LLVM 22.0.0git
TargetLowering.cpp
Go to the documentation of this file.
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/STLExtras.h"
27#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/MC/MCExpr.h"
38#include <cctype>
39#include <deque>
40using namespace llvm;
41using namespace llvm::SDPatternMatch;
42
43/// NOTE: The TargetMachine owns TLOF.
47
48// Define the virtual destructor out-of-line for build efficiency.
50
51const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
52 return nullptr;
53}
54
58
59/// Check whether a given call node is in tail position within its function. If
60/// so, it sets Chain to the input chain of the tail call.
62 SDValue &Chain) const {
64
65 // First, check if tail calls have been disabled in this function.
66 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
67 return false;
68
69 // Conservatively require the attributes of the call to match those of
70 // the return. Ignore following attributes because they don't affect the
71 // call sequence.
72 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
73 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
74 Attribute::DereferenceableOrNull, Attribute::NoAlias,
75 Attribute::NonNull, Attribute::NoUndef,
76 Attribute::Range, Attribute::NoFPClass})
77 CallerAttrs.removeAttribute(Attr);
78
79 if (CallerAttrs.hasAttributes())
80 return false;
81
82 // It's not safe to eliminate the sign / zero extension of the return value.
83 if (CallerAttrs.contains(Attribute::ZExt) ||
84 CallerAttrs.contains(Attribute::SExt))
85 return false;
86
87 // Check if the only use is a function return node.
88 return isUsedByReturnOnly(Node, Chain);
89}
90
92 const uint32_t *CallerPreservedMask,
93 const SmallVectorImpl<CCValAssign> &ArgLocs,
94 const SmallVectorImpl<SDValue> &OutVals) const {
95 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
96 const CCValAssign &ArgLoc = ArgLocs[I];
97 if (!ArgLoc.isRegLoc())
98 continue;
99 MCRegister Reg = ArgLoc.getLocReg();
100 // Only look at callee saved registers.
101 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
102 continue;
103 // Check that we pass the value used for the caller.
104 // (We look for a CopyFromReg reading a virtual register that is used
105 // for the function live-in value of register Reg)
106 SDValue Value = OutVals[I];
107 if (Value->getOpcode() == ISD::AssertZext)
108 Value = Value.getOperand(0);
109 if (Value->getOpcode() != ISD::CopyFromReg)
110 return false;
111 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
112 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
113 return false;
114 }
115 return true;
116}
117
118/// Set CallLoweringInfo attribute flags based on a call instruction
119/// and called function attributes.
121 unsigned ArgIdx) {
122 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
123 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
124 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
125 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
126 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
127 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
128 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
129 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
130 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
131 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
132 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
133 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
134 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
135 Alignment = Call->getParamStackAlign(ArgIdx);
136 IndirectType = nullptr;
138 "multiple ABI attributes?");
139 if (IsByVal) {
140 IndirectType = Call->getParamByValType(ArgIdx);
141 if (!Alignment)
142 Alignment = Call->getParamAlign(ArgIdx);
143 }
144 if (IsPreallocated)
145 IndirectType = Call->getParamPreallocatedType(ArgIdx);
146 if (IsInAlloca)
147 IndirectType = Call->getParamInAllocaType(ArgIdx);
148 if (IsSRet)
149 IndirectType = Call->getParamStructRetType(ArgIdx);
150}
151
152/// Generate a libcall taking the given operands as arguments and returning a
153/// result of type RetVT.
154std::pair<SDValue, SDValue>
155TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl,
157 MakeLibCallOptions CallOptions, const SDLoc &dl,
158 SDValue InChain) const {
159 if (LibcallImpl == RTLIB::Unsupported)
160 reportFatalInternalError("unsupported library call operation");
161
162 if (!InChain)
163 InChain = DAG.getEntryNode();
164
166 Args.reserve(Ops.size());
167
168 ArrayRef<Type *> OpsTypeOverrides = CallOptions.OpsTypeOverrides;
169 for (unsigned i = 0; i < Ops.size(); ++i) {
170 SDValue NewOp = Ops[i];
171 Type *Ty = i < OpsTypeOverrides.size() && OpsTypeOverrides[i]
172 ? OpsTypeOverrides[i]
173 : NewOp.getValueType().getTypeForEVT(*DAG.getContext());
174 TargetLowering::ArgListEntry Entry(NewOp, Ty);
175 if (CallOptions.IsSoften)
176 Entry.OrigTy =
177 CallOptions.OpsVTBeforeSoften[i].getTypeForEVT(*DAG.getContext());
178
179 Entry.IsSExt =
180 shouldSignExtendTypeInLibCall(Entry.Ty, CallOptions.IsSigned);
181 Entry.IsZExt = !Entry.IsSExt;
182
183 if (CallOptions.IsSoften &&
185 Entry.IsSExt = Entry.IsZExt = false;
186 }
187 Args.push_back(Entry);
188 }
189
190 SDValue Callee =
191 DAG.getExternalSymbol(LibcallImpl, getPointerTy(DAG.getDataLayout()));
192
193 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
194 Type *OrigRetTy = RetTy;
196 bool signExtend = shouldSignExtendTypeInLibCall(RetTy, CallOptions.IsSigned);
197 bool zeroExtend = !signExtend;
198
199 if (CallOptions.IsSoften) {
200 OrigRetTy = CallOptions.RetVTBeforeSoften.getTypeForEVT(*DAG.getContext());
202 signExtend = zeroExtend = false;
203 }
204
205 CLI.setDebugLoc(dl)
206 .setChain(InChain)
207 .setLibCallee(getLibcallImplCallingConv(LibcallImpl), RetTy, OrigRetTy,
208 Callee, std::move(Args))
209 .setNoReturn(CallOptions.DoesNotReturn)
212 .setSExtResult(signExtend)
213 .setZExtResult(zeroExtend);
214 return LowerCallTo(CLI);
215}
216
218 LLVMContext &Context, std::vector<EVT> &MemOps, unsigned Limit,
219 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
220 const AttributeList &FuncAttributes) const {
221 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
222 Op.getSrcAlign() < Op.getDstAlign())
223 return false;
224
225 EVT VT = getOptimalMemOpType(Context, Op, FuncAttributes);
226
227 if (VT == MVT::Other) {
228 // Use the largest integer type whose alignment constraints are satisfied.
229 // We only need to check DstAlign here as SrcAlign is always greater or
230 // equal to DstAlign (or zero).
231 VT = MVT::LAST_INTEGER_VALUETYPE;
232 if (Op.isFixedDstAlign())
233 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
234 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
236 assert(VT.isInteger());
237
238 // Find the largest legal integer type.
239 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
240 while (!isTypeLegal(LVT))
241 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
242 assert(LVT.isInteger());
243
244 // If the type we've chosen is larger than the largest legal integer type
245 // then use that instead.
246 if (VT.bitsGT(LVT))
247 VT = LVT;
248 }
249
250 unsigned NumMemOps = 0;
251 uint64_t Size = Op.size();
252 while (Size) {
253 unsigned VTSize = VT.getSizeInBits() / 8;
254 while (VTSize > Size) {
255 // For now, only use non-vector load / store's for the left-over pieces.
256 EVT NewVT = VT;
257 unsigned NewVTSize;
258
259 bool Found = false;
260 if (VT.isVector() || VT.isFloatingPoint()) {
261 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
264 Found = true;
265 else if (NewVT == MVT::i64 &&
267 isSafeMemOpType(MVT::f64)) {
268 // i64 is usually not legal on 32-bit targets, but f64 may be.
269 NewVT = MVT::f64;
270 Found = true;
271 }
272 }
273
274 if (!Found) {
275 do {
276 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
277 if (NewVT == MVT::i8)
278 break;
279 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
280 }
281 NewVTSize = NewVT.getSizeInBits() / 8;
282
283 // If the new VT cannot cover all of the remaining bits, then consider
284 // issuing a (or a pair of) unaligned and overlapping load / store.
285 unsigned Fast;
286 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
288 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
290 Fast)
291 VTSize = Size;
292 else {
293 VT = NewVT;
294 VTSize = NewVTSize;
295 }
296 }
297
298 if (++NumMemOps > Limit)
299 return false;
300
301 MemOps.push_back(VT);
302 Size -= VTSize;
303 }
304
305 return true;
306}
307
308/// Soften the operands of a comparison. This code is shared among BR_CC,
309/// SELECT_CC, and SETCC handlers.
311 SDValue &NewLHS, SDValue &NewRHS,
312 ISD::CondCode &CCCode,
313 const SDLoc &dl, const SDValue OldLHS,
314 const SDValue OldRHS) const {
315 SDValue Chain;
316 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
317 OldRHS, Chain);
318}
319
321 SDValue &NewLHS, SDValue &NewRHS,
322 ISD::CondCode &CCCode,
323 const SDLoc &dl, const SDValue OldLHS,
324 const SDValue OldRHS,
325 SDValue &Chain,
326 bool IsSignaling) const {
327 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
328 // not supporting it. We can update this code when libgcc provides such
329 // functions.
330
331 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
332 && "Unsupported setcc type!");
333
334 // Expand into one or more soft-fp libcall(s).
335 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
336 bool ShouldInvertCC = false;
337 switch (CCCode) {
338 case ISD::SETEQ:
339 case ISD::SETOEQ:
340 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
341 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
342 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
343 break;
344 case ISD::SETNE:
345 case ISD::SETUNE:
346 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
347 (VT == MVT::f64) ? RTLIB::UNE_F64 :
348 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
349 break;
350 case ISD::SETGE:
351 case ISD::SETOGE:
352 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
353 (VT == MVT::f64) ? RTLIB::OGE_F64 :
354 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
355 break;
356 case ISD::SETLT:
357 case ISD::SETOLT:
358 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
359 (VT == MVT::f64) ? RTLIB::OLT_F64 :
360 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
361 break;
362 case ISD::SETLE:
363 case ISD::SETOLE:
364 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
365 (VT == MVT::f64) ? RTLIB::OLE_F64 :
366 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
367 break;
368 case ISD::SETGT:
369 case ISD::SETOGT:
370 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
371 (VT == MVT::f64) ? RTLIB::OGT_F64 :
372 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
373 break;
374 case ISD::SETO:
375 ShouldInvertCC = true;
376 [[fallthrough]];
377 case ISD::SETUO:
378 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
379 (VT == MVT::f64) ? RTLIB::UO_F64 :
380 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
381 break;
382 case ISD::SETONE:
383 // SETONE = O && UNE
384 ShouldInvertCC = true;
385 [[fallthrough]];
386 case ISD::SETUEQ:
387 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
388 (VT == MVT::f64) ? RTLIB::UO_F64 :
389 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
390 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
391 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
392 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
393 break;
394 default:
395 // Invert CC for unordered comparisons
396 ShouldInvertCC = true;
397 switch (CCCode) {
398 case ISD::SETULT:
399 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
400 (VT == MVT::f64) ? RTLIB::OGE_F64 :
401 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
402 break;
403 case ISD::SETULE:
404 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
405 (VT == MVT::f64) ? RTLIB::OGT_F64 :
406 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
407 break;
408 case ISD::SETUGT:
409 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
410 (VT == MVT::f64) ? RTLIB::OLE_F64 :
411 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
412 break;
413 case ISD::SETUGE:
414 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
415 (VT == MVT::f64) ? RTLIB::OLT_F64 :
416 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
417 break;
418 default: llvm_unreachable("Do not know how to soften this setcc!");
419 }
420 }
421
422 // Use the target specific return value for comparison lib calls.
424 SDValue Ops[2] = {NewLHS, NewRHS};
426 EVT OpsVT[2] = { OldLHS.getValueType(),
427 OldRHS.getValueType() };
428 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT);
429 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
430 NewLHS = Call.first;
431 NewRHS = DAG.getConstant(0, dl, RetVT);
432
433 RTLIB::LibcallImpl LC1Impl = getLibcallImpl(LC1);
434 if (LC1Impl == RTLIB::Unsupported) {
436 "no libcall available to soften floating-point compare");
437 }
438
439 CCCode = getSoftFloatCmpLibcallPredicate(LC1Impl);
440 if (ShouldInvertCC) {
441 assert(RetVT.isInteger());
442 CCCode = getSetCCInverse(CCCode, RetVT);
443 }
444
445 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
446 // Update Chain.
447 Chain = Call.second;
448 } else {
449 RTLIB::LibcallImpl LC2Impl = getLibcallImpl(LC2);
450 if (LC2Impl == RTLIB::Unsupported) {
452 "no libcall available to soften floating-point compare");
453 }
454
455 assert(CCCode == (ShouldInvertCC ? ISD::SETEQ : ISD::SETNE) &&
456 "unordered call should be simple boolean");
457
458 EVT SetCCVT =
459 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
461 NewLHS = DAG.getNode(ISD::AssertZext, dl, RetVT, Call.first,
462 DAG.getValueType(MVT::i1));
463 }
464
465 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
466 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
467 CCCode = getSoftFloatCmpLibcallPredicate(LC2Impl);
468 if (ShouldInvertCC)
469 CCCode = getSetCCInverse(CCCode, RetVT);
470 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
471 if (Chain)
472 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
473 Call2.second);
474 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
475 Tmp.getValueType(), Tmp, NewLHS);
476 NewRHS = SDValue();
477 }
478}
479
480/// Return the entry encoding for a jump table in the current function. The
481/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
483 // In non-pic modes, just use the address of a block.
486
487 // Otherwise, use a label difference.
489}
490
492 SelectionDAG &DAG) const {
493 return Table;
494}
495
496/// This returns the relocation base for the given PIC jumptable, the same as
497/// getPICJumpTableRelocBase, but as an MCExpr.
498const MCExpr *
500 unsigned JTI,MCContext &Ctx) const{
501 // The normal PIC reloc base is the label at the start of the jump table.
502 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
503}
504
506 SDValue Addr, int JTI,
507 SelectionDAG &DAG) const {
508 SDValue Chain = Value;
509 // Jump table debug info is only needed if CodeView is enabled.
511 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
512 }
513 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
514}
515
516bool
518 const TargetMachine &TM = getTargetMachine();
519 const GlobalValue *GV = GA->getGlobal();
520
521 // If the address is not even local to this DSO we will have to load it from
522 // a got and then add the offset.
523 if (!TM.shouldAssumeDSOLocal(GV))
524 return false;
525
526 // If the code is position independent we will have to add a base register.
528 return false;
529
530 // Otherwise we can do it.
531 return true;
532}
533
534//===----------------------------------------------------------------------===//
535// Optimization Methods
536//===----------------------------------------------------------------------===//
537
538/// If the specified instruction has a constant integer operand and there are
539/// bits set in that constant that are not demanded, then clear those bits and
540/// return true.
542 const APInt &DemandedBits,
543 const APInt &DemandedElts,
544 TargetLoweringOpt &TLO) const {
545 SDLoc DL(Op);
546 unsigned Opcode = Op.getOpcode();
547
548 // Early-out if we've ended up calling an undemanded node, leave this to
549 // constant folding.
550 if (DemandedBits.isZero() || DemandedElts.isZero())
551 return false;
552
553 // Do target-specific constant optimization.
554 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
555 return TLO.New.getNode();
556
557 // FIXME: ISD::SELECT, ISD::SELECT_CC
558 switch (Opcode) {
559 default:
560 break;
561 case ISD::XOR:
562 case ISD::AND:
563 case ISD::OR: {
564 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
565 if (!Op1C || Op1C->isOpaque())
566 return false;
567
568 // If this is a 'not' op, don't touch it because that's a canonical form.
569 const APInt &C = Op1C->getAPIntValue();
570 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
571 return false;
572
573 if (!C.isSubsetOf(DemandedBits)) {
574 EVT VT = Op.getValueType();
575 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
576 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
577 Op->getFlags());
578 return TLO.CombineTo(Op, NewOp);
579 }
580
581 break;
582 }
583 }
584
585 return false;
586}
587
589 const APInt &DemandedBits,
590 TargetLoweringOpt &TLO) const {
591 EVT VT = Op.getValueType();
592 APInt DemandedElts = VT.isVector()
594 : APInt(1, 1);
595 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
596}
597
598/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
599/// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
600/// but it could be generalized for targets with other types of implicit
601/// widening casts.
603 const APInt &DemandedBits,
604 TargetLoweringOpt &TLO) const {
605 assert(Op.getNumOperands() == 2 &&
606 "ShrinkDemandedOp only supports binary operators!");
607 assert(Op.getNode()->getNumValues() == 1 &&
608 "ShrinkDemandedOp only supports nodes with one result!");
609
610 EVT VT = Op.getValueType();
611 SelectionDAG &DAG = TLO.DAG;
612 SDLoc dl(Op);
613
614 // Early return, as this function cannot handle vector types.
615 if (VT.isVector())
616 return false;
617
618 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
619 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
620 "ShrinkDemandedOp only supports operands that have the same size!");
621
622 // Don't do this if the node has another user, which may require the
623 // full value.
624 if (!Op.getNode()->hasOneUse())
625 return false;
626
627 // Search for the smallest integer type with free casts to and from
628 // Op's type. For expedience, just check power-of-2 integer types.
629 unsigned DemandedSize = DemandedBits.getActiveBits();
630 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
631 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
632 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
633 if (isTruncateFree(Op, SmallVT) && isZExtFree(SmallVT, VT)) {
634 // We found a type with free casts.
635
636 // If the operation has the 'disjoint' flag, then the
637 // operands on the new node are also disjoint.
638 SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint
640 unsigned Opcode = Op.getOpcode();
641 if (Opcode == ISD::PTRADD) {
642 // It isn't a ptradd anymore if it doesn't operate on the entire
643 // pointer.
644 Opcode = ISD::ADD;
645 }
646 SDValue X = DAG.getNode(
647 Opcode, dl, SmallVT,
648 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
649 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags);
650 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
651 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
652 return TLO.CombineTo(Op, Z);
653 }
654 }
655 return false;
656}
657
659 DAGCombinerInfo &DCI) const {
660 SelectionDAG &DAG = DCI.DAG;
661 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
662 !DCI.isBeforeLegalizeOps());
663 KnownBits Known;
664
665 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
666 if (Simplified) {
667 DCI.AddToWorklist(Op.getNode());
669 }
670 return Simplified;
671}
672
674 const APInt &DemandedElts,
675 DAGCombinerInfo &DCI) const {
676 SelectionDAG &DAG = DCI.DAG;
677 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
678 !DCI.isBeforeLegalizeOps());
679 KnownBits Known;
680
681 bool Simplified =
682 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
683 if (Simplified) {
684 DCI.AddToWorklist(Op.getNode());
686 }
687 return Simplified;
688}
689
691 KnownBits &Known,
693 unsigned Depth,
694 bool AssumeSingleUse) const {
695 EVT VT = Op.getValueType();
696
697 // Since the number of lanes in a scalable vector is unknown at compile time,
698 // we track one bit which is implicitly broadcast to all lanes. This means
699 // that all lanes in a scalable vector are considered demanded.
700 APInt DemandedElts = VT.isFixedLengthVector()
702 : APInt(1, 1);
703 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
704 AssumeSingleUse);
705}
706
707// TODO: Under what circumstances can we create nodes? Constant folding?
709 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
710 SelectionDAG &DAG, unsigned Depth) const {
711 EVT VT = Op.getValueType();
712
713 // Limit search depth.
715 return SDValue();
716
717 // Ignore UNDEFs.
718 if (Op.isUndef())
719 return SDValue();
720
721 // Not demanding any bits/elts from Op.
722 if (DemandedBits == 0 || DemandedElts == 0)
723 return DAG.getUNDEF(VT);
724
725 bool IsLE = DAG.getDataLayout().isLittleEndian();
726 unsigned NumElts = DemandedElts.getBitWidth();
727 unsigned BitWidth = DemandedBits.getBitWidth();
728 KnownBits LHSKnown, RHSKnown;
729 switch (Op.getOpcode()) {
730 case ISD::BITCAST: {
731 if (VT.isScalableVector())
732 return SDValue();
733
734 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
735 EVT SrcVT = Src.getValueType();
736 EVT DstVT = Op.getValueType();
737 if (SrcVT == DstVT)
738 return Src;
739
740 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
741 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
742 if (NumSrcEltBits == NumDstEltBits)
744 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
745 return DAG.getBitcast(DstVT, V);
746
747 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
748 unsigned Scale = NumDstEltBits / NumSrcEltBits;
749 unsigned NumSrcElts = SrcVT.getVectorNumElements();
750 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
751 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
752 for (unsigned i = 0; i != Scale; ++i) {
753 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
754 unsigned BitOffset = EltOffset * NumSrcEltBits;
755 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
756 if (!Sub.isZero()) {
757 DemandedSrcBits |= Sub;
758 for (unsigned j = 0; j != NumElts; ++j)
759 if (DemandedElts[j])
760 DemandedSrcElts.setBit((j * Scale) + i);
761 }
762 }
763
765 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
766 return DAG.getBitcast(DstVT, V);
767 }
768
769 // TODO - bigendian once we have test coverage.
770 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
771 unsigned Scale = NumSrcEltBits / NumDstEltBits;
772 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
773 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
774 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
775 for (unsigned i = 0; i != NumElts; ++i)
776 if (DemandedElts[i]) {
777 unsigned Offset = (i % Scale) * NumDstEltBits;
778 DemandedSrcBits.insertBits(DemandedBits, Offset);
779 DemandedSrcElts.setBit(i / Scale);
780 }
781
783 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
784 return DAG.getBitcast(DstVT, V);
785 }
786
787 break;
788 }
789 case ISD::AND: {
790 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
791 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
792
793 // If all of the demanded bits are known 1 on one side, return the other.
794 // These bits cannot contribute to the result of the 'and' in this
795 // context.
796 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
797 return Op.getOperand(0);
798 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
799 return Op.getOperand(1);
800 break;
801 }
802 case ISD::OR: {
803 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
804 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
805
806 // If all of the demanded bits are known zero on one side, return the
807 // other. These bits cannot contribute to the result of the 'or' in this
808 // context.
809 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
810 return Op.getOperand(0);
811 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
812 return Op.getOperand(1);
813 break;
814 }
815 case ISD::XOR: {
816 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
817 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
818
819 // If all of the demanded bits are known zero on one side, return the
820 // other.
821 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
822 return Op.getOperand(0);
823 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
824 return Op.getOperand(1);
825 break;
826 }
827 case ISD::ADD: {
828 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
829 if (RHSKnown.isZero())
830 return Op.getOperand(0);
831
832 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
833 if (LHSKnown.isZero())
834 return Op.getOperand(1);
835 break;
836 }
837 case ISD::SHL: {
838 // If we are only demanding sign bits then we can use the shift source
839 // directly.
840 if (std::optional<unsigned> MaxSA =
841 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
842 SDValue Op0 = Op.getOperand(0);
843 unsigned ShAmt = *MaxSA;
844 unsigned NumSignBits =
845 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
846 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
847 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
848 return Op0;
849 }
850 break;
851 }
852 case ISD::SRL: {
853 // If we are only demanding sign bits then we can use the shift source
854 // directly.
855 if (std::optional<unsigned> MaxSA =
856 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
857 SDValue Op0 = Op.getOperand(0);
858 unsigned ShAmt = *MaxSA;
859 // Must already be signbits in DemandedBits bounds, and can't demand any
860 // shifted in zeroes.
861 if (DemandedBits.countl_zero() >= ShAmt) {
862 unsigned NumSignBits =
863 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
864 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
865 return Op0;
866 }
867 }
868 break;
869 }
870 case ISD::SETCC: {
871 SDValue Op0 = Op.getOperand(0);
872 SDValue Op1 = Op.getOperand(1);
873 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
874 // If (1) we only need the sign-bit, (2) the setcc operands are the same
875 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
876 // -1, we may be able to bypass the setcc.
877 if (DemandedBits.isSignMask() &&
881 // If we're testing X < 0, then this compare isn't needed - just use X!
882 // FIXME: We're limiting to integer types here, but this should also work
883 // if we don't care about FP signed-zero. The use of SETLT with FP means
884 // that we don't care about NaNs.
885 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
887 return Op0;
888 }
889 break;
890 }
892 // If none of the extended bits are demanded, eliminate the sextinreg.
893 SDValue Op0 = Op.getOperand(0);
894 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
895 unsigned ExBits = ExVT.getScalarSizeInBits();
896 if (DemandedBits.getActiveBits() <= ExBits &&
898 return Op0;
899 // If the input is already sign extended, just drop the extension.
900 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
901 if (NumSignBits >= (BitWidth - ExBits + 1))
902 return Op0;
903 break;
904 }
908 if (VT.isScalableVector())
909 return SDValue();
910
911 // If we only want the lowest element and none of extended bits, then we can
912 // return the bitcasted source vector.
913 SDValue Src = Op.getOperand(0);
914 EVT SrcVT = Src.getValueType();
915 EVT DstVT = Op.getValueType();
916 if (IsLE && DemandedElts == 1 &&
917 DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
918 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
919 return DAG.getBitcast(DstVT, Src);
920 }
921 break;
922 }
924 if (VT.isScalableVector())
925 return SDValue();
926
927 // If we don't demand the inserted element, return the base vector.
928 SDValue Vec = Op.getOperand(0);
929 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
930 EVT VecVT = Vec.getValueType();
931 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
932 !DemandedElts[CIdx->getZExtValue()])
933 return Vec;
934 break;
935 }
937 if (VT.isScalableVector())
938 return SDValue();
939
940 SDValue Vec = Op.getOperand(0);
941 SDValue Sub = Op.getOperand(1);
942 uint64_t Idx = Op.getConstantOperandVal(2);
943 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
944 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
945 // If we don't demand the inserted subvector, return the base vector.
946 if (DemandedSubElts == 0)
947 return Vec;
948 break;
949 }
950 case ISD::VECTOR_SHUFFLE: {
952 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
953
954 // If all the demanded elts are from one operand and are inline,
955 // then we can use the operand directly.
956 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
957 for (unsigned i = 0; i != NumElts; ++i) {
958 int M = ShuffleMask[i];
959 if (M < 0 || !DemandedElts[i])
960 continue;
961 AllUndef = false;
962 IdentityLHS &= (M == (int)i);
963 IdentityRHS &= ((M - NumElts) == i);
964 }
965
966 if (AllUndef)
967 return DAG.getUNDEF(Op.getValueType());
968 if (IdentityLHS)
969 return Op.getOperand(0);
970 if (IdentityRHS)
971 return Op.getOperand(1);
972 break;
973 }
974 default:
975 // TODO: Probably okay to remove after audit; here to reduce change size
976 // in initial enablement patch for scalable vectors
977 if (VT.isScalableVector())
978 return SDValue();
979
980 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
982 Op, DemandedBits, DemandedElts, DAG, Depth))
983 return V;
984 break;
985 }
986 return SDValue();
987}
988
991 unsigned Depth) const {
992 EVT VT = Op.getValueType();
993 // Since the number of lanes in a scalable vector is unknown at compile time,
994 // we track one bit which is implicitly broadcast to all lanes. This means
995 // that all lanes in a scalable vector are considered demanded.
996 APInt DemandedElts = VT.isFixedLengthVector()
998 : APInt(1, 1);
999 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
1000 Depth);
1001}
1002
1004 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
1005 unsigned Depth) const {
1006 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
1007 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
1008 Depth);
1009}
1010
1011// Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
1012// or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
1015 const TargetLowering &TLI,
1016 const APInt &DemandedBits,
1017 const APInt &DemandedElts, unsigned Depth) {
1018 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
1019 "SRL or SRA node is required here!");
1020 // Is the right shift using an immediate value of 1?
1021 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
1022 if (!N1C || !N1C->isOne())
1023 return SDValue();
1024
1025 // We are looking for an avgfloor
1026 // add(ext, ext)
1027 // or one of these as a avgceil
1028 // add(add(ext, ext), 1)
1029 // add(add(ext, 1), ext)
1030 // add(ext, add(ext, 1))
1031 SDValue Add = Op.getOperand(0);
1032 if (Add.getOpcode() != ISD::ADD)
1033 return SDValue();
1034
1035 SDValue ExtOpA = Add.getOperand(0);
1036 SDValue ExtOpB = Add.getOperand(1);
1037 SDValue Add2;
1038 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
1039 ConstantSDNode *ConstOp;
1040 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
1041 ConstOp->isOne()) {
1042 ExtOpA = Op1;
1043 ExtOpB = Op3;
1044 Add2 = A;
1045 return true;
1046 }
1047 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1048 ConstOp->isOne()) {
1049 ExtOpA = Op1;
1050 ExtOpB = Op2;
1051 Add2 = A;
1052 return true;
1053 }
1054 return false;
1055 };
1056 bool IsCeil =
1057 (ExtOpA.getOpcode() == ISD::ADD &&
1058 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1059 (ExtOpB.getOpcode() == ISD::ADD &&
1060 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1061
1062 // If the shift is signed (sra):
1063 // - Needs >= 2 sign bit for both operands.
1064 // - Needs >= 2 zero bits.
1065 // If the shift is unsigned (srl):
1066 // - Needs >= 1 zero bit for both operands.
1067 // - Needs 1 demanded bit zero and >= 2 sign bits.
1068 SelectionDAG &DAG = TLO.DAG;
1069 unsigned ShiftOpc = Op.getOpcode();
1070 bool IsSigned = false;
1071 unsigned KnownBits;
1072 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1073 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1074 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1075 unsigned NumZeroA =
1076 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1077 unsigned NumZeroB =
1078 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1079 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1080
1081 switch (ShiftOpc) {
1082 default:
1083 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1084 case ISD::SRA: {
1085 if (NumZero >= 2 && NumSigned < NumZero) {
1086 IsSigned = false;
1087 KnownBits = NumZero;
1088 break;
1089 }
1090 if (NumSigned >= 1) {
1091 IsSigned = true;
1092 KnownBits = NumSigned;
1093 break;
1094 }
1095 return SDValue();
1096 }
1097 case ISD::SRL: {
1098 if (NumZero >= 1 && NumSigned < NumZero) {
1099 IsSigned = false;
1100 KnownBits = NumZero;
1101 break;
1102 }
1103 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1104 IsSigned = true;
1105 KnownBits = NumSigned;
1106 break;
1107 }
1108 return SDValue();
1109 }
1110 }
1111
1112 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1113 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1114
1115 // Find the smallest power-2 type that is legal for this vector size and
1116 // operation, given the original type size and the number of known sign/zero
1117 // bits.
1118 EVT VT = Op.getValueType();
1119 unsigned MinWidth =
1120 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1121 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1123 return SDValue();
1124 if (VT.isVector())
1125 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1126 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1127 // If we could not transform, and (both) adds are nuw/nsw, we can use the
1128 // larger type size to do the transform.
1129 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1130 return SDValue();
1131 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1132 Add.getOperand(1)) &&
1133 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1134 Add2.getOperand(1))))
1135 NVT = VT;
1136 else
1137 return SDValue();
1138 }
1139
1140 // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1141 // this is likely to stop other folds (reassociation, value tracking etc.)
1142 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1143 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1144 return SDValue();
1145
1146 SDLoc DL(Op);
1147 SDValue ResultAVG =
1148 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1149 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1150 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1151}
1152
1153/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1154/// result of Op are ever used downstream. If we can use this information to
1155/// simplify Op, create a new simplified DAG node and return true, returning the
1156/// original and new nodes in Old and New. Otherwise, analyze the expression and
1157/// return a mask of Known bits for the expression (used to simplify the
1158/// caller). The Known bits may only be accurate for those bits in the
1159/// OriginalDemandedBits and OriginalDemandedElts.
1161 SDValue Op, const APInt &OriginalDemandedBits,
1162 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1163 unsigned Depth, bool AssumeSingleUse) const {
1164 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1165 assert(Op.getScalarValueSizeInBits() == BitWidth &&
1166 "Mask size mismatches value type size!");
1167
1168 // Don't know anything.
1169 Known = KnownBits(BitWidth);
1170
1171 EVT VT = Op.getValueType();
1172 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1173 unsigned NumElts = OriginalDemandedElts.getBitWidth();
1174 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1175 "Unexpected vector size");
1176
1177 APInt DemandedBits = OriginalDemandedBits;
1178 APInt DemandedElts = OriginalDemandedElts;
1179 SDLoc dl(Op);
1180
1181 // Undef operand.
1182 if (Op.isUndef())
1183 return false;
1184
1185 // We can't simplify target constants.
1186 if (Op.getOpcode() == ISD::TargetConstant)
1187 return false;
1188
1189 if (Op.getOpcode() == ISD::Constant) {
1190 // We know all of the bits for a constant!
1191 Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1192 return false;
1193 }
1194
1195 if (Op.getOpcode() == ISD::ConstantFP) {
1196 // We know all of the bits for a floating point constant!
1198 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1199 return false;
1200 }
1201
1202 // Other users may use these bits.
1203 bool HasMultiUse = false;
1204 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1206 // Limit search depth.
1207 return false;
1208 }
1209 // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1211 DemandedElts = APInt::getAllOnes(NumElts);
1212 HasMultiUse = true;
1213 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1214 // Not demanding any bits/elts from Op.
1215 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1216 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1217 // Limit search depth.
1218 return false;
1219 }
1220
1221 KnownBits Known2;
1222 switch (Op.getOpcode()) {
1223 case ISD::SCALAR_TO_VECTOR: {
1224 if (VT.isScalableVector())
1225 return false;
1226 if (!DemandedElts[0])
1227 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1228
1229 KnownBits SrcKnown;
1230 SDValue Src = Op.getOperand(0);
1231 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1232 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1233 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1234 return true;
1235
1236 // Upper elements are undef, so only get the knownbits if we just demand
1237 // the bottom element.
1238 if (DemandedElts == 1)
1239 Known = SrcKnown.anyextOrTrunc(BitWidth);
1240 break;
1241 }
1242 case ISD::BUILD_VECTOR:
1243 // Collect the known bits that are shared by every demanded element.
1244 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1245 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1246 return false; // Don't fall through, will infinitely loop.
1247 case ISD::SPLAT_VECTOR: {
1248 SDValue Scl = Op.getOperand(0);
1249 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1250 KnownBits KnownScl;
1251 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1252 return true;
1253
1254 // Implicitly truncate the bits to match the official semantics of
1255 // SPLAT_VECTOR.
1256 Known = KnownScl.trunc(BitWidth);
1257 break;
1258 }
1259 case ISD::LOAD: {
1260 auto *LD = cast<LoadSDNode>(Op);
1261 if (getTargetConstantFromLoad(LD)) {
1262 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1263 return false; // Don't fall through, will infinitely loop.
1264 }
1265 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1266 // If this is a ZEXTLoad and we are looking at the loaded value.
1267 EVT MemVT = LD->getMemoryVT();
1268 unsigned MemBits = MemVT.getScalarSizeInBits();
1269 Known.Zero.setBitsFrom(MemBits);
1270 return false; // Don't fall through, will infinitely loop.
1271 }
1272 break;
1273 }
1275 if (VT.isScalableVector())
1276 return false;
1277 SDValue Vec = Op.getOperand(0);
1278 SDValue Scl = Op.getOperand(1);
1279 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1280 EVT VecVT = Vec.getValueType();
1281
1282 // If index isn't constant, assume we need all vector elements AND the
1283 // inserted element.
1284 APInt DemandedVecElts(DemandedElts);
1285 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1286 unsigned Idx = CIdx->getZExtValue();
1287 DemandedVecElts.clearBit(Idx);
1288
1289 // Inserted element is not required.
1290 if (!DemandedElts[Idx])
1291 return TLO.CombineTo(Op, Vec);
1292 }
1293
1294 KnownBits KnownScl;
1295 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1296 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1297 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1298 return true;
1299
1300 Known = KnownScl.anyextOrTrunc(BitWidth);
1301
1302 KnownBits KnownVec;
1303 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1304 Depth + 1))
1305 return true;
1306
1307 if (!!DemandedVecElts)
1308 Known = Known.intersectWith(KnownVec);
1309
1310 return false;
1311 }
1312 case ISD::INSERT_SUBVECTOR: {
1313 if (VT.isScalableVector())
1314 return false;
1315 // Demand any elements from the subvector and the remainder from the src its
1316 // inserted into.
1317 SDValue Src = Op.getOperand(0);
1318 SDValue Sub = Op.getOperand(1);
1319 uint64_t Idx = Op.getConstantOperandVal(2);
1320 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1321 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1322 APInt DemandedSrcElts = DemandedElts;
1323 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
1324
1325 KnownBits KnownSub, KnownSrc;
1326 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1327 Depth + 1))
1328 return true;
1329 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1330 Depth + 1))
1331 return true;
1332
1333 Known.setAllConflict();
1334 if (!!DemandedSubElts)
1335 Known = Known.intersectWith(KnownSub);
1336 if (!!DemandedSrcElts)
1337 Known = Known.intersectWith(KnownSrc);
1338
1339 // Attempt to avoid multi-use src if we don't need anything from it.
1340 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1341 !DemandedSrcElts.isAllOnes()) {
1343 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1345 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1346 if (NewSub || NewSrc) {
1347 NewSub = NewSub ? NewSub : Sub;
1348 NewSrc = NewSrc ? NewSrc : Src;
1349 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1350 Op.getOperand(2));
1351 return TLO.CombineTo(Op, NewOp);
1352 }
1353 }
1354 break;
1355 }
1357 if (VT.isScalableVector())
1358 return false;
1359 // Offset the demanded elts by the subvector index.
1360 SDValue Src = Op.getOperand(0);
1361 if (Src.getValueType().isScalableVector())
1362 break;
1363 uint64_t Idx = Op.getConstantOperandVal(1);
1364 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1365 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1366
1367 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1368 Depth + 1))
1369 return true;
1370
1371 // Attempt to avoid multi-use src if we don't need anything from it.
1372 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1374 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1375 if (DemandedSrc) {
1376 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1377 Op.getOperand(1));
1378 return TLO.CombineTo(Op, NewOp);
1379 }
1380 }
1381 break;
1382 }
1383 case ISD::CONCAT_VECTORS: {
1384 if (VT.isScalableVector())
1385 return false;
1386 Known.setAllConflict();
1387 EVT SubVT = Op.getOperand(0).getValueType();
1388 unsigned NumSubVecs = Op.getNumOperands();
1389 unsigned NumSubElts = SubVT.getVectorNumElements();
1390 for (unsigned i = 0; i != NumSubVecs; ++i) {
1391 APInt DemandedSubElts =
1392 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1393 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1394 Known2, TLO, Depth + 1))
1395 return true;
1396 // Known bits are shared by every demanded subvector element.
1397 if (!!DemandedSubElts)
1398 Known = Known.intersectWith(Known2);
1399 }
1400 break;
1401 }
1402 case ISD::VECTOR_SHUFFLE: {
1403 assert(!VT.isScalableVector());
1404 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1405
1406 // Collect demanded elements from shuffle operands..
1407 APInt DemandedLHS, DemandedRHS;
1408 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1409 DemandedRHS))
1410 break;
1411
1412 if (!!DemandedLHS || !!DemandedRHS) {
1413 SDValue Op0 = Op.getOperand(0);
1414 SDValue Op1 = Op.getOperand(1);
1415
1416 Known.setAllConflict();
1417 if (!!DemandedLHS) {
1418 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1419 Depth + 1))
1420 return true;
1421 Known = Known.intersectWith(Known2);
1422 }
1423 if (!!DemandedRHS) {
1424 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1425 Depth + 1))
1426 return true;
1427 Known = Known.intersectWith(Known2);
1428 }
1429
1430 // Attempt to avoid multi-use ops if we don't need anything from them.
1432 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1434 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1435 if (DemandedOp0 || DemandedOp1) {
1436 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1437 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1438 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1439 return TLO.CombineTo(Op, NewOp);
1440 }
1441 }
1442 break;
1443 }
1444 case ISD::AND: {
1445 SDValue Op0 = Op.getOperand(0);
1446 SDValue Op1 = Op.getOperand(1);
1447
1448 // If the RHS is a constant, check to see if the LHS would be zero without
1449 // using the bits from the RHS. Below, we use knowledge about the RHS to
1450 // simplify the LHS, here we're using information from the LHS to simplify
1451 // the RHS.
1452 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1453 // Do not increment Depth here; that can cause an infinite loop.
1454 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1455 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1456 if ((LHSKnown.Zero & DemandedBits) ==
1457 (~RHSC->getAPIntValue() & DemandedBits))
1458 return TLO.CombineTo(Op, Op0);
1459
1460 // If any of the set bits in the RHS are known zero on the LHS, shrink
1461 // the constant.
1462 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1463 DemandedElts, TLO))
1464 return true;
1465
1466 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1467 // constant, but if this 'and' is only clearing bits that were just set by
1468 // the xor, then this 'and' can be eliminated by shrinking the mask of
1469 // the xor. For example, for a 32-bit X:
1470 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1471 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1472 LHSKnown.One == ~RHSC->getAPIntValue()) {
1473 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1474 return TLO.CombineTo(Op, Xor);
1475 }
1476 }
1477
1478 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1479 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1480 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1481 (Op0.getOperand(0).isUndef() ||
1483 Op0->hasOneUse()) {
1484 unsigned NumSubElts =
1486 unsigned SubIdx = Op0.getConstantOperandVal(2);
1487 APInt DemandedSub =
1488 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1489 KnownBits KnownSubMask =
1490 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1491 if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1492 SDValue NewAnd =
1493 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1494 SDValue NewInsert =
1495 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1496 Op0.getOperand(1), Op0.getOperand(2));
1497 return TLO.CombineTo(Op, NewInsert);
1498 }
1499 }
1500
1501 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1502 Depth + 1))
1503 return true;
1504 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1505 Known2, TLO, Depth + 1))
1506 return true;
1507
1508 // If all of the demanded bits are known one on one side, return the other.
1509 // These bits cannot contribute to the result of the 'and'.
1510 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1511 return TLO.CombineTo(Op, Op0);
1512 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1513 return TLO.CombineTo(Op, Op1);
1514 // If all of the demanded bits in the inputs are known zeros, return zero.
1515 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1516 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1517 // If the RHS is a constant, see if we can simplify it.
1518 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1519 TLO))
1520 return true;
1521 // If the operation can be done in a smaller type, do so.
1523 return true;
1524
1525 // Attempt to avoid multi-use ops if we don't need anything from them.
1526 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1528 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1530 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1531 if (DemandedOp0 || DemandedOp1) {
1532 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1533 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1534 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1535 return TLO.CombineTo(Op, NewOp);
1536 }
1537 }
1538
1539 Known &= Known2;
1540 break;
1541 }
1542 case ISD::OR: {
1543 SDValue Op0 = Op.getOperand(0);
1544 SDValue Op1 = Op.getOperand(1);
1545 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1546 Depth + 1)) {
1547 Op->dropFlags(SDNodeFlags::Disjoint);
1548 return true;
1549 }
1550
1551 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1552 Known2, TLO, Depth + 1)) {
1553 Op->dropFlags(SDNodeFlags::Disjoint);
1554 return true;
1555 }
1556
1557 // If all of the demanded bits are known zero on one side, return the other.
1558 // These bits cannot contribute to the result of the 'or'.
1559 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1560 return TLO.CombineTo(Op, Op0);
1561 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1562 return TLO.CombineTo(Op, Op1);
1563 // If the RHS is a constant, see if we can simplify it.
1564 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1565 return true;
1566 // If the operation can be done in a smaller type, do so.
1568 return true;
1569
1570 // Attempt to avoid multi-use ops if we don't need anything from them.
1571 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1573 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1575 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1576 if (DemandedOp0 || DemandedOp1) {
1577 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1578 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1579 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1580 return TLO.CombineTo(Op, NewOp);
1581 }
1582 }
1583
1584 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1585 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1586 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1587 Op0->hasOneUse() && Op1->hasOneUse()) {
1588 // Attempt to match all commutations - m_c_Or would've been useful!
1589 for (int I = 0; I != 2; ++I) {
1590 SDValue X = Op.getOperand(I).getOperand(0);
1591 SDValue C1 = Op.getOperand(I).getOperand(1);
1592 SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1593 SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1594 if (Alt.getOpcode() == ISD::OR) {
1595 for (int J = 0; J != 2; ++J) {
1596 if (X == Alt.getOperand(J)) {
1597 SDValue Y = Alt.getOperand(1 - J);
1598 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1599 {C1, C2})) {
1600 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1601 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1602 return TLO.CombineTo(
1603 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1604 }
1605 }
1606 }
1607 }
1608 }
1609 }
1610
1611 Known |= Known2;
1612 break;
1613 }
1614 case ISD::XOR: {
1615 SDValue Op0 = Op.getOperand(0);
1616 SDValue Op1 = Op.getOperand(1);
1617
1618 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1619 Depth + 1))
1620 return true;
1621 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1622 Depth + 1))
1623 return true;
1624
1625 // If all of the demanded bits are known zero on one side, return the other.
1626 // These bits cannot contribute to the result of the 'xor'.
1627 if (DemandedBits.isSubsetOf(Known.Zero))
1628 return TLO.CombineTo(Op, Op0);
1629 if (DemandedBits.isSubsetOf(Known2.Zero))
1630 return TLO.CombineTo(Op, Op1);
1631 // If the operation can be done in a smaller type, do so.
1633 return true;
1634
1635 // If all of the unknown bits are known to be zero on one side or the other
1636 // turn this into an *inclusive* or.
1637 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1638 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1639 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1640
1641 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1642 if (C) {
1643 // If one side is a constant, and all of the set bits in the constant are
1644 // also known set on the other side, turn this into an AND, as we know
1645 // the bits will be cleared.
1646 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1647 // NB: it is okay if more bits are known than are requested
1648 if (C->getAPIntValue() == Known2.One) {
1649 SDValue ANDC =
1650 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1651 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1652 }
1653
1654 // If the RHS is a constant, see if we can change it. Don't alter a -1
1655 // constant because that's a 'not' op, and that is better for combining
1656 // and codegen.
1657 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1658 // We're flipping all demanded bits. Flip the undemanded bits too.
1659 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1660 return TLO.CombineTo(Op, New);
1661 }
1662
1663 unsigned Op0Opcode = Op0.getOpcode();
1664 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1665 if (ConstantSDNode *ShiftC =
1666 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1667 // Don't crash on an oversized shift. We can not guarantee that a
1668 // bogus shift has been simplified to undef.
1669 if (ShiftC->getAPIntValue().ult(BitWidth)) {
1670 uint64_t ShiftAmt = ShiftC->getZExtValue();
1672 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1673 : Ones.lshr(ShiftAmt);
1674 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1676 // If the xor constant is a demanded mask, do a 'not' before the
1677 // shift:
1678 // xor (X << ShiftC), XorC --> (not X) << ShiftC
1679 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1680 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1681 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1682 Op0.getOperand(1)));
1683 }
1684 }
1685 }
1686 }
1687 }
1688
1689 // If we can't turn this into a 'not', try to shrink the constant.
