LLVM 23.0.0git
TargetLowering.cpp
Go to the documentation of this file.
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/STLExtras.h"
27#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/MC/MCExpr.h"
38#include <cctype>
39#include <deque>
40using namespace llvm;
41using namespace llvm::SDPatternMatch;
42
43/// NOTE: The TargetMachine owns TLOF.
47
48// Define the virtual destructor out-of-line for build efficiency.
50
51const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
52 return nullptr;
53}
54
58
59/// Check whether a given call node is in tail position within its function. If
60/// so, it sets Chain to the input chain of the tail call.
62 SDValue &Chain) const {
64
65 // First, check if tail calls have been disabled in this function.
66 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
67 return false;
68
69 // Conservatively require the attributes of the call to match those of
70 // the return. Ignore following attributes because they don't affect the
71 // call sequence.
72 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
73 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
74 Attribute::DereferenceableOrNull, Attribute::NoAlias,
75 Attribute::NonNull, Attribute::NoUndef,
76 Attribute::Range, Attribute::NoFPClass})
77 CallerAttrs.removeAttribute(Attr);
78
79 if (CallerAttrs.hasAttributes())
80 return false;
81
82 // It's not safe to eliminate the sign / zero extension of the return value.
83 if (CallerAttrs.contains(Attribute::ZExt) ||
84 CallerAttrs.contains(Attribute::SExt))
85 return false;
86
87 // Check if the only use is a function return node.
88 return isUsedByReturnOnly(Node, Chain);
89}
90
92 const uint32_t *CallerPreservedMask,
93 const SmallVectorImpl<CCValAssign> &ArgLocs,
94 const SmallVectorImpl<SDValue> &OutVals) const {
95 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
96 const CCValAssign &ArgLoc = ArgLocs[I];
97 if (!ArgLoc.isRegLoc())
98 continue;
99 MCRegister Reg = ArgLoc.getLocReg();
100 // Only look at callee saved registers.
101 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
102 continue;
103 // Check that we pass the value used for the caller.
104 // (We look for a CopyFromReg reading a virtual register that is used
105 // for the function live-in value of register Reg)
106 SDValue Value = OutVals[I];
107 if (Value->getOpcode() == ISD::AssertZext)
108 Value = Value.getOperand(0);
109 if (Value->getOpcode() != ISD::CopyFromReg)
110 return false;
111 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
112 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
113 return false;
114 }
115 return true;
116}
117
118/// Set CallLoweringInfo attribute flags based on a call instruction
119/// and called function attributes.
121 unsigned ArgIdx) {
122 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
123 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
124 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
125 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
126 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
127 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
128 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
129 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
130 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
131 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
132 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
133 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
134 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
135 Alignment = Call->getParamStackAlign(ArgIdx);
136 IndirectType = nullptr;
138 "multiple ABI attributes?");
139 if (IsByVal) {
140 IndirectType = Call->getParamByValType(ArgIdx);
141 if (!Alignment)
142 Alignment = Call->getParamAlign(ArgIdx);
143 }
144 if (IsPreallocated)
145 IndirectType = Call->getParamPreallocatedType(ArgIdx);
146 if (IsInAlloca)
147 IndirectType = Call->getParamInAllocaType(ArgIdx);
148 if (IsSRet)
149 IndirectType = Call->getParamStructRetType(ArgIdx);
150}
151
152/// Generate a libcall taking the given operands as arguments and returning a
153/// result of type RetVT.
154std::pair<SDValue, SDValue>
155TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl,
157 MakeLibCallOptions CallOptions, const SDLoc &dl,
158 SDValue InChain) const {
159 if (LibcallImpl == RTLIB::Unsupported)
160 reportFatalInternalError("unsupported library call operation");
161
162 if (!InChain)
163 InChain = DAG.getEntryNode();
164
166 Args.reserve(Ops.size());
167
168 ArrayRef<Type *> OpsTypeOverrides = CallOptions.OpsTypeOverrides;
169 for (unsigned i = 0; i < Ops.size(); ++i) {
170 SDValue NewOp = Ops[i];
171 Type *Ty = i < OpsTypeOverrides.size() && OpsTypeOverrides[i]
172 ? OpsTypeOverrides[i]
173 : NewOp.getValueType().getTypeForEVT(*DAG.getContext());
174 TargetLowering::ArgListEntry Entry(NewOp, Ty);
175 if (CallOptions.IsSoften)
176 Entry.OrigTy =
177 CallOptions.OpsVTBeforeSoften[i].getTypeForEVT(*DAG.getContext());
178
179 Entry.IsSExt =
180 shouldSignExtendTypeInLibCall(Entry.Ty, CallOptions.IsSigned);
181 Entry.IsZExt = !Entry.IsSExt;
182
183 if (CallOptions.IsSoften &&
185 Entry.IsSExt = Entry.IsZExt = false;
186 }
187 Args.push_back(Entry);
188 }
189
190 SDValue Callee =
191 DAG.getExternalSymbol(LibcallImpl, getPointerTy(DAG.getDataLayout()));
192
193 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
194 Type *OrigRetTy = RetTy;
196 bool signExtend = shouldSignExtendTypeInLibCall(RetTy, CallOptions.IsSigned);
197 bool zeroExtend = !signExtend;
198
199 if (CallOptions.IsSoften) {
200 OrigRetTy = CallOptions.RetVTBeforeSoften.getTypeForEVT(*DAG.getContext());
202 signExtend = zeroExtend = false;
203 }
204
205 CLI.setDebugLoc(dl)
206 .setChain(InChain)
207 .setLibCallee(getLibcallImplCallingConv(LibcallImpl), RetTy, OrigRetTy,
208 Callee, std::move(Args))
209 .setNoReturn(CallOptions.DoesNotReturn)
212 .setSExtResult(signExtend)
213 .setZExtResult(zeroExtend);
214 return LowerCallTo(CLI);
215}
216
218 LLVMContext &Context, std::vector<EVT> &MemOps, unsigned Limit,
219 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
220 const AttributeList &FuncAttributes) const {
221 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
222 Op.getSrcAlign() < Op.getDstAlign())
223 return false;
224
225 EVT VT = getOptimalMemOpType(Context, Op, FuncAttributes);
226
227 if (VT == MVT::Other) {
228 // Use the largest integer type whose alignment constraints are satisfied.
229 // We only need to check DstAlign here as SrcAlign is always greater or
230 // equal to DstAlign (or zero).
231 VT = MVT::LAST_INTEGER_VALUETYPE;
232 if (Op.isFixedDstAlign())
233 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
234 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
236 assert(VT.isInteger());
237
238 // Find the largest legal integer type.
239 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
240 while (!isTypeLegal(LVT))
241 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
242 assert(LVT.isInteger());
243
244 // If the type we've chosen is larger than the largest legal integer type
245 // then use that instead.
246 if (VT.bitsGT(LVT))
247 VT = LVT;
248 }
249
250 unsigned NumMemOps = 0;
251 uint64_t Size = Op.size();
252 while (Size) {
253 unsigned VTSize = VT.getSizeInBits() / 8;
254 while (VTSize > Size) {
255 // For now, only use non-vector load / store's for the left-over pieces.
256 EVT NewVT = VT;
257 unsigned NewVTSize;
258
259 bool Found = false;
260 if (VT.isVector() || VT.isFloatingPoint()) {
261 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
264 Found = true;
265 else if (NewVT == MVT::i64 &&
267 isSafeMemOpType(MVT::f64)) {
268 // i64 is usually not legal on 32-bit targets, but f64 may be.
269 NewVT = MVT::f64;
270 Found = true;
271 }
272 }
273
274 if (!Found) {
275 do {
276 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
277 if (NewVT == MVT::i8)
278 break;
279 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
280 }
281 NewVTSize = NewVT.getSizeInBits() / 8;
282
283 // If the new VT cannot cover all of the remaining bits, then consider
284 // issuing a (or a pair of) unaligned and overlapping load / store.
285 unsigned Fast;
286 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
288 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
290 Fast)
291 VTSize = Size;
292 else {
293 VT = NewVT;
294 VTSize = NewVTSize;
295 }
296 }
297
298 if (++NumMemOps > Limit)
299 return false;
300
301 MemOps.push_back(VT);
302 Size -= VTSize;
303 }
304
305 return true;
306}
307
308/// Soften the operands of a comparison. This code is shared among BR_CC,
309/// SELECT_CC, and SETCC handlers.
311 SDValue &NewLHS, SDValue &NewRHS,
312 ISD::CondCode &CCCode,
313 const SDLoc &dl, const SDValue OldLHS,
314 const SDValue OldRHS) const {
315 SDValue Chain;
316 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
317 OldRHS, Chain);
318}
319
321 SDValue &NewLHS, SDValue &NewRHS,
322 ISD::CondCode &CCCode,
323 const SDLoc &dl, const SDValue OldLHS,
324 const SDValue OldRHS,
325 SDValue &Chain,
326 bool IsSignaling) const {
327 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
328 // not supporting it. We can update this code when libgcc provides such
329 // functions.
330
331 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
332 && "Unsupported setcc type!");
333
334 // Expand into one or more soft-fp libcall(s).
335 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
336 bool ShouldInvertCC = false;
337 switch (CCCode) {
338 case ISD::SETEQ:
339 case ISD::SETOEQ:
340 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
341 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
342 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
343 break;
344 case ISD::SETNE:
345 case ISD::SETUNE:
346 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
347 (VT == MVT::f64) ? RTLIB::UNE_F64 :
348 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
349 break;
350 case ISD::SETGE:
351 case ISD::SETOGE:
352 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
353 (VT == MVT::f64) ? RTLIB::OGE_F64 :
354 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
355 break;
356 case ISD::SETLT:
357 case ISD::SETOLT:
358 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
359 (VT == MVT::f64) ? RTLIB::OLT_F64 :
360 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
361 break;
362 case ISD::SETLE:
363 case ISD::SETOLE:
364 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
365 (VT == MVT::f64) ? RTLIB::OLE_F64 :
366 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
367 break;
368 case ISD::SETGT:
369 case ISD::SETOGT:
370 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
371 (VT == MVT::f64) ? RTLIB::OGT_F64 :
372 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
373 break;
374 case ISD::SETO:
375 ShouldInvertCC = true;
376 [[fallthrough]];
377 case ISD::SETUO:
378 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
379 (VT == MVT::f64) ? RTLIB::UO_F64 :
380 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
381 break;
382 case ISD::SETONE:
383 // SETONE = O && UNE
384 ShouldInvertCC = true;
385 [[fallthrough]];
386 case ISD::SETUEQ:
387 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
388 (VT == MVT::f64) ? RTLIB::UO_F64 :
389 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
390 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
391 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
392 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
393 break;
394 default:
395 // Invert CC for unordered comparisons
396 ShouldInvertCC = true;
397 switch (CCCode) {
398 case ISD::SETULT:
399 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
400 (VT == MVT::f64) ? RTLIB::OGE_F64 :
401 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
402 break;
403 case ISD::SETULE:
404 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
405 (VT == MVT::f64) ? RTLIB::OGT_F64 :
406 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
407 break;
408 case ISD::SETUGT:
409 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
410 (VT == MVT::f64) ? RTLIB::OLE_F64 :
411 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
412 break;
413 case ISD::SETUGE:
414 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
415 (VT == MVT::f64) ? RTLIB::OLT_F64 :
416 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
417 break;
418 default: llvm_unreachable("Do not know how to soften this setcc!");
419 }
420 }
421
422 // Use the target specific return value for comparison lib calls.
424 SDValue Ops[2] = {NewLHS, NewRHS};
426 EVT OpsVT[2] = { OldLHS.getValueType(),
427 OldRHS.getValueType() };
428 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT);
429 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
430 NewLHS = Call.first;
431 NewRHS = DAG.getConstant(0, dl, RetVT);
432
433 RTLIB::LibcallImpl LC1Impl = getLibcallImpl(LC1);
434 if (LC1Impl == RTLIB::Unsupported) {
436 "no libcall available to soften floating-point compare");
437 }
438
439 CCCode = getSoftFloatCmpLibcallPredicate(LC1Impl);
440 if (ShouldInvertCC) {
441 assert(RetVT.isInteger());
442 CCCode = getSetCCInverse(CCCode, RetVT);
443 }
444
445 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
446 // Update Chain.
447 Chain = Call.second;
448 } else {
449 RTLIB::LibcallImpl LC2Impl = getLibcallImpl(LC2);
450 if (LC2Impl == RTLIB::Unsupported) {
452 "no libcall available to soften floating-point compare");
453 }
454
455 assert(CCCode == (ShouldInvertCC ? ISD::SETEQ : ISD::SETNE) &&
456 "unordered call should be simple boolean");
457
458 EVT SetCCVT =
459 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
461 NewLHS = DAG.getNode(ISD::AssertZext, dl, RetVT, Call.first,
462 DAG.getValueType(MVT::i1));
463 }
464
465 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
466 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
467 CCCode = getSoftFloatCmpLibcallPredicate(LC2Impl);
468 if (ShouldInvertCC)
469 CCCode = getSetCCInverse(CCCode, RetVT);
470 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
471 if (Chain)
472 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
473 Call2.second);
474 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
475 Tmp.getValueType(), Tmp, NewLHS);
476 NewRHS = SDValue();
477 }
478}
479
480/// Return the entry encoding for a jump table in the current function. The
481/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
483 // In non-pic modes, just use the address of a block.
486
487 // Otherwise, use a label difference.
489}
490
492 SelectionDAG &DAG) const {
493 return Table;
494}
495
496/// This returns the relocation base for the given PIC jumptable, the same as
497/// getPICJumpTableRelocBase, but as an MCExpr.
498const MCExpr *
500 unsigned JTI,MCContext &Ctx) const{
501 // The normal PIC reloc base is the label at the start of the jump table.
502 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
503}
504
506 SDValue Addr, int JTI,
507 SelectionDAG &DAG) const {
508 SDValue Chain = Value;
509 // Jump table debug info is only needed if CodeView is enabled.
511 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
512 }
513 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
514}
515
516bool
518 const TargetMachine &TM = getTargetMachine();
519 const GlobalValue *GV = GA->getGlobal();
520
521 // If the address is not even local to this DSO we will have to load it from
522 // a got and then add the offset.
523 if (!TM.shouldAssumeDSOLocal(GV))
524 return false;
525
526 // If the code is position independent we will have to add a base register.
528 return false;
529
530 // Otherwise we can do it.
531 return true;
532}
533
534//===----------------------------------------------------------------------===//
535// Optimization Methods
536//===----------------------------------------------------------------------===//
537
538/// If the specified instruction has a constant integer operand and there are
539/// bits set in that constant that are not demanded, then clear those bits and
540/// return true.
542 const APInt &DemandedBits,
543 const APInt &DemandedElts,
544 TargetLoweringOpt &TLO) const {
545 SDLoc DL(Op);
546 unsigned Opcode = Op.getOpcode();
547
548 // Early-out if we've ended up calling an undemanded node, leave this to
549 // constant folding.
550 if (DemandedBits.isZero() || DemandedElts.isZero())
551 return false;
552
553 // Do target-specific constant optimization.
554 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
555 return TLO.New.getNode();
556
557 // FIXME: ISD::SELECT, ISD::SELECT_CC
558 switch (Opcode) {
559 default:
560 break;
561 case ISD::XOR:
562 case ISD::AND:
563 case ISD::OR: {
564 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
565 if (!Op1C || Op1C->isOpaque())
566 return false;
567
568 // If this is a 'not' op, don't touch it because that's a canonical form.
569 const APInt &C = Op1C->getAPIntValue();
570 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
571 return false;
572
573 if (!C.isSubsetOf(DemandedBits)) {
574 EVT VT = Op.getValueType();
575 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
576 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
577 Op->getFlags());
578 return TLO.CombineTo(Op, NewOp);
579 }
580
581 break;
582 }
583 }
584
585 return false;
586}
587
589 const APInt &DemandedBits,
590 TargetLoweringOpt &TLO) const {
591 EVT VT = Op.getValueType();
592 APInt DemandedElts = VT.isVector()
594 : APInt(1, 1);
595 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
596}
597
598/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
599/// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
600/// but it could be generalized for targets with other types of implicit
601/// widening casts.
603 const APInt &DemandedBits,
604 TargetLoweringOpt &TLO) const {
605 assert(Op.getNumOperands() == 2 &&
606 "ShrinkDemandedOp only supports binary operators!");
607 assert(Op.getNode()->getNumValues() == 1 &&
608 "ShrinkDemandedOp only supports nodes with one result!");
609
610 EVT VT = Op.getValueType();
611 SelectionDAG &DAG = TLO.DAG;
612 SDLoc dl(Op);
613
614 // Early return, as this function cannot handle vector types.
615 if (VT.isVector())
616 return false;
617
618 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
619 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
620 "ShrinkDemandedOp only supports operands that have the same size!");
621
622 // Don't do this if the node has another user, which may require the
623 // full value.
624 if (!Op.getNode()->hasOneUse())
625 return false;
626
627 // Search for the smallest integer type with free casts to and from
628 // Op's type. For expedience, just check power-of-2 integer types.
629 unsigned DemandedSize = DemandedBits.getActiveBits();
630 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
631 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
632 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
633 if (isTruncateFree(Op, SmallVT) && isZExtFree(SmallVT, VT)) {
634 // We found a type with free casts.
635
636 // If the operation has the 'disjoint' flag, then the
637 // operands on the new node are also disjoint.
638 SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint
640 unsigned Opcode = Op.getOpcode();
641 if (Opcode == ISD::PTRADD) {
642 // It isn't a ptradd anymore if it doesn't operate on the entire
643 // pointer.
644 Opcode = ISD::ADD;
645 }
646 SDValue X = DAG.getNode(
647 Opcode, dl, SmallVT,
648 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
649 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags);
650 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
651 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
652 return TLO.CombineTo(Op, Z);
653 }
654 }
655 return false;
656}
657
659 DAGCombinerInfo &DCI) const {
660 SelectionDAG &DAG = DCI.DAG;
661 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
662 !DCI.isBeforeLegalizeOps());
663 KnownBits Known;
664
665 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
666 if (Simplified) {
667 DCI.AddToWorklist(Op.getNode());
669 }
670 return Simplified;
671}
672
674 const APInt &DemandedElts,
675 DAGCombinerInfo &DCI) const {
676 SelectionDAG &DAG = DCI.DAG;
677 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
678 !DCI.isBeforeLegalizeOps());
679 KnownBits Known;
680
681 bool Simplified =
682 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
683 if (Simplified) {
684 DCI.AddToWorklist(Op.getNode());
686 }
687 return Simplified;
688}
689
691 KnownBits &Known,
693 unsigned Depth,
694 bool AssumeSingleUse) const {
695 EVT VT = Op.getValueType();
696
697 // Since the number of lanes in a scalable vector is unknown at compile time,
698 // we track one bit which is implicitly broadcast to all lanes. This means
699 // that all lanes in a scalable vector are considered demanded.
700 APInt DemandedElts = VT.isFixedLengthVector()
702 : APInt(1, 1);
703 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
704 AssumeSingleUse);
705}
706
707// TODO: Under what circumstances can we create nodes? Constant folding?
709 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
710 SelectionDAG &DAG, unsigned Depth) const {
711 EVT VT = Op.getValueType();
712
713 // Limit search depth.
715 return SDValue();
716
717 // Ignore UNDEFs.
718 if (Op.isUndef())
719 return SDValue();
720
721 // Not demanding any bits/elts from Op.
722 if (DemandedBits == 0 || DemandedElts == 0)
723 return DAG.getUNDEF(VT);
724
725 bool IsLE = DAG.getDataLayout().isLittleEndian();
726 unsigned NumElts = DemandedElts.getBitWidth();
727 unsigned BitWidth = DemandedBits.getBitWidth();
728 KnownBits LHSKnown, RHSKnown;
729 switch (Op.getOpcode()) {
730 case ISD::BITCAST: {
731 if (VT.isScalableVector())
732 return SDValue();
733
734 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
735 EVT SrcVT = Src.getValueType();
736 EVT DstVT = Op.getValueType();
737 if (SrcVT == DstVT)
738 return Src;
739
740 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
741 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
742 if (NumSrcEltBits == NumDstEltBits)
744 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
745 return DAG.getBitcast(DstVT, V);
746
747 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
748 unsigned Scale = NumDstEltBits / NumSrcEltBits;
749 unsigned NumSrcElts = SrcVT.getVectorNumElements();
750 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
751 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
752 for (unsigned i = 0; i != Scale; ++i) {
753 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
754 unsigned BitOffset = EltOffset * NumSrcEltBits;
755 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
756 if (!Sub.isZero()) {
757 DemandedSrcBits |= Sub;
758 for (unsigned j = 0; j != NumElts; ++j)
759 if (DemandedElts[j])
760 DemandedSrcElts.setBit((j * Scale) + i);
761 }
762 }
763
765 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
766 return DAG.getBitcast(DstVT, V);
767 }
768
769 // TODO - bigendian once we have test coverage.
770 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
771 unsigned Scale = NumSrcEltBits / NumDstEltBits;
772 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
773 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
774 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
775 for (unsigned i = 0; i != NumElts; ++i)
776 if (DemandedElts[i]) {
777 unsigned Offset = (i % Scale) * NumDstEltBits;
778 DemandedSrcBits.insertBits(DemandedBits, Offset);
779 DemandedSrcElts.setBit(i / Scale);
780 }
781
783 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
784 return DAG.getBitcast(DstVT, V);
785 }
786
787 break;
788 }
789 case ISD::AND: {
790 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
791 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
792
793 // If all of the demanded bits are known 1 on one side, return the other.
794 // These bits cannot contribute to the result of the 'and' in this
795 // context.
796 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
797 return Op.getOperand(0);
798 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
799 return Op.getOperand(1);
800 break;
801 }
802 case ISD::OR: {
803 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
804 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
805
806 // If all of the demanded bits are known zero on one side, return the
807 // other. These bits cannot contribute to the result of the 'or' in this
808 // context.
809 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
810 return Op.getOperand(0);
811 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
812 return Op.getOperand(1);
813 break;
814 }
815 case ISD::XOR: {
816 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
817 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
818
819 // If all of the demanded bits are known zero on one side, return the
820 // other.
821 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
822 return Op.getOperand(0);
823 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
824 return Op.getOperand(1);
825 break;
826 }
827 case ISD::ADD: {
828 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
829 if (RHSKnown.isZero())
830 return Op.getOperand(0);
831
832 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
833 if (LHSKnown.isZero())
834 return Op.getOperand(1);
835 break;
836 }
837 case ISD::SHL: {
838 // If we are only demanding sign bits then we can use the shift source
839 // directly.
840 if (std::optional<unsigned> MaxSA =
841 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
842 SDValue Op0 = Op.getOperand(0);
843 unsigned ShAmt = *MaxSA;
844 unsigned NumSignBits =
845 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
846 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
847 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
848 return Op0;
849 }
850 break;
851 }
852 case ISD::SRL: {
853 // If we are only demanding sign bits then we can use the shift source
854 // directly.
855 if (std::optional<unsigned> MaxSA =
856 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
857 SDValue Op0 = Op.getOperand(0);
858 unsigned ShAmt = *MaxSA;
859 // Must already be signbits in DemandedBits bounds, and can't demand any
860 // shifted in zeroes.
861 if (DemandedBits.countl_zero() >= ShAmt) {
862 unsigned NumSignBits =
863 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
864 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
865 return Op0;
866 }
867 }
868 break;
869 }
870 case ISD::SETCC: {
871 SDValue Op0 = Op.getOperand(0);
872 SDValue Op1 = Op.getOperand(1);
873 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
874 // If (1) we only need the sign-bit, (2) the setcc operands are the same
875 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
876 // -1, we may be able to bypass the setcc.
877 if (DemandedBits.isSignMask() &&
881 // If we're testing X < 0, then this compare isn't needed - just use X!
882 // FIXME: We're limiting to integer types here, but this should also work
883 // if we don't care about FP signed-zero. The use of SETLT with FP means
884 // that we don't care about NaNs.
885 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
887 return Op0;
888 }
889 break;
890 }
892 // If none of the extended bits are demanded, eliminate the sextinreg.
893 SDValue Op0 = Op.getOperand(0);
894 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
895 unsigned ExBits = ExVT.getScalarSizeInBits();
896 if (DemandedBits.getActiveBits() <= ExBits &&
898 return Op0;
899 // If the input is already sign extended, just drop the extension.
900 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
901 if (NumSignBits >= (BitWidth - ExBits + 1))
902 return Op0;
903 break;
904 }
908 if (VT.isScalableVector())
909 return SDValue();
910
911 // If we only want the lowest element and none of extended bits, then we can
912 // return the bitcasted source vector.
913 SDValue Src = Op.getOperand(0);
914 EVT SrcVT = Src.getValueType();
915 EVT DstVT = Op.getValueType();
916 if (IsLE && DemandedElts == 1 &&
917 DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
918 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
919 return DAG.getBitcast(DstVT, Src);
920 }
921 break;
922 }
924 if (VT.isScalableVector())
925 return SDValue();
926
927 // If we don't demand the inserted element, return the base vector.
928 SDValue Vec = Op.getOperand(0);
929 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
930 EVT VecVT = Vec.getValueType();
931 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
932 !DemandedElts[CIdx->getZExtValue()])
933 return Vec;
934 break;
935 }
937 if (VT.isScalableVector())
938 return SDValue();
939
940 SDValue Vec = Op.getOperand(0);
941 SDValue Sub = Op.getOperand(1);
942 uint64_t Idx = Op.getConstantOperandVal(2);
943 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
944 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
945 // If we don't demand the inserted subvector, return the base vector.
946 if (DemandedSubElts == 0)
947 return Vec;
948 break;
949 }
950 case ISD::VECTOR_SHUFFLE: {
952 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
953
954 // If all the demanded elts are from one operand and are inline,
955 // then we can use the operand directly.
956 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
957 for (unsigned i = 0; i != NumElts; ++i) {
958 int M = ShuffleMask[i];
959 if (M < 0 || !DemandedElts[i])
960 continue;
961 AllUndef = false;
962 IdentityLHS &= (M == (int)i);
963 IdentityRHS &= ((M - NumElts) == i);
964 }
965
966 if (AllUndef)
967 return DAG.getUNDEF(Op.getValueType());
968 if (IdentityLHS)
969 return Op.getOperand(0);
970 if (IdentityRHS)
971 return Op.getOperand(1);
972 break;
973 }
974 default:
975 // TODO: Probably okay to remove after audit; here to reduce change size
976 // in initial enablement patch for scalable vectors
977 if (VT.isScalableVector())
978 return SDValue();
979
980 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
982 Op, DemandedBits, DemandedElts, DAG, Depth))
983 return V;
984 break;
985 }
986 return SDValue();
987}
988
991 unsigned Depth) const {
992 EVT VT = Op.getValueType();
993 // Since the number of lanes in a scalable vector is unknown at compile time,
994 // we track one bit which is implicitly broadcast to all lanes. This means
995 // that all lanes in a scalable vector are considered demanded.
996 APInt DemandedElts = VT.isFixedLengthVector()
998 : APInt(1, 1);
999 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
1000 Depth);
1001}
1002
1004 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
1005 unsigned Depth) const {
1006 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
1007 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
1008 Depth);
1009}
1010
1011// Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
1012// or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
1015 const TargetLowering &TLI,
1016 const APInt &DemandedBits,
1017 const APInt &DemandedElts, unsigned Depth) {
1018 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
1019 "SRL or SRA node is required here!");
1020 // Is the right shift using an immediate value of 1?
1021 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
1022 if (!N1C || !N1C->isOne())
1023 return SDValue();
1024
1025 // We are looking for an avgfloor
1026 // add(ext, ext)
1027 // or one of these as a avgceil
1028 // add(add(ext, ext), 1)
1029 // add(add(ext, 1), ext)
1030 // add(ext, add(ext, 1))
1031 SDValue Add = Op.getOperand(0);
1032 if (Add.getOpcode() != ISD::ADD)
1033 return SDValue();
1034
1035 SDValue ExtOpA = Add.getOperand(0);
1036 SDValue ExtOpB = Add.getOperand(1);
1037 SDValue Add2;
1038 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
1039 ConstantSDNode *ConstOp;
1040 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
1041 ConstOp->isOne()) {
1042 ExtOpA = Op1;
1043 ExtOpB = Op3;
1044 Add2 = A;
1045 return true;
1046 }
1047 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1048 ConstOp->isOne()) {
1049 ExtOpA = Op1;
1050 ExtOpB = Op2;
1051 Add2 = A;
1052 return true;
1053 }
1054 return false;
1055 };
1056 bool IsCeil =
1057 (ExtOpA.getOpcode() == ISD::ADD &&
1058 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1059 (ExtOpB.getOpcode() == ISD::ADD &&
1060 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1061
1062 // If the shift is signed (sra):
1063 // - Needs >= 2 sign bit for both operands.
1064 // - Needs >= 2 zero bits.
1065 // If the shift is unsigned (srl):
1066 // - Needs >= 1 zero bit for both operands.
1067 // - Needs 1 demanded bit zero and >= 2 sign bits.
1068 SelectionDAG &DAG = TLO.DAG;
1069 unsigned ShiftOpc = Op.getOpcode();
1070 bool IsSigned = false;
1071 unsigned KnownBits;
1072 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1073 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1074 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1075 unsigned NumZeroA =
1076 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1077 unsigned NumZeroB =
1078 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1079 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1080
1081 switch (ShiftOpc) {
1082 default:
1083 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1084 case ISD::SRA: {
1085 if (NumZero >= 2 && NumSigned < NumZero) {
1086 IsSigned = false;
1087 KnownBits = NumZero;
1088 break;
1089 }
1090 if (NumSigned >= 1) {
1091 IsSigned = true;
1092 KnownBits = NumSigned;
1093 break;
1094 }
1095 return SDValue();
1096 }
1097 case ISD::SRL: {
1098 if (NumZero >= 1 && NumSigned < NumZero) {
1099 IsSigned = false;
1100 KnownBits = NumZero;
1101 break;
1102 }
1103 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1104 IsSigned = true;
1105 KnownBits = NumSigned;
1106 break;
1107 }
1108 return SDValue();
1109 }
1110 }
1111
1112 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1113 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1114
1115 // Find the smallest power-2 type that is legal for this vector size and
1116 // operation, given the original type size and the number of known sign/zero
1117 // bits.
1118 EVT VT = Op.getValueType();
1119 unsigned MinWidth =
1120 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1121 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1123 return SDValue();
1124 if (VT.isVector())
1125 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1126 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1127 // If we could not transform, and (both) adds are nuw/nsw, we can use the
1128 // larger type size to do the transform.
1129 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1130 return SDValue();
1131 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1132 Add.getOperand(1)) &&
1133 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1134 Add2.getOperand(1))))
1135 NVT = VT;
1136 else
1137 return SDValue();
1138 }
1139
1140 // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1141 // this is likely to stop other folds (reassociation, value tracking etc.)
1142 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1143 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1144 return SDValue();
1145
1146 SDLoc DL(Op);
1147 SDValue ResultAVG =
1148 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1149 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1150 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1151}
1152
1153/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1154/// result of Op are ever used downstream. If we can use this information to
1155/// simplify Op, create a new simplified DAG node and return true, returning the
1156/// original and new nodes in Old and New. Otherwise, analyze the expression and
1157/// return a mask of Known bits for the expression (used to simplify the
1158/// caller). The Known bits may only be accurate for those bits in the
1159/// OriginalDemandedBits and OriginalDemandedElts.
1161 SDValue Op, const APInt &OriginalDemandedBits,
1162 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1163 unsigned Depth, bool AssumeSingleUse) const {
1164 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1165 assert(Op.getScalarValueSizeInBits() == BitWidth &&
1166 "Mask size mismatches value type size!");
1167
1168 // Don't know anything.
1169 Known = KnownBits(BitWidth);
1170
1171 EVT VT = Op.getValueType();
1172 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1173 unsigned NumElts = OriginalDemandedElts.getBitWidth();
1174 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1175 "Unexpected vector size");
1176
1177 APInt DemandedBits = OriginalDemandedBits;
1178 APInt DemandedElts = OriginalDemandedElts;
1179 SDLoc dl(Op);
1180
1181 // Undef operand.
1182 if (Op.isUndef())
1183 return false;
1184
1185 // We can't simplify target constants.
1186 if (Op.getOpcode() == ISD::TargetConstant)
1187 return false;
1188
1189 if (Op.getOpcode() == ISD::Constant) {
1190 // We know all of the bits for a constant!
1191 Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1192 return false;
1193 }
1194
1195 if (Op.getOpcode() == ISD::ConstantFP) {
1196 // We know all of the bits for a floating point constant!
1198 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1199 return false;
1200 }
1201
1202 // Other users may use these bits.
1203 bool HasMultiUse = false;
1204 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1206 // Limit search depth.
1207 return false;
1208 }
1209 // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1211 DemandedElts = APInt::getAllOnes(NumElts);
1212 HasMultiUse = true;
1213 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1214 // Not demanding any bits/elts from Op.
1215 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1216 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1217 // Limit search depth.
1218 return false;
1219 }
1220
1221 KnownBits Known2;
1222 switch (Op.getOpcode()) {
1223 case ISD::SCALAR_TO_VECTOR: {
1224 if (VT.isScalableVector())
1225 return false;
1226 if (!DemandedElts[0])
1227 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1228
1229 KnownBits SrcKnown;
1230 SDValue Src = Op.getOperand(0);
1231 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1232 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1233 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1234 return true;
1235
1236 // Upper elements are undef, so only get the knownbits if we just demand
1237 // the bottom element.
1238 if (DemandedElts == 1)
1239 Known = SrcKnown.anyextOrTrunc(BitWidth);
1240 break;
1241 }
1242 case ISD::BUILD_VECTOR:
1243 // Collect the known bits that are shared by every demanded element.
