substr(0, RefPos);
2560 assert(Override !=
"none" &&
2561 "Disabled reciprocals, but specifed refinement steps?");
2564 if (Override ==
"all" || Override ==
"default")
2570 std::string VTNameNoSize = VTName;
2571 VTNameNoSize.pop_back();
2573 for (
StringRef RecipType : OverrideVector) {
2579 RecipType = RecipType.substr(0, RefPos);
2580 if (RecipType == VTName || RecipType == VTNameNoSize)
2649 if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
2666 if (
SI.isVolatile())
2669 if (
SI.hasMetadata(LLVMContext::MD_nontemporal))
2683 if (RMW->isVolatile())
2686 if (CmpX->isVolatile())
2704 "for it, but support must be explicitly enabled");
2705 case Intrinsic::vp_load:
2706 case Intrinsic::vp_gather:
2707 case Intrinsic::experimental_vp_strided_load:
2710 case Intrinsic::vp_store:
2711 case Intrinsic::vp_scatter:
2712 case Intrinsic::experimental_vp_strided_store:
2717 if (VPIntrin.
hasMetadata(LLVMContext::MD_nontemporal))
2728 return Builder.CreateFence(Ord);
2737 return Builder.CreateFence(Ord);
2748 auto &MF = *
MI.getMF();
2749 auto &
MRI = MF.getRegInfo();
2756 auto maxUses = [](
unsigned RematCost) {
2759 return std::numeric_limits<unsigned>::max();
2769 switch (
MI.getOpcode()) {
2774 case TargetOpcode::G_CONSTANT:
2775 case TargetOpcode::G_FCONSTANT:
2776 case TargetOpcode::G_FRAME_INDEX:
2777 case TargetOpcode::G_INTTOPTR:
2779 case TargetOpcode::G_GLOBAL_VALUE: {
2780 unsigned RematCost =
TTI->getGISelRematGlobalCost();
2782 unsigned MaxUses = maxUses(RematCost);
2783 if (MaxUses == UINT_MAX)
2785 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file defines the SmallVector class.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
static constexpr size_t npos
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual ~TargetLoweringBase()
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUREM(EVT VT)
LLVM_ABI Libcall getSHL(EVT VT)
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getREM(EVT VT)
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSDIV(EVT VT)
LLVM_ABI Libcall getSRL(EVT VT)
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSRA(EVT VT)
LLVM_ABI Libcall getUDIV(EVT VT)
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLLROUND(EVT VT)
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLROUND(EVT VT)
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLRINT(EVT RetVT)
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getLLRINT(EVT RetVT)
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSREM(EVT VT)
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getMUL(EVT VT)
LLVM_ABI Libcall getCTPOP(EVT VT)
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMULO(EVT VT)
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...