1690 if (!C || !C->isAllOnes())
1691 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1692 return true;
1693
1694 // Attempt to avoid multi-use ops if we don't need anything from them.
1695 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1697 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1699 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1700 if (DemandedOp0 || DemandedOp1) {
1701 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1702 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1703 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1704 return TLO.CombineTo(Op, NewOp);
1705 }
1706 }
1707
1708 Known ^= Known2;
1709 break;
1710 }
1711 case ISD::SELECT:
1712 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1713 Known, TLO, Depth + 1))
1714 return true;
1715 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1716 Known2, TLO, Depth + 1))
1717 return true;
1718
1719 // If the operands are constants, see if we can simplify them.
1720 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1721 return true;
1722
1723 // Only known if known in both the LHS and RHS.
1724 Known = Known.intersectWith(Known2);
1725 break;
1726 case ISD::VSELECT:
1727 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1728 Known, TLO, Depth + 1))
1729 return true;
1730 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1731 Known2, TLO, Depth + 1))
1732 return true;
1733
1734 // Only known if known in both the LHS and RHS.
1735 Known = Known.intersectWith(Known2);
1736 break;
1737 case ISD::SELECT_CC:
1738 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1739 Known, TLO, Depth + 1))
1740 return true;
1741 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1742 Known2, TLO, Depth + 1))
1743 return true;
1744
1745 // If the operands are constants, see if we can simplify them.
1746 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1747 return true;
1748
1749 // Only known if known in both the LHS and RHS.
1750 Known = Known.intersectWith(Known2);
1751 break;
1752 case ISD::SETCC: {
1753 SDValue Op0 = Op.getOperand(0);
1754 SDValue Op1 = Op.getOperand(1);
1755 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1756 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1757 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1758 // -1, we may be able to bypass the setcc.
1759 if (DemandedBits.isSignMask() &&
1763 // If we're testing X < 0, then this compare isn't needed - just use X!
1764 // FIXME: We're limiting to integer types here, but this should also work
1765 // if we don't care about FP signed-zero. The use of SETLT with FP means
1766 // that we don't care about NaNs.
1767 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1769 return TLO.CombineTo(Op, Op0);
1770
1771 // TODO: Should we check for other forms of sign-bit comparisons?
1772 // Examples: X <= -1, X >= 0
1773 }
1774 if (getBooleanContents(Op0.getValueType()) ==
1776 BitWidth > 1)
1777 Known.Zero.setBitsFrom(1);
1778 break;
1779 }
1780 case ISD::SHL: {
1781 SDValue Op0 = Op.getOperand(0);
1782 SDValue Op1 = Op.getOperand(1);
1783 EVT ShiftVT = Op1.getValueType();
1784
1785 if (std::optional<unsigned> KnownSA =
1786 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1787 unsigned ShAmt = *KnownSA;
1788 if (ShAmt == 0)
1789 return TLO.CombineTo(Op, Op0);
1790
1791 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1792 // single shift. We can do this if the bottom bits (which are shifted
1793 // out) are never demanded.
1794 // TODO - support non-uniform vector amounts.
1795 if (Op0.getOpcode() == ISD::SRL) {
1796 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1797 if (std::optional<unsigned> InnerSA =
1798 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1799 unsigned C1 = *InnerSA;
1800 unsigned Opc = ISD::SHL;
1801 int Diff = ShAmt - C1;
1802 if (Diff < 0) {
1803 Diff = -Diff;
1804 Opc = ISD::SRL;
1805 }
1806 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1807 return TLO.CombineTo(
1808 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1809 }
1810 }
1811 }
1812
1813 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1814 // are not demanded. This will likely allow the anyext to be folded away.
1815 // TODO - support non-uniform vector amounts.
1816 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1817 SDValue InnerOp = Op0.getOperand(0);
1818 EVT InnerVT = InnerOp.getValueType();
1819 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1820 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1821 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1822 SDValue NarrowShl = TLO.DAG.getNode(
1823 ISD::SHL, dl, InnerVT, InnerOp,
1824 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1825 return TLO.CombineTo(
1826 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1827 }
1828
1829 // Repeat the SHL optimization above in cases where an extension
1830 // intervenes: (shl (anyext (shr x, c1)), c2) to
1831 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1832 // aren't demanded (as above) and that the shifted upper c1 bits of
1833 // x aren't demanded.
1834 // TODO - support non-uniform vector amounts.
1835 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1836 InnerOp.hasOneUse()) {
1837 if (std::optional<unsigned> SA2 = TLO.DAG.getValidShiftAmount(
1838 InnerOp, DemandedElts, Depth + 2)) {
1839 unsigned InnerShAmt = *SA2;
1840 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1841 DemandedBits.getActiveBits() <=
1842 (InnerBits - InnerShAmt + ShAmt) &&
1843 DemandedBits.countr_zero() >= ShAmt) {
1844 SDValue NewSA =
1845 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1846 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1847 InnerOp.getOperand(0));
1848 return TLO.CombineTo(
1849 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1850 }
1851 }
1852 }
1853 }
1854
1855 APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1856 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1857 Depth + 1)) {
1858 // Disable the nsw and nuw flags. We can no longer guarantee that we
1859 // won't wrap after simplification.
1860 Op->dropFlags(SDNodeFlags::NoWrap);
1861 return true;
1862 }
1863 Known <<= ShAmt;
1864 // low bits known zero.
1865 Known.Zero.setLowBits(ShAmt);
1866
1867 // Attempt to avoid multi-use ops if we don't need anything from them.
1868 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1870 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1871 if (DemandedOp0) {
1872 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1873 return TLO.CombineTo(Op, NewOp);
1874 }
1875 }
1876
1877 // TODO: Can we merge this fold with the one below?
1878 // Try shrinking the operation as long as the shift amount will still be
1879 // in range.
1880 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1881 Op.getNode()->hasOneUse()) {
1882 // Search for the smallest integer type with free casts to and from
1883 // Op's type. For expedience, just check power-of-2 integer types.
1884 unsigned DemandedSize = DemandedBits.getActiveBits();
1885 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1886 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1887 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1888 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1889 isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1890 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1891 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1892 assert(DemandedSize <= SmallVTBits &&
1893 "Narrowed below demanded bits?");
1894 // We found a type with free casts.
1895 SDValue NarrowShl = TLO.DAG.getNode(
1896 ISD::SHL, dl, SmallVT,
1897 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1898 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1899 return TLO.CombineTo(
1900 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1901 }
1902 }
1903 }
1904
1905 // Narrow shift to lower half - similar to ShrinkDemandedOp.
1906 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1907 // Only do this if we demand the upper half so the knownbits are correct.
1908 unsigned HalfWidth = BitWidth / 2;
1909 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1910 DemandedBits.countLeadingOnes() >= HalfWidth) {
1911 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1912 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1913 isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1914 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1915 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1916 // If we're demanding the upper bits at all, we must ensure
1917 // that the upper bits of the shift result are known to be zero,
1918 // which is equivalent to the narrow shift being NUW.
1919 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1920 bool IsNSW = Known.countMinSignBits() > HalfWidth;
1921 SDNodeFlags Flags;
1922 Flags.setNoSignedWrap(IsNSW);
1923 Flags.setNoUnsignedWrap(IsNUW);
1924 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1925 SDValue NewShiftAmt =
1926 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1927 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1928 NewShiftAmt, Flags);
1929 SDValue NewExt =
1930 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1931 return TLO.CombineTo(Op, NewExt);
1932 }
1933 }
1934 }
1935 } else {
1936 // This is a variable shift, so we can't shift the demand mask by a known
1937 // amount. But if we are not demanding high bits, then we are not
1938 // demanding those bits from the pre-shifted operand either.
1939 if (unsigned CTLZ = DemandedBits.countl_zero()) {
1940 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1941 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1942 Depth + 1)) {
1943 // Disable the nsw and nuw flags. We can no longer guarantee that we
1944 // won't wrap after simplification.
1945 Op->dropFlags(SDNodeFlags::NoWrap);
1946 return true;
1947 }
1948 Known.resetAll();
1949 }
1950 }
1951
1952 // If we are only demanding sign bits then we can use the shift source
1953 // directly.
1954 if (std::optional<unsigned> MaxSA =
1955 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1956 unsigned ShAmt = *MaxSA;
1957 unsigned NumSignBits =
1958 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1959 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1960 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1961 return TLO.CombineTo(Op, Op0);
1962 }
1963 break;
1964 }
1965 case ISD::SRL: {
1966 SDValue Op0 = Op.getOperand(0);
1967 SDValue Op1 = Op.getOperand(1);
1968 EVT ShiftVT = Op1.getValueType();
1969
1970 if (std::optional<unsigned> KnownSA =
1971 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1972 unsigned ShAmt = *KnownSA;
1973 if (ShAmt == 0)
1974 return TLO.CombineTo(Op, Op0);
1975
1976 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1977 // single shift. We can do this if the top bits (which are shifted out)
1978 // are never demanded.
1979 // TODO - support non-uniform vector amounts.
1980 if (Op0.getOpcode() == ISD::SHL) {
1981 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1982 if (std::optional<unsigned> InnerSA =
1983 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1984 unsigned C1 = *InnerSA;
1985 unsigned Opc = ISD::SRL;
1986 int Diff = ShAmt - C1;
1987 if (Diff < 0) {
1988 Diff = -Diff;
1989 Opc = ISD::SHL;
1990 }
1991 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1992 return TLO.CombineTo(
1993 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1994 }
1995 }
1996 }
1997
1998 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1999 // single sra. We can do this if the top bits are never demanded.
2000 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
2001 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
2002 if (std::optional<unsigned> InnerSA =
2003 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2004 unsigned C1 = *InnerSA;
2005 // Clamp the combined shift amount if it exceeds the bit width.
2006 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
2007 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
2008 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
2009 Op0.getOperand(0), NewSA));
2010 }
2011 }
2012 }
2013
2014 APInt InDemandedMask = (DemandedBits << ShAmt);
2015
2016 // If the shift is exact, then it does demand the low bits (and knows that
2017 // they are zero).
2018 if (Op->getFlags().hasExact())
2019 InDemandedMask.setLowBits(ShAmt);
2020
2021 // Narrow shift to lower half - similar to ShrinkDemandedOp.
2022 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
2023 if ((BitWidth % 2) == 0 && !VT.isVector()) {
2025 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
2026 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
2027 isTypeDesirableForOp(ISD::SRL, HalfVT) &&
2028 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
2029 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
2030 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
2031 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
2032 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
2033 SDValue NewShiftAmt =
2034 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
2035 SDValue NewShift =
2036 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
2037 return TLO.CombineTo(
2038 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2039 }
2040 }
2041
2042 // Compute the new bits that are at the top now.
2043 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2044 Depth + 1))
2045 return true;
2046 Known >>= ShAmt;
2047 // High bits known zero.
2048 Known.Zero.setHighBits(ShAmt);
2049
2050 // Attempt to avoid multi-use ops if we don't need anything from them.
2051 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2053 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2054 if (DemandedOp0) {
2055 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2056 return TLO.CombineTo(Op, NewOp);
2057 }
2058 }
2059 } else {
2060 // Use generic knownbits computation as it has support for non-uniform
2061 // shift amounts.
2062 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2063 }
2064
2065 // If we are only demanding sign bits then we can use the shift source
2066 // directly.
2067 if (std::optional<unsigned> MaxSA =
2068 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
2069 unsigned ShAmt = *MaxSA;
2070 // Must already be signbits in DemandedBits bounds, and can't demand any
2071 // shifted in zeroes.
2072 if (DemandedBits.countl_zero() >= ShAmt) {
2073 unsigned NumSignBits =
2074 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
2075 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
2076 return TLO.CombineTo(Op, Op0);
2077 }
2078 }
2079
2080 // Try to match AVG patterns (after shift simplification).
2081 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2082 DemandedElts, Depth + 1))
2083 return TLO.CombineTo(Op, AVG);
2084
2085 break;
2086 }
2087 case ISD::SRA: {
2088 SDValue Op0 = Op.getOperand(0);
2089 SDValue Op1 = Op.getOperand(1);
2090 EVT ShiftVT = Op1.getValueType();
2091
2092 // If we only want bits that already match the signbit then we don't need
2093 // to shift.
2094 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2095 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2096 NumHiDemandedBits)
2097 return TLO.CombineTo(Op, Op0);
2098
2099 // If this is an arithmetic shift right and only the low-bit is set, we can
2100 // always convert this into a logical shr, even if the shift amount is
2101 // variable. The low bit of the shift cannot be an input sign bit unless
2102 // the shift amount is >= the size of the datatype, which is undefined.
2103 if (DemandedBits.isOne())
2104 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2105
2106 if (std::optional<unsigned> KnownSA =
2107 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2108 unsigned ShAmt = *KnownSA;
2109 if (ShAmt == 0)
2110 return TLO.CombineTo(Op, Op0);
2111
2112 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2113 // supports sext_inreg.
2114 if (Op0.getOpcode() == ISD::SHL) {
2115 if (std::optional<unsigned> InnerSA =
2116 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2117 unsigned LowBits = BitWidth - ShAmt;
2118 EVT ExtVT = VT.changeElementType(
2119 *TLO.DAG.getContext(),
2120 EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits));
2121
2122 if (*InnerSA == ShAmt) {
2123 if (!TLO.LegalOperations() ||
2125 return TLO.CombineTo(
2126 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2127 Op0.getOperand(0),
2128 TLO.DAG.getValueType(ExtVT)));
2129
2130 // Even if we can't convert to sext_inreg, we might be able to
2131 // remove this shift pair if the input is already sign extended.
2132 unsigned NumSignBits =
2133 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2134 if (NumSignBits > ShAmt)
2135 return TLO.CombineTo(Op, Op0.getOperand(0));
2136 }
2137 }
2138 }
2139
2140 APInt InDemandedMask = (DemandedBits << ShAmt);
2141
2142 // If the shift is exact, then it does demand the low bits (and knows that
2143 // they are zero).
2144 if (Op->getFlags().hasExact())
2145 InDemandedMask.setLowBits(ShAmt);
2146
2147 // If any of the demanded bits are produced by the sign extension, we also
2148 // demand the input sign bit.
2149 if (DemandedBits.countl_zero() < ShAmt)
2150 InDemandedMask.setSignBit();
2151
2152 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2153 Depth + 1))
2154 return true;
2155 Known >>= ShAmt;
2156
2157 // If the input sign bit is known to be zero, or if none of the top bits
2158 // are demanded, turn this into an unsigned shift right.
2159 if (Known.Zero[BitWidth - ShAmt - 1] ||
2160 DemandedBits.countl_zero() >= ShAmt) {
2161 SDNodeFlags Flags;
2162 Flags.setExact(Op->getFlags().hasExact());
2163 return TLO.CombineTo(
2164 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2165 }
2166
2167 int Log2 = DemandedBits.exactLogBase2();
2168 if (Log2 >= 0) {
2169 // The bit must come from the sign.
2170 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2171 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2172 }
2173
2174 if (Known.One[BitWidth - ShAmt - 1])
2175 // New bits are known one.
2176 Known.One.setHighBits(ShAmt);
2177
2178 // Attempt to avoid multi-use ops if we don't need anything from them.
2179 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2181 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2182 if (DemandedOp0) {
2183 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2184 return TLO.CombineTo(Op, NewOp);
2185 }
2186 }
2187 }
2188
2189 // Try to match AVG patterns (after shift simplification).
2190 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2191 DemandedElts, Depth + 1))
2192 return TLO.CombineTo(Op, AVG);
2193
2194 break;
2195 }
2196 case ISD::FSHL:
2197 case ISD::FSHR: {
2198 SDValue Op0 = Op.getOperand(0);
2199 SDValue Op1 = Op.getOperand(1);
2200 SDValue Op2 = Op.getOperand(2);
2201 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2202
2203 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2204 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2205
2206 // For fshl, 0-shift returns the 1st arg.
2207 // For fshr, 0-shift returns the 2nd arg.
2208 if (Amt == 0) {
2209 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2210 Known, TLO, Depth + 1))
2211 return true;
2212 break;
2213 }
2214
2215 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2216 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2217 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2218 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2219 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2220 Depth + 1))
2221 return true;
2222 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2223 Depth + 1))
2224 return true;
2225
2226 Known2 <<= (IsFSHL ? Amt : (BitWidth - Amt));
2227 Known >>= (IsFSHL ? (BitWidth - Amt) : Amt);
2228 Known = Known.unionWith(Known2);
2229
2230 // Attempt to avoid multi-use ops if we don't need anything from them.
2231 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2232 !DemandedElts.isAllOnes()) {
2234 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2236 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2237 if (DemandedOp0 || DemandedOp1) {
2238 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2239 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2240 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2241 DemandedOp1, Op2);
2242 return TLO.CombineTo(Op, NewOp);
2243 }
2244 }
2245 }
2246
2247 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2248 if (isPowerOf2_32(BitWidth)) {
2249 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2250 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2251 Known2, TLO, Depth + 1))
2252 return true;
2253 }
2254 break;
2255 }
2256 case ISD::ROTL:
2257 case ISD::ROTR: {
2258 SDValue Op0 = Op.getOperand(0);
2259 SDValue Op1 = Op.getOperand(1);
2260 bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2261
2262 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2263 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2264 return TLO.CombineTo(Op, Op0);
2265
2266 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2267 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2268 unsigned RevAmt = BitWidth - Amt;
2269
2270 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2271 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2272 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2273 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2274 Depth + 1))
2275 return true;
2276
2277 // rot*(x, 0) --> x
2278 if (Amt == 0)
2279 return TLO.CombineTo(Op, Op0);
2280
2281 // See if we don't demand either half of the rotated bits.
2282 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2283 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2284 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2285 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2286 }
2287 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2288 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2289 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2290 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2291 }
2292 }
2293
2294 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2295 if (isPowerOf2_32(BitWidth)) {
2296 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2297 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2298 Depth + 1))
2299 return true;
2300 }
2301 break;
2302 }
2303 case ISD::SMIN:
2304 case ISD::SMAX:
2305 case ISD::UMIN:
2306 case ISD::UMAX: {
2307 unsigned Opc = Op.getOpcode();
2308 SDValue Op0 = Op.getOperand(0);
2309 SDValue Op1 = Op.getOperand(1);
2310
2311 // If we're only demanding signbits, then we can simplify to OR/AND node.
2312 unsigned BitOp =
2313 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2314 unsigned NumSignBits =
2315 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2316 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2317 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2318 if (NumSignBits >= NumDemandedUpperBits)
2319 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2320
2321 // Check if one arg is always less/greater than (or equal) to the other arg.
2322 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2323 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2324 switch (Opc) {
2325 case ISD::SMIN:
2326 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2327 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2328 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2329 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2330 Known = KnownBits::smin(Known0, Known1);
2331 break;
2332 case ISD::SMAX:
2333 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2334 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2335 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2336 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2337 Known = KnownBits::smax(Known0, Known1);
2338 break;
2339 case ISD::UMIN:
2340 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2341 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2342 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2343 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2344 Known = KnownBits::umin(Known0, Known1);
2345 break;
2346 case ISD::UMAX:
2347 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2348 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2349 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2350 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2351 Known = KnownBits::umax(Known0, Known1);
2352 break;
2353 }
2354 break;
2355 }
2356 case ISD::BITREVERSE: {
2357 SDValue Src = Op.getOperand(0);
2358 APInt DemandedSrcBits = DemandedBits.reverseBits();
2359 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2360 Depth + 1))
2361 return true;
2362 Known = Known2.reverseBits();
2363 break;
2364 }
2365 case ISD::BSWAP: {
2366 SDValue Src = Op.getOperand(0);
2367
2368 // If the only bits demanded come from one byte of the bswap result,
2369 // just shift the input byte into position to eliminate the bswap.
2370 unsigned NLZ = DemandedBits.countl_zero();
2371 unsigned NTZ = DemandedBits.countr_zero();
2372
2373 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
2374 // we need all the bits down to bit 8. Likewise, round NLZ. If we
2375 // have 14 leading zeros, round to 8.
2376 NLZ = alignDown(NLZ, 8);
2377 NTZ = alignDown(NTZ, 8);
2378 // If we need exactly one byte, we can do this transformation.
2379 if (BitWidth - NLZ - NTZ == 8) {
2380 // Replace this with either a left or right shift to get the byte into
2381 // the right place.
2382 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2383 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2384 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2385 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2386 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2387 return TLO.CombineTo(Op, NewOp);
2388 }
2389 }
2390
2391 APInt DemandedSrcBits = DemandedBits.byteSwap();
2392 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2393 Depth + 1))
2394 return true;
2395 Known = Known2.byteSwap();
2396 break;
2397 }
2398 case ISD::CTPOP: {
2399 // If only 1 bit is demanded, replace with PARITY as long as we're before
2400 // op legalization.
2401 // FIXME: Limit to scalars for now.
2402 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2403 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2404 Op.getOperand(0)));
2405
2406 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2407 break;
2408 }
2410 SDValue Op0 = Op.getOperand(0);
2411 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2412 unsigned ExVTBits = ExVT.getScalarSizeInBits();
2413
2414 // If we only care about the highest bit, don't bother shifting right.
2415 if (DemandedBits.isSignMask()) {
2416 unsigned MinSignedBits =
2417 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2418 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2419 // However if the input is already sign extended we expect the sign
2420 // extension to be dropped altogether later and do not simplify.
2421 if (!AlreadySignExtended) {
2422 // Compute the correct shift amount type, which must be getShiftAmountTy
2423 // for scalar types after legalization.
2424 SDValue ShiftAmt =
2425 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2426 return TLO.CombineTo(Op,
2427 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2428 }
2429 }
2430
2431 // If none of the extended bits are demanded, eliminate the sextinreg.
2432 if (DemandedBits.getActiveBits() <= ExVTBits)
2433 return TLO.CombineTo(Op, Op0);
2434
2435 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2436
2437 // Since the sign extended bits are demanded, we know that the sign
2438 // bit is demanded.
2439 InputDemandedBits.setBit(ExVTBits - 1);
2440
2441 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2442 Depth + 1))
2443 return true;
2444
2445 // If the sign bit of the input is known set or clear, then we know the
2446 // top bits of the result.
2447
2448 // If the input sign bit is known zero, convert this into a zero extension.
2449 if (Known.Zero[ExVTBits - 1])
2450 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2451
2452 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2453 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2454 Known.One.setBitsFrom(ExVTBits);
2455 Known.Zero &= Mask;
2456 } else { // Input sign bit unknown
2457 Known.Zero &= Mask;
2458 Known.One &= Mask;
2459 }
2460 break;
2461 }
2462 case ISD::BUILD_PAIR: {
2463 EVT HalfVT = Op.getOperand(0).getValueType();
2464 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2465
2466 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2467 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2468
2469 KnownBits KnownLo, KnownHi;
2470
2471 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2472 return true;
2473
2474 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2475 return true;
2476
2477 Known = KnownHi.concat(KnownLo);
2478 break;
2479 }
2481 if (VT.isScalableVector())
2482 return false;
2483 [[fallthrough]];
2484 case ISD::ZERO_EXTEND: {
2485 SDValue Src = Op.getOperand(0);
2486 EVT SrcVT = Src.getValueType();
2487 unsigned InBits = SrcVT.getScalarSizeInBits();
2488 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2489 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2490
2491 // If none of the top bits are demanded, convert this into an any_extend.
2492 if (DemandedBits.getActiveBits() <= InBits) {
2493 // If we only need the non-extended bits of the bottom element
2494 // then we can just bitcast to the result.
2495 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2496 VT.getSizeInBits() == SrcVT.getSizeInBits())
2497 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2498
2499 unsigned Opc =
2501 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2502 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2503 }
2504
2505 APInt InDemandedBits = DemandedBits.trunc(InBits);
2506 APInt InDemandedElts = DemandedElts.zext(InElts);
2507 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2508 Depth + 1)) {
2509 Op->dropFlags(SDNodeFlags::NonNeg);
2510 return true;
2511 }
2512 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2513 Known = Known.zext(BitWidth);
2514
2515 // Attempt to avoid multi-use ops if we don't need anything from them.
2517 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2518 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2519 break;
2520 }
2522 if (VT.isScalableVector())
2523 return false;
2524 [[fallthrough]];
2525 case ISD::SIGN_EXTEND: {
2526 SDValue Src = Op.getOperand(0);
2527 EVT SrcVT = Src.getValueType();
2528 unsigned InBits = SrcVT.getScalarSizeInBits();
2529 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2530 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2531
2532 APInt InDemandedElts = DemandedElts.zext(InElts);
2533 APInt InDemandedBits = DemandedBits.trunc(InBits);
2534
2535 // Since some of the sign extended bits are demanded, we know that the sign
2536 // bit is demanded.
2537 InDemandedBits.setBit(InBits - 1);
2538
2539 // If none of the top bits are demanded, convert this into an any_extend.
2540 if (DemandedBits.getActiveBits() <= InBits) {
2541 // If we only need the non-extended bits of the bottom element
2542 // then we can just bitcast to the result.
2543 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2544 VT.getSizeInBits() == SrcVT.getSizeInBits())
2545 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2546
2547 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2549 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2550 InBits) {
2551 unsigned Opc =
2553 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2554 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2555 }
2556 }
2557
2558 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2559 Depth + 1))
2560 return true;
2561 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2562
2563 // If the sign bit is known one, the top bits match.
2564 Known = Known.sext(BitWidth);
2565
2566 // If the sign bit is known zero, convert this to a zero extend.
2567 if (Known.isNonNegative()) {
2568 unsigned Opc =
2570 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2571 SDNodeFlags Flags;
2572 if (!IsVecInReg)
2573 Flags |= SDNodeFlags::NonNeg;
2574 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2575 }
2576 }
2577
2578 // Attempt to avoid multi-use ops if we don't need anything from them.
2580 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2581 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2582 break;
2583 }
2585 if (VT.isScalableVector())
2586 return false;
2587 [[fallthrough]];
2588 case ISD::ANY_EXTEND: {
2589 SDValue Src = Op.getOperand(0);
2590 EVT SrcVT = Src.getValueType();
2591 unsigned InBits = SrcVT.getScalarSizeInBits();
2592 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2593 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2594
2595 // If we only need the bottom element then we can just bitcast.
2596 // TODO: Handle ANY_EXTEND?
2597 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2598 VT.getSizeInBits() == SrcVT.getSizeInBits())
2599 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2600
2601 APInt InDemandedBits = DemandedBits.trunc(InBits);
2602 APInt InDemandedElts = DemandedElts.zext(InElts);
2603 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2604 Depth + 1))
2605 return true;
2606 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2607 Known = Known.anyext(BitWidth);
2608
2609 // Attempt to avoid multi-use ops if we don't need anything from them.
2611 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2612 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2613 break;
2614 }
2615 case ISD::TRUNCATE: {
2616 SDValue Src = Op.getOperand(0);
2617
2618 // Simplify the input, using demanded bit information, and compute the known
2619 // zero/one bits live out.
2620 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2621 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2622 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2623 Depth + 1)) {
2624 // Disable the nsw and nuw flags. We can no longer guarantee that we
2625 // won't wrap after simplification.
2626 Op->dropFlags(SDNodeFlags::NoWrap);
2627 return true;
2628 }
2629 Known = Known.trunc(BitWidth);
2630
2631 // Attempt to avoid multi-use ops if we don't need anything from them.
2633 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2634 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2635
2636 // If the input is only used by this truncate, see if we can shrink it based
2637 // on the known demanded bits.
2638 switch (Src.getOpcode()) {
2639 default:
2640 break;
2641 case ISD::SRL:
2642 // Shrink SRL by a constant if none of the high bits shifted in are
2643 // demanded.
2644 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2645 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2646 // undesirable.
2647 break;
2648
2649 if (Src.getNode()->hasOneUse()) {
2650 if (isTruncateFree(Src, VT) &&
2651 !isTruncateFree(Src.getValueType(), VT)) {
2652 // If truncate is only free at trunc(srl), do not turn it into
2653 // srl(trunc). The check is done by first check the truncate is free
2654 // at Src's opcode(srl), then check the truncate is not done by
2655 // referencing sub-register. In test, if both trunc(srl) and
2656 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2657 // trunc(srl)'s trunc is free, trunc(srl) is better.
2658 break;
2659 }
2660
2661 std::optional<unsigned> ShAmtC =
2662 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2663 if (!ShAmtC || *ShAmtC >= BitWidth)
2664 break;
2665 unsigned ShVal = *ShAmtC;
2666
2667 APInt HighBits =
2668 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2669 HighBits.lshrInPlace(ShVal);
2670 HighBits = HighBits.trunc(BitWidth);
2671 if (!(HighBits & DemandedBits)) {
2672 // None of the shifted in bits are needed. Add a truncate of the
2673 // shift input, then shift it.
2674 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2675 SDValue NewTrunc =
2676 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2677 return TLO.CombineTo(
2678 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2679 }
2680 }
2681 break;
2682 }
2683
2684 break;
2685 }
2686 case ISD::AssertZext: {
2687 // AssertZext demands all of the high bits, plus any of the low bits
2688 // demanded by its users.
2689 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2691 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2692 TLO, Depth + 1))
2693 return true;
2694
2695 Known.Zero |= ~InMask;
2696 Known.One &= (~Known.Zero);
2697 break;
2698 }
2700 SDValue Src = Op.getOperand(0);
2701 SDValue Idx = Op.getOperand(1);
2702 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2703 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2704
2705 if (SrcEltCnt.isScalable())
2706 return false;
2707
2708 // Demand the bits from every vector element without a constant index.
2709 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2710 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2711 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2712 if (CIdx->getAPIntValue().ult(NumSrcElts))
2713 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2714
2715 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2716 // anything about the extended bits.
2717 APInt DemandedSrcBits = DemandedBits;
2718 if (BitWidth > EltBitWidth)
2719 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2720
2721 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2722 Depth + 1))
2723 return true;
2724
2725 // Attempt to avoid multi-use ops if we don't need anything from them.
2726 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2727 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2728 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2729 SDValue NewOp =
2730 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2731 return TLO.CombineTo(Op, NewOp);
2732 }
2733 }
2734
2735 Known = Known2;
2736 if (BitWidth > EltBitWidth)
2737 Known = Known.anyext(BitWidth);
2738 break;
2739 }
2740 case ISD::BITCAST: {
2741 if (VT.isScalableVector())
2742 return false;
2743 SDValue Src = Op.getOperand(0);
2744 EVT SrcVT = Src.getValueType();
2745 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2746
2747 // If this is an FP->Int bitcast and if the sign bit is the only
2748 // thing demanded, turn this into a FGETSIGN.
2749 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2750 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2751 SrcVT.isFloatingPoint()) {
2752 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2753 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2754 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2755 SrcVT != MVT::f128) {
2756 // Cannot eliminate/lower SHL for f128 yet.
2757 EVT Ty = OpVTLegal ? VT : MVT::i32;
2758 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2759 // place. We expect the SHL to be eliminated by other optimizations.
2760 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2761 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2762 if (!OpVTLegal && OpVTSizeInBits > 32)
2763 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2764 unsigned ShVal = Op.getValueSizeInBits() - 1;
2765 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2766 return TLO.CombineTo(Op,
2767 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2768 }
2769 }
2770
2771 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2772 // Demand the elt/bit if any of the original elts/bits are demanded.
2773 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2774 unsigned Scale = BitWidth / NumSrcEltBits;
2775 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2776 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2777 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2778 for (unsigned i = 0; i != Scale; ++i) {
2779 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2780 unsigned BitOffset = EltOffset * NumSrcEltBits;
2781 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2782 if (!Sub.isZero()) {
2783 DemandedSrcBits |= Sub;
2784 for (unsigned j = 0; j != NumElts; ++j)
2785 if (DemandedElts[j])
2786 DemandedSrcElts.setBit((j * Scale) + i);
2787 }
2788 }
2789
2790 APInt KnownSrcUndef, KnownSrcZero;
2791 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2792 KnownSrcZero, TLO, Depth + 1))
2793 return true;
2794
2795 KnownBits KnownSrcBits;
2796 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2797 KnownSrcBits, TLO, Depth + 1))
2798 return true;
2799 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2800 // TODO - bigendian once we have test coverage.
2801 unsigned Scale = NumSrcEltBits / BitWidth;
2802 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2803 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2804 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2805 for (unsigned i = 0; i != NumElts; ++i)
2806 if (DemandedElts[i]) {
2807 unsigned Offset = (i % Scale) * BitWidth;
2808 DemandedSrcBits.insertBits(DemandedBits, Offset);
2809 DemandedSrcElts.setBit(i / Scale);
2810 }
2811
2812 if (SrcVT.isVector()) {
2813 APInt KnownSrcUndef, KnownSrcZero;
2814 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2815 KnownSrcZero, TLO, Depth + 1))
2816 return true;
2817 }
2818
2819 KnownBits KnownSrcBits;
2820 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2821 KnownSrcBits, TLO, Depth + 1))
2822 return true;
2823
2824 // Attempt to avoid multi-use ops if we don't need anything from them.
2825 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2826 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2827 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2828 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2829 return TLO.CombineTo(Op, NewOp);
2830 }
2831 }
2832 }
2833
2834 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
2835 // recursive call where Known may be useful to the caller.
2836 if (Depth > 0) {
2837 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2838 return false;
2839 }
2840 break;
2841 }
2842 case ISD::MUL:
2843 if (DemandedBits.isPowerOf2()) {
2844 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2845 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2846 // odd (has LSB set), then the left-shifted low bit of X is the answer.
2847 unsigned CTZ = DemandedBits.countr_zero();
2848 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2849 if (C && C->getAPIntValue().countr_zero() == CTZ) {
2850 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2851 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2852 return TLO.CombineTo(Op, Shl);
2853 }
2854 }
2855 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2856 // X * X is odd iff X is odd.
2857 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2858 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2859 SDValue One = TLO.DAG.getConstant(1, dl, VT);
2860 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2861 return TLO.CombineTo(Op, And1);
2862 }
2863 [[fallthrough]];
2864 case ISD::PTRADD:
2865 if (Op.getOperand(0).getValueType() != Op.getOperand(1).getValueType())
2866 break;
2867 // PTRADD behaves like ADD if pointers are represented as integers.
2868 [[fallthrough]];
2869 case ISD::ADD:
2870 case ISD::SUB: {
2871 // Add, Sub, and Mul don't demand any bits in positions beyond that
2872 // of the highest bit demanded of them.
2873 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2874 SDNodeFlags Flags = Op.getNode()->getFlags();
2875 unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2876 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2877 KnownBits KnownOp0, KnownOp1;
2878 auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2879 const KnownBits &KnownRHS) {
2880 if (Op.getOpcode() == ISD::MUL)
2881 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2882 return Demanded;
2883 };
2884 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2885 Depth + 1) ||
2886 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2887 DemandedElts, KnownOp0, TLO, Depth + 1) ||
2888 // See if the operation should be performed at a smaller bit width.
2890 // Disable the nsw and nuw flags. We can no longer guarantee that we
2891 // won't wrap after simplification.
2892 Op->dropFlags(SDNodeFlags::NoWrap);
2893 return true;
2894 }
2895
2896 // neg x with only low bit demanded is simply x.
2897 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2898 isNullConstant(Op0))
2899 return TLO.CombineTo(Op, Op1);
2900
2901 // Attempt to avoid multi-use ops if we don't need anything from them.
2902 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2904 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2906 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2907 if (DemandedOp0 || DemandedOp1) {
2908 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2909 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2910 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2911 Flags & ~SDNodeFlags::NoWrap);
2912 return TLO.CombineTo(Op, NewOp);
2913 }
2914 }
2915
2916 // If we have a constant operand, we may be able to turn it into -1 if we
2917 // do not demand the high bits. This can make the constant smaller to
2918 // encode, allow more general folding, or match specialized instruction
2919 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2920 // is probably not useful (and could be detrimental).
2922 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2923 if (C && !C->isAllOnes() && !C->isOne() &&
2924 (C->getAPIntValue() | HighMask).isAllOnes()) {
2925 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2926 // Disable the nsw and nuw flags. We can no longer guarantee that we
2927 // won't wrap after simplification.
2928 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2929 Flags & ~SDNodeFlags::NoWrap);
2930 return TLO.CombineTo(Op, NewOp);
2931 }
2932
2933 // Match a multiply with a disguised negated-power-of-2 and convert to a
2934 // an equivalent shift-left amount.
2935 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2936 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2937 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2938 return 0;
2939
2940 // Don't touch opaque constants. Also, ignore zero and power-of-2
2941 // multiplies. Those will get folded later.
2942 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2943 if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2944 !MulC->getAPIntValue().isPowerOf2()) {
2945 APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2946 if (UnmaskedC.isNegatedPowerOf2())
2947 return (-UnmaskedC).logBase2();
2948 }
2949 return 0;
2950 };
2951
2952 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2953 unsigned ShlAmt) {
2954 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2955 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2956 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2957 return TLO.CombineTo(Op, Res);
2958 };
2959
2961 if (Op.getOpcode() == ISD::ADD) {
2962 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2963 if (unsigned ShAmt = getShiftLeftAmt(Op0))
2964 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2965 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2966 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2967 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2968 }
2969 if (Op.getOpcode() == ISD::SUB) {
2970 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2971 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2972 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2973 }
2974 }
2975
2976 if (Op.getOpcode() == ISD::MUL) {
2977 Known = KnownBits::mul(KnownOp0, KnownOp1);
2978 } else { // Op.getOpcode() is either ISD::ADD, ISD::PTRADD, or ISD::SUB.
2980 Op.getOpcode() != ISD::SUB, Flags.hasNoSignedWrap(),
2981 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2982 }
2983 break;
2984 }
2985 case ISD::FABS: {
2986 SDValue Op0 = Op.getOperand(0);
2987 APInt SignMask = APInt::getSignMask(BitWidth);
2988
2989 if (!DemandedBits.intersects(SignMask))
2990 return TLO.CombineTo(Op, Op0);
2991
2992 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known, TLO,
2993 Depth + 1))
2994 return true;
2995
2996 if (Known.isNonNegative())
2997 return TLO.CombineTo(Op, Op0);
2998 if (Known.isNegative())
2999 return TLO.CombineTo(
3000 Op, TLO.DAG.getNode(ISD::FNEG, dl, VT, Op0, Op->getFlags()));
3001
3002 Known.Zero |= SignMask;
3003 Known.One &= ~SignMask;
3004
3005 break;
3006 }
3007 case ISD::FCOPYSIGN: {
3008 SDValue Op0 = Op.getOperand(0);
3009 SDValue Op1 = Op.getOperand(1);
3010
3011 unsigned BitWidth0 = Op0.getScalarValueSizeInBits();
3012 unsigned BitWidth1 = Op1.getScalarValueSizeInBits();
3013 APInt SignMask0 = APInt::getSignMask(BitWidth0);
3014 APInt SignMask1 = APInt::getSignMask(BitWidth1);
3015
3016 if (!DemandedBits.intersects(SignMask0))
3017 return TLO.CombineTo(Op, Op0);
3018
3019 if (SimplifyDemandedBits(Op0, ~SignMask0 & DemandedBits, DemandedElts,
3020 Known, TLO, Depth + 1) ||
3021 SimplifyDemandedBits(Op1, SignMask1, DemandedElts, Known2, TLO,
3022 Depth + 1))
3023 return true;
3024
3025 if (Known2.isNonNegative())
3026 return TLO.CombineTo(
3027 Op, TLO.DAG.getNode(ISD::FABS, dl, VT, Op0, Op->getFlags()));
3028
3029 if (Known2.isNegative())
3030 return TLO.CombineTo(
3031 Op, TLO.DAG.getNode(ISD::FNEG, dl, VT,
3032 TLO.DAG.getNode(ISD::FABS, SDLoc(Op0), VT, Op0)));
3033
3034 Known.Zero &= ~SignMask0;
3035 Known.One &= ~SignMask0;
3036 break;
3037 }
3038 case ISD::FNEG: {
3039 SDValue Op0 = Op.getOperand(0);
3040 APInt SignMask = APInt::getSignMask(BitWidth);
3041
3042 if (!DemandedBits.intersects(SignMask))
3043 return TLO.CombineTo(Op, Op0);
3044
3045 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known, TLO,
3046 Depth + 1))
3047 return true;
3048
3049 if (!Known.isSignUnknown()) {
3050 Known.Zero ^= SignMask;
3051 Known.One ^= SignMask;
3052 }
3053
3054 break;
3055 }
3056 default:
3057 // We also ask the target about intrinsics (which could be specific to it).
3058 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3059 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
3060 // TODO: Probably okay to remove after audit; here to reduce change size
3061 // in initial enablement patch for scalable vectors
3062 if (Op.getValueType().isScalableVector())
3063 break;
3065 Known, TLO, Depth))
3066 return true;
3067 break;
3068 }
3069
3070 // Just use computeKnownBits to compute output bits.
3071 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
3072 break;
3073 }
3074
3075 // If we know the value of all of the demanded bits, return this as a
3076 // constant.
3078 DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
3079 // Avoid folding to a constant if any OpaqueConstant is involved.
3080 if (llvm::any_of(Op->ops(), [](SDValue V) {
3081 auto *C = dyn_cast<ConstantSDNode>(V);
3082 return C && C->isOpaque();
3083 }))
3084 return false;
3085 if (VT.isInteger())
3086 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
3087 if (VT.isFloatingPoint())
3088 return TLO.CombineTo(
3089 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
3090 dl, VT));
3091 }
3092
3093 // A multi use 'all demanded elts' simplify failed to find any knownbits.
3094 // Try again just for the original demanded elts.
3095 // Ensure we do this AFTER constant folding above.
3096 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
3097 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
3098
3099 return false;
3100}
3101
3103 const APInt &DemandedElts,
3104 DAGCombinerInfo &DCI) const {
3105 SelectionDAG &DAG = DCI.DAG;
3106 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3107 !DCI.isBeforeLegalizeOps());
3108
3109 APInt KnownUndef, KnownZero;
3110 bool Simplified =
3111 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
3112 if (Simplified) {
3113 DCI.AddToWorklist(Op.getNode());
3114 DCI.CommitTargetLoweringOpt(TLO);
3115 }
3116
3117 return Simplified;
3118}
3119
3120/// Given a vector binary operation and known undefined elements for each input
3121/// operand, compute whether each element of the output is undefined.
3123 const APInt &UndefOp0,
3124 const APInt &UndefOp1) {
3125 EVT VT = BO.getValueType();
3127 "Vector binop only");
3128
3129 EVT EltVT = VT.getVectorElementType();
3130 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3131 assert(UndefOp0.getBitWidth() == NumElts &&
3132 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3133
3134 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3135 const APInt &UndefVals) {
3136 if (UndefVals[Index])
3137 return DAG.getUNDEF(EltVT);
3138
3139 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3140 // Try hard to make sure that the getNode() call is not creating temporary
3141 // nodes. Ignore opaque integers because they do not constant fold.
3142 SDValue Elt = BV->getOperand(Index);
3143 auto *C = dyn_cast<ConstantSDNode>(Elt);
3144 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3145 return Elt;
3146 }
3147
3148 return SDValue();
3149 };
3150
3151 APInt KnownUndef = APInt::getZero(NumElts);
3152 for (unsigned i = 0; i != NumElts; ++i) {
3153 // If both inputs for this element are either constant or undef and match
3154 // the element type, compute the constant/undef result for this element of
3155 // the vector.
3156 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3157 // not handle FP constants. The code within getNode() should be refactored
3158 // to avoid the danger of creating a bogus temporary node here.
3159 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3160 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3161 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3162 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3163 KnownUndef.setBit(i);
3164 }
3165 return KnownUndef;
3166}
3167
3169 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3170 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3171 bool AssumeSingleUse) const {
3172 EVT VT = Op.getValueType();
3173 unsigned Opcode = Op.getOpcode();
3174 APInt DemandedElts = OriginalDemandedElts;
3175 unsigned NumElts = DemandedElts.getBitWidth();
3176 assert(VT.isVector() && "Expected vector op");
3177
3178 KnownUndef = KnownZero = APInt::getZero(NumElts);
3179
3181 return false;
3182
3183 // TODO: For now we assume we know nothing about scalable vectors.
3184 if (VT.isScalableVector())
3185 return false;
3186
3187 assert(VT.getVectorNumElements() == NumElts &&
3188 "Mask size mismatches value type element count!");
3189
3190 // Undef operand.
3191 if (Op.isUndef()) {
3192 KnownUndef.setAllBits();
3193 return false;
3194 }
3195
3196 // If Op has other users, assume that all elements are needed.
3197 if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3198 DemandedElts.setAllBits();
3199
3200 // Not demanding any elements from Op.
3201 if (DemandedElts == 0) {
3202 KnownUndef.setAllBits();
3203 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3204 }
3205
3206 // Limit search depth.
3208 return false;
3209
3210 SDLoc DL(Op);
3211 unsigned EltSizeInBits = VT.getScalarSizeInBits();
3212 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3213
3214 // Helper for demanding the specified elements and all the bits of both binary
3215 // operands.
3216 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3217 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3218 TLO.DAG, Depth + 1);
3219 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3220 TLO.DAG, Depth + 1);
3221 if (NewOp0 || NewOp1) {
3222 SDValue NewOp =
3223 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3224 NewOp1 ? NewOp1 : Op1, Op->getFlags());
3225 return TLO.CombineTo(Op, NewOp);
3226 }
3227 return false;
3228 };
3229
3230 switch (Opcode) {
3231 case ISD::SCALAR_TO_VECTOR: {
3232 if (!DemandedElts[0]) {
3233 KnownUndef.setAllBits();
3234 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3235 }
3236 KnownUndef.setHighBits(NumElts - 1);
3237 break;
3238 }
3239 case ISD::BITCAST: {
3240 SDValue Src = Op.getOperand(0);
3241 EVT SrcVT = Src.getValueType();
3242
3243 if (!SrcVT.isVector()) {
3244 // TODO - bigendian once we have test coverage.
3245 if (IsLE) {
3246 APInt DemandedSrcBits = APInt::getZero(SrcVT.getSizeInBits());
3247 unsigned EltSize = VT.getScalarSizeInBits();
3248 for (unsigned I = 0; I != NumElts; ++I) {
3249 if (DemandedElts[I]) {
3250 unsigned Offset = I * EltSize;
3251 DemandedSrcBits.setBits(Offset, Offset + EltSize);
3252 }
3253 }
3254 KnownBits Known;
3255 if (SimplifyDemandedBits(Src, DemandedSrcBits, Known, TLO, Depth + 1))
3256 return true;
3257 }
3258 break;
3259 }
3260
3261 // Fast handling of 'identity' bitcasts.