1244 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1245 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1246 return false; // Don't fall through, will infinitely loop.
1247 case ISD::SPLAT_VECTOR: {
1248 SDValue Scl = Op.getOperand(0);
1249 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1250 KnownBits KnownScl;
1251 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1252 return true;
1253
1254 // Implicitly truncate the bits to match the official semantics of
1255 // SPLAT_VECTOR.
1256 Known = KnownScl.trunc(BitWidth);
1257 break;
1258 }
1259 case ISD::LOAD: {
1260 auto *LD = cast<LoadSDNode>(Op);
1261 if (getTargetConstantFromLoad(LD)) {
1262 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1263 return false; // Don't fall through, will infinitely loop.
1264 }
1265 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1266 // If this is a ZEXTLoad and we are looking at the loaded value.
1267 EVT MemVT = LD->getMemoryVT();
1268 unsigned MemBits = MemVT.getScalarSizeInBits();
1269 Known.Zero.setBitsFrom(MemBits);
1270 return false; // Don't fall through, will infinitely loop.
1271 }
1272 break;
1273 }
1275 if (VT.isScalableVector())
1276 return false;
1277 SDValue Vec = Op.getOperand(0);
1278 SDValue Scl = Op.getOperand(1);
1279 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1280 EVT VecVT = Vec.getValueType();
1281
1282 // If index isn't constant, assume we need all vector elements AND the
1283 // inserted element.
1284 APInt DemandedVecElts(DemandedElts);
1285 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1286 unsigned Idx = CIdx->getZExtValue();
1287 DemandedVecElts.clearBit(Idx);
1288
1289 // Inserted element is not required.
1290 if (!DemandedElts[Idx])
1291 return TLO.CombineTo(Op, Vec);
1292 }
1293
1294 KnownBits KnownScl;
1295 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1296 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1297 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1298 return true;
1299
1300 Known = KnownScl.anyextOrTrunc(BitWidth);
1301
1302 KnownBits KnownVec;
1303 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1304 Depth + 1))
1305 return true;
1306
1307 if (!!DemandedVecElts)
1308 Known = Known.intersectWith(KnownVec);
1309
1310 return false;
1311 }
1312 case ISD::INSERT_SUBVECTOR: {
1313 if (VT.isScalableVector())
1314 return false;
1315 // Demand any elements from the subvector and the remainder from the src its
1316 // inserted into.
1317 SDValue Src = Op.getOperand(0);
1318 SDValue Sub = Op.getOperand(1);
1319 uint64_t Idx = Op.getConstantOperandVal(2);
1320 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1321 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1322 APInt DemandedSrcElts = DemandedElts;
1323 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
1324
1325 KnownBits KnownSub, KnownSrc;
1326 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1327 Depth + 1))
1328 return true;
1329 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1330 Depth + 1))
1331 return true;
1332
1333 Known.setAllConflict();
1334 if (!!DemandedSubElts)
1335 Known = Known.intersectWith(KnownSub);
1336 if (!!DemandedSrcElts)
1337 Known = Known.intersectWith(KnownSrc);
1338
1339 // Attempt to avoid multi-use src if we don't need anything from it.
1340 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1341 !DemandedSrcElts.isAllOnes()) {
1343 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1345 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1346 if (NewSub || NewSrc) {
1347 NewSub = NewSub ? NewSub : Sub;
1348 NewSrc = NewSrc ? NewSrc : Src;
1349 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1350 Op.getOperand(2));
1351 return TLO.CombineTo(Op, NewOp);
1352 }
1353 }
1354 break;
1355 }
1357 if (VT.isScalableVector())
1358 return false;
1359 // Offset the demanded elts by the subvector index.
1360 SDValue Src = Op.getOperand(0);
1361 if (Src.getValueType().isScalableVector())
1362 break;
1363 uint64_t Idx = Op.getConstantOperandVal(1);
1364 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1365 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1366
1367 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1368 Depth + 1))
1369 return true;
1370
1371 // Attempt to avoid multi-use src if we don't need anything from it.
1372 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1374 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1375 if (DemandedSrc) {
1376 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1377 Op.getOperand(1));
1378 return TLO.CombineTo(Op, NewOp);
1379 }
1380 }
1381 break;
1382 }
1383 case ISD::CONCAT_VECTORS: {
1384 if (VT.isScalableVector())
1385 return false;
1386 Known.setAllConflict();
1387 EVT SubVT = Op.getOperand(0).getValueType();
1388 unsigned NumSubVecs = Op.getNumOperands();
1389 unsigned NumSubElts = SubVT.getVectorNumElements();
1390 for (unsigned i = 0; i != NumSubVecs; ++i) {
1391 APInt DemandedSubElts =
1392 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1393 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1394 Known2, TLO, Depth + 1))
1395 return true;
1396 // Known bits are shared by every demanded subvector element.
1397 if (!!DemandedSubElts)
1398 Known = Known.intersectWith(Known2);
1399 }
1400 break;
1401 }
1402 case ISD::VECTOR_SHUFFLE: {
1403 assert(!VT.isScalableVector());
1404 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1405
1406 // Collect demanded elements from shuffle operands..
1407 APInt DemandedLHS, DemandedRHS;
1408 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1409 DemandedRHS))
1410 break;
1411
1412 if (!!DemandedLHS || !!DemandedRHS) {
1413 SDValue Op0 = Op.getOperand(0);
1414 SDValue Op1 = Op.getOperand(1);
1415
1416 Known.setAllConflict();
1417 if (!!DemandedLHS) {
1418 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1419 Depth + 1))
1420 return true;
1421 Known = Known.intersectWith(Known2);
1422 }
1423 if (!!DemandedRHS) {
1424 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1425 Depth + 1))
1426 return true;
1427 Known = Known.intersectWith(Known2);
1428 }
1429
1430 // Attempt to avoid multi-use ops if we don't need anything from them.
1432 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1434 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1435 if (DemandedOp0 || DemandedOp1) {
1436 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1437 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1438 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1439 return TLO.CombineTo(Op, NewOp);
1440 }
1441 }
1442 break;
1443 }
1444 case ISD::AND: {
1445 SDValue Op0 = Op.getOperand(0);
1446 SDValue Op1 = Op.getOperand(1);
1447
1448 // If the RHS is a constant, check to see if the LHS would be zero without
1449 // using the bits from the RHS. Below, we use knowledge about the RHS to
1450 // simplify the LHS, here we're using information from the LHS to simplify
1451 // the RHS.
1452 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1453 // Do not increment Depth here; that can cause an infinite loop.
1454 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1455 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1456 if ((LHSKnown.Zero & DemandedBits) ==
1457 (~RHSC->getAPIntValue() & DemandedBits))
1458 return TLO.CombineTo(Op, Op0);
1459
1460 // If any of the set bits in the RHS are known zero on the LHS, shrink
1461 // the constant.
1462 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1463 DemandedElts, TLO))
1464 return true;
1465
1466 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1467 // constant, but if this 'and' is only clearing bits that were just set by
1468 // the xor, then this 'and' can be eliminated by shrinking the mask of
1469 // the xor. For example, for a 32-bit X:
1470 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1471 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1472 LHSKnown.One == ~RHSC->getAPIntValue()) {
1473 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1474 return TLO.CombineTo(Op, Xor);
1475 }
1476 }
1477
1478 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1479 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1480 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1481 (Op0.getOperand(0).isUndef() ||
1483 Op0->hasOneUse()) {
1484 unsigned NumSubElts =
1486 unsigned SubIdx = Op0.getConstantOperandVal(2);
1487 APInt DemandedSub =
1488 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1489 KnownBits KnownSubMask =
1490 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1491 if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1492 SDValue NewAnd =
1493 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1494 SDValue NewInsert =
1495 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1496 Op0.getOperand(1), Op0.getOperand(2));
1497 return TLO.CombineTo(Op, NewInsert);
1498 }
1499 }
1500
1501 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1502 Depth + 1))
1503 return true;
1504 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1505 Known2, TLO, Depth + 1))
1506 return true;
1507
1508 // If all of the demanded bits are known one on one side, return the other.
1509 // These bits cannot contribute to the result of the 'and'.
1510 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1511 return TLO.CombineTo(Op, Op0);
1512 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1513 return TLO.CombineTo(Op, Op1);
1514 // If all of the demanded bits in the inputs are known zeros, return zero.
1515 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1516 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1517 // If the RHS is a constant, see if we can simplify it.
1518 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1519 TLO))
1520 return true;
1521 // If the operation can be done in a smaller type, do so.
1523 return true;
1524
1525 // Attempt to avoid multi-use ops if we don't need anything from them.
1526 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1528 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1530 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1531 if (DemandedOp0 || DemandedOp1) {
1532 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1533 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1534 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1535 return TLO.CombineTo(Op, NewOp);
1536 }
1537 }
1538
1539 Known &= Known2;
1540 break;
1541 }
1542 case ISD::OR: {
1543 SDValue Op0 = Op.getOperand(0);
1544 SDValue Op1 = Op.getOperand(1);
1545 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1546 Depth + 1)) {
1547 Op->dropFlags(SDNodeFlags::Disjoint);
1548 return true;
1549 }
1550
1551 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1552 Known2, TLO, Depth + 1)) {
1553 Op->dropFlags(SDNodeFlags::Disjoint);
1554 return true;
1555 }
1556
1557 // If all of the demanded bits are known zero on one side, return the other.
1558 // These bits cannot contribute to the result of the 'or'.
1559 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1560 return TLO.CombineTo(Op, Op0);
1561 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1562 return TLO.CombineTo(Op, Op1);
1563 // If the RHS is a constant, see if we can simplify it.
1564 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1565 return true;
1566 // If the operation can be done in a smaller type, do so.
1568 return true;
1569
1570 // Attempt to avoid multi-use ops if we don't need anything from them.
1571 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1573 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1575 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1576 if (DemandedOp0 || DemandedOp1) {
1577 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1578 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1579 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1580 return TLO.CombineTo(Op, NewOp);
1581 }
1582 }
1583
1584 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1585 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1586 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1587 Op0->hasOneUse() && Op1->hasOneUse()) {
1588 // Attempt to match all commutations - m_c_Or would've been useful!
1589 for (int I = 0; I != 2; ++I) {
1590 SDValue X = Op.getOperand(I).getOperand(0);
1591 SDValue C1 = Op.getOperand(I).getOperand(1);
1592 SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1593 SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1594 if (Alt.getOpcode() == ISD::OR) {
1595 for (int J = 0; J != 2; ++J) {
1596 if (X == Alt.getOperand(J)) {
1597 SDValue Y = Alt.getOperand(1 - J);
1598 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1599 {C1, C2})) {
1600 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1601 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1602 return TLO.CombineTo(
1603 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1604 }
1605 }
1606 }
1607 }
1608 }
1609 }
1610
1611 Known |= Known2;
1612 break;
1613 }
1614 case ISD::XOR: {
1615 SDValue Op0 = Op.getOperand(0);
1616 SDValue Op1 = Op.getOperand(1);
1617
1618 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1619 Depth + 1))
1620 return true;
1621 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1622 Depth + 1))
1623 return true;
1624
1625 // If all of the demanded bits are known zero on one side, return the other.
1626 // These bits cannot contribute to the result of the 'xor'.
1627 if (DemandedBits.isSubsetOf(Known.Zero))
1628 return TLO.CombineTo(Op, Op0);
1629 if (DemandedBits.isSubsetOf(Known2.Zero))
1630 return TLO.CombineTo(Op, Op1);
1631 // If the operation can be done in a smaller type, do so.
1633 return true;
1634
1635 // If all of the unknown bits are known to be zero on one side or the other
1636 // turn this into an *inclusive* or.
1637 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1638 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1639 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1640
1641 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1642 if (C) {
1643 // If one side is a constant, and all of the set bits in the constant are
1644 // also known set on the other side, turn this into an AND, as we know
1645 // the bits will be cleared.
1646 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1647 // NB: it is okay if more bits are known than are requested
1648 if (C->getAPIntValue() == Known2.One) {
1649 SDValue ANDC =
1650 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1651 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1652 }
1653
1654 // If the RHS is a constant, see if we can change it. Don't alter a -1
1655 // constant because that's a 'not' op, and that is better for combining
1656 // and codegen.
1657 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1658 // We're flipping all demanded bits. Flip the undemanded bits too.
1659 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1660 return TLO.CombineTo(Op, New);
1661 }
1662
1663 unsigned Op0Opcode = Op0.getOpcode();
1664 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1665 if (ConstantSDNode *ShiftC =
1666 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1667 // Don't crash on an oversized shift. We can not guarantee that a
1668 // bogus shift has been simplified to undef.
1669 if (ShiftC->getAPIntValue().ult(BitWidth)) {
1670 uint64_t ShiftAmt = ShiftC->getZExtValue();
1672 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1673 : Ones.lshr(ShiftAmt);
1674 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1676 // If the xor constant is a demanded mask, do a 'not' before the
1677 // shift:
1678 // xor (X << ShiftC), XorC --> (not X) << ShiftC
1679 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1680 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1681 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1682 Op0.getOperand(1)));
1683 }
1684 }
1685 }
1686 }
1687 }
1688
1689 // If we can't turn this into a 'not', try to shrink the constant.
1690 if (!C || !C->isAllOnes())
1691 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1692 return true;
1693
1694 // Attempt to avoid multi-use ops if we don't need anything from them.
1695 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1697 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1699 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1700 if (DemandedOp0 || DemandedOp1) {
1701 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1702 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1703 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1704 return TLO.CombineTo(Op, NewOp);
1705 }
1706 }
1707
1708 Known ^= Known2;
1709 break;
1710 }
1711 case ISD::SELECT:
1712 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1713 Known, TLO, Depth + 1))
1714 return true;
1715 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1716 Known2, TLO, Depth + 1))
1717 return true;
1718
1719 // If the operands are constants, see if we can simplify them.
1720 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1721 return true;
1722
1723 // Only known if known in both the LHS and RHS.
1724 Known = Known.intersectWith(Known2);
1725 break;
1726 case ISD::VSELECT:
1727 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1728 Known, TLO, Depth + 1))
1729 return true;
1730 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1731 Known2, TLO, Depth + 1))
1732 return true;
1733
1734 // Only known if known in both the LHS and RHS.
1735 Known = Known.intersectWith(Known2);
1736 break;
1737 case ISD::SELECT_CC:
1738 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1739 Known, TLO, Depth + 1))
1740 return true;
1741 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1742 Known2, TLO, Depth + 1))
1743 return true;
1744
1745 // If the operands are constants, see if we can simplify them.
1746 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1747 return true;
1748
1749 // Only known if known in both the LHS and RHS.
1750 Known = Known.intersectWith(Known2);
1751 break;
1752 case ISD::SETCC: {
1753 SDValue Op0 = Op.getOperand(0);
1754 SDValue Op1 = Op.getOperand(1);
1755 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1756 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1757 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1758 // -1, we may be able to bypass the setcc.
1759 if (DemandedBits.isSignMask() &&
1763 // If we're testing X < 0, then this compare isn't needed - just use X!
1764 // FIXME: We're limiting to integer types here, but this should also work
1765 // if we don't care about FP signed-zero. The use of SETLT with FP means
1766 // that we don't care about NaNs.
1767 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1769 return TLO.CombineTo(Op, Op0);
1770
1771 // TODO: Should we check for other forms of sign-bit comparisons?
1772 // Examples: X <= -1, X >= 0
1773 }
1774 if (getBooleanContents(Op0.getValueType()) ==
1776 BitWidth > 1)
1777 Known.Zero.setBitsFrom(1);
1778 break;
1779 }
1780 case ISD::SHL: {
1781 SDValue Op0 = Op.getOperand(0);
1782 SDValue Op1 = Op.getOperand(1);
1783 EVT ShiftVT = Op1.getValueType();
1784
1785 if (std::optional<unsigned> KnownSA =
1786 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1787 unsigned ShAmt = *KnownSA;
1788 if (ShAmt == 0)
1789 return TLO.CombineTo(Op, Op0);
1790
1791 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1792 // single shift. We can do this if the bottom bits (which are shifted
1793 // out) are never demanded.
1794 // TODO - support non-uniform vector amounts.
1795 if (Op0.getOpcode() == ISD::SRL) {
1796 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1797 if (std::optional<unsigned> InnerSA =
1798 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1799 unsigned C1 = *InnerSA;
1800 unsigned Opc = ISD::SHL;
1801 int Diff = ShAmt - C1;
1802 if (Diff < 0) {
1803 Diff = -Diff;
1804 Opc = ISD::SRL;
1805 }
1806 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1807 return TLO.CombineTo(
1808 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1809 }
1810 }
1811 }
1812
1813 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1814 // are not demanded. This will likely allow the anyext to be folded away.
1815 // TODO - support non-uniform vector amounts.
1816 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1817 SDValue InnerOp = Op0.getOperand(0);
1818 EVT InnerVT = InnerOp.getValueType();
1819 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1820 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1821 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1822 SDValue NarrowShl = TLO.DAG.getNode(
1823 ISD::SHL, dl, InnerVT, InnerOp,
1824 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1825 return TLO.CombineTo(
1826 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1827 }
1828
1829 // Repeat the SHL optimization above in cases where an extension
1830 // intervenes: (shl (anyext (shr x, c1)), c2) to
1831 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1832 // aren't demanded (as above) and that the shifted upper c1 bits of
1833 // x aren't demanded.
1834 // TODO - support non-uniform vector amounts.
1835 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1836 InnerOp.hasOneUse()) {
1837 if (std::optional<unsigned> SA2 = TLO.DAG.getValidShiftAmount(
1838 InnerOp, DemandedElts, Depth + 2)) {
1839 unsigned InnerShAmt = *SA2;
1840 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1841 DemandedBits.getActiveBits() <=
1842 (InnerBits - InnerShAmt + ShAmt) &&
1843 DemandedBits.countr_zero() >= ShAmt) {
1844 SDValue NewSA =
1845 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1846 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1847 InnerOp.getOperand(0));
1848 return TLO.CombineTo(
1849 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1850 }
1851 }
1852 }
1853 }
1854
1855 APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1856 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1857 Depth + 1)) {
1858 // Disable the nsw and nuw flags. We can no longer guarantee that we
1859 // won't wrap after simplification.
1860 Op->dropFlags(SDNodeFlags::NoWrap);
1861 return true;
1862 }
1863 Known <<= ShAmt;
1864 // low bits known zero.
1865 Known.Zero.setLowBits(ShAmt);
1866
1867 // Attempt to avoid multi-use ops if we don't need anything from them.
1868 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1870 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1871 if (DemandedOp0) {
1872 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1873 return TLO.CombineTo(Op, NewOp);
1874 }
1875 }
1876
1877 // TODO: Can we merge this fold with the one below?
1878 // Try shrinking the operation as long as the shift amount will still be
1879 // in range.
1880 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1881 Op.getNode()->hasOneUse()) {
1882 // Search for the smallest integer type with free casts to and from
1883 // Op's type. For expedience, just check power-of-2 integer types.
1884 unsigned DemandedSize = DemandedBits.getActiveBits();
1885 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1886 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1887 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1888 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1889 isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1890 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1891 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1892 assert(DemandedSize <= SmallVTBits &&
1893 "Narrowed below demanded bits?");
1894 // We found a type with free casts.
1895 SDValue NarrowShl = TLO.DAG.getNode(
1896 ISD::SHL, dl, SmallVT,
1897 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1898 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1899 return TLO.CombineTo(
1900 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1901 }
1902 }
1903 }
1904
1905 // Narrow shift to lower half - similar to ShrinkDemandedOp.
1906 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1907 // Only do this if we demand the upper half so the knownbits are correct.
1908 unsigned HalfWidth = BitWidth / 2;
1909 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1910 DemandedBits.countLeadingOnes() >= HalfWidth) {
1911 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1912 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1913 isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1914 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1915 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1916 // If we're demanding the upper bits at all, we must ensure
1917 // that the upper bits of the shift result are known to be zero,
1918 // which is equivalent to the narrow shift being NUW.
1919 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1920 bool IsNSW = Known.countMinSignBits() > HalfWidth;
1921 SDNodeFlags Flags;
1922 Flags.setNoSignedWrap(IsNSW);
1923 Flags.setNoUnsignedWrap(IsNUW);
1924 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1925 SDValue NewShiftAmt =
1926 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1927 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1928 NewShiftAmt, Flags);
1929 SDValue NewExt =
1930 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1931 return TLO.CombineTo(Op, NewExt);
1932 }
1933 }
1934 }
1935 } else {
1936 // This is a variable shift, so we can't shift the demand mask by a known
1937 // amount. But if we are not demanding high bits, then we are not
1938 // demanding those bits from the pre-shifted operand either.
1939 if (unsigned CTLZ = DemandedBits.countl_zero()) {
1940 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1941 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1942 Depth + 1)) {
1943 // Disable the nsw and nuw flags. We can no longer guarantee that we
1944 // won't wrap after simplification.
1945 Op->dropFlags(SDNodeFlags::NoWrap);
1946 return true;
1947 }
1948 Known.resetAll();
1949 }
1950 }
1951
1952 // If we are only demanding sign bits then we can use the shift source
1953 // directly.
1954 if (std::optional<unsigned> MaxSA =
1955 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1956 unsigned ShAmt = *MaxSA;
1957 unsigned NumSignBits =
1958 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1959 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1960 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1961 return TLO.CombineTo(Op, Op0);
1962 }
1963 break;
1964 }
1965 case ISD::SRL: {
1966 SDValue Op0 = Op.getOperand(0);
1967 SDValue Op1 = Op.getOperand(1);
1968 EVT ShiftVT = Op1.getValueType();
1969
1970 if (std::optional<unsigned> KnownSA =
1971 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1972 unsigned ShAmt = *KnownSA;
1973 if (ShAmt == 0)
1974 return TLO.CombineTo(Op, Op0);
1975
1976 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1977 // single shift. We can do this if the top bits (which are shifted out)
1978 // are never demanded.
1979 // TODO - support non-uniform vector amounts.
1980 if (Op0.getOpcode() == ISD::SHL) {
1981 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1982 if (std::optional<unsigned> InnerSA =
1983 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1984 unsigned C1 = *InnerSA;
1985 unsigned Opc = ISD::SRL;
1986 int Diff = ShAmt - C1;
1987 if (Diff < 0) {
1988 Diff = -Diff;
1989 Opc = ISD::SHL;
1990 }
1991 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1992 return TLO.CombineTo(
1993 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1994 }
1995 }
1996 }
1997
1998 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1999 // single sra. We can do this if the top bits are never demanded.
2000 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
2001 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
2002 if (std::optional<unsigned> InnerSA =
2003 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2004 unsigned C1 = *InnerSA;
2005 // Clamp the combined shift amount if it exceeds the bit width.
2006 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
2007 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
2008 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
2009 Op0.getOperand(0), NewSA));
2010 }
2011 }
2012 }
2013
2014 APInt InDemandedMask = (DemandedBits << ShAmt);
2015
2016 // If the shift is exact, then it does demand the low bits (and knows that
2017 // they are zero).
2018 if (Op->getFlags().hasExact())
2019 InDemandedMask.setLowBits(ShAmt);
2020
2021 // Narrow shift to lower half - similar to ShrinkDemandedOp.
2022 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
2023 if ((BitWidth % 2) == 0 && !VT.isVector()) {
2025 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
2026 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
2027 isTypeDesirableForOp(ISD::SRL, HalfVT) &&
2028 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
2029 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
2030 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
2031 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
2032 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
2033 SDValue NewShiftAmt =
2034 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
2035 SDValue NewShift =
2036 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
2037 return TLO.CombineTo(
2038 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2039 }
2040 }
2041
2042 // Compute the new bits that are at the top now.
2043 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2044 Depth + 1))
2045 return true;
2046 Known >>= ShAmt;
2047 // High bits known zero.
2048 Known.Zero.setHighBits(ShAmt);
2049
2050 // Attempt to avoid multi-use ops if we don't need anything from them.
2051 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2053 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2054 if (DemandedOp0) {
2055 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2056 return TLO.CombineTo(Op, NewOp);
2057 }
2058 }
2059 } else {
2060 // Use generic knownbits computation as it has support for non-uniform
2061 // shift amounts.
2062 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2063 }
2064
2065 // If we are only demanding sign bits then we can use the shift source
2066 // directly.
2067 if (std::optional<unsigned> MaxSA =
2068 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
2069 unsigned ShAmt = *MaxSA;
2070 // Must already be signbits in DemandedBits bounds, and can't demand any
2071 // shifted in zeroes.
2072 if (DemandedBits.countl_zero() >= ShAmt) {
2073 unsigned NumSignBits =
2074 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
2075 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
2076 return TLO.CombineTo(Op, Op0);
2077 }
2078 }
2079
2080 // Try to match AVG patterns (after shift simplification).
2081 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2082 DemandedElts, Depth + 1))
2083 return TLO.CombineTo(Op, AVG);
2084
2085 break;
2086 }
2087 case ISD::SRA: {
2088 SDValue Op0 = Op.getOperand(0);
2089 SDValue Op1 = Op.getOperand(1);
2090 EVT ShiftVT = Op1.getValueType();
2091
2092 // If we only want bits that already match the signbit then we don't need
2093 // to shift.
2094 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2095 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2096 NumHiDemandedBits)
2097 return TLO.CombineTo(Op, Op0);
2098
2099 // If this is an arithmetic shift right and only the low-bit is set, we can
2100 // always convert this into a logical shr, even if the shift amount is
2101 // variable. The low bit of the shift cannot be an input sign bit unless
2102 // the shift amount is >= the size of the datatype, which is undefined.
2103 if (DemandedBits.isOne())
2104 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2105
2106 if (std::optional<unsigned> KnownSA =
2107 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2108 unsigned ShAmt = *KnownSA;
2109 if (ShAmt == 0)
2110 return TLO.CombineTo(Op, Op0);
2111
2112 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2113 // supports sext_inreg.
2114 if (Op0.getOpcode() == ISD::SHL) {
2115 if (std::optional<unsigned> InnerSA =
2116 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2117 unsigned LowBits = BitWidth - ShAmt;
2118 EVT ExtVT = VT.changeElementType(
2119 *TLO.DAG.getContext(),
2120 EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits));
2121
2122 if (*InnerSA == ShAmt) {
2123 if (!TLO.LegalOperations() ||
2125 return TLO.CombineTo(
2126 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2127 Op0.getOperand(0),
2128 TLO.DAG.getValueType(ExtVT)));
2129
2130 // Even if we can't convert to sext_inreg, we might be able to
2131 // remove this shift pair if the input is already sign extended.
2132 unsigned NumSignBits =
2133 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2134 if (NumSignBits > ShAmt)
2135 return TLO.CombineTo(Op, Op0.getOperand(0));
2136 }
2137 }
2138 }
2139
2140 APInt InDemandedMask = (DemandedBits << ShAmt);
2141
2142 // If the shift is exact, then it does demand the low bits (and knows that
2143 // they are zero).
2144 if (Op->getFlags().hasExact())
2145 InDemandedMask.setLowBits(ShAmt);
2146
2147 // If any of the demanded bits are produced by the sign extension, we also
2148 // demand the input sign bit.
2149 if (DemandedBits.countl_zero() < ShAmt)
2150 InDemandedMask.setSignBit();
2151
2152 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2153 Depth + 1))
2154 return true;
2155 Known >>= ShAmt;
2156
2157 // If the input sign bit is known to be zero, or if none of the top bits
2158 // are demanded, turn this into an unsigned shift right.
2159 if (Known.Zero[BitWidth - ShAmt - 1] ||
2160 DemandedBits.countl_zero() >= ShAmt) {
2161 SDNodeFlags Flags;
2162 Flags.setExact(Op->getFlags().hasExact());
2163 return TLO.CombineTo(
2164 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2165 }
2166
2167 int Log2 = DemandedBits.exactLogBase2();
2168 if (Log2 >= 0) {
2169 // The bit must come from the sign.
2170 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2171 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2172 }
2173
2174 if (Known.One[BitWidth - ShAmt - 1])
2175 // New bits are known one.
2176 Known.One.setHighBits(ShAmt);
2177
2178 // Attempt to avoid multi-use ops if we don't need anything from them.
2179 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2181 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2182 if (DemandedOp0) {
2183 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2184 return TLO.CombineTo(Op, NewOp);
2185 }
2186 }
2187 }
2188
2189 // Try to match AVG patterns (after shift simplification).
2190 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2191 DemandedElts, Depth + 1))
2192 return TLO.CombineTo(Op, AVG);
2193
2194 break;
2195 }
2196 case ISD::FSHL:
2197 case ISD::FSHR: {
2198 SDValue Op0 = Op.getOperand(0);
2199 SDValue Op1 = Op.getOperand(1);
2200 SDValue Op2 = Op.getOperand(2);
2201 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2202
2203 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2204 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2205
2206 // For fshl, 0-shift returns the 1st arg.
2207 // For fshr, 0-shift returns the 2nd arg.
2208 if (Amt == 0) {
2209 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2210 Known, TLO, Depth + 1))
2211 return true;
2212 break;
2213 }
2214
2215 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2216 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2217 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2218 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2219 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2220 Depth + 1))
2221 return true;
2222 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2223 Depth + 1))
2224 return true;
2225
2226 Known2 <<= (IsFSHL ? Amt : (BitWidth - Amt));
2227 Known >>= (IsFSHL ? (BitWidth - Amt) : Amt);
2228 Known = Known.unionWith(Known2);
2229
2230 // Attempt to avoid multi-use ops if we don't need anything from them.
2231 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2232 !DemandedElts.isAllOnes()) {
2234 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2236 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2237 if (DemandedOp0 || DemandedOp1) {
2238 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2239 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2240 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2241 DemandedOp1, Op2);
2242 return TLO.CombineTo(Op, NewOp);
2243 }
2244 }
2245 }
2246
2247 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2248 if (isPowerOf2_32(BitWidth)) {
2249 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2250 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2251 Known2, TLO, Depth + 1))
2252 return true;
2253 }
2254 break;
2255 }
2256 case ISD::ROTL:
2257 case ISD::ROTR: {
2258 SDValue Op0 = Op.getOperand(0);
2259 SDValue Op1 = Op.getOperand(1);
2260 bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2261
2262 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2263 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2264 return TLO.CombineTo(Op, Op0);
2265
2266 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2267 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2268 unsigned RevAmt = BitWidth - Amt;
2269
2270 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2271 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2272 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2273 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2274 Depth + 1))
2275 return true;
2276
2277 // rot*(x, 0) --> x
2278 if (Amt == 0)
2279 return TLO.CombineTo(Op, Op0);
2280
2281 // See if we don't demand either half of the rotated bits.
2282 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2283 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2284 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2285 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2286 }
2287 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2288 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2289 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2290 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2291 }
2292 }
2293
2294 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2295 if (isPowerOf2_32(BitWidth)) {
2296 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2297 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2298 Depth + 1))
2299 return true;
2300 }
2301 break;
2302 }
2303 case ISD::SMIN:
2304 case ISD::SMAX:
2305 case ISD::UMIN:
2306 case ISD::UMAX: {
2307 unsigned Opc = Op.getOpcode();
2308 SDValue Op0 = Op.getOperand(0);
2309 SDValue Op1 = Op.getOperand(1);
2310
2311 // If we're only demanding signbits, then we can simplify to OR/AND node.
2312 unsigned BitOp =
2313 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2314 unsigned NumSignBits =
2315 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2316 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2317 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2318 if (NumSignBits >= NumDemandedUpperBits)
2319 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2320
2321 // Check if one arg is always less/greater than (or equal) to the other arg.
2322 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2323 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2324 switch (Opc) {
2325 case ISD::SMIN:
2326 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2327 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2328 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2329 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2330 Known = KnownBits::smin(Known0, Known1);
2331 break;
2332 case ISD::SMAX:
2333 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2334 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2335 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2336 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2337 Known = KnownBits::smax(Known0, Known1);
2338 break;
2339 case ISD::UMIN:
2340 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2341 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2342 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2343 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2344 Known = KnownBits::umin(Known0, Known1);
2345 break;
2346 case ISD::UMAX:
2347 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2348 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2349 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2350 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2351 Known = KnownBits::umax(Known0, Known1);
2352 break;
2353 }
2354 break;
2355 }
2356 case ISD::BITREVERSE: {
2357 SDValue Src = Op.getOperand(0);
2358 APInt DemandedSrcBits = DemandedBits.reverseBits();
2359 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2360 Depth + 1))
2361 return true;
2362 Known = Known2.reverseBits();
2363 break;
2364 }
2365 case ISD::BSWAP: {
2366 SDValue Src = Op.getOperand(0);
2367
2368 // If the only bits demanded come from one byte of the bswap result,
2369 // just shift the input byte into position to eliminate the bswap.
2370 unsigned NLZ = DemandedBits.countl_zero();
2371 unsigned NTZ = DemandedBits.countr_zero();
2372
2373 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
2374 // we need all the bits down to bit 8. Likewise, round NLZ. If we
2375 // have 14 leading zeros, round to 8.
2376 NLZ = alignDown(NLZ, 8);
2377 NTZ = alignDown(NTZ, 8);
2378 // If we need exactly one byte, we can do this transformation.
2379 if (BitWidth - NLZ - NTZ == 8) {
2380 // Replace this with either a left or right shift to get the byte into
2381 // the right place.
2382 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2383 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2384 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2385 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2386 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2387 return TLO.CombineTo(Op, NewOp);
2388 }
2389 }
2390
2391 APInt DemandedSrcBits = DemandedBits.byteSwap();
2392 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2393 Depth + 1))
2394 return true;
2395 Known = Known2.byteSwap();
2396 break;
2397 }
2398 case ISD::CTPOP: {
2399 // If only 1 bit is demanded, replace with PARITY as long as we're before
2400 // op legalization.
