57 if (
F.getFnAttribute(
"disable-tail-calls").getValueAsBool())
63 AttrBuilder CallerAttrs(
F.getContext(),
F.getAttributes().getRetAttrs());
64 for (
const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65 Attribute::DereferenceableOrNull, Attribute::NoAlias,
66 Attribute::NonNull, Attribute::NoUndef,
67 Attribute::Range, Attribute::NoFPClass})
74 if (CallerAttrs.
contains(Attribute::ZExt) ||
75 CallerAttrs.
contains(Attribute::SExt))
86 for (
unsigned I = 0, E = ArgLocs.
size();
I != E; ++
I) {
102 Register ArgReg = cast<RegisterSDNode>(
Value->getOperand(1))->getReg();
103 if (
MRI.getLiveInPhysReg(ArgReg) != Reg)
113 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
114 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
115 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
116 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126 Alignment = Call->getParamStackAlign(ArgIdx);
129 "multiple ABI attributes?");
145std::pair<SDValue, SDValue>
155 Args.reserve(Ops.
size());
158 for (
unsigned i = 0; i < Ops.
size(); ++i) {
161 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.
getContext());
164 Entry.IsZExt = !Entry.IsSExt;
168 Entry.IsSExt = Entry.IsZExt =
false;
170 Args.push_back(Entry);
173 if (LC == RTLIB::UNKNOWN_LIBCALL)
181 bool zeroExtend = !signExtend;
185 signExtend = zeroExtend =
false;
196 return LowerCallTo(CLI);
200 std::vector<EVT> &MemOps,
unsigned Limit,
const MemOp &
Op,
unsigned DstAS,
202 if (Limit != ~
unsigned(0) &&
Op.isMemcpyWithFixedDstAlign() &&
203 Op.getSrcAlign() <
Op.getDstAlign())
208 if (VT == MVT::Other) {
212 VT = MVT::LAST_INTEGER_VALUETYPE;
213 if (
Op.isFixedDstAlign())
220 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
231 unsigned NumMemOps = 0;
235 while (VTSize >
Size) {
246 else if (NewVT == MVT::i64 &&
258 if (NewVT == MVT::i8)
267 if (NumMemOps &&
Op.allowOverlap() && NewVTSize <
Size &&
269 VT, DstAS,
Op.isFixedDstAlign() ?
Op.getDstAlign() :
Align(1),
279 if (++NumMemOps > Limit)
282 MemOps.push_back(VT);
297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
307 bool IsSignaling)
const {
312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313 &&
"Unsupported setcc type!");
316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317 bool ShouldInvertCC =
false;
321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328 (VT == MVT::f64) ? RTLIB::UNE_F64 :
329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334 (VT == MVT::f64) ? RTLIB::OGE_F64 :
335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340 (VT == MVT::f64) ? RTLIB::OLT_F64 :
341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346 (VT == MVT::f64) ? RTLIB::OLE_F64 :
347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352 (VT == MVT::f64) ? RTLIB::OGT_F64 :
353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
356 ShouldInvertCC =
true;
359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360 (VT == MVT::f64) ? RTLIB::UO_F64 :
361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
365 ShouldInvertCC =
true;
368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369 (VT == MVT::f64) ? RTLIB::UO_F64 :
370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
377 ShouldInvertCC =
true;
380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381 (VT == MVT::f64) ? RTLIB::OGE_F64 :
382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386 (VT == MVT::f64) ? RTLIB::OGT_F64 :
387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391 (VT == MVT::f64) ? RTLIB::OLE_F64 :
392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396 (VT == MVT::f64) ? RTLIB::OLT_F64 :
397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
405 SDValue Ops[2] = {NewLHS, NewRHS};
410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
415 if (ShouldInvertCC) {
417 CCCode = getSetCCInverse(CCCode, RetVT);
420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
430 CCCode = getSetCCInverse(CCCode, RetVT);
431 NewLHS = DAG.
getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
445 if (!isPositionIndependent())
459 unsigned JTEncoding = getJumpTableEncoding();
495 if (!TM.shouldAssumeDSOLocal(GV))
499 if (isPositionIndependent())
515 const APInt &DemandedElts,
518 unsigned Opcode =
Op.getOpcode();
526 if (targetShrinkDemandedConstant(
Op,
DemandedBits, DemandedElts, TLO))
536 auto *Op1C = dyn_cast<ConstantSDNode>(
Op.getOperand(1));
537 if (!Op1C || Op1C->isOpaque())
541 const APInt &
C = Op1C->getAPIntValue();
546 EVT VT =
Op.getValueType();
563 EVT VT =
Op.getValueType();
578 "ShrinkDemandedOp only supports binary operators!");
579 assert(
Op.getNode()->getNumValues() == 1 &&
580 "ShrinkDemandedOp only supports nodes with one result!");
582 EVT VT =
Op.getValueType();
591 Op.getOperand(1).getValueType().getScalarSizeInBits() ==
BitWidth &&
592 "ShrinkDemandedOp only supports operands that have the same size!");
596 if (!
Op.getNode()->hasOneUse())
613 Op.getOpcode(), dl, SmallVT,
616 assert(DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?");
631 bool Simplified = SimplifyDemandedBits(
Op,
DemandedBits, Known, TLO);
640 const APInt &DemandedElts,
660 bool AssumeSingleUse)
const {
661 EVT VT =
Op.getValueType();
677 EVT VT =
Op.getValueType();
695 switch (
Op.getOpcode()) {
701 EVT SrcVT = Src.getValueType();
702 EVT DstVT =
Op.getValueType();
708 if (NumSrcEltBits == NumDstEltBits)
709 if (
SDValue V = SimplifyMultipleUseDemandedBits(
713 if (SrcVT.
isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
714 unsigned Scale = NumDstEltBits / NumSrcEltBits;
718 for (
unsigned i = 0; i != Scale; ++i) {
719 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
720 unsigned BitOffset = EltOffset * NumSrcEltBits;
723 DemandedSrcBits |= Sub;
724 for (
unsigned j = 0; j != NumElts; ++j)
726 DemandedSrcElts.
setBit((j * Scale) + i);
730 if (
SDValue V = SimplifyMultipleUseDemandedBits(
731 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
736 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
737 unsigned Scale = NumSrcEltBits / NumDstEltBits;
741 for (
unsigned i = 0; i != NumElts; ++i)
742 if (DemandedElts[i]) {
743 unsigned Offset = (i % Scale) * NumDstEltBits;
745 DemandedSrcElts.
setBit(i / Scale);
748 if (
SDValue V = SimplifyMultipleUseDemandedBits(
749 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
770 return Op.getOperand(0);
772 return Op.getOperand(1);
783 return Op.getOperand(0);
785 return Op.getOperand(1);
795 return Op.getOperand(0);
797 return Op.getOperand(1);
803 return Op.getOperand(0);
807 return Op.getOperand(1);
813 if (std::optional<uint64_t> MaxSA =
816 unsigned ShAmt = *MaxSA;
817 unsigned NumSignBits =
820 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
828 if (std::optional<uint64_t> MaxSA =
831 unsigned ShAmt = *MaxSA;
835 unsigned NumSignBits =
867 EVT ExVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
874 if (NumSignBits >= (
BitWidth - ExBits + 1))
887 EVT SrcVT = Src.getValueType();
888 EVT DstVT =
Op.getValueType();
889 if (IsLE && DemandedElts == 1 &&
902 auto *CIdx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
905 !DemandedElts[CIdx->getZExtValue()])
919 if (DemandedSubElts == 0)
929 bool AllUndef =
true, IdentityLHS =
true, IdentityRHS =
true;
930 for (
unsigned i = 0; i != NumElts; ++i) {
931 int M = ShuffleMask[i];
932 if (M < 0 || !DemandedElts[i])
935 IdentityLHS &= (M == (int)i);
936 IdentityRHS &= ((M - NumElts) == i);
942 return Op.getOperand(0);
944 return Op.getOperand(1);
954 if (
SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
964 unsigned Depth)
const {
965 EVT VT =
Op.getValueType();
972 return SimplifyMultipleUseDemandedBits(
Op,
DemandedBits, DemandedElts, DAG,
978 unsigned Depth)
const {
980 return SimplifyMultipleUseDemandedBits(
Op,
DemandedBits, DemandedElts, DAG,
992 "SRL or SRA node is required here!");
995 if (!N1C || !N1C->
isOne())
1042 unsigned ShiftOpc =
Op.getOpcode();
1043 bool IsSigned =
false;
1047 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1052 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1058 if (NumZero >= 2 && NumSigned < NumZero) {
1063 if (NumSigned >= 1) {
1071 if (NumZero >= 1 && NumSigned < NumZero) {
1091 EVT VT =
Op.getValueType();
1105 Add.getOperand(1)) &&
1116 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1136 unsigned Depth,
bool AssumeSingleUse)
const {
1139 "Mask size mismatches value type size!");
1144 EVT VT =
Op.getValueType();
1146 unsigned NumElts = OriginalDemandedElts.
getBitWidth();
1148 "Unexpected vector size");
1151 APInt DemandedElts = OriginalDemandedElts;
1171 cast<ConstantFPSDNode>(
Op)->getValueAPF().bitcastToAPInt());
1176 bool HasMultiUse =
false;
1177 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse()) {
1186 }
else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1195 switch (
Op.getOpcode()) {
1199 if (!DemandedElts[0])
1204 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1206 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO,
Depth + 1))
1211 if (DemandedElts == 1)
1224 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO,
Depth + 1))
1233 auto *LD = cast<LoadSDNode>(
Op);
1234 if (getTargetConstantFromLoad(LD)) {
1240 EVT MemVT = LD->getMemoryVT();
1252 auto *CIdx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
1257 APInt DemandedVecElts(DemandedElts);
1259 unsigned Idx = CIdx->getZExtValue();
1263 if (!DemandedElts[
Idx])
1270 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO,
Depth + 1))
1276 if (SimplifyDemandedBits(Vec,
DemandedBits, DemandedVecElts, KnownVec, TLO,
1280 if (!!DemandedVecElts)
1295 APInt DemandedSrcElts = DemandedElts;
1299 if (SimplifyDemandedBits(Sub,
DemandedBits, DemandedSubElts, KnownSub, TLO,
1302 if (SimplifyDemandedBits(Src,
DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1308 if (!!DemandedSubElts)
1310 if (!!DemandedSrcElts)
1316 SDValue NewSub = SimplifyMultipleUseDemandedBits(
1318 SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1320 if (NewSub || NewSrc) {
1321 NewSub = NewSub ? NewSub : Sub;
1322 NewSrc = NewSrc ? NewSrc : Src;
1335 if (Src.getValueType().isScalableVector())
1338 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1341 if (SimplifyDemandedBits(Src,
DemandedBits, DemandedSrcElts, Known, TLO,
1347 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1362 EVT SubVT =
Op.getOperand(0).getValueType();
1365 for (
unsigned i = 0; i != NumSubVecs; ++i) {
1366 APInt DemandedSubElts =
1367 DemandedElts.
extractBits(NumSubElts, i * NumSubElts);
1368 if (SimplifyDemandedBits(
Op.getOperand(i),
DemandedBits, DemandedSubElts,
1369 Known2, TLO,
Depth + 1))
1372 if (!!DemandedSubElts)
1382 APInt DemandedLHS, DemandedRHS;
1387 if (!!DemandedLHS || !!DemandedRHS) {
1393 if (!!DemandedLHS) {
1394 if (SimplifyDemandedBits(Op0,
DemandedBits, DemandedLHS, Known2, TLO,
1399 if (!!DemandedRHS) {
1400 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedRHS, Known2, TLO,
1407 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1409 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1411 if (DemandedOp0 || DemandedOp1) {
1412 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1413 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1448 LHSKnown.