3262 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3263 if (NumSrcElts == NumElts)
3264 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3265 KnownZero, TLO, Depth + 1);
3266
3267 APInt SrcDemandedElts, SrcZero, SrcUndef;
3268
3269 // Bitcast from 'large element' src vector to 'small element' vector, we
3270 // must demand a source element if any DemandedElt maps to it.
3271 if ((NumElts % NumSrcElts) == 0) {
3272 unsigned Scale = NumElts / NumSrcElts;
3273 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3274 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3275 TLO, Depth + 1))
3276 return true;
3277
3278 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3279 // of the large element.
3280 // TODO - bigendian once we have test coverage.
3281 if (IsLE) {
3282 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3283 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3284 for (unsigned i = 0; i != NumElts; ++i)
3285 if (DemandedElts[i]) {
3286 unsigned Ofs = (i % Scale) * EltSizeInBits;
3287 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3288 }
3289
3290 KnownBits Known;
3291 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3292 TLO, Depth + 1))
3293 return true;
3294
3295 // The bitcast has split each wide element into a number of
3296 // narrow subelements. We have just computed the Known bits
3297 // for wide elements. See if element splitting results in
3298 // some subelements being zero. Only for demanded elements!
3299 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3300 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3301 .isAllOnes())
3302 continue;
3303 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3304 unsigned Elt = Scale * SrcElt + SubElt;
3305 if (DemandedElts[Elt])
3306 KnownZero.setBit(Elt);
3307 }
3308 }
3309 }
3310
3311 // If the src element is zero/undef then all the output elements will be -
3312 // only demanded elements are guaranteed to be correct.
3313 for (unsigned i = 0; i != NumSrcElts; ++i) {
3314 if (SrcDemandedElts[i]) {
3315 if (SrcZero[i])
3316 KnownZero.setBits(i * Scale, (i + 1) * Scale);
3317 if (SrcUndef[i])
3318 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3319 }
3320 }
3321 }
3322
3323 // Bitcast from 'small element' src vector to 'large element' vector, we
3324 // demand all smaller source elements covered by the larger demanded element
3325 // of this vector.
3326 if ((NumSrcElts % NumElts) == 0) {
3327 unsigned Scale = NumSrcElts / NumElts;
3328 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3329 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3330 TLO, Depth + 1))
3331 return true;
3332
3333 // If all the src elements covering an output element are zero/undef, then
3334 // the output element will be as well, assuming it was demanded.
3335 for (unsigned i = 0; i != NumElts; ++i) {
3336 if (DemandedElts[i]) {
3337 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3338 KnownZero.setBit(i);
3339 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3340 KnownUndef.setBit(i);
3341 }
3342 }
3343 }
3344 break;
3345 }
3346 case ISD::FREEZE: {
3347 SDValue N0 = Op.getOperand(0);
3348 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3349 /*PoisonOnly=*/false,
3350 Depth + 1))
3351 return TLO.CombineTo(Op, N0);
3352
3353 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3354 // freeze(op(x, ...)) -> op(freeze(x), ...).
3355 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3356 return TLO.CombineTo(
3358 TLO.DAG.getFreeze(N0.getOperand(0))));
3359 break;
3360 }
3361 case ISD::BUILD_VECTOR: {
3362 // Check all elements and simplify any unused elements with UNDEF.
3363 if (!DemandedElts.isAllOnes()) {
3364 // Don't simplify BROADCASTS.
3365 if (llvm::any_of(Op->op_values(),
3366 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3368 bool Updated = false;
3369 for (unsigned i = 0; i != NumElts; ++i) {
3370 if (!DemandedElts[i] && !Ops[i].isUndef()) {
3371 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3372 KnownUndef.setBit(i);
3373 Updated = true;
3374 }
3375 }
3376 if (Updated)
3377 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3378 }
3379 }
3380 for (unsigned i = 0; i != NumElts; ++i) {
3381 SDValue SrcOp = Op.getOperand(i);
3382 if (SrcOp.isUndef()) {
3383 KnownUndef.setBit(i);
3384 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3386 KnownZero.setBit(i);
3387 }
3388 }
3389 break;
3390 }
3391 case ISD::CONCAT_VECTORS: {
3392 EVT SubVT = Op.getOperand(0).getValueType();
3393 unsigned NumSubVecs = Op.getNumOperands();
3394 unsigned NumSubElts = SubVT.getVectorNumElements();
3395 for (unsigned i = 0; i != NumSubVecs; ++i) {
3396 SDValue SubOp = Op.getOperand(i);
3397 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3398 APInt SubUndef, SubZero;
3399 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3400 Depth + 1))
3401 return true;
3402 KnownUndef.insertBits(SubUndef, i * NumSubElts);
3403 KnownZero.insertBits(SubZero, i * NumSubElts);
3404 }
3405
3406 // Attempt to avoid multi-use ops if we don't need anything from them.
3407 if (!DemandedElts.isAllOnes()) {
3408 bool FoundNewSub = false;
3409 SmallVector<SDValue, 2> DemandedSubOps;
3410 for (unsigned i = 0; i != NumSubVecs; ++i) {
3411 SDValue SubOp = Op.getOperand(i);
3412 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3414 SubOp, SubElts, TLO.DAG, Depth + 1);
3415 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3416 FoundNewSub = NewSubOp ? true : FoundNewSub;
3417 }
3418 if (FoundNewSub) {
3419 SDValue NewOp =
3420 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3421 return TLO.CombineTo(Op, NewOp);
3422 }
3423 }
3424 break;
3425 }
3426 case ISD::INSERT_SUBVECTOR: {
3427 // Demand any elements from the subvector and the remainder from the src it
3428 // is inserted into.
3429 SDValue Src = Op.getOperand(0);
3430 SDValue Sub = Op.getOperand(1);
3431 uint64_t Idx = Op.getConstantOperandVal(2);
3432 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3433 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3434 APInt DemandedSrcElts = DemandedElts;
3435 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3436
3437 // If none of the sub operand elements are demanded, bypass the insert.
3438 if (!DemandedSubElts)
3439 return TLO.CombineTo(Op, Src);
3440
3441 APInt SubUndef, SubZero;
3442 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3443 Depth + 1))
3444 return true;
3445
3446 // If none of the src operand elements are demanded, replace it with undef.
3447 if (!DemandedSrcElts && !Src.isUndef())
3448 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3449 TLO.DAG.getUNDEF(VT), Sub,
3450 Op.getOperand(2)));
3451
3452 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3453 TLO, Depth + 1))
3454 return true;
3455 KnownUndef.insertBits(SubUndef, Idx);
3456 KnownZero.insertBits(SubZero, Idx);
3457
3458 // Attempt to avoid multi-use ops if we don't need anything from them.
3459 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3461 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3463 Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3464 if (NewSrc || NewSub) {
3465 NewSrc = NewSrc ? NewSrc : Src;
3466 NewSub = NewSub ? NewSub : Sub;
3467 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3468 NewSub, Op.getOperand(2));
3469 return TLO.CombineTo(Op, NewOp);
3470 }
3471 }
3472 break;
3473 }
3475 // Offset the demanded elts by the subvector index.
3476 SDValue Src = Op.getOperand(0);
3477 if (Src.getValueType().isScalableVector())
3478 break;
3479 uint64_t Idx = Op.getConstantOperandVal(1);
3480 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3481 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3482
3483 APInt SrcUndef, SrcZero;
3484 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3485 Depth + 1))
3486 return true;
3487 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3488 KnownZero = SrcZero.extractBits(NumElts, Idx);
3489
3490 // Attempt to avoid multi-use ops if we don't need anything from them.
3491 if (!DemandedElts.isAllOnes()) {
3493 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3494 if (NewSrc) {
3495 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3496 Op.getOperand(1));
3497 return TLO.CombineTo(Op, NewOp);
3498 }
3499 }
3500 break;
3501 }
3503 SDValue Vec = Op.getOperand(0);
3504 SDValue Scl = Op.getOperand(1);
3505 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3506
3507 // For a legal, constant insertion index, if we don't need this insertion
3508 // then strip it, else remove it from the demanded elts.
3509 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3510 unsigned Idx = CIdx->getZExtValue();
3511 if (!DemandedElts[Idx])
3512 return TLO.CombineTo(Op, Vec);
3513
3514 APInt DemandedVecElts(DemandedElts);
3515 DemandedVecElts.clearBit(Idx);
3516 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3517 KnownZero, TLO, Depth + 1))
3518 return true;
3519
3520 KnownUndef.setBitVal(Idx, Scl.isUndef());
3521
3522 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3523 break;
3524 }
3525
3526 APInt VecUndef, VecZero;
3527 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3528 Depth + 1))
3529 return true;
3530 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3531 break;
3532 }
3533 case ISD::VSELECT: {
3534 SDValue Sel = Op.getOperand(0);
3535 SDValue LHS = Op.getOperand(1);
3536 SDValue RHS = Op.getOperand(2);
3537
3538 // Try to transform the select condition based on the current demanded
3539 // elements.
3540 APInt UndefSel, ZeroSel;
3541 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3542 Depth + 1))
3543 return true;
3544
3545 // See if we can simplify either vselect operand.
3546 APInt DemandedLHS(DemandedElts);
3547 APInt DemandedRHS(DemandedElts);
3548 APInt UndefLHS, ZeroLHS;
3549 APInt UndefRHS, ZeroRHS;
3550 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3551 Depth + 1))
3552 return true;
3553 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3554 Depth + 1))
3555 return true;
3556
3557 KnownUndef = UndefLHS & UndefRHS;
3558 KnownZero = ZeroLHS & ZeroRHS;
3559
3560 // If we know that the selected element is always zero, we don't need the
3561 // select value element.
3562 APInt DemandedSel = DemandedElts & ~KnownZero;
3563 if (DemandedSel != DemandedElts)
3564 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3565 Depth + 1))
3566 return true;
3567
3568 break;
3569 }
3570 case ISD::VECTOR_SHUFFLE: {
3571 SDValue LHS = Op.getOperand(0);
3572 SDValue RHS = Op.getOperand(1);
3573 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3574
3575 // Collect demanded elements from shuffle operands..
3576 APInt DemandedLHS(NumElts, 0);
3577 APInt DemandedRHS(NumElts, 0);
3578 for (unsigned i = 0; i != NumElts; ++i) {
3579 int M = ShuffleMask[i];
3580 if (M < 0 || !DemandedElts[i])
3581 continue;
3582 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3583 if (M < (int)NumElts)
3584 DemandedLHS.setBit(M);
3585 else
3586 DemandedRHS.setBit(M - NumElts);
3587 }
3588
3589 // If either side isn't demanded, replace it by UNDEF. We handle this
3590 // explicitly here to also simplify in case of multiple uses (on the
3591 // contrary to the SimplifyDemandedVectorElts calls below).
3592 bool FoldLHS = !DemandedLHS && !LHS.isUndef();
3593 bool FoldRHS = !DemandedRHS && !RHS.isUndef();
3594 if (FoldLHS || FoldRHS) {
3595 LHS = FoldLHS ? TLO.DAG.getUNDEF(LHS.getValueType()) : LHS;
3596 RHS = FoldRHS ? TLO.DAG.getUNDEF(RHS.getValueType()) : RHS;
3597 SDValue NewOp =
3598 TLO.DAG.getVectorShuffle(VT, SDLoc(Op), LHS, RHS, ShuffleMask);
3599 return TLO.CombineTo(Op, NewOp);
3600 }
3601
3602 // See if we can simplify either shuffle operand.
3603 APInt UndefLHS, ZeroLHS;
3604 APInt UndefRHS, ZeroRHS;
3605 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3606 Depth + 1))
3607 return true;
3608 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3609 Depth + 1))
3610 return true;
3611
3612 // Simplify mask using undef elements from LHS/RHS.
3613 bool Updated = false;
3614 bool IdentityLHS = true, IdentityRHS = true;
3615 SmallVector<int, 32> NewMask(ShuffleMask);
3616 for (unsigned i = 0; i != NumElts; ++i) {
3617 int &M = NewMask[i];
3618 if (M < 0)
3619 continue;
3620 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3621 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3622 Updated = true;
3623 M = -1;
3624 }
3625 IdentityLHS &= (M < 0) || (M == (int)i);
3626 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3627 }
3628
3629 // Update legal shuffle masks based on demanded elements if it won't reduce
3630 // to Identity which can cause premature removal of the shuffle mask.
3631 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3632 SDValue LegalShuffle =
3633 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3634 if (LegalShuffle)
3635 return TLO.CombineTo(Op, LegalShuffle);
3636 }
3637
3638 // Propagate undef/zero elements from LHS/RHS.
3639 for (unsigned i = 0; i != NumElts; ++i) {
3640 int M = ShuffleMask[i];
3641 if (M < 0) {
3642 KnownUndef.setBit(i);
3643 } else if (M < (int)NumElts) {
3644 if (UndefLHS[M])
3645 KnownUndef.setBit(i);
3646 if (ZeroLHS[M])
3647 KnownZero.setBit(i);
3648 } else {
3649 if (UndefRHS[M - NumElts])
3650 KnownUndef.setBit(i);
3651 if (ZeroRHS[M - NumElts])
3652 KnownZero.setBit(i);
3653 }
3654 }
3655 break;
3656 }
3660 APInt SrcUndef, SrcZero;
3661 SDValue Src = Op.getOperand(0);
3662 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3663 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3664 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3665 Depth + 1))
3666 return true;
3667 KnownZero = SrcZero.zextOrTrunc(NumElts);
3668 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3669
3670 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3671 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3672 DemandedSrcElts == 1) {
3673 // aext - if we just need the bottom element then we can bitcast.
3674 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3675 }
3676
3677 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3678 // zext(undef) upper bits are guaranteed to be zero.
3679 if (DemandedElts.isSubsetOf(KnownUndef))
3680 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3681 KnownUndef.clearAllBits();
3682
3683 // zext - if we just need the bottom element then we can mask:
3684 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3685 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3686 Op->isOnlyUserOf(Src.getNode()) &&
3687 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3688 SDLoc DL(Op);
3689 EVT SrcVT = Src.getValueType();
3690 EVT SrcSVT = SrcVT.getScalarType();
3691 SmallVector<SDValue> MaskElts;
3692 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3693 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3694 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3695 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3696 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3697 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3698 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3699 }
3700 }
3701 }
3702 break;
3703 }
3704
3705 // TODO: There are more binop opcodes that could be handled here - MIN,
3706 // MAX, saturated math, etc.
3707 case ISD::ADD: {
3708 SDValue Op0 = Op.getOperand(0);
3709 SDValue Op1 = Op.getOperand(1);
3710 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3711 APInt UndefLHS, ZeroLHS;
3712 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3713 Depth + 1, /*AssumeSingleUse*/ true))
3714 return true;
3715 }
3716 [[fallthrough]];
3717 }
3718 case ISD::AVGCEILS:
3719 case ISD::AVGCEILU:
3720 case ISD::AVGFLOORS:
3721 case ISD::AVGFLOORU:
3722 case ISD::OR:
3723 case ISD::XOR:
3724 case ISD::SUB:
3725 case ISD::FADD:
3726 case ISD::FSUB:
3727 case ISD::FMUL:
3728 case ISD::FDIV:
3729 case ISD::FREM: {
3730 SDValue Op0 = Op.getOperand(0);
3731 SDValue Op1 = Op.getOperand(1);
3732
3733 APInt UndefRHS, ZeroRHS;
3734 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3735 Depth + 1))
3736 return true;
3737 APInt UndefLHS, ZeroLHS;
3738 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3739 Depth + 1))
3740 return true;
3741
3742 KnownZero = ZeroLHS & ZeroRHS;
3743 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3744
3745 // Attempt to avoid multi-use ops if we don't need anything from them.
3746 // TODO - use KnownUndef to relax the demandedelts?
3747 if (!DemandedElts.isAllOnes())
3748 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3749 return true;
3750 break;
3751 }
3752 case ISD::SHL:
3753 case ISD::SRL:
3754 case ISD::SRA:
3755 case ISD::ROTL:
3756 case ISD::ROTR: {
3757 SDValue Op0 = Op.getOperand(0);
3758 SDValue Op1 = Op.getOperand(1);
3759
3760 APInt UndefRHS, ZeroRHS;
3761 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3762 Depth + 1))
3763 return true;
3764 APInt UndefLHS, ZeroLHS;
3765 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3766 Depth + 1))
3767 return true;
3768
3769 KnownZero = ZeroLHS;
3770 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3771
3772 // Attempt to avoid multi-use ops if we don't need anything from them.
3773 // TODO - use KnownUndef to relax the demandedelts?
3774 if (!DemandedElts.isAllOnes())
3775 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3776 return true;
3777 break;
3778 }
3779 case ISD::MUL:
3780 case ISD::MULHU:
3781 case ISD::MULHS:
3782 case ISD::AND: {
3783 SDValue Op0 = Op.getOperand(0);
3784 SDValue Op1 = Op.getOperand(1);
3785
3786 APInt SrcUndef, SrcZero;
3787 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3788 Depth + 1))
3789 return true;
3790 // If we know that a demanded element was zero in Op1 we don't need to
3791 // demand it in Op0 - its guaranteed to be zero.
3792 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3793 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3794 TLO, Depth + 1))
3795 return true;
3796
3797 KnownUndef &= DemandedElts0;
3798 KnownZero &= DemandedElts0;
3799
3800 // If every element pair has a zero/undef then just fold to zero.
3801 // fold (and x, undef) -> 0 / (and x, 0) -> 0
3802 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0
3803 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3804 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3805
3806 // If either side has a zero element, then the result element is zero, even
3807 // if the other is an UNDEF.
3808 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3809 // and then handle 'and' nodes with the rest of the binop opcodes.
3810 KnownZero |= SrcZero;
3811 KnownUndef &= SrcUndef;
3812 KnownUndef &= ~KnownZero;
3813
3814 // Attempt to avoid multi-use ops if we don't need anything from them.
3815 if (!DemandedElts.isAllOnes())
3816 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3817 return true;
3818 break;
3819 }
3820 case ISD::TRUNCATE:
3821 case ISD::SIGN_EXTEND:
3822 case ISD::ZERO_EXTEND:
3823 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3824 KnownZero, TLO, Depth + 1))
3825 return true;
3826
3827 if (!DemandedElts.isAllOnes())
3829 Op.getOperand(0), DemandedElts, TLO.DAG, Depth + 1))
3830 return TLO.CombineTo(Op, TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp));
3831
3832 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3833 // zext(undef) upper bits are guaranteed to be zero.
3834 if (DemandedElts.isSubsetOf(KnownUndef))
3835 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3836 KnownUndef.clearAllBits();
3837 }
3838 break;
3839 case ISD::SINT_TO_FP:
3840 case ISD::UINT_TO_FP:
3841 case ISD::FP_TO_SINT:
3842 case ISD::FP_TO_UINT:
3843 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3844 KnownZero, TLO, Depth + 1))
3845 return true;
3846 // Don't fall through to generic undef -> undef handling.
3847 return false;
3848 default: {
3849 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3850 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3851 KnownZero, TLO, Depth))
3852 return true;
3853 } else {
3854 KnownBits Known;
3855 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3856 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3857 TLO, Depth, AssumeSingleUse))
3858 return true;
3859 }
3860 break;
3861 }
3862 }
3863 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3864
3865 // Constant fold all undef cases.
3866 // TODO: Handle zero cases as well.
3867 if (DemandedElts.isSubsetOf(KnownUndef))
3868 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3869
3870 return false;
3871}
3872
3873/// Determine which of the bits specified in Mask are known to be either zero or
3874/// one and return them in the Known.
3876 KnownBits &Known,
3877 const APInt &DemandedElts,
3878 const SelectionDAG &DAG,
3879 unsigned Depth) const {
3880 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3881 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3882 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3883 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3884 "Should use MaskedValueIsZero if you don't know whether Op"
3885 " is a target node!");
3886 Known.resetAll();
3887}
3888
3891 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3892 unsigned Depth) const {
3893 Known.resetAll();
3894}
3895
3898 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3899 unsigned Depth) const {
3900 Known.resetAll();
3901}
3902
3904 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3905 // The low bits are known zero if the pointer is aligned.
3906 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3907}
3908
3914
3915/// This method can be implemented by targets that want to expose additional
3916/// information about sign bits to the DAG Combiner.
3918 const APInt &,
3919 const SelectionDAG &,
3920 unsigned Depth) const {
3921 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3922 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3923 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3924 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3925 "Should use ComputeNumSignBits if you don't know whether Op"
3926 " is a target node!");
3927 return 1;
3928}
3929
3931 GISelValueTracking &Analysis, Register R, const APInt &DemandedElts,
3932 const MachineRegisterInfo &MRI, unsigned Depth) const {
3933 return 1;
3934}
3935
3937 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3938 TargetLoweringOpt &TLO, unsigned Depth) const {
3939 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3940 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3941 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3942 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3943 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3944 " is a target node!");
3945 return false;
3946}
3947
3949 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3950 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3951 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3952 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3953 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3954 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3955 "Should use SimplifyDemandedBits if you don't know whether Op"
3956 " is a target node!");
3957 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3958 return false;
3959}
3960
3962 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3963 SelectionDAG &DAG, unsigned Depth) const {
3964 assert(
3965 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3966 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3967 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3968 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3969 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3970 " is a target node!");
3971 return SDValue();
3972}
3973
3974SDValue
3977 SelectionDAG &DAG) const {
3978 bool LegalMask = isShuffleMaskLegal(Mask, VT);
3979 if (!LegalMask) {
3980 std::swap(N0, N1);
3982 LegalMask = isShuffleMaskLegal(Mask, VT);
3983 }
3984
3985 if (!LegalMask)
3986 return SDValue();
3987
3988 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3989}
3990
3992 return nullptr;
3993}
3994
3996 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3997 bool PoisonOnly, unsigned Depth) const {
3998 assert(
3999 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4000 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4001 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4002 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4003 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
4004 " is a target node!");
4005
4006 // If Op can't create undef/poison and none of its operands are undef/poison
4007 // then Op is never undef/poison.
4008 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
4009 /*ConsiderFlags*/ true, Depth) &&
4010 all_of(Op->ops(), [&](SDValue V) {
4011 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
4012 Depth + 1);
4013 });
4014}
4015
4017 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4018 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
4019 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4020 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4021 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4022 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4023 "Should use canCreateUndefOrPoison if you don't know whether Op"
4024 " is a target node!");
4025 // Be conservative and return true.
4026 return true;
4027}
4028
4030 const APInt &DemandedElts,
4031 const SelectionDAG &DAG,
4032 bool SNaN,
4033 unsigned Depth) const {
4034 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4035 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4036 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4037 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4038 "Should use isKnownNeverNaN if you don't know whether Op"
4039 " is a target node!");
4040 return false;
4041}
4042
4044 const APInt &DemandedElts,
4045 APInt &UndefElts,
4046 const SelectionDAG &DAG,
4047 unsigned Depth) const {
4048 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4049 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4050 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4051 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4052 "Should use isSplatValue if you don't know whether Op"
4053 " is a target node!");
4054 return false;
4055}
4056
4057// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
4058// work with truncating build vectors and vectors with elements of less than
4059// 8 bits.
4061 if (!N)
4062 return false;
4063
4064 unsigned EltWidth;
4065 APInt CVal;
4066 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
4067 /*AllowTruncation=*/true)) {
4068 CVal = CN->getAPIntValue();
4069 EltWidth = N.getValueType().getScalarSizeInBits();
4070 } else
4071 return false;
4072
4073 // If this is a truncating splat, truncate the splat value.
4074 // Otherwise, we may fail to match the expected values below.
4075 if (EltWidth < CVal.getBitWidth())
4076 CVal = CVal.trunc(EltWidth);
4077
4078 switch (getBooleanContents(N.getValueType())) {
4080 return CVal[0];
4082 return CVal.isOne();
4084 return CVal.isAllOnes();
4085 }
4086
4087 llvm_unreachable("Invalid boolean contents");
4088}
4089
4091 if (!N)
4092 return false;
4093
4095 if (!CN) {
4097 if (!BV)
4098 return false;
4099
4100 // Only interested in constant splats, we don't care about undef
4101 // elements in identifying boolean constants and getConstantSplatNode
4102 // returns NULL if all ops are undef;
4103 CN = BV->getConstantSplatNode();
4104 if (!CN)
4105 return false;
4106 }
4107
4108 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
4109 return !CN->getAPIntValue()[0];
4110
4111 return CN->isZero();
4112}
4113
4115 bool SExt) const {
4116 if (VT == MVT::i1)
4117 return N->isOne();
4118
4120 switch (Cnt) {
4122 // An extended value of 1 is always true, unless its original type is i1,
4123 // in which case it will be sign extended to -1.
4124 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
4127 return N->isAllOnes() && SExt;
4128 }
4129 llvm_unreachable("Unexpected enumeration.");
4130}
4131
4132/// This helper function of SimplifySetCC tries to optimize the comparison when
4133/// either operand of the SetCC node is a bitwise-and instruction.
4134SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
4135 ISD::CondCode Cond, const SDLoc &DL,
4136 DAGCombinerInfo &DCI) const {
4137 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
4138 std::swap(N0, N1);
4139
4140 SelectionDAG &DAG = DCI.DAG;
4141 EVT OpVT = N0.getValueType();
4142 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
4143 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4144 return SDValue();
4145
4146 // (X & Y) != 0 --> zextOrTrunc(X & Y)
4147 // iff everything but LSB is known zero:
4148 if (Cond == ISD::SETNE && isNullConstant(N1) &&
4151 unsigned NumEltBits = OpVT.getScalarSizeInBits();
4152 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
4153 if (DAG.MaskedValueIsZero(N0, UpperBits))
4154 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
4155 }
4156
4157 // Try to eliminate a power-of-2 mask constant by converting to a signbit
4158 // test in a narrow type that we can truncate to with no cost. Examples:
4159 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4160 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4161 // TODO: This conservatively checks for type legality on the source and
4162 // destination types. That may inhibit optimizations, but it also
4163 // allows setcc->shift transforms that may be more beneficial.
4164 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4165 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4166 isTypeLegal(OpVT) && N0.hasOneUse()) {
4167 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4168 AndC->getAPIntValue().getActiveBits());
4169 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4170 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4171 SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4172 return DAG.getSetCC(DL, VT, Trunc, Zero,
4174 }
4175 }
4176
4177 // Match these patterns in any of their permutations:
4178 // (X & Y) == Y
4179 // (X & Y) != Y
4180 SDValue X, Y;
4181 if (N0.getOperand(0) == N1) {
4182 X = N0.getOperand(1);
4183 Y = N0.getOperand(0);
4184 } else if (N0.getOperand(1) == N1) {
4185 X = N0.getOperand(0);
4186 Y = N0.getOperand(1);
4187 } else {
4188 return SDValue();
4189 }
4190
4191 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4192 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4193 // its liable to create and infinite loop.
4194 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4195 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4197 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4198 // Note that where Y is variable and is known to have at most one bit set
4199 // (for example, if it is Z & 1) we cannot do this; the expressions are not
4200 // equivalent when Y == 0.
4201 assert(OpVT.isInteger());
4203 if (DCI.isBeforeLegalizeOps() ||
4205 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4206 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4207 // If the target supports an 'and-not' or 'and-complement' logic operation,
4208 // try to use that to make a comparison operation more efficient.
4209 // But don't do this transform if the mask is a single bit because there are
4210 // more efficient ways to deal with that case (for example, 'bt' on x86 or
4211 // 'rlwinm' on PPC).
4212
4213 // Bail out if the compare operand that we want to turn into a zero is
4214 // already a zero (otherwise, infinite loop).
4215 if (isNullConstant(Y))
4216 return SDValue();
4217
4218 // Transform this into: ~X & Y == 0.
4219 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4220 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4221 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4222 }
4223
4224 return SDValue();
4225}
4226
4227/// This helper function of SimplifySetCC tries to optimize the comparison when
4228/// either operand of the SetCC node is a bitwise-or instruction.
4229/// For now, this just transforms (X | Y) ==/!= Y into X & ~Y ==/!= 0.
4230SDValue TargetLowering::foldSetCCWithOr(EVT VT, SDValue N0, SDValue N1,
4231 ISD::CondCode Cond, const SDLoc &DL,
4232 DAGCombinerInfo &DCI) const {
4233 if (N1.getOpcode() == ISD::OR && N0.getOpcode() != ISD::OR)
4234 std::swap(N0, N1);
4235
4236 SelectionDAG &DAG = DCI.DAG;
4237 EVT OpVT = N0.getValueType();
4238 if (!N0.hasOneUse() || !OpVT.isInteger() ||
4239 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4240 return SDValue();
4241
4242 // (X | Y) == Y
4243 // (X | Y) != Y
4244 SDValue X;
4245 if (sd_match(N0, m_Or(m_Value(X), m_Specific(N1))) && hasAndNotCompare(X)) {
4246 // If the target supports an 'and-not' or 'and-complement' logic operation,
4247 // try to use that to make a comparison operation more efficient.
4248
4249 // Bail out if the compare operand that we want to turn into a zero is
4250 // already a zero (otherwise, infinite loop).
4251 if (isNullConstant(N1))
4252 return SDValue();
4253
4254 // Transform this into: X & ~Y ==/!= 0.
4255 SDValue NotY = DAG.getNOT(SDLoc(N1), N1, OpVT);
4256 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, X, NotY);
4257 return DAG.getSetCC(DL, VT, NewAnd, DAG.getConstant(0, DL, OpVT), Cond);
4258 }
4259
4260 return SDValue();
4261}
4262
4263/// There are multiple IR patterns that could be checking whether certain
4264/// truncation of a signed number would be lossy or not. The pattern which is
4265/// best at IR level, may not lower optimally. Thus, we want to unfold it.
4266/// We are looking for the following pattern: (KeptBits is a constant)
4267/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4268/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4269/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
4270/// We will unfold it into the natural trunc+sext pattern:
4271/// ((%x << C) a>> C) dstcond %x
4272/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
4273SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4274 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4275 const SDLoc &DL) const {
4276 // We must be comparing with a constant.
4277 ConstantSDNode *C1;
4278 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4279 return SDValue();
4280
4281 // N0 should be: add %x, (1 << (KeptBits-1))
4282 if (N0->getOpcode() != ISD::ADD)
4283 return SDValue();
4284
4285 // And we must be 'add'ing a constant.
4286 ConstantSDNode *C01;
4287 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4288 return SDValue();
4289
4290 SDValue X = N0->getOperand(0);
4291 EVT XVT = X.getValueType();
4292
4293 // Validate constants ...
4294
4295 APInt I1 = C1->getAPIntValue();
4296
4297 ISD::CondCode NewCond;
4298 if (Cond == ISD::CondCode::SETULT) {
4299 NewCond = ISD::CondCode::SETEQ;
4300 } else if (Cond == ISD::CondCode::SETULE) {
4301 NewCond = ISD::CondCode::SETEQ;
4302 // But need to 'canonicalize' the constant.
4303 I1 += 1;
4304 } else if (Cond == ISD::CondCode::SETUGT) {
4305 NewCond = ISD::CondCode::SETNE;
4306 // But need to 'canonicalize' the constant.
4307 I1 += 1;
4308 } else if (Cond == ISD::CondCode::SETUGE) {
4309 NewCond = ISD::CondCode::SETNE;
4310 } else
4311 return SDValue();
4312
4313 APInt I01 = C01->getAPIntValue();
4314
4315 auto checkConstants = [&I1, &I01]() -> bool {
4316 // Both of them must be power-of-two, and the constant from setcc is bigger.
4317 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4318 };
4319
4320 if (checkConstants()) {
4321 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
4322 } else {
4323 // What if we invert constants? (and the target predicate)
4324 I1.negate();
4325 I01.negate();
4326 assert(XVT.isInteger());
4327 NewCond = getSetCCInverse(NewCond, XVT);
4328 if (!checkConstants())
4329 return SDValue();
4330 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
4331 }
4332
4333 // They are power-of-two, so which bit is set?
4334 const unsigned KeptBits = I1.logBase2();
4335 const unsigned KeptBitsMinusOne = I01.logBase2();
4336
4337 // Magic!
4338 if (KeptBits != (KeptBitsMinusOne + 1))
4339 return SDValue();
4340 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4341
4342 // We don't want to do this in every single case.
4343 SelectionDAG &DAG = DCI.DAG;
4344 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4345 return SDValue();
4346
4347 // Unfold into: sext_inreg(%x) cond %x
4348 // Where 'cond' will be either 'eq' or 'ne'.
4349 SDValue SExtInReg = DAG.getNode(
4351 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4352 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4353}
4354
4355// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4356SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4357 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4358 DAGCombinerInfo &DCI, const SDLoc &DL) const {
4360 "Should be a comparison with 0.");
4361 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4362 "Valid only for [in]equality comparisons.");
4363
4364 unsigned NewShiftOpcode;
4365 SDValue X, C, Y;
4366
4367 SelectionDAG &DAG = DCI.DAG;
4368
4369 // Look for '(C l>>/<< Y)'.
4370 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4371 // The shift should be one-use.
4372 if (!V.hasOneUse())
4373 return false;
4374 unsigned OldShiftOpcode = V.getOpcode();
4375 switch (OldShiftOpcode) {
4376 case ISD::SHL:
4377 NewShiftOpcode = ISD::SRL;
4378 break;
4379 case ISD::SRL:
4380 NewShiftOpcode = ISD::SHL;
4381 break;
4382 default:
4383 return false; // must be a logical shift.
4384 }
4385 // We should be shifting a constant.
4386 // FIXME: best to use isConstantOrConstantVector().
4387 C = V.getOperand(0);
4388 ConstantSDNode *CC =
4389 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4390 if (!CC)
4391 return false;
4392 Y = V.getOperand(1);
4393
4394 ConstantSDNode *XC =
4395 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4397 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4398 };
4399
4400 // LHS of comparison should be an one-use 'and'.
4401 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4402 return SDValue();
4403
4404 X = N0.getOperand(0);
4405 SDValue Mask = N0.getOperand(1);
4406
4407 // 'and' is commutative!
4408 if (!Match(Mask)) {
4409 std::swap(X, Mask);
4410 if (!Match(Mask))
4411 return SDValue();
4412 }
4413
4414 EVT VT = X.getValueType();
4415
4416 // Produce:
4417 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4418 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4419 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4420 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4421 return T2;
4422}
4423
4424/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4425/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4426/// handle the commuted versions of these patterns.
4427SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4428 ISD::CondCode Cond, const SDLoc &DL,
4429 DAGCombinerInfo &DCI) const {
4430 unsigned BOpcode = N0.getOpcode();
4431 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4432 "Unexpected binop");
4433 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4434
4435 // (X + Y) == X --> Y == 0
4436 // (X - Y) == X --> Y == 0
4437 // (X ^ Y) == X --> Y == 0
4438 SelectionDAG &DAG = DCI.DAG;
4439 EVT OpVT = N0.getValueType();
4440 SDValue X = N0.getOperand(0);
4441 SDValue Y = N0.getOperand(1);
4442 if (X == N1)
4443 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4444
4445 if (Y != N1)
4446 return SDValue();
4447
4448 // (X + Y) == Y --> X == 0
4449 // (X ^ Y) == Y --> X == 0
4450 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4451 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4452
4453 // The shift would not be valid if the operands are boolean (i1).
4454 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4455 return SDValue();
4456
4457 // (X - Y) == Y --> X == Y << 1
4458 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4459 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4460 if (!DCI.isCalledByLegalizer())
4461 DCI.AddToWorklist(YShl1.getNode());
4462 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4463}
4464
4466 SDValue N0, const APInt &C1,
4467 ISD::CondCode Cond, const SDLoc &dl,
4468 SelectionDAG &DAG) {
4469 // Look through truncs that don't change the value of a ctpop.
4470 // FIXME: Add vector support? Need to be careful with setcc result type below.
4471 SDValue CTPOP = N0;
4472 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4474 CTPOP = N0.getOperand(0);
4475
4476 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4477 return SDValue();
4478
4479 EVT CTVT = CTPOP.getValueType();
4480 SDValue CTOp = CTPOP.getOperand(0);
4481
4482 // Expand a power-of-2-or-zero comparison based on ctpop:
4483 // (ctpop x) u< 2 -> (x & x-1) == 0
4484 // (ctpop x) u> 1 -> (x & x-1) != 0
4485 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4486 // Keep the CTPOP if it is a cheap vector op.
4487 if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4488 return SDValue();
4489
4490 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4491 if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4492 return SDValue();
4493 if (C1 == 0 && (Cond == ISD::SETULT))
4494 return SDValue(); // This is handled elsewhere.
4495
4496 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4497
4498 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4499 SDValue Result = CTOp;
4500 for (unsigned i = 0; i < Passes; i++) {
4501 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4502 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4503 }
4505 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4506 }
4507
4508 // Expand a power-of-2 comparison based on ctpop
4509 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4510 // Keep the CTPOP if it is cheap.
4511 if (TLI.isCtpopFast(CTVT))
4512 return SDValue();
4513
4514 SDValue Zero = DAG.getConstant(0, dl, CTVT);
4515 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4516 assert(CTVT.isInteger());
4517 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4518
4519 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4520 // check before emitting a potentially unnecessary op.
4521 if (DAG.isKnownNeverZero(CTOp)) {
4522 // (ctpop x) == 1 --> (x & x-1) == 0
4523 // (ctpop x) != 1 --> (x & x-1) != 0
4524 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4525 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4526 return RHS;
4527 }
4528
4529 // (ctpop x) == 1 --> (x ^ x-1) > x-1
4530 // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4531 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4533 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4534 }
4535
4536 return SDValue();
4537}
4538
4540 ISD::CondCode Cond, const SDLoc &dl,
4541 SelectionDAG &DAG) {
4542 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4543 return SDValue();
4544
4545 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4546 if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4547 return SDValue();
4548
4549 auto getRotateSource = [](SDValue X) {
4550 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4551 return X.getOperand(0);
4552 return SDValue();
4553 };
4554
4555 // Peek through a rotated value compared against 0 or -1:
4556 // (rot X, Y) == 0/-1 --> X == 0/-1
4557 // (rot X, Y) != 0/-1 --> X != 0/-1
4558 if (SDValue R = getRotateSource(N0))
4559 return DAG.getSetCC(dl, VT, R, N1, Cond);
4560
4561 // Peek through an 'or' of a rotated value compared against 0:
4562 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4563 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4564 //
4565 // TODO: Add the 'and' with -1 sibling.
4566 // TODO: Recurse through a series of 'or' ops to find the rotate.
4567 EVT OpVT = N0.getValueType();
4568 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4569 if (SDValue R = getRotateSource(N0.getOperand(0))) {
4570 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4571 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4572 }
4573 if (SDValue R = getRotateSource(N0.getOperand(1))) {
4574 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4575 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4576 }
4577 }
4578
4579 return SDValue();
4580}
4581
4583 ISD::CondCode Cond, const SDLoc &dl,
4584 SelectionDAG &DAG) {
4585 // If we are testing for all-bits-clear, we might be able to do that with
4586 // less shifting since bit-order does not matter.
4587 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4588 return SDValue();
4589
4590 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4591 if (!C1 || !C1->isZero())
4592 return SDValue();
4593
4594 if (!N0.hasOneUse() ||
4595 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4596 return SDValue();
4597
4598 unsigned BitWidth = N0.getScalarValueSizeInBits();
4599 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4600 if (!ShAmtC)
4601 return SDValue();
4602
4603 uint64_t ShAmt = ShAmtC->getAPIntValue().urem(BitWidth);
4604 if (ShAmt == 0)
4605 return SDValue();
4606
4607 // Canonicalize fshr as fshl to reduce pattern-matching.
4608 if (N0.getOpcode() == ISD::FSHR)
4609 ShAmt = BitWidth - ShAmt;
4610
4611 // Match an 'or' with a specific operand 'Other' in either commuted variant.
4612 SDValue X, Y;
4613 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4614 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4615 return false;
4616 if (Or.getOperand(0) == Other) {
4617 X = Or.getOperand(0);
4618 Y = Or.getOperand(1);
4619 return true;
4620 }
4621 if (Or.getOperand(1) == Other) {
4622 X = Or.getOperand(1);
4623 Y = Or.getOperand(0);
4624 return true;
4625 }
4626 return false;
4627 };
4628
4629 EVT OpVT = N0.getValueType();
4630 EVT ShAmtVT = N0.getOperand(2).getValueType();
4631 SDValue F0 = N0.getOperand(0);
4632 SDValue F1 = N0.getOperand(1);
4633 if (matchOr(F0, F1)) {
4634 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4635 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4636 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4637 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4638 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4639 }
4640 if (matchOr(F1, F0)) {
4641 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4642 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4643 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4644 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4645 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4646 }
4647
4648 return SDValue();
4649}
4650
4651/// Try to simplify a setcc built with the specified operands and cc. If it is
4652/// unable to simplify it, return a null SDValue.
4654 ISD::CondCode Cond, bool foldBooleans,
4655 DAGCombinerInfo &DCI,
4656 const SDLoc &dl) const {
4657 SelectionDAG &DAG = DCI.DAG;
4658 const DataLayout &Layout = DAG.getDataLayout();
4659 EVT OpVT = N0.getValueType();
4660 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4661
4662 // Constant fold or commute setcc.
4663 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4664 return Fold;
4665
4666 bool N0ConstOrSplat =
4667 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4668 bool N1ConstOrSplat =
4669 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4670
4671 // Canonicalize toward having the constant on the RHS.
4672 // TODO: Handle non-splat vector constants. All undef causes trouble.
4673 // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4674 // infinite loop here when we encounter one.
4676 if (N0ConstOrSplat && !N1ConstOrSplat &&
4677 (DCI.isBeforeLegalizeOps() ||
4678 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4679 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4680
4681 // If we have a subtract with the same 2 non-constant operands as this setcc
4682 // -- but in reverse order -- then try to commute the operands of this setcc
4683 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4684 // instruction on some targets.
4685 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4686 (DCI.isBeforeLegalizeOps() ||
4687 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4688 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4689 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4690 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4691
4692 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4693 return V;
4694
4695 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4696 return V;
4697
4698 if (auto *N1C = isConstOrConstSplat(N1)) {
4699 const APInt &C1 = N1C->getAPIntValue();
4700
4701 // Optimize some CTPOP cases.
4702 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4703 return V;
4704
4705 // For equality to 0 of a no-wrap multiply, decompose and test each op:
4706 // X * Y == 0 --> (X == 0) || (Y == 0)
4707 // X * Y != 0 --> (X != 0) && (Y != 0)
4708 // TODO: This bails out if minsize is set, but if the target doesn't have a
4709 // single instruction multiply for this type, it would likely be
4710 // smaller to decompose.
4711 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4712 N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4713 (N0->getFlags().hasNoUnsignedWrap() ||
4714 N0->getFlags().hasNoSignedWrap()) &&
4715 !Attr.hasFnAttr(Attribute::MinSize)) {
4716 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4717 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4718 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4719 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4720 }
4721
4722 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4723 // equality comparison, then we're just comparing whether X itself is
4724 // zero.
4725 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4726 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4728 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4729 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4730 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4731 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4732 // (srl (ctlz x), 5) == 0 -> X != 0
4733 // (srl (ctlz x), 5) != 1 -> X != 0
4734 Cond = ISD::SETNE;
4735 } else {
4736 // (srl (ctlz x), 5) != 0 -> X == 0
4737 // (srl (ctlz x), 5) == 1 -> X == 0
4738 Cond = ISD::SETEQ;
4739 }
4740 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4741 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4742 Cond);
4743 }
4744 }
4745 }
4746 }
4747
4748 // FIXME: Support vectors.
4749 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4750 const APInt &C1 = N1C->getAPIntValue();
4751
4752 // (zext x) == C --> x == (trunc C)
4753 // (sext x) == C --> x == (trunc C)
4754 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4755 DCI.isBeforeLegalize() && N0->hasOneUse()) {
4756 unsigned MinBits = N0.getValueSizeInBits();
4757 SDValue PreExt;
4758 bool Signed = false;
4759 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4760 // ZExt
4761 MinBits = N0->getOperand(0).getValueSizeInBits();
4762 PreExt = N0->getOperand(0);
4763 } else if (N0->getOpcode() == ISD::AND) {
4764 // DAGCombine turns costly ZExts into ANDs
4765 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4766 if ((C->getAPIntValue()+1).isPowerOf2()) {
4767 MinBits = C->getAPIntValue().countr_one();
4768 PreExt = N0->getOperand(0);
4769 }
4770 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4771 // SExt
4772 MinBits = N0->getOperand(0).getValueSizeInBits();
4773 PreExt = N0->getOperand(0);
4774 Signed = true;
4775 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4776 // ZEXTLOAD / SEXTLOAD
4777 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4778 MinBits = LN0->getMemoryVT().getSizeInBits();
4779 PreExt = N0;
4780 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4781 Signed = true;
4782 MinBits = LN0->getMemoryVT().getSizeInBits();
4783 PreExt = N0;
4784 }
4785 }
4786
4787 // Figure out how many bits we need to preserve this constant.
4788 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4789
4790 // Make sure we're not losing bits from the constant.
4791 if (MinBits > 0 &&
4792 MinBits < C1.getBitWidth() &&
4793 MinBits >= ReqdBits) {
4794 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4795 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4796 // Will get folded away.
4797 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4798 if (MinBits == 1 && C1 == 1)
4799 // Invert the condition.
4800 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4802 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4803 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4804 }
4805
4806 // If truncating the setcc operands is not desirable, we can still
4807 // simplify the expression in some cases:
4808 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4809 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4810 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4811 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4812 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4813 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4814 SDValue TopSetCC = N0->getOperand(0);
4815 unsigned N0Opc = N0->getOpcode();
4816 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4817 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4818 TopSetCC.getOpcode() == ISD::SETCC &&
4819 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4820 (isConstFalseVal(N1) ||
4821 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4822
4823 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4824 (!N1C->isZero() && Cond == ISD::SETNE);
4825
4826 if (!Inverse)
4827 return TopSetCC;
4828
4830 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4831 TopSetCC.getOperand(0).getValueType());
4832 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4833 TopSetCC.getOperand(1),
4834 InvCond);
4835 }
4836 }
4837 }
4838
4839 // If the LHS is '(and load, const)', the RHS is 0, the test is for
4840 // equality or unsigned, and all 1 bits of the const are in the same
4841 // partial word, see if we can shorten the load.