2401 // FIXME: Limit to scalars for now.
2402 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2403 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2404 Op.getOperand(0)));
2405
2406 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2407 break;
2408 }
2410 SDValue Op0 = Op.getOperand(0);
2411 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2412 unsigned ExVTBits = ExVT.getScalarSizeInBits();
2413
2414 // If we only care about the highest bit, don't bother shifting right.
2415 if (DemandedBits.isSignMask()) {
2416 unsigned MinSignedBits =
2417 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2418 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2419 // However if the input is already sign extended we expect the sign
2420 // extension to be dropped altogether later and do not simplify.
2421 if (!AlreadySignExtended) {
2422 // Compute the correct shift amount type, which must be getShiftAmountTy
2423 // for scalar types after legalization.
2424 SDValue ShiftAmt =
2425 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2426 return TLO.CombineTo(Op,
2427 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2428 }
2429 }
2430
2431 // If none of the extended bits are demanded, eliminate the sextinreg.
2432 if (DemandedBits.getActiveBits() <= ExVTBits)
2433 return TLO.CombineTo(Op, Op0);
2434
2435 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2436
2437 // Since the sign extended bits are demanded, we know that the sign
2438 // bit is demanded.
2439 InputDemandedBits.setBit(ExVTBits - 1);
2440
2441 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2442 Depth + 1))
2443 return true;
2444
2445 // If the sign bit of the input is known set or clear, then we know the
2446 // top bits of the result.
2447
2448 // If the input sign bit is known zero, convert this into a zero extension.
2449 if (Known.Zero[ExVTBits - 1])
2450 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2451
2452 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2453 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2454 Known.One.setBitsFrom(ExVTBits);
2455 Known.Zero &= Mask;
2456 } else { // Input sign bit unknown
2457 Known.Zero &= Mask;
2458 Known.One &= Mask;
2459 }
2460 break;
2461 }
2462 case ISD::BUILD_PAIR: {
2463 EVT HalfVT = Op.getOperand(0).getValueType();
2464 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2465
2466 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2467 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2468
2469 KnownBits KnownLo, KnownHi;
2470
2471 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2472 return true;
2473
2474 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2475 return true;
2476
2477 Known = KnownHi.concat(KnownLo);
2478 break;
2479 }
2481 if (VT.isScalableVector())
2482 return false;
2483 [[fallthrough]];
2484 case ISD::ZERO_EXTEND: {
2485 SDValue Src = Op.getOperand(0);
2486 EVT SrcVT = Src.getValueType();
2487 unsigned InBits = SrcVT.getScalarSizeInBits();
2488 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2489 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2490
2491 // If none of the top bits are demanded, convert this into an any_extend.
2492 if (DemandedBits.getActiveBits() <= InBits) {
2493 // If we only need the non-extended bits of the bottom element
2494 // then we can just bitcast to the result.
2495 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2496 VT.getSizeInBits() == SrcVT.getSizeInBits())
2497 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2498
2499 unsigned Opc =
2501 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2502 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2503 }
2504
2505 APInt InDemandedBits = DemandedBits.trunc(InBits);
2506 APInt InDemandedElts = DemandedElts.zext(InElts);
2507 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2508 Depth + 1)) {
2509 Op->dropFlags(SDNodeFlags::NonNeg);
2510 return true;
2511 }
2512 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2513 Known = Known.zext(BitWidth);
2514
2515 // Attempt to avoid multi-use ops if we don't need anything from them.
2517 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2518 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2519 break;
2520 }
2522 if (VT.isScalableVector())
2523 return false;
2524 [[fallthrough]];
2525 case ISD::SIGN_EXTEND: {
2526 SDValue Src = Op.getOperand(0);
2527 EVT SrcVT = Src.getValueType();
2528 unsigned InBits = SrcVT.getScalarSizeInBits();
2529 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2530 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2531
2532 APInt InDemandedElts = DemandedElts.zext(InElts);
2533 APInt InDemandedBits = DemandedBits.trunc(InBits);
2534
2535 // Since some of the sign extended bits are demanded, we know that the sign
2536 // bit is demanded.
2537 InDemandedBits.setBit(InBits - 1);
2538
2539 // If none of the top bits are demanded, convert this into an any_extend.
2540 if (DemandedBits.getActiveBits() <= InBits) {
2541 // If we only need the non-extended bits of the bottom element
2542 // then we can just bitcast to the result.
2543 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2544 VT.getSizeInBits() == SrcVT.getSizeInBits())
2545 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2546
2547 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2549 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2550 InBits) {
2551 unsigned Opc =
2553 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2554 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2555 }
2556 }
2557
2558 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2559 Depth + 1))
2560 return true;
2561 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2562
2563 // If the sign bit is known one, the top bits match.
2564 Known = Known.sext(BitWidth);
2565
2566 // If the sign bit is known zero, convert this to a zero extend.
2567 if (Known.isNonNegative()) {
2568 unsigned Opc =
2570 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2571 SDNodeFlags Flags;
2572 if (!IsVecInReg)
2573 Flags |= SDNodeFlags::NonNeg;
2574 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2575 }
2576 }
2577
2578 // Attempt to avoid multi-use ops if we don't need anything from them.
2580 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2581 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2582 break;
2583 }
2585 if (VT.isScalableVector())
2586 return false;
2587 [[fallthrough]];
2588 case ISD::ANY_EXTEND: {
2589 SDValue Src = Op.getOperand(0);
2590 EVT SrcVT = Src.getValueType();
2591 unsigned InBits = SrcVT.getScalarSizeInBits();
2592 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2593 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2594
2595 // If we only need the bottom element then we can just bitcast.
2596 // TODO: Handle ANY_EXTEND?
2597 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2598 VT.getSizeInBits() == SrcVT.getSizeInBits())
2599 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2600
2601 APInt InDemandedBits = DemandedBits.trunc(InBits);
2602 APInt InDemandedElts = DemandedElts.zext(InElts);
2603 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2604 Depth + 1))
2605 return true;
2606 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2607 Known = Known.anyext(BitWidth);
2608
2609 // Attempt to avoid multi-use ops if we don't need anything from them.
2611 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2612 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2613 break;
2614 }
2615 case ISD::TRUNCATE: {
2616 SDValue Src = Op.getOperand(0);
2617
2618 // Simplify the input, using demanded bit information, and compute the known
2619 // zero/one bits live out.
2620 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2621 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2622 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2623 Depth + 1)) {
2624 // Disable the nsw and nuw flags. We can no longer guarantee that we
2625 // won't wrap after simplification.
2626 Op->dropFlags(SDNodeFlags::NoWrap);
2627 return true;
2628 }
2629 Known = Known.trunc(BitWidth);
2630
2631 // Attempt to avoid multi-use ops if we don't need anything from them.
2633 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2634 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2635
2636 // If the input is only used by this truncate, see if we can shrink it based
2637 // on the known demanded bits.
2638 switch (Src.getOpcode()) {
2639 default:
2640 break;
2641 case ISD::SRL:
2642 // Shrink SRL by a constant if none of the high bits shifted in are
2643 // demanded.
2644 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2645 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2646 // undesirable.
2647 break;
2648
2649 if (Src.getNode()->hasOneUse()) {
2650 if (isTruncateFree(Src, VT) &&
2651 !isTruncateFree(Src.getValueType(), VT)) {
2652 // If truncate is only free at trunc(srl), do not turn it into
2653 // srl(trunc). The check is done by first check the truncate is free
2654 // at Src's opcode(srl), then check the truncate is not done by
2655 // referencing sub-register. In test, if both trunc(srl) and
2656 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2657 // trunc(srl)'s trunc is free, trunc(srl) is better.
2658 break;
2659 }
2660
2661 std::optional<unsigned> ShAmtC =
2662 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2663 if (!ShAmtC || *ShAmtC >= BitWidth)
2664 break;
2665 unsigned ShVal = *ShAmtC;
2666
2667 APInt HighBits =
2668 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2669 HighBits.lshrInPlace(ShVal);
2670 HighBits = HighBits.trunc(BitWidth);
2671 if (!(HighBits & DemandedBits)) {
2672 // None of the shifted in bits are needed. Add a truncate of the
2673 // shift input, then shift it.
2674 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2675 SDValue NewTrunc =
2676 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2677 return TLO.CombineTo(
2678 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2679 }
2680 }
2681 break;
2682 }
2683
2684 break;
2685 }
2686 case ISD::AssertZext: {
2687 // AssertZext demands all of the high bits, plus any of the low bits
2688 // demanded by its users.
2689 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2691 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2692 TLO, Depth + 1))
2693 return true;
2694
2695 Known.Zero |= ~InMask;
2696 Known.One &= (~Known.Zero);
2697 break;
2698 }
2700 SDValue Src = Op.getOperand(0);
2701 SDValue Idx = Op.getOperand(1);
2702 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2703 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2704
2705 if (SrcEltCnt.isScalable())
2706 return false;
2707
2708 // Demand the bits from every vector element without a constant index.
2709 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2710 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2711 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2712 if (CIdx->getAPIntValue().ult(NumSrcElts))
2713 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2714
2715 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2716 // anything about the extended bits.
2717 APInt DemandedSrcBits = DemandedBits;
2718 if (BitWidth > EltBitWidth)
2719 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2720
2721 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2722 Depth + 1))
2723 return true;
2724
2725 // Attempt to avoid multi-use ops if we don't need anything from them.
2726 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2727 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2728 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2729 SDValue NewOp =
2730 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2731 return TLO.CombineTo(Op, NewOp);
2732 }
2733 }
2734
2735 Known = Known2;
2736 if (BitWidth > EltBitWidth)
2737 Known = Known.anyext(BitWidth);
2738 break;
2739 }
2740 case ISD::BITCAST: {
2741 if (VT.isScalableVector())
2742 return false;
2743 SDValue Src = Op.getOperand(0);
2744 EVT SrcVT = Src.getValueType();
2745 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2746
2747 // If this is an FP->Int bitcast and if the sign bit is the only
2748 // thing demanded, turn this into a FGETSIGN.
2749 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2750 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2751 SrcVT.isFloatingPoint()) {
2752 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2753 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2754 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2755 SrcVT != MVT::f128) {
2756 // Cannot eliminate/lower SHL for f128 yet.
2757 EVT Ty = OpVTLegal ? VT : MVT::i32;
2758 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2759 // place. We expect the SHL to be eliminated by other optimizations.
2760 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2761 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2762 if (!OpVTLegal && OpVTSizeInBits > 32)
2763 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2764 unsigned ShVal = Op.getValueSizeInBits() - 1;
2765 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2766 return TLO.CombineTo(Op,
2767 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2768 }
2769 }
2770
2771 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2772 // Demand the elt/bit if any of the original elts/bits are demanded.
2773 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2774 unsigned Scale = BitWidth / NumSrcEltBits;
2775 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2776 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2777 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2778 for (unsigned i = 0; i != Scale; ++i) {
2779 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2780 unsigned BitOffset = EltOffset * NumSrcEltBits;
2781 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2782 if (!Sub.isZero()) {
2783 DemandedSrcBits |= Sub;
2784 for (unsigned j = 0; j != NumElts; ++j)
2785 if (DemandedElts[j])
2786 DemandedSrcElts.setBit((j * Scale) + i);
2787 }
2788 }
2789
2790 APInt KnownSrcUndef, KnownSrcZero;
2791 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2792 KnownSrcZero, TLO, Depth + 1))
2793 return true;
2794
2795 KnownBits KnownSrcBits;
2796 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2797 KnownSrcBits, TLO, Depth + 1))
2798 return true;
2799 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2800 // TODO - bigendian once we have test coverage.
2801 unsigned Scale = NumSrcEltBits / BitWidth;
2802 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2803 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2804 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2805 for (unsigned i = 0; i != NumElts; ++i)
2806 if (DemandedElts[i]) {
2807 unsigned Offset = (i % Scale) * BitWidth;
2808 DemandedSrcBits.insertBits(DemandedBits, Offset);
2809 DemandedSrcElts.setBit(i / Scale);
2810 }
2811
2812 if (SrcVT.isVector()) {
2813 APInt KnownSrcUndef, KnownSrcZero;
2814 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2815 KnownSrcZero, TLO, Depth + 1))
2816 return true;
2817 }
2818
2819 KnownBits KnownSrcBits;
2820 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2821 KnownSrcBits, TLO, Depth + 1))
2822 return true;
2823
2824 // Attempt to avoid multi-use ops if we don't need anything from them.
2825 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2826 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2827 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2828 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2829 return TLO.CombineTo(Op, NewOp);
2830 }
2831 }
2832 }
2833
2834 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
2835 // recursive call where Known may be useful to the caller.
2836 if (Depth > 0) {
2837 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2838 return false;
2839 }
2840 break;
2841 }
2842 case ISD::MUL:
2843 if (DemandedBits.isPowerOf2()) {
2844 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2845 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2846 // odd (has LSB set), then the left-shifted low bit of X is the answer.
2847 unsigned CTZ = DemandedBits.countr_zero();
2848 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2849 if (C && C->getAPIntValue().countr_zero() == CTZ) {
2850 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2851 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2852 return TLO.CombineTo(Op, Shl);
2853 }
2854 }
2855 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2856 // X * X is odd iff X is odd.
2857 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2858 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2859 SDValue One = TLO.DAG.getConstant(1, dl, VT);
2860 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2861 return TLO.CombineTo(Op, And1);
2862 }
2863 [[fallthrough]];
2864 case ISD::PTRADD:
2865 if (Op.getOperand(0).getValueType() != Op.getOperand(1).getValueType())
2866 break;
2867 // PTRADD behaves like ADD if pointers are represented as integers.
2868 [[fallthrough]];
2869 case ISD::ADD:
2870 case ISD::SUB: {
2871 // Add, Sub, and Mul don't demand any bits in positions beyond that
2872 // of the highest bit demanded of them.
2873 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2874 SDNodeFlags Flags = Op.getNode()->getFlags();
2875 unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2876 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2877 KnownBits KnownOp0, KnownOp1;
2878 auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2879 const KnownBits &KnownRHS) {
2880 if (Op.getOpcode() == ISD::MUL)
2881 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2882 return Demanded;
2883 };
2884 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2885 Depth + 1) ||
2886 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2887 DemandedElts, KnownOp0, TLO, Depth + 1) ||
2888 // See if the operation should be performed at a smaller bit width.
2890 // Disable the nsw and nuw flags. We can no longer guarantee that we
2891 // won't wrap after simplification.
2892 Op->dropFlags(SDNodeFlags::NoWrap);
2893 return true;
2894 }
2895
2896 // neg x with only low bit demanded is simply x.
2897 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2898 isNullConstant(Op0))
2899 return TLO.CombineTo(Op, Op1);
2900
2901 // Attempt to avoid multi-use ops if we don't need anything from them.
2902 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2904 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2906 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2907 if (DemandedOp0 || DemandedOp1) {
2908 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2909 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2910 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2911 Flags & ~SDNodeFlags::NoWrap);
2912 return TLO.CombineTo(Op, NewOp);
2913 }
2914 }
2915
2916 // If we have a constant operand, we may be able to turn it into -1 if we
2917 // do not demand the high bits. This can make the constant smaller to
2918 // encode, allow more general folding, or match specialized instruction
2919 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2920 // is probably not useful (and could be detrimental).
2922 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2923 if (C && !C->isAllOnes() && !C->isOne() &&
2924 (C->getAPIntValue() | HighMask).isAllOnes()) {
2925 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2926 // Disable the nsw and nuw flags. We can no longer guarantee that we
2927 // won't wrap after simplification.
2928 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2929 Flags & ~SDNodeFlags::NoWrap);
2930 return TLO.CombineTo(Op, NewOp);
2931 }
2932
2933 // Match a multiply with a disguised negated-power-of-2 and convert to a
2934 // an equivalent shift-left amount.
2935 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2936 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2937 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2938 return 0;
2939
2940 // Don't touch opaque constants. Also, ignore zero and power-of-2
2941 // multiplies. Those will get folded later.
2942 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2943 if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2944 !MulC->getAPIntValue().isPowerOf2()) {
2945 APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2946 if (UnmaskedC.isNegatedPowerOf2())
2947 return (-UnmaskedC).logBase2();
2948 }
2949 return 0;
2950 };
2951
2952 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2953 unsigned ShlAmt) {
2954 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2955 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2956 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2957 return TLO.CombineTo(Op, Res);
2958 };
2959
2961 if (Op.getOpcode() == ISD::ADD) {
2962 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2963 if (unsigned ShAmt = getShiftLeftAmt(Op0))
2964 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2965 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2966 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2967 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2968 }
2969 if (Op.getOpcode() == ISD::SUB) {
2970 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2971 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2972 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2973 }
2974 }
2975
2976 if (Op.getOpcode() == ISD::MUL) {
2977 Known = KnownBits::mul(KnownOp0, KnownOp1);
2978 } else { // Op.getOpcode() is either ISD::ADD, ISD::PTRADD, or ISD::SUB.
2980 Op.getOpcode() != ISD::SUB, Flags.hasNoSignedWrap(),
2981 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2982 }
2983 break;
2984 }
2985 case ISD::FABS: {
2986 SDValue Op0 = Op.getOperand(0);
2987 APInt SignMask = APInt::getSignMask(BitWidth);
2988
2989 if (!DemandedBits.intersects(SignMask))
2990 return TLO.CombineTo(Op, Op0);
2991
2992 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known, TLO,
2993 Depth + 1))
2994 return true;
2995
2996 if (Known.isNonNegative())
2997 return TLO.CombineTo(Op, Op0);
2998 if (Known.isNegative())
2999 return TLO.CombineTo(
3000 Op, TLO.DAG.getNode(ISD::FNEG, dl, VT, Op0, Op->getFlags()));
3001
3002 Known.Zero |= SignMask;
3003 Known.One &= ~SignMask;
3004
3005 break;
3006 }
3007 case ISD::FCOPYSIGN: {
3008 SDValue Op0 = Op.getOperand(0);
3009 SDValue Op1 = Op.getOperand(1);
3010
3011 unsigned BitWidth0 = Op0.getScalarValueSizeInBits();
3012 unsigned BitWidth1 = Op1.getScalarValueSizeInBits();
3013 APInt SignMask0 = APInt::getSignMask(BitWidth0);
3014 APInt SignMask1 = APInt::getSignMask(BitWidth1);
3015
3016 if (!DemandedBits.intersects(SignMask0))
3017 return TLO.CombineTo(Op, Op0);
3018
3019 if (SimplifyDemandedBits(Op0, ~SignMask0 & DemandedBits, DemandedElts,
3020 Known, TLO, Depth + 1) ||
3021 SimplifyDemandedBits(Op1, SignMask1, DemandedElts, Known2, TLO,
3022 Depth + 1))
3023 return true;
3024
3025 if (Known2.isNonNegative())
3026 return TLO.CombineTo(
3027 Op, TLO.DAG.getNode(ISD::FABS, dl, VT, Op0, Op->getFlags()));
3028
3029 if (Known2.isNegative())
3030 return TLO.CombineTo(
3031 Op, TLO.DAG.getNode(ISD::FNEG, dl, VT,
3032 TLO.DAG.getNode(ISD::FABS, SDLoc(Op0), VT, Op0)));
3033
3034 Known.Zero &= ~SignMask0;
3035 Known.One &= ~SignMask0;
3036 break;
3037 }
3038 case ISD::FNEG: {
3039 SDValue Op0 = Op.getOperand(0);
3040 APInt SignMask = APInt::getSignMask(BitWidth);
3041
3042 if (!DemandedBits.intersects(SignMask))
3043 return TLO.CombineTo(Op, Op0);
3044
3045 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known, TLO,
3046 Depth + 1))
3047 return true;
3048
3049 if (!Known.isSignUnknown()) {
3050 Known.Zero ^= SignMask;
3051 Known.One ^= SignMask;
3052 }
3053
3054 break;
3055 }
3056 default:
3057 // We also ask the target about intrinsics (which could be specific to it).
3058 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3059 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
3060 // TODO: Probably okay to remove after audit; here to reduce change size
3061 // in initial enablement patch for scalable vectors
3062 if (Op.getValueType().isScalableVector())
3063 break;
3065 Known, TLO, Depth))
3066 return true;
3067 break;
3068 }
3069
3070 // Just use computeKnownBits to compute output bits.
3071 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
3072 break;
3073 }
3074
3075 // If we know the value of all of the demanded bits, return this as a
3076 // constant.
3078 DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
3079 // Avoid folding to a constant if any OpaqueConstant is involved.
3080 if (llvm::any_of(Op->ops(), [](SDValue V) {
3081 auto *C = dyn_cast<ConstantSDNode>(V);
3082 return C && C->isOpaque();
3083 }))
3084 return false;
3085 if (VT.isInteger())
3086 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
3087 if (VT.isFloatingPoint())
3088 return TLO.CombineTo(
3089 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
3090 dl, VT));
3091 }
3092
3093 // A multi use 'all demanded elts' simplify failed to find any knownbits.
3094 // Try again just for the original demanded elts.
3095 // Ensure we do this AFTER constant folding above.
3096 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
3097 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
3098
3099 return false;
3100}
3101
3103 const APInt &DemandedElts,
3104 DAGCombinerInfo &DCI) const {
3105 SelectionDAG &DAG = DCI.DAG;
3106 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3107 !DCI.isBeforeLegalizeOps());
3108
3109 APInt KnownUndef, KnownZero;
3110 bool Simplified =
3111 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
3112 if (Simplified) {
3113 DCI.AddToWorklist(Op.getNode());
3114 DCI.CommitTargetLoweringOpt(TLO);
3115 }
3116
3117 return Simplified;
3118}
3119
3120/// Given a vector binary operation and known undefined elements for each input
3121/// operand, compute whether each element of the output is undefined.
3123 const APInt &UndefOp0,
3124 const APInt &UndefOp1) {
3125 EVT VT = BO.getValueType();
3127 "Vector binop only");
3128
3129 EVT EltVT = VT.getVectorElementType();
3130 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3131 assert(UndefOp0.getBitWidth() == NumElts &&
3132 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3133
3134 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3135 const APInt &UndefVals) {
3136 if (UndefVals[Index])
3137 return DAG.getUNDEF(EltVT);
3138
3139 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3140 // Try hard to make sure that the getNode() call is not creating temporary
3141 // nodes. Ignore opaque integers because they do not constant fold.
3142 SDValue Elt = BV->getOperand(Index);
3143 auto *C = dyn_cast<ConstantSDNode>(Elt);
3144 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3145 return Elt;
3146 }
3147
3148 return SDValue();
3149 };
3150
3151 APInt KnownUndef = APInt::getZero(NumElts);
3152 for (unsigned i = 0; i != NumElts; ++i) {
3153 // If both inputs for this element are either constant or undef and match
3154 // the element type, compute the constant/undef result for this element of
3155 // the vector.
3156 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3157 // not handle FP constants. The code within getNode() should be refactored
3158 // to avoid the danger of creating a bogus temporary node here.
3159 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3160 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3161 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3162 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3163 KnownUndef.setBit(i);
3164 }
3165 return KnownUndef;
3166}
3167
3169 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3170 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3171 bool AssumeSingleUse) const {
3172 EVT VT = Op.getValueType();
3173 unsigned Opcode = Op.getOpcode();
3174 APInt DemandedElts = OriginalDemandedElts;
3175 unsigned NumElts = DemandedElts.getBitWidth();
3176 assert(VT.isVector() && "Expected vector op");
3177
3178 KnownUndef = KnownZero = APInt::getZero(NumElts);
3179
3181 return false;
3182
3183 // TODO: For now we assume we know nothing about scalable vectors.
3184 if (VT.isScalableVector())
3185 return false;
3186
3187 assert(VT.getVectorNumElements() == NumElts &&
3188 "Mask size mismatches value type element count!");
3189
3190 // Undef operand.
3191 if (Op.isUndef()) {
3192 KnownUndef.setAllBits();
3193 return false;
3194 }
3195
3196 // If Op has other users, assume that all elements are needed.
3197 if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3198 DemandedElts.setAllBits();
3199
3200 // Not demanding any elements from Op.
3201 if (DemandedElts == 0) {
3202 KnownUndef.setAllBits();
3203 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3204 }
3205
3206 // Limit search depth.
3208 return false;
3209
3210 SDLoc DL(Op);
3211 unsigned EltSizeInBits = VT.getScalarSizeInBits();
3212 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3213
3214 // Helper for demanding the specified elements and all the bits of both binary
3215 // operands.
3216 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3217 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3218 TLO.DAG, Depth + 1);
3219 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3220 TLO.DAG, Depth + 1);
3221 if (NewOp0 || NewOp1) {
3222 SDValue NewOp =
3223 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3224 NewOp1 ? NewOp1 : Op1, Op->getFlags());
3225 return TLO.CombineTo(Op, NewOp);
3226 }
3227 return false;
3228 };
3229
3230 switch (Opcode) {
3231 case ISD::SCALAR_TO_VECTOR: {
3232 if (!DemandedElts[0]) {
3233 KnownUndef.setAllBits();
3234 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3235 }
3236 KnownUndef.setHighBits(NumElts - 1);
3237 break;
3238 }
3239 case ISD::BITCAST: {
3240 SDValue Src = Op.getOperand(0);
3241 EVT SrcVT = Src.getValueType();
3242
3243 if (!SrcVT.isVector()) {
3244 // TODO - bigendian once we have test coverage.
3245 if (IsLE) {
3246 APInt DemandedSrcBits = APInt::getZero(SrcVT.getSizeInBits());
3247 unsigned EltSize = VT.getScalarSizeInBits();
3248 for (unsigned I = 0; I != NumElts; ++I) {
3249 if (DemandedElts[I]) {
3250 unsigned Offset = I * EltSize;
3251 DemandedSrcBits.setBits(Offset, Offset + EltSize);
3252 }
3253 }
3254 KnownBits Known;
3255 if (SimplifyDemandedBits(Src, DemandedSrcBits, Known, TLO, Depth + 1))
3256 return true;
3257 }
3258 break;
3259 }
3260
3261 // Fast handling of 'identity' bitcasts.
3262 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3263 if (NumSrcElts == NumElts)
3264 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3265 KnownZero, TLO, Depth + 1);
3266
3267 APInt SrcDemandedElts, SrcZero, SrcUndef;
3268
3269 // Bitcast from 'large element' src vector to 'small element' vector, we
3270 // must demand a source element if any DemandedElt maps to it.
3271 if ((NumElts % NumSrcElts) == 0) {
3272 unsigned Scale = NumElts / NumSrcElts;
3273 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3274 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3275 TLO, Depth + 1))
3276 return true;
3277
3278 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3279 // of the large element.
3280 // TODO - bigendian once we have test coverage.
3281 if (IsLE) {
3282 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3283 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3284 for (unsigned i = 0; i != NumElts; ++i)
3285 if (DemandedElts[i]) {
3286 unsigned Ofs = (i % Scale) * EltSizeInBits;
3287 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3288 }
3289
3290 KnownBits Known;
3291 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3292 TLO, Depth + 1))
3293 return true;
3294
3295 // The bitcast has split each wide element into a number of
3296 // narrow subelements. We have just computed the Known bits
3297 // for wide elements. See if element splitting results in
3298 // some subelements being zero. Only for demanded elements!
3299 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3300 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3301 .isAllOnes())
3302 continue;
3303 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3304 unsigned Elt = Scale * SrcElt + SubElt;
3305 if (DemandedElts[Elt])
3306 KnownZero.setBit(Elt);
3307 }
3308 }
3309 }
3310
3311 // If the src element is zero/undef then all the output elements will be -
3312 // only demanded elements are guaranteed to be correct.
3313 for (unsigned i = 0; i != NumSrcElts; ++i) {
3314 if (SrcDemandedElts[i]) {
3315 if (SrcZero[i])
3316 KnownZero.setBits(i * Scale, (i + 1) * Scale);
3317 if (SrcUndef[i])
3318 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3319 }
3320 }
3321 }
3322
3323 // Bitcast from 'small element' src vector to 'large element' vector, we
3324 // demand all smaller source elements covered by the larger demanded element
3325 // of this vector.
3326 if ((NumSrcElts % NumElts) == 0) {
3327 unsigned Scale = NumSrcElts / NumElts;
3328 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3329 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3330 TLO, Depth + 1))
3331 return true;
3332
3333 // If all the src elements covering an output element are zero/undef, then
3334 // the output element will be as well, assuming it was demanded.
3335 for (unsigned i = 0; i != NumElts; ++i) {
3336 if (DemandedElts[i]) {
3337 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3338 KnownZero.setBit(i);
3339 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3340 KnownUndef.setBit(i);
3341 }
3342 }
3343 }
3344 break;
3345 }
3346 case ISD::FREEZE: {
3347 SDValue N0 = Op.getOperand(0);
3348 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3349 /*PoisonOnly=*/false,
3350 Depth + 1))
3351 return TLO.CombineTo(Op, N0);
3352
3353 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3354 // freeze(op(x, ...)) -> op(freeze(x), ...).
3355 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3356 return TLO.CombineTo(
3358 TLO.DAG.getFreeze(N0.getOperand(0))));
3359 break;
3360 }
3361 case ISD::BUILD_VECTOR: {
3362 // Check all elements and simplify any unused elements with UNDEF.
3363 if (!DemandedElts.isAllOnes()) {
3364 // Don't simplify BROADCASTS.
3365 if (llvm::any_of(Op->op_values(),
3366 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3368 bool Updated = false;
3369 for (unsigned i = 0; i != NumElts; ++i) {
3370 if (!DemandedElts[i] && !Ops[i].isUndef()) {
3371 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3372 KnownUndef.setBit(i);
3373 Updated = true;
3374 }
3375 }
3376 if (Updated)
3377 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3378 }
3379 }
3380 for (unsigned i = 0; i != NumElts; ++i) {
3381 SDValue SrcOp = Op.getOperand(i);
3382 if (SrcOp.isUndef()) {
3383 KnownUndef.setBit(i);
3384 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3386 KnownZero.setBit(i);
3387 }
3388 }
3389 break;
3390 }
3391 case ISD::CONCAT_VECTORS: {
3392 EVT SubVT = Op.getOperand(0).getValueType();
3393 unsigned NumSubVecs = Op.getNumOperands();
3394 unsigned NumSubElts = SubVT.getVectorNumElements();
3395 for (unsigned i = 0; i != NumSubVecs; ++i) {
3396 SDValue SubOp = Op.getOperand(i);
3397 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3398 APInt SubUndef, SubZero;
3399 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3400 Depth + 1))
3401 return true;
3402 KnownUndef.insertBits(SubUndef, i * NumSubElts);
3403 KnownZero.insertBits(SubZero, i * NumSubElts);
3404 }
3405
3406 // Attempt to avoid multi-use ops if we don't need anything from them.
3407 if (!DemandedElts.isAllOnes()) {
3408 bool FoundNewSub = false;
3409 SmallVector<SDValue, 2> DemandedSubOps;
3410 for (unsigned i = 0; i != NumSubVecs; ++i) {
3411 SDValue SubOp = Op.getOperand(i);
3412 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3414 SubOp, SubElts, TLO.DAG, Depth + 1);
3415 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3416 FoundNewSub = NewSubOp ? true : FoundNewSub;
3417 }
3418 if (FoundNewSub) {
3419 SDValue NewOp =
3420 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3421 return TLO.CombineTo(Op, NewOp);
3422 }
3423 }
3424 break;
3425 }
3426 case ISD::INSERT_SUBVECTOR: {
3427 // Demand any elements from the subvector and the remainder from the src it
3428 // is inserted into.
3429 SDValue Src = Op.getOperand(0);
3430 SDValue Sub = Op.getOperand(1);
3431 uint64_t Idx = Op.getConstantOperandVal(2);
3432 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3433 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3434 APInt DemandedSrcElts = DemandedElts;
3435 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3436
3437 // If none of the sub operand elements are demanded, bypass the insert.
3438 if (!DemandedSubElts)
3439 return TLO.CombineTo(Op, Src);
3440
3441 APInt SubUndef, SubZero;
3442 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3443 Depth + 1))
3444 return true;
3445
3446 // If none of the src operand elements are demanded, replace it with undef.
3447 if (!DemandedSrcElts && !Src.isUndef())
3448 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3449 TLO.DAG.getUNDEF(VT), Sub,
3450 Op.getOperand(2)));
3451
3452 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3453 TLO, Depth + 1))
3454 return true;
3455 KnownUndef.insertBits(SubUndef, Idx);
3456 KnownZero.insertBits(SubZero, Idx);
3457
3458 // Attempt to avoid multi-use ops if we don't need anything from them.
3459 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3461 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3463 Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3464 if (NewSrc || NewSub) {
3465 NewSrc = NewSrc ? NewSrc : Src;
3466 NewSub = NewSub ? NewSub : Sub;
3467 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3468 NewSub, Op.getOperand(2));
3469 return TLO.CombineTo(Op, NewOp);
3470 }
3471 }
3472 break;
3473 }
3475 // Offset the demanded elts by the subvector index.
3476 SDValue Src = Op.getOperand(0);
3477 if (Src.getValueType().isScalableVector())
3478 break;
3479 uint64_t Idx = Op.getConstantOperandVal(1);
3480 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3481 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3482
3483 APInt SrcUndef, SrcZero;
3484 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3485 Depth + 1))
3486 return true;
3487 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3488 KnownZero = SrcZero.extractBits(NumElts, Idx);
3489
3490 // Attempt to avoid multi-use ops if we don't need anything from them.
3491 if (!DemandedElts.isAllOnes()) {
3493 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3494 if (NewSrc) {
3495 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3496 Op.getOperand(1));
3497 return TLO.CombineTo(Op, NewOp);
3498 }
3499 }
3500 break;
3501 }
3503 SDValue Vec = Op.getOperand(0);
3504 SDValue Scl = Op.getOperand(1);
3505 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3506
3507 // For a legal, constant insertion index, if we don't need this insertion
3508 // then strip it, else remove it from the demanded elts.