One == ~RHSC->getAPIntValue()) {
1460 unsigned NumSubElts =
1477 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedElts, Known, TLO,
1481 Known2, TLO,
Depth + 1))
1503 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1505 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1507 if (DemandedOp0 || DemandedOp1) {
1508 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1509 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1521 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedElts, Known, TLO,
1527 if (SimplifyDemandedBits(Op0, ~Known.
One &
DemandedBits, DemandedElts,
1528 Known2, TLO,
Depth + 1)) {
1548 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1550 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1552 if (DemandedOp0 || DemandedOp1) {
1553 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1554 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1565 for (
int I = 0;
I != 2; ++
I) {
1568 SDValue Alt =
Op.getOperand(1 -
I).getOperand(0);
1569 SDValue C2 =
Op.getOperand(1 -
I).getOperand(1);
1571 for (
int J = 0; J != 2; ++J) {
1594 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedElts, Known, TLO,
1597 if (SimplifyDemandedBits(Op0,
DemandedBits, DemandedElts, Known2, TLO,
1624 if (
C->getAPIntValue() == Known2.
One) {
1633 if (!
C->isAllOnes() &&
DemandedBits.isSubsetOf(
C->getAPIntValue())) {
1645 if (ShiftC->getAPIntValue().ult(
BitWidth)) {
1646 uint64_t ShiftAmt = ShiftC->getZExtValue();
1649 : Ones.
lshr(ShiftAmt);
1651 isDesirableToCommuteXorWithShift(
Op.getNode())) {
1666 if (!
C || !
C->isAllOnes())
1672 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1674 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1676 if (DemandedOp0 || DemandedOp1) {
1677 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1678 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1688 if (SimplifyDemandedBits(
Op.getOperand(2),
DemandedBits, DemandedElts,
1689 Known, TLO,
Depth + 1))
1691 if (SimplifyDemandedBits(
Op.getOperand(1),
DemandedBits, DemandedElts,
1692 Known2, TLO,
Depth + 1))
1703 if (SimplifyDemandedBits(
Op.getOperand(2),
DemandedBits, DemandedElts,
1704 Known, TLO,
Depth + 1))
1706 if (SimplifyDemandedBits(
Op.getOperand(1),
DemandedBits, DemandedElts,
1707 Known2, TLO,
Depth + 1))
1714 if (SimplifyDemandedBits(
Op.getOperand(3),
DemandedBits, DemandedElts,
1715 Known, TLO,
Depth + 1))
1717 if (SimplifyDemandedBits(
Op.getOperand(2),
DemandedBits, DemandedElts,
1718 Known2, TLO,
Depth + 1))
1761 if (std::optional<uint64_t> KnownSA =
1763 unsigned ShAmt = *KnownSA;
1773 if (std::optional<uint64_t> InnerSA =
1775 unsigned C1 = *InnerSA;
1777 int Diff = ShAmt - C1;
1796 if (ShAmt < InnerBits &&
DemandedBits.getActiveBits() <= InnerBits &&
1797 isTypeDesirableForOp(
ISD::SHL, InnerVT)) {
1814 InnerOp, DemandedElts,
Depth + 2)) {
1815 unsigned InnerShAmt = *SA2;
1816 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1818 (InnerBits - InnerShAmt + ShAmt) &&
1832 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1839 Known.
Zero <<= ShAmt;
1840 Known.
One <<= ShAmt;
1846 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1847 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
1858 Op.getNode()->hasOneUse()) {
1866 isTypeDesirableForOp(
ISD::SHL, SmallVT) &&
1869 assert(DemandedSize <= SmallVTBits &&
1870 "Narrowed below demanded bits?");
1890 isTypeDesirableForOp(
ISD::SHL, HalfVT) &&
1899 Flags.setNoSignedWrap(IsNSW);
1900 Flags.setNoUnsignedWrap(IsNUW);
1905 NewShiftAmt, Flags);
1918 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1931 if (std::optional<uint64_t> MaxSA =
1933 unsigned ShAmt = *MaxSA;
1934 unsigned NumSignBits =
1937 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1947 if (std::optional<uint64_t> KnownSA =
1949 unsigned ShAmt = *KnownSA;
1959 if (std::optional<uint64_t> InnerSA =
1961 unsigned C1 = *InnerSA;
1963 int Diff = ShAmt - C1;
1979 if (std::optional<uint64_t> InnerSA =
1981 unsigned C1 = *InnerSA;
1983 unsigned Combined = std::min(C1 + ShAmt,
BitWidth - 1);
1995 if (
Op->getFlags().hasExact())
2004 isTypeDesirableForOp(
ISD::SRL, HalfVT) &&
2020 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2030 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2031 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2045 if (std::optional<uint64_t> MaxSA =
2047 unsigned ShAmt = *MaxSA;
2051 unsigned NumSignBits =
2060 DemandedElts,
Depth + 1))
2084 if (std::optional<uint64_t> KnownSA =
2086 unsigned ShAmt = *KnownSA;
2093 if (std::optional<uint64_t> InnerSA =
2095 unsigned LowBits =
BitWidth - ShAmt;
2101 if (*InnerSA == ShAmt) {
2111 unsigned NumSignBits =
2113 if (NumSignBits > ShAmt)
2123 if (
Op->getFlags().hasExact())
2131 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2142 Flags.setExact(
Op->getFlags().hasExact());
2160 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2161 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2171 DemandedElts,
Depth + 1))
2184 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2189 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1,
DemandedBits, DemandedElts,
2190 Known, TLO,
Depth + 1))
2199 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2202 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2216 Op0, Demanded0, DemandedElts, TLO.
DAG,
Depth + 1);
2217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2218 Op1, Demanded1, DemandedElts, TLO.
DAG,
Depth + 1);
2219 if (DemandedOp0 || DemandedOp1) {
2220 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2221 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2232 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2233 Known2, TLO,
Depth + 1))
2249 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2255 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2265 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2270 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2279 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2289 unsigned Opc =
Op.getOpcode();
2296 unsigned NumSignBits =
2300 if (NumSignBits >= NumDemandedUpperBits)
2341 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2367 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2375 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2395 EVT ExVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
2400 unsigned MinSignedBits =
2402 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2405 if (!AlreadySignExtended) {
2423 InputDemandedBits.
setBit(ExVTBits - 1);
2425 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2433 if (Known.
Zero[ExVTBits - 1])
2437 if (Known.
One[ExVTBits - 1]) {
2447 EVT HalfVT =
Op.getOperand(0).getValueType();
2455 if (SimplifyDemandedBits(
Op.getOperand(0), MaskLo, KnownLo, TLO,
Depth + 1))
2458 if (SimplifyDemandedBits(
Op.getOperand(1), MaskHi, KnownHi, TLO,
Depth + 1))
2461 Known = KnownHi.
concat(KnownLo);
2470 EVT SrcVT = Src.getValueType();
2479 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2490 APInt InDemandedElts = DemandedElts.
zext(InElts);
2491 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2500 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2501 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2511 EVT SrcVT = Src.getValueType();
2516 APInt InDemandedElts = DemandedElts.
zext(InElts);
2521 InDemandedBits.
setBit(InBits - 1);
2527 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2542 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2563 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2564 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2574 EVT SrcVT = Src.getValueType();
2581 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2586 APInt InDemandedElts = DemandedElts.
zext(InElts);
2587 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2594 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2595 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2604 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2606 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2616 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2617 Src, TruncMask, DemandedElts, TLO.
DAG,
Depth + 1))
2622 switch (Src.getOpcode()) {
2633 if (Src.getNode()->hasOneUse()) {
2645 std::optional<uint64_t> ShAmtC =
2647 if (!ShAmtC || *ShAmtC >=
BitWidth)
2673 EVT ZVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
2675 if (SimplifyDemandedBits(
Op.getOperand(0), ~InMask |
DemandedBits, Known,
2679 Known.
Zero |= ~InMask;
2680 Known.
One &= (~Known.Zero);
2686 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2687 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2695 if (
auto *CIdx = dyn_cast<ConstantSDNode>(
Idx))
2696 if (CIdx->getAPIntValue().ult(NumSrcElts))
2703 DemandedSrcBits = DemandedSrcBits.
trunc(EltBitWidth);
2705 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2711 if (
SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2712 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2728 EVT SrcVT = Src.getValueType();
2738 if ((OpVTLegal || i32Legal) && VT.
isSimple() && SrcVT != MVT::f16 &&
2739 SrcVT != MVT::f128) {
2741 EVT Ty = OpVTLegal ? VT : MVT::i32;
2745 unsigned OpVTSizeInBits =
Op.getValueSizeInBits();
2746 if (!OpVTLegal && OpVTSizeInBits > 32)
2748 unsigned ShVal =
Op.getValueSizeInBits() - 1;
2758 unsigned Scale =
BitWidth / NumSrcEltBits;
2762 for (
unsigned i = 0; i != Scale; ++i) {
2763 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2764 unsigned BitOffset = EltOffset * NumSrcEltBits;
2767 DemandedSrcBits |= Sub;
2768 for (
unsigned j = 0; j != NumElts; ++j)
2769 if (DemandedElts[j])
2770 DemandedSrcElts.
setBit((j * Scale) + i);
2774 APInt KnownSrcUndef, KnownSrcZero;
2775 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2776 KnownSrcZero, TLO,
Depth + 1))
2780 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2781 KnownSrcBits, TLO,
Depth + 1))
2783 }
else if (IsLE && (NumSrcEltBits %
BitWidth) == 0) {
2785 unsigned Scale = NumSrcEltBits /
BitWidth;
2789 for (
unsigned i = 0; i != NumElts; ++i)
2790 if (DemandedElts[i]) {
2793 DemandedSrcElts.
setBit(i / Scale);
2797 APInt KnownSrcUndef, KnownSrcZero;
2798 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2799 KnownSrcZero, TLO,
Depth + 1))
2804 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2805 KnownSrcBits, TLO,
Depth + 1))
2810 if (
SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2811 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2833 if (
C &&
C->getAPIntValue().countr_zero() == CTZ) {
2852 SDValue Op0 =
Op.getOperand(0), Op1 =
Op.getOperand(1);
2857 auto GetDemandedBitsLHSMask = [&](
APInt Demanded,
2863 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2865 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2866 DemandedElts, KnownOp0, TLO,
Depth + 1) ||
2882 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2883 Op0, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2884 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2885 Op1, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2886 if (DemandedOp0 || DemandedOp1) {
2887 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2888 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2902 if (
C && !
C->isAllOnes() && !
C->isOne() &&
2903 (
C->getAPIntValue() | HighMask).isAllOnes()) {
2915 auto getShiftLeftAmt = [&HighMask](
SDValue Mul) ->
unsigned {
2942 if (
unsigned ShAmt = getShiftLeftAmt(Op0))
2945 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2946 return foldMul(
ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2950 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2951 return foldMul(
ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2959 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
2960 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2970 if (
Op.getValueType().isScalableVector())
2972 if (SimplifyDemandedBitsForTargetNode(
Op,
DemandedBits, DemandedElts,
2985 if (!isTargetCanonicalConstantNode(
Op) &&
2991 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op))
3013 const APInt &DemandedElts,
3019 APInt KnownUndef, KnownZero;
3021 SimplifyDemandedVectorElts(
Op, DemandedElts, KnownUndef, KnownZero, TLO);
3033 const APInt &UndefOp0,
3034 const APInt &UndefOp1) {
3037 "Vector binop only");
3042 UndefOp1.
getBitWidth() == NumElts &&
"Bad type for undef analysis");
3044 auto getUndefOrConstantElt = [&](
SDValue V,
unsigned Index,
3045 const APInt &UndefVals) {
3046 if (UndefVals[Index])
3049 if (
auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3053 auto *
C = dyn_cast<ConstantSDNode>(Elt);
3054 if (isa<ConstantFPSDNode>(Elt) || Elt.
isUndef() || (
C && !