4842 if (DCI.isBeforeLegalize() &&
4844 N0.getOpcode() == ISD::AND && C1 == 0 &&
4845 N0.getNode()->hasOneUse() &&
4846 isa<LoadSDNode>(N0.getOperand(0)) &&
4847 N0.getOperand(0).getNode()->hasOneUse() &&
4849 auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4850 APInt bestMask;
4851 unsigned bestWidth = 0, bestOffset = 0;
4852 if (Lod->isSimple() && Lod->isUnindexed() &&
4853 (Lod->getMemoryVT().isByteSized() ||
4854 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4855 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4856 unsigned origWidth = N0.getValueSizeInBits();
4857 unsigned maskWidth = origWidth;
4858 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4859 // 8 bits, but have to be careful...
4860 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4861 origWidth = Lod->getMemoryVT().getSizeInBits();
4862 const APInt &Mask = N0.getConstantOperandAPInt(1);
4863 // Only consider power-of-2 widths (and at least one byte) as candiates
4864 // for the narrowed load.
4865 for (unsigned width = 8; width < origWidth; width *= 2) {
4866 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4867 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4868 // Avoid accessing any padding here for now (we could use memWidth
4869 // instead of origWidth here otherwise).
4870 unsigned maxOffset = origWidth - width;
4871 for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4872 if (Mask.isSubsetOf(newMask)) {
4873 unsigned ptrOffset =
4874 Layout.isLittleEndian() ? offset : memWidth - width - offset;
4875 unsigned IsFast = 0;
4876 assert((ptrOffset % 8) == 0 && "Non-Bytealigned pointer offset");
4877 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4879 ptrOffset / 8) &&
4881 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4882 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4883 IsFast) {
4884 bestOffset = ptrOffset / 8;
4885 bestMask = Mask.lshr(offset);
4886 bestWidth = width;
4887 break;
4888 }
4889 }
4890 newMask <<= 8;
4891 }
4892 if (bestWidth)
4893 break;
4894 }
4895 }
4896 if (bestWidth) {
4897 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4898 SDValue Ptr = Lod->getBasePtr();
4899 if (bestOffset != 0)
4900 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4901 SDValue NewLoad =
4902 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4903 Lod->getPointerInfo().getWithOffset(bestOffset),
4904 Lod->getBaseAlign());
4905 SDValue And =
4906 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4907 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4908 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4909 }
4910 }
4911
4912 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4913 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4914 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4915
4916 // If the comparison constant has bits in the upper part, the
4917 // zero-extended value could never match.
4919 C1.getBitWidth() - InSize))) {
4920 switch (Cond) {
4921 case ISD::SETUGT:
4922 case ISD::SETUGE:
4923 case ISD::SETEQ:
4924 return DAG.getConstant(0, dl, VT);
4925 case ISD::SETULT:
4926 case ISD::SETULE:
4927 case ISD::SETNE:
4928 return DAG.getConstant(1, dl, VT);
4929 case ISD::SETGT:
4930 case ISD::SETGE:
4931 // True if the sign bit of C1 is set.
4932 return DAG.getConstant(C1.isNegative(), dl, VT);
4933 case ISD::SETLT:
4934 case ISD::SETLE:
4935 // True if the sign bit of C1 isn't set.
4936 return DAG.getConstant(C1.isNonNegative(), dl, VT);
4937 default:
4938 break;
4939 }
4940 }
4941
4942 // Otherwise, we can perform the comparison with the low bits.
4943 switch (Cond) {
4944 case ISD::SETEQ:
4945 case ISD::SETNE:
4946 case ISD::SETUGT:
4947 case ISD::SETUGE:
4948 case ISD::SETULT:
4949 case ISD::SETULE: {
4950 EVT newVT = N0.getOperand(0).getValueType();
4951 // FIXME: Should use isNarrowingProfitable.
4952 if (DCI.isBeforeLegalizeOps() ||
4953 (isOperationLegal(ISD::SETCC, newVT) &&
4954 isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4956 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4957 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4958
4959 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4960 NewConst, Cond);
4961 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4962 }
4963 break;
4964 }
4965 default:
4966 break; // todo, be more careful with signed comparisons
4967 }
4968 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4969 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4971 OpVT)) {
4972 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4973 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4974 EVT ExtDstTy = N0.getValueType();
4975 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4976
4977 // If the constant doesn't fit into the number of bits for the source of
4978 // the sign extension, it is impossible for both sides to be equal.
4979 if (C1.getSignificantBits() > ExtSrcTyBits)
4980 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4981
4982 assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4983 ExtDstTy != ExtSrcTy && "Unexpected types!");
4984 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4985 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4986 DAG.getConstant(Imm, dl, ExtDstTy));
4987 if (!DCI.isCalledByLegalizer())
4988 DCI.AddToWorklist(ZextOp.getNode());
4989 // Otherwise, make this a use of a zext.
4990 return DAG.getSetCC(dl, VT, ZextOp,
4991 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4992 } else if ((N1C->isZero() || N1C->isOne()) &&
4993 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4994 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are
4995 // excluded as they are handled below whilst checking for foldBooleans.
4996 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4997 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4998 (N0.getValueType() == MVT::i1 ||
5002 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
5003 if (TrueWhenTrue)
5004 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
5005 // Invert the condition.
5006 if (N0.getOpcode() == ISD::SETCC) {
5009 if (DCI.isBeforeLegalizeOps() ||
5011 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
5012 }
5013 }
5014
5015 if ((N0.getOpcode() == ISD::XOR ||
5016 (N0.getOpcode() == ISD::AND &&
5017 N0.getOperand(0).getOpcode() == ISD::XOR &&
5018 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
5019 isOneConstant(N0.getOperand(1))) {
5020 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
5021 // can only do this if the top bits are known zero.
5022 unsigned BitWidth = N0.getValueSizeInBits();
5023 if (DAG.MaskedValueIsZero(N0,
5025 BitWidth-1))) {
5026 // Okay, get the un-inverted input value.
5027 SDValue Val;
5028 if (N0.getOpcode() == ISD::XOR) {
5029 Val = N0.getOperand(0);
5030 } else {
5031 assert(N0.getOpcode() == ISD::AND &&
5032 N0.getOperand(0).getOpcode() == ISD::XOR);
5033 // ((X^1)&1)^1 -> X & 1
5034 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
5035 N0.getOperand(0).getOperand(0),
5036 N0.getOperand(1));
5037 }
5038
5039 return DAG.getSetCC(dl, VT, Val, N1,
5041 }
5042 } else if (N1C->isOne()) {
5043 SDValue Op0 = N0;
5044 if (Op0.getOpcode() == ISD::TRUNCATE)
5045 Op0 = Op0.getOperand(0);
5046
5047 if ((Op0.getOpcode() == ISD::XOR) &&
5048 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
5049 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
5050 SDValue XorLHS = Op0.getOperand(0);
5051 SDValue XorRHS = Op0.getOperand(1);
5052 // Ensure that the input setccs return an i1 type or 0/1 value.
5053 if (Op0.getValueType() == MVT::i1 ||
5058 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
5060 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
5061 }
5062 }
5063 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
5064 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
5065 if (Op0.getValueType().bitsGT(VT))
5066 Op0 = DAG.getNode(ISD::AND, dl, VT,
5067 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
5068 DAG.getConstant(1, dl, VT));
5069 else if (Op0.getValueType().bitsLT(VT))
5070 Op0 = DAG.getNode(ISD::AND, dl, VT,
5071 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
5072 DAG.getConstant(1, dl, VT));
5073
5074 return DAG.getSetCC(dl, VT, Op0,
5075 DAG.getConstant(0, dl, Op0.getValueType()),
5077 }
5078 if (Op0.getOpcode() == ISD::AssertZext &&
5079 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
5080 return DAG.getSetCC(dl, VT, Op0,
5081 DAG.getConstant(0, dl, Op0.getValueType()),
5083 }
5084 }
5085
5086 // Given:
5087 // icmp eq/ne (urem %x, %y), 0
5088 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
5089 // icmp eq/ne %x, 0
5090 if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
5091 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5092 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
5093 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
5094 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
5095 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
5096 }
5097
5098 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
5099 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
5100 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5102 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
5103 N1C->isAllOnes()) {
5104 return DAG.getSetCC(dl, VT, N0.getOperand(0),
5105 DAG.getConstant(0, dl, OpVT),
5107 }
5108
5109 // fold (setcc (trunc x) c) -> (setcc x c)
5110 if (N0.getOpcode() == ISD::TRUNCATE &&
5112 (N0->getFlags().hasNoSignedWrap() &&
5115 EVT NewVT = N0.getOperand(0).getValueType();
5116 SDValue NewConst = DAG.getConstant(
5118 ? C1.sext(NewVT.getSizeInBits())
5119 : C1.zext(NewVT.getSizeInBits()),
5120 dl, NewVT);
5121 return DAG.getSetCC(dl, VT, N0.getOperand(0), NewConst, Cond);
5122 }
5123
5124 if (SDValue V =
5125 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
5126 return V;
5127 }
5128
5129 // These simplifications apply to splat vectors as well.
5130 // TODO: Handle more splat vector cases.
5131 if (auto *N1C = isConstOrConstSplat(N1)) {
5132 const APInt &C1 = N1C->getAPIntValue();
5133
5134 APInt MinVal, MaxVal;
5135 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
5137 MinVal = APInt::getSignedMinValue(OperandBitSize);
5138 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
5139 } else {
5140 MinVal = APInt::getMinValue(OperandBitSize);
5141 MaxVal = APInt::getMaxValue(OperandBitSize);
5142 }
5143
5144 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
5145 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
5146 // X >= MIN --> true
5147 if (C1 == MinVal)
5148 return DAG.getBoolConstant(true, dl, VT, OpVT);
5149
5150 if (!VT.isVector()) { // TODO: Support this for vectors.
5151 // X >= C0 --> X > (C0 - 1)
5152 APInt C = C1 - 1;
5154 if ((DCI.isBeforeLegalizeOps() ||
5155 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5156 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5157 isLegalICmpImmediate(C.getSExtValue())))) {
5158 return DAG.getSetCC(dl, VT, N0,
5159 DAG.getConstant(C, dl, N1.getValueType()),
5160 NewCC);
5161 }
5162 }
5163 }
5164
5165 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
5166 // X <= MAX --> true
5167 if (C1 == MaxVal)
5168 return DAG.getBoolConstant(true, dl, VT, OpVT);
5169
5170 // X <= C0 --> X < (C0 + 1)
5171 if (!VT.isVector()) { // TODO: Support this for vectors.
5172 APInt C = C1 + 1;
5174 if ((DCI.isBeforeLegalizeOps() ||
5175 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5176 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5177 isLegalICmpImmediate(C.getSExtValue())))) {
5178 return DAG.getSetCC(dl, VT, N0,
5179 DAG.getConstant(C, dl, N1.getValueType()),
5180 NewCC);
5181 }
5182 }
5183 }
5184
5185 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
5186 if (C1 == MinVal)
5187 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
5188
5189 // TODO: Support this for vectors after legalize ops.
5190 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5191 // Canonicalize setlt X, Max --> setne X, Max
5192 if (C1 == MaxVal)
5193 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5194
5195 // If we have setult X, 1, turn it into seteq X, 0
5196 if (C1 == MinVal+1)
5197 return DAG.getSetCC(dl, VT, N0,
5198 DAG.getConstant(MinVal, dl, N0.getValueType()),
5199 ISD::SETEQ);
5200 }
5201 }
5202
5203 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
5204 if (C1 == MaxVal)
5205 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
5206
5207 // TODO: Support this for vectors after legalize ops.
5208 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5209 // Canonicalize setgt X, Min --> setne X, Min
5210 if (C1 == MinVal)
5211 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5212
5213 // If we have setugt X, Max-1, turn it into seteq X, Max
5214 if (C1 == MaxVal-1)
5215 return DAG.getSetCC(dl, VT, N0,
5216 DAG.getConstant(MaxVal, dl, N0.getValueType()),
5217 ISD::SETEQ);
5218 }
5219 }
5220
5221 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5222 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5223 if (C1.isZero())
5224 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5225 VT, N0, N1, Cond, DCI, dl))
5226 return CC;
5227
5228 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5229 // For example, when high 32-bits of i64 X are known clear:
5230 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
5231 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
5232 bool CmpZero = N1C->isZero();
5233 bool CmpNegOne = N1C->isAllOnes();
5234 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5235 // Match or(lo,shl(hi,bw/2)) pattern.
5236 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5237 unsigned EltBits = V.getScalarValueSizeInBits();
5238 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5239 return false;
5240 SDValue LHS = V.getOperand(0);
5241 SDValue RHS = V.getOperand(1);
5242 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5243 // Unshifted element must have zero upperbits.
5244 if (RHS.getOpcode() == ISD::SHL &&
5245 isa<ConstantSDNode>(RHS.getOperand(1)) &&
5246 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5247 DAG.MaskedValueIsZero(LHS, HiBits)) {
5248 Lo = LHS;
5249 Hi = RHS.getOperand(0);
5250 return true;
5251 }
5252 if (LHS.getOpcode() == ISD::SHL &&
5253 isa<ConstantSDNode>(LHS.getOperand(1)) &&
5254 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5255 DAG.MaskedValueIsZero(RHS, HiBits)) {
5256 Lo = RHS;
5257 Hi = LHS.getOperand(0);
5258 return true;
5259 }
5260 return false;
5261 };
5262
5263 auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5264 unsigned EltBits = N0.getScalarValueSizeInBits();
5265 unsigned HalfBits = EltBits / 2;
5266 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5267 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5268 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5269 SDValue NewN0 =
5270 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5271 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5272 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5273 };
5274
5275 SDValue Lo, Hi;
5276 if (IsConcat(N0, Lo, Hi))
5277 return MergeConcat(Lo, Hi);
5278
5279 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5280 SDValue Lo0, Lo1, Hi0, Hi1;
5281 if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5282 IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5283 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5284 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5285 }
5286 }
5287 }
5288 }
5289
5290 // If we have "setcc X, C0", check to see if we can shrink the immediate
5291 // by changing cc.
5292 // TODO: Support this for vectors after legalize ops.
5293 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5294 // SETUGT X, SINTMAX -> SETLT X, 0
5295 // SETUGE X, SINTMIN -> SETLT X, 0
5296 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5297 (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5298 return DAG.getSetCC(dl, VT, N0,
5299 DAG.getConstant(0, dl, N1.getValueType()),
5300 ISD::SETLT);
5301
5302 // SETULT X, SINTMIN -> SETGT X, -1
5303 // SETULE X, SINTMAX -> SETGT X, -1
5304 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5305 (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5306 return DAG.getSetCC(dl, VT, N0,
5307 DAG.getAllOnesConstant(dl, N1.getValueType()),
5308 ISD::SETGT);
5309 }
5310 }
5311
5312 // Back to non-vector simplifications.
5313 // TODO: Can we do these for vector splats?
5314 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5315 const APInt &C1 = N1C->getAPIntValue();
5316 EVT ShValTy = N0.getValueType();
5317
5318 // Fold bit comparisons when we can. This will result in an
5319 // incorrect value when boolean false is negative one, unless
5320 // the bitsize is 1 in which case the false value is the same
5321 // in practice regardless of the representation.
5322 if ((VT.getSizeInBits() == 1 ||
5324 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5325 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5326 N0.getOpcode() == ISD::AND) {
5327 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5328 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
5329 // Perform the xform if the AND RHS is a single bit.
5330 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5331 if (AndRHS->getAPIntValue().isPowerOf2() &&
5332 !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5333 return DAG.getNode(
5334 ISD::TRUNCATE, dl, VT,
5335 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5336 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5337 }
5338 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5339 // (X & 8) == 8 --> (X & 8) >> 3
5340 // Perform the xform if C1 is a single bit.
5341 unsigned ShCt = C1.logBase2();
5342 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5343 return DAG.getNode(
5344 ISD::TRUNCATE, dl, VT,
5345 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5346 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5347 }
5348 }
5349 }
5350 }
5351
5352 if (C1.getSignificantBits() <= 64 &&
5354 // (X & -256) == 256 -> (X >> 8) == 1
5355 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5356 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5357 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5358 const APInt &AndRHSC = AndRHS->getAPIntValue();
5359 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5360 unsigned ShiftBits = AndRHSC.countr_zero();
5361 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5362 // If using an unsigned shift doesn't yield a legal compare
5363 // immediate, try using sra instead.
5364 APInt NewC = C1.lshr(ShiftBits);
5365 if (NewC.getSignificantBits() <= 64 &&
5367 APInt SignedC = C1.ashr(ShiftBits);
5368 if (SignedC.getSignificantBits() <= 64 &&
5370 SDValue Shift = DAG.getNode(
5371 ISD::SRA, dl, ShValTy, N0.getOperand(0),
5372 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5373 SDValue CmpRHS = DAG.getConstant(SignedC, dl, ShValTy);
5374 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5375 }
5376 }
5377 SDValue Shift = DAG.getNode(
5378 ISD::SRL, dl, ShValTy, N0.getOperand(0),
5379 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5380 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5381 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5382 }
5383 }
5384 }
5385 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5386 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5387 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5388 // X < 0x100000000 -> (X >> 32) < 1
5389 // X >= 0x100000000 -> (X >> 32) >= 1
5390 // X <= 0x0ffffffff -> (X >> 32) < 1
5391 // X > 0x0ffffffff -> (X >> 32) >= 1
5392 unsigned ShiftBits;
5393 APInt NewC = C1;
5394 ISD::CondCode NewCond = Cond;
5395 if (AdjOne) {
5396 ShiftBits = C1.countr_one();
5397 NewC = NewC + 1;
5398 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5399 } else {
5400 ShiftBits = C1.countr_zero();
5401 }
5402 NewC.lshrInPlace(ShiftBits);
5403 if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5405 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5406 SDValue Shift =
5407 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5408 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5409 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5410 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5411 }
5412 }
5413 }
5414 }
5415
5417 auto *CFP = cast<ConstantFPSDNode>(N1);
5418 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5419
5420 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
5421 // constant if knowing that the operand is non-nan is enough. We prefer to
5422 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5423 // materialize 0.0.
5424 if (Cond == ISD::SETO || Cond == ISD::SETUO)
5425 return DAG.getSetCC(dl, VT, N0, N0, Cond);
5426
5427 // setcc (fneg x), C -> setcc swap(pred) x, -C
5428 if (N0.getOpcode() == ISD::FNEG) {
5430 if (DCI.isBeforeLegalizeOps() ||
5431 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5432 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5433 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5434 }
5435 }
5436
5437 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5439 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5440 bool IsFabs = N0.getOpcode() == ISD::FABS;
5441 SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5442 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5443 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5444 : (IsFabs ? fcInf : fcPosInf);
5445 if (Cond == ISD::SETUEQ)
5446 Flag |= fcNan;
5447 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5448 DAG.getTargetConstant(Flag, dl, MVT::i32));
5449 }
5450 }
5451
5452 // If the condition is not legal, see if we can find an equivalent one
5453 // which is legal.
5455 // If the comparison was an awkward floating-point == or != and one of
5456 // the comparison operands is infinity or negative infinity, convert the
5457 // condition to a less-awkward <= or >=.
5458 if (CFP->getValueAPF().isInfinity()) {
5459 bool IsNegInf = CFP->getValueAPF().isNegative();
5461 switch (Cond) {
5462 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5463 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5464 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5465 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5466 default: break;
5467 }
5468 if (NewCond != ISD::SETCC_INVALID &&
5469 isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5470 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5471 }
5472 }
5473 }
5474
5475 if (N0 == N1) {
5476 // The sext(setcc()) => setcc() optimization relies on the appropriate
5477 // constant being emitted.
5478 assert(!N0.getValueType().isInteger() &&
5479 "Integer types should be handled by FoldSetCC");
5480
5481 bool EqTrue = ISD::isTrueWhenEqual(Cond);
5482 unsigned UOF = ISD::getUnorderedFlavor(Cond);
5483 if (UOF == 2) // FP operators that are undefined on NaNs.
5484 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5485 if (UOF == unsigned(EqTrue))
5486 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5487 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
5488 // if it is not already.
5489 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5490 if (NewCond != Cond &&
5491 (DCI.isBeforeLegalizeOps() ||
5492 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5493 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5494 }
5495
5496 // ~X > ~Y --> Y > X
5497 // ~X < ~Y --> Y < X
5498 // ~X < C --> X > ~C
5499 // ~X > C --> X < ~C
5500 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5501 N0.getValueType().isInteger()) {
5502 if (isBitwiseNot(N0)) {
5503 if (isBitwiseNot(N1))
5504 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5505
5508 SDValue Not = DAG.getNOT(dl, N1, OpVT);
5509 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5510 }
5511 }
5512 }
5513
5514 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5515 N0.getValueType().isInteger()) {
5516 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5517 N0.getOpcode() == ISD::XOR) {
5518 // Simplify (X+Y) == (X+Z) --> Y == Z
5519 if (N0.getOpcode() == N1.getOpcode()) {
5520 if (N0.getOperand(0) == N1.getOperand(0))
5521 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5522 if (N0.getOperand(1) == N1.getOperand(1))
5523 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5524 if (isCommutativeBinOp(N0.getOpcode())) {
5525 // If X op Y == Y op X, try other combinations.
5526 if (N0.getOperand(0) == N1.getOperand(1))
5527 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5528 Cond);
5529 if (N0.getOperand(1) == N1.getOperand(0))
5530 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5531 Cond);
5532 }
5533 }
5534
5535 // If RHS is a legal immediate value for a compare instruction, we need
5536 // to be careful about increasing register pressure needlessly.
5537 bool LegalRHSImm = false;
5538
5539 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5540 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5541 // Turn (X+C1) == C2 --> X == C2-C1
5542 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5543 return DAG.getSetCC(
5544 dl, VT, N0.getOperand(0),
5545 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5546 dl, N0.getValueType()),
5547 Cond);
5548
5549 // Turn (X^C1) == C2 --> X == C1^C2
5550 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5551 return DAG.getSetCC(
5552 dl, VT, N0.getOperand(0),
5553 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5554 dl, N0.getValueType()),
5555 Cond);
5556 }
5557
5558 // Turn (C1-X) == C2 --> X == C1-C2
5559 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5560 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5561 return DAG.getSetCC(
5562 dl, VT, N0.getOperand(1),
5563 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5564 dl, N0.getValueType()),
5565 Cond);
5566
5567 // Could RHSC fold directly into a compare?
5568 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5569 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5570 }
5571
5572 // (X+Y) == X --> Y == 0 and similar folds.
5573 // Don't do this if X is an immediate that can fold into a cmp
5574 // instruction and X+Y has other uses. It could be an induction variable
5575 // chain, and the transform would increase register pressure.
5576 if (!LegalRHSImm || N0.hasOneUse())
5577 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5578 return V;
5579 }
5580
5581 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5582 N1.getOpcode() == ISD::XOR)
5583 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5584 return V;
5585
5586 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5587 return V;
5588
5589 if (SDValue V = foldSetCCWithOr(VT, N0, N1, Cond, dl, DCI))
5590 return V;
5591 }
5592
5593 // Fold remainder of division by a constant.
5594 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5595 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5596 // When division is cheap or optimizing for minimum size,
5597 // fall through to DIVREM creation by skipping this fold.
5598 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5599 if (N0.getOpcode() == ISD::UREM) {
5600 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5601 return Folded;
5602 } else if (N0.getOpcode() == ISD::SREM) {
5603 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5604 return Folded;
5605 }
5606 }
5607 }
5608
5609 // Fold away ALL boolean setcc's.
5610 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5611 SDValue Temp;
5612 switch (Cond) {
5613 default: llvm_unreachable("Unknown integer setcc!");
5614 case ISD::SETEQ: // X == Y -> ~(X^Y)
5615 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5616 N0 = DAG.getNOT(dl, Temp, OpVT);
5617 if (!DCI.isCalledByLegalizer())
5618 DCI.AddToWorklist(Temp.getNode());
5619 break;
5620 case ISD::SETNE: // X != Y --> (X^Y)
5621 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5622 break;
5623 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
5624 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
5625 Temp = DAG.getNOT(dl, N0, OpVT);
5626 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5627 if (!DCI.isCalledByLegalizer())
5628 DCI.AddToWorklist(Temp.getNode());
5629 break;
5630 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
5631 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
5632 Temp = DAG.getNOT(dl, N1, OpVT);
5633 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5634 if (!DCI.isCalledByLegalizer())
5635 DCI.AddToWorklist(Temp.getNode());
5636 break;
5637 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
5638 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
5639 Temp = DAG.getNOT(dl, N0, OpVT);
5640 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5641 if (!DCI.isCalledByLegalizer())
5642 DCI.AddToWorklist(Temp.getNode());
5643 break;
5644 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
5645 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
5646 Temp = DAG.getNOT(dl, N1, OpVT);
5647 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5648 break;
5649 }
5650 if (VT.getScalarType() != MVT::i1) {
5651 if (!DCI.isCalledByLegalizer())
5652 DCI.AddToWorklist(N0.getNode());
5653 // FIXME: If running after legalize, we probably can't do this.
5655 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5656 }
5657 return N0;
5658 }
5659
5660 // Fold (setcc (trunc x) (trunc y)) -> (setcc x y)
5661 if (N0.getOpcode() == ISD::TRUNCATE && N1.getOpcode() == ISD::TRUNCATE &&
5662 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
5664 N1->getFlags().hasNoUnsignedWrap()) ||
5666 N1->getFlags().hasNoSignedWrap())) &&
5668 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5669 }
5670
5671 // Could not fold it.
5672 return SDValue();
5673}
5674
5675/// Returns true (and the GlobalValue and the offset) if the node is a
5676/// GlobalAddress + offset.
5678 int64_t &Offset) const {
5679
5680 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5681
5682 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5683 GA = GASD->getGlobal();
5684 Offset += GASD->getOffset();
5685 return true;
5686 }
5687
5688 if (N->isAnyAdd()) {
5689 SDValue N1 = N->getOperand(0);
5690 SDValue N2 = N->getOperand(1);
5691 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5692 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5693 Offset += V->getSExtValue();
5694 return true;
5695 }
5696 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5697 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5698 Offset += V->getSExtValue();
5699 return true;
5700 }
5701 }
5702 }
5703
5704 return false;
5705}
5706
5708 DAGCombinerInfo &DCI) const {
5709 // Default implementation: no optimization.
5710 return SDValue();
5711}
5712
5713//===----------------------------------------------------------------------===//
5714// Inline Assembler Implementation Methods
5715//===----------------------------------------------------------------------===//
5716
5719 unsigned S = Constraint.size();
5720
5721 if (S == 1) {
5722 switch (Constraint[0]) {
5723 default: break;
5724 case 'r':
5725 return C_RegisterClass;
5726 case 'm': // memory
5727 case 'o': // offsetable
5728 case 'V': // not offsetable
5729 return C_Memory;
5730 case 'p': // Address.
5731 return C_Address;
5732 case 'n': // Simple Integer
5733 case 'E': // Floating Point Constant
5734 case 'F': // Floating Point Constant
5735 return C_Immediate;
5736 case 'i': // Simple Integer or Relocatable Constant
5737 case 's': // Relocatable Constant
5738 case 'X': // Allow ANY value.
5739 case 'I': // Target registers.
5740 case 'J':
5741 case 'K':
5742 case 'L':
5743 case 'M':
5744 case 'N':
5745 case 'O':
5746 case 'P':
5747 case '<':
5748 case '>':
5749 return C_Other;
5750 }
5751 }
5752
5753 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5754 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5755 return C_Memory;
5756 return C_Register;
5757 }
5758 return C_Unknown;
5759}
5760
5761/// Try to replace an X constraint, which matches anything, with another that
5762/// has more specific requirements based on the type of the corresponding
5763/// operand.
5764const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5765 if (ConstraintVT.isInteger())
5766 return "r";
5767 if (ConstraintVT.isFloatingPoint())
5768 return "f"; // works for many targets
5769 return nullptr;
5770}
5771
5773 SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5774 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5775 return SDValue();
5776}
5777
5778/// Lower the specified operand into the Ops vector.
5779/// If it is invalid, don't add anything to Ops.
5781 StringRef Constraint,
5782 std::vector<SDValue> &Ops,
5783 SelectionDAG &DAG) const {
5784
5785 if (Constraint.size() > 1)
5786 return;
5787
5788 char ConstraintLetter = Constraint[0];
5789 switch (ConstraintLetter) {
5790 default: break;
5791 case 'X': // Allows any operand
5792 case 'i': // Simple Integer or Relocatable Constant
5793 case 'n': // Simple Integer
5794 case 's': { // Relocatable Constant
5795
5797 uint64_t Offset = 0;
5798
5799 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5800 // etc., since getelementpointer is variadic. We can't use
5801 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5802 // while in this case the GA may be furthest from the root node which is
5803 // likely an ISD::ADD.
5804 while (true) {
5805 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5806 // gcc prints these as sign extended. Sign extend value to 64 bits
5807 // now; without this it would get ZExt'd later in
5808 // ScheduleDAGSDNodes::EmitNode, which is very generic.
5809 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5810 BooleanContent BCont = getBooleanContents(MVT::i64);
5811 ISD::NodeType ExtOpc =
5812 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5813 int64_t ExtVal =
5814 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5815 Ops.push_back(
5816 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5817 return;
5818 }
5819 if (ConstraintLetter != 'n') {
5820 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5821 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5822 GA->getValueType(0),
5823 Offset + GA->getOffset()));
5824 return;
5825 }
5826 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5827 Ops.push_back(DAG.getTargetBlockAddress(
5828 BA->getBlockAddress(), BA->getValueType(0),
5829 Offset + BA->getOffset(), BA->getTargetFlags()));
5830 return;
5831 }
5833 Ops.push_back(Op);
5834 return;
5835 }
5836 }
5837 const unsigned OpCode = Op.getOpcode();
5838 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5839 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5840 Op = Op.getOperand(1);
5841 // Subtraction is not commutative.
5842 else if (OpCode == ISD::ADD &&
5843 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5844 Op = Op.getOperand(0);
5845 else
5846 return;
5847 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5848 continue;
5849 }
5850 return;
5851 }
5852 break;
5853 }
5854 }
5855}
5856
5860
5861std::pair<unsigned, const TargetRegisterClass *>
5863 StringRef Constraint,
5864 MVT VT) const {
5865 if (!Constraint.starts_with("{"))
5866 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5867 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5868
5869 // Remove the braces from around the name.
5870 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5871
5872 std::pair<unsigned, const TargetRegisterClass *> R =
5873 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5874
5875 // Figure out which register class contains this reg.
5876 for (const TargetRegisterClass *RC : RI->regclasses()) {
5877 // If none of the value types for this register class are valid, we
5878 // can't use it. For example, 64-bit reg classes on 32-bit targets.
5879 if (!isLegalRC(*RI, *RC))
5880 continue;
5881
5882 for (const MCPhysReg &PR : *RC) {
5883 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5884 std::pair<unsigned, const TargetRegisterClass *> S =
5885 std::make_pair(PR, RC);
5886
5887 // If this register class has the requested value type, return it,
5888 // otherwise keep searching and return the first class found
5889 // if no other is found which explicitly has the requested type.
5890 if (RI->isTypeLegalForClass(*RC, VT))
5891 return S;
5892 if (!R.second)
5893 R = S;
5894 }
5895 }
5896 }
5897
5898 return R;
5899}
5900
5901//===----------------------------------------------------------------------===//
5902// Constraint Selection.
5903
5904/// Return true of this is an input operand that is a matching constraint like
5905/// "4".
5907 assert(!ConstraintCode.empty() && "No known constraint!");
5908 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5909}
5910
5911/// If this is an input matching constraint, this method returns the output
5912/// operand it matches.
5914 assert(!ConstraintCode.empty() && "No known constraint!");
5915 return atoi(ConstraintCode.c_str());
5916}
5917
5918/// Split up the constraint string from the inline assembly value into the
5919/// specific constraints and their prefixes, and also tie in the associated
5920/// operand values.
5921/// If this returns an empty vector, and if the constraint string itself
5922/// isn't empty, there was an error parsing.
5925 const TargetRegisterInfo *TRI,
5926 const CallBase &Call) const {
5927 /// Information about all of the constraints.
5928 AsmOperandInfoVector ConstraintOperands;
5929 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5930 unsigned maCount = 0; // Largest number of multiple alternative constraints.
5931
5932 // Do a prepass over the constraints, canonicalizing them, and building up the
5933 // ConstraintOperands list.
5934 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5935 unsigned ResNo = 0; // ResNo - The result number of the next output.
5936 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5937
5938 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5939 ConstraintOperands.emplace_back(std::move(CI));
5940 AsmOperandInfo &OpInfo = ConstraintOperands.back();
5941
5942 // Update multiple alternative constraint count.
5943 if (OpInfo.multipleAlternatives.size() > maCount)
5944 maCount = OpInfo.multipleAlternatives.size();
5945
5946 OpInfo.ConstraintVT = MVT::Other;
5947
5948 // Compute the value type for each operand.
5949 switch (OpInfo.Type) {
5951 // Indirect outputs just consume an argument.
5952 if (OpInfo.isIndirect) {
5953 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5954 break;
5955 }
5956
5957 // The return value of the call is this value. As such, there is no
5958 // corresponding argument.
5959 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5960 if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5961 OpInfo.ConstraintVT =
5962 getAsmOperandValueType(DL, STy->getElementType(ResNo))
5963 .getSimpleVT();
5964 } else {
5965 assert(ResNo == 0 && "Asm only has one result!");
5966 OpInfo.ConstraintVT =
5968 }
5969 ++ResNo;
5970 break;
5971 case InlineAsm::isInput:
5972 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5973 break;
5974 case InlineAsm::isLabel:
5975 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5976 ++LabelNo;
5977 continue;
5979 // Nothing to do.
5980 break;
5981 }
5982
5983 if (OpInfo.CallOperandVal) {
5984 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5985 if (OpInfo.isIndirect) {
5986 OpTy = Call.getParamElementType(ArgNo);
5987 assert(OpTy && "Indirect operand must have elementtype attribute");
5988 }
5989
5990 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5991 if (StructType *STy = dyn_cast<StructType>(OpTy))
5992 if (STy->getNumElements() == 1)
5993 OpTy = STy->getElementType(0);
5994
5995 // If OpTy is not a single value, it may be a struct/union that we
5996 // can tile with integers.
5997 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5998 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5999 switch (BitSize) {
6000 default: break;
6001 case 1:
6002 case 8:
6003 case 16:
6004 case 32:
6005 case 64:
6006 case 128:
6007 OpTy = IntegerType::get(OpTy->getContext(), BitSize);
6008 break;
6009 }
6010 }
6011
6012 EVT VT = getAsmOperandValueType(DL, OpTy, true);
6013 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
6014 ArgNo++;
6015 }
6016 }
6017
6018 // If we have multiple alternative constraints, select the best alternative.
6019 if (!ConstraintOperands.empty()) {
6020 if (maCount) {
6021 unsigned bestMAIndex = 0;
6022 int bestWeight = -1;
6023 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
6024 int weight = -1;
6025 unsigned maIndex;
6026 // Compute the sums of the weights for each alternative, keeping track
6027 // of the best (highest weight) one so far.
6028 for (maIndex = 0; maIndex < maCount; ++maIndex) {
6029 int weightSum = 0;
6030 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6031 cIndex != eIndex; ++cIndex) {
6032 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
6033 if (OpInfo.Type == InlineAsm::isClobber)
6034 continue;
6035
6036 // If this is an output operand with a matching input operand,
6037 // look up the matching input. If their types mismatch, e.g. one
6038 // is an integer, the other is floating point, or their sizes are
6039 // different, flag it as an maCantMatch.
6040 if (OpInfo.hasMatchingInput()) {
6041 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6042 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6043 if ((OpInfo.ConstraintVT.isInteger() !=
6044 Input.ConstraintVT.isInteger()) ||
6045 (OpInfo.ConstraintVT.getSizeInBits() !=
6046 Input.ConstraintVT.getSizeInBits())) {
6047 weightSum = -1; // Can't match.
6048 break;
6049 }
6050 }
6051 }
6052 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
6053 if (weight == -1) {
6054 weightSum = -1;
6055 break;
6056 }
6057 weightSum += weight;
6058 }
6059 // Update best.
6060 if (weightSum > bestWeight) {
6061 bestWeight = weightSum;
6062 bestMAIndex = maIndex;
6063 }
6064 }
6065
6066 // Now select chosen alternative in each constraint.
6067 for (AsmOperandInfo &cInfo : ConstraintOperands)
6068 if (cInfo.Type != InlineAsm::isClobber)
6069 cInfo.selectAlternative(bestMAIndex);
6070 }
6071 }
6072
6073 // Check and hook up tied operands, choose constraint code to use.
6074 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6075 cIndex != eIndex; ++cIndex) {
6076 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
6077
6078 // If this is an output operand with a matching input operand, look up the
6079 // matching input. If their types mismatch, e.g. one is an integer, the
6080 // other is floating point, or their sizes are different, flag it as an
6081 // error.
6082 if (OpInfo.hasMatchingInput()) {
6083 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6084
6085 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6086 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6087 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6088 OpInfo.ConstraintVT);
6089 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6090 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6091 Input.ConstraintVT);
6092 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
6093 OpInfo.ConstraintVT.isFloatingPoint();
6094 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
6095 Input.ConstraintVT.isFloatingPoint();
6096 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
6097 (MatchRC.second != InputRC.second)) {
6098 report_fatal_error("Unsupported asm: input constraint"
6099 " with a matching output constraint of"
6100 " incompatible type!");
6101 }
6102 }
6103 }
6104 }
6105
6106 return ConstraintOperands;
6107}
6108
6109/// Return a number indicating our preference for chosing a type of constraint
6110/// over another, for the purpose of sorting them. Immediates are almost always
6111/// preferrable (when they can be emitted). A higher return value means a
6112/// stronger preference for one constraint type relative to another.
6113/// FIXME: We should prefer registers over memory but doing so may lead to
6114/// unrecoverable register exhaustion later.
6115/// https://github.com/llvm/llvm-project/issues/20571
6117 switch (CT) {
6120 return 4;
6123 return 3;
6125 return 2;
6127 return 1;
6129 return 0;
6130 }
6131 llvm_unreachable("Invalid constraint type");
6132}
6133
6134/// Examine constraint type and operand type and determine a weight value.
6135/// This object must already have been set up with the operand type
6136/// and the current alternative constraint selected.
6139 AsmOperandInfo &info, int maIndex) const {
6141 if (maIndex >= (int)info.multipleAlternatives.size())
6142 rCodes = &info.Codes;
6143 else
6144 rCodes = &info.multipleAlternatives[maIndex].Codes;
6145 ConstraintWeight BestWeight = CW_Invalid;
6146
6147 // Loop over the options, keeping track of the most general one.
6148 for (const std::string &rCode : *rCodes) {
6149 ConstraintWeight weight =
6150 getSingleConstraintMatchWeight(info, rCode.c_str());
6151 if (weight > BestWeight)
6152 BestWeight = weight;
6153 }
6154
6155 return BestWeight;
6156}
6157
6158/// Examine constraint type and operand type and determine a weight value.
6159/// This object must already have been set up with the operand type
6160/// and the current alternative constraint selected.
6163 AsmOperandInfo &info, const char *constraint) const {
6165 Value *CallOperandVal = info.CallOperandVal;
6166 // If we don't have a value, we can't do a match,
6167 // but allow it at the lowest weight.
6168 if (!CallOperandVal)
6169 return CW_Default;
6170 // Look at the constraint type.
6171 switch (*constraint) {
6172 case 'i': // immediate integer.
6173 case 'n': // immediate integer with a known value.
6174 if (isa<ConstantInt>(CallOperandVal))
6175 weight = CW_Constant;
6176 break;
6177 case 's': // non-explicit intregal immediate.
6178 if (isa<GlobalValue>(CallOperandVal))
6179 weight = CW_Constant;
6180 break;
6181 case 'E': // immediate float if host format.
6182 case 'F': // immediate float.
6183 if (isa<ConstantFP>(CallOperandVal))
6184 weight = CW_Constant;
6185 break;
6186 case '<': // memory operand with autodecrement.
6187 case '>': // memory operand with autoincrement.
6188 case 'm': // memory operand.
6189 case 'o': // offsettable memory operand
6190 case 'V': // non-offsettable memory operand
6191 weight = CW_Memory;
6192 break;
6193 case 'r': // general register.
6194 case 'g': // general register, memory operand or immediate integer.
6195 // note: Clang converts "g" to "imr".
6196 if (CallOperandVal->getType()->isIntegerTy())
6197 weight = CW_Register;
6198 break;
6199 case 'X': // any operand.
6200 default:
6201 weight = CW_Default;
6202 break;
6203 }
6204 return weight;
6205}
6206
6207/// If there are multiple different constraints that we could pick for this
6208/// operand (e.g. "imr") try to pick the 'best' one.
6209/// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
6210/// into seven classes:
6211/// Register -> one specific register
6212/// RegisterClass -> a group of regs
6213/// Memory -> memory
6214/// Address -> a symbolic memory reference
6215/// Immediate -> immediate values
6216/// Other -> magic values (such as "Flag Output Operands")
6217/// Unknown -> something we don't recognize yet and can't handle
6218/// Ideally, we would pick the most specific constraint possible: if we have
6219/// something that fits into a register, we would pick it. The problem here
6220/// is that if we have something that could either be in a register or in
6221/// memory that use of the register could cause selection of *other*
6222/// operands to fail: they might only succeed if we pick memory. Because of
6223/// this the heuristic we use is:
6224///
6225/// 1) If there is an 'other' constraint, and if the operand is valid for
6226/// that constraint, use it. This makes us take advantage of 'i'
6227/// constraints when available.
6228/// 2) Otherwise, pick the most general constraint present. This prefers
6229/// 'm' over 'r', for example.
6230///
6232 TargetLowering::AsmOperandInfo &OpInfo) const {
6233 ConstraintGroup Ret;
6234
6235 Ret.reserve(OpInfo.Codes.size());
6236 for (StringRef Code : OpInfo.Codes) {
6238
6239 // Indirect 'other' or 'immediate' constraints are not allowed.
6240 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6241 CType == TargetLowering::C_Register ||
6243 continue;
6244
6245 // Things with matching constraints can only be registers, per gcc
6246 // documentation. This mainly affects "g" constraints.
6247 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6248 continue;
6249
6250 Ret.emplace_back(Code, CType);
6251 }
6252
6254 return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6255 });
6256
6257 return Ret;
6258}
6259
6260/// If we have an immediate, see if we can lower it. Return true if we can,
6261/// false otherwise.
6263 SDValue Op, SelectionDAG *DAG,
6264 const TargetLowering &TLI) {
6265
6266 assert((P.second == TargetLowering::C_Other ||
6267 P.second == TargetLowering::C_Immediate) &&
6268 "need immediate or other");
6269
6270 if (!Op.getNode())
6271 return false;
6272
6273 std::vector<SDValue> ResultOps;
6274 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6275 return !ResultOps.empty();
6276}
6277
6278/// Determines the constraint code and constraint type to use for the specific
6279/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6281 SDValue Op,
6282 SelectionDAG *DAG) const {
6283 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6284
6285 // Single-letter constraints ('r') are very common.
6286 if (OpInfo.Codes.size() == 1) {
6287 OpInfo.ConstraintCode = OpInfo.Codes[0];
6288 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6289 } else {
6291 if (G.empty())
6292 return;
6293
6294 unsigned BestIdx = 0;
6295 for (const unsigned E = G.size();
6296 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6297 G[BestIdx].second == TargetLowering::C_Immediate);
6298 ++BestIdx) {
6299 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6300 break;
6301 // If we're out of constraints, just pick the first one.
6302 if (BestIdx + 1 == E) {
6303 BestIdx = 0;
6304 break;
6305 }
6306 }
6307
6308 OpInfo.ConstraintCode = G[BestIdx].first;
6309 OpInfo.ConstraintType = G[BestIdx].second;
6310 }
6311
6312 // 'X' matches anything.
6313 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6314 // Constants are handled elsewhere. For Functions, the type here is the
6315 // type of the result, which is not what we want to look at; leave them
6316 // alone.
6317 Value *v = OpInfo.CallOperandVal;
6318 if (isa<ConstantInt>(v) || isa<Function>(v)) {
6319 return;
6320 }
6321
6322 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6323 OpInfo.ConstraintCode = "i";
6324 return;
6325 }
6326
6327 // Otherwise, try to resolve it to something we know about by looking at
6328 // the actual operand type.
6329 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6330 OpInfo.ConstraintCode = Repl;
6331 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6332 }
6333 }
6334}
6335
6336/// Given an exact SDIV by a constant, create a multiplication
6337/// with the multiplicative inverse of the constant.
6338/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6340 const SDLoc &dl, SelectionDAG &DAG,
6341 SmallVectorImpl<SDNode *> &Created) {
6342 SDValue Op0 = N->getOperand(0);
6343 SDValue Op1 = N->getOperand(1);
6344 EVT VT = N->getValueType(0);
6345 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6346 EVT ShSVT = ShVT.getScalarType();
6347
6348 bool UseSRA = false;
6349 SmallVector<SDValue, 16> Shifts, Factors;
6350
6351 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6352 if (C->isZero())
6353 return false;
6354
6355 EVT CT = C->getValueType(0);
6356 APInt Divisor = C->getAPIntValue();
6357 unsigned Shift = Divisor.countr_zero();
6358 if (Shift) {
6359 Divisor.ashrInPlace(Shift);
6360 UseSRA = true;
6361 }
6362 APInt Factor = Divisor.multiplicativeInverse();
6363 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6364 Factors.push_back(DAG.getConstant(Factor, dl, CT));
6365 return true;
6366 };
6367
6368 // Collect all magic values from the build vector.
6369 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern, /*AllowUndefs=*/false,
6370 /*AllowTruncation=*/true))
6371 return SDValue();
6372
6373 SDValue Shift, Factor;
6374 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6375 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6376 Factor = DAG.getBuildVector(VT, dl, Factors);
6377 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6378 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6379 "Expected matchUnaryPredicate to return one element for scalable "
6380 "vectors");
6381 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6382 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6383 } else {
6384 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6385 Shift = Shifts[0];
6386 Factor = Factors[0];
6387 }
6388
6389 SDValue Res = Op0;
6390 if (UseSRA) {
6391 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6392 Created.push_back(Res.getNode());
6393 }
6394
6395 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6396}
6397
6398/// Given an exact UDIV by a constant, create a multiplication
6399/// with the multiplicative inverse of the constant.