3509 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3510 unsigned Idx = CIdx->getZExtValue();
3511 if (!DemandedElts[Idx])
3512 return TLO.CombineTo(Op, Vec);
3513
3514 APInt DemandedVecElts(DemandedElts);
3515 DemandedVecElts.clearBit(Idx);
3516 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3517 KnownZero, TLO, Depth + 1))
3518 return true;
3519
3520 KnownUndef.setBitVal(Idx, Scl.isUndef());
3521
3522 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3523 break;
3524 }
3525
3526 APInt VecUndef, VecZero;
3527 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3528 Depth + 1))
3529 return true;
3530 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3531 break;
3532 }
3533 case ISD::VSELECT: {
3534 SDValue Sel = Op.getOperand(0);
3535 SDValue LHS = Op.getOperand(1);
3536 SDValue RHS = Op.getOperand(2);
3537
3538 // Try to transform the select condition based on the current demanded
3539 // elements.
3540 APInt UndefSel, ZeroSel;
3541 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3542 Depth + 1))
3543 return true;
3544
3545 // See if we can simplify either vselect operand.
3546 APInt DemandedLHS(DemandedElts);
3547 APInt DemandedRHS(DemandedElts);
3548 APInt UndefLHS, ZeroLHS;
3549 APInt UndefRHS, ZeroRHS;
3550 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3551 Depth + 1))
3552 return true;
3553 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3554 Depth + 1))
3555 return true;
3556
3557 KnownUndef = UndefLHS & UndefRHS;
3558 KnownZero = ZeroLHS & ZeroRHS;
3559
3560 // If we know that the selected element is always zero, we don't need the
3561 // select value element.
3562 APInt DemandedSel = DemandedElts & ~KnownZero;
3563 if (DemandedSel != DemandedElts)
3564 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3565 Depth + 1))
3566 return true;
3567
3568 break;
3569 }
3570 case ISD::VECTOR_SHUFFLE: {
3571 SDValue LHS = Op.getOperand(0);
3572 SDValue RHS = Op.getOperand(1);
3573 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3574
3575 // Collect demanded elements from shuffle operands..
3576 APInt DemandedLHS(NumElts, 0);
3577 APInt DemandedRHS(NumElts, 0);
3578 for (unsigned i = 0; i != NumElts; ++i) {
3579 int M = ShuffleMask[i];
3580 if (M < 0 || !DemandedElts[i])
3581 continue;
3582 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3583 if (M < (int)NumElts)
3584 DemandedLHS.setBit(M);
3585 else
3586 DemandedRHS.setBit(M - NumElts);
3587 }
3588
3589 // If either side isn't demanded, replace it by UNDEF. We handle this
3590 // explicitly here to also simplify in case of multiple uses (on the
3591 // contrary to the SimplifyDemandedVectorElts calls below).
3592 bool FoldLHS = !DemandedLHS && !LHS.isUndef();
3593 bool FoldRHS = !DemandedRHS && !RHS.isUndef();
3594 if (FoldLHS || FoldRHS) {
3595 LHS = FoldLHS ? TLO.DAG.getUNDEF(LHS.getValueType()) : LHS;
3596 RHS = FoldRHS ? TLO.DAG.getUNDEF(RHS.getValueType()) : RHS;
3597 SDValue NewOp =
3598 TLO.DAG.getVectorShuffle(VT, SDLoc(Op), LHS, RHS, ShuffleMask);
3599 return TLO.CombineTo(Op, NewOp);
3600 }
3601
3602 // See if we can simplify either shuffle operand.
3603 APInt UndefLHS, ZeroLHS;
3604 APInt UndefRHS, ZeroRHS;
3605 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3606 Depth + 1))
3607 return true;
3608 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3609 Depth + 1))
3610 return true;
3611
3612 // Simplify mask using undef elements from LHS/RHS.
3613 bool Updated = false;
3614 bool IdentityLHS = true, IdentityRHS = true;
3615 SmallVector<int, 32> NewMask(ShuffleMask);
3616 for (unsigned i = 0; i != NumElts; ++i) {
3617 int &M = NewMask[i];
3618 if (M < 0)
3619 continue;
3620 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3621 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3622 Updated = true;
3623 M = -1;
3624 }
3625 IdentityLHS &= (M < 0) || (M == (int)i);
3626 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3627 }
3628
3629 // Update legal shuffle masks based on demanded elements if it won't reduce
3630 // to Identity which can cause premature removal of the shuffle mask.
3631 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3632 SDValue LegalShuffle =
3633 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3634 if (LegalShuffle)
3635 return TLO.CombineTo(Op, LegalShuffle);
3636 }
3637
3638 // Propagate undef/zero elements from LHS/RHS.
3639 for (unsigned i = 0; i != NumElts; ++i) {
3640 int M = ShuffleMask[i];
3641 if (M < 0) {
3642 KnownUndef.setBit(i);
3643 } else if (M < (int)NumElts) {
3644 if (UndefLHS[M])
3645 KnownUndef.setBit(i);
3646 if (ZeroLHS[M])
3647 KnownZero.setBit(i);
3648 } else {
3649 if (UndefRHS[M - NumElts])
3650 KnownUndef.setBit(i);
3651 if (ZeroRHS[M - NumElts])
3652 KnownZero.setBit(i);
3653 }
3654 }
3655 break;
3656 }
3660 APInt SrcUndef, SrcZero;
3661 SDValue Src = Op.getOperand(0);
3662 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3663 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3664 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3665 Depth + 1))
3666 return true;
3667 KnownZero = SrcZero.zextOrTrunc(NumElts);
3668 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3669
3670 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3671 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3672 DemandedSrcElts == 1) {
3673 // aext - if we just need the bottom element then we can bitcast.
3674 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3675 }
3676
3677 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3678 // zext(undef) upper bits are guaranteed to be zero.
3679 if (DemandedElts.isSubsetOf(KnownUndef))
3680 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3681 KnownUndef.clearAllBits();
3682
3683 // zext - if we just need the bottom element then we can mask:
3684 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3685 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3686 Op->isOnlyUserOf(Src.getNode()) &&
3687 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3688 SDLoc DL(Op);
3689 EVT SrcVT = Src.getValueType();
3690 EVT SrcSVT = SrcVT.getScalarType();
3691 SmallVector<SDValue> MaskElts;
3692 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3693 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3694 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3695 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3696 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3697 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3698 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3699 }
3700 }
3701 }
3702 break;
3703 }
3704
3705 // TODO: There are more binop opcodes that could be handled here - MIN,
3706 // MAX, saturated math, etc.
3707 case ISD::ADD: {
3708 SDValue Op0 = Op.getOperand(0);
3709 SDValue Op1 = Op.getOperand(1);
3710 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3711 APInt UndefLHS, ZeroLHS;
3712 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3713 Depth + 1, /*AssumeSingleUse*/ true))
3714 return true;
3715 }
3716 [[fallthrough]];
3717 }
3718 case ISD::AVGCEILS:
3719 case ISD::AVGCEILU:
3720 case ISD::AVGFLOORS:
3721 case ISD::AVGFLOORU:
3722 case ISD::OR:
3723 case ISD::XOR:
3724 case ISD::SUB:
3725 case ISD::FADD:
3726 case ISD::FSUB:
3727 case ISD::FMUL:
3728 case ISD::FDIV:
3729 case ISD::FREM: {
3730 SDValue Op0 = Op.getOperand(0);
3731 SDValue Op1 = Op.getOperand(1);
3732
3733 APInt UndefRHS, ZeroRHS;
3734 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3735 Depth + 1))
3736 return true;
3737 APInt UndefLHS, ZeroLHS;
3738 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3739 Depth + 1))
3740 return true;
3741
3742 KnownZero = ZeroLHS & ZeroRHS;
3743 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3744
3745 // Attempt to avoid multi-use ops if we don't need anything from them.
3746 // TODO - use KnownUndef to relax the demandedelts?
3747 if (!DemandedElts.isAllOnes())
3748 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3749 return true;
3750 break;
3751 }
3752 case ISD::SHL:
3753 case ISD::SRL:
3754 case ISD::SRA:
3755 case ISD::ROTL:
3756 case ISD::ROTR: {
3757 SDValue Op0 = Op.getOperand(0);
3758 SDValue Op1 = Op.getOperand(1);
3759
3760 APInt UndefRHS, ZeroRHS;
3761 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3762 Depth + 1))
3763 return true;
3764 APInt UndefLHS, ZeroLHS;
3765 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3766 Depth + 1))
3767 return true;
3768
3769 KnownZero = ZeroLHS;
3770 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3771
3772 // Attempt to avoid multi-use ops if we don't need anything from them.
3773 // TODO - use KnownUndef to relax the demandedelts?
3774 if (!DemandedElts.isAllOnes())
3775 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3776 return true;
3777 break;
3778 }
3779 case ISD::MUL:
3780 case ISD::MULHU:
3781 case ISD::MULHS:
3782 case ISD::AND: {
3783 SDValue Op0 = Op.getOperand(0);
3784 SDValue Op1 = Op.getOperand(1);
3785
3786 APInt SrcUndef, SrcZero;
3787 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3788 Depth + 1))
3789 return true;
3790 // If we know that a demanded element was zero in Op1 we don't need to
3791 // demand it in Op0 - its guaranteed to be zero.
3792 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3793 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3794 TLO, Depth + 1))
3795 return true;
3796
3797 KnownUndef &= DemandedElts0;
3798 KnownZero &= DemandedElts0;
3799
3800 // If every element pair has a zero/undef then just fold to zero.
3801 // fold (and x, undef) -> 0 / (and x, 0) -> 0
3802 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0
3803 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3804 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3805
3806 // If either side has a zero element, then the result element is zero, even
3807 // if the other is an UNDEF.
3808 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3809 // and then handle 'and' nodes with the rest of the binop opcodes.
3810 KnownZero |= SrcZero;
3811 KnownUndef &= SrcUndef;
3812 KnownUndef &= ~KnownZero;
3813
3814 // Attempt to avoid multi-use ops if we don't need anything from them.
3815 if (!DemandedElts.isAllOnes())
3816 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3817 return true;
3818 break;
3819 }
3820 case ISD::TRUNCATE:
3821 case ISD::SIGN_EXTEND:
3822 case ISD::ZERO_EXTEND:
3823 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3824 KnownZero, TLO, Depth + 1))
3825 return true;
3826
3827 if (!DemandedElts.isAllOnes())
3829 Op.getOperand(0), DemandedElts, TLO.DAG, Depth + 1))
3830 return TLO.CombineTo(Op, TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp));
3831
3832 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3833 // zext(undef) upper bits are guaranteed to be zero.
3834 if (DemandedElts.isSubsetOf(KnownUndef))
3835 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3836 KnownUndef.clearAllBits();
3837 }
3838 break;
3839 case ISD::SINT_TO_FP:
3840 case ISD::UINT_TO_FP:
3841 case ISD::FP_TO_SINT:
3842 case ISD::FP_TO_UINT:
3843 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3844 KnownZero, TLO, Depth + 1))
3845 return true;
3846 // Don't fall through to generic undef -> undef handling.
3847 return false;
3848 default: {
3849 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3850 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3851 KnownZero, TLO, Depth))
3852 return true;
3853 } else {
3854 KnownBits Known;
3855 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3856 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3857 TLO, Depth, AssumeSingleUse))
3858 return true;
3859 }
3860 break;
3861 }
3862 }
3863 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3864
3865 // Constant fold all undef cases.
3866 // TODO: Handle zero cases as well.
3867 if (DemandedElts.isSubsetOf(KnownUndef))
3868 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3869
3870 return false;
3871}
3872
3873/// Determine which of the bits specified in Mask are known to be either zero or
3874/// one and return them in the Known.
3876 KnownBits &Known,
3877 const APInt &DemandedElts,
3878 const SelectionDAG &DAG,
3879 unsigned Depth) const {
3880 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3881 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3882 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3883 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3884 "Should use MaskedValueIsZero if you don't know whether Op"
3885 " is a target node!");
3886 Known.resetAll();
3887}
3888
3891 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3892 unsigned Depth) const {
3893 Known.resetAll();
3894}
3895
3898 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3899 unsigned Depth) const {
3900 Known.resetAll();
3901}
3902
3904 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3905 // The low bits are known zero if the pointer is aligned.
3906 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3907}
3908
3914
3915/// This method can be implemented by targets that want to expose additional
3916/// information about sign bits to the DAG Combiner.
3918 const APInt &,
3919 const SelectionDAG &,
3920 unsigned Depth) const {
3921 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3922 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3923 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3924 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3925 "Should use ComputeNumSignBits if you don't know whether Op"
3926 " is a target node!");
3927 return 1;
3928}
3929
3931 GISelValueTracking &Analysis, Register R, const APInt &DemandedElts,
3932 const MachineRegisterInfo &MRI, unsigned Depth) const {
3933 return 1;
3934}
3935
3937 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3938 TargetLoweringOpt &TLO, unsigned Depth) const {
3939 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3940 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3941 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3942 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3943 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3944 " is a target node!");
3945 return false;
3946}
3947
3949 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3950 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3951 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3952 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3953 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3954 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3955 "Should use SimplifyDemandedBits if you don't know whether Op"
3956 " is a target node!");
3957 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3958 return false;
3959}
3960
3962 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3963 SelectionDAG &DAG, unsigned Depth) const {
3964 assert(
3965 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3966 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3967 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3968 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3969 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3970 " is a target node!");
3971 return SDValue();
3972}
3973
3974SDValue
3977 SelectionDAG &DAG) const {
3978 bool LegalMask = isShuffleMaskLegal(Mask, VT);
3979 if (!LegalMask) {
3980 std::swap(N0, N1);
3982 LegalMask = isShuffleMaskLegal(Mask, VT);
3983 }
3984
3985 if (!LegalMask)
3986 return SDValue();
3987
3988 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3989}
3990
3992 return nullptr;
3993}
3994
3996 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3997 bool PoisonOnly, unsigned Depth) const {
3998 assert(
3999 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4000 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4001 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4002 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4003 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
4004 " is a target node!");
4005
4006 // If Op can't create undef/poison and none of its operands are undef/poison
4007 // then Op is never undef/poison.
4008 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
4009 /*ConsiderFlags*/ true, Depth) &&
4010 all_of(Op->ops(), [&](SDValue V) {
4011 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
4012 Depth + 1);
4013 });
4014}
4015
4017 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4018 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
4019 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4020 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4021 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4022 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4023 "Should use canCreateUndefOrPoison if you don't know whether Op"
4024 " is a target node!");
4025 // Be conservative and return true.
4026 return true;
4027}
4028
4030 const APInt &DemandedElts,
4031 const SelectionDAG &DAG,
4032 bool SNaN,
4033 unsigned Depth) const {
4034 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4035 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4036 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4037 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4038 "Should use isKnownNeverNaN if you don't know whether Op"
4039 " is a target node!");
4040 return false;
4041}
4042
4044 const APInt &DemandedElts,
4045 APInt &UndefElts,
4046 const SelectionDAG &DAG,
4047 unsigned Depth) const {
4048 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4049 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4050 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4051 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4052 "Should use isSplatValue if you don't know whether Op"
4053 " is a target node!");
4054 return false;
4055}
4056
4057// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
4058// work with truncating build vectors and vectors with elements of less than
4059// 8 bits.
4061 if (!N)
4062 return false;
4063
4064 unsigned EltWidth;
4065 APInt CVal;
4066 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
4067 /*AllowTruncation=*/true)) {
4068 CVal = CN->getAPIntValue();
4069 EltWidth = N.getValueType().getScalarSizeInBits();
4070 } else
4071 return false;
4072
4073 // If this is a truncating splat, truncate the splat value.
4074 // Otherwise, we may fail to match the expected values below.
4075 if (EltWidth < CVal.getBitWidth())
4076 CVal = CVal.trunc(EltWidth);
4077
4078 switch (getBooleanContents(N.getValueType())) {
4080 return CVal[0];
4082 return CVal.isOne();
4084 return CVal.isAllOnes();
4085 }
4086
4087 llvm_unreachable("Invalid boolean contents");
4088}
4089
4091 if (!N)
4092 return false;
4093
4095 if (!CN) {
4097 if (!BV)
4098 return false;
4099
4100 // Only interested in constant splats, we don't care about undef
4101 // elements in identifying boolean constants and getConstantSplatNode
4102 // returns NULL if all ops are undef;
4103 CN = BV->getConstantSplatNode();
4104 if (!CN)
4105 return false;
4106 }
4107
4108 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
4109 return !CN->getAPIntValue()[0];
4110
4111 return CN->isZero();
4112}
4113
4115 bool SExt) const {
4116 if (VT == MVT::i1)
4117 return N->isOne();
4118
4120 switch (Cnt) {
4122 // An extended value of 1 is always true, unless its original type is i1,
4123 // in which case it will be sign extended to -1.
4124 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
4127 return N->isAllOnes() && SExt;
4128 }
4129 llvm_unreachable("Unexpected enumeration.");
4130}
4131
4132/// This helper function of SimplifySetCC tries to optimize the comparison when
4133/// either operand of the SetCC node is a bitwise-and instruction.
4134SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
4135 ISD::CondCode Cond, const SDLoc &DL,
4136 DAGCombinerInfo &DCI) const {
4137 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
4138 std::swap(N0, N1);
4139
4140 SelectionDAG &DAG = DCI.DAG;
4141 EVT OpVT = N0.getValueType();
4142 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
4143 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4144 return SDValue();
4145
4146 // (X & Y) != 0 --> zextOrTrunc(X & Y)
4147 // iff everything but LSB is known zero:
4148 if (Cond == ISD::SETNE && isNullConstant(N1) &&
4151 unsigned NumEltBits = OpVT.getScalarSizeInBits();
4152 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
4153 if (DAG.MaskedValueIsZero(N0, UpperBits))
4154 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
4155 }
4156
4157 // Try to eliminate a power-of-2 mask constant by converting to a signbit
4158 // test in a narrow type that we can truncate to with no cost. Examples:
4159 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4160 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4161 // TODO: This conservatively checks for type legality on the source and
4162 // destination types. That may inhibit optimizations, but it also
4163 // allows setcc->shift transforms that may be more beneficial.
4164 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4165 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4166 isTypeLegal(OpVT) && N0.hasOneUse()) {
4167 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4168 AndC->getAPIntValue().getActiveBits());
4169 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4170 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4171 SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4172 return DAG.getSetCC(DL, VT, Trunc, Zero,
4174 }
4175 }
4176
4177 // Match these patterns in any of their permutations:
4178 // (X & Y) == Y
4179 // (X & Y) != Y
4180 SDValue X, Y;
4181 if (N0.getOperand(0) == N1) {
4182 X = N0.getOperand(1);
4183 Y = N0.getOperand(0);
4184 } else if (N0.getOperand(1) == N1) {
4185 X = N0.getOperand(0);
4186 Y = N0.getOperand(1);
4187 } else {
4188 return SDValue();
4189 }
4190
4191 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4192 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4193 // its liable to create and infinite loop.
4194 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4195 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4197 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4198 // Note that where Y is variable and is known to have at most one bit set
4199 // (for example, if it is Z & 1) we cannot do this; the expressions are not
4200 // equivalent when Y == 0.
4201 assert(OpVT.isInteger());
4203 if (DCI.isBeforeLegalizeOps() ||
4205 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4206 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4207 // If the target supports an 'and-not' or 'and-complement' logic operation,
4208 // try to use that to make a comparison operation more efficient.
4209 // But don't do this transform if the mask is a single bit because there are
4210 // more efficient ways to deal with that case (for example, 'bt' on x86 or
4211 // 'rlwinm' on PPC).
4212
4213 // Bail out if the compare operand that we want to turn into a zero is
4214 // already a zero (otherwise, infinite loop).
4215 if (isNullConstant(Y))
4216 return SDValue();
4217
4218 // Transform this into: ~X & Y == 0.
4219 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4220 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4221 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4222 }
4223
4224 return SDValue();
4225}
4226
4227/// This helper function of SimplifySetCC tries to optimize the comparison when
4228/// either operand of the SetCC node is a bitwise-or instruction.
4229/// For now, this just transforms (X | Y) ==/!= Y into X & ~Y ==/!= 0.
4230SDValue TargetLowering::foldSetCCWithOr(EVT VT, SDValue N0, SDValue N1,
4231 ISD::CondCode Cond, const SDLoc &DL,
4232 DAGCombinerInfo &DCI) const {
4233 if (N1.getOpcode() == ISD::OR && N0.getOpcode() != ISD::OR)
4234 std::swap(N0, N1);
4235
4236 SelectionDAG &DAG = DCI.DAG;
4237 EVT OpVT = N0.getValueType();
4238 if (!N0.hasOneUse() || !OpVT.isInteger() ||
4239 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4240 return SDValue();
4241
4242 // (X | Y) == Y
4243 // (X | Y) != Y
4244 SDValue X;
4245 if (sd_match(N0, m_Or(m_Value(X), m_Specific(N1))) && hasAndNotCompare(X)) {
4246 // If the target supports an 'and-not' or 'and-complement' logic operation,
4247 // try to use that to make a comparison operation more efficient.
4248
4249 // Bail out if the compare operand that we want to turn into a zero is
4250 // already a zero (otherwise, infinite loop).
4251 if (isNullConstant(N1))
4252 return SDValue();
4253
4254 // Transform this into: X & ~Y ==/!= 0.
4255 SDValue NotY = DAG.getNOT(SDLoc(N1), N1, OpVT);
4256 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, X, NotY);
4257 return DAG.getSetCC(DL, VT, NewAnd, DAG.getConstant(0, DL, OpVT), Cond);
4258 }
4259
4260 return SDValue();
4261}
4262
4263/// There are multiple IR patterns that could be checking whether certain
4264/// truncation of a signed number would be lossy or not. The pattern which is
4265/// best at IR level, may not lower optimally. Thus, we want to unfold it.
4266/// We are looking for the following pattern: (KeptBits is a constant)
4267/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4268/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4269/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
4270/// We will unfold it into the natural trunc+sext pattern:
4271/// ((%x << C) a>> C) dstcond %x
4272/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
4273SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4274 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4275 const SDLoc &DL) const {
4276 // We must be comparing with a constant.
4277 ConstantSDNode *C1;
4278 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4279 return SDValue();
4280
4281 // N0 should be: add %x, (1 << (KeptBits-1))
4282 if (N0->getOpcode() != ISD::ADD)
4283 return SDValue();
4284
4285 // And we must be 'add'ing a constant.
4286 ConstantSDNode *C01;
4287 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4288 return SDValue();
4289
4290 SDValue X = N0->getOperand(0);
4291 EVT XVT = X.getValueType();
4292
4293 // Validate constants ...
4294
4295 APInt I1 = C1->getAPIntValue();
4296
4297 ISD::CondCode NewCond;
4298 if (Cond == ISD::CondCode::SETULT) {
4299 NewCond = ISD::CondCode::SETEQ;
4300 } else if (Cond == ISD::CondCode::SETULE) {
4301 NewCond = ISD::CondCode::SETEQ;
4302 // But need to 'canonicalize' the constant.
4303 I1 += 1;
4304 } else if (Cond == ISD::CondCode::SETUGT) {
4305 NewCond = ISD::CondCode::SETNE;
4306 // But need to 'canonicalize' the constant.
4307 I1 += 1;
4308 } else if (Cond == ISD::CondCode::SETUGE) {
4309 NewCond = ISD::CondCode::SETNE;
4310 } else
4311 return SDValue();
4312
4313 APInt I01 = C01->getAPIntValue();
4314
4315 auto checkConstants = [&I1, &I01]() -> bool {
4316 // Both of them must be power-of-two, and the constant from setcc is bigger.
4317 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4318 };
4319
4320 if (checkConstants()) {
4321 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
4322 } else {
4323 // What if we invert constants? (and the target predicate)
4324 I1.negate();
4325 I01.negate();
4326 assert(XVT.isInteger());
4327 NewCond = getSetCCInverse(NewCond, XVT);
4328 if (!checkConstants())
4329 return SDValue();
4330 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
4331 }
4332
4333 // They are power-of-two, so which bit is set?
4334 const unsigned KeptBits = I1.logBase2();
4335 const unsigned KeptBitsMinusOne = I01.logBase2();
4336
4337 // Magic!
4338 if (KeptBits != (KeptBitsMinusOne + 1))
4339 return SDValue();
4340 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4341
4342 // We don't want to do this in every single case.
4343 SelectionDAG &DAG = DCI.DAG;
4344 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4345 return SDValue();
4346
4347 // Unfold into: sext_inreg(%x) cond %x
4348 // Where 'cond' will be either 'eq' or 'ne'.
4349 SDValue SExtInReg = DAG.getNode(
4351 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4352 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4353}
4354
4355// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4356SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4357 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4358 DAGCombinerInfo &DCI, const SDLoc &DL) const {
4360 "Should be a comparison with 0.");
4361 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4362 "Valid only for [in]equality comparisons.");
4363
4364 unsigned NewShiftOpcode;
4365 SDValue X, C, Y;
4366
4367 SelectionDAG &DAG = DCI.DAG;
4368
4369 // Look for '(C l>>/<< Y)'.
4370 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4371 // The shift should be one-use.
4372 if (!V.hasOneUse())
4373 return false;
4374 unsigned OldShiftOpcode = V.getOpcode();
4375 switch (OldShiftOpcode) {
4376 case ISD::SHL:
4377 NewShiftOpcode = ISD::SRL;
4378 break;
4379 case ISD::SRL:
4380 NewShiftOpcode = ISD::SHL;
4381 break;
4382 default:
4383 return false; // must be a logical shift.
4384 }
4385 // We should be shifting a constant.
4386 // FIXME: best to use isConstantOrConstantVector().
4387 C = V.getOperand(0);
4388 ConstantSDNode *CC =
4389 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4390 if (!CC)
4391 return false;
4392 Y = V.getOperand(1);
4393
4394 ConstantSDNode *XC =
4395 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4397 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4398 };
4399
4400 // LHS of comparison should be an one-use 'and'.
4401 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4402 return SDValue();
4403
4404 X = N0.getOperand(0);
4405 SDValue Mask = N0.getOperand(1);
4406
4407 // 'and' is commutative!
4408 if (!Match(Mask)) {
4409 std::swap(X, Mask);
4410 if (!Match(Mask))
4411 return SDValue();
4412 }
4413
4414 EVT VT = X.getValueType();
4415
4416 // Produce:
4417 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4418 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4419 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4420 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4421 return T2;
4422}
4423
4424/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4425/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4426/// handle the commuted versions of these patterns.
4427SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4428 ISD::CondCode Cond, const SDLoc &DL,
4429 DAGCombinerInfo &DCI) const {
4430 unsigned BOpcode = N0.getOpcode();
4431 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4432 "Unexpected binop");
4433 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4434
4435 // (X + Y) == X --> Y == 0
4436 // (X - Y) == X --> Y == 0
4437 // (X ^ Y) == X --> Y == 0
4438 SelectionDAG &DAG = DCI.DAG;
4439 EVT OpVT = N0.getValueType();
4440 SDValue X = N0.getOperand(0);
4441 SDValue Y = N0.getOperand(1);
4442 if (X == N1)
4443 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4444
4445 if (Y != N1)
4446 return SDValue();
4447
4448 // (X + Y) == Y --> X == 0
4449 // (X ^ Y) == Y --> X == 0
4450 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4451 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4452
4453 // The shift would not be valid if the operands are boolean (i1).
4454 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4455 return SDValue();
4456
4457 // (X - Y) == Y --> X == Y << 1
4458 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4459 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4460 if (!DCI.isCalledByLegalizer())
4461 DCI.AddToWorklist(YShl1.getNode());
4462 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4463}
4464
4466 SDValue N0, const APInt &C1,
4467 ISD::CondCode Cond, const SDLoc &dl,
4468 SelectionDAG &DAG) {
4469 // Look through truncs that don't change the value of a ctpop.
4470 // FIXME: Add vector support? Need to be careful with setcc result type below.
4471 SDValue CTPOP = N0;
4472 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4474 CTPOP = N0.getOperand(0);
4475
4476 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4477 return SDValue();
4478
4479 EVT CTVT = CTPOP.getValueType();
4480 SDValue CTOp = CTPOP.getOperand(0);
4481
4482 // Expand a power-of-2-or-zero comparison based on ctpop:
4483 // (ctpop x) u< 2 -> (x & x-1) == 0
4484 // (ctpop x) u> 1 -> (x & x-1) != 0
4485 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4486 // Keep the CTPOP if it is a cheap vector op.
4487 if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4488 return SDValue();
4489
4490 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4491 if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4492 return SDValue();
4493 if (C1 == 0 && (Cond == ISD::SETULT))
4494 return SDValue(); // This is handled elsewhere.
4495
4496 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4497
4498 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4499 SDValue Result = CTOp;
4500 for (unsigned i = 0; i < Passes; i++) {
4501 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4502 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4503 }
4505 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4506 }
4507
4508 // Expand a power-of-2 comparison based on ctpop
4509 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4510 // Keep the CTPOP if it is cheap.
4511 if (TLI.isCtpopFast(CTVT))
4512 return SDValue();
4513
4514 SDValue Zero = DAG.getConstant(0, dl, CTVT);
4515 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4516 assert(CTVT.isInteger());
4517 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4518
4519 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4520 // check before emitting a potentially unnecessary op.
4521 if (DAG.isKnownNeverZero(CTOp)) {
4522 // (ctpop x) == 1 --> (x & x-1) == 0
4523 // (ctpop x) != 1 --> (x & x-1) != 0
4524 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4525 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4526 return RHS;
4527 }
4528
4529 // (ctpop x) == 1 --> (x ^ x-1) > x-1
4530 // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4531 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4533 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4534 }
4535
4536 return SDValue();
4537}
4538
4540 ISD::CondCode Cond, const SDLoc &dl,
4541 SelectionDAG &DAG) {
4542 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4543 return SDValue();
4544
4545 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4546 if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4547 return SDValue();
4548
4549 auto getRotateSource = [](SDValue X) {
4550 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4551 return X.getOperand(0);
4552 return SDValue();
4553 };
4554
4555 // Peek through a rotated value compared against 0 or -1:
4556 // (rot X, Y) == 0/-1 --> X == 0/-1
4557 // (rot X, Y) != 0/-1 --> X != 0/-1
4558 if (SDValue R = getRotateSource(N0))
4559 return DAG.getSetCC(dl, VT, R, N1, Cond);
4560
4561 // Peek through an 'or' of a rotated value compared against 0:
4562 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4563 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4564 //
4565 // TODO: Add the 'and' with -1 sibling.
4566 // TODO: Recurse through a series of 'or' ops to find the rotate.
4567 EVT OpVT = N0.getValueType();
4568 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4569 if (SDValue R = getRotateSource(N0.getOperand(0))) {
4570 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4571 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4572 }
4573 if (SDValue R = getRotateSource(N0.getOperand(1))) {
4574 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4575 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4576 }
4577 }
4578
4579 return SDValue();
4580}
4581
4583 ISD::CondCode Cond, const SDLoc &dl,
4584 SelectionDAG &DAG) {
4585 // If we are testing for all-bits-clear, we might be able to do that with
4586 // less shifting since bit-order does not matter.
4587 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4588 return SDValue();
4589
4590 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4591 if (!C1 || !C1->isZero())
4592 return SDValue();
4593
4594 if (!N0.hasOneUse() ||
4595 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4596 return SDValue();
4597
4598 unsigned BitWidth = N0.getScalarValueSizeInBits();
4599 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4600 if (!ShAmtC)
4601 return SDValue();
4602
4603 uint64_t ShAmt = ShAmtC->getAPIntValue().urem(BitWidth);
4604 if (ShAmt == 0)
4605 return SDValue();
4606
4607 // Canonicalize fshr as fshl to reduce pattern-matching.
4608 if (N0.getOpcode() == ISD::FSHR)
4609 ShAmt = BitWidth - ShAmt;
4610
4611 // Match an 'or' with a specific operand 'Other' in either commuted variant.
4612 SDValue X, Y;
4613 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4614 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4615 return false;
4616 if (Or.getOperand(0) == Other) {
4617 X = Or.getOperand(0);
4618 Y = Or.getOperand(1);
4619 return true;
4620 }
4621 if (Or.getOperand(1) == Other) {
4622 X = Or.getOperand(1);
4623 Y = Or.getOperand(0);
4624 return true;
4625 }
4626 return false;
4627 };
4628
4629 EVT OpVT = N0.getValueType();
4630 EVT ShAmtVT = N0.getOperand(2).getValueType();
4631 SDValue F0 = N0.getOperand(0);
4632 SDValue F1 = N0.getOperand(1);
4633 if (matchOr(F0, F1)) {
4634 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4635 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4636 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4637 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4638 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4639 }
4640 if (matchOr(F1, F0)) {
4641 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4642 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4643 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4644 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4645 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4646 }
4647
4648 return SDValue();
4649}
4650
4651/// Try to simplify a setcc built with the specified operands and cc. If it is
4652/// unable to simplify it, return a null SDValue.
4654 ISD::CondCode Cond, bool foldBooleans,
4655 DAGCombinerInfo &DCI,
4656 const SDLoc &dl) const {
4657 SelectionDAG &DAG = DCI.DAG;
4658 const DataLayout &Layout = DAG.getDataLayout();
4659 EVT OpVT = N0.getValueType();
4660 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4661
4662 // Constant fold or commute setcc.
4663 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4664 return Fold;
4665
4666 bool N0ConstOrSplat =
4667 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4668 bool N1ConstOrSplat =
4669 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4670
4671 // Canonicalize toward having the constant on the RHS.
4672 // TODO: Handle non-splat vector constants. All undef causes trouble.
4673 // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4674 // infinite loop here when we encounter one.