C->isOpaque()))
3062 for (
unsigned i = 0; i != NumElts; ++i) {
3081 bool AssumeSingleUse)
const {
3082 EVT VT =
Op.getValueType();
3083 unsigned Opcode =
Op.getOpcode();
3084 APInt DemandedElts = OriginalDemandedElts;
3090 if (!shouldSimplifyDemandedVectorElts(
Op, TLO))
3098 "Mask size mismatches value type element count!");
3107 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse())
3111 if (DemandedElts == 0) {
3126 auto SimplifyDemandedVectorEltsBinOp = [&](
SDValue Op0,
SDValue Op1) {
3127 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3129 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3131 if (NewOp0 || NewOp1) {
3134 NewOp1 ? NewOp1 : Op1,
Op->getFlags());
3142 if (!DemandedElts[0]) {
3150 EVT SrcVT = Src.getValueType();
3162 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3172 EVT SrcVT = Src.getValueType();
3181 if (NumSrcElts == NumElts)
3182 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3183 KnownZero, TLO,
Depth + 1);
3185 APInt SrcDemandedElts, SrcZero, SrcUndef;
3189 if ((NumElts % NumSrcElts) == 0) {
3190 unsigned Scale = NumElts / NumSrcElts;
3192 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3202 for (
unsigned i = 0; i != NumElts; ++i)
3203 if (DemandedElts[i]) {
3204 unsigned Ofs = (i % Scale) * EltSizeInBits;
3205 SrcDemandedBits.
setBits(Ofs, Ofs + EltSizeInBits);
3209 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3217 for (
unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3221 for (
unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3222 unsigned Elt = Scale * SrcElt + SubElt;
3223 if (DemandedElts[Elt])
3231 for (
unsigned i = 0; i != NumSrcElts; ++i) {
3232 if (SrcDemandedElts[i]) {
3234 KnownZero.
setBits(i * Scale, (i + 1) * Scale);
3236 KnownUndef.
setBits(i * Scale, (i + 1) * Scale);
3244 if ((NumSrcElts % NumElts) == 0) {
3245 unsigned Scale = NumSrcElts / NumElts;
3247 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3253 for (
unsigned i = 0; i != NumElts; ++i) {
3254 if (DemandedElts[i]) {
3283 [&](
SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3285 bool Updated =
false;
3286 for (
unsigned i = 0; i != NumElts; ++i) {
3287 if (!DemandedElts[i] && !Ops[i].
isUndef()) {
3297 for (
unsigned i = 0; i != NumElts; ++i) {
3299 if (
SrcOp.isUndef()) {
3301 }
else if (EltSizeInBits ==
SrcOp.getScalarValueSizeInBits() &&
3309 EVT SubVT =
Op.getOperand(0).getValueType();
3312 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3315 APInt SubUndef, SubZero;
3316 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3319 KnownUndef.
insertBits(SubUndef, i * NumSubElts);
3320 KnownZero.
insertBits(SubZero, i * NumSubElts);
3325 bool FoundNewSub =
false;
3327 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3330 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3331 SubOp, SubElts, TLO.
DAG,
Depth + 1);
3332 DemandedSubOps.
push_back(NewSubOp ? NewSubOp : SubOp);
3333 FoundNewSub = NewSubOp ?
true : FoundNewSub;
3351 APInt DemandedSrcElts = DemandedElts;
3354 APInt SubUndef, SubZero;
3355 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3360 if (!DemandedSrcElts && !Src.isUndef())
3365 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3373 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3374 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3375 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3376 Sub, DemandedSubElts, TLO.
DAG,
Depth + 1);
3377 if (NewSrc || NewSub) {
3378 NewSrc = NewSrc ? NewSrc : Src;
3379 NewSub = NewSub ? NewSub : Sub;
3381 NewSub,
Op.getOperand(2));
3390 if (Src.getValueType().isScalableVector())
3393 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3396 APInt SrcUndef, SrcZero;
3397 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3405 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3406 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3418 auto *CIdx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
3422 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3423 unsigned Idx = CIdx->getZExtValue();
3424 if (!DemandedElts[
Idx])
3427 APInt DemandedVecElts(DemandedElts);
3429 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3430 KnownZero, TLO,
Depth + 1))
3439 APInt VecUndef, VecZero;
3440 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3453 APInt UndefSel, ZeroSel;
3454 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3459 APInt DemandedLHS(DemandedElts);
3460 APInt DemandedRHS(DemandedElts);
3461 APInt UndefLHS, ZeroLHS;
3462 APInt UndefRHS, ZeroRHS;
3463 if (SimplifyDemandedVectorElts(
LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3466 if (SimplifyDemandedVectorElts(
RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3470 KnownUndef = UndefLHS & UndefRHS;
3471 KnownZero = ZeroLHS & ZeroRHS;
3475 APInt DemandedSel = DemandedElts & ~KnownZero;
3476 if (DemandedSel != DemandedElts)
3477 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3489 APInt DemandedLHS(NumElts, 0);
3490 APInt DemandedRHS(NumElts, 0);
3491 for (
unsigned i = 0; i != NumElts; ++i) {
3492 int M = ShuffleMask[i];
3493 if (M < 0 || !DemandedElts[i])
3495 assert(0 <= M && M < (
int)(2 * NumElts) &&
"Shuffle index out of range");
3496 if (M < (
int)NumElts)
3499 DemandedRHS.
setBit(M - NumElts);
3503 APInt UndefLHS, ZeroLHS;
3504 APInt UndefRHS, ZeroRHS;
3505 if (SimplifyDemandedVectorElts(
LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3508 if (SimplifyDemandedVectorElts(
RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3513 bool Updated =
false;
3514 bool IdentityLHS =
true, IdentityRHS =
true;
3516 for (
unsigned i = 0; i != NumElts; ++i) {
3517 int &M = NewMask[i];
3520 if (!DemandedElts[i] || (M < (
int)NumElts && UndefLHS[M]) ||
3521 (M >= (
int)NumElts && UndefRHS[M - NumElts])) {
3525 IdentityLHS &= (M < 0) || (M == (
int)i);
3526 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3531 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.
LegalOps) {
3533 buildLegalVectorShuffle(VT,
DL,
LHS,
RHS, NewMask, TLO.
DAG);
3539 for (
unsigned i = 0; i != NumElts; ++i) {
3540 int M = ShuffleMask[i];
3543 }
else if (M < (
int)NumElts) {
3549 if (UndefRHS[M - NumElts])
3551 if (ZeroRHS[M - NumElts])
3560 APInt SrcUndef, SrcZero;
3562 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3563 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3564 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3571 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3572 DemandedSrcElts == 1) {
3585 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() ==
ISD::AND &&
3586 Op->isOnlyUserOf(Src.getNode()) &&
3587 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3589 EVT SrcVT = Src.getValueType();
3596 ISD::AND,
DL, SrcVT, {Src.getOperand(1), Mask})) {
3610 if (Op0 == Op1 &&
Op->isOnlyUserOf(Op0.
getNode())) {
3611 APInt UndefLHS, ZeroLHS;
3612 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3633 APInt UndefRHS, ZeroRHS;
3634 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3637 APInt UndefLHS, ZeroLHS;
3638 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3642 KnownZero = ZeroLHS & ZeroRHS;
3648 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3660 APInt UndefRHS, ZeroRHS;
3661 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3664 APInt UndefLHS, ZeroLHS;
3665 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3669 KnownZero = ZeroLHS;
3670 KnownUndef = UndefLHS & UndefRHS;
3675 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3686 APInt SrcUndef, SrcZero;
3687 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3692 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3693 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3697 KnownUndef &= DemandedElts0;
3698 KnownZero &= DemandedElts0;
3703 if (DemandedElts.
isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3710 KnownZero |= SrcZero;
3711 KnownUndef &= SrcUndef;
3712 KnownUndef &= ~KnownZero;
3716 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3723 if (SimplifyDemandedVectorElts(
Op.getOperand(0), DemandedElts, KnownUndef,
3724 KnownZero, TLO,
Depth + 1))
3728 if (
SDValue NewOp = SimplifyMultipleUseDemandedVectorElts(
3729 Op.getOperand(0), DemandedElts, TLO.
DAG,
Depth + 1))
3743 if (SimplifyDemandedVectorElts(
Op.getOperand(0), DemandedElts, KnownUndef,
3744 KnownZero, TLO,
Depth + 1))
3750 if (SimplifyDemandedVectorEltsForTargetNode(
Op, DemandedElts, KnownUndef,
3751 KnownZero, TLO,
Depth))
3756 if (SimplifyDemandedBits(
Op,
DemandedBits, OriginalDemandedElts, Known,
3757 TLO,
Depth, AssumeSingleUse))
3763 assert((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero");
3777 const APInt &DemandedElts,
3779 unsigned Depth)
const {
3784 "Should use MaskedValueIsZero if you don't know whether Op"
3785 " is a target node!");
3792 unsigned Depth)
const {
3804 unsigned Depth)
const {
3813 unsigned Depth)
const {
3818 "Should use ComputeNumSignBits if you don't know whether Op"
3819 " is a target node!");
3836 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3837 " is a target node!");
3848 "Should use SimplifyDemandedBits if you don't know whether Op"
3849 " is a target node!");
3850 computeKnownBitsForTargetNode(
Op, Known, DemandedElts, TLO.
DAG,
Depth);
3862 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3863 " is a target node!");
3896 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3897 " is a target node!");
3901 return !canCreateUndefOrPoisonForTargetNode(
Op, DemandedElts, DAG,
PoisonOnly,
3904 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3916 "Should use canCreateUndefOrPoison if you don't know whether Op"
3917 " is a target node!");
3925 unsigned Depth)
const {
3930 "Should use isKnownNeverNaN if you don't know whether Op"
3931 " is a target node!");
3936 const APInt &DemandedElts,
3939 unsigned Depth)
const {
3944 "Should use isSplatValue if you don't know whether Op"
3945 " is a target node!");
3960 CVal = CN->getAPIntValue();
3961 EltWidth =
N.getValueType().getScalarSizeInBits();
3968 CVal = CVal.
trunc(EltWidth);
3974 return CVal.
isOne();
4016 return (
N->isOne() && !SExt) || (SExt && (
N->getValueType(0) != MVT::i1));
4019 return N->isAllOnes() && SExt;
4028 DAGCombinerInfo &DCI)
const {
4056 auto *AndC = dyn_cast<ConstantSDNode>(N0.
getOperand(1));
4057 if (AndC &&
isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4060 AndC->getAPIntValue().getActiveBits());
4087 if (isXAndYEqZeroPreferableToXAndYEqY(
Cond, OpVT) &&
4095 if (DCI.isBeforeLegalizeOps() ||
4129SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4134 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4143 if (!(C01 = dyn_cast<ConstantSDNode>(N0->
getOperand(1))))
4147 EVT XVT =
X.getValueType();
4171 auto checkConstants = [&
I1, &I01]() ->
bool {
4176 if (checkConstants()) {
4184 if (!checkConstants())
4190 const unsigned KeptBits =
I1.logBase2();
4191 const unsigned KeptBitsMinusOne = I01.
logBase2();
4194 if (KeptBits != (KeptBitsMinusOne + 1))
4208 return DAG.