6400/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6402 const SDLoc &dl, SelectionDAG &DAG,
6403 SmallVectorImpl<SDNode *> &Created) {
6404 EVT VT = N->getValueType(0);
6405 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6406 EVT ShSVT = ShVT.getScalarType();
6407
6408 bool UseSRL = false;
6409 SmallVector<SDValue, 16> Shifts, Factors;
6410
6411 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6412 if (C->isZero())
6413 return false;
6414
6415 EVT CT = C->getValueType(0);
6416 APInt Divisor = C->getAPIntValue();
6417 unsigned Shift = Divisor.countr_zero();
6418 if (Shift) {
6419 Divisor.lshrInPlace(Shift);
6420 UseSRL = true;
6421 }
6422 // Calculate the multiplicative inverse modulo BW.
6423 APInt Factor = Divisor.multiplicativeInverse();
6424 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6425 Factors.push_back(DAG.getConstant(Factor, dl, CT));
6426 return true;
6427 };
6428
6429 SDValue Op1 = N->getOperand(1);
6430
6431 // Collect all magic values from the build vector.
6432 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern, /*AllowUndefs=*/false,
6433 /*AllowTruncation=*/true))
6434 return SDValue();
6435
6436 SDValue Shift, Factor;
6437 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6438 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6439 Factor = DAG.getBuildVector(VT, dl, Factors);
6440 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6441 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6442 "Expected matchUnaryPredicate to return one element for scalable "
6443 "vectors");
6444 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6445 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6446 } else {
6447 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6448 Shift = Shifts[0];
6449 Factor = Factors[0];
6450 }
6451
6452 SDValue Res = N->getOperand(0);
6453 if (UseSRL) {
6454 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6455 Created.push_back(Res.getNode());
6456 }
6457
6458 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6459}
6460
6462 SelectionDAG &DAG,
6463 SmallVectorImpl<SDNode *> &Created) const {
6464 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6465 if (isIntDivCheap(N->getValueType(0), Attr))
6466 return SDValue(N, 0); // Lower SDIV as SDIV
6467 return SDValue();
6468}
6469
6470SDValue
6472 SelectionDAG &DAG,
6473 SmallVectorImpl<SDNode *> &Created) const {
6474 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6475 if (isIntDivCheap(N->getValueType(0), Attr))
6476 return SDValue(N, 0); // Lower SREM as SREM
6477 return SDValue();
6478}
6479
6480/// Build sdiv by power-of-2 with conditional move instructions
6481/// Ref: "Hacker's Delight" by Henry Warren 10-1
6482/// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6483/// bgez x, label
6484/// add x, x, 2**k-1
6485/// label:
6486/// sra res, x, k
6487/// neg res, res (when the divisor is negative)
6489 SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6490 SmallVectorImpl<SDNode *> &Created) const {
6491 unsigned Lg2 = Divisor.countr_zero();
6492 EVT VT = N->getValueType(0);
6493
6494 SDLoc DL(N);
6495 SDValue N0 = N->getOperand(0);
6496 SDValue Zero = DAG.getConstant(0, DL, VT);
6497 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6498 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6499
6500 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6501 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6502 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6503 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6504 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6505
6506 Created.push_back(Cmp.getNode());
6507 Created.push_back(Add.getNode());
6508 Created.push_back(CMov.getNode());
6509
6510 // Divide by pow2.
6511 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, CMov,
6512 DAG.getShiftAmountConstant(Lg2, VT, DL));
6513
6514 // If we're dividing by a positive value, we're done. Otherwise, we must
6515 // negate the result.
6516 if (Divisor.isNonNegative())
6517 return SRA;
6518
6519 Created.push_back(SRA.getNode());
6520 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6521}
6522
6523/// Given an ISD::SDIV node expressing a divide by constant,
6524/// return a DAG expression to select that will generate the same value by
6525/// multiplying by a magic number.
6526/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6528 bool IsAfterLegalization,
6529 bool IsAfterLegalTypes,
6530 SmallVectorImpl<SDNode *> &Created) const {
6531 SDLoc dl(N);
6532 EVT VT = N->getValueType(0);
6533 EVT SVT = VT.getScalarType();
6534 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6535 EVT ShSVT = ShVT.getScalarType();
6536 unsigned EltBits = VT.getScalarSizeInBits();
6537 EVT MulVT;
6538
6539 // Check to see if we can do this.
6540 // FIXME: We should be more aggressive here.
6541 if (!isTypeLegal(VT)) {
6542 // Limit this to simple scalars for now.
6543 if (VT.isVector() || !VT.isSimple())
6544 return SDValue();
6545
6546 // If this type will be promoted to a large enough type with a legal
6547 // multiply operation, we can go ahead and do this transform.
6549 return SDValue();
6550
6551 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6552 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6553 !isOperationLegal(ISD::MUL, MulVT))
6554 return SDValue();
6555 }
6556
6557 // If the sdiv has an 'exact' bit we can use a simpler lowering.
6558 if (N->getFlags().hasExact())
6559 return BuildExactSDIV(*this, N, dl, DAG, Created);
6560
6561 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6562
6563 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6564 if (C->isZero())
6565 return false;
6566 // Truncate the divisor to the target scalar type in case it was promoted
6567 // during type legalization.
6568 APInt Divisor = C->getAPIntValue().trunc(EltBits);
6570 int NumeratorFactor = 0;
6571 int ShiftMask = -1;
6572
6573 if (Divisor.isOne() || Divisor.isAllOnes()) {
6574 // If d is +1/-1, we just multiply the numerator by +1/-1.
6575 NumeratorFactor = Divisor.getSExtValue();
6576 magics.Magic = 0;
6577 magics.ShiftAmount = 0;
6578 ShiftMask = 0;
6579 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6580 // If d > 0 and m < 0, add the numerator.
6581 NumeratorFactor = 1;
6582 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6583 // If d < 0 and m > 0, subtract the numerator.
6584 NumeratorFactor = -1;
6585 }
6586
6587 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6588 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6589 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6590 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6591 return true;
6592 };
6593
6594 SDValue N0 = N->getOperand(0);
6595 SDValue N1 = N->getOperand(1);
6596
6597 // Collect the shifts / magic values from each element.
6598 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern, /*AllowUndefs=*/false,
6599 /*AllowTruncation=*/true))
6600 return SDValue();
6601
6602 SDValue MagicFactor, Factor, Shift, ShiftMask;
6603 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6604 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6605 Factor = DAG.getBuildVector(VT, dl, Factors);
6606 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6607 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6608 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6609 assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6610 Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6611 "Expected matchUnaryPredicate to return one element for scalable "
6612 "vectors");
6613 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6614 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6615 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6616 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6617 } else {
6618 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6619 MagicFactor = MagicFactors[0];
6620 Factor = Factors[0];
6621 Shift = Shifts[0];
6622 ShiftMask = ShiftMasks[0];
6623 }
6624
6625 // Multiply the numerator (operand 0) by the magic value.
6626 // FIXME: We should support doing a MUL in a wider type.
6627 auto GetMULHS = [&](SDValue X, SDValue Y) {
6628 // If the type isn't legal, use a wider mul of the type calculated
6629 // earlier.
6630 if (!isTypeLegal(VT)) {
6631 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6632 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6633 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6634 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6635 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6636 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6637 }
6638
6639 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6640 return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6641 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6642 SDValue LoHi =
6643 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6644 return SDValue(LoHi.getNode(), 1);
6645 }
6646 // If type twice as wide legal, widen and use a mul plus a shift.
6647 unsigned Size = VT.getScalarSizeInBits();
6648 EVT WideVT = VT.changeElementType(
6649 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), Size * 2));
6650 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6651 // custom lowered. This is very expensive so avoid it at all costs for
6652 // constant divisors.
6653 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6656 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6657 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6658 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6659 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6660 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6661 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6662 }
6663 return SDValue();
6664 };
6665
6666 SDValue Q = GetMULHS(N0, MagicFactor);
6667 if (!Q)
6668 return SDValue();
6669
6670 Created.push_back(Q.getNode());
6671
6672 // (Optionally) Add/subtract the numerator using Factor.
6673 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6674 Created.push_back(Factor.getNode());
6675 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6676 Created.push_back(Q.getNode());
6677
6678 // Shift right algebraic by shift value.
6679 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6680 Created.push_back(Q.getNode());
6681
6682 // Extract the sign bit, mask it and add it to the quotient.
6683 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6684 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6685 Created.push_back(T.getNode());
6686 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6687 Created.push_back(T.getNode());
6688 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6689}
6690
6691/// Given an ISD::UDIV node expressing a divide by constant,
6692/// return a DAG expression to select that will generate the same value by
6693/// multiplying by a magic number.
6694/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6696 bool IsAfterLegalization,
6697 bool IsAfterLegalTypes,
6698 SmallVectorImpl<SDNode *> &Created) const {
6699 SDLoc dl(N);
6700 EVT VT = N->getValueType(0);
6701 EVT SVT = VT.getScalarType();
6702 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6703 EVT ShSVT = ShVT.getScalarType();
6704 unsigned EltBits = VT.getScalarSizeInBits();
6705 EVT MulVT;
6706
6707 // Check to see if we can do this.
6708 // FIXME: We should be more aggressive here.
6709 if (!isTypeLegal(VT)) {
6710 // Limit this to simple scalars for now.
6711 if (VT.isVector() || !VT.isSimple())
6712 return SDValue();
6713
6714 // If this type will be promoted to a large enough type with a legal
6715 // multiply operation, we can go ahead and do this transform.
6717 return SDValue();
6718
6719 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6720 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6721 !isOperationLegal(ISD::MUL, MulVT))
6722 return SDValue();
6723 }
6724
6725 // If the udiv has an 'exact' bit we can use a simpler lowering.
6726 if (N->getFlags().hasExact())
6727 return BuildExactUDIV(*this, N, dl, DAG, Created);
6728
6729 SDValue N0 = N->getOperand(0);
6730 SDValue N1 = N->getOperand(1);
6731
6732 // Try to use leading zeros of the dividend to reduce the multiplier and
6733 // avoid expensive fixups.
6734 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6735
6736 // If we're after type legalization and SVT is not legal, use the
6737 // promoted type for creating constants to avoid creating nodes with
6738 // illegal types.
6739 if (IsAfterLegalTypes && VT.isVector()) {
6740 SVT = getTypeToTransformTo(*DAG.getContext(), SVT);
6741 if (SVT.bitsLT(VT.getScalarType()))
6742 return SDValue();
6743 ShSVT = getTypeToTransformTo(*DAG.getContext(), ShSVT);
6744 if (ShSVT.bitsLT(ShVT.getScalarType()))
6745 return SDValue();
6746 }
6747 const unsigned SVTBits = SVT.getSizeInBits();
6748
6749 bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6750 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6751
6752 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6753 if (C->isZero())
6754 return false;
6755 // Truncate the divisor to the target scalar type in case it was promoted
6756 // during type legalization.
6757 APInt Divisor = C->getAPIntValue().trunc(EltBits);
6758
6759 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6760
6761 // Magic algorithm doesn't work for division by 1. We need to emit a select
6762 // at the end.
6763 if (Divisor.isOne()) {
6764 PreShift = PostShift = DAG.getUNDEF(ShSVT);
6765 MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6766 } else {
6769 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6770
6771 MagicFactor = DAG.getConstant(magics.Magic.zext(SVTBits), dl, SVT);
6772
6773 assert(magics.PreShift < Divisor.getBitWidth() &&
6774 "We shouldn't generate an undefined shift!");
6775 assert(magics.PostShift < Divisor.getBitWidth() &&
6776 "We shouldn't generate an undefined shift!");
6777 assert((!magics.IsAdd || magics.PreShift == 0) &&
6778 "Unexpected pre-shift");
6779 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6780 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6781 NPQFactor = DAG.getConstant(
6782 magics.IsAdd ? APInt::getOneBitSet(SVTBits, EltBits - 1)
6783 : APInt::getZero(SVTBits),
6784 dl, SVT);
6785 UseNPQ |= magics.IsAdd;
6786 UsePreShift |= magics.PreShift != 0;
6787 UsePostShift |= magics.PostShift != 0;
6788 }
6789
6790 PreShifts.push_back(PreShift);
6791 MagicFactors.push_back(MagicFactor);
6792 NPQFactors.push_back(NPQFactor);
6793 PostShifts.push_back(PostShift);
6794 return true;
6795 };
6796
6797 // Collect the shifts/magic values from each element.
6798 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern, /*AllowUndefs=*/false,
6799 /*AllowTruncation=*/true))
6800 return SDValue();
6801
6802 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6803 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6804 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6805 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6806 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6807 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6808 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6809 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6810 NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6811 "Expected matchUnaryPredicate to return one for scalable vectors");
6812 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6813 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6814 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6815 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6816 } else {
6817 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6818 PreShift = PreShifts[0];
6819 MagicFactor = MagicFactors[0];
6820 PostShift = PostShifts[0];
6821 }
6822
6823 SDValue Q = N0;
6824 if (UsePreShift) {
6825 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6826 Created.push_back(Q.getNode());
6827 }
6828
6829 // FIXME: We should support doing a MUL in a wider type.
6830 auto GetMULHU = [&](SDValue X, SDValue Y) {
6831 // If the type isn't legal, use a wider mul of the type calculated
6832 // earlier.
6833 if (!isTypeLegal(VT)) {
6834 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6835 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6836 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6837 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6838 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6839 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6840 }
6841
6842 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6843 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6844 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6845 SDValue LoHi =
6846 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6847 return SDValue(LoHi.getNode(), 1);
6848 }
6849 // If type twice as wide legal, widen and use a mul plus a shift.
6850 unsigned Size = VT.getScalarSizeInBits();
6851 EVT WideVT = VT.changeElementType(
6852 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), Size * 2));
6853 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6854 // custom lowered. This is very expensive so avoid it at all costs for
6855 // constant divisors.
6856 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6859 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6860 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6861 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6862 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6863 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6864 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6865 }
6866 return SDValue(); // No mulhu or equivalent
6867 };
6868
6869 // Multiply the numerator (operand 0) by the magic value.
6870 Q = GetMULHU(Q, MagicFactor);
6871 if (!Q)
6872 return SDValue();
6873
6874 Created.push_back(Q.getNode());
6875
6876 if (UseNPQ) {
6877 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6878 Created.push_back(NPQ.getNode());
6879
6880 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6881 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6882 if (VT.isVector())
6883 NPQ = GetMULHU(NPQ, NPQFactor);
6884 else
6885 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6886
6887 Created.push_back(NPQ.getNode());
6888
6889 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6890 Created.push_back(Q.getNode());
6891 }
6892
6893 if (UsePostShift) {
6894 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6895 Created.push_back(Q.getNode());
6896 }
6897
6898 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6899
6900 SDValue One = DAG.getConstant(1, dl, VT);
6901 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6902 return DAG.getSelect(dl, VT, IsOne, N0, Q);
6903}
6904
6905/// If all values in Values that *don't* match the predicate are same 'splat'
6906/// value, then replace all values with that splat value.
6907/// Else, if AlternativeReplacement was provided, then replace all values that
6908/// do match predicate with AlternativeReplacement value.
6909static void
6911 std::function<bool(SDValue)> Predicate,
6912 SDValue AlternativeReplacement = SDValue()) {
6913 SDValue Replacement;
6914 // Is there a value for which the Predicate does *NOT* match? What is it?
6915 auto SplatValue = llvm::find_if_not(Values, Predicate);
6916 if (SplatValue != Values.end()) {
6917 // Does Values consist only of SplatValue's and values matching Predicate?
6918 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6919 return Value == *SplatValue || Predicate(Value);
6920 })) // Then we shall replace values matching predicate with SplatValue.
6921 Replacement = *SplatValue;
6922 }
6923 if (!Replacement) {
6924 // Oops, we did not find the "baseline" splat value.
6925 if (!AlternativeReplacement)
6926 return; // Nothing to do.
6927 // Let's replace with provided value then.
6928 Replacement = AlternativeReplacement;
6929 }
6930 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6931}
6932
6933/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6934/// where the divisor is constant and the comparison target is zero,
6935/// return a DAG expression that will generate the same comparison result
6936/// using only multiplications, additions and shifts/rotations.
6937/// Ref: "Hacker's Delight" 10-17.
6938SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6939 SDValue CompTargetNode,
6941 DAGCombinerInfo &DCI,
6942 const SDLoc &DL) const {
6944 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6945 DCI, DL, Built)) {
6946 for (SDNode *N : Built)
6947 DCI.AddToWorklist(N);
6948 return Folded;
6949 }
6950
6951 return SDValue();
6952}
6953
6954SDValue
6955TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6956 SDValue CompTargetNode, ISD::CondCode Cond,
6957 DAGCombinerInfo &DCI, const SDLoc &DL,
6958 SmallVectorImpl<SDNode *> &Created) const {
6959 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6960 // - D must be constant, with D = D0 * 2^K where D0 is odd
6961 // - P is the multiplicative inverse of D0 modulo 2^W
6962 // - Q = floor(((2^W) - 1) / D)
6963 // where W is the width of the common type of N and D.
6964 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6965 "Only applicable for (in)equality comparisons.");
6966
6967 SelectionDAG &DAG = DCI.DAG;
6968
6969 EVT VT = REMNode.getValueType();
6970 EVT SVT = VT.getScalarType();
6971 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6972 EVT ShSVT = ShVT.getScalarType();
6973
6974 // If MUL is unavailable, we cannot proceed in any case.
6975 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6976 return SDValue();
6977
6978 bool ComparingWithAllZeros = true;
6979 bool AllComparisonsWithNonZerosAreTautological = true;
6980 bool HadTautologicalLanes = false;
6981 bool AllLanesAreTautological = true;
6982 bool HadEvenDivisor = false;
6983 bool AllDivisorsArePowerOfTwo = true;
6984 bool HadTautologicalInvertedLanes = false;
6985 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
6986
6987 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6988 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6989 if (CDiv->isZero())
6990 return false;
6991
6992 const APInt &D = CDiv->getAPIntValue();
6993 const APInt &Cmp = CCmp->getAPIntValue();
6994
6995 ComparingWithAllZeros &= Cmp.isZero();
6996
6997 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6998 // if C2 is not less than C1, the comparison is always false.
6999 // But we will only be able to produce the comparison that will give the
7000 // opposive tautological answer. So this lane would need to be fixed up.
7001 bool TautologicalInvertedLane = D.ule(Cmp);
7002 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
7003
7004 // If all lanes are tautological (either all divisors are ones, or divisor
7005 // is not greater than the constant we are comparing with),
7006 // we will prefer to avoid the fold.
7007 bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
7008 HadTautologicalLanes |= TautologicalLane;
7009 AllLanesAreTautological &= TautologicalLane;
7010
7011 // If we are comparing with non-zero, we need'll need to subtract said
7012 // comparison value from the LHS. But there is no point in doing that if
7013 // every lane where we are comparing with non-zero is tautological..
7014 if (!Cmp.isZero())
7015 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
7016
7017 // Decompose D into D0 * 2^K
7018 unsigned K = D.countr_zero();
7019 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7020 APInt D0 = D.lshr(K);
7021
7022 // D is even if it has trailing zeros.
7023 HadEvenDivisor |= (K != 0);
7024 // D is a power-of-two if D0 is one.
7025 // If all divisors are power-of-two, we will prefer to avoid the fold.
7026 AllDivisorsArePowerOfTwo &= D0.isOne();
7027
7028 // P = inv(D0, 2^W)
7029 // 2^W requires W + 1 bits, so we have to extend and then truncate.
7030 unsigned W = D.getBitWidth();
7031 APInt P = D0.multiplicativeInverse();
7032 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7033
7034 // Q = floor((2^W - 1) u/ D)
7035 // R = ((2^W - 1) u% D)
7036 APInt Q, R;
7038
7039 // If we are comparing with zero, then that comparison constant is okay,
7040 // else it may need to be one less than that.
7041 if (Cmp.ugt(R))
7042 Q -= 1;
7043
7045 "We are expecting that K is always less than all-ones for ShSVT");
7046
7047 // If the lane is tautological the result can be constant-folded.
7048 if (TautologicalLane) {
7049 // Set P and K amount to a bogus values so we can try to splat them.
7050 P = 0;
7051 K = -1;
7052 // And ensure that comparison constant is tautological,
7053 // it will always compare true/false.
7054 Q = -1;
7055 }
7056
7057 PAmts.push_back(DAG.getConstant(P, DL, SVT));
7058 KAmts.push_back(
7059 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7060 /*implicitTrunc=*/true),
7061 DL, ShSVT));
7062 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7063 return true;
7064 };
7065
7066 SDValue N = REMNode.getOperand(0);
7067 SDValue D = REMNode.getOperand(1);
7068
7069 // Collect the values from each element.
7070 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
7071 return SDValue();
7072
7073 // If all lanes are tautological, the result can be constant-folded.
7074 if (AllLanesAreTautological)
7075 return SDValue();
7076
7077 // If this is a urem by a powers-of-two, avoid the fold since it can be
7078 // best implemented as a bit test.
7079 if (AllDivisorsArePowerOfTwo)
7080 return SDValue();
7081
7082 SDValue PVal, KVal, QVal;
7083 if (D.getOpcode() == ISD::BUILD_VECTOR) {
7084 if (HadTautologicalLanes) {
7085 // Try to turn PAmts into a splat, since we don't care about the values
7086 // that are currently '0'. If we can't, just keep '0'`s.
7088 // Try to turn KAmts into a splat, since we don't care about the values
7089 // that are currently '-1'. If we can't, change them to '0'`s.
7091 DAG.getConstant(0, DL, ShSVT));
7092 }
7093
7094 PVal = DAG.getBuildVector(VT, DL, PAmts);
7095 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7096 QVal = DAG.getBuildVector(VT, DL, QAmts);
7097 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7098 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
7099 "Expected matchBinaryPredicate to return one element for "
7100 "SPLAT_VECTORs");
7101 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7102 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7103 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7104 } else {
7105 PVal = PAmts[0];
7106 KVal = KAmts[0];
7107 QVal = QAmts[0];
7108 }
7109
7110 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
7111 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
7112 return SDValue(); // FIXME: Could/should use `ISD::ADD`?
7113 assert(CompTargetNode.getValueType() == N.getValueType() &&
7114 "Expecting that the types on LHS and RHS of comparisons match.");
7115 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
7116 }
7117
7118 // (mul N, P)
7119 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7120 Created.push_back(Op0.getNode());
7121
7122 // Rotate right only if any divisor was even. We avoid rotates for all-odd
7123 // divisors as a performance improvement, since rotating by 0 is a no-op.
7124 if (HadEvenDivisor) {
7125 // We need ROTR to do this.
7126 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7127 return SDValue();
7128 // UREM: (rotr (mul N, P), K)
7129 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7130 Created.push_back(Op0.getNode());
7131 }
7132
7133 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
7134 SDValue NewCC =
7135 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7137 if (!HadTautologicalInvertedLanes)
7138 return NewCC;
7139
7140 // If any lanes previously compared always-false, the NewCC will give
7141 // always-true result for them, so we need to fixup those lanes.
7142 // Or the other way around for inequality predicate.
7143 assert(VT.isVector() && "Can/should only get here for vectors.");
7144 Created.push_back(NewCC.getNode());
7145
7146 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
7147 // if C2 is not less than C1, the comparison is always false.
7148 // But we have produced the comparison that will give the
7149 // opposive tautological answer. So these lanes would need to be fixed up.
7150 SDValue TautologicalInvertedChannels =
7151 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
7152 Created.push_back(TautologicalInvertedChannels.getNode());
7153
7154 // NOTE: we avoid letting illegal types through even if we're before legalize
7155 // ops – legalization has a hard time producing good code for this.
7156 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
7157 // If we have a vector select, let's replace the comparison results in the
7158 // affected lanes with the correct tautological result.
7159 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
7160 DL, SETCCVT, SETCCVT);
7161 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
7162 Replacement, NewCC);
7163 }
7164
7165 // Else, we can just invert the comparison result in the appropriate lanes.
7166 //
7167 // NOTE: see the note above VSELECT above.
7168 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
7169 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
7170 TautologicalInvertedChannels);
7171
7172 return SDValue(); // Don't know how to lower.
7173}
7174
7175/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
7176/// where the divisor is constant and the comparison target is zero,
7177/// return a DAG expression that will generate the same comparison result
7178/// using only multiplications, additions and shifts/rotations.
7179/// Ref: "Hacker's Delight" 10-17.
7180SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
7181 SDValue CompTargetNode,
7183 DAGCombinerInfo &DCI,
7184 const SDLoc &DL) const {
7186 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
7187 DCI, DL, Built)) {
7188 assert(Built.size() <= 7 && "Max size prediction failed.");
7189 for (SDNode *N : Built)
7190 DCI.AddToWorklist(N);
7191 return Folded;
7192 }
7193
7194 return SDValue();
7195}
7196
7197SDValue
7198TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
7199 SDValue CompTargetNode, ISD::CondCode Cond,
7200 DAGCombinerInfo &DCI, const SDLoc &DL,
7201 SmallVectorImpl<SDNode *> &Created) const {
7202 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
7203 // Fold:
7204 // (seteq/ne (srem N, D), 0)
7205 // To:
7206 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
7207 //
7208 // - D must be constant, with D = D0 * 2^K where D0 is odd
7209 // - P is the multiplicative inverse of D0 modulo 2^W
7210 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
7211 // - Q = floor((2 * A) / (2^K))
7212 // where W is the width of the common type of N and D.
7213 //
7214 // When D is a power of two (and thus D0 is 1), the normal
7215 // formula for A and Q don't apply, because the derivation
7216 // depends on D not dividing 2^(W-1), and thus theorem ZRS
7217 // does not apply. This specifically fails when N = INT_MIN.
7218 //
7219 // Instead, for power-of-two D, we use:
7220 // - A = 2^(W-1)
7221 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
7222 // - Q = 2^(W-K) - 1
7223 // |-> Test that the top K bits are zero after rotation
7224 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
7225 "Only applicable for (in)equality comparisons.");
7226
7227 SelectionDAG &DAG = DCI.DAG;
7228
7229 EVT VT = REMNode.getValueType();
7230 EVT SVT = VT.getScalarType();
7231 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7232 EVT ShSVT = ShVT.getScalarType();
7233
7234 // If we are after ops legalization, and MUL is unavailable, we can not
7235 // proceed.
7236 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
7237 return SDValue();
7238
7239 // TODO: Could support comparing with non-zero too.
7240 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
7241 if (!CompTarget || !CompTarget->isZero())
7242 return SDValue();
7243
7244 bool HadIntMinDivisor = false;
7245 bool HadOneDivisor = false;
7246 bool AllDivisorsAreOnes = true;
7247 bool HadEvenDivisor = false;
7248 bool NeedToApplyOffset = false;
7249 bool AllDivisorsArePowerOfTwo = true;
7250 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
7251
7252 auto BuildSREMPattern = [&](ConstantSDNode *C) {
7253 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
7254 if (C->isZero())
7255 return false;
7256
7257 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7258
7259 // WARNING: this fold is only valid for positive divisors!
7260 APInt D = C->getAPIntValue();
7261 if (D.isNegative())
7262 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
7263
7264 HadIntMinDivisor |= D.isMinSignedValue();
7265
7266 // If all divisors are ones, we will prefer to avoid the fold.
7267 HadOneDivisor |= D.isOne();
7268 AllDivisorsAreOnes &= D.isOne();
7269
7270 // Decompose D into D0 * 2^K
7271 unsigned K = D.countr_zero();
7272 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7273 APInt D0 = D.lshr(K);
7274
7275 if (!D.isMinSignedValue()) {
7276 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7277 // we don't care about this lane in this fold, we'll special-handle it.
7278 HadEvenDivisor |= (K != 0);
7279 }
7280
7281 // D is a power-of-two if D0 is one. This includes INT_MIN.
7282 // If all divisors are power-of-two, we will prefer to avoid the fold.
7283 AllDivisorsArePowerOfTwo &= D0.isOne();
7284
7285 // P = inv(D0, 2^W)
7286 // 2^W requires W + 1 bits, so we have to extend and then truncate.
7287 unsigned W = D.getBitWidth();
7288 APInt P = D0.multiplicativeInverse();
7289 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7290
7291 // A = floor((2^(W - 1) - 1) / D0) & -2^K
7292 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7293 A.clearLowBits(K);
7294
7295 if (!D.isMinSignedValue()) {
7296 // If divisor INT_MIN, then we don't care about this lane in this fold,
7297 // we'll special-handle it.
7298 NeedToApplyOffset |= A != 0;
7299 }
7300
7301 // Q = floor((2 * A) / (2^K))
7302 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7303
7305 "We are expecting that A is always less than all-ones for SVT");
7307 "We are expecting that K is always less than all-ones for ShSVT");
7308
7309 // If D was a power of two, apply the alternate constant derivation.
7310 if (D0.isOne()) {
7311 // A = 2^(W-1)
7313 // - Q = 2^(W-K) - 1
7314 Q = APInt::getAllOnes(W - K).zext(W);
7315 }
7316
7317 // If the divisor is 1 the result can be constant-folded. Likewise, we
7318 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7319 if (D.isOne()) {
7320 // Set P, A and K to a bogus values so we can try to splat them.
7321 P = 0;
7322 A = -1;
7323 K = -1;
7324
7325 // x ?% 1 == 0 <--> true <--> x u<= -1
7326 Q = -1;
7327 }
7328
7329 PAmts.push_back(DAG.getConstant(P, DL, SVT));
7330 AAmts.push_back(DAG.getConstant(A, DL, SVT));
7331 KAmts.push_back(
7332 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7333 /*implicitTrunc=*/true),
7334 DL, ShSVT));
7335 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7336 return true;
7337 };
7338
7339 SDValue N = REMNode.getOperand(0);
7340 SDValue D = REMNode.getOperand(1);
7341
7342 // Collect the values from each element.
7343 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7344 return SDValue();
7345
7346 // If this is a srem by a one, avoid the fold since it can be constant-folded.
7347 if (AllDivisorsAreOnes)
7348 return SDValue();
7349
7350 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7351 // since it can be best implemented as a bit test.
7352 if (AllDivisorsArePowerOfTwo)
7353 return SDValue();
7354
7355 SDValue PVal, AVal, KVal, QVal;
7356 if (D.getOpcode() == ISD::BUILD_VECTOR) {
7357 if (HadOneDivisor) {
7358 // Try to turn PAmts into a splat, since we don't care about the values
7359 // that are currently '0'. If we can't, just keep '0'`s.
7361 // Try to turn AAmts into a splat, since we don't care about the
7362 // values that are currently '-1'. If we can't, change them to '0'`s.
7364 DAG.getConstant(0, DL, SVT));
7365 // Try to turn KAmts into a splat, since we don't care about the values
7366 // that are currently '-1'. If we can't, change them to '0'`s.
7368 DAG.getConstant(0, DL, ShSVT));
7369 }
7370
7371 PVal = DAG.getBuildVector(VT, DL, PAmts);
7372 AVal = DAG.getBuildVector(VT, DL, AAmts);
7373 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7374 QVal = DAG.getBuildVector(VT, DL, QAmts);
7375 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7376 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7377 QAmts.size() == 1 &&
7378 "Expected matchUnaryPredicate to return one element for scalable "
7379 "vectors");
7380 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7381 AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7382 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7383 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7384 } else {
7385 assert(isa<ConstantSDNode>(D) && "Expected a constant");
7386 PVal = PAmts[0];
7387 AVal = AAmts[0];
7388 KVal = KAmts[0];
7389 QVal = QAmts[0];
7390 }
7391
7392 // (mul N, P)
7393 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7394 Created.push_back(Op0.getNode());
7395
7396 if (NeedToApplyOffset) {
7397 // We need ADD to do this.
7398 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7399 return SDValue();
7400
7401 // (add (mul N, P), A)
7402 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7403 Created.push_back(Op0.getNode());
7404 }
7405
7406 // Rotate right only if any divisor was even. We avoid rotates for all-odd
7407 // divisors as a performance improvement, since rotating by 0 is a no-op.
7408 if (HadEvenDivisor) {
7409 // We need ROTR to do this.
7410 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7411 return SDValue();
7412 // SREM: (rotr (add (mul N, P), A), K)
7413 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7414 Created.push_back(Op0.getNode());
7415 }
7416
7417 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7418 SDValue Fold =
7419 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7421
7422 // If we didn't have lanes with INT_MIN divisor, then we're done.
7423 if (!HadIntMinDivisor)
7424 return Fold;
7425
7426 // That fold is only valid for positive divisors. Which effectively means,
7427 // it is invalid for INT_MIN divisors. So if we have such a lane,
7428 // we must fix-up results for said lanes.
7429 assert(VT.isVector() && "Can/should only get here for vectors.");
7430
7431 // NOTE: we avoid letting illegal types through even if we're before legalize
7432 // ops – legalization has a hard time producing good code for the code that
7433 // follows.
7434 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7438 return SDValue();
7439
7440 Created.push_back(Fold.getNode());
7441
7442 SDValue IntMin = DAG.getConstant(
7444 SDValue IntMax = DAG.getConstant(
7446 SDValue Zero =
7448
7449 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7450 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7451 Created.push_back(DivisorIsIntMin.getNode());
7452
7453 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
7454 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7455 Created.push_back(Masked.getNode());
7456 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7457 Created.push_back(MaskedIsZero.getNode());
7458
7459 // To produce final result we need to blend 2 vectors: 'SetCC' and
7460 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7461 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7462 // constant-folded, select can get lowered to a shuffle with constant mask.
7463 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7464 MaskedIsZero, Fold);
7465
7466 return Blended;
7467}
7468
7470 const DenormalMode &Mode) const {
7471 SDLoc DL(Op);
7472 EVT VT = Op.getValueType();
7473 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7474 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7475
7476 // This is specifically a check for the handling of denormal inputs, not the
7477 // result.
7478 if (Mode.Input == DenormalMode::PreserveSign ||
7479 Mode.Input == DenormalMode::PositiveZero) {
7480 // Test = X == 0.0
7481 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7482 }
7483
7484 // Testing it with denormal inputs to avoid wrong estimate.
7485 //
7486 // Test = fabs(X) < SmallestNormal
7487 const fltSemantics &FltSem = VT.getFltSemantics();
7488 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7489 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7490 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7491 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7492}
7493
7495 bool LegalOps, bool OptForSize,
7497 unsigned Depth) const {
7498 // fneg is removable even if it has multiple uses.
7499 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7501 return Op.getOperand(0);
7502 }
7503
7504 // Don't recurse exponentially.
7506 return SDValue();
7507
7508 // Pre-increment recursion depth for use in recursive calls.
7509 ++Depth;
7510 const SDNodeFlags Flags = Op->getFlags();
7511 EVT VT = Op.getValueType();
7512 unsigned Opcode = Op.getOpcode();
7513
7514 // Don't allow anything with multiple uses unless we know it is free.
7515 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7516 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7517 isFPExtFree(VT, Op.getOperand(0).getValueType());
7518 if (!IsFreeExtend)
7519 return SDValue();
7520 }
7521
7522 auto RemoveDeadNode = [&](SDValue N) {
7523 if (N && N.getNode()->use_empty())
7524 DAG.RemoveDeadNode(N.getNode());
7525 };
7526
7527 SDLoc DL(Op);
7528
7529 // Because getNegatedExpression can delete nodes we need a handle to keep
7530 // temporary nodes alive in case the recursion manages to create an identical
7531 // node.
7532 std::list<HandleSDNode> Handles;
7533
7534 switch (Opcode) {
7535 case ISD::ConstantFP: {
7536 // Don't invert constant FP values after legalization unless the target says
7537 // the negated constant is legal.
7538 bool IsOpLegal =
7540 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7541 OptForSize);
7542
7543 if (LegalOps && !IsOpLegal)
7544 break;
7545
7546 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7547 V.changeSign();
7548 SDValue CFP = DAG.getConstantFP(V, DL, VT);
7549
7550 // If we already have the use of the negated floating constant, it is free
7551 // to negate it even it has multiple uses.
7552 if (!Op.hasOneUse() && CFP.use_empty())
7553 break;
7555 return CFP;
7556 }
7557 case ISD::BUILD_VECTOR: {
7558 // Only permit BUILD_VECTOR of constants.
7559 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7560 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7561 }))
7562 break;
7563
7564 bool IsOpLegal =
7567 llvm::all_of(Op->op_values(), [&](SDValue N) {
7568 return N.isUndef() ||
7569 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7570 OptForSize);
7571 });
7572
7573 if (LegalOps && !IsOpLegal)
7574 break;
7575
7577 for (SDValue C : Op->op_values()) {
7578 if (C.isUndef()) {
7579 Ops.push_back(C);
7580 continue;
7581 }
7582 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7583 V.changeSign();
7584 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7585 }
7587 return DAG.getBuildVector(VT, DL, Ops);
7588 }
7589 case ISD::FADD: {
7590 if (!Flags.hasNoSignedZeros())
7591 break;
7592
7593 // After operation legalization, it might not be legal to create new FSUBs.
7594 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7595 break;
7596 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7597
7598 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7600 SDValue NegX =
7601 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7602 // Prevent this node from being deleted by the next call.
7603 if (NegX)
7604 Handles.emplace_back(NegX);
7605
7606 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7608 SDValue NegY =
7609 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7610
7611 // We're done with the handles.
7612 Handles.clear();
7613
7614 // Negate the X if its cost is less or equal than Y.
7615 if (NegX && (CostX <= CostY)) {
7616 Cost = CostX;
7617 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7618 if (NegY != N)
7619 RemoveDeadNode(NegY);
7620 return N;
7621 }
7622
7623 // Negate the Y if it is not expensive.
7624 if (NegY) {
7625 Cost = CostY;
7626 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7627 if (NegX != N)
7628 RemoveDeadNode(NegX);
7629 return N;
7630 }
7631 break;
7632 }
7633 case ISD::FSUB: {
7634 // We can't turn -(A-B) into B-A when we honor signed zeros.
7635 if (!Flags.hasNoSignedZeros())
7636 break;
7637
7638 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7639 // fold (fneg (fsub 0, Y)) -> Y
7640 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7641 if (C->isZero()) {
7643 return Y;
7644 }
7645
7646 // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7648 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7649 }
7650 case ISD::FMUL:
7651 case ISD::FDIV: {
7652 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7653
7654 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7656 SDValue NegX =
7657 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7658 // Prevent this node from being deleted by the next call.
7659 if (NegX)
7660 Handles.emplace_back(NegX);
7661
7662 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7664 SDValue NegY =
7665 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7666
7667 // We're done with the handles.
7668 Handles.clear();
7669
7670 // Negate the X if its cost is less or equal than Y.
7671 if (NegX && (CostX <= CostY)) {
7672 Cost = CostX;
7673 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7674 if (NegY != N)
7675 RemoveDeadNode(NegY);
7676 return N;
7677 }
7678
7679 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7680 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7681 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7682 break;
7683
7684 // Negate the Y if it is not expensive.
7685 if (NegY) {
7686 Cost = CostY;
7687 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7688 if (NegX != N)
7689 RemoveDeadNode(NegX);
7690 return N;
7691 }
7692 break;
7693 }
7694 case ISD::FMA:
7695 case ISD::FMULADD:
7696 case ISD::FMAD: {
7697 if (!Flags.hasNoSignedZeros())
7698 break;
7699
7700 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7702 SDValue NegZ =
7703 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7704 // Give up if fail to negate the Z.
7705 if (!NegZ)
7706 break;
7707
7708 // Prevent this node from being deleted by the next two calls.
7709 Handles.emplace_back(NegZ);
7710
7711 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7713 SDValue NegX =
7714 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7715 // Prevent this node from being deleted by the next call.
7716 if (NegX)
7717 Handles.emplace_back(NegX);
7718
7719 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7721 SDValue NegY =
7722 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7723
7724 // We're done with the handles.
7725 Handles.clear();
7726
7727 // Negate the X if its cost is less or equal than Y.
7728 if (NegX && (CostX <= CostY)) {
7729 Cost = std::min(CostX, CostZ);
7730 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7731 if (NegY != N)
7732 RemoveDeadNode(NegY);
7733 return N;
7734 }
7735
7736 // Negate the Y if it is not expensive.
7737 if (NegY) {
7738 Cost = std::min(CostY, CostZ);
7739 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7740 if (NegX != N)
7741 RemoveDeadNode(NegX);
7742 return N;
7743 }
7744 break;
7745 }
7746
7747 case ISD::FP_EXTEND:
7748 case ISD::FSIN:
7749 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7750 OptForSize, Cost, Depth))
7751 return DAG.getNode(Opcode, DL, VT, NegV);
7752 break;
7753 case ISD::FP_ROUND:
7754 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7755 OptForSize, Cost, Depth))
7756 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7757 break;
7758 case ISD::SELECT:
7759 case ISD::VSELECT: {
7760 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7761 // iff at least one cost is cheaper and the other is neutral/cheaper
7762 SDValue LHS = Op.getOperand(1);
7764 SDValue NegLHS =
7765 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7766 if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7767 RemoveDeadNode(NegLHS);
7768 break;
7769 }
7770
7771 // Prevent this node from being deleted by the next call.
7772 Handles.emplace_back(NegLHS);
7773
7774 SDValue RHS = Op.getOperand(2);
7776 SDValue NegRHS =
7777 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7778
7779 // We're done with the handles.
7780 Handles.clear();
7781
7782 if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7783 (CostLHS != NegatibleCost::Cheaper &&
7784 CostRHS != NegatibleCost::Cheaper)) {
7785 RemoveDeadNode(NegLHS);
7786 RemoveDeadNode(NegRHS);
7787 break;
7788 }
7789
7790 Cost = std::min(CostLHS, CostRHS);
7791 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7792 }
7793 }
7794
7795 return SDValue();
7796}
7797
7798//===----------------------------------------------------------------------===//
7799// Legalization Utilities
7800//===----------------------------------------------------------------------===//
7801
7802bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7803 SDValue LHS, SDValue RHS,
7805 EVT HiLoVT, SelectionDAG &DAG,
7806 MulExpansionKind Kind, SDValue LL,
7807 SDValue LH, SDValue RL, SDValue RH) const {
7808 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7809 Opcode == ISD::SMUL_LOHI);
7810
7811 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7813 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7815 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7817 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7819
7820 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7821 return false;
7822
7823 unsigned OuterBitSize = VT.getScalarSizeInBits();
7824 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7825
7826 // LL, LH, RL, and RH must be either all NULL or all set to a value.
7827 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7828 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7829
7830 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7831 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7832 bool Signed) -> bool {
7833 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7834 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7835 Hi = SDValue(Lo.getNode(), 1);
7836 return true;
7837 }
7838 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7839 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7840 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7841 return true;
7842 }
7843 return false;
7844 };
7845
7846 SDValue Lo, Hi;
7847
7848 if (!LL.getNode() && !RL.getNode() &&
7850 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7851 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7852 }
7853
7854 if (!LL.getNode())
7855 return false;
7856
7857 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7858 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7859 DAG.MaskedValueIsZero(RHS, HighMask)) {
7860 // The inputs are both zero-extended.
7861 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7862 Result.push_back(Lo);
7863 Result.push_back(Hi);
7864 if (Opcode != ISD::MUL) {
7865 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7866 Result.push_back(Zero);
7867 Result.push_back(Zero);
7868 }
7869 return true;
7870 }
7871 }
7872
7873 if (!VT.isVector() && Opcode == ISD::MUL &&
7874 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7875 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7876 // The input values are both sign-extended.
7877 // TODO non-MUL case?
7878 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7879 Result.push_back(Lo);
7880 Result.push_back(Hi);
7881 return true;
7882 }
7883 }
7884
7885 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7886 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7887
7888 if (!LH.getNode() && !RH.getNode() &&
7891 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7892 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7893 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7894 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7895 }
7896
7897 if (!LH.getNode())
7898 return false;
7899
7900 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7901 return false;
7902
7903 Result.push_back(Lo);
7904
7905 if (Opcode == ISD::MUL) {
7906 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7907 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7908 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7909 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7910 Result.push_back(Hi);
7911 return true;
7912 }
7913
7914 // Compute the full width result.
7915 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7916 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7917 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7918 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7919 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7920 };
7921
7922 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7923 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7924 return false;
7925
7926 // This is effectively the add part of a multiply-add of half-sized operands,
7927 // so it cannot overflow.
7928 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7929
7930 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7931 return false;
7932
7933 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7934 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7935
7936 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7938 if (UseGlue)
7939 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7940 Merge(Lo, Hi));
7941 else
7942 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7943 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7944
7945 SDValue Carry = Next.getValue(1);
7946 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7947 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7948
7949 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7950 return false;
7951
7952 if (UseGlue)
7953 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7954 Carry);
7955 else
7956 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7957 Zero, Carry);
7958
7959 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7960
7961 if (Opcode == ISD::SMUL_LOHI) {
7962 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7963 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7964 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7965
7966 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7967 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7968 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7969 }
7970
7971 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7972 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7973 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7974 return true;
7975}
7976
7978 SelectionDAG &DAG, MulExpansionKind Kind,
7979 SDValue LL, SDValue LH, SDValue RL,
7980 SDValue RH) const {
7982 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7983 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7984 DAG, Kind, LL, LH, RL, RH);
7985 if (Ok) {
7986 assert(Result.size() == 2);
7987 Lo = Result[0];
7988 Hi = Result[1];
7989 }
7990 return Ok;
7991}
7992
7993// Optimize unsigned division or remainder by constants for types twice as large
7994// as a legal VT.
7995//
7996// If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7997// can be computed
7998// as:
7999// Sum += __builtin_uadd_overflow(Lo, High, &Sum);
8000// Remainder = Sum % Constant
8001// This is based on "Remainder by Summing Digits" from Hacker's Delight.
8002//
8003// For division, we can compute the remainder using the algorithm described
8004// above, subtract it from the dividend to get an exact multiple of Constant.
8005// Then multiply that exact multiply by the multiplicative inverse modulo
8006// (1 << (BitWidth / 2)) to get the quotient.
8007
8008// If Constant is even, we can shift right the dividend and the divisor by the
8009// number of trailing zeros in Constant before applying the remainder algorithm.
8010// If we're after the quotient, we can subtract this value from the shifted
8011// dividend and multiply by the multiplicative inverse of the shifted divisor.
8012// If we want the remainder, we shift the value left by the number of trailing
8013// zeros and add the bits that were shifted out of the dividend.
8016 EVT HiLoVT, SelectionDAG &DAG,
8017 SDValue LL, SDValue LH) const {
8018 unsigned Opcode = N->getOpcode();
8019 EVT VT = N->getValueType(0);
8020
8021 // TODO: Support signed division/remainder.