4676 if (N0ConstOrSplat && !N1ConstOrSplat &&
4677 (DCI.isBeforeLegalizeOps() ||
4678 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4679 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4680
4681 // If we have a subtract with the same 2 non-constant operands as this setcc
4682 // -- but in reverse order -- then try to commute the operands of this setcc
4683 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4684 // instruction on some targets.
4685 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4686 (DCI.isBeforeLegalizeOps() ||
4687 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4688 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4689 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4690 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4691
4692 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4693 return V;
4694
4695 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4696 return V;
4697
4698 if (auto *N1C = isConstOrConstSplat(N1)) {
4699 const APInt &C1 = N1C->getAPIntValue();
4700
4701 // Optimize some CTPOP cases.
4702 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4703 return V;
4704
4705 // For equality to 0 of a no-wrap multiply, decompose and test each op:
4706 // X * Y == 0 --> (X == 0) || (Y == 0)
4707 // X * Y != 0 --> (X != 0) && (Y != 0)
4708 // TODO: This bails out if minsize is set, but if the target doesn't have a
4709 // single instruction multiply for this type, it would likely be
4710 // smaller to decompose.
4711 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4712 N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4713 (N0->getFlags().hasNoUnsignedWrap() ||
4714 N0->getFlags().hasNoSignedWrap()) &&
4715 !Attr.hasFnAttr(Attribute::MinSize)) {
4716 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4717 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4718 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4719 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4720 }
4721
4722 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4723 // equality comparison, then we're just comparing whether X itself is
4724 // zero.
4725 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4726 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4728 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4729 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4730 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4731 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4732 // (srl (ctlz x), 5) == 0 -> X != 0
4733 // (srl (ctlz x), 5) != 1 -> X != 0
4734 Cond = ISD::SETNE;
4735 } else {
4736 // (srl (ctlz x), 5) != 0 -> X == 0
4737 // (srl (ctlz x), 5) == 1 -> X == 0
4738 Cond = ISD::SETEQ;
4739 }
4740 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4741 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4742 Cond);
4743 }
4744 }
4745 }
4746 }
4747
4748 // FIXME: Support vectors.
4749 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4750 const APInt &C1 = N1C->getAPIntValue();
4751
4752 // (zext x) == C --> x == (trunc C)
4753 // (sext x) == C --> x == (trunc C)
4754 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4755 DCI.isBeforeLegalize() && N0->hasOneUse()) {
4756 unsigned MinBits = N0.getValueSizeInBits();
4757 SDValue PreExt;
4758 bool Signed = false;
4759 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4760 // ZExt
4761 MinBits = N0->getOperand(0).getValueSizeInBits();
4762 PreExt = N0->getOperand(0);
4763 } else if (N0->getOpcode() == ISD::AND) {
4764 // DAGCombine turns costly ZExts into ANDs
4765 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4766 if ((C->getAPIntValue()+1).isPowerOf2()) {
4767 MinBits = C->getAPIntValue().countr_one();
4768 PreExt = N0->getOperand(0);
4769 }
4770 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4771 // SExt
4772 MinBits = N0->getOperand(0).getValueSizeInBits();
4773 PreExt = N0->getOperand(0);
4774 Signed = true;
4775 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4776 // ZEXTLOAD / SEXTLOAD
4777 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4778 MinBits = LN0->getMemoryVT().getSizeInBits();
4779 PreExt = N0;
4780 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4781 Signed = true;
4782 MinBits = LN0->getMemoryVT().getSizeInBits();
4783 PreExt = N0;
4784 }
4785 }
4786
4787 // Figure out how many bits we need to preserve this constant.
4788 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4789
4790 // Make sure we're not losing bits from the constant.
4791 if (MinBits > 0 &&
4792 MinBits < C1.getBitWidth() &&
4793 MinBits >= ReqdBits) {
4794 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4795 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4796 // Will get folded away.
4797 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4798 if (MinBits == 1 && C1 == 1)
4799 // Invert the condition.
4800 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4802 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4803 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4804 }
4805
4806 // If truncating the setcc operands is not desirable, we can still
4807 // simplify the expression in some cases:
4808 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4809 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4810 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4811 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4812 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4813 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4814 SDValue TopSetCC = N0->getOperand(0);
4815 unsigned N0Opc = N0->getOpcode();
4816 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4817 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4818 TopSetCC.getOpcode() == ISD::SETCC &&
4819 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4820 (isConstFalseVal(N1) ||
4821 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4822
4823 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4824 (!N1C->isZero() && Cond == ISD::SETNE);
4825
4826 if (!Inverse)
4827 return TopSetCC;
4828
4830 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4831 TopSetCC.getOperand(0).getValueType());
4832 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4833 TopSetCC.getOperand(1),
4834 InvCond);
4835 }
4836 }
4837 }
4838
4839 // If the LHS is '(and load, const)', the RHS is 0, the test is for
4840 // equality or unsigned, and all 1 bits of the const are in the same
4841 // partial word, see if we can shorten the load.
4842 if (DCI.isBeforeLegalize() &&
4844 N0.getOpcode() == ISD::AND && C1 == 0 &&
4845 N0.getNode()->hasOneUse() &&
4846 isa<LoadSDNode>(N0.getOperand(0)) &&
4847 N0.getOperand(0).getNode()->hasOneUse() &&
4849 auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4850 APInt bestMask;
4851 unsigned bestWidth = 0, bestOffset = 0;
4852 if (Lod->isSimple() && Lod->isUnindexed() &&
4853 (Lod->getMemoryVT().isByteSized() ||
4854 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4855 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4856 unsigned origWidth = N0.getValueSizeInBits();
4857 unsigned maskWidth = origWidth;
4858 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4859 // 8 bits, but have to be careful...
4860 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4861 origWidth = Lod->getMemoryVT().getSizeInBits();
4862 const APInt &Mask = N0.getConstantOperandAPInt(1);
4863 // Only consider power-of-2 widths (and at least one byte) as candiates
4864 // for the narrowed load.
4865 for (unsigned width = 8; width < origWidth; width *= 2) {
4866 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4867 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4868 // Avoid accessing any padding here for now (we could use memWidth
4869 // instead of origWidth here otherwise).
4870 unsigned maxOffset = origWidth - width;
4871 for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4872 if (Mask.isSubsetOf(newMask)) {
4873 unsigned ptrOffset =
4874 Layout.isLittleEndian() ? offset : memWidth - width - offset;
4875 unsigned IsFast = 0;
4876 assert((ptrOffset % 8) == 0 && "Non-Bytealigned pointer offset");
4877 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4879 ptrOffset / 8) &&
4881 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4882 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4883 IsFast) {
4884 bestOffset = ptrOffset / 8;
4885 bestMask = Mask.lshr(offset);
4886 bestWidth = width;
4887 break;
4888 }
4889 }
4890 newMask <<= 8;
4891 }
4892 if (bestWidth)
4893 break;
4894 }
4895 }
4896 if (bestWidth) {
4897 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4898 SDValue Ptr = Lod->getBasePtr();
4899 if (bestOffset != 0)
4900 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4901 SDValue NewLoad =
4902 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4903 Lod->getPointerInfo().getWithOffset(bestOffset),
4904 Lod->getBaseAlign());
4905 SDValue And =
4906 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4907 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4908 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4909 }
4910 }
4911
4912 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4913 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4914 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4915
4916 // If the comparison constant has bits in the upper part, the
4917 // zero-extended value could never match.
4919 C1.getBitWidth() - InSize))) {
4920 switch (Cond) {
4921 case ISD::SETUGT:
4922 case ISD::SETUGE:
4923 case ISD::SETEQ:
4924 return DAG.getConstant(0, dl, VT);
4925 case ISD::SETULT:
4926 case ISD::SETULE:
4927 case ISD::SETNE:
4928 return DAG.getConstant(1, dl, VT);
4929 case ISD::SETGT:
4930 case ISD::SETGE:
4931 // True if the sign bit of C1 is set.
4932 return DAG.getConstant(C1.isNegative(), dl, VT);
4933 case ISD::SETLT:
4934 case ISD::SETLE:
4935 // True if the sign bit of C1 isn't set.
4936 return DAG.getConstant(C1.isNonNegative(), dl, VT);
4937 default:
4938 break;
4939 }
4940 }
4941
4942 // Otherwise, we can perform the comparison with the low bits.
4943 switch (Cond) {
4944 case ISD::SETEQ:
4945 case ISD::SETNE:
4946 case ISD::SETUGT:
4947 case ISD::SETUGE:
4948 case ISD::SETULT:
4949 case ISD::SETULE: {
4950 EVT newVT = N0.getOperand(0).getValueType();
4951 // FIXME: Should use isNarrowingProfitable.
4952 if (DCI.isBeforeLegalizeOps() ||
4953 (isOperationLegal(ISD::SETCC, newVT) &&
4954 isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4956 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4957 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4958
4959 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4960 NewConst, Cond);
4961 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4962 }
4963 break;
4964 }
4965 default:
4966 break; // todo, be more careful with signed comparisons
4967 }
4968 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4969 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4971 OpVT)) {
4972 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4973 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4974 EVT ExtDstTy = N0.getValueType();
4975 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4976
4977 // If the constant doesn't fit into the number of bits for the source of
4978 // the sign extension, it is impossible for both sides to be equal.
4979 if (C1.getSignificantBits() > ExtSrcTyBits)
4980 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4981
4982 assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4983 ExtDstTy != ExtSrcTy && "Unexpected types!");
4984 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4985 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4986 DAG.getConstant(Imm, dl, ExtDstTy));
4987 if (!DCI.isCalledByLegalizer())
4988 DCI.AddToWorklist(ZextOp.getNode());
4989 // Otherwise, make this a use of a zext.
4990 return DAG.getSetCC(dl, VT, ZextOp,
4991 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4992 } else if ((N1C->isZero() || N1C->isOne()) &&
4993 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4994 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are
4995 // excluded as they are handled below whilst checking for foldBooleans.
4996 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4997 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4998 (N0.getValueType() == MVT::i1 ||
5002 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
5003 if (TrueWhenTrue)
5004 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
5005 // Invert the condition.
5006 if (N0.getOpcode() == ISD::SETCC) {
5009 if (DCI.isBeforeLegalizeOps() ||
5011 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
5012 }
5013 }
5014
5015 if ((N0.getOpcode() == ISD::XOR ||
5016 (N0.getOpcode() == ISD::AND &&
5017 N0.getOperand(0).getOpcode() == ISD::XOR &&
5018 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
5019 isOneConstant(N0.getOperand(1))) {
5020 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
5021 // can only do this if the top bits are known zero.
5022 unsigned BitWidth = N0.getValueSizeInBits();
5023 if (DAG.MaskedValueIsZero(N0,
5025 BitWidth-1))) {
5026 // Okay, get the un-inverted input value.
5027 SDValue Val;
5028 if (N0.getOpcode() == ISD::XOR) {
5029 Val = N0.getOperand(0);
5030 } else {
5031 assert(N0.getOpcode() == ISD::AND &&
5032 N0.getOperand(0).getOpcode() == ISD::XOR);
5033 // ((X^1)&1)^1 -> X & 1
5034 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
5035 N0.getOperand(0).getOperand(0),
5036 N0.getOperand(1));
5037 }
5038
5039 return DAG.getSetCC(dl, VT, Val, N1,
5041 }
5042 } else if (N1C->isOne()) {
5043 SDValue Op0 = N0;
5044 if (Op0.getOpcode() == ISD::TRUNCATE)
5045 Op0 = Op0.getOperand(0);
5046
5047 if ((Op0.getOpcode() == ISD::XOR) &&
5048 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
5049 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
5050 SDValue XorLHS = Op0.getOperand(0);
5051 SDValue XorRHS = Op0.getOperand(1);
5052 // Ensure that the input setccs return an i1 type or 0/1 value.
5053 if (Op0.getValueType() == MVT::i1 ||
5058 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
5060 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
5061 }
5062 }
5063 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
5064 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
5065 if (Op0.getValueType().bitsGT(VT))
5066 Op0 = DAG.getNode(ISD::AND, dl, VT,
5067 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
5068 DAG.getConstant(1, dl, VT));
5069 else if (Op0.getValueType().bitsLT(VT))
5070 Op0 = DAG.getNode(ISD::AND, dl, VT,
5071 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
5072 DAG.getConstant(1, dl, VT));
5073
5074 return DAG.getSetCC(dl, VT, Op0,
5075 DAG.getConstant(0, dl, Op0.getValueType()),
5077 }
5078 if (Op0.getOpcode() == ISD::AssertZext &&
5079 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
5080 return DAG.getSetCC(dl, VT, Op0,
5081 DAG.getConstant(0, dl, Op0.getValueType()),
5083 }
5084 }
5085
5086 // Given:
5087 // icmp eq/ne (urem %x, %y), 0
5088 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
5089 // icmp eq/ne %x, 0
5090 if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
5091 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5092 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
5093 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
5094 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
5095 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
5096 }
5097
5098 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
5099 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
5100 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5102 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
5103 N1C->isAllOnes()) {
5104 return DAG.getSetCC(dl, VT, N0.getOperand(0),
5105 DAG.getConstant(0, dl, OpVT),
5107 }
5108
5109 // fold (setcc (trunc x) c) -> (setcc x c)
5110 if (N0.getOpcode() == ISD::TRUNCATE &&
5112 (N0->getFlags().hasNoSignedWrap() &&
5115 EVT NewVT = N0.getOperand(0).getValueType();
5116 SDValue NewConst = DAG.getConstant(
5118 ? C1.sext(NewVT.getSizeInBits())
5119 : C1.zext(NewVT.getSizeInBits()),
5120 dl, NewVT);
5121 return DAG.getSetCC(dl, VT, N0.getOperand(0), NewConst, Cond);
5122 }
5123
5124 if (SDValue V =
5125 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
5126 return V;
5127 }
5128
5129 // These simplifications apply to splat vectors as well.
5130 // TODO: Handle more splat vector cases.
5131 if (auto *N1C = isConstOrConstSplat(N1)) {
5132 const APInt &C1 = N1C->getAPIntValue();
5133
5134 APInt MinVal, MaxVal;
5135 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
5137 MinVal = APInt::getSignedMinValue(OperandBitSize);
5138 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
5139 } else {
5140 MinVal = APInt::getMinValue(OperandBitSize);
5141 MaxVal = APInt::getMaxValue(OperandBitSize);
5142 }
5143
5144 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
5145 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
5146 // X >= MIN --> true
5147 if (C1 == MinVal)
5148 return DAG.getBoolConstant(true, dl, VT, OpVT);
5149
5150 if (!VT.isVector()) { // TODO: Support this for vectors.
5151 // X >= C0 --> X > (C0 - 1)
5152 APInt C = C1 - 1;
5154 if ((DCI.isBeforeLegalizeOps() ||
5155 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5156 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5157 isLegalICmpImmediate(C.getSExtValue())))) {
5158 return DAG.getSetCC(dl, VT, N0,
5159 DAG.getConstant(C, dl, N1.getValueType()),
5160 NewCC);
5161 }
5162 }
5163 }
5164
5165 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
5166 // X <= MAX --> true
5167 if (C1 == MaxVal)
5168 return DAG.getBoolConstant(true, dl, VT, OpVT);
5169
5170 // X <= C0 --> X < (C0 + 1)
5171 if (!VT.isVector()) { // TODO: Support this for vectors.
5172 APInt C = C1 + 1;
5174 if ((DCI.isBeforeLegalizeOps() ||
5175 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5176 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5177 isLegalICmpImmediate(C.getSExtValue())))) {
5178 return DAG.getSetCC(dl, VT, N0,
5179 DAG.getConstant(C, dl, N1.getValueType()),
5180 NewCC);
5181 }
5182 }
5183 }
5184
5185 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
5186 if (C1 == MinVal)
5187 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
5188
5189 // TODO: Support this for vectors after legalize ops.
5190 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5191 // Canonicalize setlt X, Max --> setne X, Max
5192 if (C1 == MaxVal)
5193 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5194
5195 // If we have setult X, 1, turn it into seteq X, 0
5196 if (C1 == MinVal+1)
5197 return DAG.getSetCC(dl, VT, N0,
5198 DAG.getConstant(MinVal, dl, N0.getValueType()),
5199 ISD::SETEQ);
5200 }
5201 }
5202
5203 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
5204 if (C1 == MaxVal)
5205 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
5206
5207 // TODO: Support this for vectors after legalize ops.
5208 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5209 // Canonicalize setgt X, Min --> setne X, Min
5210 if (C1 == MinVal)
5211 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5212
5213 // If we have setugt X, Max-1, turn it into seteq X, Max
5214 if (C1 == MaxVal-1)
5215 return DAG.getSetCC(dl, VT, N0,
5216 DAG.getConstant(MaxVal, dl, N0.getValueType()),
5217 ISD::SETEQ);
5218 }
5219 }
5220
5221 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5222 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5223 if (C1.isZero())
5224 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5225 VT, N0, N1, Cond, DCI, dl))
5226 return CC;
5227
5228 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5229 // For example, when high 32-bits of i64 X are known clear:
5230 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
5231 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
5232 bool CmpZero = N1C->isZero();
5233 bool CmpNegOne = N1C->isAllOnes();
5234 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5235 // Match or(lo,shl(hi,bw/2)) pattern.
5236 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5237 unsigned EltBits = V.getScalarValueSizeInBits();
5238 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5239 return false;
5240 SDValue LHS = V.getOperand(0);
5241 SDValue RHS = V.getOperand(1);
5242 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5243 // Unshifted element must have zero upperbits.
5244 if (RHS.getOpcode() == ISD::SHL &&
5245 isa<ConstantSDNode>(RHS.getOperand(1)) &&
5246 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5247 DAG.MaskedValueIsZero(LHS, HiBits)) {
5248 Lo = LHS;
5249 Hi = RHS.getOperand(0);
5250 return true;
5251 }
5252 if (LHS.getOpcode() == ISD::SHL &&
5253 isa<ConstantSDNode>(LHS.getOperand(1)) &&
5254 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5255 DAG.MaskedValueIsZero(RHS, HiBits)) {
5256 Lo = RHS;
5257 Hi = LHS.getOperand(0);
5258 return true;
5259 }
5260 return false;
5261 };
5262
5263 auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5264 unsigned EltBits = N0.getScalarValueSizeInBits();
5265 unsigned HalfBits = EltBits / 2;
5266 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5267 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5268 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5269 SDValue NewN0 =
5270 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5271 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5272 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5273 };
5274
5275 SDValue Lo, Hi;
5276 if (IsConcat(N0, Lo, Hi))
5277 return MergeConcat(Lo, Hi);
5278
5279 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5280 SDValue Lo0, Lo1, Hi0, Hi1;
5281 if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5282 IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5283 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5284 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5285 }
5286 }
5287 }
5288 }
5289
5290 // If we have "setcc X, C0", check to see if we can shrink the immediate
5291 // by changing cc.
5292 // TODO: Support this for vectors after legalize ops.
5293 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5294 // SETUGT X, SINTMAX -> SETLT X, 0
5295 // SETUGE X, SINTMIN -> SETLT X, 0
5296 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5297 (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5298 return DAG.getSetCC(dl, VT, N0,
5299 DAG.getConstant(0, dl, N1.getValueType()),
5300 ISD::SETLT);
5301
5302 // SETULT X, SINTMIN -> SETGT X, -1
5303 // SETULE X, SINTMAX -> SETGT X, -1
5304 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5305 (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5306 return DAG.getSetCC(dl, VT, N0,
5307 DAG.getAllOnesConstant(dl, N1.getValueType()),
5308 ISD::SETGT);
5309 }
5310 }
5311
5312 // Back to non-vector simplifications.
5313 // TODO: Can we do these for vector splats?
5314 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5315 const APInt &C1 = N1C->getAPIntValue();
5316 EVT ShValTy = N0.getValueType();
5317
5318 // Fold bit comparisons when we can. This will result in an
5319 // incorrect value when boolean false is negative one, unless
5320 // the bitsize is 1 in which case the false value is the same
5321 // in practice regardless of the representation.
5322 if ((VT.getSizeInBits() == 1 ||
5324 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5325 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5326 N0.getOpcode() == ISD::AND) {
5327 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5328 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
5329 // Perform the xform if the AND RHS is a single bit.
5330 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5331 if (AndRHS->getAPIntValue().isPowerOf2() &&
5332 !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5333 return DAG.getNode(
5334 ISD::TRUNCATE, dl, VT,
5335 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5336 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5337 }
5338 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5339 // (X & 8) == 8 --> (X & 8) >> 3
5340 // Perform the xform if C1 is a single bit.
5341 unsigned ShCt = C1.logBase2();
5342 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5343 return DAG.getNode(
5344 ISD::TRUNCATE, dl, VT,
5345 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5346 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5347 }
5348 }
5349 }
5350 }
5351
5352 if (C1.getSignificantBits() <= 64 &&
5354 // (X & -256) == 256 -> (X >> 8) == 1
5355 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5356 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5357 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5358 const APInt &AndRHSC = AndRHS->getAPIntValue();
5359 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5360 unsigned ShiftBits = AndRHSC.countr_zero();
5361 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5362 // If using an unsigned shift doesn't yield a legal compare
5363 // immediate, try using sra instead.
5364 APInt NewC = C1.lshr(ShiftBits);
5365 if (NewC.getSignificantBits() <= 64 &&
5367 APInt SignedC = C1.ashr(ShiftBits);
5368 if (SignedC.getSignificantBits() <= 64 &&
5370 SDValue Shift = DAG.getNode(
5371 ISD::SRA, dl, ShValTy, N0.getOperand(0),
5372 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5373 SDValue CmpRHS = DAG.getConstant(SignedC, dl, ShValTy);
5374 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5375 }
5376 }
5377 SDValue Shift = DAG.getNode(
5378 ISD::SRL, dl, ShValTy, N0.getOperand(0),
5379 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5380 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5381 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5382 }
5383 }
5384 }
5385 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5386 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5387 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5388 // X < 0x100000000 -> (X >> 32) < 1
5389 // X >= 0x100000000 -> (X >> 32) >= 1
5390 // X <= 0x0ffffffff -> (X >> 32) < 1
5391 // X > 0x0ffffffff -> (X >> 32) >= 1
5392 unsigned ShiftBits;
5393 APInt NewC = C1;
5394 ISD::CondCode NewCond = Cond;
5395 if (AdjOne) {
5396 ShiftBits = C1.countr_one();
5397 NewC = NewC + 1;
5398 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5399 } else {
5400 ShiftBits = C1.countr_zero();
5401 }
5402 NewC.lshrInPlace(ShiftBits);
5403 if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5405 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5406 SDValue Shift =
5407 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5408 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5409 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5410 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5411 }
5412 }
5413 }
5414 }
5415
5417 auto *CFP = cast<ConstantFPSDNode>(N1);
5418 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5419
5420 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
5421 // constant if knowing that the operand is non-nan is enough. We prefer to
5422 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5423 // materialize 0.0.
5424 if (Cond == ISD::SETO || Cond == ISD::SETUO)
5425 return DAG.getSetCC(dl, VT, N0, N0, Cond);
5426
5427 // setcc (fneg x), C -> setcc swap(pred) x, -C
5428 if (N0.getOpcode() == ISD::FNEG) {
5430 if (DCI.isBeforeLegalizeOps() ||
5431 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5432 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5433 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5434 }
5435 }
5436
5437 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5439 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5440 bool IsFabs = N0.getOpcode() == ISD::FABS;
5441 SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5442 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5443 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5444 : (IsFabs ? fcInf : fcPosInf);
5445 if (Cond == ISD::SETUEQ)
5446 Flag |= fcNan;
5447 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5448 DAG.getTargetConstant(Flag, dl, MVT::i32));
5449 }
5450 }
5451
5452 // If the condition is not legal, see if we can find an equivalent one
5453 // which is legal.
5455 // If the comparison was an awkward floating-point == or != and one of
5456 // the comparison operands is infinity or negative infinity, convert the
5457 // condition to a less-awkward <= or >=.
5458 if (CFP->getValueAPF().isInfinity()) {
5459 bool IsNegInf = CFP->getValueAPF().isNegative();
5461 switch (Cond) {
5462 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5463 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5464 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5465 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5466 default: break;
5467 }
5468 if (NewCond != ISD::SETCC_INVALID &&
5469 isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5470 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5471 }
5472 }
5473 }
5474
5475 if (N0 == N1) {
5476 // The sext(setcc()) => setcc() optimization relies on the appropriate
5477 // constant being emitted.
5478 assert(!N0.getValueType().isInteger() &&
5479 "Integer types should be handled by FoldSetCC");
5480
5481 bool EqTrue = ISD::isTrueWhenEqual(Cond);
5482 unsigned UOF = ISD::getUnorderedFlavor(Cond);
5483 if (UOF == 2) // FP operators that are undefined on NaNs.
5484 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5485 if (UOF == unsigned(EqTrue))
5486 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5487 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
5488 // if it is not already.
5489 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5490 if (NewCond != Cond &&
5491 (DCI.isBeforeLegalizeOps() ||
5492 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5493 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5494 }
5495
5496 // ~X > ~Y --> Y > X
5497 // ~X < ~Y --> Y < X
5498 // ~X < C --> X > ~C
5499 // ~X > C --> X < ~C
5500 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5501 N0.getValueType().isInteger()) {
5502 if (isBitwiseNot(N0)) {
5503 if (isBitwiseNot(N1))
5504 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5505
5508 SDValue Not = DAG.getNOT(dl, N1, OpVT);
5509 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5510 }
5511 }
5512 }
5513
5514 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5515 N0.getValueType().isInteger()) {
5516 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5517 N0.getOpcode() == ISD::XOR) {
5518 // Simplify (X+Y) == (X+Z) --> Y == Z
5519 if (N0.getOpcode() == N1.getOpcode()) {
5520 if (N0.getOperand(0) == N1.getOperand(0))
5521 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5522 if (N0.getOperand(1) == N1.getOperand(1))
5523 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5524 if (isCommutativeBinOp(N0.getOpcode())) {
5525 // If X op Y == Y op X, try other combinations.
5526 if (N0.getOperand(0) == N1.getOperand(1))
5527 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5528 Cond);
5529 if (N0.getOperand(1) == N1.getOperand(0))
5530 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5531 Cond);
5532 }
5533 }
5534
5535 // If RHS is a legal immediate value for a compare instruction, we need
5536 // to be careful about increasing register pressure needlessly.
5537 bool LegalRHSImm = false;
5538
5539 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5540 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5541 // Turn (X+C1) == C2 --> X == C2-C1
5542 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5543 return DAG.getSetCC(
5544 dl, VT, N0.getOperand(0),
5545 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5546 dl, N0.getValueType()),
5547 Cond);
5548
5549 // Turn (X^C1) == C2 --> X == C1^C2
5550 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5551 return DAG.getSetCC(
5552 dl, VT, N0.getOperand(0),
5553 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5554 dl, N0.getValueType()),
5555 Cond);
5556 }
5557
5558 // Turn (C1-X) == C2 --> X == C1-C2
5559 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5560 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5561 return DAG.getSetCC(
5562 dl, VT, N0.getOperand(1),
5563 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5564 dl, N0.getValueType()),
5565 Cond);
5566
5567 // Could RHSC fold directly into a compare?
5568 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5569 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5570 }
5571
5572 // (X+Y) == X --> Y == 0 and similar folds.
5573 // Don't do this if X is an immediate that can fold into a cmp
5574 // instruction and X+Y has other uses. It could be an induction variable
5575 // chain, and the transform would increase register pressure.
5576 if (!LegalRHSImm || N0.hasOneUse())
5577 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5578 return V;
5579 }
5580
5581 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5582 N1.getOpcode() == ISD::XOR)
5583 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5584 return V;
5585
5586 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5587 return V;
5588
5589 if (SDValue V = foldSetCCWithOr(VT, N0, N1, Cond, dl, DCI))
5590 return V;
5591 }
5592
5593 // Fold remainder of division by a constant.
5594 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5595 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5596 // When division is cheap or optimizing for minimum size,
5597 // fall through to DIVREM creation by skipping this fold.
5598 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5599 if (N0.getOpcode() == ISD::UREM) {
5600 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5601 return Folded;
5602 } else if (N0.getOpcode() == ISD::SREM) {
5603 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5604 return Folded;
5605 }
5606 }
5607 }
5608
5609 // Fold away ALL boolean setcc's.
5610 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5611 SDValue Temp;
5612 switch (Cond) {
5613 default: llvm_unreachable("Unknown integer setcc!");
5614 case ISD::SETEQ: // X == Y -> ~(X^Y)
5615 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5616 N0 = DAG.getNOT(dl, Temp, OpVT);
5617 if (!DCI.isCalledByLegalizer())
5618 DCI.AddToWorklist(Temp.getNode());
5619 break;
5620 case ISD::SETNE: // X != Y --> (X^Y)
5621 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5622 break;
5623 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
5624 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
5625 Temp = DAG.getNOT(dl, N0, OpVT);
5626 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5627 if (!DCI.isCalledByLegalizer())
5628 DCI.AddToWorklist(Temp.getNode());
5629 break;
5630 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
5631 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
5632 Temp = DAG.getNOT(dl, N1, OpVT);
5633 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5634 if (!DCI.isCalledByLegalizer())
5635 DCI.AddToWorklist(Temp.getNode());
5636 break;
5637 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
5638 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
5639 Temp = DAG.getNOT(dl, N0, OpVT);
5640 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5641 if (!DCI.isCalledByLegalizer())
5642 DCI.AddToWorklist(Temp.getNode());
5643 break;
5644 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
5645 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
5646 Temp = DAG.getNOT(dl, N1, OpVT);
5647 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5648 break;
5649 }
5650 if (VT.getScalarType() != MVT::i1) {
5651 if (!DCI.isCalledByLegalizer())
5652 DCI.AddToWorklist(N0.getNode());
5653 // FIXME: If running after legalize, we probably can't do this.
5655 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5656 }
5657 return N0;
5658 }
5659
5660 // Fold (setcc (trunc x) (trunc y)) -> (setcc x y)
5661 if (N0.getOpcode() == ISD::TRUNCATE && N1.getOpcode() == ISD::TRUNCATE &&
5662 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
5664 N1->getFlags().hasNoUnsignedWrap()) ||
5666 N1->getFlags().hasNoSignedWrap())) &&
5668 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5669 }
5670
5671 // Fold (setcc (sub nsw a, b), zero, s??) -> (setcc a, b, s??)
5672 // TODO: Remove that .isVector() check
5673 if (VT.isVector() && isZeroOrZeroSplat(N1) && N0.getOpcode() == ISD::SUB &&
5675 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), Cond);
5676 }
5677
5678 // Could not fold it.
5679 return SDValue();
5680}
5681
5682/// Returns true (and the GlobalValue and the offset) if the node is a
5683/// GlobalAddress + offset.
5685 int64_t &Offset) const {
5686
5687 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5688
5689 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5690 GA = GASD->getGlobal();
5691 Offset += GASD->getOffset();
5692 return true;
5693 }
5694
5695 if (N->isAnyAdd()) {
5696 SDValue N1 = N->getOperand(0);
5697 SDValue N2 = N->getOperand(1);
5698 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5699 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5700 Offset += V->getSExtValue();
5701 return true;
5702 }
5703 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5704 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5705 Offset += V->getSExtValue();
5706 return true;
5707 }
5708 }
5709 }
5710
5711 return false;
5712}
5713
5715 DAGCombinerInfo &DCI) const {
5716 // Default implementation: no optimization.
5717 return SDValue();
5718}
5719
5720//===----------------------------------------------------------------------===//
5721// Inline Assembler Implementation Methods
5722//===----------------------------------------------------------------------===//
5723
5726 unsigned S = Constraint.size();
5727
5728 if (S == 1) {
5729 switch (Constraint[0]) {
5730 default: break;
5731 case 'r':
5732 return C_RegisterClass;
5733 case 'm': // memory
5734 case 'o': // offsetable
5735 case 'V': // not offsetable
5736 return C_Memory;
5737 case 'p': // Address.
5738 return C_Address;
5739 case 'n': // Simple Integer
5740 case 'E': // Floating Point Constant
5741 case 'F': // Floating Point Constant
5742 return C_Immediate;
5743 case 'i': // Simple Integer or Relocatable Constant
5744 case 's': // Relocatable Constant
5745 case 'X': // Allow ANY value.
5746 case 'I': // Target registers.
5747 case 'J':
5748 case 'K':
5749 case 'L':
5750 case 'M':
5751 case 'N':
5752 case 'O':
5753 case 'P':
5754 case '<':
5755 case '>':
5756 return C_Other;
5757 }
5758 }
5759
5760 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5761 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5762 return C_Memory;
5763 return C_Register;
5764 }
5765 return C_Unknown;
5766}
5767
5768/// Try to replace an X constraint, which matches anything, with another that
5769/// has more specific requirements based on the type of the corresponding
5770/// operand.
5771const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5772 if (ConstraintVT.isInteger())
5773 return "r";
5774 if (ConstraintVT.isFloatingPoint())
5775 return "f"; // works for many targets
5776 return nullptr;
5777}
5778
5780 SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5781 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5782 return SDValue();
5783}
5784
5785/// Lower the specified operand into the Ops vector.
5786/// If it is invalid, don't add anything to Ops.
5788 StringRef Constraint,
5789 std::vector<SDValue> &Ops,
5790 SelectionDAG &DAG) const {
5791
5792 if (Constraint.size() > 1)
5793 return;
5794
5795 char ConstraintLetter = Constraint[0];
5796 switch (ConstraintLetter) {
5797 default: break;
5798 case 'X': // Allows any operand
5799 case 'i': // Simple Integer or Relocatable Constant
5800 case 'n': // Simple Integer
5801 case 's': { // Relocatable Constant
5802
5804 uint64_t Offset = 0;
5805
5806 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5807 // etc., since getelementpointer is variadic. We can't use
5808 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5809 // while in this case the GA may be furthest from the root node which is
5810 // likely an ISD::ADD.