getSetCC(
DL, SCCVT, SExtInReg,
X, NewCond);
4212SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4214 DAGCombinerInfo &DCI,
const SDLoc &
DL)
const {
4216 "Should be a comparison with 0.");
4218 "Valid only for [in]equality comparisons.");
4220 unsigned NewShiftOpcode;
4230 unsigned OldShiftOpcode =
V.getOpcode();
4231 switch (OldShiftOpcode) {
4243 C =
V.getOperand(0);
4248 Y =
V.getOperand(1);
4253 X, XC,
CC,
Y, OldShiftOpcode, NewShiftOpcode, DAG);
4270 EVT VT =
X.getValueType();
4285 DAGCombinerInfo &DCI)
const {
4288 "Unexpected binop");
4316 if (!DCI.isCalledByLegalizer())
4317 DCI.AddToWorklist(YShl1.
getNode());
4332 if (CTPOP.getOpcode() !=
ISD::CTPOP || !CTPOP.hasOneUse())
4335 EVT CTVT = CTPOP.getValueType();
4336 SDValue CTOp = CTPOP.getOperand(0);
4356 for (
unsigned i = 0; i <
Passes; i++) {
4405 auto getRotateSource = [](
SDValue X) {
4407 return X.getOperand(0);
4414 if (
SDValue R = getRotateSource(N0))
4447 if (!C1 || !C1->
isZero())
4456 if (!ShAmtC || ShAmtC->getAPIntValue().uge(
BitWidth))
4460 unsigned ShAmt = ShAmtC->getZExtValue();
4469 if (
Or.getOperand(0) ==
Other) {
4470 X =
Or.getOperand(0);
4471 Y =
Or.getOperand(1);
4474 if (
Or.getOperand(1) ==
Other) {
4475 X =
Or.getOperand(1);
4476 Y =
Or.getOperand(0);
4486 if (matchOr(F0, F1)) {
4493 if (matchOr(F1, F0)) {
4509 const SDLoc &dl)
const {
4519 bool N0ConstOrSplat =
4521 bool N1ConstOrSplat =
4529 if (N0ConstOrSplat && !N1ConstOrSplat &&
4532 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4538 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4543 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4552 const APInt &C1 = N1C->getAPIntValue();
4572 return DAG.
getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4602 if (
auto *N1C = dyn_cast<ConstantSDNode>(N1.
getNode())) {
4603 const APInt &C1 = N1C->getAPIntValue();
4618 if (
auto *
C = dyn_cast<ConstantSDNode>(N0->
getOperand(1)))
4619 if ((
C->getAPIntValue()+1).isPowerOf2()) {
4620 MinBits =
C->getAPIntValue().countr_one();
4628 }
else if (
auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4631 MinBits = LN0->getMemoryVT().getSizeInBits();
4635 MinBits = LN0->getMemoryVT().getSizeInBits();
4646 MinBits >= ReqdBits) {
4648 if (isTypeDesirableForOp(
ISD::SETCC, MinVT)) {
4651 if (MinBits == 1 && C1 == 1)
4670 if (TopSetCC.
getValueType() == MVT::i1 && VT == MVT::i1 &&
4683 cast<CondCodeSDNode>(TopSetCC.
getOperand(2))->get(),
4702 auto *Lod = cast<LoadSDNode>(N0.
getOperand(0));
4704 unsigned bestWidth = 0, bestOffset = 0;
4705 if (Lod->isSimple() && Lod->isUnindexed() &&
4706 (Lod->getMemoryVT().isByteSized() ||
4708 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4710 unsigned maskWidth = origWidth;
4714 origWidth = Lod->getMemoryVT().getSizeInBits();
4718 for (
unsigned width = 8; width < origWidth; width *= 2) {
4725 unsigned maxOffset = origWidth - width;
4726 for (
unsigned offset = 0; offset <= maxOffset; offset += 8) {
4727 if (Mask.isSubsetOf(newMask)) {
4728 unsigned ptrOffset =
4730 unsigned IsFast = 0;
4733 *DAG.
getContext(), Layout, newVT, Lod->getAddressSpace(),
4734 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4736 bestOffset = ptrOffset / 8;
4737 bestMask = Mask.lshr(offset);
4751 if (bestOffset != 0)
4755 Lod->getPointerInfo().getWithOffset(bestOffset),
4756 Lod->getOriginalAlign());
4835 ExtDstTy != ExtSrcTy &&
"Unexpected types!");
4842 return DAG.
getSetCC(dl, VT, ZextOp,
4844 }
else if ((N1C->isZero() || N1C->isOne()) &&
4891 return DAG.
getSetCC(dl, VT, Val, N1,
4894 }
else if (N1C->isOne()) {
4931 cast<VTSDNode>(Op0.
getOperand(1))->getVT() == MVT::i1)
4962 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1,
Cond, DCI, dl))
4969 const APInt &C1 = N1C->getAPIntValue();
4971 APInt MinVal, MaxVal;
4993 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5013 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5061 if (
SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5062 VT, N0, N1,
Cond, DCI, dl))
5069 bool CmpZero = N1C->isZero();
5070 bool CmpNegOne = N1C->isAllOnes();
5071 if ((CmpZero || CmpNegOne) && N0.
hasOneUse()) {
5074 unsigned EltBits = V.getScalarValueSizeInBits();
5075 if (V.getOpcode() !=
ISD::OR || (EltBits % 2) != 0)
5082 isa<ConstantSDNode>(
RHS.getOperand(1)) &&
5083 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5086 Hi =
RHS.getOperand(0);
5090 isa<ConstantSDNode>(
LHS.getOperand(1)) &&
5091 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5094 Hi =
LHS.getOperand(0);
5102 unsigned HalfBits = EltBits / 2;
5113 if (IsConcat(N0,
Lo,
Hi))
5114 return MergeConcat(
Lo,
Hi);
5151 if (
auto *N1C = dyn_cast<ConstantSDNode>(N1.
getNode())) {
5152 const APInt &C1 = N1C->getAPIntValue();
5164 if (
auto *AndRHS = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) {
5167 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5168 if (AndRHS->getAPIntValue().isPowerOf2() &&
5175 }
else if (
Cond ==
ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5194 if (
auto *AndRHS = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) {
5195 const APInt &AndRHSC = AndRHS->getAPIntValue();
5232 return DAG.
getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5238 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5239 auto *CFP = cast<ConstantFPSDNode>(N1);
5240 assert(!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value");
5261 !
isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5280 if (CFP->getValueAPF().isInfinity()) {
5281 bool IsNegInf = CFP->getValueAPF().isNegative();
5292 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5301 "Integer types should be handled by FoldSetCC");
5307 if (UOF ==
unsigned(EqTrue))
5312 if (NewCond !=
Cond &&
5315 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5322 if ((isSignedIntSetCC(
Cond) || isUnsignedIntSetCC(
Cond)) &&
5359 bool LegalRHSImm =
false;
5361 if (
auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5362 if (
auto *LHSR = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) {
5367 DAG.
getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5375 DAG.
getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5381 if (
auto *SUBC = dyn_cast<ConstantSDNode>(N0.
getOperand(0)))
5385 DAG.
getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5390 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5399 if (
SDValue V = foldSetCCWithBinOp(VT, N0, N1,
Cond, dl, DCI))
5405 if (
SDValue V = foldSetCCWithBinOp(VT, N1, N0,
Cond, dl, DCI))
5408 if (
SDValue V = foldSetCCWithAnd(VT, N0, N1,
Cond, dl, DCI))
5419 if (
SDValue Folded = buildUREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5422 if (
SDValue Folded = buildSREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5435 N0 = DAG.
getNOT(dl, Temp, OpVT);
5444 Temp = DAG.
getNOT(dl, N0, OpVT);
5451 Temp = DAG.
getNOT(dl, N1, OpVT);
5458 Temp = DAG.
getNOT(dl, N0, OpVT);
5465 Temp = DAG.
getNOT(dl, N1, OpVT);
5474 N0 = DAG.
getNode(ExtendCode, dl, VT, N0);
5490 if (
auto *GASD = dyn_cast<GlobalAddressSDNode>(
N)) {
5491 GA = GASD->getGlobal();
5492 Offset += GASD->getOffset();
5500 if (
auto *V = dyn_cast<ConstantSDNode>(N2)) {
5501 Offset += V->getSExtValue();
5505 if (
auto *V = dyn_cast<ConstantSDNode>(N1)) {
5506 Offset += V->getSExtValue();
5527 unsigned S = Constraint.
size();
5530 switch (Constraint[0]) {
5533 return C_RegisterClass;
5561 if (S > 1 && Constraint[0] ==
'{' && Constraint[S - 1] ==
'}') {
5562 if (S == 8 && Constraint.
substr(1, 6) ==
"memory")
5590 std::vector<SDValue> &Ops,
5593 if (Constraint.
size() > 1)
5596 char ConstraintLetter = Constraint[0];
5597 switch (ConstraintLetter) {
5613 if ((
C = dyn_cast<ConstantSDNode>(
Op)) && ConstraintLetter !=
's') {
5617 bool IsBool =
C->getConstantIntValue()->getBitWidth() == 1;
5627 if (ConstraintLetter !=
'n') {
5628 if (
const auto *GA = dyn_cast<GlobalAddressSDNode>(
Op)) {
5630 GA->getValueType(0),
5631 Offset + GA->getOffset()));
5634 if (
const auto *BA = dyn_cast<BlockAddressSDNode>(
Op)) {
5636 BA->getBlockAddress(), BA->getValueType(0),
5637 Offset + BA->getOffset(), BA->getTargetFlags()));
5640 if (isa<BasicBlockSDNode>(
Op)) {
5645 const unsigned OpCode =
Op.getOpcode();
5647 if ((
C = dyn_cast<ConstantSDNode>(
Op.getOperand(0))))
5648 Op =
Op.getOperand(1);
5651 (
C = dyn_cast<ConstantSDNode>(
Op.getOperand(1))))
5652 Op =
Op.getOperand(0);
5669std::pair<unsigned, const TargetRegisterClass *>
5675 assert(*(Constraint.
end() - 1) ==
'}' &&
"Not a brace enclosed constraint?");
5680 std::pair<unsigned, const TargetRegisterClass *> R =
5692 std::pair<unsigned, const TargetRegisterClass *> S =
5693 std::make_pair(PR, RC);
5715 assert(!ConstraintCode.empty() &&
"No known constraint!");
5716 return isdigit(
static_cast<unsigned char>(ConstraintCode[0]));
5722 assert(!ConstraintCode.empty() &&
"No known constraint!");
5723 return atoi(ConstraintCode.c_str());
5737 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5738 unsigned maCount = 0;
5744 unsigned LabelNo = 0;
5747 ConstraintOperands.emplace_back(std::move(CI));
5757 switch (OpInfo.