8022 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
8023 return false;
8024 assert(
8025 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
8026 "Unexpected opcode");
8027
8028 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
8029 if (!CN)
8030 return false;
8031
8032 APInt Divisor = CN->getAPIntValue();
8033 unsigned BitWidth = Divisor.getBitWidth();
8034 unsigned HBitWidth = BitWidth / 2;
8036 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
8037
8038 // Divisor needs to less than (1 << HBitWidth).
8039 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
8040 if (Divisor.uge(HalfMaxPlus1))
8041 return false;
8042
8043 // We depend on the UREM by constant optimization in DAGCombiner that requires
8044 // high multiply.
8045 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
8047 return false;
8048
8049 // Don't expand if optimizing for size.
8050 if (DAG.shouldOptForSize())
8051 return false;
8052
8053 // Early out for 0 or 1 divisors.
8054 if (Divisor.ule(1))
8055 return false;
8056
8057 // If the divisor is even, shift it until it becomes odd.
8058 unsigned TrailingZeros = 0;
8059 if (!Divisor[0]) {
8060 TrailingZeros = Divisor.countr_zero();
8061 Divisor.lshrInPlace(TrailingZeros);
8062 }
8063
8064 SDLoc dl(N);
8065 SDValue Sum;
8066 SDValue PartialRem;
8067
8068 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
8069 // then add in the carry.
8070 // TODO: If we can't split it in half, we might be able to split into 3 or
8071 // more pieces using a smaller bit width.
8072 if (HalfMaxPlus1.urem(Divisor).isOne()) {
8073 assert(!LL == !LH && "Expected both input halves or no input halves!");
8074 if (!LL)
8075 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
8076
8077 // Shift the input by the number of TrailingZeros in the divisor. The
8078 // shifted out bits will be added to the remainder later.
8079 if (TrailingZeros) {
8080 // Save the shifted off bits if we need the remainder.
8081 if (Opcode != ISD::UDIV) {
8082 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
8083 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
8084 DAG.getConstant(Mask, dl, HiLoVT));
8085 }
8086
8087 LL = DAG.getNode(
8088 ISD::OR, dl, HiLoVT,
8089 DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
8090 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
8091 DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
8092 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
8093 HiLoVT, dl)));
8094 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
8095 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
8096 }
8097
8098 // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
8099 EVT SetCCType =
8100 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
8102 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
8103 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
8104 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
8105 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
8106 } else {
8107 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
8108 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
8109 // If the boolean for the target is 0 or 1, we can add the setcc result
8110 // directly.
8111 if (getBooleanContents(HiLoVT) ==
8113 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
8114 else
8115 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
8116 DAG.getConstant(0, dl, HiLoVT));
8117 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
8118 }
8119 }
8120
8121 // If we didn't find a sum, we can't do the expansion.
8122 if (!Sum)
8123 return false;
8124
8125 // Perform a HiLoVT urem on the Sum using truncated divisor.
8126 SDValue RemL =
8127 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
8128 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
8129 SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
8130
8131 if (Opcode != ISD::UREM) {
8132 // Subtract the remainder from the shifted dividend.
8133 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
8134 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
8135
8136 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
8137
8138 // Multiply by the multiplicative inverse of the divisor modulo
8139 // (1 << BitWidth).
8140 APInt MulFactor = Divisor.multiplicativeInverse();
8141
8142 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
8143 DAG.getConstant(MulFactor, dl, VT));
8144
8145 // Split the quotient into low and high parts.
8146 SDValue QuotL, QuotH;
8147 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
8148 Result.push_back(QuotL);
8149 Result.push_back(QuotH);
8150 }
8151
8152 if (Opcode != ISD::UDIV) {
8153 // If we shifted the input, shift the remainder left and add the bits we
8154 // shifted off the input.
8155 if (TrailingZeros) {
8156 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
8157 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
8158 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
8159 }
8160 Result.push_back(RemL);
8161 Result.push_back(DAG.getConstant(0, dl, HiLoVT));
8162 }
8163
8164 return true;
8165}
8166
8167// Check that (every element of) Z is undef or not an exact multiple of BW.
8168static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
8170 Z,
8171 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
8172 /*AllowUndefs=*/true, /*AllowTruncation=*/true);
8173}
8174
8176 EVT VT = Node->getValueType(0);
8177 SDValue ShX, ShY;
8178 SDValue ShAmt, InvShAmt;
8179 SDValue X = Node->getOperand(0);
8180 SDValue Y = Node->getOperand(1);
8181 SDValue Z = Node->getOperand(2);
8182 SDValue Mask = Node->getOperand(3);
8183 SDValue VL = Node->getOperand(4);
8184
8185 unsigned BW = VT.getScalarSizeInBits();
8186 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
8187 SDLoc DL(SDValue(Node, 0));
8188
8189 EVT ShVT = Z.getValueType();
8190 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8191 // fshl: X << C | Y >> (BW - C)
8192 // fshr: X << (BW - C) | Y >> C
8193 // where C = Z % BW is not zero
8194 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8195 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8196 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8197 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
8198 VL);
8199 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8200 VL);
8201 } else {
8202 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8203 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8204 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
8205 if (isPowerOf2_32(BW)) {
8206 // Z % BW -> Z & (BW - 1)
8207 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
8208 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8209 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
8210 DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
8211 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
8212 } else {
8213 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8214 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8215 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
8216 }
8217
8218 SDValue One = DAG.getConstant(1, DL, ShVT);
8219 if (IsFSHL) {
8220 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
8221 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
8222 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
8223 } else {
8224 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
8225 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
8226 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
8227 }
8228 }
8229 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
8230}
8231
8233 SelectionDAG &DAG) const {
8234 if (Node->isVPOpcode())
8235 return expandVPFunnelShift(Node, DAG);
8236
8237 EVT VT = Node->getValueType(0);
8238
8239 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8243 return SDValue();
8244
8245 SDValue X = Node->getOperand(0);
8246 SDValue Y = Node->getOperand(1);
8247 SDValue Z = Node->getOperand(2);
8248
8249 unsigned BW = VT.getScalarSizeInBits();
8250 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8251 SDLoc DL(SDValue(Node, 0));
8252
8253 EVT ShVT = Z.getValueType();
8254
8255 // If a funnel shift in the other direction is more supported, use it.
8256 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8257 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8258 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8259 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8260 // fshl X, Y, Z -> fshr X, Y, -Z
8261 // fshr X, Y, Z -> fshl X, Y, -Z
8262 Z = DAG.getNegative(Z, DL, ShVT);
8263 } else {
8264 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8265 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8266 SDValue One = DAG.getConstant(1, DL, ShVT);
8267 if (IsFSHL) {
8268 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8269 X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8270 } else {
8271 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8272 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8273 }
8274 Z = DAG.getNOT(DL, Z, ShVT);
8275 }
8276 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8277 }
8278
8279 SDValue ShX, ShY;
8280 SDValue ShAmt, InvShAmt;
8281 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8282 // fshl: X << C | Y >> (BW - C)
8283 // fshr: X << (BW - C) | Y >> C
8284 // where C = Z % BW is not zero
8285 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8286 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8287 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8288 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8289 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8290 } else {
8291 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8292 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8293 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8294 if (isPowerOf2_32(BW)) {
8295 // Z % BW -> Z & (BW - 1)
8296 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8297 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8298 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8299 } else {
8300 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8301 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8302 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8303 }
8304
8305 SDValue One = DAG.getConstant(1, DL, ShVT);
8306 if (IsFSHL) {
8307 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8308 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8309 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8310 } else {
8311 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8312 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8313 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8314 }
8315 }
8316 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8317}
8318
8319// TODO: Merge with expandFunnelShift.
8321 SelectionDAG &DAG) const {
8322 EVT VT = Node->getValueType(0);
8323 unsigned EltSizeInBits = VT.getScalarSizeInBits();
8324 bool IsLeft = Node->getOpcode() == ISD::ROTL;
8325 SDValue Op0 = Node->getOperand(0);
8326 SDValue Op1 = Node->getOperand(1);
8327 SDLoc DL(SDValue(Node, 0));
8328
8329 EVT ShVT = Op1.getValueType();
8330 SDValue Zero = DAG.getConstant(0, DL, ShVT);
8331
8332 // If a rotate in the other direction is more supported, use it.
8333 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8334 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8335 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8336 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8337 return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8338 }
8339
8340 if (!AllowVectorOps && VT.isVector() &&
8346 return SDValue();
8347
8348 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8349 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8350 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8351 SDValue ShVal;
8352 SDValue HsVal;
8353 if (isPowerOf2_32(EltSizeInBits)) {
8354 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8355 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8356 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8357 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8358 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8359 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8360 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8361 } else {
8362 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8363 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8364 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8365 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8366 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8367 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8368 SDValue One = DAG.getConstant(1, DL, ShVT);
8369 HsVal =
8370 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8371 }
8372 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8373}
8374
8376 SelectionDAG &DAG) const {
8377 assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8378 EVT VT = Node->getValueType(0);
8379 unsigned VTBits = VT.getScalarSizeInBits();
8380 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8381
8382 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8383 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8384 SDValue ShOpLo = Node->getOperand(0);
8385 SDValue ShOpHi = Node->getOperand(1);
8386 SDValue ShAmt = Node->getOperand(2);
8387 EVT ShAmtVT = ShAmt.getValueType();
8388 EVT ShAmtCCVT =
8389 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8390 SDLoc dl(Node);
8391
8392 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8393 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8394 // away during isel.
8395 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8396 DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8397 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8398 DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8399 : DAG.getConstant(0, dl, VT);
8400
8401 SDValue Tmp2, Tmp3;
8402 if (IsSHL) {
8403 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8404 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8405 } else {
8406 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8407 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8408 }
8409
8410 // If the shift amount is larger or equal than the width of a part we don't
8411 // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8412 // values for large shift amounts.
8413 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8414 DAG.getConstant(VTBits, dl, ShAmtVT));
8415 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8416 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8417
8418 if (IsSHL) {
8419 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8420 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8421 } else {
8422 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8423 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8424 }
8425}
8426
8428 SelectionDAG &DAG) const {
8429 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8430 SDValue Src = Node->getOperand(OpNo);
8431 EVT SrcVT = Src.getValueType();
8432 EVT DstVT = Node->getValueType(0);
8433 SDLoc dl(SDValue(Node, 0));
8434
8435 // FIXME: Only f32 to i64 conversions are supported.
8436 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8437 return false;
8438
8439 if (Node->isStrictFPOpcode())
8440 // When a NaN is converted to an integer a trap is allowed. We can't
8441 // use this expansion here because it would eliminate that trap. Other
8442 // traps are also allowed and cannot be eliminated. See
8443 // IEEE 754-2008 sec 5.8.
8444 return false;
8445
8446 // Expand f32 -> i64 conversion
8447 // This algorithm comes from compiler-rt's implementation of fixsfdi:
8448 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8449 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8450 EVT IntVT = SrcVT.changeTypeToInteger();
8451 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8452
8453 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8454 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8455 SDValue Bias = DAG.getConstant(127, dl, IntVT);
8456 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8457 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8458 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8459
8460 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8461
8462 SDValue ExponentBits = DAG.getNode(
8463 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8464 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8465 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8466
8467 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8468 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8469 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8470 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8471
8472 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8473 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8474 DAG.getConstant(0x00800000, dl, IntVT));
8475
8476 R = DAG.getZExtOrTrunc(R, dl, DstVT);
8477
8478 R = DAG.getSelectCC(
8479 dl, Exponent, ExponentLoBit,
8480 DAG.getNode(ISD::SHL, dl, DstVT, R,
8481 DAG.getZExtOrTrunc(
8482 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8483 dl, IntShVT)),
8484 DAG.getNode(ISD::SRL, dl, DstVT, R,
8485 DAG.getZExtOrTrunc(
8486 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8487 dl, IntShVT)),
8488 ISD::SETGT);
8489
8490 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8491 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8492
8493 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8494 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8495 return true;
8496}
8497
8499 SDValue &Chain,
8500 SelectionDAG &DAG) const {
8501 SDLoc dl(SDValue(Node, 0));
8502 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8503 SDValue Src = Node->getOperand(OpNo);
8504
8505 EVT SrcVT = Src.getValueType();
8506 EVT DstVT = Node->getValueType(0);
8507 EVT SetCCVT =
8508 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8509 EVT DstSetCCVT =
8510 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8511
8512 // Only expand vector types if we have the appropriate vector bit operations.
8513 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8515 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8517 return false;
8518
8519 // If the maximum float value is smaller then the signed integer range,
8520 // the destination signmask can't be represented by the float, so we can
8521 // just use FP_TO_SINT directly.
8522 const fltSemantics &APFSem = SrcVT.getFltSemantics();
8523 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8524 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8526 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8527 if (Node->isStrictFPOpcode()) {
8528 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8529 { Node->getOperand(0), Src });
8530 Chain = Result.getValue(1);
8531 } else
8532 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8533 return true;
8534 }
8535
8536 // Don't expand it if there isn't cheap fsub instruction.
8538 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8539 return false;
8540
8541 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8542 SDValue Sel;
8543
8544 if (Node->isStrictFPOpcode()) {
8545 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8546 Node->getOperand(0), /*IsSignaling*/ true);
8547 Chain = Sel.getValue(1);
8548 } else {
8549 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8550 }
8551
8552 bool Strict = Node->isStrictFPOpcode() ||
8553 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8554
8555 if (Strict) {
8556 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8557 // signmask then offset (the result of which should be fully representable).
8558 // Sel = Src < 0x8000000000000000
8559 // FltOfs = select Sel, 0, 0x8000000000000000
8560 // IntOfs = select Sel, 0, 0x8000000000000000
8561 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8562
8563 // TODO: Should any fast-math-flags be set for the FSUB?
8564 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8565 DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8566 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8567 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8568 DAG.getConstant(0, dl, DstVT),
8569 DAG.getConstant(SignMask, dl, DstVT));
8570 SDValue SInt;
8571 if (Node->isStrictFPOpcode()) {
8572 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8573 { Chain, Src, FltOfs });
8574 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8575 { Val.getValue(1), Val });
8576 Chain = SInt.getValue(1);
8577 } else {
8578 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8579 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8580 }
8581 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8582 } else {
8583 // Expand based on maximum range of FP_TO_SINT:
8584 // True = fp_to_sint(Src)
8585 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8586 // Result = select (Src < 0x8000000000000000), True, False
8587
8588 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8589 // TODO: Should any fast-math-flags be set for the FSUB?
8590 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8591 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8592 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8593 DAG.getConstant(SignMask, dl, DstVT));
8594 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8595 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8596 }
8597 return true;
8598}
8599
8601 SDValue &Chain, SelectionDAG &DAG) const {
8602 // This transform is not correct for converting 0 when rounding mode is set
8603 // to round toward negative infinity which will produce -0.0. So disable
8604 // under strictfp.
8605 if (Node->isStrictFPOpcode())
8606 return false;
8607
8608 SDValue Src = Node->getOperand(0);
8609 EVT SrcVT = Src.getValueType();
8610 EVT DstVT = Node->getValueType(0);
8611
8612 // If the input is known to be non-negative and SINT_TO_FP is legal then use
8613 // it.
8614 if (Node->getFlags().hasNonNeg() &&
8616 Result =
8617 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8618 return true;
8619 }
8620
8621 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8622 return false;
8623
8624 // Only expand vector types if we have the appropriate vector bit
8625 // operations.
8626 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8631 return false;
8632
8633 SDLoc dl(SDValue(Node, 0));
8634
8635 // Implementation of unsigned i64 to f64 following the algorithm in
8636 // __floatundidf in compiler_rt. This implementation performs rounding
8637 // correctly in all rounding modes with the exception of converting 0
8638 // when rounding toward negative infinity. In that case the fsub will
8639 // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8640 // incorrect.
8641 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8642 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8643 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8644 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8645 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8646 SDValue HiShift = DAG.getShiftAmountConstant(32, SrcVT, dl);
8647
8648 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8649 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8650 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8651 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8652 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8653 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8654 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8655 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8656 return true;
8657}
8658
8659SDValue
8661 SelectionDAG &DAG) const {
8662 unsigned Opcode = Node->getOpcode();
8663 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8664 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8665 "Wrong opcode");
8666
8667 if (Node->getFlags().hasNoNaNs()) {
8668 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8669 EVT VT = Node->getValueType(0);
8670 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8672 VT.isVector())
8673 return SDValue();
8674 SDValue Op1 = Node->getOperand(0);
8675 SDValue Op2 = Node->getOperand(1);
8676 return DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred,
8677 Node->getFlags());
8678 }
8679
8680 return SDValue();
8681}
8682
8684 SelectionDAG &DAG) const {
8685 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8686 return Expanded;
8687
8688 EVT VT = Node->getValueType(0);
8689 if (VT.isScalableVector())
8691 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8692
8693 SDLoc dl(Node);
8694 unsigned NewOp =
8696
8697 if (isOperationLegalOrCustom(NewOp, VT)) {
8698 SDValue Quiet0 = Node->getOperand(0);
8699 SDValue Quiet1 = Node->getOperand(1);
8700
8701 if (!Node->getFlags().hasNoNaNs()) {
8702 // Insert canonicalizes if it's possible we need to quiet to get correct
8703 // sNaN behavior.
8704 if (!DAG.isKnownNeverSNaN(Quiet0)) {
8705 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8706 Node->getFlags());
8707 }
8708 if (!DAG.isKnownNeverSNaN(Quiet1)) {
8709 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8710 Node->getFlags());
8711 }
8712 }
8713
8714 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8715 }
8716
8717 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8718 // instead if there are no NaNs and there can't be an incompatible zero
8719 // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8720 if ((Node->getFlags().hasNoNaNs() ||
8721 (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8722 DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8723 (Node->getFlags().hasNoSignedZeros() ||
8724 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8725 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8726 unsigned IEEE2018Op =
8727 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8728 if (isOperationLegalOrCustom(IEEE2018Op, VT))
8729 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8730 Node->getOperand(1), Node->getFlags());
8731 }
8732
8734 return SelCC;
8735
8736 return SDValue();
8737}
8738
8740 SelectionDAG &DAG) const {
8741 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8742 return Expanded;
8743
8744 SDLoc DL(N);
8745 SDValue LHS = N->getOperand(0);
8746 SDValue RHS = N->getOperand(1);
8747 unsigned Opc = N->getOpcode();
8748 EVT VT = N->getValueType(0);
8749 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8750 bool IsMax = Opc == ISD::FMAXIMUM;
8751 SDNodeFlags Flags = N->getFlags();
8752
8753 // First, implement comparison not propagating NaN. If no native fmin or fmax
8754 // available, use plain select with setcc instead.
8756 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8757 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8758
8759 // FIXME: We should probably define fminnum/fmaxnum variants with correct
8760 // signed zero behavior.
8761 bool MinMaxMustRespectOrderedZero = false;
8762
8763 if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8764 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8765 MinMaxMustRespectOrderedZero = true;
8766 } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8767 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8768 } else {
8770 return DAG.UnrollVectorOp(N);
8771
8772 // NaN (if exists) will be propagated later, so orderness doesn't matter.
8773 SDValue Compare =
8774 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8775 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8776 }
8777
8778 // Propagate any NaN of both operands
8779 if (!N->getFlags().hasNoNaNs() &&
8780 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8781 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8783 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8784 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8785 }
8786
8787 // fminimum/fmaximum requires -0.0 less than +0.0
8788 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8789 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8790 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8791 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8792 SDValue TestZero =
8793 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8794 SDValue LCmp = DAG.getSelect(
8795 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8796 MinMax, Flags);
8797 SDValue RCmp = DAG.getSelect(
8798 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8799 LCmp, Flags);
8800 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8801 }
8802
8803 return MinMax;
8804}
8805
8807 SelectionDAG &DAG) const {
8808 SDLoc DL(Node);
8809 SDValue LHS = Node->getOperand(0);
8810 SDValue RHS = Node->getOperand(1);
8811 unsigned Opc = Node->getOpcode();
8812 EVT VT = Node->getValueType(0);
8813 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8814 bool IsMax = Opc == ISD::FMAXIMUMNUM;
8815 SDNodeFlags Flags = Node->getFlags();
8816
8817 unsigned NewOp =
8819
8820 if (isOperationLegalOrCustom(NewOp, VT)) {
8821 if (!Flags.hasNoNaNs()) {
8822 // Insert canonicalizes if it's possible we need to quiet to get correct
8823 // sNaN behavior.
8824 if (!DAG.isKnownNeverSNaN(LHS)) {
8825 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8826 }
8827 if (!DAG.isKnownNeverSNaN(RHS)) {
8828 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8829 }
8830 }
8831
8832 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8833 }
8834
8835 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8836 // same behaviors for all of other cases: +0.0 vs -0.0 included.
8837 if (Flags.hasNoNaNs() ||
8838 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8839 unsigned IEEE2019Op =
8841 if (isOperationLegalOrCustom(IEEE2019Op, VT))
8842 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8843 }
8844
8845 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8846 // either one for +0.0 vs -0.0.
8847 if ((Flags.hasNoNaNs() ||
8848 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8849 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8850 DAG.isKnownNeverZeroFloat(RHS))) {
8851 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8852 if (isOperationLegalOrCustom(IEEE2008Op, VT))
8853 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8854 }
8855
8856 if (VT.isVector() &&
8859 return DAG.UnrollVectorOp(Node);
8860
8861 // If only one operand is NaN, override it with another operand.
8862 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8863 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8864 }
8865 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8866 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8867 }
8868
8869 // Always prefer RHS if equal.
8870 SDValue MinMax =
8871 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8872
8873 // TODO: We need quiet sNaN if strictfp.
8874
8875 // Fixup signed zero behavior.
8876 if (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8877 DAG.isKnownNeverZeroFloat(RHS)) {
8878 return MinMax;
8879 }
8880 SDValue TestZero =
8881 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8882 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8883 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8884 EVT IntVT = VT.changeTypeToInteger();
8885 EVT FloatVT = VT.changeElementType(*DAG.getContext(), MVT::f32);
8886 SDValue LHSTrunc = LHS;
8888 LHSTrunc = DAG.getNode(ISD::FP_ROUND, DL, FloatVT, LHS,
8889 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
8890 }
8891 // It's OK to select from LHS and MinMax, with only one ISD::IS_FPCLASS, as
8892 // we preferred RHS when generate MinMax, if the operands are equal.
8893 SDValue RetZero = DAG.getSelect(
8894 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHSTrunc, TestZero), LHS,
8895 MinMax, Flags);
8896 return DAG.getSelect(DL, VT, IsZero, RetZero, MinMax, Flags);
8897}
8898
8899/// Returns a true value if if this FPClassTest can be performed with an ordered
8900/// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8901/// std::nullopt if it cannot be performed as a compare with 0.
8902static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8903 const fltSemantics &Semantics,
8904 const MachineFunction &MF) {
8905 FPClassTest OrderedMask = Test & ~fcNan;
8906 FPClassTest NanTest = Test & fcNan;
8907 bool IsOrdered = NanTest == fcNone;
8908 bool IsUnordered = NanTest == fcNan;
8909
8910 // Skip cases that are testing for only a qnan or snan.
8911 if (!IsOrdered && !IsUnordered)
8912 return std::nullopt;
8913
8914 if (OrderedMask == fcZero &&
8915 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8916 return IsOrdered;
8917 if (OrderedMask == (fcZero | fcSubnormal) &&
8918 MF.getDenormalMode(Semantics).inputsAreZero())
8919 return IsOrdered;
8920 return std::nullopt;
8921}
8922
8924 const FPClassTest OrigTestMask,
8925 SDNodeFlags Flags, const SDLoc &DL,
8926 SelectionDAG &DAG) const {
8927 EVT OperandVT = Op.getValueType();
8928 assert(OperandVT.isFloatingPoint());
8929 FPClassTest Test = OrigTestMask;
8930
8931 // Degenerated cases.
8932 if (Test == fcNone)
8933 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8934 if (Test == fcAllFlags)
8935 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8936
8937 // PPC double double is a pair of doubles, of which the higher part determines
8938 // the value class.
8939 if (OperandVT == MVT::ppcf128) {
8940 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8941 DAG.getConstant(1, DL, MVT::i32));
8942 OperandVT = MVT::f64;
8943 }
8944
8945 // Floating-point type properties.
8946 EVT ScalarFloatVT = OperandVT.getScalarType();
8947 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8948 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8949 bool IsF80 = (ScalarFloatVT == MVT::f80);
8950
8951 // Some checks can be implemented using float comparisons, if floating point
8952 // exceptions are ignored.
8953 if (Flags.hasNoFPExcept() &&
8955 FPClassTest FPTestMask = Test;
8956 bool IsInvertedFP = false;
8957
8958 if (FPClassTest InvertedFPCheck =
8959 invertFPClassTestIfSimpler(FPTestMask, true)) {
8960 FPTestMask = InvertedFPCheck;
8961 IsInvertedFP = true;
8962 }
8963
8964 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
8965 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
8966
8967 // See if we can fold an | fcNan into an unordered compare.
8968 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8969
8970 // Can't fold the ordered check if we're only testing for snan or qnan
8971 // individually.
8972 if ((FPTestMask & fcNan) != fcNan)
8973 OrderedFPTestMask = FPTestMask;
8974
8975 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8976
8977 if (std::optional<bool> IsCmp0 =
8978 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
8979 IsCmp0 && (isCondCodeLegalOrCustom(
8980 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8981 OperandVT.getScalarType().getSimpleVT()))) {
8982
8983 // If denormals could be implicitly treated as 0, this is not equivalent
8984 // to a compare with 0 since it will also be true for denormals.
8985 return DAG.getSetCC(DL, ResultVT, Op,
8986 DAG.getConstantFP(0.0, DL, OperandVT),
8987 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8988 }
8989
8990 if (FPTestMask == fcNan &&
8992 OperandVT.getScalarType().getSimpleVT()))
8993 return DAG.getSetCC(DL, ResultVT, Op, Op,
8994 IsInvertedFP ? ISD::SETO : ISD::SETUO);
8995
8996 bool IsOrderedInf = FPTestMask == fcInf;
8997 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
8998 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
8999 : UnorderedCmpOpcode,
9000 OperandVT.getScalarType().getSimpleVT()) &&
9003 (OperandVT.isVector() &&
9005 // isinf(x) --> fabs(x) == inf
9006 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9007 SDValue Inf =
9008 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
9009 return DAG.getSetCC(DL, ResultVT, Abs, Inf,
9010 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
9011 }
9012
9013 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
9014 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
9015 : UnorderedCmpOpcode,
9016 OperandVT.getSimpleVT())) {
9017 // isposinf(x) --> x == inf
9018 // isneginf(x) --> x == -inf
9019 // isposinf(x) || nan --> x u== inf
9020 // isneginf(x) || nan --> x u== -inf
9021
9022 SDValue Inf = DAG.getConstantFP(
9023 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
9024 OperandVT);
9025 return DAG.getSetCC(DL, ResultVT, Op, Inf,
9026 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
9027 }
9028
9029 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
9030 // TODO: Could handle ordered case, but it produces worse code for
9031 // x86. Maybe handle ordered if fabs is free?
9032
9033 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
9034 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
9035
9036 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
9037 OperandVT.getScalarType().getSimpleVT())) {
9038 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
9039
9040 // TODO: Maybe only makes sense if fabs is free. Integer test of
9041 // exponent bits seems better for x86.
9042 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9043 SDValue SmallestNormal = DAG.getConstantFP(
9044 APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
9045 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
9046 IsOrdered ? OrderedOp : UnorderedOp);
9047 }
9048 }
9049
9050 if (FPTestMask == fcNormal) {
9051 // TODO: Handle unordered
9052 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
9053 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
9054
9055 if (isCondCodeLegalOrCustom(IsFiniteOp,
9056 OperandVT.getScalarType().getSimpleVT()) &&
9057 isCondCodeLegalOrCustom(IsNormalOp,
9058 OperandVT.getScalarType().getSimpleVT()) &&
9059 isFAbsFree(OperandVT)) {
9060 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
9061 SDValue Inf =
9062 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
9063 SDValue SmallestNormal = DAG.getConstantFP(
9064 APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
9065
9066 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9067 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
9068 SDValue IsNormal =
9069 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
9070 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
9071 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
9072 }
9073 }
9074 }
9075
9076 // Some checks may be represented as inversion of simpler check, for example
9077 // "inf|normal|subnormal|zero" => !"nan".
9078 bool IsInverted = false;
9079
9080 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
9081 Test = InvertedCheck;
9082 IsInverted = true;
9083 }
9084
9085 // In the general case use integer operations.
9086 unsigned BitSize = OperandVT.getScalarSizeInBits();
9087 EVT IntVT = OperandVT.changeElementType(
9088 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), BitSize));
9089 SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
9090
9091 // Various masks.
9092 APInt SignBit = APInt::getSignMask(BitSize);
9093 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
9094 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
9095 const unsigned ExplicitIntBitInF80 = 63;
9096 APInt ExpMask = Inf;
9097 if (IsF80)
9098 ExpMask.clearBit(ExplicitIntBitInF80);
9099 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
9100 APInt QNaNBitMask =
9101 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
9102 APInt InversionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
9103
9104 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
9105 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
9106 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
9107 SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
9108 SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
9109 SDValue ResultInversionMask = DAG.getConstant(InversionMask, DL, ResultVT);
9110
9111 SDValue Res;
9112 const auto appendResult = [&](SDValue PartialRes) {
9113 if (PartialRes) {
9114 if (Res)
9115 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
9116 else
9117 Res = PartialRes;
9118 }
9119 };
9120
9121 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
9122 const auto getIntBitIsSet = [&]() -> SDValue {
9123 if (!IntBitIsSetV) {
9124 APInt IntBitMask(BitSize, 0);
9125 IntBitMask.setBit(ExplicitIntBitInF80);
9126 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
9127 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
9128 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
9129 }
9130 return IntBitIsSetV;
9131 };
9132
9133 // Split the value into sign bit and absolute value.
9134 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
9135 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
9136 DAG.getConstant(0, DL, IntVT), ISD::SETLT);
9137
9138 // Tests that involve more than one class should be processed first.
9139 SDValue PartialRes;
9140
9141 if (IsF80)
9142 ; // Detect finite numbers of f80 by checking individual classes because
9143 // they have different settings of the explicit integer bit.
9144 else if ((Test & fcFinite) == fcFinite) {
9145 // finite(V) ==> abs(V) < exp_mask
9146 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
9147 Test &= ~fcFinite;
9148 } else if ((Test & fcFinite) == fcPosFinite) {
9149 // finite(V) && V > 0 ==> V < exp_mask
9150 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
9151 Test &= ~fcPosFinite;
9152 } else if ((Test & fcFinite) == fcNegFinite) {
9153 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
9154 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
9155 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9156 Test &= ~fcNegFinite;
9157 }
9158 appendResult(PartialRes);
9159
9160 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
9161 // fcZero | fcSubnormal => test all exponent bits are 0
9162 // TODO: Handle sign bit specific cases
9163 if (PartialCheck == (fcZero | fcSubnormal)) {
9164 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
9165 SDValue ExpIsZero =
9166 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9167 appendResult(ExpIsZero);
9168 Test &= ~PartialCheck & fcAllFlags;
9169 }
9170 }
9171
9172 // Check for individual classes.
9173
9174 if (unsigned PartialCheck = Test & fcZero) {
9175 if (PartialCheck == fcPosZero)
9176 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
9177 else if (PartialCheck == fcZero)
9178 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
9179 else // ISD::fcNegZero
9180 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
9181 appendResult(PartialRes);
9182 }
9183
9184 if (unsigned PartialCheck = Test & fcSubnormal) {
9185 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
9186 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
9187 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
9188 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
9189 SDValue VMinusOneV =
9190 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
9191 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
9192 if (PartialCheck == fcNegSubnormal)
9193 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9194 appendResult(PartialRes);
9195 }
9196
9197 if (unsigned PartialCheck = Test & fcInf) {
9198 if (PartialCheck == fcPosInf)
9199 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
9200 else if (PartialCheck == fcInf)
9201 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
9202 else { // ISD::fcNegInf
9203 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
9204 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
9205 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
9206 }
9207 appendResult(PartialRes);
9208 }
9209
9210 if (unsigned PartialCheck = Test & fcNan) {
9211 APInt InfWithQnanBit = Inf | QNaNBitMask;
9212 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
9213 if (PartialCheck == fcNan) {
9214 // isnan(V) ==> abs(V) > int(inf)
9215 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9216 if (IsF80) {
9217 // Recognize unsupported values as NaNs for compatibility with glibc.
9218 // In them (exp(V)==0) == int_bit.
9219 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
9220 SDValue ExpIsZero =
9221 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9222 SDValue IsPseudo =
9223 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
9224 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
9225 }
9226 } else if (PartialCheck == fcQNan) {
9227 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
9228 PartialRes =
9229 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
9230 } else { // ISD::fcSNan
9231 // issignaling(V) ==> abs(V) > unsigned(Inf) &&
9232 // abs(V) < (unsigned(Inf) | quiet_bit)
9233 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9234 SDValue IsNotQnan =
9235 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
9236 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
9237 }
9238 appendResult(PartialRes);
9239 }
9240
9241 if (unsigned PartialCheck = Test & fcNormal) {
9242 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
9243 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9244 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9245 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9246 APInt ExpLimit = ExpMask - ExpLSB;
9247 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9248 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9249 if (PartialCheck == fcNegNormal)
9250 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9251 else if (PartialCheck == fcPosNormal) {
9252 SDValue PosSignV =
9253 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInversionMask);
9254 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9255 }
9256 if (IsF80)
9257 PartialRes =
9258 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9259 appendResult(PartialRes);
9260 }
9261
9262 if (!Res)
9263 return DAG.getConstant(IsInverted, DL, ResultVT);
9264 if (IsInverted)
9265 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInversionMask);
9266 return Res;
9267}
9268
9269// Only expand vector types if we have the appropriate vector bit operations.
9270static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9271 assert(VT.isVector() && "Expected vector type");
9272 unsigned Len = VT.getScalarSizeInBits();
9273 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9276 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9278}
9279
9281 SDLoc dl(Node);
9282 EVT VT = Node->getValueType(0);
9283 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9284 SDValue Op = Node->getOperand(0);
9285 unsigned Len = VT.getScalarSizeInBits();
9286 assert(VT.isInteger() && "CTPOP not implemented for this type.");
9287
9288 // TODO: Add support for irregular type lengths.
9289 if (!(Len <= 128 && Len % 8 == 0))
9290 return SDValue();
9291
9292 // Only expand vector types if we have the appropriate vector bit operations.
9293 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9294 return SDValue();
9295
9296 // This is the "best" algorithm from
9297 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9298 SDValue Mask55 =
9299 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9300 SDValue Mask33 =
9301 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9302 SDValue Mask0F =
9303 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9304
9305 // v = v - ((v >> 1) & 0x55555555...)
9306 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9307 DAG.getNode(ISD::AND, dl, VT,
9308 DAG.getNode(ISD::SRL, dl, VT, Op,
9309 DAG.getConstant(1, dl, ShVT)),
9310 Mask55));
9311 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9312 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9313 DAG.getNode(ISD::AND, dl, VT,
9314 DAG.getNode(ISD::SRL, dl, VT, Op,
9315 DAG.getConstant(2, dl, ShVT)),
9316 Mask33));
9317 // v = (v + (v >> 4)) & 0x0F0F0F0F...
9318 Op = DAG.getNode(ISD::AND, dl, VT,
9319 DAG.getNode(ISD::ADD, dl, VT, Op,
9320 DAG.getNode(ISD::SRL, dl, VT, Op,
9321 DAG.getConstant(4, dl, ShVT))),
9322 Mask0F);
9323
9324 if (Len <= 8)
9325 return Op;
9326
9327 // Avoid the multiply if we only have 2 bytes to add.
9328 // TODO: Only doing this for scalars because vectors weren't as obviously
9329 // improved.
9330 if (Len == 16 && !VT.isVector()) {
9331 // v = (v + (v >> 8)) & 0x00FF;
9332 return DAG.getNode(ISD::AND, dl, VT,
9333 DAG.getNode(ISD::ADD, dl, VT, Op,
9334 DAG.getNode(ISD::SRL, dl, VT, Op,
9335 DAG.getConstant(8, dl, ShVT))),
9336 DAG.getConstant(0xFF, dl, VT));
9337 }
9338
9339 // v = (v * 0x01010101...) >> (Len - 8)
9340 SDValue V;
9343 SDValue Mask01 =
9344 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9345 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9346 } else {
9347 V = Op;
9348 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9349 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9350 V = DAG.getNode(ISD::ADD, dl, VT, V,
9351 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9352 }
9353 }
9354 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9355}
9356
9358 SDLoc dl(Node);
9359 EVT VT = Node->getValueType(0);
9360 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9361 SDValue Op = Node->getOperand(0);
9362 SDValue Mask = Node->getOperand(1);
9363 SDValue VL = Node->getOperand(2);
9364 unsigned Len = VT.getScalarSizeInBits();
9365 assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9366
9367 // TODO: Add support for irregular type lengths.
9368 if (!(Len <= 128 && Len % 8 == 0))
9369 return SDValue();
9370
9371 // This is same algorithm of expandCTPOP from
9372 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9373 SDValue Mask55 =
9374 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9375 SDValue Mask33 =
9376 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9377 SDValue Mask0F =
9378 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9379
9380 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9381
9382 // v = v - ((v >> 1) & 0x55555555...)
9383 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9384 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9385 DAG.getConstant(1, dl, ShVT), Mask, VL),
9386 Mask55, Mask, VL);
9387 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9388
9389 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9390 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9391 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9392 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9393 DAG.getConstant(2, dl, ShVT), Mask, VL),
9394 Mask33, Mask, VL);
9395 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9396
9397 // v = (v + (v >> 4)) & 0x0F0F0F0F...
9398 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9399 Mask, VL),
9400 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9401 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9402
9403 if (Len <= 8)
9404 return Op;
9405
9406 // v = (v * 0x01010101...) >> (Len - 8)
9407 SDValue V;
9409 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9410 SDValue Mask01 =
9411 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9412 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9413 } else {
9414 V = Op;
9415 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9416 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9417 V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9418 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9419 Mask, VL);
9420 }
9421 }
9422 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9423 Mask, VL);
9424}
9425
9427 SDLoc dl(Node);
9428 EVT VT = Node->getValueType(0);
9429 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9430 SDValue Op = Node->getOperand(0);
9431 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9432
9433 // If the non-ZERO_UNDEF version is supported we can use that instead.
9434 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9436 return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9437
9438 // If the ZERO_UNDEF version is supported use that and handle the zero case.
9440 EVT SetCCVT =
9441 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9442 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9443 SDValue Zero = DAG.getConstant(0, dl, VT);
9444 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9445 return DAG.getSelect(dl, VT, SrcIsZero,
9446 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9447 }
9448
9449 // Only expand vector types if we have the appropriate vector bit operations.
9450 // This includes the operations needed to expand CTPOP if it isn't supported.
9451 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9453 !canExpandVectorCTPOP(*this, VT)) ||
9456 return SDValue();
9457
9458 // for now, we do this:
9459 // x = x | (x >> 1);
9460 // x = x | (x >> 2);
9461 // ...
9462 // x = x | (x >>16);
9463 // x = x | (x >>32); // for 64-bit input
9464 // return popcount(~x);
9465 //
9466 // Ref: "Hacker's Delight" by Henry Warren
9467 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9468 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9469 Op = DAG.getNode(ISD::OR, dl, VT, Op,
9470 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9471 }
9472 Op = DAG.getNOT(dl, Op, VT);
9473 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9474}
9475
9477 SDLoc dl(Node);
9478 EVT VT = Node->getValueType(0);
9479 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9480 SDValue Op = Node->getOperand(0);
9481 SDValue Mask = Node->getOperand(1);
9482 SDValue VL = Node->getOperand(2);
9483 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9484
9485 // do this:
9486 // x = x | (x >> 1);
9487 // x = x | (x >> 2);
9488 // ...
9489 // x = x | (x >>16);
9490 // x = x | (x >>32); // for 64-bit input
9491 // return popcount(~x);
9492 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9493 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9494 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9495 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9496 VL);
9497 }
9498 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9499 Mask, VL);
9500 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9501}
9502
9504 const SDLoc &DL, EVT VT, SDValue Op,
9505 unsigned BitWidth) const {
9506 if (BitWidth != 32 && BitWidth != 64)
9507 return SDValue();
9508 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9509 : APInt(64, 0x0218A392CD3D5DBFULL);
9510 const DataLayout &TD = DAG.getDataLayout();
9511 MachinePointerInfo PtrInfo =
9513 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9514 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9515 SDValue Lookup = DAG.getNode(
9516 ISD::SRL, DL, VT,
9517 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9518 DAG.getConstant(DeBruijn, DL, VT)),
9519 DAG.getShiftAmountConstant(ShiftAmt, VT, DL));
9521
9523 for (unsigned i = 0; i < BitWidth; i++) {
9524 APInt Shl = DeBruijn.shl(i);
9525 APInt Lshr = Shl.lshr(ShiftAmt);
9526 Table[Lshr.getZExtValue()] = i;
9527 }
9528
9529 // Create a ConstantArray in Constant Pool
9530 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9531 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9532 TD.getPrefTypeAlign(CA->getType()));
9533 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9534 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9535 PtrInfo, MVT::i8);
9536 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9537 return ExtLoad;
9538
9539 EVT SetCCVT =
9540 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9541 SDValue Zero = DAG.getConstant(0, DL, VT);
9542 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9543 return DAG.getSelect(DL, VT, SrcIsZero,
9544 DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9545}
9546
9548 SDLoc dl(Node);
9549 EVT VT = Node->getValueType(0);
9550 SDValue Op = Node->getOperand(0);
9551 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9552
9553 // If the non-ZERO_UNDEF version is supported we can use that instead.
9554 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9556 return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9557
9558 // If the ZERO_UNDEF version is supported use that and handle the zero case.
9560 EVT SetCCVT =
9561 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9562 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9563 SDValue Zero = DAG.getConstant(0, dl, VT);
9564 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9565 return DAG.getSelect(dl, VT, SrcIsZero,
9566 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9567 }
9568
9569 // Only expand vector types if we have the appropriate vector bit operations.
9570 // This includes the operations needed to expand CTPOP if it isn't supported.
9571 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9574 !canExpandVectorCTPOP(*this, VT)) ||
9578 return SDValue();
9579
9580 // Emit Table Lookup if ISD::CTPOP used in the fallback path below is going
9581 // to be expanded or converted to a libcall.
9584 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9585 return V;
9586
9587 // for now, we use: { return popcount(~x & (x - 1)); }
9588 // unless the target has ctlz but not ctpop, in which case we use:
9589 // { return 32 - nlz(~x & (x-1)); }
9590 // Ref: "Hacker's Delight" by Henry Warren
9591 SDValue Tmp = DAG.getNode(
9592 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9593 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9594
9595 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9597 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9598 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9599 }
9600
9601 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9602}
9603
9605 SDValue Op = Node->getOperand(0);
9606 SDValue Mask = Node->getOperand(1);
9607 SDValue VL = Node->getOperand(2);
9608 SDLoc dl(Node);
9609 EVT VT = Node->getValueType(0);
9610
9611 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9612 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9613 DAG.getAllOnesConstant(dl, VT), Mask, VL);
9614 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9615 DAG.getConstant(1, dl, VT), Mask, VL);
9616 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9617 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9618}
9619
9621 SelectionDAG &DAG) const {
9622 // %cond = to_bool_vec %source
9623 // %splat = splat /*val=*/VL
9624 // %tz = step_vector
9625 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9626 // %r = vp.reduce.umin %v
9627 SDLoc DL(N);
9628 SDValue Source = N->getOperand(0);
9629 SDValue Mask = N->getOperand(1);
9630 SDValue EVL = N->getOperand(2);
9631 EVT SrcVT = Source.getValueType();
9632 EVT ResVT = N->getValueType(0);
9633 EVT ResVecVT =
9634 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9635
9636 // Convert to boolean vector.
9637 if (SrcVT.getScalarType() != MVT::i1) {
9638 SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9639 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9640 SrcVT.getVectorElementCount());
9641 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9642 DAG.getCondCode(ISD::SETNE), Mask, EVL);
9643 }
9644
9645 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9646 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9647 SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9648 SDValue Select =
9649 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9650 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9651}
9652
9654 SelectionDAG &DAG) const {
9655 SDLoc DL(N);
9656 SDValue Mask = N->getOperand(0);
9657 EVT MaskVT = Mask.getValueType();
9658 EVT BoolVT = MaskVT.getScalarType();
9659
9660 // Find a suitable type for a stepvector.
9661 ConstantRange VScaleRange(1, /*isFullSet=*/true); // Fixed length default.
9662 if (MaskVT.isScalableVector())
9663 VScaleRange = getVScaleRange(&DAG.getMachineFunction().getFunction(), 64);
9664 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9665 unsigned EltWidth = TLI.getBitWidthForCttzElements(
9666 BoolVT.getTypeForEVT(*DAG.getContext()), MaskVT.getVectorElementCount(),
9667 /*ZeroIsPoison=*/true, &VScaleRange);
9668 EVT StepVT = MVT::getIntegerVT(EltWidth);
9669 EVT StepVecVT = MaskVT.changeVectorElementType(*DAG.getContext(), StepVT);
9670
9671 // If promotion is required to make the type legal, do it here; promotion
9672 // of integers within LegalizeVectorOps is looking for types of the same
9673 // size but with a smaller number of larger elements, not the usual larger
9674 // size with the same number of larger elements.
9675 if (TLI.getTypeAction(StepVecVT.getSimpleVT()) ==
9677 StepVecVT = TLI.getTypeToTransformTo(*DAG.getContext(), StepVecVT);
9678 StepVT = StepVecVT.getVectorElementType();
9679 }
9680
9681 // Zero out lanes with inactive elements, then find the highest remaining
9682 // value from the stepvector.