5811 while (true) {
5812 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5813 // gcc prints these as sign extended. Sign extend value to 64 bits
5814 // now; without this it would get ZExt'd later in
5815 // ScheduleDAGSDNodes::EmitNode, which is very generic.
5816 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5817 BooleanContent BCont = getBooleanContents(MVT::i64);
5818 ISD::NodeType ExtOpc =
5819 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5820 int64_t ExtVal =
5821 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5822 Ops.push_back(
5823 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5824 return;
5825 }
5826 if (ConstraintLetter != 'n') {
5827 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5828 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5829 GA->getValueType(0),
5830 Offset + GA->getOffset()));
5831 return;
5832 }
5833 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5834 Ops.push_back(DAG.getTargetBlockAddress(
5835 BA->getBlockAddress(), BA->getValueType(0),
5836 Offset + BA->getOffset(), BA->getTargetFlags()));
5837 return;
5838 }
5840 Ops.push_back(Op);
5841 return;
5842 }
5843 }
5844 const unsigned OpCode = Op.getOpcode();
5845 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5846 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5847 Op = Op.getOperand(1);
5848 // Subtraction is not commutative.
5849 else if (OpCode == ISD::ADD &&
5850 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5851 Op = Op.getOperand(0);
5852 else
5853 return;
5854 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5855 continue;
5856 }
5857 return;
5858 }
5859 break;
5860 }
5861 }
5862}
5863
5867
5868std::pair<unsigned, const TargetRegisterClass *>
5870 StringRef Constraint,
5871 MVT VT) const {
5872 if (!Constraint.starts_with("{"))
5873 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5874 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5875
5876 // Remove the braces from around the name.
5877 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5878
5879 std::pair<unsigned, const TargetRegisterClass *> R =
5880 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5881
5882 // Figure out which register class contains this reg.
5883 for (const TargetRegisterClass *RC : RI->regclasses()) {
5884 // If none of the value types for this register class are valid, we
5885 // can't use it. For example, 64-bit reg classes on 32-bit targets.
5886 if (!isLegalRC(*RI, *RC))
5887 continue;
5888
5889 for (const MCPhysReg &PR : *RC) {
5890 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5891 std::pair<unsigned, const TargetRegisterClass *> S =
5892 std::make_pair(PR, RC);
5893
5894 // If this register class has the requested value type, return it,
5895 // otherwise keep searching and return the first class found
5896 // if no other is found which explicitly has the requested type.
5897 if (RI->isTypeLegalForClass(*RC, VT))
5898 return S;
5899 if (!R.second)
5900 R = S;
5901 }
5902 }
5903 }
5904
5905 return R;
5906}
5907
5908//===----------------------------------------------------------------------===//
5909// Constraint Selection.
5910
5911/// Return true of this is an input operand that is a matching constraint like
5912/// "4".
5914 assert(!ConstraintCode.empty() && "No known constraint!");
5915 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5916}
5917
5918/// If this is an input matching constraint, this method returns the output
5919/// operand it matches.
5921 assert(!ConstraintCode.empty() && "No known constraint!");
5922 return atoi(ConstraintCode.c_str());
5923}
5924
5925/// Split up the constraint string from the inline assembly value into the
5926/// specific constraints and their prefixes, and also tie in the associated
5927/// operand values.
5928/// If this returns an empty vector, and if the constraint string itself
5929/// isn't empty, there was an error parsing.
5932 const TargetRegisterInfo *TRI,
5933 const CallBase &Call) const {
5934 /// Information about all of the constraints.
5935 AsmOperandInfoVector ConstraintOperands;
5936 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5937 unsigned maCount = 0; // Largest number of multiple alternative constraints.
5938
5939 // Do a prepass over the constraints, canonicalizing them, and building up the
5940 // ConstraintOperands list.
5941 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5942 unsigned ResNo = 0; // ResNo - The result number of the next output.
5943 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5944
5945 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5946 ConstraintOperands.emplace_back(std::move(CI));
5947 AsmOperandInfo &OpInfo = ConstraintOperands.back();
5948
5949 // Update multiple alternative constraint count.
5950 if (OpInfo.multipleAlternatives.size() > maCount)
5951 maCount = OpInfo.multipleAlternatives.size();
5952
5953 OpInfo.ConstraintVT = MVT::Other;
5954
5955 // Compute the value type for each operand.
5956 switch (OpInfo.Type) {
5958 // Indirect outputs just consume an argument.
5959 if (OpInfo.isIndirect) {
5960 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5961 break;
5962 }
5963
5964 // The return value of the call is this value. As such, there is no
5965 // corresponding argument.
5966 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5967 if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5968 OpInfo.ConstraintVT =
5969 getAsmOperandValueType(DL, STy->getElementType(ResNo))
5970 .getSimpleVT();
5971 } else {
5972 assert(ResNo == 0 && "Asm only has one result!");
5973 OpInfo.ConstraintVT =
5975 }
5976 ++ResNo;
5977 break;
5978 case InlineAsm::isInput:
5979 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5980 break;
5981 case InlineAsm::isLabel:
5982 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5983 ++LabelNo;
5984 continue;
5986 // Nothing to do.
5987 break;
5988 }
5989
5990 if (OpInfo.CallOperandVal) {
5991 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5992 if (OpInfo.isIndirect) {
5993 OpTy = Call.getParamElementType(ArgNo);
5994 assert(OpTy && "Indirect operand must have elementtype attribute");
5995 }
5996
5997 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5998 if (StructType *STy = dyn_cast<StructType>(OpTy))
5999 if (STy->getNumElements() == 1)
6000 OpTy = STy->getElementType(0);
6001
6002 // If OpTy is not a single value, it may be a struct/union that we
6003 // can tile with integers.
6004 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6005 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6006 switch (BitSize) {
6007 default: break;
6008 case 1:
6009 case 8:
6010 case 16:
6011 case 32:
6012 case 64:
6013 case 128:
6014 OpTy = IntegerType::get(OpTy->getContext(), BitSize);
6015 break;
6016 }
6017 }
6018
6019 EVT VT = getAsmOperandValueType(DL, OpTy, true);
6020 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
6021 ArgNo++;
6022 }
6023 }
6024
6025 // If we have multiple alternative constraints, select the best alternative.
6026 if (!ConstraintOperands.empty()) {
6027 if (maCount) {
6028 unsigned bestMAIndex = 0;
6029 int bestWeight = -1;
6030 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
6031 int weight = -1;
6032 unsigned maIndex;
6033 // Compute the sums of the weights for each alternative, keeping track
6034 // of the best (highest weight) one so far.
6035 for (maIndex = 0; maIndex < maCount; ++maIndex) {
6036 int weightSum = 0;
6037 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6038 cIndex != eIndex; ++cIndex) {
6039 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
6040 if (OpInfo.Type == InlineAsm::isClobber)
6041 continue;
6042
6043 // If this is an output operand with a matching input operand,
6044 // look up the matching input. If their types mismatch, e.g. one
6045 // is an integer, the other is floating point, or their sizes are
6046 // different, flag it as an maCantMatch.
6047 if (OpInfo.hasMatchingInput()) {
6048 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6049 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6050 if ((OpInfo.ConstraintVT.isInteger() !=
6051 Input.ConstraintVT.isInteger()) ||
6052 (OpInfo.ConstraintVT.getSizeInBits() !=
6053 Input.ConstraintVT.getSizeInBits())) {
6054 weightSum = -1; // Can't match.
6055 break;
6056 }
6057 }
6058 }
6059 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
6060 if (weight == -1) {
6061 weightSum = -1;
6062 break;
6063 }
6064 weightSum += weight;
6065 }
6066 // Update best.
6067 if (weightSum > bestWeight) {
6068 bestWeight = weightSum;
6069 bestMAIndex = maIndex;
6070 }
6071 }
6072
6073 // Now select chosen alternative in each constraint.
6074 for (AsmOperandInfo &cInfo : ConstraintOperands)
6075 if (cInfo.Type != InlineAsm::isClobber)
6076 cInfo.selectAlternative(bestMAIndex);
6077 }
6078 }
6079
6080 // Check and hook up tied operands, choose constraint code to use.
6081 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6082 cIndex != eIndex; ++cIndex) {
6083 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
6084
6085 // If this is an output operand with a matching input operand, look up the
6086 // matching input. If their types mismatch, e.g. one is an integer, the
6087 // other is floating point, or their sizes are different, flag it as an
6088 // error.
6089 if (OpInfo.hasMatchingInput()) {
6090 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6091
6092 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6093 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6094 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6095 OpInfo.ConstraintVT);
6096 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6097 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6098 Input.ConstraintVT);
6099 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
6100 OpInfo.ConstraintVT.isFloatingPoint();
6101 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
6102 Input.ConstraintVT.isFloatingPoint();
6103 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
6104 (MatchRC.second != InputRC.second)) {
6105 report_fatal_error("Unsupported asm: input constraint"
6106 " with a matching output constraint of"
6107 " incompatible type!");
6108 }
6109 }
6110 }
6111 }
6112
6113 return ConstraintOperands;
6114}
6115
6116/// Return a number indicating our preference for chosing a type of constraint
6117/// over another, for the purpose of sorting them. Immediates are almost always
6118/// preferrable (when they can be emitted). A higher return value means a
6119/// stronger preference for one constraint type relative to another.
6120/// FIXME: We should prefer registers over memory but doing so may lead to
6121/// unrecoverable register exhaustion later.
6122/// https://github.com/llvm/llvm-project/issues/20571
6124 switch (CT) {
6127 return 4;
6130 return 3;
6132 return 2;
6134 return 1;
6136 return 0;
6137 }
6138 llvm_unreachable("Invalid constraint type");
6139}
6140
6141/// Examine constraint type and operand type and determine a weight value.
6142/// This object must already have been set up with the operand type
6143/// and the current alternative constraint selected.
6146 AsmOperandInfo &info, int maIndex) const {
6148 if (maIndex >= (int)info.multipleAlternatives.size())
6149 rCodes = &info.Codes;
6150 else
6151 rCodes = &info.multipleAlternatives[maIndex].Codes;
6152 ConstraintWeight BestWeight = CW_Invalid;
6153
6154 // Loop over the options, keeping track of the most general one.
6155 for (const std::string &rCode : *rCodes) {
6156 ConstraintWeight weight =
6157 getSingleConstraintMatchWeight(info, rCode.c_str());
6158 if (weight > BestWeight)
6159 BestWeight = weight;
6160 }
6161
6162 return BestWeight;
6163}
6164
6165/// Examine constraint type and operand type and determine a weight value.
6166/// This object must already have been set up with the operand type
6167/// and the current alternative constraint selected.
6170 AsmOperandInfo &info, const char *constraint) const {
6172 Value *CallOperandVal = info.CallOperandVal;
6173 // If we don't have a value, we can't do a match,
6174 // but allow it at the lowest weight.
6175 if (!CallOperandVal)
6176 return CW_Default;
6177 // Look at the constraint type.
6178 switch (*constraint) {
6179 case 'i': // immediate integer.
6180 case 'n': // immediate integer with a known value.
6181 if (isa<ConstantInt>(CallOperandVal))
6182 weight = CW_Constant;
6183 break;
6184 case 's': // non-explicit intregal immediate.
6185 if (isa<GlobalValue>(CallOperandVal))
6186 weight = CW_Constant;
6187 break;
6188 case 'E': // immediate float if host format.
6189 case 'F': // immediate float.
6190 if (isa<ConstantFP>(CallOperandVal))
6191 weight = CW_Constant;
6192 break;
6193 case '<': // memory operand with autodecrement.
6194 case '>': // memory operand with autoincrement.
6195 case 'm': // memory operand.
6196 case 'o': // offsettable memory operand
6197 case 'V': // non-offsettable memory operand
6198 weight = CW_Memory;
6199 break;
6200 case 'r': // general register.
6201 case 'g': // general register, memory operand or immediate integer.
6202 // note: Clang converts "g" to "imr".
6203 if (CallOperandVal->getType()->isIntegerTy())
6204 weight = CW_Register;
6205 break;
6206 case 'X': // any operand.
6207 default:
6208 weight = CW_Default;
6209 break;
6210 }
6211 return weight;
6212}
6213
6214/// If there are multiple different constraints that we could pick for this
6215/// operand (e.g. "imr") try to pick the 'best' one.
6216/// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
6217/// into seven classes:
6218/// Register -> one specific register
6219/// RegisterClass -> a group of regs
6220/// Memory -> memory
6221/// Address -> a symbolic memory reference
6222/// Immediate -> immediate values
6223/// Other -> magic values (such as "Flag Output Operands")
6224/// Unknown -> something we don't recognize yet and can't handle
6225/// Ideally, we would pick the most specific constraint possible: if we have
6226/// something that fits into a register, we would pick it. The problem here
6227/// is that if we have something that could either be in a register or in
6228/// memory that use of the register could cause selection of *other*
6229/// operands to fail: they might only succeed if we pick memory. Because of
6230/// this the heuristic we use is:
6231///
6232/// 1) If there is an 'other' constraint, and if the operand is valid for
6233/// that constraint, use it. This makes us take advantage of 'i'
6234/// constraints when available.
6235/// 2) Otherwise, pick the most general constraint present. This prefers
6236/// 'm' over 'r', for example.
6237///
6239 TargetLowering::AsmOperandInfo &OpInfo) const {
6240 ConstraintGroup Ret;
6241
6242 Ret.reserve(OpInfo.Codes.size());
6243 for (StringRef Code : OpInfo.Codes) {
6245
6246 // Indirect 'other' or 'immediate' constraints are not allowed.
6247 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6248 CType == TargetLowering::C_Register ||
6250 continue;
6251
6252 // Things with matching constraints can only be registers, per gcc
6253 // documentation. This mainly affects "g" constraints.
6254 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6255 continue;
6256
6257 Ret.emplace_back(Code, CType);
6258 }
6259
6261 return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6262 });
6263
6264 return Ret;
6265}
6266
6267/// If we have an immediate, see if we can lower it. Return true if we can,
6268/// false otherwise.
6270 SDValue Op, SelectionDAG *DAG,
6271 const TargetLowering &TLI) {
6272
6273 assert((P.second == TargetLowering::C_Other ||
6274 P.second == TargetLowering::C_Immediate) &&
6275 "need immediate or other");
6276
6277 if (!Op.getNode())
6278 return false;
6279
6280 std::vector<SDValue> ResultOps;
6281 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6282 return !ResultOps.empty();
6283}
6284
6285/// Determines the constraint code and constraint type to use for the specific
6286/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6288 SDValue Op,
6289 SelectionDAG *DAG) const {
6290 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6291
6292 // Single-letter constraints ('r') are very common.
6293 if (OpInfo.Codes.size() == 1) {
6294 OpInfo.ConstraintCode = OpInfo.Codes[0];
6295 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6296 } else {
6298 if (G.empty())
6299 return;
6300
6301 unsigned BestIdx = 0;
6302 for (const unsigned E = G.size();
6303 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6304 G[BestIdx].second == TargetLowering::C_Immediate);
6305 ++BestIdx) {
6306 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6307 break;
6308 // If we're out of constraints, just pick the first one.
6309 if (BestIdx + 1 == E) {
6310 BestIdx = 0;
6311 break;
6312 }
6313 }
6314
6315 OpInfo.ConstraintCode = G[BestIdx].first;
6316 OpInfo.ConstraintType = G[BestIdx].second;
6317 }
6318
6319 // 'X' matches anything.
6320 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6321 // Constants are handled elsewhere. For Functions, the type here is the
6322 // type of the result, which is not what we want to look at; leave them
6323 // alone.
6324 Value *v = OpInfo.CallOperandVal;
6325 if (isa<ConstantInt>(v) || isa<Function>(v)) {
6326 return;
6327 }
6328
6329 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6330 OpInfo.ConstraintCode = "i";
6331 return;
6332 }
6333
6334 // Otherwise, try to resolve it to something we know about by looking at
6335 // the actual operand type.
6336 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6337 OpInfo.ConstraintCode = Repl;
6338 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6339 }
6340 }
6341}
6342
6343/// Given an exact SDIV by a constant, create a multiplication
6344/// with the multiplicative inverse of the constant.
6345/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6347 const SDLoc &dl, SelectionDAG &DAG,
6348 SmallVectorImpl<SDNode *> &Created) {
6349 SDValue Op0 = N->getOperand(0);
6350 SDValue Op1 = N->getOperand(1);
6351 EVT VT = N->getValueType(0);
6352 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6353 EVT ShSVT = ShVT.getScalarType();
6354
6355 bool UseSRA = false;
6356 SmallVector<SDValue, 16> Shifts, Factors;
6357
6358 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6359 if (C->isZero())
6360 return false;
6361
6362 EVT CT = C->getValueType(0);
6363 APInt Divisor = C->getAPIntValue();
6364 unsigned Shift = Divisor.countr_zero();
6365 if (Shift) {
6366 Divisor.ashrInPlace(Shift);
6367 UseSRA = true;
6368 }
6369 APInt Factor = Divisor.multiplicativeInverse();
6370 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6371 Factors.push_back(DAG.getConstant(Factor, dl, CT));
6372 return true;
6373 };
6374
6375 // Collect all magic values from the build vector.
6376 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern, /*AllowUndefs=*/false,
6377 /*AllowTruncation=*/true))
6378 return SDValue();
6379
6380 SDValue Shift, Factor;
6381 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6382 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6383 Factor = DAG.getBuildVector(VT, dl, Factors);
6384 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6385 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6386 "Expected matchUnaryPredicate to return one element for scalable "
6387 "vectors");
6388 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6389 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6390 } else {
6391 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6392 Shift = Shifts[0];
6393 Factor = Factors[0];
6394 }
6395
6396 SDValue Res = Op0;
6397 if (UseSRA) {
6398 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6399 Created.push_back(Res.getNode());
6400 }
6401
6402 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6403}
6404
6405/// Given an exact UDIV by a constant, create a multiplication
6406/// with the multiplicative inverse of the constant.
6407/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6409 const SDLoc &dl, SelectionDAG &DAG,
6410 SmallVectorImpl<SDNode *> &Created) {
6411 EVT VT = N->getValueType(0);
6412 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6413 EVT ShSVT = ShVT.getScalarType();
6414
6415 bool UseSRL = false;
6416 SmallVector<SDValue, 16> Shifts, Factors;
6417
6418 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6419 if (C->isZero())
6420 return false;
6421
6422 EVT CT = C->getValueType(0);
6423 APInt Divisor = C->getAPIntValue();
6424 unsigned Shift = Divisor.countr_zero();
6425 if (Shift) {
6426 Divisor.lshrInPlace(Shift);
6427 UseSRL = true;
6428 }
6429 // Calculate the multiplicative inverse modulo BW.
6430 APInt Factor = Divisor.multiplicativeInverse();
6431 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6432 Factors.push_back(DAG.getConstant(Factor, dl, CT));
6433 return true;
6434 };
6435
6436 SDValue Op1 = N->getOperand(1);
6437
6438 // Collect all magic values from the build vector.
6439 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern, /*AllowUndefs=*/false,
6440 /*AllowTruncation=*/true))
6441 return SDValue();
6442
6443 SDValue Shift, Factor;
6444 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6445 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6446 Factor = DAG.getBuildVector(VT, dl, Factors);
6447 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6448 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6449 "Expected matchUnaryPredicate to return one element for scalable "
6450 "vectors");
6451 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6452 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6453 } else {
6454 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6455 Shift = Shifts[0];
6456 Factor = Factors[0];
6457 }
6458
6459 SDValue Res = N->getOperand(0);
6460 if (UseSRL) {
6461 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6462 Created.push_back(Res.getNode());
6463 }
6464
6465 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6466}
6467
6469 SelectionDAG &DAG,
6470 SmallVectorImpl<SDNode *> &Created) const {
6471 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6472 if (isIntDivCheap(N->getValueType(0), Attr))
6473 return SDValue(N, 0); // Lower SDIV as SDIV
6474 return SDValue();
6475}
6476
6477SDValue
6479 SelectionDAG &DAG,
6480 SmallVectorImpl<SDNode *> &Created) const {
6481 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6482 if (isIntDivCheap(N->getValueType(0), Attr))
6483 return SDValue(N, 0); // Lower SREM as SREM
6484 return SDValue();
6485}
6486
6487/// Build sdiv by power-of-2 with conditional move instructions
6488/// Ref: "Hacker's Delight" by Henry Warren 10-1
6489/// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6490/// bgez x, label
6491/// add x, x, 2**k-1
6492/// label:
6493/// sra res, x, k
6494/// neg res, res (when the divisor is negative)
6496 SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6497 SmallVectorImpl<SDNode *> &Created) const {
6498 unsigned Lg2 = Divisor.countr_zero();
6499 EVT VT = N->getValueType(0);
6500
6501 SDLoc DL(N);
6502 SDValue N0 = N->getOperand(0);
6503 SDValue Zero = DAG.getConstant(0, DL, VT);
6504 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6505 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6506
6507 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6508 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6509 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6510 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6511 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6512
6513 Created.push_back(Cmp.getNode());
6514 Created.push_back(Add.getNode());
6515 Created.push_back(CMov.getNode());
6516
6517 // Divide by pow2.
6518 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, CMov,
6519 DAG.getShiftAmountConstant(Lg2, VT, DL));
6520
6521 // If we're dividing by a positive value, we're done. Otherwise, we must
6522 // negate the result.
6523 if (Divisor.isNonNegative())
6524 return SRA;
6525
6526 Created.push_back(SRA.getNode());
6527 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6528}
6529
6530/// Given an ISD::SDIV node expressing a divide by constant,
6531/// return a DAG expression to select that will generate the same value by
6532/// multiplying by a magic number.
6533/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6535 bool IsAfterLegalization,
6536 bool IsAfterLegalTypes,
6537 SmallVectorImpl<SDNode *> &Created) const {
6538 SDLoc dl(N);
6539 EVT VT = N->getValueType(0);
6540 EVT SVT = VT.getScalarType();
6541 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6542 EVT ShSVT = ShVT.getScalarType();
6543 unsigned EltBits = VT.getScalarSizeInBits();
6544 EVT MulVT;
6545
6546 // Check to see if we can do this.
6547 // FIXME: We should be more aggressive here.
6548 if (!isTypeLegal(VT)) {
6549 // Limit this to simple scalars for now.
6550 if (VT.isVector() || !VT.isSimple())
6551 return SDValue();
6552
6553 // If this type will be promoted to a large enough type with a legal
6554 // multiply operation, we can go ahead and do this transform.
6556 return SDValue();
6557
6558 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6559 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6560 !isOperationLegal(ISD::MUL, MulVT))
6561 return SDValue();
6562 }
6563
6564 // If the sdiv has an 'exact' bit we can use a simpler lowering.
6565 if (N->getFlags().hasExact())
6566 return BuildExactSDIV(*this, N, dl, DAG, Created);
6567
6568 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6569
6570 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6571 if (C->isZero())
6572 return false;
6573 // Truncate the divisor to the target scalar type in case it was promoted
6574 // during type legalization.
6575 APInt Divisor = C->getAPIntValue().trunc(EltBits);
6577 int NumeratorFactor = 0;
6578 int ShiftMask = -1;
6579
6580 if (Divisor.isOne() || Divisor.isAllOnes()) {
6581 // If d is +1/-1, we just multiply the numerator by +1/-1.
6582 NumeratorFactor = Divisor.getSExtValue();
6583 magics.Magic = 0;
6584 magics.ShiftAmount = 0;
6585 ShiftMask = 0;
6586 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6587 // If d > 0 and m < 0, add the numerator.
6588 NumeratorFactor = 1;
6589 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6590 // If d < 0 and m > 0, subtract the numerator.
6591 NumeratorFactor = -1;
6592 }
6593
6594 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6595 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6596 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6597 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6598 return true;
6599 };
6600
6601 SDValue N0 = N->getOperand(0);
6602 SDValue N1 = N->getOperand(1);
6603
6604 // Collect the shifts / magic values from each element.
6605 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern, /*AllowUndefs=*/false,
6606 /*AllowTruncation=*/true))
6607 return SDValue();
6608
6609 SDValue MagicFactor, Factor, Shift, ShiftMask;
6610 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6611 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6612 Factor = DAG.getBuildVector(VT, dl, Factors);
6613 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6614 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6615 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6616 assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6617 Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6618 "Expected matchUnaryPredicate to return one element for scalable "
6619 "vectors");
6620 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6621 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6622 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6623 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6624 } else {
6625 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6626 MagicFactor = MagicFactors[0];
6627 Factor = Factors[0];
6628 Shift = Shifts[0];
6629 ShiftMask = ShiftMasks[0];
6630 }
6631
6632 // Multiply the numerator (operand 0) by the magic value.
6633 // FIXME: We should support doing a MUL in a wider type.
6634 auto GetMULHS = [&](SDValue X, SDValue Y) {
6635 // If the type isn't legal, use a wider mul of the type calculated
6636 // earlier.
6637 if (!isTypeLegal(VT)) {
6638 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6639 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6640 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6641 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6642 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6643 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6644 }
6645
6646 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6647 return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6648 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6649 SDValue LoHi =
6650 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6651 return SDValue(LoHi.getNode(), 1);
6652 }
6653 // If type twice as wide legal, widen and use a mul plus a shift.
6654 unsigned Size = VT.getScalarSizeInBits();
6655 EVT WideVT = VT.changeElementType(
6656 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), Size * 2));
6657 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6658 // custom lowered. This is very expensive so avoid it at all costs for
6659 // constant divisors.
6660 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6663 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6664 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6665 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6666 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6667 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6668 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6669 }
6670 return SDValue();
6671 };
6672
6673 SDValue Q = GetMULHS(N0, MagicFactor);
6674 if (!Q)
6675 return SDValue();
6676
6677 Created.push_back(Q.getNode());
6678
6679 // (Optionally) Add/subtract the numerator using Factor.
6680 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6681 Created.push_back(Factor.getNode());
6682 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6683 Created.push_back(Q.getNode());
6684
6685 // Shift right algebraic by shift value.
6686 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6687 Created.push_back(Q.getNode());
6688
6689 // Extract the sign bit, mask it and add it to the quotient.
6690 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6691 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6692 Created.push_back(T.getNode());
6693 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6694 Created.push_back(T.getNode());
6695 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6696}
6697
6698/// Given an ISD::UDIV node expressing a divide by constant,
6699/// return a DAG expression to select that will generate the same value by
6700/// multiplying by a magic number.
6701/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6703 bool IsAfterLegalization,
6704 bool IsAfterLegalTypes,
6705 SmallVectorImpl<SDNode *> &Created) const {
6706 SDLoc dl(N);
6707 EVT VT = N->getValueType(0);
6708 EVT SVT = VT.getScalarType();
6709 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6710 EVT ShSVT = ShVT.getScalarType();
6711 unsigned EltBits = VT.getScalarSizeInBits();
6712 EVT MulVT;
6713
6714 // Check to see if we can do this.
6715 // FIXME: We should be more aggressive here.
6716 if (!isTypeLegal(VT)) {
6717 // Limit this to simple scalars for now.
6718 if (VT.isVector() || !VT.isSimple())
6719 return SDValue();
6720
6721 // If this type will be promoted to a large enough type with a legal
6722 // multiply operation, we can go ahead and do this transform.
6724 return SDValue();
6725
6726 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6727 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6728 !isOperationLegal(ISD::MUL, MulVT))
6729 return SDValue();
6730 }
6731
6732 // If the udiv has an 'exact' bit we can use a simpler lowering.
6733 if (N->getFlags().hasExact())
6734 return BuildExactUDIV(*this, N, dl, DAG, Created);
6735
6736 SDValue N0 = N->getOperand(0);
6737 SDValue N1 = N->getOperand(1);
6738
6739 // Try to use leading zeros of the dividend to reduce the multiplier and
6740 // avoid expensive fixups.
6741 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6742
6743 // If we're after type legalization and SVT is not legal, use the
6744 // promoted type for creating constants to avoid creating nodes with
6745 // illegal types.
6746 if (IsAfterLegalTypes && VT.isVector()) {
6747 SVT = getTypeToTransformTo(*DAG.getContext(), SVT);
6748 if (SVT.bitsLT(VT.getScalarType()))
6749 return SDValue();
6750 ShSVT = getTypeToTransformTo(*DAG.getContext(), ShSVT);
6751 if (ShSVT.bitsLT(ShVT.getScalarType()))
6752 return SDValue();
6753 }
6754 const unsigned SVTBits = SVT.getSizeInBits();
6755
6756 bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6757 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6758
6759 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6760 if (C->isZero())
6761 return false;
6762 // Truncate the divisor to the target scalar type in case it was promoted
6763 // during type legalization.
6764 APInt Divisor = C->getAPIntValue().trunc(EltBits);
6765
6766 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6767
6768 // Magic algorithm doesn't work for division by 1. We need to emit a select
6769 // at the end.
6770 if (Divisor.isOne()) {
6771 PreShift = PostShift = DAG.getUNDEF(ShSVT);
6772 MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6773 } else {
6776 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6777
6778 MagicFactor = DAG.getConstant(magics.Magic.zext(SVTBits), dl, SVT);
6779
6780 assert(magics.PreShift < Divisor.getBitWidth() &&
6781 "We shouldn't generate an undefined shift!");
6782 assert(magics.PostShift < Divisor.getBitWidth() &&
6783 "We shouldn't generate an undefined shift!");
6784 assert((!magics.IsAdd || magics.PreShift == 0) &&
6785 "Unexpected pre-shift");
6786 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6787 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6788 NPQFactor = DAG.getConstant(
6789 magics.IsAdd ? APInt::getOneBitSet(SVTBits, EltBits - 1)
6790 : APInt::getZero(SVTBits),
6791 dl, SVT);
6792 UseNPQ |= magics.IsAdd;
6793 UsePreShift |= magics.PreShift != 0;
6794 UsePostShift |= magics.PostShift != 0;
6795 }
6796
6797 PreShifts.push_back(PreShift);
6798 MagicFactors.push_back(MagicFactor);
6799 NPQFactors.push_back(NPQFactor);
6800 PostShifts.push_back(PostShift);
6801 return true;
6802 };
6803
6804 // Collect the shifts/magic values from each element.
6805 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern, /*AllowUndefs=*/false,
6806 /*AllowTruncation=*/true))
6807 return SDValue();
6808
6809 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6810 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6811 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6812 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6813 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6814 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6815 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6816 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6817 NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6818 "Expected matchUnaryPredicate to return one for scalable vectors");
6819 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6820 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6821 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6822 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6823 } else {
6824 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6825 PreShift = PreShifts[0];
6826 MagicFactor = MagicFactors[0];
6827 PostShift = PostShifts[0];
6828 }
6829
6830 SDValue Q = N0;
6831 if (UsePreShift) {
6832 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6833 Created.push_back(Q.getNode());
6834 }
6835
6836 // FIXME: We should support doing a MUL in a wider type.
6837 auto GetMULHU = [&](SDValue X, SDValue Y) {
6838 // If the type isn't legal, use a wider mul of the type calculated
6839 // earlier.
6840 if (!isTypeLegal(VT)) {
6841 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6842 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6843 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6844 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6845 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6846 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6847 }
6848
6849 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6850 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6851 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6852 SDValue LoHi =
6853 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6854 return SDValue(LoHi.getNode(), 1);
6855 }
6856 // If type twice as wide legal, widen and use a mul plus a shift.
6857 unsigned Size = VT.getScalarSizeInBits();
6858 EVT WideVT = VT.changeElementType(
6859 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), Size * 2));
6860 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6861 // custom lowered. This is very expensive so avoid it at all costs for
6862 // constant divisors.
6863 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6866 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6867 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6868 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6869 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6870 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6871 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6872 }
6873 return SDValue(); // No mulhu or equivalent
6874 };
6875
6876 // Multiply the numerator (operand 0) by the magic value.
6877 Q = GetMULHU(Q, MagicFactor);
6878 if (!Q)
6879 return SDValue();
6880
6881 Created.push_back(Q.getNode());
6882
6883 if (UseNPQ) {
6884 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6885 Created.push_back(NPQ.getNode());
6886
6887 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6888 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6889 if (VT.isVector())
6890 NPQ = GetMULHU(NPQ, NPQFactor);
6891 else
6892 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6893
6894 Created.push_back(NPQ.getNode());
6895
6896 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6897 Created.push_back(Q.getNode());
6898 }
6899
6900 if (UsePostShift) {
6901 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6902 Created.push_back(Q.getNode());
6903 }
6904
6905 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6906
6907 SDValue One = DAG.getConstant(1, dl, VT);
6908 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6909 return DAG.getSelect(dl, VT, IsOne, N0, Q);
6910}
6911
6912/// If all values in Values that *don't* match the predicate are same 'splat'
6913/// value, then replace all values with that splat value.
6914/// Else, if AlternativeReplacement was provided, then replace all values that
6915/// do match predicate with AlternativeReplacement value.
6916static void
6918 std::function<bool(SDValue)> Predicate,
6919 SDValue AlternativeReplacement = SDValue()) {
6920 SDValue Replacement;
6921 // Is there a value for which the Predicate does *NOT* match? What is it?
6922 auto SplatValue = llvm::find_if_not(Values, Predicate);
6923 if (SplatValue != Values.end()) {
6924 // Does Values consist only of SplatValue's and values matching Predicate?
6925 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6926 return Value == *SplatValue || Predicate(Value);
6927 })) // Then we shall replace values matching predicate with SplatValue.
6928 Replacement = *SplatValue;
6929 }
6930 if (!Replacement) {
6931 // Oops, we did not find the "baseline" splat value.
6932 if (!AlternativeReplacement)
6933 return; // Nothing to do.
6934 // Let's replace with provided value then.