Type) {
5767 assert(!Call.getType()->isVoidTy() &&
"Bad inline asm!");
5768 if (
auto *STy = dyn_cast<StructType>(Call.getType())) {
5773 assert(ResNo == 0 &&
"Asm only has one result!");
5783 OpInfo.
CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5794 OpTy = Call.getParamElementType(ArgNo);
5795 assert(OpTy &&
"Indirect operand must have elementtype attribute");
5799 if (
StructType *STy = dyn_cast<StructType>(OpTy))
5800 if (STy->getNumElements() == 1)
5801 OpTy = STy->getElementType(0);
5806 unsigned BitSize =
DL.getTypeSizeInBits(OpTy);
5827 if (!ConstraintOperands.empty()) {
5829 unsigned bestMAIndex = 0;
5830 int bestWeight = -1;
5836 for (maIndex = 0; maIndex < maCount; ++maIndex) {
5838 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5839 cIndex != eIndex; ++cIndex) {
5860 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5865 weightSum += weight;
5868 if (weightSum > bestWeight) {
5869 bestWeight = weightSum;
5870 bestMAIndex = maIndex;
5877 cInfo.selectAlternative(bestMAIndex);
5882 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5883 cIndex != eIndex; ++cIndex) {
5894 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5897 std::pair<unsigned, const TargetRegisterClass *> InputRC =
5904 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
5905 (MatchRC.second != InputRC.second)) {
5907 " with a matching output constraint of"
5908 " incompatible type!");
5914 return ConstraintOperands;
5949 if (maIndex >= (
int)
info.multipleAlternatives.size())
5950 rCodes = &
info.Codes;
5952 rCodes = &
info.multipleAlternatives[maIndex].Codes;
5956 for (
const std::string &rCode : *rCodes) {
5958 getSingleConstraintMatchWeight(
info, rCode.c_str());
5959 if (weight > BestWeight)
5960 BestWeight = weight;
5973 Value *CallOperandVal =
info.CallOperandVal;
5976 if (!CallOperandVal)
5979 switch (*constraint) {
5982 if (isa<ConstantInt>(CallOperandVal))
5983 weight = CW_Constant;
5986 if (isa<GlobalValue>(CallOperandVal))
5987 weight = CW_Constant;
5991 if (isa<ConstantFP>(CallOperandVal))
5992 weight = CW_Constant;
6005 weight = CW_Register;
6009 weight = CW_Default;
6043 Ret.reserve(OpInfo.
Codes.size());
6058 Ret.emplace_back(Code, CType);
6063 return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6077 "need immediate or other");
6082 std::vector<SDValue> ResultOps;
6084 return !ResultOps.empty();
6092 assert(!OpInfo.
Codes.empty() &&
"Must have at least one constraint");
6095 if (OpInfo.
Codes.size() == 1) {
6103 unsigned BestIdx = 0;
6104 for (
const unsigned E =
G.size();
6111 if (BestIdx + 1 == E) {
6127 if (isa<ConstantInt>(v) || isa<Function>(v)) {
6131 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6138 if (
const char *Repl = LowerXConstraint(OpInfo.
ConstraintVT)) {
6153 EVT VT =
N->getValueType(0);
6158 bool UseSRA =
false;
6164 APInt Divisor =
C->getAPIntValue();
6186 "Expected matchUnaryPredicate to return one element for scalable "
6191 assert(isa<ConstantSDNode>(Op1) &&
"Expected a constant");
6193 Factor = Factors[0];
6211 EVT VT =
N->getValueType(0);
6216 bool UseSRL =
false;
6222 APInt Divisor =
C->getAPIntValue();
6247 "Expected matchUnaryPredicate to return one element for scalable "
6252 assert(isa<ConstantSDNode>(Op1) &&
"Expected a constant");
6254 Factor = Factors[0];
6297 EVT VT =
N->getValueType(0);
6333 bool IsAfterLegalization,
6334 bool IsAfterLegalTypes,
6337 EVT VT =
N->getValueType(0);
6363 if (
N->getFlags().hasExact())
6372 const APInt &Divisor =
C->getAPIntValue();
6374 int NumeratorFactor = 0;
6385 NumeratorFactor = 1;
6388 NumeratorFactor = -1;
6405 SDValue MagicFactor, Factor, Shift, ShiftMask;
6413 Shifts.
size() == 1 && ShiftMasks.
size() == 1 &&
6414 "Expected matchUnaryPredicate to return one element for scalable "
6421 assert(isa<ConstantSDNode>(N1) &&
"Expected a constant");
6422 MagicFactor = MagicFactors[0];
6423 Factor = Factors[0];
6425 ShiftMask = ShiftMasks[0];
6471 SDValue Q = GetMULHS(N0, MagicFactor);
6501 bool IsAfterLegalization,
6502 bool IsAfterLegalTypes,
6505 EVT VT =
N->getValueType(0);
6531 if (
N->getFlags().hasExact())
6541 bool UseNPQ =
false, UsePreShift =
false, UsePostShift =
false;
6547 const APInt& Divisor =
C->getAPIntValue();
6549 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6553 if (Divisor.
isOne()) {
6554 PreShift = PostShift = DAG.
getUNDEF(ShSVT);
6555 MagicFactor = NPQFactor = DAG.
getUNDEF(SVT);
6559 Divisor, std::min(KnownLeadingZeros, Divisor.
countl_zero()));
6564 "We shouldn't generate an undefined shift!");
6566 "We shouldn't generate an undefined shift!");
6568 "Unexpected pre-shift");
6575 UseNPQ |= magics.
IsAdd;
6576 UsePreShift |= magics.
PreShift != 0;
6591 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6599 NPQFactors.
size() == 1 && PostShifts.
size() == 1 &&
6600 "Expected matchUnaryPredicate to return one for scalable vectors");
6606 assert(isa<ConstantSDNode>(N1) &&
"Expected a constant");
6607 PreShift = PreShifts[0];
6608 MagicFactor = MagicFactors[0];
6609 PostShift = PostShifts[0];
6661 Q = GetMULHU(Q, MagicFactor);
6674 NPQ = GetMULHU(NPQ, NPQFactor);
6693 return DAG.
getSelect(dl, VT, IsOne, N0, Q);
6702 std::function<
bool(
SDValue)> Predicate,
6707 if (SplatValue != Values.
end()) {
6710 return Value == *SplatValue || Predicate(
Value);
6712 Replacement = *SplatValue;
6716 if (!AlternativeReplacement)
6719 Replacement = AlternativeReplacement;
6721 std::replace_if(Values.
begin(), Values.
end(), Predicate, Replacement);
6732 DAGCombinerInfo &DCI,
6735 if (
SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6738 DCI.AddToWorklist(
N);
6746TargetLowering::prepareUREMEqFold(
EVT SETCCVT,
SDValue REMNode,
6748 DAGCombinerInfo &DCI,
const SDLoc &
DL,
6756 "Only applicable for (in)equality comparisons.");
6769 bool ComparingWithAllZeros =
true;
6770 bool AllComparisonsWithNonZerosAreTautological =
true;
6771 bool HadTautologicalLanes =
false;
6772 bool AllLanesAreTautological =
true;
6773 bool HadEvenDivisor =
false;
6774 bool AllDivisorsArePowerOfTwo =
true;
6775 bool HadTautologicalInvertedLanes =
false;
6784 const APInt &
Cmp = CCmp->getAPIntValue();
6786 ComparingWithAllZeros &=
Cmp.isZero();
6792 bool TautologicalInvertedLane =
D.ule(Cmp);
6793 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6798 bool TautologicalLane =
D.isOne() || TautologicalInvertedLane;
6799 HadTautologicalLanes |= TautologicalLane;
6800 AllLanesAreTautological &= TautologicalLane;
6806 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6809 unsigned K =
D.countr_zero();
6810 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
6814 HadEvenDivisor |= (
K != 0);
6817 AllDivisorsArePowerOfTwo &= D0.
isOne();
6821 unsigned W =
D.getBitWidth();
6823 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
6836 "We are expecting that K is always less than all-ones for ShSVT");
6839 if (TautologicalLane) {
6865 if (AllLanesAreTautological)
6870 if (AllDivisorsArePowerOfTwo)
6875 if (HadTautologicalLanes) {
6890 "Expected matchBinaryPredicate to return one element for "
6901 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6905 "Expecting that the types on LHS and RHS of comparisons match.");
6915 if (HadEvenDivisor) {
6928 if (!HadTautologicalInvertedLanes)
6934 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
6941 SDValue TautologicalInvertedChannels =
6951 DL, SETCCVT, SETCCVT);
6953 Replacement, NewCC);
6961 TautologicalInvertedChannels);
6974 DAGCombinerInfo &DCI,
6977 if (
SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6979 assert(Built.
size() <= 7 &&
"Max size prediction failed.");
6981 DCI.AddToWorklist(
N);
6989TargetLowering::prepareSREMEqFold(
EVT SETCCVT,
SDValue REMNode,
6991 DAGCombinerInfo &DCI,
const SDLoc &
DL,
7016 "Only applicable for (in)equality comparisons.");
7032 if (!CompTarget || !CompTarget->
isZero())
7035 bool HadIntMinDivisor =
false;
7036 bool HadOneDivisor =
false;
7037 bool AllDivisorsAreOnes =
true;
7038 bool HadEvenDivisor =
false;
7039 bool NeedToApplyOffset =
false;
7040 bool AllDivisorsArePowerOfTwo =
true;
7055 HadIntMinDivisor |=
D.isMinSignedValue();
7058 HadOneDivisor |=
D.isOne();
7059 AllDivisorsAreOnes &=
D.isOne();
7062 unsigned K =
D.countr_zero();
7063 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7066 if (!
D.isMinSignedValue()) {
7069 HadEvenDivisor |= (
K != 0);
7074 AllDivisorsArePowerOfTwo &= D0.
isOne();
7078 unsigned W =
D.getBitWidth();
7080 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7086 if (!
D.isMinSignedValue()) {
7089 NeedToApplyOffset |=
A != 0;
7096 "We are expecting that A is always less than all-ones for SVT");
7098 "We are expecting that K is always less than all-ones for ShSVT");
7138 if (AllDivisorsAreOnes)
7143 if (AllDivisorsArePowerOfTwo)
7146 SDValue PVal, AVal, KVal, QVal;
7148 if (HadOneDivisor) {
7168 QAmts.
size() == 1 &&
7169 "Expected matchUnaryPredicate to return one element for scalable "
7176 assert(isa<ConstantSDNode>(
D) &&
"Expected a constant");
7187 if (NeedToApplyOffset) {
7199 if (HadEvenDivisor) {
7214 if (!HadIntMinDivisor)
7220 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7255 MaskedIsZero, Fold);
7262 if (!isa<ConstantSDNode>(
Op.getOperand(0))) {
7264 "be a constant integer");
7274 EVT VT =
Op.getValueType();
7297 bool LegalOps,
bool OptForSize,
7299 unsigned Depth)
const {
7301 if (
Op.getOpcode() ==
ISD::FNEG ||
Op.getOpcode() == ISD::VP_FNEG) {
7303 return Op.getOperand(0);
7314 EVT VT =
Op.getValueType();
7315 unsigned Opcode =
Op.getOpcode();
7325 auto RemoveDeadNode = [&](
SDValue N) {
7326 if (
N &&
N.getNode()->use_empty())
7335 std::list<HandleSDNode> Handles;
7346 if (LegalOps && !IsOpLegal)
7349 APFloat V = cast<ConstantFPSDNode>(
Op)->getValueAPF();
7363 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7371 return N.isUndef() ||
7376 if (LegalOps && !IsOpLegal)
7385 APFloat V = cast<ConstantFPSDNode>(
C)->getValueAPF();
7393 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7404 getNegatedExpression(
X, DAG, LegalOps, OptForSize, CostX,
Depth);
7407 Handles.emplace_back(NegX);
7412 getNegatedExpression(
Y, DAG, LegalOps, OptForSize, CostY,
Depth);
7418 if (NegX && (CostX <= CostY)) {
7422 RemoveDeadNode(NegY);
7431 RemoveDeadNode(NegX);
7438 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7460 getNegatedExpression(
X, DAG, LegalOps, OptForSize, CostX,
Depth);
7463 Handles.emplace_back(NegX);
7468 getNegatedExpression(
Y, DAG, LegalOps, OptForSize, CostY,
Depth);
7474 if (NegX && (CostX <= CostY)) {
7478 RemoveDeadNode(NegY);
7484 if (
C->isExactlyValue(2.0) &&
Op.getOpcode() ==
ISD::FMUL)
7492 RemoveDeadNode(NegX);
7499 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7502 SDValue X =
Op.getOperand(0),
Y =
Op.getOperand(1), Z =
Op.getOperand(2);
7505 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ,
Depth);
7511 Handles.emplace_back(NegZ);
7516 getNegatedExpression(
X, DAG, LegalOps, OptForSize, CostX,
Depth);
7519 Handles.emplace_back(NegX);
7524 getNegatedExpression(
Y, DAG, LegalOps, OptForSize, CostY,
Depth);
7530 if (NegX && (CostX <= CostY)) {
7531 Cost = std::min(CostX, CostZ);
7534 RemoveDeadNode(NegY);
7540 Cost = std::min(CostY, CostZ);
7543 RemoveDeadNode(NegX);
7551 if (
SDValue NegV = getNegatedExpression(
Op.getOperand(0), DAG, LegalOps,
7553 return DAG.
getNode(Opcode,
DL, VT, NegV);
7556 if (
SDValue NegV = getNegatedExpression(
Op.getOperand(0), DAG, LegalOps,
7567 getNegatedExpression(
LHS, DAG, LegalOps, OptForSize, CostLHS,
Depth);
7569 RemoveDeadNode(NegLHS);
7574 Handles.emplace_back(NegLHS);
7579 getNegatedExpression(
RHS, DAG, LegalOps, OptForSize, CostRHS,
Depth);
7587 RemoveDeadNode(NegLHS);
7588 RemoveDeadNode(NegRHS);
7592 Cost = std::min(CostLHS, CostRHS);
7593 return DAG.
getSelect(
DL, VT,
Op.getOperand(0), NegLHS, NegRHS);
7622 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7635 if ((
Signed && HasSMUL_LOHI) || (!