9683 SDValue Zeroes = DAG.getConstant(0, DL, StepVecVT);
9684 SDValue StepVec = DAG.getStepVector(DL, StepVecVT);
9685 SDValue ActiveElts = DAG.getSelect(DL, StepVecVT, Mask, StepVec, Zeroes);
9686 SDValue HighestIdx = DAG.getNode(ISD::VECREDUCE_UMAX, DL, StepVT, ActiveElts);
9687 return DAG.getZExtOrTrunc(HighestIdx, DL, N->getValueType(0));
9688}
9689
9691 bool IsNegative) const {
9692 SDLoc dl(N);
9693 EVT VT = N->getValueType(0);
9694 SDValue Op = N->getOperand(0);
9695
9696 // abs(x) -> smax(x,sub(0,x))
9697 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9699 SDValue Zero = DAG.getConstant(0, dl, VT);
9700 Op = DAG.getFreeze(Op);
9701 return DAG.getNode(ISD::SMAX, dl, VT, Op,
9702 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9703 }
9704
9705 // abs(x) -> umin(x,sub(0,x))
9706 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9708 SDValue Zero = DAG.getConstant(0, dl, VT);
9709 Op = DAG.getFreeze(Op);
9710 return DAG.getNode(ISD::UMIN, dl, VT, Op,
9711 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9712 }
9713
9714 // 0 - abs(x) -> smin(x, sub(0,x))
9715 if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9717 SDValue Zero = DAG.getConstant(0, dl, VT);
9718 Op = DAG.getFreeze(Op);
9719 return DAG.getNode(ISD::SMIN, dl, VT, Op,
9720 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9721 }
9722
9723 // Only expand vector types if we have the appropriate vector operations.
9724 if (VT.isVector() &&
9726 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9727 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9729 return SDValue();
9730
9731 Op = DAG.getFreeze(Op);
9732 SDValue Shift = DAG.getNode(
9733 ISD::SRA, dl, VT, Op,
9734 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9735 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9736
9737 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9738 if (!IsNegative)
9739 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9740
9741 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9742 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9743}
9744
9746 SDLoc dl(N);
9747 EVT VT = N->getValueType(0);
9748 SDValue LHS = N->getOperand(0);
9749 SDValue RHS = N->getOperand(1);
9750 bool IsSigned = N->getOpcode() == ISD::ABDS;
9751
9752 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9753 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9754 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9755 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9756 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9757 LHS = DAG.getFreeze(LHS);
9758 RHS = DAG.getFreeze(RHS);
9759 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9760 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9761 return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9762 }
9763
9764 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9765 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) {
9766 LHS = DAG.getFreeze(LHS);
9767 RHS = DAG.getFreeze(RHS);
9768 return DAG.getNode(ISD::OR, dl, VT,
9769 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9770 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9771 }
9772
9773 // If the subtract doesn't overflow then just use abs(sub())
9774 bool IsNonNegative = DAG.SignBitIsZero(LHS) && DAG.SignBitIsZero(RHS);
9775
9776 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, LHS, RHS))
9777 return DAG.getNode(ISD::ABS, dl, VT,
9778 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9779
9780 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, RHS, LHS))
9781 return DAG.getNode(ISD::ABS, dl, VT,
9782 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9783
9784 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9786 LHS = DAG.getFreeze(LHS);
9787 RHS = DAG.getFreeze(RHS);
9788 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9789
9790 // Branchless expansion iff cmp result is allbits:
9791 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9792 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9793 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9794 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9795 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9796 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9797 }
9798
9799 // Similar to the branchless expansion, if we don't prefer selects, use the
9800 // (sign-extended) usubo overflow flag if the (scalar) type is illegal as this
9801 // is more likely to legalize cleanly: abdu(lhs, rhs) -> sub(xor(sub(lhs,
9802 // rhs), uof(lhs, rhs)), uof(lhs, rhs))
9803 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT) &&
9805 SDValue USubO =
9806 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9807 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9808 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9809 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9810 }
9811
9812 // FIXME: Should really try to split the vector in case it's legal on a
9813 // subvector.
9815 return DAG.UnrollVectorOp(N);
9816
9817 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9818 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9819 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9820 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9821}
9822
9824 SDLoc dl(N);
9825 EVT VT = N->getValueType(0);
9826 SDValue LHS = N->getOperand(0);
9827 SDValue RHS = N->getOperand(1);
9828
9829 unsigned Opc = N->getOpcode();
9830 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9831 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9832 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9833 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9834 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9835 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9837 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9838 "Unknown AVG node");
9839
9840 // If the operands are already extended, we can add+shift.
9841 bool IsExt =
9842 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9843 DAG.ComputeNumSignBits(RHS) >= 2) ||
9844 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9845 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9846 if (IsExt) {
9847 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9848 if (!IsFloor)
9849 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9850 return DAG.getNode(ShiftOpc, dl, VT, Sum,
9851 DAG.getShiftAmountConstant(1, VT, dl));
9852 }
9853
9854 // For scalars, see if we can efficiently extend/truncate to use add+shift.
9855 if (VT.isScalarInteger()) {
9856 unsigned BW = VT.getScalarSizeInBits();
9857 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9858 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9859 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9860 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9861 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9862 if (!IsFloor)
9863 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9864 DAG.getConstant(1, dl, ExtVT));
9865 // Just use SRL as we will be truncating away the extended sign bits.
9866 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9867 DAG.getShiftAmountConstant(1, ExtVT, dl));
9868 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9869 }
9870 }
9871
9872 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9873 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9874 SDValue UAddWithOverflow =
9875 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9876
9877 SDValue Sum = UAddWithOverflow.getValue(0);
9878 SDValue Overflow = UAddWithOverflow.getValue(1);
9879
9880 // Right shift the sum by 1
9881 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9882 DAG.getShiftAmountConstant(1, VT, dl));
9883
9884 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9885 SDValue OverflowShl = DAG.getNode(
9886 ISD::SHL, dl, VT, ZeroExtOverflow,
9887 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9888
9889 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9890 }
9891
9892 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9893 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9894 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9895 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9896 LHS = DAG.getFreeze(LHS);
9897 RHS = DAG.getFreeze(RHS);
9898 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9899 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9900 SDValue Shift =
9901 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9902 return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9903}
9904
9906 SDLoc dl(N);
9907 EVT VT = N->getValueType(0);
9908 SDValue Op = N->getOperand(0);
9909
9910 if (!VT.isSimple())
9911 return SDValue();
9912
9913 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9914 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9915 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9916 default:
9917 return SDValue();
9918 case MVT::i16:
9919 // Use a rotate by 8. This can be further expanded if necessary.
9920 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9921 case MVT::i32:
9922 // This is meant for ARM speficially, which has ROTR but no ROTL.
9924 SDValue Mask = DAG.getConstant(0x00FF00FF, dl, VT);
9925 // (x & 0x00FF00FF) rotr 8 | (x rotl 8) & 0x00FF00FF
9926 SDValue And = DAG.getNode(ISD::AND, dl, VT, Op, Mask);
9927 SDValue Rotr =
9928 DAG.getNode(ISD::ROTR, dl, VT, And, DAG.getConstant(8, dl, SHVT));
9929 SDValue Rotl =
9930 DAG.getNode(ISD::ROTR, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9931 SDValue And2 = DAG.getNode(ISD::AND, dl, VT, Rotl, Mask);
9932 return DAG.getNode(ISD::OR, dl, VT, Rotr, And2);
9933 }
9934 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9935 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9936 DAG.getConstant(0xFF00, dl, VT));
9937 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9938 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9939 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9940 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9941 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9942 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9943 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9944 case MVT::i64:
9945 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9946 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9947 DAG.getConstant(255ULL<<8, dl, VT));
9948 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9949 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9950 DAG.getConstant(255ULL<<16, dl, VT));
9951 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9952 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9953 DAG.getConstant(255ULL<<24, dl, VT));
9954 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9955 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9956 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9957 DAG.getConstant(255ULL<<24, dl, VT));
9958 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9959 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9960 DAG.getConstant(255ULL<<16, dl, VT));
9961 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9962 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9963 DAG.getConstant(255ULL<<8, dl, VT));
9964 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9965 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9966 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9967 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9968 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9969 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9970 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9971 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9972 }
9973}
9974
9976 SDLoc dl(N);
9977 EVT VT = N->getValueType(0);
9978 SDValue Op = N->getOperand(0);
9979 SDValue Mask = N->getOperand(1);
9980 SDValue EVL = N->getOperand(2);
9981
9982 if (!VT.isSimple())
9983 return SDValue();
9984
9985 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9986 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9987 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9988 default:
9989 return SDValue();
9990 case MVT::i16:
9991 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9992 Mask, EVL);
9993 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9994 Mask, EVL);
9995 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9996 case MVT::i32:
9997 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9998 Mask, EVL);
9999 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
10000 Mask, EVL);
10001 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
10002 Mask, EVL);
10003 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10004 Mask, EVL);
10005 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10006 DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
10007 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10008 Mask, EVL);
10009 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10010 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10011 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10012 case MVT::i64:
10013 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
10014 Mask, EVL);
10015 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10016 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
10017 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
10018 Mask, EVL);
10019 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10020 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
10021 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
10022 Mask, EVL);
10023 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10024 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
10025 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
10026 Mask, EVL);
10027 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10028 Mask, EVL);
10029 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
10030 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
10031 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10032 Mask, EVL);
10033 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
10034 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
10035 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
10036 Mask, EVL);
10037 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10038 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
10039 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
10040 Mask, EVL);
10041 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
10042 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
10043 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10044 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10045 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
10046 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10047 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
10048 }
10049}
10050
10052 SDLoc dl(N);
10053 EVT VT = N->getValueType(0);
10054 SDValue Op = N->getOperand(0);
10055 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10056 unsigned Sz = VT.getScalarSizeInBits();
10057
10058 SDValue Tmp, Tmp2, Tmp3;
10059
10060 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
10061 // and finally the i1 pairs.
10062 // TODO: We can easily support i4/i2 legal types if any target ever does.
10063 if (Sz >= 8 && isPowerOf2_32(Sz)) {
10064 // Create the masks - repeating the pattern every byte.
10065 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
10066 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
10067 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
10068
10069 // BSWAP if the type is wider than a single byte.
10070 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
10071
10072 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
10073 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
10074 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
10075 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
10076 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
10077 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10078
10079 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
10080 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
10081 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
10082 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
10083 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
10084 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10085
10086 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
10087 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
10088 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
10089 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
10090 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
10091 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10092 return Tmp;
10093 }
10094
10095 Tmp = DAG.getConstant(0, dl, VT);
10096 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
10097 if (I < J)
10098 Tmp2 =
10099 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
10100 else
10101 Tmp2 =
10102 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
10103
10104 APInt Shift = APInt::getOneBitSet(Sz, J);
10105 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
10106 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
10107 }
10108
10109 return Tmp;
10110}
10111
10113 assert(N->getOpcode() == ISD::VP_BITREVERSE);
10114
10115 SDLoc dl(N);
10116 EVT VT = N->getValueType(0);
10117 SDValue Op = N->getOperand(0);
10118 SDValue Mask = N->getOperand(1);
10119 SDValue EVL = N->getOperand(2);
10120 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10121 unsigned Sz = VT.getScalarSizeInBits();
10122
10123 SDValue Tmp, Tmp2, Tmp3;
10124
10125 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
10126 // and finally the i1 pairs.
10127 // TODO: We can easily support i4/i2 legal types if any target ever does.
10128 if (Sz >= 8 && isPowerOf2_32(Sz)) {
10129 // Create the masks - repeating the pattern every byte.
10130 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
10131 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
10132 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
10133
10134 // BSWAP if the type is wider than a single byte.
10135 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
10136
10137 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
10138 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
10139 Mask, EVL);
10140 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10141 DAG.getConstant(Mask4, dl, VT), Mask, EVL);
10142 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
10143 Mask, EVL);
10144 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
10145 Mask, EVL);
10146 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10147
10148 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
10149 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
10150 Mask, EVL);
10151 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10152 DAG.getConstant(Mask2, dl, VT), Mask, EVL);
10153 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
10154 Mask, EVL);
10155 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
10156 Mask, EVL);
10157 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10158
10159 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
10160 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
10161 Mask, EVL);
10162 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10163 DAG.getConstant(Mask1, dl, VT), Mask, EVL);
10164 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
10165 Mask, EVL);
10166 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
10167 Mask, EVL);
10168 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10169 return Tmp;
10170 }
10171 return SDValue();
10172}
10173
10174std::pair<SDValue, SDValue>
10176 SelectionDAG &DAG) const {
10177 SDLoc SL(LD);
10178 SDValue Chain = LD->getChain();
10179 SDValue BasePTR = LD->getBasePtr();
10180 EVT SrcVT = LD->getMemoryVT();
10181 EVT DstVT = LD->getValueType(0);
10182 ISD::LoadExtType ExtType = LD->getExtensionType();
10183
10184 if (SrcVT.isScalableVector())
10185 report_fatal_error("Cannot scalarize scalable vector loads");
10186
10187 unsigned NumElem = SrcVT.getVectorNumElements();
10188
10189 EVT SrcEltVT = SrcVT.getScalarType();
10190 EVT DstEltVT = DstVT.getScalarType();
10191
10192 // A vector must always be stored in memory as-is, i.e. without any padding
10193 // between the elements, since various code depend on it, e.g. in the
10194 // handling of a bitcast of a vector type to int, which may be done with a
10195 // vector store followed by an integer load. A vector that does not have
10196 // elements that are byte-sized must therefore be stored as an integer
10197 // built out of the extracted vector elements.
10198 if (!SrcEltVT.isByteSized()) {
10199 unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
10200 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
10201
10202 unsigned NumSrcBits = SrcVT.getSizeInBits();
10203 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
10204
10205 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
10206 SDValue SrcEltBitMask = DAG.getConstant(
10207 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
10208
10209 // Load the whole vector and avoid masking off the top bits as it makes
10210 // the codegen worse.
10211 SDValue Load =
10212 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
10213 LD->getPointerInfo(), SrcIntVT, LD->getBaseAlign(),
10214 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10215
10217 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10218 unsigned ShiftIntoIdx =
10219 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10220 SDValue ShiftAmount = DAG.getShiftAmountConstant(
10221 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
10222 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
10223 SDValue Elt =
10224 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
10225 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
10226
10227 if (ExtType != ISD::NON_EXTLOAD) {
10228 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
10229 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
10230 }
10231
10232 Vals.push_back(Scalar);
10233 }
10234
10235 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10236 return std::make_pair(Value, Load.getValue(1));
10237 }
10238
10239 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
10240 assert(SrcEltVT.isByteSized());
10241
10243 SmallVector<SDValue, 8> LoadChains;
10244
10245 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10246 SDValue ScalarLoad = DAG.getExtLoad(
10247 ExtType, SL, DstEltVT, Chain, BasePTR,
10248 LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT,
10249 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10250
10251 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
10252
10253 Vals.push_back(ScalarLoad.getValue(0));
10254 LoadChains.push_back(ScalarLoad.getValue(1));
10255 }
10256
10257 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
10258 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10259
10260 return std::make_pair(Value, NewChain);
10261}
10262
10264 SelectionDAG &DAG) const {
10265 SDLoc SL(ST);
10266
10267 SDValue Chain = ST->getChain();
10268 SDValue BasePtr = ST->getBasePtr();
10269 SDValue Value = ST->getValue();
10270 EVT StVT = ST->getMemoryVT();
10271
10272 if (StVT.isScalableVector())
10273 report_fatal_error("Cannot scalarize scalable vector stores");
10274
10275 // The type of the data we want to save
10276 EVT RegVT = Value.getValueType();
10277 EVT RegSclVT = RegVT.getScalarType();
10278
10279 // The type of data as saved in memory.
10280 EVT MemSclVT = StVT.getScalarType();
10281
10282 unsigned NumElem = StVT.getVectorNumElements();
10283
10284 // A vector must always be stored in memory as-is, i.e. without any padding
10285 // between the elements, since various code depend on it, e.g. in the
10286 // handling of a bitcast of a vector type to int, which may be done with a
10287 // vector store followed by an integer load. A vector that does not have
10288 // elements that are byte-sized must therefore be stored as an integer
10289 // built out of the extracted vector elements.
10290 if (!MemSclVT.isByteSized()) {
10291 unsigned NumBits = StVT.getSizeInBits();
10292 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
10293
10294 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
10295
10296 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10297 SDValue Elt = DAG.getExtractVectorElt(SL, RegSclVT, Value, Idx);
10298 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10299 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10300 unsigned ShiftIntoIdx =
10301 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10302 SDValue ShiftAmount =
10303 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10304 SDValue ShiftedElt =
10305 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10306 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10307 }
10308
10309 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10310 ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10311 ST->getAAInfo());
10312 }
10313
10314 // Store Stride in bytes
10315 unsigned Stride = MemSclVT.getSizeInBits() / 8;
10316 assert(Stride && "Zero stride!");
10317 // Extract each of the elements from the original vector and save them into
10318 // memory individually.
10320 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10321 SDValue Elt = DAG.getExtractVectorElt(SL, RegSclVT, Value, Idx);
10322
10323 SDValue Ptr =
10324 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10325
10326 // This scalar TruncStore may be illegal, but we legalize it later.
10327 SDValue Store = DAG.getTruncStore(
10328 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10329 MemSclVT, ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10330 ST->getAAInfo());
10331
10332 Stores.push_back(Store);
10333 }
10334
10335 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10336}
10337
10338std::pair<SDValue, SDValue>
10340 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10341 "unaligned indexed loads not implemented!");
10342 SDValue Chain = LD->getChain();
10343 SDValue Ptr = LD->getBasePtr();
10344 EVT VT = LD->getValueType(0);
10345 EVT LoadedVT = LD->getMemoryVT();
10346 SDLoc dl(LD);
10347 auto &MF = DAG.getMachineFunction();
10348
10349 if (VT.isFloatingPoint() || VT.isVector()) {
10350 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10351 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10352 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10353 LoadedVT.isVector()) {
10354 // Scalarize the load and let the individual components be handled.
10355 return scalarizeVectorLoad(LD, DAG);
10356 }
10357
10358 // Expand to a (misaligned) integer load of the same size,
10359 // then bitconvert to floating point or vector.
10360 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10361 LD->getMemOperand());
10362 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10363 if (LoadedVT != VT)
10364 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10365 ISD::ANY_EXTEND, dl, VT, Result);
10366
10367 return std::make_pair(Result, newLoad.getValue(1));
10368 }
10369
10370 // Copy the value to a (aligned) stack slot using (unaligned) integer
10371 // loads and stores, then do a (aligned) load from the stack slot.
10372 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10373 unsigned LoadedBytes = LoadedVT.getStoreSize();
10374 unsigned RegBytes = RegVT.getSizeInBits() / 8;
10375 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10376
10377 // Make sure the stack slot is also aligned for the register type.
10378 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10379 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10381 SDValue StackPtr = StackBase;
10382 unsigned Offset = 0;
10383
10384 EVT PtrVT = Ptr.getValueType();
10385 EVT StackPtrVT = StackPtr.getValueType();
10386
10387 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10388 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10389
10390 // Do all but one copies using the full register width.
10391 for (unsigned i = 1; i < NumRegs; i++) {
10392 // Load one integer register's worth from the original location.
10393 SDValue Load = DAG.getLoad(
10394 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10395 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10396 // Follow the load with a store to the stack slot. Remember the store.
10397 Stores.push_back(DAG.getStore(
10398 Load.getValue(1), dl, Load, StackPtr,
10399 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10400 // Increment the pointers.
10401 Offset += RegBytes;
10402
10403 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10404 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10405 }
10406
10407 // The last copy may be partial. Do an extending load.
10408 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10409 8 * (LoadedBytes - Offset));
10410 SDValue Load = DAG.getExtLoad(
10411 ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10412 LD->getPointerInfo().getWithOffset(Offset), MemVT, LD->getBaseAlign(),
10413 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10414 // Follow the load with a store to the stack slot. Remember the store.
10415 // On big-endian machines this requires a truncating store to ensure
10416 // that the bits end up in the right place.
10417 Stores.push_back(DAG.getTruncStore(
10418 Load.getValue(1), dl, Load, StackPtr,
10419 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10420
10421 // The order of the stores doesn't matter - say it with a TokenFactor.
10422 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10423
10424 // Finally, perform the original load only redirected to the stack slot.
10425 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10426 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10427 LoadedVT);
10428
10429 // Callers expect a MERGE_VALUES node.
10430 return std::make_pair(Load, TF);
10431 }
10432
10433 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10434 "Unaligned load of unsupported type.");
10435
10436 // Compute the new VT that is half the size of the old one. This is an
10437 // integer MVT.
10438 unsigned NumBits = LoadedVT.getSizeInBits();
10439 EVT NewLoadedVT;
10440 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10441 NumBits >>= 1;
10442
10443 Align Alignment = LD->getBaseAlign();
10444 unsigned IncrementSize = NumBits / 8;
10445 ISD::LoadExtType HiExtType = LD->getExtensionType();
10446
10447 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10448 if (HiExtType == ISD::NON_EXTLOAD)
10449 HiExtType = ISD::ZEXTLOAD;
10450
10451 // Load the value in two parts
10452 SDValue Lo, Hi;
10453 if (DAG.getDataLayout().isLittleEndian()) {
10454 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10455 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10456 LD->getAAInfo());
10457
10458 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10459 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10460 LD->getPointerInfo().getWithOffset(IncrementSize),
10461 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10462 LD->getAAInfo());
10463 } else {
10464 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10465 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10466 LD->getAAInfo());
10467
10468 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10469 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10470 LD->getPointerInfo().getWithOffset(IncrementSize),
10471 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10472 LD->getAAInfo());
10473 }
10474
10475 // aggregate the two parts
10476 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10477 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10478 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10479
10480 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10481 Hi.getValue(1));
10482
10483 return std::make_pair(Result, TF);
10484}
10485
10487 SelectionDAG &DAG) const {
10488 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10489 "unaligned indexed stores not implemented!");
10490 SDValue Chain = ST->getChain();
10491 SDValue Ptr = ST->getBasePtr();
10492 SDValue Val = ST->getValue();
10493 EVT VT = Val.getValueType();
10494 Align Alignment = ST->getBaseAlign();
10495 auto &MF = DAG.getMachineFunction();
10496 EVT StoreMemVT = ST->getMemoryVT();
10497
10498 SDLoc dl(ST);
10499 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10500 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10501 if (isTypeLegal(intVT)) {
10502 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10503 StoreMemVT.isVector()) {
10504 // Scalarize the store and let the individual components be handled.
10505 SDValue Result = scalarizeVectorStore(ST, DAG);
10506 return Result;
10507 }
10508 // Expand to a bitconvert of the value to the integer type of the
10509 // same size, then a (misaligned) int store.
10510 // FIXME: Does not handle truncating floating point stores!
10511 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10512 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10513 Alignment, ST->getMemOperand()->getFlags());
10514 return Result;
10515 }
10516 // Do a (aligned) store to a stack slot, then copy from the stack slot
10517 // to the final destination using (unaligned) integer loads and stores.
10518 MVT RegVT = getRegisterType(
10519 *DAG.getContext(),
10520 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10521 EVT PtrVT = Ptr.getValueType();
10522 unsigned StoredBytes = StoreMemVT.getStoreSize();
10523 unsigned RegBytes = RegVT.getSizeInBits() / 8;
10524 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10525
10526 // Make sure the stack slot is also aligned for the register type.
10527 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10528 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10529
10530 // Perform the original store, only redirected to the stack slot.
10531 SDValue Store = DAG.getTruncStore(
10532 Chain, dl, Val, StackPtr,
10533 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10534
10535 EVT StackPtrVT = StackPtr.getValueType();
10536
10537 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10538 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10540 unsigned Offset = 0;
10541
10542 // Do all but one copies using the full register width.
10543 for (unsigned i = 1; i < NumRegs; i++) {
10544 // Load one integer register's worth from the stack slot.
10545 SDValue Load = DAG.getLoad(
10546 RegVT, dl, Store, StackPtr,
10547 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10548 // Store it to the final location. Remember the store.
10549 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10550 ST->getPointerInfo().getWithOffset(Offset),
10551 ST->getBaseAlign(),
10552 ST->getMemOperand()->getFlags()));
10553 // Increment the pointers.
10554 Offset += RegBytes;
10555 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10556 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10557 }
10558
10559 // The last store may be partial. Do a truncating store. On big-endian
10560 // machines this requires an extending load from the stack slot to ensure
10561 // that the bits are in the right place.
10562 EVT LoadMemVT =
10563 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10564
10565 // Load from the stack slot.
10566 SDValue Load = DAG.getExtLoad(
10567 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10568 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10569
10570 Stores.push_back(DAG.getTruncStore(
10571 Load.getValue(1), dl, Load, Ptr,
10572 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10573 ST->getBaseAlign(), ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10574 // The order of the stores doesn't matter - say it with a TokenFactor.
10575 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10576 return Result;
10577 }
10578
10579 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10580 "Unaligned store of unknown type.");
10581 // Get the half-size VT
10582 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10583 unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10584 unsigned IncrementSize = NumBits / 8;
10585
10586 // Divide the stored value in two parts.
10587 SDValue ShiftAmount =
10588 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10589 SDValue Lo = Val;
10590 // If Val is a constant, replace the upper bits with 0. The SRL will constant
10591 // fold and not use the upper bits. A smaller constant may be easier to
10592 // materialize.
10593 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10594 Lo = DAG.getNode(
10595 ISD::AND, dl, VT, Lo,
10596 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10597 VT));
10598 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10599
10600 // Store the two parts
10601 SDValue Store1, Store2;
10602 Store1 = DAG.getTruncStore(Chain, dl,
10603 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10604 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10605 ST->getMemOperand()->getFlags());
10606
10607 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10608 Store2 = DAG.getTruncStore(
10609 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10610 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10611 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10612
10613 SDValue Result =
10614 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10615 return Result;
10616}
10617
10618SDValue
10620 const SDLoc &DL, EVT DataVT,
10621 SelectionDAG &DAG,
10622 bool IsCompressedMemory) const {
10624 EVT AddrVT = Addr.getValueType();
10625 EVT MaskVT = Mask.getValueType();
10626 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10627 "Incompatible types of Data and Mask");
10628 if (IsCompressedMemory) {
10629 // Incrementing the pointer according to number of '1's in the mask.
10630 if (DataVT.isScalableVector()) {
10631 EVT MaskExtVT = MaskVT.changeElementType(*DAG.getContext(), MVT::i32);
10632 SDValue MaskExt = DAG.getNode(ISD::ZERO_EXTEND, DL, MaskExtVT, Mask);
10633 Increment = DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i32, MaskExt);
10634 } else {
10635 EVT MaskIntVT =
10636 EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10637 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10638 if (MaskIntVT.getSizeInBits() < 32) {
10639 MaskInIntReg =
10640 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10641 MaskIntVT = MVT::i32;
10642 }
10643 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10644 }
10645 // Scale is an element size in bytes.
10646 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10647 AddrVT);
10648 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10649 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10650 } else
10651 Increment = DAG.getTypeSize(DL, AddrVT, DataVT.getStoreSize());
10652
10653 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10654}
10655
10657 EVT VecVT, const SDLoc &dl,
10658 ElementCount SubEC) {
10659 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10660 "Cannot index a scalable vector within a fixed-width vector");
10661
10662 unsigned NElts = VecVT.getVectorMinNumElements();
10663 unsigned NumSubElts = SubEC.getKnownMinValue();
10664 EVT IdxVT = Idx.getValueType();
10665
10666 if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10667 // If this is a constant index and we know the value plus the number of the
10668 // elements in the subvector minus one is less than the minimum number of
10669 // elements then it's safe to return Idx.
10670 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10671 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10672 return Idx;
10673 SDValue VS =
10674 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10675 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10676 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10677 DAG.getConstant(NumSubElts, dl, IdxVT));
10678 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10679 }
10680 if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10681 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10682 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10683 DAG.getConstant(Imm, dl, IdxVT));
10684 }
10685 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10686 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10687 DAG.getConstant(MaxIndex, dl, IdxVT));
10688}
10689
10690SDValue
10692 EVT VecVT, SDValue Index,
10693 const SDNodeFlags PtrArithFlags) const {
10695 DAG, VecPtr, VecVT,
10697 Index, PtrArithFlags);
10698}
10699
10700SDValue
10702 EVT VecVT, EVT SubVecVT, SDValue Index,
10703 const SDNodeFlags PtrArithFlags) const {
10704 SDLoc dl(Index);
10705 // Make sure the index type is big enough to compute in.
10706 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10707
10708 EVT EltVT = VecVT.getVectorElementType();
10709
10710 // Calculate the element offset and add it to the pointer.
10711 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10712 assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10713 "Converting bits to bytes lost precision");
10714 assert(SubVecVT.getVectorElementType() == EltVT &&
10715 "Sub-vector must be a vector with matching element type");
10716 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10717 SubVecVT.getVectorElementCount());
10718
10719 EVT IdxVT = Index.getValueType();
10720 if (SubVecVT.isScalableVector())
10721 Index =
10722 DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10723 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10724
10725 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10726 DAG.getConstant(EltSize, dl, IdxVT));
10727 return DAG.getMemBasePlusOffset(VecPtr, Index, dl, PtrArithFlags);
10728}
10729
10730//===----------------------------------------------------------------------===//
10731// Implementation of Emulated TLS Model
10732//===----------------------------------------------------------------------===//
10733
10735 SelectionDAG &DAG) const {
10736 // Access to address of TLS varialbe xyz is lowered to a function call:
10737 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10738 EVT PtrVT = getPointerTy(DAG.getDataLayout());
10739 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10740 SDLoc dl(GA);
10741
10742 ArgListTy Args;
10743 const GlobalValue *GV =
10745 SmallString<32> NameString("__emutls_v.");
10746 NameString += GV->getName();
10747 StringRef EmuTlsVarName(NameString);
10748 const GlobalVariable *EmuTlsVar =
10749 GV->getParent()->getNamedGlobal(EmuTlsVarName);
10750 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10751 Args.emplace_back(DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT), VoidPtrType);
10752
10753 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10754
10756 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10757 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10758 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10759
10760 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10761 // At last for X86 targets, maybe good for other targets too?
10763 MFI.setAdjustsStack(true); // Is this only for X86 target?
10764 MFI.setHasCalls(true);
10765
10766 assert((GA->getOffset() == 0) &&
10767 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10768 return CallResult.first;
10769}
10770
10772 SelectionDAG &DAG) const {
10773 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10774 if (!isCtlzFast())
10775 return SDValue();
10776 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10777 SDLoc dl(Op);
10778 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10779 EVT VT = Op.getOperand(0).getValueType();
10780 SDValue Zext = Op.getOperand(0);
10781 if (VT.bitsLT(MVT::i32)) {
10782 VT = MVT::i32;
10783 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10784 }
10785 unsigned Log2b = Log2_32(VT.getSizeInBits());
10786 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10787 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10788 DAG.getConstant(Log2b, dl, MVT::i32));
10789 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10790 }
10791 return SDValue();
10792}
10793
10795 SDValue Op0 = Node->getOperand(0);
10796 SDValue Op1 = Node->getOperand(1);
10797 EVT VT = Op0.getValueType();
10798 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10799 unsigned Opcode = Node->getOpcode();
10800 SDLoc DL(Node);
10801
10802 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10803 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10805 Op0 = DAG.getFreeze(Op0);
10806 SDValue Zero = DAG.getConstant(0, DL, VT);
10807 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10808 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10809 }
10810
10811 // umin(x,y) -> sub(x,usubsat(x,y))
10812 // TODO: Missing freeze(Op0)?
10813 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10815 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10816 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10817 }
10818
10819 // umax(x,y) -> add(x,usubsat(y,x))
10820 // TODO: Missing freeze(Op0)?
10821 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10823 return DAG.getNode(ISD::ADD, DL, VT, Op0,
10824 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10825 }
10826
10827 // FIXME: Should really try to split the vector in case it's legal on a
10828 // subvector.
10830 return DAG.UnrollVectorOp(Node);
10831
10832 // Attempt to find an existing SETCC node that we can reuse.
10833 // TODO: Do we need a generic doesSETCCNodeExist?
10834 // TODO: Missing freeze(Op0)/freeze(Op1)?
10835 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10836 ISD::CondCode PrefCommuteCC,
10837 ISD::CondCode AltCommuteCC) {
10838 SDVTList BoolVTList = DAG.getVTList(BoolVT);
10839 for (ISD::CondCode CC : {PrefCC, AltCC}) {
10840 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10841 {Op0, Op1, DAG.getCondCode(CC)})) {
10842 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10843 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10844 }
10845 }
10846 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10847 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10848 {Op0, Op1, DAG.getCondCode(CC)})) {
10849 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10850 return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10851 }
10852 }
10853 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10854 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10855 };
10856
10857 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10858 // -> Y = (A < B) ? B : A
10859 // -> Y = (A >= B) ? A : B
10860 // -> Y = (A <= B) ? B : A
10861 switch (Opcode) {
10862 case ISD::SMAX:
10863 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10864 case ISD::SMIN:
10865 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10866 case ISD::UMAX:
10867 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10868 case ISD::UMIN:
10869 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10870 }
10871
10872 llvm_unreachable("How did we get here?");
10873}
10874
10876 unsigned Opcode = Node->getOpcode();
10877 SDValue LHS = Node->getOperand(0);
10878 SDValue RHS = Node->getOperand(1);
10879 EVT VT = LHS.getValueType();
10880 SDLoc dl(Node);
10881
10882 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10883 assert(VT.isInteger() && "Expected operands to be integers");
10884
10885 // usub.sat(a, b) -> umax(a, b) - b
10886 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10887 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10888 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10889 }
10890
10891 // usub.sat(a, 1) -> sub(a, zext(a != 0))
10892 if (Opcode == ISD::USUBSAT && isOneOrOneSplat(RHS)) {
10893 LHS = DAG.getFreeze(LHS);
10894 SDValue Zero = DAG.getConstant(0, dl, VT);
10895 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10896 SDValue IsNonZero = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETNE);
10897 SDValue Subtrahend = DAG.getBoolExtOrTrunc(IsNonZero, dl, VT, BoolVT);
10898 Subtrahend =
10899 DAG.getNode(ISD::AND, dl, VT, Subtrahend, DAG.getConstant(1, dl, VT));
10900 return DAG.getNode(ISD::SUB, dl, VT, LHS, Subtrahend);
10901 }
10902
10903 // uadd.sat(a, b) -> umin(a, ~b) + b
10904 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10905 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10906 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10907 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10908 }
10909
10910 unsigned OverflowOp;
10911 switch (Opcode) {
10912 case ISD::SADDSAT:
10913 OverflowOp = ISD::SADDO;
10914 break;
10915 case ISD::UADDSAT:
10916 OverflowOp = ISD::UADDO;
10917 break;
10918 case ISD::SSUBSAT:
10919 OverflowOp = ISD::SSUBO;
10920 break;
10921 case ISD::USUBSAT:
10922 OverflowOp = ISD::USUBO;
10923 break;
10924 default:
10925 llvm_unreachable("Expected method to receive signed or unsigned saturation "
10926 "addition or subtraction node.");
10927 }
10928
10929 // FIXME: Should really try to split the vector in case it's legal on a
10930 // subvector.
10932 return DAG.UnrollVectorOp(Node);
10933
10934 unsigned BitWidth = LHS.getScalarValueSizeInBits();
10935 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10936 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10937 SDValue SumDiff = Result.getValue(0);
10938 SDValue Overflow = Result.getValue(1);
10939 SDValue Zero = DAG.getConstant(0, dl, VT);
10940 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10941
10942 if (Opcode == ISD::UADDSAT) {
10944 // (LHS + RHS) | OverflowMask
10945 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10946 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10947 }
10948 // Overflow ? 0xffff.... : (LHS + RHS)
10949 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10950 }
10951
10952 if (Opcode == ISD::USUBSAT) {
10954 // (LHS - RHS) & ~OverflowMask
10955 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10956 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10957 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10958 }
10959 // Overflow ? 0 : (LHS - RHS)
10960 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10961 }
10962
10963 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10966
10967 KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10968 KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10969
10970 // If either of the operand signs are known, then they are guaranteed to
10971 // only saturate in one direction. If non-negative they will saturate
10972 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10973 //
10974 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10975 // sign of 'y' has to be flipped.
10976
10977 bool LHSIsNonNegative = KnownLHS.isNonNegative();
10978 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10979 : KnownRHS.isNegative();
10980 if (LHSIsNonNegative || RHSIsNonNegative) {
10981 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10982 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10983 }
10984
10985 bool LHSIsNegative = KnownLHS.isNegative();
10986 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10987 : KnownRHS.isNonNegative();
10988 if (LHSIsNegative || RHSIsNegative) {
10989 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10990 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10991 }
10992 }
10993
10994 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10996 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10997 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10998 DAG.getConstant(BitWidth - 1, dl, VT));
10999 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
11000 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
11001}
11002
11004 unsigned Opcode = Node->getOpcode();
11005 SDValue LHS = Node->getOperand(0);
11006 SDValue RHS = Node->getOperand(1);
11007 EVT VT = LHS.getValueType();
11008 EVT ResVT = Node->getValueType(0);
11009 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11010 SDLoc dl(Node);
11011
11012 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
11013 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
11014 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
11015 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
11016
11017 // We can't perform arithmetic on i1 values. Extending them would
11018 // probably result in worse codegen, so let's just use two selects instead.
11019 // Some targets are also just better off using selects rather than subtraction
11020 // because one of the conditions can be merged with one of the selects.
11021 // And finally, if we don't know the contents of high bits of a boolean value
11022 // we can't perform any arithmetic either.
11024 BoolVT.getScalarSizeInBits() == 1 ||
11026 SDValue SelectZeroOrOne =
11027 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
11028 DAG.getConstant(0, dl, ResVT));
11029 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
11030 SelectZeroOrOne);
11031 }
11032
11034 std::swap(IsGT, IsLT);
11035 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
11036 ResVT);
11037}
11038
11040 unsigned Opcode = Node->getOpcode();
11041 bool IsSigned = Opcode == ISD::SSHLSAT;
11042 SDValue LHS = Node->getOperand(0);
11043 SDValue RHS = Node->getOperand(1);
11044 EVT VT = LHS.getValueType();
11045 SDLoc dl(Node);
11046
11047 assert((Node->getOpcode() == ISD::SSHLSAT ||
11048 Node->getOpcode() == ISD::USHLSAT) &&
11049 "Expected a SHLSAT opcode");
11050 assert(VT.isInteger() && "Expected operands to be integers");
11051
11053 return DAG.UnrollVectorOp(Node);
11054
11055 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
11056
11057 unsigned BW = VT.getScalarSizeInBits();
11058 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11059 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
11060 SDValue Orig =
11061 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
11062
11063 SDValue SatVal;
11064 if (IsSigned) {
11065 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
11066 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
11067 SDValue Cond =
11068 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
11069 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
11070 } else {
11071 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
11072 }
11073 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
11074 return DAG.getSelect(dl, VT, Cond, SatVal, Result);
11075}
11076
11078 bool Signed, SDValue &Lo, SDValue &Hi,
11079 SDValue LHS, SDValue RHS,
11080 SDValue HiLHS, SDValue HiRHS) const {
11081 EVT VT = LHS.getValueType();
11082 assert(RHS.getValueType() == VT && "Mismatching operand types");
11083
11084 assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS));
11085 assert((!Signed || !HiLHS) &&
11086 "Signed flag should only be set when HiLHS and RiRHS are null");
11087
11088 // We'll expand the multiplication by brute force because we have no other
11089 // options. This is a trivially-generalized version of the code from
11090 // Hacker's Delight (itself derived from Knuth's Algorithm M from section
11091 // 4.3.1). If Signed is set, we can use arithmetic right shifts to propagate
11092 // sign bits while calculating the Hi half.
11093 unsigned Bits = VT.getSizeInBits();
11094 unsigned HalfBits = Bits / 2;
11095 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
11096 SDValue LL = DAG.getNode(ISD::AND, dl, VT, LHS, Mask);
11097 SDValue RL = DAG.getNode(ISD::AND, dl, VT, RHS, Mask);
11098
11099 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LL, RL);
11100 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
11101
11102 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
11103 // This is always an unsigned shift.
11104 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
11105
11106 unsigned ShiftOpc = Signed ? ISD::SRA : ISD::SRL;
11107 SDValue LH = DAG.getNode(ShiftOpc, dl, VT, LHS, Shift);
11108 SDValue RH = DAG.getNode(ShiftOpc, dl, VT, RHS, Shift);
11109
11110 SDValue U =
11111 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LH, RL), TH);
11112 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
11113 SDValue UH = DAG.getNode(ShiftOpc, dl, VT, U, Shift);
11114
11115 SDValue V =
11116 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LL, RH), UL);
11117 SDValue VH = DAG.getNode(ShiftOpc, dl, VT, V, Shift);
11118
11119 Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
11120 DAG.getNode(ISD::SHL, dl, VT, V, Shift));
11121
11122 Hi = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LH, RH),
11123 DAG.getNode(ISD::ADD, dl, VT, UH, VH));
11124
11125 // If HiLHS and HiRHS are set, multiply them by the opposite low part and add
11126 // the products to Hi.
11127 if (HiLHS) {
11128 Hi = DAG.getNode(ISD::ADD, dl, VT, Hi,
11129 DAG.getNode(ISD::ADD, dl, VT,
11130 DAG.getNode(ISD::MUL, dl, VT, HiRHS, LHS),
11131 DAG.getNode(ISD::MUL, dl, VT, RHS, HiLHS)));
11132 }
11133}
11134
11136 bool Signed, const SDValue LHS,
11137 const SDValue RHS, SDValue &Lo,
11138 SDValue &Hi) const {
11139 EVT VT = LHS.getValueType();
11140 assert(RHS.getValueType() == VT && "Mismatching operand types");
11141 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
11142 // We can fall back to a libcall with an illegal type for the MUL if we
11143 // have a libcall big enough.
11144 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
11145 if (WideVT == MVT::i16)
11146 LC = RTLIB::MUL_I16;
11147 else if (WideVT == MVT::i32)
11148 LC = RTLIB::MUL_I32;
11149 else if (WideVT == MVT::i64)
11150 LC = RTLIB::MUL_I64;
11151 else if (WideVT == MVT::i128)
11152 LC = RTLIB::MUL_I128;
11153
11154 RTLIB::LibcallImpl LibcallImpl = getLibcallImpl(LC);
11155 if (LibcallImpl == RTLIB::Unsupported) {
11156 forceExpandMultiply(DAG, dl, Signed, Lo, Hi, LHS, RHS);
11157 return;
11158 }
11159
11160 SDValue HiLHS, HiRHS;
11161 if (Signed) {
11162 // The high part is obtained by SRA'ing all but one of the bits of low
11163 // part.
11164 unsigned LoSize = VT.getFixedSizeInBits();
11165 SDValue Shift = DAG.getShiftAmountConstant(LoSize - 1, VT, dl);
11166 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, Shift);
11167 HiRHS = DAG.getNode(ISD::SRA, dl, VT, RHS, Shift);
11168 } else {
11169 HiLHS = DAG.getConstant(0, dl, VT);
11170 HiRHS = DAG.getConstant(0, dl, VT);
11171 }
11172
11173 // Attempt a libcall.
11174 SDValue Ret;
11176 CallOptions.setIsSigned(Signed);
11177 CallOptions.setIsPostTypeLegalization(true);
11179 // Halves of WideVT are packed into registers in different order
11180 // depending on platform endianness. This is usually handled by
11181 // the C calling convention, but we can't defer to it in
11182 // the legalizer.
11183 SDValue Args[] = {LHS, HiLHS, RHS, HiRHS};
11184 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11185 } else {
11186 SDValue Args[] = {HiLHS, LHS, HiRHS, RHS};
11187 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11188 }
11190 "Ret value is a collection of constituent nodes holding result.");
11191 if (DAG.getDataLayout().isLittleEndian()) {
11192 // Same as above.
11193 Lo = Ret.getOperand(0);
11194 Hi = Ret.getOperand(1);
11195 } else {
11196 Lo = Ret.getOperand(1);
11197 Hi = Ret.getOperand(0);
11198 }
11199}
11200
11201SDValue
11203 assert((Node->getOpcode() == ISD::SMULFIX ||
11204 Node->getOpcode() == ISD::UMULFIX ||
11205 Node->getOpcode() == ISD::SMULFIXSAT ||
11206 Node->getOpcode() == ISD::UMULFIXSAT) &&
11207 "Expected a fixed point multiplication opcode");
11208
11209 SDLoc dl(Node);
11210 SDValue LHS = Node->getOperand(0);
11211 SDValue RHS = Node->getOperand(1);
11212 EVT VT = LHS.getValueType();
11213 unsigned Scale = Node->getConstantOperandVal(2);
11214 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
11215 Node->getOpcode() == ISD::UMULFIXSAT);
11216 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
11217 Node->getOpcode() == ISD::SMULFIXSAT);
11218 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11219 unsigned VTSize = VT.getScalarSizeInBits();
11220
11221 if (!Scale) {
11222 // [us]mul.fix(a, b, 0) -> mul(a, b)
11223 if (!Saturating) {
11225 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11226 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
11227 SDValue Result =
11228 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11229 SDValue Product = Result.getValue(0);
11230 SDValue Overflow = Result.getValue(1);
11231 SDValue Zero = DAG.getConstant(0, dl, VT);
11232
11233 APInt MinVal = APInt::getSignedMinValue(VTSize);
11234 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
11235 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
11236 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11237 // Xor the inputs, if resulting sign bit is 0 the product will be
11238 // positive, else negative.
11239 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
11240 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
11241 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
11242 return DAG.getSelect(dl, VT, Overflow, Result, Product);
11243 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
11244 SDValue Result =
11245 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11246 SDValue Product = Result.getValue(0);
11247 SDValue Overflow = Result.getValue(1);
11248
11249 APInt MaxVal = APInt::getMaxValue(VTSize);
11250 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11251 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
11252 }
11253 }
11254
11255 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
11256 "Expected scale to be less than the number of bits if signed or at "
11257 "most the number of bits if unsigned.");
11258 assert(LHS.getValueType() == RHS.getValueType() &&
11259 "Expected both operands to be the same type");
11260
11261 // Get the upper and lower bits of the result.
11262 SDValue Lo, Hi;
11263 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
11264 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
11265 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
11266 if (VT.isVector())
11267 WideVT =
11269 if (isOperationLegalOrCustom(LoHiOp, VT)) {
11270 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
11271 Lo = Result.getValue(0);
11272 Hi = Result.getValue(1);
11273 } else if (isOperationLegalOrCustom(HiOp, VT)) {
11274 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11275 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
11276 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
11277 // Try for a multiplication using a wider type.
11278 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
11279 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
11280 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
11281 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
11282 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
11283 SDValue Shifted =
11284 DAG.getNode(ISD::SRA, dl, WideVT, Res,
11285 DAG.getShiftAmountConstant(VTSize, WideVT, dl));
11286 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
11287 } else if (VT.isVector()) {
11288 return SDValue();
11289 } else {
11290 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
11291 }
11292
11293 if (Scale == VTSize)
11294 // Result is just the top half since we'd be shifting by the width of the
11295 // operand. Overflow impossible so this works for both UMULFIX and
11296 // UMULFIXSAT.