6935 Replacement = AlternativeReplacement;
6936 }
6937 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6938}
6939
6940/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6941/// where the divisor is constant and the comparison target is zero,
6942/// return a DAG expression that will generate the same comparison result
6943/// using only multiplications, additions and shifts/rotations.
6944/// Ref: "Hacker's Delight" 10-17.
6945SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6946 SDValue CompTargetNode,
6948 DAGCombinerInfo &DCI,
6949 const SDLoc &DL) const {
6951 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6952 DCI, DL, Built)) {
6953 for (SDNode *N : Built)
6954 DCI.AddToWorklist(N);
6955 return Folded;
6956 }
6957
6958 return SDValue();
6959}
6960
6961SDValue
6962TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6963 SDValue CompTargetNode, ISD::CondCode Cond,
6964 DAGCombinerInfo &DCI, const SDLoc &DL,
6965 SmallVectorImpl<SDNode *> &Created) const {
6966 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6967 // - D must be constant, with D = D0 * 2^K where D0 is odd
6968 // - P is the multiplicative inverse of D0 modulo 2^W
6969 // - Q = floor(((2^W) - 1) / D)
6970 // where W is the width of the common type of N and D.
6971 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6972 "Only applicable for (in)equality comparisons.");
6973
6974 SelectionDAG &DAG = DCI.DAG;
6975
6976 EVT VT = REMNode.getValueType();
6977 EVT SVT = VT.getScalarType();
6978 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6979 EVT ShSVT = ShVT.getScalarType();
6980
6981 // If MUL is unavailable, we cannot proceed in any case.
6982 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6983 return SDValue();
6984
6985 bool ComparingWithAllZeros = true;
6986 bool AllComparisonsWithNonZerosAreTautological = true;
6987 bool HadTautologicalLanes = false;
6988 bool AllLanesAreTautological = true;
6989 bool HadEvenDivisor = false;
6990 bool AllDivisorsArePowerOfTwo = true;
6991 bool HadTautologicalInvertedLanes = false;
6992 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
6993
6994 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6995 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6996 if (CDiv->isZero())
6997 return false;
6998
6999 const APInt &D = CDiv->getAPIntValue();
7000 const APInt &Cmp = CCmp->getAPIntValue();
7001
7002 ComparingWithAllZeros &= Cmp.isZero();
7003
7004 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
7005 // if C2 is not less than C1, the comparison is always false.
7006 // But we will only be able to produce the comparison that will give the
7007 // opposive tautological answer. So this lane would need to be fixed up.
7008 bool TautologicalInvertedLane = D.ule(Cmp);
7009 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
7010
7011 // If all lanes are tautological (either all divisors are ones, or divisor
7012 // is not greater than the constant we are comparing with),
7013 // we will prefer to avoid the fold.
7014 bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
7015 HadTautologicalLanes |= TautologicalLane;
7016 AllLanesAreTautological &= TautologicalLane;
7017
7018 // If we are comparing with non-zero, we need'll need to subtract said
7019 // comparison value from the LHS. But there is no point in doing that if
7020 // every lane where we are comparing with non-zero is tautological..
7021 if (!Cmp.isZero())
7022 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
7023
7024 // Decompose D into D0 * 2^K
7025 unsigned K = D.countr_zero();
7026 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7027 APInt D0 = D.lshr(K);
7028
7029 // D is even if it has trailing zeros.
7030 HadEvenDivisor |= (K != 0);
7031 // D is a power-of-two if D0 is one.
7032 // If all divisors are power-of-two, we will prefer to avoid the fold.
7033 AllDivisorsArePowerOfTwo &= D0.isOne();
7034
7035 // P = inv(D0, 2^W)
7036 // 2^W requires W + 1 bits, so we have to extend and then truncate.
7037 unsigned W = D.getBitWidth();
7038 APInt P = D0.multiplicativeInverse();
7039 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7040
7041 // Q = floor((2^W - 1) u/ D)
7042 // R = ((2^W - 1) u% D)
7043 APInt Q, R;
7045
7046 // If we are comparing with zero, then that comparison constant is okay,
7047 // else it may need to be one less than that.
7048 if (Cmp.ugt(R))
7049 Q -= 1;
7050
7052 "We are expecting that K is always less than all-ones for ShSVT");
7053
7054 // If the lane is tautological the result can be constant-folded.
7055 if (TautologicalLane) {
7056 // Set P and K amount to a bogus values so we can try to splat them.
7057 P = 0;
7058 K = -1;
7059 // And ensure that comparison constant is tautological,
7060 // it will always compare true/false.
7061 Q = -1;
7062 }
7063
7064 PAmts.push_back(DAG.getConstant(P, DL, SVT));
7065 KAmts.push_back(
7066 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7067 /*implicitTrunc=*/true),
7068 DL, ShSVT));
7069 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7070 return true;
7071 };
7072
7073 SDValue N = REMNode.getOperand(0);
7074 SDValue D = REMNode.getOperand(1);
7075
7076 // Collect the values from each element.
7077 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
7078 return SDValue();
7079
7080 // If all lanes are tautological, the result can be constant-folded.
7081 if (AllLanesAreTautological)
7082 return SDValue();
7083
7084 // If this is a urem by a powers-of-two, avoid the fold since it can be
7085 // best implemented as a bit test.
7086 if (AllDivisorsArePowerOfTwo)
7087 return SDValue();
7088
7089 SDValue PVal, KVal, QVal;
7090 if (D.getOpcode() == ISD::BUILD_VECTOR) {
7091 if (HadTautologicalLanes) {
7092 // Try to turn PAmts into a splat, since we don't care about the values
7093 // that are currently '0'. If we can't, just keep '0'`s.
7095 // Try to turn KAmts into a splat, since we don't care about the values
7096 // that are currently '-1'. If we can't, change them to '0'`s.
7098 DAG.getConstant(0, DL, ShSVT));
7099 }
7100
7101 PVal = DAG.getBuildVector(VT, DL, PAmts);
7102 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7103 QVal = DAG.getBuildVector(VT, DL, QAmts);
7104 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7105 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
7106 "Expected matchBinaryPredicate to return one element for "
7107 "SPLAT_VECTORs");
7108 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7109 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7110 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7111 } else {
7112 PVal = PAmts[0];
7113 KVal = KAmts[0];
7114 QVal = QAmts[0];
7115 }
7116
7117 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
7118 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
7119 return SDValue(); // FIXME: Could/should use `ISD::ADD`?
7120 assert(CompTargetNode.getValueType() == N.getValueType() &&
7121 "Expecting that the types on LHS and RHS of comparisons match.");
7122 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
7123 }
7124
7125 // (mul N, P)
7126 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7127 Created.push_back(Op0.getNode());
7128
7129 // Rotate right only if any divisor was even. We avoid rotates for all-odd
7130 // divisors as a performance improvement, since rotating by 0 is a no-op.
7131 if (HadEvenDivisor) {
7132 // We need ROTR to do this.
7133 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7134 return SDValue();
7135 // UREM: (rotr (mul N, P), K)
7136 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7137 Created.push_back(Op0.getNode());
7138 }
7139
7140 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
7141 SDValue NewCC =
7142 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7144 if (!HadTautologicalInvertedLanes)
7145 return NewCC;
7146
7147 // If any lanes previously compared always-false, the NewCC will give
7148 // always-true result for them, so we need to fixup those lanes.
7149 // Or the other way around for inequality predicate.
7150 assert(VT.isVector() && "Can/should only get here for vectors.");
7151 Created.push_back(NewCC.getNode());
7152
7153 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
7154 // if C2 is not less than C1, the comparison is always false.
7155 // But we have produced the comparison that will give the
7156 // opposive tautological answer. So these lanes would need to be fixed up.
7157 SDValue TautologicalInvertedChannels =
7158 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
7159 Created.push_back(TautologicalInvertedChannels.getNode());
7160
7161 // NOTE: we avoid letting illegal types through even if we're before legalize
7162 // ops – legalization has a hard time producing good code for this.
7163 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
7164 // If we have a vector select, let's replace the comparison results in the
7165 // affected lanes with the correct tautological result.
7166 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
7167 DL, SETCCVT, SETCCVT);
7168 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
7169 Replacement, NewCC);
7170 }
7171
7172 // Else, we can just invert the comparison result in the appropriate lanes.
7173 //
7174 // NOTE: see the note above VSELECT above.
7175 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
7176 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
7177 TautologicalInvertedChannels);
7178
7179 return SDValue(); // Don't know how to lower.
7180}
7181
7182/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
7183/// where the divisor is constant and the comparison target is zero,
7184/// return a DAG expression that will generate the same comparison result
7185/// using only multiplications, additions and shifts/rotations.
7186/// Ref: "Hacker's Delight" 10-17.
7187SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
7188 SDValue CompTargetNode,
7190 DAGCombinerInfo &DCI,
7191 const SDLoc &DL) const {
7193 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
7194 DCI, DL, Built)) {
7195 assert(Built.size() <= 7 && "Max size prediction failed.");
7196 for (SDNode *N : Built)
7197 DCI.AddToWorklist(N);
7198 return Folded;
7199 }
7200
7201 return SDValue();
7202}
7203
7204SDValue
7205TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
7206 SDValue CompTargetNode, ISD::CondCode Cond,
7207 DAGCombinerInfo &DCI, const SDLoc &DL,
7208 SmallVectorImpl<SDNode *> &Created) const {
7209 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
7210 // Fold:
7211 // (seteq/ne (srem N, D), 0)
7212 // To:
7213 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
7214 //
7215 // - D must be constant, with D = D0 * 2^K where D0 is odd
7216 // - P is the multiplicative inverse of D0 modulo 2^W
7217 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
7218 // - Q = floor((2 * A) / (2^K))
7219 // where W is the width of the common type of N and D.
7220 //
7221 // When D is a power of two (and thus D0 is 1), the normal
7222 // formula for A and Q don't apply, because the derivation
7223 // depends on D not dividing 2^(W-1), and thus theorem ZRS
7224 // does not apply. This specifically fails when N = INT_MIN.
7225 //
7226 // Instead, for power-of-two D, we use:
7227 // - A = 2^(W-1)
7228 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
7229 // - Q = 2^(W-K) - 1
7230 // |-> Test that the top K bits are zero after rotation
7231 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
7232 "Only applicable for (in)equality comparisons.");
7233
7234 SelectionDAG &DAG = DCI.DAG;
7235
7236 EVT VT = REMNode.getValueType();
7237 EVT SVT = VT.getScalarType();
7238 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7239 EVT ShSVT = ShVT.getScalarType();
7240
7241 // If we are after ops legalization, and MUL is unavailable, we can not
7242 // proceed.
7243 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
7244 return SDValue();
7245
7246 // TODO: Could support comparing with non-zero too.
7247 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
7248 if (!CompTarget || !CompTarget->isZero())
7249 return SDValue();
7250
7251 bool HadIntMinDivisor = false;
7252 bool HadOneDivisor = false;
7253 bool AllDivisorsAreOnes = true;
7254 bool HadEvenDivisor = false;
7255 bool NeedToApplyOffset = false;
7256 bool AllDivisorsArePowerOfTwo = true;
7257 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
7258
7259 auto BuildSREMPattern = [&](ConstantSDNode *C) {
7260 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
7261 if (C->isZero())
7262 return false;
7263
7264 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7265
7266 // WARNING: this fold is only valid for positive divisors!
7267 APInt D = C->getAPIntValue();
7268 if (D.isNegative())
7269 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
7270
7271 HadIntMinDivisor |= D.isMinSignedValue();
7272
7273 // If all divisors are ones, we will prefer to avoid the fold.
7274 HadOneDivisor |= D.isOne();
7275 AllDivisorsAreOnes &= D.isOne();
7276
7277 // Decompose D into D0 * 2^K
7278 unsigned K = D.countr_zero();
7279 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7280 APInt D0 = D.lshr(K);
7281
7282 if (!D.isMinSignedValue()) {
7283 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7284 // we don't care about this lane in this fold, we'll special-handle it.
7285 HadEvenDivisor |= (K != 0);
7286 }
7287
7288 // D is a power-of-two if D0 is one. This includes INT_MIN.
7289 // If all divisors are power-of-two, we will prefer to avoid the fold.
7290 AllDivisorsArePowerOfTwo &= D0.isOne();
7291
7292 // P = inv(D0, 2^W)
7293 // 2^W requires W + 1 bits, so we have to extend and then truncate.
7294 unsigned W = D.getBitWidth();
7295 APInt P = D0.multiplicativeInverse();
7296 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7297
7298 // A = floor((2^(W - 1) - 1) / D0) & -2^K
7299 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7300 A.clearLowBits(K);
7301
7302 if (!D.isMinSignedValue()) {
7303 // If divisor INT_MIN, then we don't care about this lane in this fold,
7304 // we'll special-handle it.
7305 NeedToApplyOffset |= A != 0;
7306 }
7307
7308 // Q = floor((2 * A) / (2^K))
7309 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7310
7312 "We are expecting that A is always less than all-ones for SVT");
7314 "We are expecting that K is always less than all-ones for ShSVT");
7315
7316 // If D was a power of two, apply the alternate constant derivation.
7317 if (D0.isOne()) {
7318 // A = 2^(W-1)
7320 // - Q = 2^(W-K) - 1
7321 Q = APInt::getAllOnes(W - K).zext(W);
7322 }
7323
7324 // If the divisor is 1 the result can be constant-folded. Likewise, we
7325 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7326 if (D.isOne()) {
7327 // Set P, A and K to a bogus values so we can try to splat them.
7328 P = 0;
7329 A = -1;
7330 K = -1;
7331
7332 // x ?% 1 == 0 <--> true <--> x u<= -1
7333 Q = -1;
7334 }
7335
7336 PAmts.push_back(DAG.getConstant(P, DL, SVT));
7337 AAmts.push_back(DAG.getConstant(A, DL, SVT));
7338 KAmts.push_back(
7339 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7340 /*implicitTrunc=*/true),
7341 DL, ShSVT));
7342 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7343 return true;
7344 };
7345
7346 SDValue N = REMNode.getOperand(0);
7347 SDValue D = REMNode.getOperand(1);
7348
7349 // Collect the values from each element.
7350 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7351 return SDValue();
7352
7353 // If this is a srem by a one, avoid the fold since it can be constant-folded.
7354 if (AllDivisorsAreOnes)
7355 return SDValue();
7356
7357 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7358 // since it can be best implemented as a bit test.
7359 if (AllDivisorsArePowerOfTwo)
7360 return SDValue();
7361
7362 SDValue PVal, AVal, KVal, QVal;
7363 if (D.getOpcode() == ISD::BUILD_VECTOR) {
7364 if (HadOneDivisor) {
7365 // Try to turn PAmts into a splat, since we don't care about the values
7366 // that are currently '0'. If we can't, just keep '0'`s.
7368 // Try to turn AAmts into a splat, since we don't care about the
7369 // values that are currently '-1'. If we can't, change them to '0'`s.
7371 DAG.getConstant(0, DL, SVT));
7372 // Try to turn KAmts into a splat, since we don't care about the values
7373 // that are currently '-1'. If we can't, change them to '0'`s.
7375 DAG.getConstant(0, DL, ShSVT));
7376 }
7377
7378 PVal = DAG.getBuildVector(VT, DL, PAmts);
7379 AVal = DAG.getBuildVector(VT, DL, AAmts);
7380 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7381 QVal = DAG.getBuildVector(VT, DL, QAmts);
7382 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7383 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7384 QAmts.size() == 1 &&
7385 "Expected matchUnaryPredicate to return one element for scalable "
7386 "vectors");
7387 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7388 AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7389 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7390 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7391 } else {
7392 assert(isa<ConstantSDNode>(D) && "Expected a constant");
7393 PVal = PAmts[0];
7394 AVal = AAmts[0];
7395 KVal = KAmts[0];
7396 QVal = QAmts[0];
7397 }
7398
7399 // (mul N, P)
7400 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7401 Created.push_back(Op0.getNode());
7402
7403 if (NeedToApplyOffset) {
7404 // We need ADD to do this.
7405 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7406 return SDValue();
7407
7408 // (add (mul N, P), A)
7409 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7410 Created.push_back(Op0.getNode());
7411 }
7412
7413 // Rotate right only if any divisor was even. We avoid rotates for all-odd
7414 // divisors as a performance improvement, since rotating by 0 is a no-op.
7415 if (HadEvenDivisor) {
7416 // We need ROTR to do this.
7417 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7418 return SDValue();
7419 // SREM: (rotr (add (mul N, P), A), K)
7420 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7421 Created.push_back(Op0.getNode());
7422 }
7423
7424 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7425 SDValue Fold =
7426 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7428
7429 // If we didn't have lanes with INT_MIN divisor, then we're done.
7430 if (!HadIntMinDivisor)
7431 return Fold;
7432
7433 // That fold is only valid for positive divisors. Which effectively means,
7434 // it is invalid for INT_MIN divisors. So if we have such a lane,
7435 // we must fix-up results for said lanes.
7436 assert(VT.isVector() && "Can/should only get here for vectors.");
7437
7438 // NOTE: we avoid letting illegal types through even if we're before legalize
7439 // ops – legalization has a hard time producing good code for the code that
7440 // follows.
7441 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7445 return SDValue();
7446
7447 Created.push_back(Fold.getNode());
7448
7449 SDValue IntMin = DAG.getConstant(
7451 SDValue IntMax = DAG.getConstant(
7453 SDValue Zero =
7455
7456 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7457 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7458 Created.push_back(DivisorIsIntMin.getNode());
7459
7460 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
7461 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7462 Created.push_back(Masked.getNode());
7463 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7464 Created.push_back(MaskedIsZero.getNode());
7465
7466 // To produce final result we need to blend 2 vectors: 'SetCC' and
7467 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7468 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7469 // constant-folded, select can get lowered to a shuffle with constant mask.
7470 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7471 MaskedIsZero, Fold);
7472
7473 return Blended;
7474}
7475
7477 const DenormalMode &Mode) const {
7478 SDLoc DL(Op);
7479 EVT VT = Op.getValueType();
7480 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7481 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7482
7483 // This is specifically a check for the handling of denormal inputs, not the
7484 // result.
7485 if (Mode.Input == DenormalMode::PreserveSign ||
7486 Mode.Input == DenormalMode::PositiveZero) {
7487 // Test = X == 0.0
7488 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7489 }
7490
7491 // Testing it with denormal inputs to avoid wrong estimate.
7492 //
7493 // Test = fabs(X) < SmallestNormal
7494 const fltSemantics &FltSem = VT.getFltSemantics();
7495 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7496 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7497 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7498 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7499}
7500
7502 bool LegalOps, bool OptForSize,
7504 unsigned Depth) const {
7505 // fneg is removable even if it has multiple uses.
7506 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7508 return Op.getOperand(0);
7509 }
7510
7511 // Don't recurse exponentially.
7513 return SDValue();
7514
7515 // Pre-increment recursion depth for use in recursive calls.
7516 ++Depth;
7517 const SDNodeFlags Flags = Op->getFlags();
7518 EVT VT = Op.getValueType();
7519 unsigned Opcode = Op.getOpcode();
7520
7521 // Don't allow anything with multiple uses unless we know it is free.
7522 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7523 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7524 isFPExtFree(VT, Op.getOperand(0).getValueType());
7525 if (!IsFreeExtend)
7526 return SDValue();
7527 }
7528
7529 auto RemoveDeadNode = [&](SDValue N) {
7530 if (N && N.getNode()->use_empty())
7531 DAG.RemoveDeadNode(N.getNode());
7532 };
7533
7534 SDLoc DL(Op);
7535
7536 // Because getNegatedExpression can delete nodes we need a handle to keep
7537 // temporary nodes alive in case the recursion manages to create an identical
7538 // node.
7539 std::list<HandleSDNode> Handles;
7540
7541 switch (Opcode) {
7542 case ISD::ConstantFP: {
7543 // Don't invert constant FP values after legalization unless the target says
7544 // the negated constant is legal.
7545 bool IsOpLegal =
7547 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7548 OptForSize);
7549
7550 if (LegalOps && !IsOpLegal)
7551 break;
7552
7553 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7554 V.changeSign();
7555 SDValue CFP = DAG.getConstantFP(V, DL, VT);
7556
7557 // If we already have the use of the negated floating constant, it is free
7558 // to negate it even it has multiple uses.
7559 if (!Op.hasOneUse() && CFP.use_empty())
7560 break;
7562 return CFP;
7563 }
7564 case ISD::SPLAT_VECTOR: {
7565 // fold splat_vector(fneg(X)) -> splat_vector(-X)
7566 SDValue X = Op.getOperand(0);
7568 break;
7569
7570 SDValue NegX = getCheaperNegatedExpression(X, DAG, LegalOps, OptForSize);
7571 if (!NegX)
7572 break;
7574 return DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, NegX);
7575 }
7576 case ISD::BUILD_VECTOR: {
7577 // Only permit BUILD_VECTOR of constants.
7578 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7579 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7580 }))
7581 break;
7582
7583 bool IsOpLegal =
7586 llvm::all_of(Op->op_values(), [&](SDValue N) {
7587 return N.isUndef() ||
7588 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7589 OptForSize);
7590 });
7591
7592 if (LegalOps && !IsOpLegal)
7593 break;
7594
7596 for (SDValue C : Op->op_values()) {
7597 if (C.isUndef()) {
7598 Ops.push_back(C);
7599 continue;
7600 }
7601 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7602 V.changeSign();
7603 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7604 }
7606 return DAG.getBuildVector(VT, DL, Ops);
7607 }
7608 case ISD::FADD: {
7609 if (!Flags.hasNoSignedZeros())
7610 break;
7611
7612 // After operation legalization, it might not be legal to create new FSUBs.
7613 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7614 break;
7615 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7616
7617 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7619 SDValue NegX =
7620 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7621 // Prevent this node from being deleted by the next call.
7622 if (NegX)
7623 Handles.emplace_back(NegX);
7624
7625 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7627 SDValue NegY =
7628 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7629
7630 // We're done with the handles.
7631 Handles.clear();
7632
7633 // Negate the X if its cost is less or equal than Y.
7634 if (NegX && (CostX <= CostY)) {
7635 Cost = CostX;
7636 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7637 if (NegY != N)
7638 RemoveDeadNode(NegY);
7639 return N;
7640 }
7641
7642 // Negate the Y if it is not expensive.
7643 if (NegY) {
7644 Cost = CostY;
7645 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7646 if (NegX != N)
7647 RemoveDeadNode(NegX);
7648 return N;
7649 }
7650 break;
7651 }
7652 case ISD::FSUB: {
7653 // We can't turn -(A-B) into B-A when we honor signed zeros.
7654 if (!Flags.hasNoSignedZeros())
7655 break;
7656
7657 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7658 // fold (fneg (fsub 0, Y)) -> Y
7659 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7660 if (C->isZero()) {
7662 return Y;
7663 }
7664
7665 // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7667 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7668 }
7669 case ISD::FMUL:
7670 case ISD::FDIV: {
7671 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7672
7673 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7675 SDValue NegX =
7676 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7677 // Prevent this node from being deleted by the next call.
7678 if (NegX)
7679 Handles.emplace_back(NegX);
7680
7681 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7683 SDValue NegY =
7684 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7685
7686 // We're done with the handles.
7687 Handles.clear();
7688
7689 // Negate the X if its cost is less or equal than Y.
7690 if (NegX && (CostX <= CostY)) {
7691 Cost = CostX;
7692 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7693 if (NegY != N)
7694 RemoveDeadNode(NegY);
7695 return N;
7696 }
7697
7698 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7699 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7700 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7701 break;
7702
7703 // Negate the Y if it is not expensive.
7704 if (NegY) {
7705 Cost = CostY;
7706 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7707 if (NegX != N)
7708 RemoveDeadNode(NegX);
7709 return N;
7710 }
7711 break;
7712 }
7713 case ISD::FMA:
7714 case ISD::FMULADD:
7715 case ISD::FMAD: {
7716 if (!Flags.hasNoSignedZeros())
7717 break;
7718
7719 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7721 SDValue NegZ =
7722 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7723 // Give up if fail to negate the Z.
7724 if (!NegZ)
7725 break;
7726
7727 // Prevent this node from being deleted by the next two calls.
7728 Handles.emplace_back(NegZ);
7729
7730 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7732 SDValue NegX =
7733 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7734 // Prevent this node from being deleted by the next call.
7735 if (NegX)
7736 Handles.emplace_back(NegX);
7737
7738 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7740 SDValue NegY =
7741 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7742
7743 // We're done with the handles.
7744 Handles.clear();
7745
7746 // Negate the X if its cost is less or equal than Y.
7747 if (NegX && (CostX <= CostY)) {
7748 Cost = std::min(CostX, CostZ);
7749 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7750 if (NegY != N)
7751 RemoveDeadNode(NegY);
7752 return N;
7753 }
7754
7755 // Negate the Y if it is not expensive.
7756 if (NegY) {
7757 Cost = std::min(CostY, CostZ);
7758 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7759 if (NegX != N)
7760 RemoveDeadNode(NegX);
7761 return N;
7762 }
7763 break;
7764 }
7765
7766 case ISD::FP_EXTEND:
7767 case ISD::FSIN:
7768 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7769 OptForSize, Cost, Depth))
7770 return DAG.getNode(Opcode, DL, VT, NegV);
7771 break;
7772 case ISD::FP_ROUND:
7773 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7774 OptForSize, Cost, Depth))
7775 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7776 break;
7777 case ISD::SELECT:
7778 case ISD::VSELECT: {
7779 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7780 // iff at least one cost is cheaper and the other is neutral/cheaper
7781 SDValue LHS = Op.getOperand(1);
7783 SDValue NegLHS =
7784 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7785 if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7786 RemoveDeadNode(NegLHS);
7787 break;
7788 }
7789
7790 // Prevent this node from being deleted by the next call.
7791 Handles.emplace_back(NegLHS);
7792
7793 SDValue RHS = Op.getOperand(2);
7795 SDValue NegRHS =
7796 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7797
7798 // We're done with the handles.
7799 Handles.clear();
7800
7801 if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7802 (CostLHS != NegatibleCost::Cheaper &&
7803 CostRHS != NegatibleCost::Cheaper)) {
7804 RemoveDeadNode(NegLHS);
7805 RemoveDeadNode(NegRHS);
7806 break;
7807 }
7808
7809 Cost = std::min(CostLHS, CostRHS);
7810 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7811 }
7812 }
7813
7814 return SDValue();
7815}
7816
7817//===----------------------------------------------------------------------===//
7818// Legalization Utilities
7819//===----------------------------------------------------------------------===//
7820
7821bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7822 SDValue LHS, SDValue RHS,
7824 EVT HiLoVT, SelectionDAG &DAG,
7825 MulExpansionKind Kind, SDValue LL,
7826 SDValue LH, SDValue RL, SDValue RH) const {
7827 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7828 Opcode == ISD::SMUL_LOHI);
7829
7830 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7832 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7834 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7836 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7838
7839 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7840 return false;
7841
7842 unsigned OuterBitSize = VT.getScalarSizeInBits();
7843 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7844
7845 // LL, LH, RL, and RH must be either all NULL or all set to a value.
7846 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7847 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7848
7849 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7850 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7851 bool Signed) -> bool {
7852 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7853 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7854 Hi = SDValue(Lo.getNode(), 1);
7855 return true;
7856 }
7857 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7858 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7859 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7860 return true;
7861 }
7862 return false;
7863 };
7864
7865 SDValue Lo, Hi;
7866
7867 if (!LL.getNode() && !RL.getNode() &&
7869 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7870 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7871 }
7872
7873 if (!LL.getNode())
7874 return false;
7875
7876 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7877 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7878 DAG.MaskedValueIsZero(RHS, HighMask)) {
7879 // The inputs are both zero-extended.
7880 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7881 Result.push_back(Lo);
7882 Result.push_back(Hi);
7883 if (Opcode != ISD::MUL) {
7884 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7885 Result.push_back(Zero);
7886 Result.push_back(Zero);
7887 }
7888 return true;
7889 }
7890 }
7891
7892 if (!VT.isVector() && Opcode == ISD::MUL &&
7893 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7894 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7895 // The input values are both sign-extended.
7896 // TODO non-MUL case?
7897 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7898 Result.push_back(Lo);
7899 Result.push_back(Hi);
7900 return true;
7901 }
7902 }
7903
7904 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7905 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7906
7907 if (!LH.getNode() && !RH.getNode() &&
7910 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7911 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7912 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7913 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7914 }
7915
7916 if (!LH.getNode())
7917 return false;
7918
7919 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7920 return false;
7921
7922 Result.push_back(Lo);
7923
7924 if (Opcode == ISD::MUL) {
7925 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7926 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7927 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7928 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7929 Result.push_back(Hi);
7930 return true;
7931 }
7932
7933 // Compute the full width result.
7934 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7935 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7936 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7937 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7938 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7939 };
7940
7941 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7942 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7943 return false;
7944
7945 // This is effectively the add part of a multiply-add of half-sized operands,
7946 // so it cannot overflow.
7947 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7948
7949 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7950 return false;
7951
7952 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7953 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7954
7955 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7957 if (UseGlue)
7958 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7959 Merge(Lo, Hi));
7960 else
7961 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7962 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7963
7964 SDValue Carry = Next.getValue(1);
7965 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7966 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7967
7968 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7969 return false;
7970
7971 if (UseGlue)
7972 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7973 Carry);
7974 else
7975 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7976 Zero, Carry);
7977
7978 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7979
7980 if (Opcode == ISD::SMUL_LOHI) {
7981 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7982 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7983 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7984
7985 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7986 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7987 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7988 }
7989
7990 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7991 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7992 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7993 return true;
7994}
7995
7997 SelectionDAG &DAG, MulExpansionKind Kind,
7998 SDValue LL, SDValue LH, SDValue RL,
7999 SDValue RH) const {
8001 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
8002 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
8003 DAG, Kind, LL, LH, RL, RH);
8004 if (Ok) {
8005 assert(Result.size() == 2);
8006 Lo = Result[0];
8007 Hi = Result[1];
8008 }
8009 return Ok;
8010}
8011
8012// Optimize unsigned division or remainder by constants for types twice as large
8013// as a legal VT.
8014//
8015// If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
8016// can be computed
8017// as:
8018// Sum += __builtin_uadd_overflow(Lo, High, &Sum);
8019// Remainder = Sum % Constant
8020// This is based on "Remainder by Summing Digits" from Hacker's Delight.
8021//
8022// For division, we can compute the remainder using the algorithm described
8023// above, subtract it from the dividend to get an exact multiple of Constant.
8024// Then multiply that exact multiply by the multiplicative inverse modulo
8025// (1 << (BitWidth / 2)) to get the quotient.
8026
8027// If Constant is even, we can shift right the dividend and the divisor by the
8028// number of trailing zeros in Constant before applying the remainder algorithm.
8029// If we're after the quotient, we can subtract this value from the shifted
8030// dividend and multiply by the multiplicative inverse of the shifted divisor.
8031// If we want the remainder, we shift the value left by the number of trailing
8032// zeros and add the bits that were shifted out of the dividend.
8035 EVT HiLoVT, SelectionDAG &DAG,
8036 SDValue LL, SDValue LH) const {
8037 unsigned Opcode = N->getOpcode();
8038 EVT VT = N->getValueType(0);
8039
8040 // TODO: Support signed division/remainder.
8041 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
8042 return false;
8043 assert(
8044 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
8045 "Unexpected opcode");
8046
8047 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
8048 if (!CN)
8049 return false;
8050
8051 APInt Divisor = CN->getAPIntValue();
8052 unsigned BitWidth = Divisor.getBitWidth();
8053 unsigned HBitWidth = BitWidth / 2;
8055 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
8056
8057 // Divisor needs to less than (1 << HBitWidth).
8058 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
8059 if (Divisor.uge(HalfMaxPlus1))
8060 return false;
8061
8062 // We depend on the UREM by constant optimization in DAGCombiner that requires
8063 // high multiply.
8064 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
8066 return false;
8067
8068 // Don't expand if optimizing for size.
8069 if (DAG.shouldOptForSize())
8070 return false;
8071
8072 // Early out for 0 or 1 divisors.
8073 if (Divisor.ule(1))
8074 return false;
8075
8076 // If the divisor is even, shift it until it becomes odd.
8077 unsigned TrailingZeros = 0;
8078 if (!Divisor[0]) {
8079 TrailingZeros = Divisor.countr_zero();
8080 Divisor.lshrInPlace(TrailingZeros);
8081 }
8082
8083 SDLoc dl(N);
8084 SDValue Sum;
8085 SDValue PartialRem;
8086
8087 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
8088 // then add in the carry.
8089 // TODO: If we can't split it in half, we might be able to split into 3 or
8090 // more pieces using a smaller bit width.
8091 if (HalfMaxPlus1.urem(Divisor).isOne()) {
8092 assert(!LL == !LH && "Expected both input halves or no input halves!");
8093 if (!LL)
8094 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
8095
8096 // Shift the input by the number of TrailingZeros in the divisor. The
8097 // shifted out bits will be added to the remainder later.
8098 if (TrailingZeros) {
8099 // Save the shifted off bits if we need the remainder.
8100 if (Opcode != ISD::UDIV) {
8101 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
8102 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
8103 DAG.getConstant(Mask, dl, HiLoVT));
8104 }
8105
8106 LL = DAG.getNode(
8107 ISD::OR, dl, HiLoVT,
8108 DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
8109 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
8110 DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
8111 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
8112 HiLoVT, dl)));
8113 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
8114 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
8115 }
8116
8117 // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
8118 EVT SetCCType =
8119 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
8121 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
8122 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
8123 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
8124 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
8125 } else {
8126 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
8127 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
8128 // If the boolean for the target is 0 or 1, we can add the setcc result
8129 // directly.