Signed && HasUMUL_LOHI)) {
7663 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false)) {
7664 Result.push_back(
Lo);
7665 Result.push_back(
Hi);
7668 Result.push_back(Zero);
7669 Result.push_back(Zero);
7680 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
true)) {
7681 Result.push_back(
Lo);
7682 Result.push_back(
Hi);
7687 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7702 if (!MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false))
7705 Result.push_back(
Lo);
7712 Result.push_back(
Hi);
7725 if (!MakeMUL_LOHI(LL, RH,
Lo,
Hi,
false))
7732 if (!MakeMUL_LOHI(LH, RL,
Lo,
Hi,
false))
7784 bool Ok = expandMUL_LOHI(
N->getOpcode(),
N->getValueType(0),
SDLoc(
N),
7785 N->getOperand(0),
N->getOperand(1), Result, HiLoVT,
7786 DAG, Kind, LL, LH, RL, RH);
7788 assert(Result.size() == 2);
7820 unsigned Opcode =
N->getOpcode();
7821 EVT VT =
N->getValueType(0);
7828 "Unexpected opcode");
7830 auto *CN = dyn_cast<ConstantSDNode>(
N->getOperand(1));
7834 APInt Divisor = CN->getAPIntValue();
7842 if (Divisor.
uge(HalfMaxPlus1))
7860 unsigned TrailingZeros = 0;
7874 if (HalfMaxPlus1.
urem(Divisor).
isOne()) {
7875 assert(!LL == !LH &&
"Expected both input halves or no input halves!");
7877 std::tie(LL, LH) = DAG.
SplitScalar(
N->getOperand(0), dl, HiLoVT, HiLoVT);
7881 if (TrailingZeros) {
7949 std::tie(QuotL, QuotH) = DAG.
SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7950 Result.push_back(QuotL);
7951 Result.push_back(QuotH);
7957 if (TrailingZeros) {
7963 Result.push_back(RemL);
7979 EVT VT =
Node->getValueType(0);
7989 bool IsFSHL =
Node->getOpcode() == ISD::VP_FSHL;
7992 EVT ShVT = Z.getValueType();
7998 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
7999 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8000 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, IsFSHL ? ShAmt : InvShAmt, Mask,
8002 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8010 ShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, Z, BitMask, Mask, VL);
8014 InvShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, NotZ, BitMask, Mask, VL);
8017 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8018 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitMask, ShAmt, Mask, VL);
8023 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, ShAmt, Mask, VL);
8025 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT, ShY1, InvShAmt, Mask, VL);
8028 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT, ShX1, InvShAmt, Mask, VL);
8029 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, ShAmt, Mask, VL);
8032 return DAG.
getNode(ISD::VP_OR,
DL, VT, ShX, ShY, Mask, VL);
8037 if (Node->isVPOpcode())
8040 EVT VT = Node->getValueType(0);
8050 SDValue Z = Node->getOperand(2);
8053 bool IsFSHL = Node->getOpcode() ==
ISD::FSHL;
8056 EVT ShVT = Z.getValueType();
8126 EVT VT = Node->getValueType(0);
8128 bool IsLeft = Node->getOpcode() ==
ISD::ROTL;
8129 SDValue Op0 = Node->getOperand(0);
8130 SDValue Op1 = Node->getOperand(1);
8141 return DAG.
getNode(RevRot,
DL, VT, Op0, Sub);
8144 if (!AllowVectorOps && VT.
isVector() &&
8162 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8164 HsVal = DAG.
getNode(HsOpc,
DL, VT, Op0, HsAmt);
8170 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8181 assert(Node->getNumOperands() == 3 &&
"Not a double-shift!");
8182 EVT VT = Node->getValueType(0);
8188 SDValue ShOpLo = Node->getOperand(0);
8189 SDValue ShOpHi = Node->getOperand(1);
8190 SDValue ShAmt = Node->getOperand(2);
8233 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8234 SDValue Src = Node->getOperand(OpNo);
8235 EVT SrcVT = Src.getValueType();
8236 EVT DstVT = Node->getValueType(0);
8240 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8243 if (Node->isStrictFPOpcode())
8306 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8307 SDValue Src = Node->getOperand(OpNo);
8309 EVT SrcVT = Src.getValueType();
8310 EVT DstVT = Node->getValueType(0);
8331 if (Node->isStrictFPOpcode()) {
8333 { Node->getOperand(0), Src });
8334 Chain = Result.getValue(1);
8348 if (Node->isStrictFPOpcode()) {
8350 Node->getOperand(0),
true);
8356 bool Strict = Node->isStrictFPOpcode() ||
8375 if (Node->isStrictFPOpcode()) {
8377 { Chain, Src, FltOfs });
8399 Result = DAG.
getSelect(dl, DstVT, Sel, True, False);
8409 if (Node->isStrictFPOpcode())
8412 SDValue Src = Node->getOperand(0);
8413 EVT SrcVT = Src.getValueType();
8414 EVT DstVT = Node->getValueType(0);
8418 if (Node->getFlags().hasNonNeg() &&
8448 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8467 unsigned Opcode = Node->getOpcode();
8472 if (Node->getFlags().hasNoNaNs()) {
8474 EVT VT = Node->getValueType(0);
8479 SDValue Op1 = Node->getOperand(0);
8480 SDValue Op2 = Node->getOperand(1);
8493 if (
SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8496 EVT VT = Node->getValueType(0);
8499 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8506 SDValue Quiet0 = Node->getOperand(0);
8507 SDValue Quiet1 = Node->getOperand(1);
8509 if (!Node->getFlags().hasNoNaNs()) {
8522 return DAG.
getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8528 if ((Node->getFlags().hasNoNaNs() ||
8531 (Node->getFlags().hasNoSignedZeros() ||
8534 unsigned IEEE2018Op =
8537 return DAG.
getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8538 Node->getOperand(1), Node->getFlags());
8541 if (
SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8549 if (
SDValue Expanded = expandVectorNaryOpBySplitting(
N, DAG))
8555 unsigned Opc =
N->getOpcode();
8556 EVT VT =
N->getValueType(0);
8569 bool MinMaxMustRespectOrderedZero =
false;
8573 MinMaxMustRespectOrderedZero =
true;
8587 if (!
N->getFlags().hasNoNaNs() &&
8596 if (!MinMaxMustRespectOrderedZero && !
N->getFlags().hasNoSignedZeros() &&
8619 unsigned Opc = Node->getOpcode();
8620 EVT VT = Node->getValueType(0);
8630 if (!Flags.hasNoNaNs()) {
8646 if (Flags.hasNoNaNs() ||
8648 unsigned IEEE2019Op =
8656 if ((Flags.hasNoNaNs() ||
8685 if (
Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8710 bool IsOrdered = NanTest ==
fcNone;
8711 bool IsUnordered = NanTest ==
fcNan;
8714 if (!IsOrdered && !IsUnordered)
8715 return std::nullopt;
8717 if (OrderedMask ==
fcZero &&
8723 return std::nullopt;
8730 EVT OperandVT =
Op.getValueType();
8742 if (OperandVT == MVT::ppcf128) {
8745 OperandVT = MVT::f64;
8752 bool IsF80 = (ScalarFloatVT == MVT::f80);
8756 if (Flags.hasNoFPExcept() &&
8759 bool IsInvertedFP =
false;
8763 FPTestMask = InvertedFPCheck;
8764 IsInvertedFP =
true;
8771 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8776 OrderedFPTestMask = FPTestMask;
8778 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8780 if (std::optional<bool> IsCmp0 =
8783 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8790 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8793 if (FPTestMask ==
fcNan &&
8799 bool IsOrderedInf = FPTestMask ==
fcInf;
8802 : UnorderedCmpOpcode,
8813 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8818 : UnorderedCmpOpcode,
8829 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
8848 return DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal,
8849 IsOrdered ? OrderedOp : UnorderedOp);
8872 DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
8874 return DAG.
getNode(LogicOp,
DL, ResultVT, IsFinite, IsNormal);
8881 bool IsInverted =
false;
8884 Test = InvertedCheck;
8900 const unsigned ExplicitIntBitInF80 = 63;
8901 APInt ExpMask = Inf;
8903 ExpMask.
clearBit(ExplicitIntBitInF80);
8917 const auto appendResult = [&](
SDValue PartialRes) {
8927 const auto getIntBitIsSet = [&]() ->
SDValue {
8928 if (!IntBitIsSetV) {
8929 APInt IntBitMask(BitSize, 0);
8930 IntBitMask.
setBit(ExplicitIntBitInF80);
8935 return IntBitIsSetV;
8956 Test &= ~fcPosFinite;
8961 Test &= ~fcNegFinite;
8963 appendResult(PartialRes);
8972 appendResult(ExpIsZero);
8982 else if (PartialCheck ==
fcZero)
8986 appendResult(PartialRes);
8999 appendResult(PartialRes);
9002 if (
unsigned PartialCheck =
Test &
fcInf) {
9005 else if (PartialCheck ==
fcInf)
9012 appendResult(PartialRes);
9015 if (
unsigned PartialCheck =
Test &
fcNan) {
9016 APInt InfWithQnanBit = Inf | QNaNBitMask;
9018 if (PartialCheck ==
fcNan) {
9031 }
else if (PartialCheck ==
fcQNan) {
9043 appendResult(PartialRes);
9048 APInt ExpLSB = ExpMask & ~(ExpMask.
shl(1));
9051 APInt ExpLimit = ExpMask - ExpLSB;
9064 appendResult(PartialRes);
9087 EVT VT = Node->getValueType(0);
9094 if (!(Len <= 128 && Len % 8 == 0))
9153 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9164 EVT VT = Node->getValueType(0);
9167 SDValue Mask = Node->getOperand(1);
9168 SDValue VL = Node->getOperand(2);
9173 if (!(Len <= 128 && Len % 8 == 0))
9185 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9188 Tmp1 = DAG.