11297 return Hi;
11298
11299 // The result will need to be shifted right by the scale since both operands
11300 // are scaled. The result is given to us in 2 halves, so we only want part of
11301 // both in the result.
11302 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
11303 DAG.getShiftAmountConstant(Scale, VT, dl));
11304 if (!Saturating)
11305 return Result;
11306
11307 if (!Signed) {
11308 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11309 // widened multiplication) aren't all zeroes.
11310
11311 // Saturate to max if ((Hi >> Scale) != 0),
11312 // which is the same as if (Hi > ((1 << Scale) - 1))
11313 APInt MaxVal = APInt::getMaxValue(VTSize);
11314 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11315 dl, VT);
11316 Result = DAG.getSelectCC(dl, Hi, LowMask,
11317 DAG.getConstant(MaxVal, dl, VT), Result,
11318 ISD::SETUGT);
11319
11320 return Result;
11321 }
11322
11323 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11324 // widened multiplication) aren't all ones or all zeroes.
11325
11326 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11327 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11328
11329 if (Scale == 0) {
11330 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11331 DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11332 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11333 // Saturated to SatMin if wide product is negative, and SatMax if wide
11334 // product is positive ...
11335 SDValue Zero = DAG.getConstant(0, dl, VT);
11336 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11337 ISD::SETLT);
11338 // ... but only if we overflowed.
11339 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11340 }
11341
11342 // We handled Scale==0 above so all the bits to examine is in Hi.
11343
11344 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11345 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11346 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11347 dl, VT);
11348 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11349 // Saturate to min if (Hi >> (Scale - 1)) < -1),
11350 // which is the same as if (HI < (-1 << (Scale - 1))
11351 SDValue HighMask =
11352 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11353 dl, VT);
11354 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11355 return Result;
11356}
11357
11358SDValue
11360 SDValue LHS, SDValue RHS,
11361 unsigned Scale, SelectionDAG &DAG) const {
11362 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11363 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11364 "Expected a fixed point division opcode");
11365
11366 EVT VT = LHS.getValueType();
11367 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11368 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11369 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11370
11371 // If there is enough room in the type to upscale the LHS or downscale the
11372 // RHS before the division, we can perform it in this type without having to
11373 // resize. For signed operations, the LHS headroom is the number of
11374 // redundant sign bits, and for unsigned ones it is the number of zeroes.
11375 // The headroom for the RHS is the number of trailing zeroes.
11376 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11378 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11379
11380 // For signed saturating operations, we need to be able to detect true integer
11381 // division overflow; that is, when you have MIN / -EPS. However, this
11382 // is undefined behavior and if we emit divisions that could take such
11383 // values it may cause undesired behavior (arithmetic exceptions on x86, for
11384 // example).
11385 // Avoid this by requiring an extra bit so that we never get this case.
11386 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11387 // signed saturating division, we need to emit a whopping 32-bit division.
11388 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11389 return SDValue();
11390
11391 unsigned LHSShift = std::min(LHSLead, Scale);
11392 unsigned RHSShift = Scale - LHSShift;
11393
11394 // At this point, we know that if we shift the LHS up by LHSShift and the
11395 // RHS down by RHSShift, we can emit a regular division with a final scaling
11396 // factor of Scale.
11397
11398 if (LHSShift)
11399 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11400 DAG.getShiftAmountConstant(LHSShift, VT, dl));
11401 if (RHSShift)
11402 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11403 DAG.getShiftAmountConstant(RHSShift, VT, dl));
11404
11405 SDValue Quot;
11406 if (Signed) {
11407 // For signed operations, if the resulting quotient is negative and the
11408 // remainder is nonzero, subtract 1 from the quotient to round towards
11409 // negative infinity.
11410 SDValue Rem;
11411 // FIXME: Ideally we would always produce an SDIVREM here, but if the
11412 // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11413 // we couldn't just form a libcall, but the type legalizer doesn't do it.
11414 if (isTypeLegal(VT) &&
11416 Quot = DAG.getNode(ISD::SDIVREM, dl,
11417 DAG.getVTList(VT, VT),
11418 LHS, RHS);
11419 Rem = Quot.getValue(1);
11420 Quot = Quot.getValue(0);
11421 } else {
11422 Quot = DAG.getNode(ISD::SDIV, dl, VT,
11423 LHS, RHS);
11424 Rem = DAG.getNode(ISD::SREM, dl, VT,
11425 LHS, RHS);
11426 }
11427 SDValue Zero = DAG.getConstant(0, dl, VT);
11428 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11429 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11430 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11431 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11432 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11433 DAG.getConstant(1, dl, VT));
11434 Quot = DAG.getSelect(dl, VT,
11435 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11436 Sub1, Quot);
11437 } else
11438 Quot = DAG.getNode(ISD::UDIV, dl, VT,
11439 LHS, RHS);
11440
11441 return Quot;
11442}
11443
11445 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11446 SDLoc dl(Node);
11447 SDValue LHS = Node->getOperand(0);
11448 SDValue RHS = Node->getOperand(1);
11449 bool IsAdd = Node->getOpcode() == ISD::UADDO;
11450
11451 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11452 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11453 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11454 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11455 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11456 { LHS, RHS, CarryIn });
11457 Result = SDValue(NodeCarry.getNode(), 0);
11458 Overflow = SDValue(NodeCarry.getNode(), 1);
11459 return;
11460 }
11461
11462 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11463 LHS.getValueType(), LHS, RHS);
11464
11465 EVT ResultType = Node->getValueType(1);
11466 EVT SetCCType = getSetCCResultType(
11467 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11468 SDValue SetCC;
11469 if (IsAdd && isOneConstant(RHS)) {
11470 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11471 // the live range of X. We assume comparing with 0 is cheap.
11472 // The general case (X + C) < C is not necessarily beneficial. Although we
11473 // reduce the live range of X, we may introduce the materialization of
11474 // constant C.
11475 SetCC =
11476 DAG.getSetCC(dl, SetCCType, Result,
11477 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11478 } else if (IsAdd && isAllOnesConstant(RHS)) {
11479 // Special case: uaddo X, -1 overflows if X != 0.
11480 SetCC =
11481 DAG.getSetCC(dl, SetCCType, LHS,
11482 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11483 } else {
11484 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11485 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11486 }
11487 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11488}
11489
11491 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11492 SDLoc dl(Node);
11493 SDValue LHS = Node->getOperand(0);
11494 SDValue RHS = Node->getOperand(1);
11495 bool IsAdd = Node->getOpcode() == ISD::SADDO;
11496
11497 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11498 LHS.getValueType(), LHS, RHS);
11499
11500 EVT ResultType = Node->getValueType(1);
11501 EVT OType = getSetCCResultType(
11502 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11503
11504 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11505 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11506 if (isOperationLegal(OpcSat, LHS.getValueType())) {
11507 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11508 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11509 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11510 return;
11511 }
11512
11513 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11514
11515 // For an addition, the result should be less than one of the operands (LHS)
11516 // if and only if the other operand (RHS) is negative, otherwise there will
11517 // be overflow.
11518 // For a subtraction, the result should be less than one of the operands
11519 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11520 // otherwise there will be overflow.
11521 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11522 SDValue ConditionRHS =
11523 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11524
11525 Overflow = DAG.getBoolExtOrTrunc(
11526 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11527 ResultType, ResultType);
11528}
11529
11531 SDValue &Overflow, SelectionDAG &DAG) const {
11532 SDLoc dl(Node);
11533 EVT VT = Node->getValueType(0);
11534 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11535 SDValue LHS = Node->getOperand(0);
11536 SDValue RHS = Node->getOperand(1);
11537 bool isSigned = Node->getOpcode() == ISD::SMULO;
11538
11539 // For power-of-two multiplications we can use a simpler shift expansion.
11540 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11541 const APInt &C = RHSC->getAPIntValue();
11542 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11543 if (C.isPowerOf2()) {
11544 // smulo(x, signed_min) is same as umulo(x, signed_min).
11545 bool UseArithShift = isSigned && !C.isMinSignedValue();
11546 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11547 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11548 Overflow = DAG.getSetCC(dl, SetCCVT,
11549 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11550 dl, VT, Result, ShiftAmt),
11551 LHS, ISD::SETNE);
11552 return true;
11553 }
11554 }
11555
11556 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11557 if (VT.isVector())
11558 WideVT =
11560
11561 SDValue BottomHalf;
11562 SDValue TopHalf;
11563 static const unsigned Ops[2][3] =
11566 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11567 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11568 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11569 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11570 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11571 RHS);
11572 TopHalf = BottomHalf.getValue(1);
11573 } else if (isTypeLegal(WideVT)) {
11574 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11575 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11576 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11577 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11578 SDValue ShiftAmt =
11579 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11580 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11581 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11582 } else {
11583 if (VT.isVector())
11584 return false;
11585
11586 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11587 }
11588
11589 Result = BottomHalf;
11590 if (isSigned) {
11591 SDValue ShiftAmt = DAG.getShiftAmountConstant(
11592 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11593 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11594 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11595 } else {
11596 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11597 DAG.getConstant(0, dl, VT), ISD::SETNE);
11598 }
11599
11600 // Truncate the result if SetCC returns a larger type than needed.
11601 EVT RType = Node->getValueType(1);
11602 if (RType.bitsLT(Overflow.getValueType()))
11603 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11604
11605 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11606 "Unexpected result type for S/UMULO legalization");
11607 return true;
11608}
11609
11611 SDLoc dl(Node);
11612 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11613 SDValue Op = Node->getOperand(0);
11614 EVT VT = Op.getValueType();
11615
11616 // Try to use a shuffle reduction for power of two vectors.
11617 if (VT.isPow2VectorType()) {
11619 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11620 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11621 break;
11622
11623 SDValue Lo, Hi;
11624 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11625 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11626 VT = HalfVT;
11627
11628 // Stop if splitting is enough to make the reduction legal.
11629 if (isOperationLegalOrCustom(Node->getOpcode(), HalfVT))
11630 return DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Op,
11631 Node->getFlags());
11632 }
11633 }
11634
11635 if (VT.isScalableVector())
11637 "Expanding reductions for scalable vectors is undefined.");
11638
11639 EVT EltVT = VT.getVectorElementType();
11640 unsigned NumElts = VT.getVectorNumElements();
11641
11643 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11644
11645 SDValue Res = Ops[0];
11646 for (unsigned i = 1; i < NumElts; i++)
11647 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11648
11649 // Result type may be wider than element type.
11650 if (EltVT != Node->getValueType(0))
11651 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11652 return Res;
11653}
11654
11656 SDLoc dl(Node);
11657 SDValue AccOp = Node->getOperand(0);
11658 SDValue VecOp = Node->getOperand(1);
11659 SDNodeFlags Flags = Node->getFlags();
11660
11661 EVT VT = VecOp.getValueType();
11662 EVT EltVT = VT.getVectorElementType();
11663
11664 if (VT.isScalableVector())
11666 "Expanding reductions for scalable vectors is undefined.");
11667
11668 unsigned NumElts = VT.getVectorNumElements();
11669
11671 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11672
11673 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11674
11675 SDValue Res = AccOp;
11676 for (unsigned i = 0; i < NumElts; i++)
11677 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11678
11679 return Res;
11680}
11681
11683 SelectionDAG &DAG) const {
11684 EVT VT = Node->getValueType(0);
11685 SDLoc dl(Node);
11686 bool isSigned = Node->getOpcode() == ISD::SREM;
11687 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11688 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11689 SDValue Dividend = Node->getOperand(0);
11690 SDValue Divisor = Node->getOperand(1);
11691 if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11692 SDVTList VTs = DAG.getVTList(VT, VT);
11693 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11694 return true;
11695 }
11696 if (isOperationLegalOrCustom(DivOpc, VT)) {
11697 // X % Y -> X-X/Y*Y
11698 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11699 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11700 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11701 return true;
11702 }
11703 return false;
11704}
11705
11707 SelectionDAG &DAG) const {
11708 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11709 SDLoc dl(SDValue(Node, 0));
11710 SDValue Src = Node->getOperand(0);
11711
11712 // DstVT is the result type, while SatVT is the size to which we saturate
11713 EVT SrcVT = Src.getValueType();
11714 EVT DstVT = Node->getValueType(0);
11715
11716 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11717 unsigned SatWidth = SatVT.getScalarSizeInBits();
11718 unsigned DstWidth = DstVT.getScalarSizeInBits();
11719 assert(SatWidth <= DstWidth &&
11720 "Expected saturation width smaller than result width");
11721
11722 // Determine minimum and maximum integer values and their corresponding
11723 // floating-point values.
11724 APInt MinInt, MaxInt;
11725 if (IsSigned) {
11726 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11727 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11728 } else {
11729 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11730 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11731 }
11732
11733 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11734 // libcall emission cannot handle this. Large result types will fail.
11735 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11736 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11737 SrcVT = Src.getValueType();
11738 }
11739
11740 const fltSemantics &Sem = SrcVT.getFltSemantics();
11741 APFloat MinFloat(Sem);
11742 APFloat MaxFloat(Sem);
11743
11744 APFloat::opStatus MinStatus =
11745 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11746 APFloat::opStatus MaxStatus =
11747 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11748 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11749 !(MaxStatus & APFloat::opStatus::opInexact);
11750
11751 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11752 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11753
11754 // If the integer bounds are exactly representable as floats and min/max are
11755 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11756 // of comparisons and selects.
11757 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11759 if (AreExactFloatBounds && MinMaxLegal) {
11760 SDValue Clamped = Src;
11761
11762 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11763 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11764 // Clamp by MaxFloat from above. NaN cannot occur.
11765 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11766 // Convert clamped value to integer.
11767 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11768 dl, DstVT, Clamped);
11769
11770 // In the unsigned case we're done, because we mapped NaN to MinFloat,
11771 // which will cast to zero.
11772 if (!IsSigned)
11773 return FpToInt;
11774
11775 // Otherwise, select 0 if Src is NaN.
11776 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11777 EVT SetCCVT =
11778 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11779 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11780 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11781 }
11782
11783 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11784 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11785
11786 // Result of direct conversion. The assumption here is that the operation is
11787 // non-trapping and it's fine to apply it to an out-of-range value if we
11788 // select it away later.
11789 SDValue FpToInt =
11790 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11791
11792 SDValue Select = FpToInt;
11793
11794 EVT SetCCVT =
11795 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11796
11797 // If Src ULT MinFloat, select MinInt. In particular, this also selects
11798 // MinInt if Src is NaN.
11799 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11800 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11801 // If Src OGT MaxFloat, select MaxInt.
11802 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11803 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11804
11805 // In the unsigned case we are done, because we mapped NaN to MinInt, which
11806 // is already zero.
11807 if (!IsSigned)
11808 return Select;
11809
11810 // Otherwise, select 0 if Src is NaN.
11811 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11812 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11813 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11814}
11815
11817 const SDLoc &dl,
11818 SelectionDAG &DAG) const {
11819 EVT OperandVT = Op.getValueType();
11820 if (OperandVT.getScalarType() == ResultVT.getScalarType())
11821 return Op;
11822 EVT ResultIntVT = ResultVT.changeTypeToInteger();
11823 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11824 // can induce double-rounding which may alter the results. We can
11825 // correct for this using a trick explained in: Boldo, Sylvie, and
11826 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11827 // World Congress. 2005.
11828 SDValue Narrow = DAG.getFPExtendOrRound(Op, dl, ResultVT);
11829 SDValue NarrowAsWide = DAG.getFPExtendOrRound(Narrow, dl, OperandVT);
11830
11831 // We can keep the narrow value as-is if narrowing was exact (no
11832 // rounding error), the wide value was NaN (the narrow value is also
11833 // NaN and should be preserved) or if we rounded to the odd value.
11834 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, Narrow);
11835 SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11836 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11837 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11838 EVT ResultIntVTCCVT = getSetCCResultType(
11839 DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11840 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11841 // The result is already odd so we don't need to do anything.
11842 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11843
11844 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11845 Op.getValueType());
11846 // We keep results which are exact, odd or NaN.
11847 SDValue KeepNarrow =
11848 DAG.getSetCC(dl, WideSetCCVT, Op, NarrowAsWide, ISD::SETUEQ);
11849 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11850 // We morally performed a round-down if AbsNarrow is smaller than
11851 // AbsWide.
11852 SDValue AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11853 SDValue AbsNarrowAsWide = DAG.getNode(ISD::FABS, dl, OperandVT, NarrowAsWide);
11854 SDValue NarrowIsRd =
11855 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11856 // If the narrow value is odd or exact, pick it.
11857 // Otherwise, narrow is even and corresponds to either the rounded-up
11858 // or rounded-down value. If narrow is the rounded-down value, we want
11859 // the rounded-up value as it will be odd.
11860 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11861 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11862 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11863 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11864}
11865
11867 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11868 SDValue Op = Node->getOperand(0);
11869 EVT VT = Node->getValueType(0);
11870 SDLoc dl(Node);
11871 if (VT.getScalarType() == MVT::bf16) {
11872 if (Node->getConstantOperandVal(1) == 1) {
11873 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11874 }
11875 EVT OperandVT = Op.getValueType();
11876 SDValue IsNaN = DAG.getSetCC(
11877 dl,
11878 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11879 Op, Op, ISD::SETUO);
11880
11881 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11882 // can induce double-rounding which may alter the results. We can
11883 // correct for this using a trick explained in: Boldo, Sylvie, and
11884 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11885 // World Congress. 2005.
11886 EVT F32 = VT.changeElementType(*DAG.getContext(), MVT::f32);
11887 EVT I32 = F32.changeTypeToInteger();
11888 Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11889 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11890
11891 // Conversions should set NaN's quiet bit. This also prevents NaNs from
11892 // turning into infinities.
11893 SDValue NaN =
11894 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11895
11896 // Factor in the contribution of the low 16 bits.
11897 SDValue One = DAG.getConstant(1, dl, I32);
11898 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11899 DAG.getShiftAmountConstant(16, I32, dl));
11900 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11901 SDValue RoundingBias =
11902 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11903 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11904
11905 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11906 // 0x80000000.
11907 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11908
11909 // Now that we have rounded, shift the bits into position.
11910 Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11911 DAG.getShiftAmountConstant(16, I32, dl));
11912 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11913 EVT I16 = I32.changeElementType(*DAG.getContext(), MVT::i16);
11914 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11915 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11916 }
11917 return SDValue();
11918}
11919
11921 SelectionDAG &DAG) const {
11922 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11923 assert(Node->getValueType(0).isScalableVector() &&
11924 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11925
11926 EVT VT = Node->getValueType(0);
11927 SDValue V1 = Node->getOperand(0);
11928 SDValue V2 = Node->getOperand(1);
11929 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11930 SDLoc DL(Node);
11931
11932 // Expand through memory thusly:
11933 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11934 // Store V1, Ptr
11935 // Store V2, Ptr + sizeof(V1)
11936 // If (Imm < 0)
11937 // TrailingElts = -Imm
11938 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11939 // else
11940 // Ptr = Ptr + (Imm * sizeof(VT.Elt))
11941 // Res = Load Ptr
11942
11943 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11944
11946 VT.getVectorElementCount() * 2);
11947 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11948 EVT PtrVT = StackPtr.getValueType();
11949 auto &MF = DAG.getMachineFunction();
11950 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11951 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11952
11953 // Store the lo part of CONCAT_VECTORS(V1, V2)
11954 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11955 // Store the hi part of CONCAT_VECTORS(V1, V2)
11956 SDValue VTBytes = DAG.getTypeSize(DL, PtrVT, VT.getStoreSize());
11957 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, VTBytes);
11958 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11959
11960 if (Imm >= 0) {
11961 // Load back the required element. getVectorElementPointer takes care of
11962 // clamping the index if it's out-of-bounds.
11963 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11964 // Load the spliced result
11965 return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11967 }
11968
11969 uint64_t TrailingElts = -Imm;
11970
11971 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11972 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11973 SDValue TrailingBytes =
11974 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11975
11976 if (TrailingElts > VT.getVectorMinNumElements())
11977 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VTBytes);
11978
11979 // Calculate the start address of the spliced result.
11980 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11981
11982 // Load the spliced result
11983 return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11985}
11986
11988 SelectionDAG &DAG) const {
11989 SDLoc DL(Node);
11990 SDValue Vec = Node->getOperand(0);
11991 SDValue Mask = Node->getOperand(1);
11992 SDValue Passthru = Node->getOperand(2);
11993
11994 EVT VecVT = Vec.getValueType();
11995 EVT ScalarVT = VecVT.getScalarType();
11996 EVT MaskVT = Mask.getValueType();
11997 EVT MaskScalarVT = MaskVT.getScalarType();
11998
11999 // Needs to be handled by targets that have scalable vector types.
12000 if (VecVT.isScalableVector())
12001 report_fatal_error("Cannot expand masked_compress for scalable vectors.");
12002
12003 SDValue StackPtr = DAG.CreateStackTemporary(
12004 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
12005 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
12006 MachinePointerInfo PtrInfo =
12008
12009 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
12010 SDValue Chain = DAG.getEntryNode();
12011 SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
12012
12013 bool HasPassthru = !Passthru.isUndef();
12014
12015 // If we have a passthru vector, store it on the stack, overwrite the matching
12016 // positions and then re-write the last element that was potentially
12017 // overwritten even though mask[i] = false.
12018 if (HasPassthru)
12019 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
12020
12021 SDValue LastWriteVal;
12022 APInt PassthruSplatVal;
12023 bool IsSplatPassthru =
12024 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
12025
12026 if (IsSplatPassthru) {
12027 // As we do not know which position we wrote to last, we cannot simply
12028 // access that index from the passthru vector. So we first check if passthru
12029 // is a splat vector, to use any element ...
12030 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
12031 } else if (HasPassthru) {
12032 // ... if it is not a splat vector, we need to get the passthru value at
12033 // position = popcount(mask) and re-load it from the stack before it is
12034 // overwritten in the loop below.
12035 EVT PopcountVT = ScalarVT.changeTypeToInteger();
12036 SDValue Popcount = DAG.getNode(
12038 MaskVT.changeVectorElementType(*DAG.getContext(), MVT::i1), Mask);
12039 Popcount = DAG.getNode(
12041 MaskVT.changeVectorElementType(*DAG.getContext(), PopcountVT),
12042 Popcount);
12043 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
12044 SDValue LastElmtPtr =
12045 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
12046 LastWriteVal = DAG.getLoad(
12047 ScalarVT, DL, Chain, LastElmtPtr,
12049 Chain = LastWriteVal.getValue(1);
12050 }
12051
12052 unsigned NumElms = VecVT.getVectorNumElements();
12053 for (unsigned I = 0; I < NumElms; I++) {
12054 SDValue ValI = DAG.getExtractVectorElt(DL, ScalarVT, Vec, I);
12055 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
12056 Chain = DAG.getStore(
12057 Chain, DL, ValI, OutPtr,
12059
12060 // Get the mask value and add it to the current output position. This
12061 // either increments by 1 if MaskI is true or adds 0 otherwise.
12062 // Freeze in case we have poison/undef mask entries.
12063 SDValue MaskI = DAG.getExtractVectorElt(DL, MaskScalarVT, Mask, I);
12064 MaskI = DAG.getFreeze(MaskI);
12065 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
12066 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
12067 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
12068
12069 if (HasPassthru && I == NumElms - 1) {
12070 SDValue EndOfVector =
12071 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
12072 SDValue AllLanesSelected =
12073 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
12074 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
12075 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
12076
12077 // Re-write the last ValI if all lanes were selected. Otherwise,
12078 // overwrite the last write it with the passthru value.
12079 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
12080 LastWriteVal, SDNodeFlags::Unpredictable);
12081 Chain = DAG.getStore(
12082 Chain, DL, LastWriteVal, OutPtr,
12084 }
12085 }
12086
12087 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
12088}
12089
12091 SelectionDAG &DAG) const {
12092 SDLoc DL(N);
12093 SDValue Acc = N->getOperand(0);
12094 SDValue MulLHS = N->getOperand(1);
12095 SDValue MulRHS = N->getOperand(2);
12096 EVT AccVT = Acc.getValueType();
12097 EVT MulOpVT = MulLHS.getValueType();
12098
12099 EVT ExtMulOpVT =
12101 MulOpVT.getVectorElementCount());
12102
12103 unsigned ExtOpcLHS, ExtOpcRHS;
12104 switch (N->getOpcode()) {
12105 default:
12106 llvm_unreachable("Unexpected opcode");
12108 ExtOpcLHS = ExtOpcRHS = ISD::ZERO_EXTEND;
12109 break;
12111 ExtOpcLHS = ExtOpcRHS = ISD::SIGN_EXTEND;
12112 break;
12114 ExtOpcLHS = ExtOpcRHS = ISD::FP_EXTEND;
12115 break;
12116 }
12117
12118 if (ExtMulOpVT != MulOpVT) {
12119 MulLHS = DAG.getNode(ExtOpcLHS, DL, ExtMulOpVT, MulLHS);
12120 MulRHS = DAG.getNode(ExtOpcRHS, DL, ExtMulOpVT, MulRHS);
12121 }
12122 SDValue Input = MulLHS;
12123 if (N->getOpcode() == ISD::PARTIAL_REDUCE_FMLA) {
12124 if (!llvm::isOneOrOneSplatFP(MulRHS))
12125 Input = DAG.getNode(ISD::FMUL, DL, ExtMulOpVT, MulLHS, MulRHS);
12126 } else if (!llvm::isOneOrOneSplat(MulRHS)) {
12127 Input = DAG.getNode(ISD::MUL, DL, ExtMulOpVT, MulLHS, MulRHS);
12128 }
12129
12130 unsigned Stride = AccVT.getVectorMinNumElements();
12131 unsigned ScaleFactor = MulOpVT.getVectorMinNumElements() / Stride;
12132
12133 // Collect all of the subvectors
12134 std::deque<SDValue> Subvectors = {Acc};
12135 for (unsigned I = 0; I < ScaleFactor; I++)
12136 Subvectors.push_back(DAG.getExtractSubvector(DL, AccVT, Input, I * Stride));
12137
12138 unsigned FlatNode =
12139 N->getOpcode() == ISD::PARTIAL_REDUCE_FMLA ? ISD::FADD : ISD::ADD;
12140
12141 // Flatten the subvector tree
12142 while (Subvectors.size() > 1) {
12143 Subvectors.push_back(
12144 DAG.getNode(FlatNode, DL, AccVT, {Subvectors[0], Subvectors[1]}));
12145 Subvectors.pop_front();
12146 Subvectors.pop_front();
12147 }
12148
12149 assert(Subvectors.size() == 1 &&
12150 "There should only be one subvector after tree flattening");
12151
12152 return Subvectors[0];
12153}
12154
12155/// Given a store node \p StoreNode, return true if it is safe to fold that node
12156/// into \p FPNode, which expands to a library call with output pointers.
12158 SDNode *FPNode) {
12160 SmallVector<const SDNode *, 8> DeferredNodes;
12162
12163 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
12164 for (SDValue Op : StoreNode->ops())
12165 if (Op.getNode() != FPNode)
12166 Worklist.push_back(Op.getNode());
12167
12169 while (!Worklist.empty()) {
12170 const SDNode *Node = Worklist.pop_back_val();
12171 auto [_, Inserted] = Visited.insert(Node);
12172 if (!Inserted)
12173 continue;
12174
12175 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
12176 return false;
12177
12178 // Reached the FPNode (would result in a cycle).
12179 // OR Reached CALLSEQ_START (would result in nested call sequences).
12180 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
12181 return false;
12182
12183 if (Node->getOpcode() == ISD::CALLSEQ_END) {
12184 // Defer looking into call sequences (so we can check we're outside one).
12185 // We still need to look through these for the predecessor check.
12186 DeferredNodes.push_back(Node);
12187 continue;
12188 }
12189
12190 for (SDValue Op : Node->ops())
12191 Worklist.push_back(Op.getNode());
12192 }
12193
12194 // True if we're outside a call sequence and don't have the FPNode as a
12195 // predecessor. No cycles or nested call sequences possible.
12196 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
12197 MaxSteps);
12198}
12199
12201 SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node,
12203 std::optional<unsigned> CallRetResNo) const {
12204 if (LC == RTLIB::UNKNOWN_LIBCALL)
12205 return false;
12206
12207 RTLIB::LibcallImpl LibcallImpl = getLibcallImpl(LC);
12208 if (LibcallImpl == RTLIB::Unsupported)
12209 return false;
12210
12211 LLVMContext &Ctx = *DAG.getContext();
12212 EVT VT = Node->getValueType(0);
12213 unsigned NumResults = Node->getNumValues();
12214
12215 // Find users of the node that store the results (and share input chains). The
12216 // destination pointers can be used instead of creating stack allocations.
12217 SDValue StoresInChain;
12218 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
12219 for (SDNode *User : Node->users()) {
12221 continue;
12222 auto *ST = cast<StoreSDNode>(User);
12223 SDValue StoreValue = ST->getValue();
12224 unsigned ResNo = StoreValue.getResNo();
12225 // Ensure the store corresponds to an output pointer.
12226 if (CallRetResNo == ResNo)
12227 continue;
12228 // Ensure the store to the default address space and not atomic or volatile.
12229 if (!ST->isSimple() || ST->getAddressSpace() != 0)
12230 continue;
12231 // Ensure all store chains are the same (so they don't alias).
12232 if (StoresInChain && ST->getChain() != StoresInChain)
12233 continue;
12234 // Ensure the store is properly aligned.
12235 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
12236 if (ST->getAlign() <
12237 DAG.getDataLayout().getABITypeAlign(StoreType->getScalarType()))
12238 continue;
12239 // Avoid:
12240 // 1. Creating cyclic dependencies.
12241 // 2. Expanding the node to a call within a call sequence.
12243 continue;
12244 ResultStores[ResNo] = ST;
12245 StoresInChain = ST->getChain();
12246 }
12247
12248 ArgListTy Args;
12249
12250 // Pass the arguments.
12251 for (const SDValue &Op : Node->op_values()) {
12252 EVT ArgVT = Op.getValueType();
12253 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
12254 Args.emplace_back(Op, ArgTy);
12255 }
12256
12257 // Pass the output pointers.
12258 SmallVector<SDValue, 2> ResultPtrs(NumResults);
12260 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
12261 if (ResNo == CallRetResNo)
12262 continue;
12263 EVT ResVT = Node->getValueType(ResNo);
12264 SDValue ResultPtr = ST ? ST->getBasePtr() : DAG.CreateStackTemporary(ResVT);
12265 ResultPtrs[ResNo] = ResultPtr;
12266 Args.emplace_back(ResultPtr, PointerTy);
12267 }
12268
12269 SDLoc DL(Node);
12270
12272 // Pass the vector mask (if required).
12273 EVT MaskVT = getSetCCResultType(DAG.getDataLayout(), Ctx, VT);
12274 SDValue Mask = DAG.getBoolConstant(true, DL, MaskVT, VT);
12275 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
12276 }
12277
12278 Type *RetType = CallRetResNo.has_value()
12279 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
12280 : Type::getVoidTy(Ctx);
12281 SDValue InChain = StoresInChain ? StoresInChain : DAG.getEntryNode();
12282 SDValue Callee =
12283 DAG.getExternalSymbol(LibcallImpl, getPointerTy(DAG.getDataLayout()));
12285 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
12286 getLibcallImplCallingConv(LibcallImpl), RetType, Callee, std::move(Args));
12287
12288 auto [Call, CallChain] = LowerCallTo(CLI);
12289
12290 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
12291 if (ResNo == CallRetResNo) {
12292 Results.push_back(Call);
12293 continue;
12294 }
12295 MachinePointerInfo PtrInfo;
12296 SDValue LoadResult = DAG.getLoad(Node->getValueType(ResNo), DL, CallChain,
12297 ResultPtr, PtrInfo);
12298 SDValue OutChain = LoadResult.getValue(1);
12299
12300 if (StoreSDNode *ST = ResultStores[ResNo]) {
12301 // Replace store with the library call.
12302 DAG.ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
12303 PtrInfo = ST->getPointerInfo();
12304 } else {
12306 DAG.getMachineFunction(),
12307 cast<FrameIndexSDNode>(ResultPtr)->getIndex());
12308 }
12309
12310 Results.push_back(LoadResult);
12311 }
12312
12313 return true;
12314}
12315
12317 SDValue &LHS, SDValue &RHS,
12318 SDValue &CC, SDValue Mask,
12319 SDValue EVL, bool &NeedInvert,
12320 const SDLoc &dl, SDValue &Chain,
12321 bool IsSignaling) const {
12322 MVT OpVT = LHS.getSimpleValueType();
12323 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
12324 NeedInvert = false;
12325 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
12326 bool IsNonVP = !EVL;
12327 switch (getCondCodeAction(CCCode, OpVT)) {
12328 default:
12329 llvm_unreachable("Unknown condition code action!");
12331 // Nothing to do.
12332 break;
12335 if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
12336 std::swap(LHS, RHS);
12337 CC = DAG.getCondCode(InvCC);
12338 return true;
12339 }
12340 // Swapping operands didn't work. Try inverting the condition.
12341 bool NeedSwap = false;
12342 InvCC = getSetCCInverse(CCCode, OpVT);
12343 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
12344 // If inverting the condition is not enough, try swapping operands
12345 // on top of it.
12346 InvCC = ISD::getSetCCSwappedOperands(InvCC);
12347 NeedSwap = true;
12348 }
12349 if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
12350 CC = DAG.getCondCode(InvCC);
12351 NeedInvert = true;
12352 if (NeedSwap)
12353 std::swap(LHS, RHS);
12354 return true;
12355 }
12356
12357 // Special case: expand i1 comparisons using logical operations.
12358 if (OpVT == MVT::i1) {
12359 SDValue Ret;
12360 switch (CCCode) {
12361 default:
12362 llvm_unreachable("Unknown integer setcc!");
12363 case ISD::SETEQ: // X == Y --> ~(X ^ Y)
12364 Ret = DAG.getNOT(dl, DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS),
12365 MVT::i1);
12366 break;
12367 case ISD::SETNE: // X != Y --> (X ^ Y)
12368 Ret = DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS);
12369 break;
12370 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
12371 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
12372 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, RHS,
12373 DAG.getNOT(dl, LHS, MVT::i1));
12374 break;
12375 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
12376 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
12377 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, LHS,
12378 DAG.getNOT(dl, RHS, MVT::i1));
12379 break;
12380 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
12381 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
12382 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, RHS,
12383 DAG.getNOT(dl, LHS, MVT::i1));
12384 break;
12385 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
12386 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
12387 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, LHS,
12388 DAG.getNOT(dl, RHS, MVT::i1));
12389 break;
12390 }
12391
12392 LHS = DAG.getZExtOrTrunc(Ret, dl, VT);
12393 RHS = SDValue();
12394 CC = SDValue();
12395 return true;
12396 }
12397
12399 unsigned Opc = 0;
12400 switch (CCCode) {
12401 default:
12402 llvm_unreachable("Don't know how to expand this condition!");
12403 case ISD::SETUO:
12404 if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
12405 CC1 = ISD::SETUNE;
12406 CC2 = ISD::SETUNE;
12407 Opc = ISD::OR;
12408 break;
12409 }
12411 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
12412 NeedInvert = true;
12413 [[fallthrough]];
12414 case ISD::SETO:
12416 "If SETO is expanded, SETOEQ must be legal!");
12417 CC1 = ISD::SETOEQ;
12418 CC2 = ISD::SETOEQ;
12419 Opc = ISD::AND;
12420 break;
12421 case ISD::SETONE:
12422 case ISD::SETUEQ:
12423 // If the SETUO or SETO CC isn't legal, we might be able to use
12424 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
12425 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
12426 // the operands.
12427 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
12428 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
12429 isCondCodeLegal(ISD::SETOLT, OpVT))) {
12430 CC1 = ISD::SETOGT;
12431 CC2 = ISD::SETOLT;
12432 Opc = ISD::OR;
12433 NeedInvert = ((unsigned)CCCode & 0x8U);
12434 break;
12435 }
12436 [[fallthrough]];
12437 case ISD::SETOEQ:
12438 case ISD::SETOGT:
12439 case ISD::SETOGE:
12440 case ISD::SETOLT:
12441 case ISD::SETOLE:
12442 case ISD::SETUNE:
12443 case ISD::SETUGT:
12444 case ISD::SETUGE:
12445 case ISD::SETULT:
12446 case ISD::SETULE:
12447 // If we are floating point, assign and break, otherwise fall through.
12448 if (!OpVT.isInteger()) {
12449 // We can use the 4th bit to tell if we are the unordered
12450 // or ordered version of the opcode.
12451 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
12452 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
12453 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
12454 break;
12455 }
12456 // Fallthrough if we are unsigned integer.
12457 [[fallthrough]];
12458 case ISD::SETLE:
12459 case ISD::SETGT:
12460 case ISD::SETGE:
12461 case ISD::SETLT:
12462 case ISD::SETNE:
12463 case ISD::SETEQ:
12464 // If all combinations of inverting the condition and swapping operands
12465 // didn't work then we have no means to expand the condition.
12466 llvm_unreachable("Don't know how to expand this condition!");
12467 }
12468
12469 SDValue SetCC1, SetCC2;
12470 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
12471 // If we aren't the ordered or unorder operation,
12472 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
12473 if (IsNonVP) {
12474 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12475 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12476 } else {
12477 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12478 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12479 }
12480 } else {
12481 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
12482 if (IsNonVP) {
12483 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12484 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12485 } else {
12486 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12487 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12488 }
12489 }
12490 if (Chain)
12491 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
12492 SetCC2.getValue(1));
12493 if (IsNonVP)
12494 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
12495 else {
12496 // Transform the binary opcode to the VP equivalent.
12497 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
12498 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
12499 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12500 }
12501 RHS = SDValue();
12502 CC = SDValue();
12503 return true;
12504 }
12505 }
12506 return false;
12507}
12508
12510 SelectionDAG &DAG) const {
12511 EVT VT = Node->getValueType(0);
12512 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
12513 // split into two equal parts.
12514 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
12515 return SDValue();
12516
12517 // Restrict expansion to cases where both parts can be concatenated.
12518 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
12519 if (LoVT != HiVT || !isTypeLegal(LoVT))
12520 return SDValue();
12521
12522 SDLoc DL(Node);
12523 unsigned Opcode = Node->getOpcode();
12524
12525 // Don't expand if the result is likely to be unrolled anyway.
12526 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
12527 return SDValue();
12528
12529 SmallVector<SDValue, 4> LoOps, HiOps;
12530 for (const SDValue &V : Node->op_values()) {
12531 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
12532 LoOps.push_back(Lo);
12533 HiOps.push_back(Hi);
12534 }
12535
12536 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
12537 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
12538 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
12539}
12540
12542 const SDLoc &DL,
12543 EVT InVecVT, SDValue EltNo,
12544 LoadSDNode *OriginalLoad,
12545 SelectionDAG &DAG) const {
12546 assert(OriginalLoad->isSimple());
12547
12548 EVT VecEltVT = InVecVT.getVectorElementType();
12549
12550 // If the vector element type is not a multiple of a byte then we are unable
12551 // to correctly compute an address to load only the extracted element as a
12552 // scalar.
12553 if (!VecEltVT.isByteSized())
12554 return SDValue();
12555
12556 ISD::LoadExtType ExtTy =
12557 ResultVT.bitsGT(VecEltVT) ? ISD::EXTLOAD : ISD::NON_EXTLOAD;
12558 if (!isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
12559 return SDValue();
12560
12561 std::optional<unsigned> ByteOffset;
12562 Align Alignment = OriginalLoad->getAlign();
12564 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
12565 int Elt = ConstEltNo->getZExtValue();
12566 ByteOffset = VecEltVT.getSizeInBits() * Elt / 8;
12567 MPI = OriginalLoad->getPointerInfo().getWithOffset(*ByteOffset);
12568 Alignment = commonAlignment(Alignment, *ByteOffset);
12569 } else {
12570 // Discard the pointer info except the address space because the memory
12571 // operand can't represent this new access since the offset is variable.
12572 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
12573 Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8);
12574 }
12575
12576 if (!shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT, ByteOffset))
12577 return SDValue();
12578
12579 unsigned IsFast = 0;
12580 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT,
12581 OriginalLoad->getAddressSpace(), Alignment,
12582 OriginalLoad->getMemOperand()->getFlags(), &IsFast) ||
12583 !IsFast)
12584 return SDValue();
12585
12586 // The original DAG loaded the entire vector from memory, so arithmetic
12587 // within it must be inbounds.
12589 DAG, OriginalLoad->getBasePtr(), InVecVT, EltNo);
12590
12591 // We are replacing a vector load with a scalar load. The new load must have
12592 // identical memory op ordering to the original.
12593 SDValue Load;
12594 if (ResultVT.bitsGT(VecEltVT)) {
12595 // If the result type of vextract is wider than the load, then issue an
12596 // extending load instead.
12597 ISD::LoadExtType ExtType = isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, VecEltVT)
12599 : ISD::EXTLOAD;
12600 Load = DAG.getExtLoad(ExtType, DL, ResultVT, OriginalLoad->getChain(),
12601 NewPtr, MPI, VecEltVT, Alignment,
12602 OriginalLoad->getMemOperand()->getFlags(),
12603 OriginalLoad->getAAInfo());
12604 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
12605 } else {
12606 // The result type is narrower or the same width as the vector element
12607 Load = DAG.getLoad(VecEltVT, DL, OriginalLoad->getChain(), NewPtr, MPI,
12608 Alignment, OriginalLoad->getMemOperand()->getFlags(),
12609 OriginalLoad->getAAInfo());
12610 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
12611 if (ResultVT.bitsLT(VecEltVT))
12612 Load = DAG.getNode(ISD::TRUNCATE, DL, ResultVT, Load);
12613 else
12614 Load = DAG.getBitcast(ResultVT, Load);
12615 }
12616
12617 return Load;
12618}
unsigned const MachineRegisterInfo * MRI
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT F32
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define _
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
#define T
#define T1
#define P(N)
Function const char * Passes
R600 Clause Merge
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
This file contains some templates that are useful if you are working with the STL at all.
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
Value * RHS
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1329
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
Definition APFloat.h:1140
APInt bitcastToAPInt() const
Definition APFloat.h:1335
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1120
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1080
void changeSign()
Definition APFloat.h:1279
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1091
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1758
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1407
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition APInt.h:450
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:230
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1392
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1386
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1513
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:207
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1331
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:372
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:259
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
void setSignBit()
Set the sign bit to 1.
Definition APInt.h:1341
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition APInt.h:217
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:330
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1250
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1397
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:835
void negate()
Negate this APInt in place.
Definition APInt.h:1469
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1640
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1599
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition APInt.h:1532
unsigned countLeadingZeros() const
Definition APInt.h:1607
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition APInt.h:357
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1436
unsigned logBase2() const
Definition APInt.h:1762
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition APInt.h:476
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
void setAllBits()
Set every bit to 1.
Definition APInt.h:1320
LLVM_ABI APInt multiplicativeInverse() const
Definition APInt.cpp:1274
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition APInt.h:406
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1151
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1368
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1258
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1418
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:297
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1389
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:287
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:240
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
Definition APInt.h:1443
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1563
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:859
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
unsigned countr_one() const
Count the number of trailing one bits.
Definition APInt.h:1657
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1222
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
Definition APInt.h:1344
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:723
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:285
This class represents a range of values.
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:214
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
Definition InlineAsm.h:104
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:214
Machine Value Type.
SimpleValueType SimpleTy
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags getFlags() const
Return the raw flags of the source value,.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getAlign() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
Definition Module.h:445
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
iterator end() const
Definition ArrayRef.h:343
iterator begin() const
Definition ArrayRef.h:342
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
iterator end() const
Definition StringRef.h:114
Class to represent struct types.
LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
std::vector< ArgListEntry > ArgListTy
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
bool expandMultipleResultFPLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={}) const
Expands a node with multiple results to an FP or vector libcall.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SmallVector< ConstraintPair > ConstraintGroup
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, const SDValue LHS, const SDValue RHS, SDValue &Lo, SDValue &Hi) const
Calculate full product of LHS and RHS either via a libcall or through brute force expansion of the mu...
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
virtual unsigned computeNumSignBitsForTargetInstr(GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed, SDValue &Lo, SDValue &Hi, SDValue LHS, SDValue RHS, SDValue HiLHS=SDValue(), SDValue HiRHS=SDValue()) const
Calculate the product twice the width of LHS and RHS.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
~TargetLowering() override
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis, Register R, KnownFPClass &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue getInboundsVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
Definition Triple.h:791
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition Type.h:296
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
Definition Value.cpp:712
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
Definition TypeSize.h:180
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:809
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:782
@ PTRADD
PTRADD represents pointer arithmetic semantics, for targets that opt in using shouldPreservePtrArith(...
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:533
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:595
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:773
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:389
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:517
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:395
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:843
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:513
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:870
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:579
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:412
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:746
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:900
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:523
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:983
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:402
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:834
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:714
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:664
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:781
@ PARTIAL_REDUCE_FMLA
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ BRIND
BRIND - Indirect branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:536
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:543
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:786
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:671
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:703
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:764
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:644
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:609
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:571
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:840
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:801
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:381
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:889
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:878
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:408
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:968
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:795
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:472
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:916
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:738
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:709
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:560
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:656
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:949
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:911
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:935
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:846
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:823
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:529
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ CALLSEQ_START
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence,...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:721
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:551
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
void stable_sort(R &&Range)
Definition STLExtras.h:2106
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
InstructionCost Cost
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2530
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
void * PointerTy
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
LLVM_ABI void reportFatalInternalError(Error Err)
Report a fatal error that indicates a bug in LLVM.
Definition Error.cpp:177
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:331
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
Definition STLExtras.h:1775
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
@ Other
Any other memory.
Definition ModRef.h:68
To bit_cast(const From &from) noexcept
Definition bit.h:90
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
Definition APFloat.h:1551
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
@ Increment
Incrementally increasing token ID.
Definition AllocToken.h:26
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:373
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
Definition ValueTypes.h:430
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
Definition ValueTypes.h:412
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
Definition KnownBits.h:186
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
KnownBits reverseBits() const
Definition KnownBits.h:518
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
bool isSignUnknown() const
Returns true if we don't know the sign bit.
Definition KnownBits.h:69
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition KnownBits.h:286
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
Matching combinators.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
static LLVM_ABI SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
std::string ConstraintCode
This contains the actual string for the code, like "m".
LLVM_ABI unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
LLVM_ABI bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
LLVM_ABI void AddToWorklist(SDNode *N)
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
MakeLibCallOptions & setIsSigned(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
Magic data for optimising unsigned division by a constant.
static LLVM_ABI UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...