getNode(ISD::VP_AND, dl, VT,
9192 Op = DAG.
getNode(ISD::VP_SUB, dl, VT,
Op, Tmp1, Mask, VL);
9195 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op, Mask33, Mask, VL);
9196 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT,
9200 Op = DAG.
getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9205 Tmp5 = DAG.
getNode(ISD::VP_ADD, dl, VT,
Op, Tmp4, Mask, VL);
9206 Op = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9217 V = DAG.
getNode(ISD::VP_MUL, dl, VT,
Op, Mask01, Mask, VL);
9220 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9222 V = DAG.
getNode(ISD::VP_ADD, dl, VT, V,
9223 DAG.
getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9233 EVT VT = Node->getValueType(0);
9272 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9283 EVT VT = Node->getValueType(0);
9286 SDValue Mask = Node->getOperand(1);
9287 SDValue VL = Node->getOperand(2);
9297 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9300 DAG.
getNode(ISD::VP_SRL, dl, VT,
Op, Tmp, Mask, VL), Mask,
9305 return DAG.
getNode(ISD::VP_CTPOP, dl, VT,
Op, Mask, VL);
9314 :
APInt(64, 0x0218A392CD3D5DBFULL);
9328 for (
unsigned i = 0; i <
BitWidth; i++) {
9354 EVT VT = Node->getValueType(0);
9388 if (
SDValue V = CTTZTableLookup(Node, DAG, dl, VT,
Op, NumBitsPerElt))
9410 SDValue Mask = Node->getOperand(1);
9411 SDValue VL = Node->getOperand(2);
9413 EVT VT = Node->getValueType(0);
9420 SDValue Tmp = DAG.
getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9421 return DAG.
getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9435 EVT SrcVT = Source.getValueType();
9436 EVT ResVT =
N->getValueType(0);
9445 Source = DAG.
getNode(ISD::VP_SETCC,
DL, SrcVT, Source, AllZero,
9453 DAG.
getNode(ISD::VP_SELECT,
DL, ResVecVT, Source, StepVec,
Splat, EVL);
9454 return DAG.
getNode(ISD::VP_REDUCE_UMIN,
DL, ResVT, ExtEVL,
Select, Mask, EVL);
9458 bool IsNegative)
const {
9460 EVT VT =
N->getValueType(0);
9514 EVT VT =
N->getValueType(0);
9588 EVT VT =
N->getValueType(0);
9592 unsigned Opc =
N->getOpcode();
9601 "Unknown AVG node");
9613 return DAG.
getNode(ShiftOpc, dl, VT, Sum,
9665 return DAG.
getNode(SumOpc, dl, VT, Sign, Shift);
9670 EVT VT =
N->getValueType(0);
9677 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9728 EVT VT =
N->getValueType(0);
9737 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9746 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9756 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9760 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9761 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9762 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9766 Tmp7 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9770 Tmp6 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9771 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9774 Tmp5 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9775 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9780 Tmp4 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp4,
9781 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9784 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp3,
9785 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9788 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9792 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9793 Tmp6 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9794 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9795 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9796 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9797 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9798 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9804 EVT VT =
N->getValueType(0);
9847 for (
unsigned I = 0, J = Sz-1;
I < Sz; ++
I, --J) {
9864 assert(
N->getOpcode() == ISD::VP_BITREVERSE);
9867 EVT VT =
N->getValueType(0);
9886 Tmp = (Sz > 8 ? DAG.
getNode(ISD::VP_BSWAP, dl, VT,
Op, Mask, EVL) :
Op);
9891 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9897 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9902 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9908 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9913 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9919 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9925std::pair<SDValue, SDValue>
9929 SDValue Chain = LD->getChain();
9930 SDValue BasePTR = LD->getBasePtr();
9931 EVT SrcVT = LD->getMemoryVT();
9932 EVT DstVT = LD->getValueType(0);
9964 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9965 LD->getMemOperand()->getFlags(), LD->getAAInfo());
9968 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
9969 unsigned ShiftIntoIdx =
9980 Scalar = DAG.
getNode(ExtendOp, SL, DstEltVT, Scalar);
9987 return std::make_pair(
Value, Load.getValue(1));
9996 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
9998 DAG.
getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9999 LD->getPointerInfo().getWithOffset(
Idx * Stride),
10000 SrcEltVT, LD->getOriginalAlign(),
10001 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10012 return std::make_pair(
Value, NewChain);
10019 SDValue Chain = ST->getChain();
10020 SDValue BasePtr = ST->getBasePtr();
10022 EVT StVT = ST->getMemoryVT();
10048 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
10053 unsigned ShiftIntoIdx =
10062 return DAG.
getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10063 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10069 assert(Stride &&
"Zero stride!");
10073 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
10082 Chain, SL, Elt,
Ptr, ST->getPointerInfo().getWithOffset(
Idx * Stride),
10083 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10092std::pair<SDValue, SDValue>
10095 "unaligned indexed loads not implemented!");
10096 SDValue Chain = LD->getChain();
10098 EVT VT = LD->getValueType(0);
10099 EVT LoadedVT = LD->getMemoryVT();
10109 return scalarizeVectorLoad(LD, DAG);
10115 LD->getMemOperand());
10117 if (LoadedVT != VT)
10121 return std::make_pair(Result, newLoad.
getValue(1));
10129 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10133 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.
getNode())->getIndex();
10135 SDValue StackPtr = StackBase;
10138 EVT PtrVT =
Ptr.getValueType();
10139 EVT StackPtrVT = StackPtr.getValueType();
10145 for (
unsigned i = 1; i < NumRegs; i++) {
10148 RegVT, dl, Chain,
Ptr, LD->getPointerInfo().getWithOffset(
Offset),
10149 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10153 Load.getValue(1), dl, Load, StackPtr,
10164 8 * (LoadedBytes -
Offset));
10167 LD->getPointerInfo().getWithOffset(
Offset), MemVT,
10168 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10174 Load.getValue(1), dl, Load, StackPtr,
10181 Load = DAG.
getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10186 return std::make_pair(Load, TF);
10190 "Unaligned load of unsupported type.");
10199 Align Alignment = LD->getOriginalAlign();
10200 unsigned IncrementSize = NumBits / 8;
10211 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10216 LD->getPointerInfo().getWithOffset(IncrementSize),
10217 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10220 Hi = DAG.
getExtLoad(HiExtType, dl, VT, Chain,
Ptr, LD->getPointerInfo(),
10221 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10226 LD->getPointerInfo().getWithOffset(IncrementSize),
10227 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10239 return std::make_pair(Result, TF);
10245 "unaligned indexed stores not implemented!");
10246 SDValue Chain = ST->getChain();
10248 SDValue Val = ST->getValue();
10250 Align Alignment = ST->getOriginalAlign();
10252 EVT StoreMemVT = ST->getMemoryVT();
10268 Result = DAG.
getStore(Chain, dl, Result,
Ptr, ST->getPointerInfo(),
10269 Alignment, ST->getMemOperand()->getFlags());
10277 EVT PtrVT =
Ptr.getValueType();
10280 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10284 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10288 Chain, dl, Val, StackPtr,
10291 EVT StackPtrVT = StackPtr.getValueType();
10299 for (
unsigned i = 1; i < NumRegs; i++) {
10302 RegVT, dl, Store, StackPtr,
10306 ST->getPointerInfo().getWithOffset(
Offset),
10307 ST->getOriginalAlign(),
10308 ST->getMemOperand()->getFlags()));
10328 ST->getPointerInfo().getWithOffset(
Offset), LoadMemVT,
10329 ST->getOriginalAlign(),
10330 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10337 "Unaligned store of unknown type.");
10341 unsigned IncrementSize = NumBits / 8;
10350 if (
auto *
C = dyn_cast<ConstantSDNode>(
Lo);
C && !
C->isOpaque())
10361 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10362 ST->getMemOperand()->getFlags());
10367 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10368 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10379 bool IsCompressedMemory)
const {
10381 EVT AddrVT =
Addr.getValueType();
10382 EVT MaskVT = Mask.getValueType();
10384 "Incompatible types of Data and Mask");
10385 if (IsCompressedMemory) {
10388 "Cannot currently handle compressed memory with scalable vectors");
10394 MaskIntVT = MVT::i32;
10418 "Cannot index a scalable vector within a fixed-width vector");
10422 EVT IdxVT =
Idx.getValueType();
10428 if (
auto *IdxCst = dyn_cast<ConstantSDNode>(
Idx))
10429 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10443 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10451 return getVectorSubVecPointer(
10452 DAG, VecPtr, VecVT,
10470 "Converting bits to bytes lost precision");
10472 "Sub-vector must be a vector with matching element type");
10476 EVT IdxVT = Index.getValueType();
10508 assert(EmuTlsVar &&
"Cannot find EmuTlsVar ");
10510 Entry.Ty = VoidPtrType;
10511 Args.push_back(Entry);
10518 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10527 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10528 return CallResult.first;
10539 EVT VT =
Op.getOperand(0).getValueType();
10541 if (VT.
bitsLT(MVT::i32)) {
10555 SDValue Op0 = Node->getOperand(0);
10556 SDValue Op1 = Node->getOperand(1);
10559 unsigned Opcode = Node->getOpcode();
10601 {Op0, Op1, DAG.getCondCode(CC)})) {
10608 {Op0, Op1, DAG.getCondCode(CC)})) {
10636 unsigned Opcode = Node->getOpcode();
10639 EVT VT =
LHS.getValueType();
10642 assert(VT ==
RHS.getValueType() &&
"Expected operands to be the same type");
10658 unsigned OverflowOp;
10673 llvm_unreachable(
"Expected method to receive signed or unsigned saturation "
10674 "addition or subtraction node.");
10682 unsigned BitWidth =
LHS.getScalarValueSizeInBits();
10685 SDValue SumDiff = Result.getValue(0);
10686 SDValue Overflow = Result.getValue(1);
10708 return DAG.
getSelect(dl, VT, Overflow, Zero, SumDiff);
10728 if (LHSIsNonNegative || RHSIsNonNegative) {
10730 return DAG.
getSelect(dl, VT, Overflow, SatMax, SumDiff);
10736 if (LHSIsNegative || RHSIsNegative) {
10738 return DAG.
getSelect(dl, VT, Overflow, SatMin, SumDiff);
10748 return DAG.
getSelect(dl, VT, Overflow, Result, SumDiff);
10752 unsigned Opcode = Node->getOpcode();
10755 EVT VT =
LHS.getValueType();
10756 EVT ResVT = Node->getValueType(0);
10787 unsigned Opcode = Node->getOpcode();
10791 EVT VT =
LHS.getValueType();
10796 "Expected a SHLSAT opcode");
10797 assert(VT ==
RHS.getValueType() &&
"Expected operands to be the same type");
10835 if (WideVT == MVT::i16)
10836 LC = RTLIB::MUL_I16;
10837 else if (WideVT == MVT::i32)
10838 LC = RTLIB::MUL_I32;
10839 else if (WideVT == MVT::i64)
10840 LC = RTLIB::MUL_I64;
10841 else if (WideVT == MVT::i128)
10842 LC = RTLIB::MUL_I128;
10851 unsigned HalfBits = Bits >> 1;
10890 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.
getDataLayout())) {
10895 SDValue Args[] = {LL, LH, RL, RH};
10896 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10898 SDValue Args[] = {LH, LL, RH, RL};
10899 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10902 "Ret value is a collection of constituent nodes holding result.");
10905 Lo = Ret.getOperand(0);
10906 Hi = Ret.getOperand(1);
10908 Lo = Ret.getOperand(1);
10909 Hi = Ret.getOperand(0);
10918 EVT VT =
LHS.getValueType();
10919 assert(
RHS.getValueType() == VT &&
"Mismatching operand types");
10938 forceExpandWideMUL(DAG, dl,
Signed, WideVT,
LHS, HiLHS,
RHS, HiRHS,
Lo,
Hi);
10947 "Expected a fixed point multiplication opcode");
10952 EVT VT =
LHS.getValueType();
10953 unsigned Scale = Node->getConstantOperandVal(2);
10969 SDValue Product = Result.getValue(0);
10970 SDValue Overflow = Result.getValue(1);
10981 Result = DAG.
getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10982 return DAG.
getSelect(dl, VT, Overflow, Result, Product);
10986 SDValue Product = Result.getValue(0);
10987 SDValue Overflow = Result.getValue(1);
10991 return DAG.
getSelect(dl, VT, Overflow, SatMax, Product);
10996 "Expected scale to be less than the number of bits if signed or at "
10997 "most the number of bits if unsigned.");
10999 "Expected both operands to be the same type");
11011 Lo = Result.getValue(0);
11012 Hi = Result.getValue(1);
11033 if (Scale == VTSize)
11079 return DAG.
getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11104 "Expected a fixed point division opcode");
11106 EVT VT =
LHS.getValueType();
11128 if (LHSLead + RHSTrail < Scale + (
unsigned)(Saturating &&
Signed))
11131 unsigned LHSShift = std::min(LHSLead, Scale);
11132 unsigned RHSShift = Scale - LHSShift;
11189 bool IsAdd = Node->getOpcode() ==
ISD::UADDO;
11195 SDValue NodeCarry = DAG.
getNode(OpcCarry, dl, Node->getVTList(),
11196 { LHS, RHS, CarryIn });
11205 EVT ResultType = Node->getValueType(1);
11216 DAG.
getSetCC(dl, SetCCType, Result,
11235 bool IsAdd = Node->getOpcode() ==
ISD::SADDO;
11240 EVT ResultType = Node->getValueType(1);
11266 DAG.
getNode(
ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11267 ResultType, ResultType);
11273 EVT VT = Node->getValueType(0);
11281 const APInt &
C = RHSC->getAPIntValue();
11283 if (
C.isPowerOf2()) {
11285 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
11288 Overflow = DAG.
getSetCC(dl, SetCCVT,
11290 dl, VT, Result, ShiftAmt),
11303 static const unsigned Ops[2][3] =
11326 forceExpandWideMUL(DAG, dl,
isSigned,
LHS,
RHS, BottomHalf, TopHalf);
11329 Result = BottomHalf;
11336 Overflow = DAG.
getSetCC(dl, SetCCVT, TopHalf,
11341 EVT RType = Node->getValueType(1);
11346 "Unexpected result type for S/UMULO legalization");
11354 EVT VT =
Op.getValueType();
11358 "Expanding reductions for scalable vectors is undefined.");
11369 Op = DAG.
getNode(BaseOpcode, dl, HalfVT,
Lo,
Hi, Node->getFlags());
11381 for (
unsigned i = 1; i < NumElts; i++)
11382 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11385 if (EltVT != Node->getValueType(0))
11392 SDValue AccOp = Node->getOperand(0);
11393 SDValue VecOp = Node->getOperand(1);
11401 "Expanding reductions for scalable vectors is undefined.");
11411 for (
unsigned i = 0; i < NumElts; i++)
11412 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11419 EVT VT = Node->getValueType(0);
11424 SDValue Dividend = Node->getOperand(0);
11425 SDValue Divisor = Node->getOperand(1);
11428 Result = DAG.
getNode(DivRemOpc, dl, VTs, Dividend, Divisor).
getValue(1);
11433 SDValue Divide = DAG.
getNode(DivOpc, dl, VT, Dividend, Divisor);
11445 SDValue Src = Node->getOperand(0);
11448 EVT SrcVT = Src.getValueType();
11449 EVT DstVT = Node->getValueType(0);
11451 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11454 assert(SatWidth <= DstWidth &&
11455 "Expected saturation width smaller than result width");
11459 APInt MinInt, MaxInt;
11470 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11472 SrcVT = Src.getValueType();
11494 if (AreExactFloatBounds && MinMaxLegal) {
11503 dl, DstVT, Clamped);
11515 return DAG.
getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11554 EVT OperandVT =
Op.getValueType();
11576 AbsWide = DAG.
getBitcast(OperandVT, ClearedSign);
11599 KeepNarrow = DAG.
getNode(
ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11608 SDValue Adjust = DAG.
getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11610 Op = DAG.
getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11622 EVT VT = Node->getValueType(0);
11625 if (Node->getConstantOperandVal(1) == 1) {
11628 EVT OperandVT =
Op.getValueType();
11640 EVT I32 =
F32.changeTypeToInteger();
11641 Op = expandRoundInexactToOdd(
F32,
Op, dl, DAG);
11666 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11676 assert(Node->getValueType(0).isScalableVector() &&
11677 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11679 EVT VT = Node->getValueType(0);
11680 SDValue V1 = Node->getOperand(0);
11681 SDValue V2 = Node->getOperand(1);
11682 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11701 EVT PtrVT = StackPtr.getValueType();
11703 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11718 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11720 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr,
11743 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr2,
11750 SDValue Vec = Node->getOperand(0);
11751 SDValue Mask = Node->getOperand(1);
11752 SDValue Passthru = Node->getOperand(2);
11756 EVT MaskVT = Mask.getValueType();
11765 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11773 bool HasPassthru = !Passthru.
isUndef();
11779 Chain = DAG.
getStore(Chain,
DL, Passthru, StackPtr, PtrInfo);
11782 APInt PassthruSplatVal;
11783 bool IsSplatPassthru =
11786 if (IsSplatPassthru) {
11790 LastWriteVal = DAG.
getConstant(PassthruSplatVal,
DL, ScalarVT);
11791 }
else if (HasPassthru) {
11803 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11805 ScalarVT,
DL, Chain, LastElmtPtr,
11811 for (
unsigned I = 0;
I < NumElms;
I++) {
11815 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11817 Chain,
DL, ValI, OutPtr,
11830 if (HasPassthru &&
I == NumElms - 1) {
11836 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11840 LastWriteVal = DAG.
getSelect(
DL, ScalarVT, AllLanesSelected, ValI,
11843 Chain,
DL, LastWriteVal, OutPtr,
11848 return DAG.
getLoad(VecVT,
DL, Chain, StackPtr, PtrInfo);
11854 SDValue EVL,
bool &NeedInvert,
11856 bool IsSignaling)
const {
11857 MVT OpVT =
LHS.getSimpleValueType();
11859 NeedInvert =
false;
11860 assert(!EVL == !Mask &&
"VP Mask and EVL must either both be set or unset");
11861 bool IsNonVP = !EVL;
11876 bool NeedSwap =
false;
11877 InvCC = getSetCCInverse(CCCode, OpVT);
11893 if (OpVT == MVT::i1) {
11946 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11951 "If SETO is expanded, SETOEQ must be legal!");
11968 NeedInvert = ((
unsigned)CCCode & 0x8U);
12009 SetCC1 = DAG.
getSetCC(dl, VT,
LHS,
RHS, CC1, Chain, IsSignaling);
12010 SetCC2 = DAG.
getSetCC(dl, VT,
LHS,
RHS, CC2, Chain, IsSignaling);
12018 SetCC1 = DAG.
getSetCC(dl, VT,
LHS,
LHS, CC1, Chain, IsSignaling);
12019 SetCC2 = DAG.
getSetCC(dl, VT,
RHS,
RHS, CC2, Chain, IsSignaling);
12029 LHS = DAG.
getNode(Opc, dl, VT, SetCC1, SetCC2);
12033 Opc = Opc ==
ISD::OR ? ISD::VP_OR : ISD::VP_AND;
12034 LHS = DAG.
getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12046 EVT VT = Node->getValueType(0);
12058 unsigned Opcode = Node->getOpcode();
12065 for (
const SDValue &V : Node->op_values()) {
unsigned const MachineRegisterInfo * MRI
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
static bool isUndef(ArrayRef< int > Mask)
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
unsigned const TargetRegisterInfo * TRI
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
Function const char * Passes
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
void clearAllBits()
Set every bit to 0.
APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
void negate()
Negate this APInt in place.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned countLeadingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
void setAllBits()
Set every bit to 1.
APInt multiplicativeInverse() const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool hasAttributes() const
Return true if the builder has IR-level attributes.
bool contains(Attribute::AttrKind A) const
Return true if the builder has the specified attribute.
AttrBuilder & removeAttribute(Attribute::AttrKind Val)
Remove an attribute from the builder.
bool hasFnAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the function.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
ConstantFP - Floating Point Values [float, double].
const APInt & getAPIntValue() const
This is an important base class in LLVM.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
Context object for machine code objects.
Base class for the full range of assembler expressions which are needed for parsing.
Wrapper class representing physical registers. Should be passed by value.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setAdjustsStack(bool V)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_GPRel32BlockAddress
EK_GPRel32BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
@ EK_GPRel64BlockAddress
EK_GPRel64BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
static SDNodeIterator end(const SDNode *N)
static SDNodeIterator begin(const SDNode *N)
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
void setFlags(SDNodeFlags NewFlags)
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, unsigned Depth=0) const
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
bool shouldOptForSize() const
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
bool isKnownNeverNaN(SDValue Op, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
std::optional< uint64_t > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
SDValue getCondCode(ISD::CondCode Cond)
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
std::optional< uint64_t > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
virtual EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool shouldExpandCmpUsingSelects(EVT VT) const
Should we expand [US]CMP nodes using two selects and two compares, or by doing arithmetic on boolean ...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const
Return true if it is profitable to reduce a load to a smaller type.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const
Get the CondCode that's to be used to test the result of the comparison libcall against zero.
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual bool findOptimalMemOpLowering(std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, EVT WideVT, const SDValue LL, const SDValue LH, const SDValue RL, const SDValue RH, SDValue &Lo, SDValue &Hi) const
forceExpandWideMUL - Unconditionally expand a MUL into either a libcall or brute force via a wide mul...
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
TargetLowering(const TargetLowering &)=delete
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
const fltSemantics & getFltSemantics() const
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ BRIND
BRIND - Indirect branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantSDNode predicate.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
bool isConstFalseVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
constexpr unsigned BitWidth
bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned Log2(Align A)
Returns the log2 of the alignment.
bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
int MatchingInput
MatchingInput - If this is not -1, this is an output constraint where an input constraint is required...
ConstraintCodeVector Codes
Code - The constraint code, either the register name (in braces) or the constraint letter/number.
SubConstraintInfoVector multipleAlternatives
multipleAlternatives - If there are multiple alternative constraints, this array will contain them.
bool isIndirect
isIndirect - True if this operand is an indirect operand.
bool hasMatchingInput() const
hasMatchingInput - Return true if this is an output constraint that has a matching input constraint.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
static std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
static KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
static std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
static std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
static MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
unsigned ShiftAmount
shift amount
static SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
MVT ConstraintVT
The ValueType for the operand value.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
std::string ConstraintCode
This contains the actual string for the code, like "m".
Value * CallOperandVal
If this is the result output operand or a clobber, this is null, otherwise it is the incoming operand...
unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
bool isBeforeLegalizeOps() const
void AddToWorklist(SDNode *N)
bool isCalledByLegalizer() const
bool isBeforeLegalize() const
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
ArrayRef< EVT > OpsVTBeforeSoften
bool IsPostTypeLegalization
MakeLibCallOptions & setIsSigned(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT, bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
bool LegalOperations() const
Magic data for optimising unsigned division by a constant.
unsigned PreShift
pre-shift amount
static UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...
unsigned PostShift
post-shift amount