8130 if (getBooleanContents(HiLoVT) ==
8132 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
8133 else
8134 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
8135 DAG.getConstant(0, dl, HiLoVT));
8136 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
8137 }
8138 }
8139
8140 // If we didn't find a sum, we can't do the expansion.
8141 if (!Sum)
8142 return false;
8143
8144 // Perform a HiLoVT urem on the Sum using truncated divisor.
8145 SDValue RemL =
8146 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
8147 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
8148 SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
8149
8150 if (Opcode != ISD::UREM) {
8151 // Subtract the remainder from the shifted dividend.
8152 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
8153 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
8154
8155 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
8156
8157 // Multiply by the multiplicative inverse of the divisor modulo
8158 // (1 << BitWidth).
8159 APInt MulFactor = Divisor.multiplicativeInverse();
8160
8161 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
8162 DAG.getConstant(MulFactor, dl, VT));
8163
8164 // Split the quotient into low and high parts.
8165 SDValue QuotL, QuotH;
8166 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
8167 Result.push_back(QuotL);
8168 Result.push_back(QuotH);
8169 }
8170
8171 if (Opcode != ISD::UDIV) {
8172 // If we shifted the input, shift the remainder left and add the bits we
8173 // shifted off the input.
8174 if (TrailingZeros) {
8175 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
8176 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
8177 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
8178 }
8179 Result.push_back(RemL);
8180 Result.push_back(DAG.getConstant(0, dl, HiLoVT));
8181 }
8182
8183 return true;
8184}
8185
8186// Check that (every element of) Z is undef or not an exact multiple of BW.
8187static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
8189 Z,
8190 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
8191 /*AllowUndefs=*/true, /*AllowTruncation=*/true);
8192}
8193
8195 EVT VT = Node->getValueType(0);
8196 SDValue ShX, ShY;
8197 SDValue ShAmt, InvShAmt;
8198 SDValue X = Node->getOperand(0);
8199 SDValue Y = Node->getOperand(1);
8200 SDValue Z = Node->getOperand(2);
8201 SDValue Mask = Node->getOperand(3);
8202 SDValue VL = Node->getOperand(4);
8203
8204 unsigned BW = VT.getScalarSizeInBits();
8205 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
8206 SDLoc DL(SDValue(Node, 0));
8207
8208 EVT ShVT = Z.getValueType();
8209 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8210 // fshl: X << C | Y >> (BW - C)
8211 // fshr: X << (BW - C) | Y >> C
8212 // where C = Z % BW is not zero
8213 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8214 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8215 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8216 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
8217 VL);
8218 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8219 VL);
8220 } else {
8221 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8222 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8223 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
8224 if (isPowerOf2_32(BW)) {
8225 // Z % BW -> Z & (BW - 1)
8226 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
8227 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8228 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
8229 DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
8230 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
8231 } else {
8232 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8233 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8234 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
8235 }
8236
8237 SDValue One = DAG.getConstant(1, DL, ShVT);
8238 if (IsFSHL) {
8239 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
8240 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
8241 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
8242 } else {
8243 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
8244 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
8245 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
8246 }
8247 }
8248 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
8249}
8250
8252 SelectionDAG &DAG) const {
8253 if (Node->isVPOpcode())
8254 return expandVPFunnelShift(Node, DAG);
8255
8256 EVT VT = Node->getValueType(0);
8257
8258 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8262 return SDValue();
8263
8264 SDValue X = Node->getOperand(0);
8265 SDValue Y = Node->getOperand(1);
8266 SDValue Z = Node->getOperand(2);
8267
8268 unsigned BW = VT.getScalarSizeInBits();
8269 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8270 SDLoc DL(SDValue(Node, 0));
8271
8272 EVT ShVT = Z.getValueType();
8273
8274 // If a funnel shift in the other direction is more supported, use it.
8275 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8276 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8277 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8278 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8279 // fshl X, Y, Z -> fshr X, Y, -Z
8280 // fshr X, Y, Z -> fshl X, Y, -Z
8281 Z = DAG.getNegative(Z, DL, ShVT);
8282 } else {
8283 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8284 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8285 SDValue One = DAG.getConstant(1, DL, ShVT);
8286 if (IsFSHL) {
8287 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8288 X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8289 } else {
8290 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8291 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8292 }
8293 Z = DAG.getNOT(DL, Z, ShVT);
8294 }
8295 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8296 }
8297
8298 SDValue ShX, ShY;
8299 SDValue ShAmt, InvShAmt;
8300 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8301 // fshl: X << C | Y >> (BW - C)
8302 // fshr: X << (BW - C) | Y >> C
8303 // where C = Z % BW is not zero
8304 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8305 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8306 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8307 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8308 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8309 } else {
8310 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8311 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8312 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8313 if (isPowerOf2_32(BW)) {
8314 // Z % BW -> Z & (BW - 1)
8315 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8316 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8317 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8318 } else {
8319 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8320 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8321 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8322 }
8323
8324 SDValue One = DAG.getConstant(1, DL, ShVT);
8325 if (IsFSHL) {
8326 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8327 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8328 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8329 } else {
8330 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8331 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8332 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8333 }
8334 }
8335 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8336}
8337
8338// TODO: Merge with expandFunnelShift.
8340 SelectionDAG &DAG) const {
8341 EVT VT = Node->getValueType(0);
8342 unsigned EltSizeInBits = VT.getScalarSizeInBits();
8343 bool IsLeft = Node->getOpcode() == ISD::ROTL;
8344 SDValue Op0 = Node->getOperand(0);
8345 SDValue Op1 = Node->getOperand(1);
8346 SDLoc DL(SDValue(Node, 0));
8347
8348 EVT ShVT = Op1.getValueType();
8349 SDValue Zero = DAG.getConstant(0, DL, ShVT);
8350
8351 // If a rotate in the other direction is more supported, use it.
8352 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8353 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8354 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8355 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8356 return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8357 }
8358
8359 if (!AllowVectorOps && VT.isVector() &&
8365 return SDValue();
8366
8367 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8368 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8369 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8370 SDValue ShVal;
8371 SDValue HsVal;
8372 if (isPowerOf2_32(EltSizeInBits)) {
8373 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8374 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8375 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8376 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8377 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8378 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8379 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8380 } else {
8381 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8382 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8383 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8384 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8385 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8386 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8387 SDValue One = DAG.getConstant(1, DL, ShVT);
8388 HsVal =
8389 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8390 }
8391 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8392}
8393
8395 SDLoc DL(Node);
8396 EVT VT = Node->getValueType(0);
8397 SDValue X = Node->getOperand(0);
8398 SDValue Y = Node->getOperand(1);
8399 unsigned BW = VT.getScalarSizeInBits();
8400 unsigned Opcode = Node->getOpcode();
8401
8402 switch (Opcode) {
8403 case ISD::CLMUL: {
8404 SDValue Res = DAG.getConstant(0, DL, VT);
8405 for (unsigned I = 0; I < BW; ++I) {
8406 SDValue Mask = DAG.getConstant(APInt::getOneBitSet(BW, I), DL, VT);
8407 SDValue YMasked = DAG.getNode(ISD::AND, DL, VT, Y, Mask);
8408 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, X, YMasked);
8409 Res = DAG.getNode(ISD::XOR, DL, VT, Res, Mul);
8410 }
8411 return Res;
8412 }
8413 case ISD::CLMULR:
8414 case ISD::CLMULH: {
8415 EVT ExtVT = VT.changeElementType(
8416 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), 2 * BW));
8417 // For example, ExtVT = i64 based operations aren't legal on a 32-bit
8418 // target; use bitreverse-based lowering in this case.
8421 SDValue XRev = DAG.getNode(ISD::BITREVERSE, DL, VT, X);
8422 SDValue YRev = DAG.getNode(ISD::BITREVERSE, DL, VT, Y);
8423 SDValue ClMul = DAG.getNode(ISD::CLMUL, DL, VT, XRev, YRev);
8424 SDValue Res = DAG.getNode(ISD::BITREVERSE, DL, VT, ClMul);
8425 if (Opcode == ISD::CLMULH)
8426 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
8427 DAG.getShiftAmountConstant(1, VT, DL));
8428 return Res;
8429 }
8430 SDValue XExt = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, X);
8431 SDValue YExt = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, Y);
8432 SDValue ClMul = DAG.getNode(ISD::CLMUL, DL, ExtVT, XExt, YExt);
8433 unsigned ShAmt = Opcode == ISD::CLMULR ? BW - 1 : BW;
8434 SDValue HiBits = DAG.getNode(ISD::SRL, DL, ExtVT, ClMul,
8435 DAG.getShiftAmountConstant(ShAmt, ExtVT, DL));
8436 return DAG.getNode(ISD::TRUNCATE, DL, VT, HiBits);
8437 }
8438 }
8439 llvm_unreachable("Expected CLMUL, CLMULR, or CLMULH");
8440}
8441
8443 SelectionDAG &DAG) const {
8444 assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8445 EVT VT = Node->getValueType(0);
8446 unsigned VTBits = VT.getScalarSizeInBits();
8447 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8448
8449 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8450 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8451 SDValue ShOpLo = Node->getOperand(0);
8452 SDValue ShOpHi = Node->getOperand(1);
8453 SDValue ShAmt = Node->getOperand(2);
8454 EVT ShAmtVT = ShAmt.getValueType();
8455 EVT ShAmtCCVT =
8456 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8457 SDLoc dl(Node);
8458
8459 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8460 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8461 // away during isel.
8462 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8463 DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8464 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8465 DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8466 : DAG.getConstant(0, dl, VT);
8467
8468 SDValue Tmp2, Tmp3;
8469 if (IsSHL) {
8470 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8471 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8472 } else {
8473 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8474 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8475 }
8476
8477 // If the shift amount is larger or equal than the width of a part we don't
8478 // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8479 // values for large shift amounts.
8480 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8481 DAG.getConstant(VTBits, dl, ShAmtVT));
8482 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8483 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8484
8485 if (IsSHL) {
8486 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8487 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8488 } else {
8489 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8490 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8491 }
8492}
8493
8495 SelectionDAG &DAG) const {
8496 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8497 SDValue Src = Node->getOperand(OpNo);
8498 EVT SrcVT = Src.getValueType();
8499 EVT DstVT = Node->getValueType(0);
8500 SDLoc dl(SDValue(Node, 0));
8501
8502 // FIXME: Only f32 to i64 conversions are supported.
8503 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8504 return false;
8505
8506 if (Node->isStrictFPOpcode())
8507 // When a NaN is converted to an integer a trap is allowed. We can't
8508 // use this expansion here because it would eliminate that trap. Other
8509 // traps are also allowed and cannot be eliminated. See
8510 // IEEE 754-2008 sec 5.8.
8511 return false;
8512
8513 // Expand f32 -> i64 conversion
8514 // This algorithm comes from compiler-rt's implementation of fixsfdi:
8515 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8516 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8517 EVT IntVT = SrcVT.changeTypeToInteger();
8518 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8519
8520 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8521 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8522 SDValue Bias = DAG.getConstant(127, dl, IntVT);
8523 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8524 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8525 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8526
8527 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8528
8529 SDValue ExponentBits = DAG.getNode(
8530 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8531 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8532 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8533
8534 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8535 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8536 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8537 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8538
8539 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8540 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8541 DAG.getConstant(0x00800000, dl, IntVT));
8542
8543 R = DAG.getZExtOrTrunc(R, dl, DstVT);
8544
8545 R = DAG.getSelectCC(
8546 dl, Exponent, ExponentLoBit,
8547 DAG.getNode(ISD::SHL, dl, DstVT, R,
8548 DAG.getZExtOrTrunc(
8549 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8550 dl, IntShVT)),
8551 DAG.getNode(ISD::SRL, dl, DstVT, R,
8552 DAG.getZExtOrTrunc(
8553 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8554 dl, IntShVT)),
8555 ISD::SETGT);
8556
8557 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8558 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8559
8560 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8561 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8562 return true;
8563}
8564
8566 SDValue &Chain,
8567 SelectionDAG &DAG) const {
8568 SDLoc dl(SDValue(Node, 0));
8569 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8570 SDValue Src = Node->getOperand(OpNo);
8571
8572 EVT SrcVT = Src.getValueType();
8573 EVT DstVT = Node->getValueType(0);
8574 EVT SetCCVT =
8575 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8576 EVT DstSetCCVT =
8577 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8578
8579 // Only expand vector types if we have the appropriate vector bit operations.
8580 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8582 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8584 return false;
8585
8586 // If the maximum float value is smaller then the signed integer range,
8587 // the destination signmask can't be represented by the float, so we can
8588 // just use FP_TO_SINT directly.
8589 const fltSemantics &APFSem = SrcVT.getFltSemantics();
8590 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8591 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8593 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8594 if (Node->isStrictFPOpcode()) {
8595 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8596 { Node->getOperand(0), Src });
8597 Chain = Result.getValue(1);
8598 } else
8599 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8600 return true;
8601 }
8602
8603 // Don't expand it if there isn't cheap fsub instruction.
8605 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8606 return false;
8607
8608 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8609 SDValue Sel;
8610
8611 if (Node->isStrictFPOpcode()) {
8612 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8613 Node->getOperand(0), /*IsSignaling*/ true);
8614 Chain = Sel.getValue(1);
8615 } else {
8616 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8617 }
8618
8619 bool Strict = Node->isStrictFPOpcode() ||
8620 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8621
8622 if (Strict) {
8623 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8624 // signmask then offset (the result of which should be fully representable).
8625 // Sel = Src < 0x8000000000000000
8626 // FltOfs = select Sel, 0, 0x8000000000000000
8627 // IntOfs = select Sel, 0, 0x8000000000000000
8628 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8629
8630 // TODO: Should any fast-math-flags be set for the FSUB?
8631 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8632 DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8633 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8634 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8635 DAG.getConstant(0, dl, DstVT),
8636 DAG.getConstant(SignMask, dl, DstVT));
8637 SDValue SInt;
8638 if (Node->isStrictFPOpcode()) {
8639 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8640 { Chain, Src, FltOfs });
8641 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8642 { Val.getValue(1), Val });
8643 Chain = SInt.getValue(1);
8644 } else {
8645 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8646 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8647 }
8648 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8649 } else {
8650 // Expand based on maximum range of FP_TO_SINT:
8651 // True = fp_to_sint(Src)
8652 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8653 // Result = select (Src < 0x8000000000000000), True, False
8654
8655 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8656 // TODO: Should any fast-math-flags be set for the FSUB?
8657 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8658 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8659 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8660 DAG.getConstant(SignMask, dl, DstVT));
8661 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8662 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8663 }
8664 return true;
8665}
8666
8668 SDValue &Chain, SelectionDAG &DAG) const {
8669 // This transform is not correct for converting 0 when rounding mode is set
8670 // to round toward negative infinity which will produce -0.0. So disable
8671 // under strictfp.
8672 if (Node->isStrictFPOpcode())
8673 return false;
8674
8675 SDValue Src = Node->getOperand(0);
8676 EVT SrcVT = Src.getValueType();
8677 EVT DstVT = Node->getValueType(0);
8678
8679 // If the input is known to be non-negative and SINT_TO_FP is legal then use
8680 // it.
8681 if (Node->getFlags().hasNonNeg() &&
8683 Result =
8684 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8685 return true;
8686 }
8687
8688 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8689 return false;
8690
8691 // Only expand vector types if we have the appropriate vector bit
8692 // operations.
8693 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8698 return false;
8699
8700 SDLoc dl(SDValue(Node, 0));
8701
8702 // Implementation of unsigned i64 to f64 following the algorithm in
8703 // __floatundidf in compiler_rt. This implementation performs rounding
8704 // correctly in all rounding modes with the exception of converting 0
8705 // when rounding toward negative infinity. In that case the fsub will
8706 // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8707 // incorrect.
8708 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8709 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8710 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8711 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8712 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8713 SDValue HiShift = DAG.getShiftAmountConstant(32, SrcVT, dl);
8714
8715 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8716 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8717 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8718 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8719 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8720 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8721 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8722 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8723 return true;
8724}
8725
8726SDValue
8728 SelectionDAG &DAG) const {
8729 unsigned Opcode = Node->getOpcode();
8730 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8731 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8732 "Wrong opcode");
8733
8734 if (Node->getFlags().hasNoNaNs()) {
8735 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8736 EVT VT = Node->getValueType(0);
8737 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8739 VT.isVector())
8740 return SDValue();
8741 SDValue Op1 = Node->getOperand(0);
8742 SDValue Op2 = Node->getOperand(1);
8743 return DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred,
8744 Node->getFlags());
8745 }
8746
8747 return SDValue();
8748}
8749
8751 SelectionDAG &DAG) const {
8752 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8753 return Expanded;
8754
8755 EVT VT = Node->getValueType(0);
8756 if (VT.isScalableVector())
8758 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8759
8760 SDLoc dl(Node);
8761 unsigned NewOp =
8763
8764 if (isOperationLegalOrCustom(NewOp, VT)) {
8765 SDValue Quiet0 = Node->getOperand(0);
8766 SDValue Quiet1 = Node->getOperand(1);
8767
8768 if (!Node->getFlags().hasNoNaNs()) {
8769 // Insert canonicalizes if it's possible we need to quiet to get correct
8770 // sNaN behavior.
8771 if (!DAG.isKnownNeverSNaN(Quiet0)) {
8772 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8773 Node->getFlags());
8774 }
8775 if (!DAG.isKnownNeverSNaN(Quiet1)) {
8776 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8777 Node->getFlags());
8778 }
8779 }
8780
8781 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8782 }
8783
8784 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8785 // instead if there are no NaNs and there can't be an incompatible zero
8786 // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8787 if ((Node->getFlags().hasNoNaNs() ||
8788 (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8789 DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8790 (Node->getFlags().hasNoSignedZeros() ||
8791 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8792 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8793 unsigned IEEE2018Op =
8794 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8795 if (isOperationLegalOrCustom(IEEE2018Op, VT))
8796 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8797 Node->getOperand(1), Node->getFlags());
8798 }
8799
8801 return SelCC;
8802
8803 return SDValue();
8804}
8805
8807 SelectionDAG &DAG) const {
8808 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8809 return Expanded;
8810
8811 SDLoc DL(N);
8812 SDValue LHS = N->getOperand(0);
8813 SDValue RHS = N->getOperand(1);
8814 unsigned Opc = N->getOpcode();
8815 EVT VT = N->getValueType(0);
8816 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8817 bool IsMax = Opc == ISD::FMAXIMUM;
8818 SDNodeFlags Flags = N->getFlags();
8819
8820 // First, implement comparison not propagating NaN. If no native fmin or fmax
8821 // available, use plain select with setcc instead.
8823 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8824 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8825
8826 // FIXME: We should probably define fminnum/fmaxnum variants with correct
8827 // signed zero behavior.
8828 bool MinMaxMustRespectOrderedZero = false;
8829
8830 if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8831 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8832 MinMaxMustRespectOrderedZero = true;
8833 } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8834 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8835 } else {
8837 return DAG.UnrollVectorOp(N);
8838
8839 // NaN (if exists) will be propagated later, so orderness doesn't matter.
8840 SDValue Compare =
8841 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8842 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8843 }
8844
8845 // Propagate any NaN of both operands
8846 if (!N->getFlags().hasNoNaNs() &&
8847 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8848 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8850 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8851 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8852 }
8853
8854 // fminimum/fmaximum requires -0.0 less than +0.0
8855 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8856 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8857 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8858 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8859 SDValue TestZero =
8860 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8861 SDValue LCmp = DAG.getSelect(
8862 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8863 MinMax, Flags);
8864 SDValue RCmp = DAG.getSelect(
8865 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8866 LCmp, Flags);
8867 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8868 }
8869
8870 return MinMax;
8871}
8872
8874 SelectionDAG &DAG) const {
8875 SDLoc DL(Node);
8876 SDValue LHS = Node->getOperand(0);
8877 SDValue RHS = Node->getOperand(1);
8878 unsigned Opc = Node->getOpcode();
8879 EVT VT = Node->getValueType(0);
8880 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8881 bool IsMax = Opc == ISD::FMAXIMUMNUM;
8882 SDNodeFlags Flags = Node->getFlags();
8883
8884 unsigned NewOp =
8886
8887 if (isOperationLegalOrCustom(NewOp, VT)) {
8888 if (!Flags.hasNoNaNs()) {
8889 // Insert canonicalizes if it's possible we need to quiet to get correct
8890 // sNaN behavior.
8891 if (!DAG.isKnownNeverSNaN(LHS)) {
8892 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8893 }
8894 if (!DAG.isKnownNeverSNaN(RHS)) {
8895 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8896 }
8897 }
8898
8899 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8900 }
8901
8902 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8903 // same behaviors for all of other cases: +0.0 vs -0.0 included.
8904 if (Flags.hasNoNaNs() ||
8905 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8906 unsigned IEEE2019Op =
8908 if (isOperationLegalOrCustom(IEEE2019Op, VT))
8909 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8910 }
8911
8912 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8913 // either one for +0.0 vs -0.0.
8914 if ((Flags.hasNoNaNs() ||
8915 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8916 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8917 DAG.isKnownNeverZeroFloat(RHS))) {
8918 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8919 if (isOperationLegalOrCustom(IEEE2008Op, VT))
8920 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8921 }
8922
8923 if (VT.isVector() &&
8926 return DAG.UnrollVectorOp(Node);
8927
8928 // If only one operand is NaN, override it with another operand.
8929 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8930 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8931 }
8932 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8933 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8934 }
8935
8936 // Always prefer RHS if equal.
8937 SDValue MinMax =
8938 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8939
8940 // TODO: We need quiet sNaN if strictfp.
8941
8942 // Fixup signed zero behavior.
8943 if (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8944 DAG.isKnownNeverZeroFloat(RHS)) {
8945 return MinMax;
8946 }
8947 SDValue TestZero =
8948 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8949 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8950 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8951 EVT IntVT = VT.changeTypeToInteger();
8952 EVT FloatVT = VT.changeElementType(*DAG.getContext(), MVT::f32);
8953 SDValue LHSTrunc = LHS;
8955 LHSTrunc = DAG.getNode(ISD::FP_ROUND, DL, FloatVT, LHS,
8956 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
8957 }
8958 // It's OK to select from LHS and MinMax, with only one ISD::IS_FPCLASS, as
8959 // we preferred RHS when generate MinMax, if the operands are equal.
8960 SDValue RetZero = DAG.getSelect(
8961 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHSTrunc, TestZero), LHS,
8962 MinMax, Flags);
8963 return DAG.getSelect(DL, VT, IsZero, RetZero, MinMax, Flags);
8964}
8965
8966/// Returns a true value if if this FPClassTest can be performed with an ordered
8967/// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8968/// std::nullopt if it cannot be performed as a compare with 0.
8969static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8970 const fltSemantics &Semantics,
8971 const MachineFunction &MF) {
8972 FPClassTest OrderedMask = Test & ~fcNan;
8973 FPClassTest NanTest = Test & fcNan;
8974 bool IsOrdered = NanTest == fcNone;
8975 bool IsUnordered = NanTest == fcNan;
8976
8977 // Skip cases that are testing for only a qnan or snan.
8978 if (!IsOrdered && !IsUnordered)
8979 return std::nullopt;
8980
8981 if (OrderedMask == fcZero &&
8982 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8983 return IsOrdered;
8984 if (OrderedMask == (fcZero | fcSubnormal) &&
8985 MF.getDenormalMode(Semantics).inputsAreZero())
8986 return IsOrdered;
8987 return std::nullopt;
8988}
8989
8991 const FPClassTest OrigTestMask,
8992 SDNodeFlags Flags, const SDLoc &DL,
8993 SelectionDAG &DAG) const {
8994 EVT OperandVT = Op.getValueType();
8995 assert(OperandVT.isFloatingPoint());
8996 FPClassTest Test = OrigTestMask;
8997
8998 // Degenerated cases.
8999 if (Test == fcNone)
9000 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
9001 if (Test == fcAllFlags)
9002 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
9003
9004 // PPC double double is a pair of doubles, of which the higher part determines
9005 // the value class.
9006 if (OperandVT == MVT::ppcf128) {
9007 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
9008 DAG.getConstant(1, DL, MVT::i32));
9009 OperandVT = MVT::f64;
9010 }
9011
9012 // Floating-point type properties.
9013 EVT ScalarFloatVT = OperandVT.getScalarType();
9014 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
9015 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
9016 bool IsF80 = (ScalarFloatVT == MVT::f80);
9017
9018 // Some checks can be implemented using float comparisons, if floating point
9019 // exceptions are ignored.
9020 if (Flags.hasNoFPExcept() &&
9022 FPClassTest FPTestMask = Test;
9023 bool IsInvertedFP = false;
9024
9025 if (FPClassTest InvertedFPCheck =
9026 invertFPClassTestIfSimpler(FPTestMask, true)) {
9027 FPTestMask = InvertedFPCheck;
9028 IsInvertedFP = true;
9029 }
9030
9031 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
9032 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
9033
9034 // See if we can fold an | fcNan into an unordered compare.
9035 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
9036
9037 // Can't fold the ordered check if we're only testing for snan or qnan
9038 // individually.
9039 if ((FPTestMask & fcNan) != fcNan)
9040 OrderedFPTestMask = FPTestMask;
9041
9042 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
9043
9044 if (std::optional<bool> IsCmp0 =
9045 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
9046 IsCmp0 && (isCondCodeLegalOrCustom(
9047 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
9048 OperandVT.getScalarType().getSimpleVT()))) {
9049
9050 // If denormals could be implicitly treated as 0, this is not equivalent
9051 // to a compare with 0 since it will also be true for denormals.
9052 return DAG.getSetCC(DL, ResultVT, Op,
9053 DAG.getConstantFP(0.0, DL, OperandVT),
9054 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
9055 }
9056
9057 if (FPTestMask == fcNan &&
9059 OperandVT.getScalarType().getSimpleVT()))
9060 return DAG.getSetCC(DL, ResultVT, Op, Op,
9061 IsInvertedFP ? ISD::SETO : ISD::SETUO);
9062
9063 bool IsOrderedInf = FPTestMask == fcInf;
9064 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
9065 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
9066 : UnorderedCmpOpcode,
9067 OperandVT.getScalarType().getSimpleVT()) &&
9070 (OperandVT.isVector() &&
9072 // isinf(x) --> fabs(x) == inf
9073 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9074 SDValue Inf =
9075 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
9076 return DAG.getSetCC(DL, ResultVT, Abs, Inf,
9077 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
9078 }
9079
9080 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
9081 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
9082 : UnorderedCmpOpcode,
9083 OperandVT.getSimpleVT())) {
9084 // isposinf(x) --> x == inf
9085 // isneginf(x) --> x == -inf
9086 // isposinf(x) || nan --> x u== inf
9087 // isneginf(x) || nan --> x u== -inf
9088
9089 SDValue Inf = DAG.getConstantFP(
9090 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
9091 OperandVT);
9092 return DAG.getSetCC(DL, ResultVT, Op, Inf,
9093 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
9094 }
9095
9096 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
9097 // TODO: Could handle ordered case, but it produces worse code for
9098 // x86. Maybe handle ordered if fabs is free?
9099
9100 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
9101 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
9102
9103 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
9104 OperandVT.getScalarType().getSimpleVT())) {
9105 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
9106
9107 // TODO: Maybe only makes sense if fabs is free. Integer test of
9108 // exponent bits seems better for x86.
9109 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9110 SDValue SmallestNormal = DAG.getConstantFP(
9111 APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
9112 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
9113 IsOrdered ? OrderedOp : UnorderedOp);
9114 }
9115 }
9116
9117 if (FPTestMask == fcNormal) {
9118 // TODO: Handle unordered
9119 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
9120 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
9121
9122 if (isCondCodeLegalOrCustom(IsFiniteOp,
9123 OperandVT.getScalarType().getSimpleVT()) &&
9124 isCondCodeLegalOrCustom(IsNormalOp,
9125 OperandVT.getScalarType().getSimpleVT()) &&
9126 isFAbsFree(OperandVT)) {
9127 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
9128 SDValue Inf =
9129 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
9130 SDValue SmallestNormal = DAG.getConstantFP(
9131 APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
9132
9133 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9134 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
9135 SDValue IsNormal =
9136 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
9137 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
9138 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
9139 }
9140 }
9141 }
9142
9143 // Some checks may be represented as inversion of simpler check, for example
9144 // "inf|normal|subnormal|zero" => !"nan".
9145 bool IsInverted = false;
9146
9147 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
9148 Test = InvertedCheck;
9149 IsInverted = true;
9150 }
9151
9152 // In the general case use integer operations.
9153 unsigned BitSize = OperandVT.getScalarSizeInBits();
9154 EVT IntVT = OperandVT.changeElementType(
9155 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), BitSize));
9156 SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
9157
9158 // Various masks.
9159 APInt SignBit = APInt::getSignMask(BitSize);
9160 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
9161 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
9162 const unsigned ExplicitIntBitInF80 = 63;
9163 APInt ExpMask = Inf;
9164 if (IsF80)
9165 ExpMask.clearBit(ExplicitIntBitInF80);
9166 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
9167 APInt QNaNBitMask =
9168 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
9169 APInt InversionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
9170
9171 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
9172 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
9173 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
9174 SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
9175 SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
9176 SDValue ResultInversionMask = DAG.getConstant(InversionMask, DL, ResultVT);
9177
9178 SDValue Res;
9179 const auto appendResult = [&](SDValue PartialRes) {
9180 if (PartialRes) {
9181 if (Res)
9182 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
9183 else
9184 Res = PartialRes;
9185 }
9186 };
9187
9188 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
9189 const auto getIntBitIsSet = [&]() -> SDValue {
9190 if (!IntBitIsSetV) {
9191 APInt IntBitMask(BitSize, 0);
9192 IntBitMask.setBit(ExplicitIntBitInF80);
9193 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
9194 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
9195 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
9196 }
9197 return IntBitIsSetV;
9198 };
9199
9200 // Split the value into sign bit and absolute value.
9201 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
9202 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
9203 DAG.getConstant(0, DL, IntVT), ISD::SETLT);
9204
9205 // Tests that involve more than one class should be processed first.
9206 SDValue PartialRes;
9207
9208 if (IsF80)
9209 ; // Detect finite numbers of f80 by checking individual classes because
9210 // they have different settings of the explicit integer bit.
9211 else if ((Test & fcFinite) == fcFinite) {
9212 // finite(V) ==> abs(V) < exp_mask
9213 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
9214 Test &= ~fcFinite;
9215 } else if ((Test & fcFinite) == fcPosFinite) {
9216 // finite(V) && V > 0 ==> V < exp_mask
9217 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
9218 Test &= ~fcPosFinite;
9219 } else if ((Test & fcFinite) == fcNegFinite) {
9220 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
9221 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
9222 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9223 Test &= ~fcNegFinite;
9224 }
9225 appendResult(PartialRes);
9226
9227 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
9228 // fcZero | fcSubnormal => test all exponent bits are 0
9229 // TODO: Handle sign bit specific cases
9230 if (PartialCheck == (fcZero | fcSubnormal)) {
9231 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
9232 SDValue ExpIsZero =
9233 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9234 appendResult(ExpIsZero);
9235 Test &= ~PartialCheck & fcAllFlags;
9236 }
9237 }
9238
9239 // Check for individual classes.
9240
9241 if (unsigned PartialCheck = Test & fcZero) {
9242 if (PartialCheck == fcPosZero)
9243 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
9244 else if (PartialCheck == fcZero)
9245 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
9246 else // ISD::fcNegZero
9247 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
9248 appendResult(PartialRes);
9249 }
9250
9251 if (unsigned PartialCheck = Test & fcSubnormal) {
9252 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
9253 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
9254 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
9255 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
9256 SDValue VMinusOneV =
9257 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
9258 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
9259 if (PartialCheck == fcNegSubnormal)
9260 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9261 appendResult(PartialRes);
9262 }
9263
9264 if (unsigned PartialCheck = Test & fcInf) {
9265 if (PartialCheck == fcPosInf)
9266 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
9267 else if (PartialCheck == fcInf)
9268 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
9269 else { // ISD::fcNegInf
9270 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
9271 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
9272 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
9273 }
9274 appendResult(PartialRes);
9275 }
9276
9277 if (unsigned PartialCheck = Test & fcNan) {
9278 APInt InfWithQnanBit = Inf | QNaNBitMask;
9279 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
9280 if (PartialCheck == fcNan) {
9281 // isnan(V) ==> abs(V) > int(inf)
9282 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9283 if (IsF80) {
9284 // Recognize unsupported values as NaNs for compatibility with glibc.
9285 // In them (exp(V)==0) == int_bit.
9286 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
9287 SDValue ExpIsZero =
9288 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9289 SDValue IsPseudo =
9290 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
9291 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
9292 }
9293 } else if (PartialCheck == fcQNan) {
9294 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
9295 PartialRes =
9296 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
9297 } else { // ISD::fcSNan
9298 // issignaling(V) ==> abs(V) > unsigned(Inf) &&
9299 // abs(V) < (unsigned(Inf) | quiet_bit)
9300 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9301 SDValue IsNotQnan =
9302 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
9303 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
9304 }
9305 appendResult(PartialRes);
9306 }
9307
9308 if (unsigned PartialCheck = Test & fcNormal) {
9309 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
9310 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9311 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9312 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9313 APInt ExpLimit = ExpMask - ExpLSB;
9314 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9315 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9316 if (PartialCheck == fcNegNormal)
9317 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9318 else if (PartialCheck == fcPosNormal) {
9319 SDValue PosSignV =
9320 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInversionMask);
9321 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9322 }
9323 if (IsF80)
9324 PartialRes =
9325 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9326 appendResult(PartialRes);
9327 }
9328
9329 if (!Res)
9330 return DAG.getConstant(IsInverted, DL, ResultVT);
9331 if (IsInverted)
9332 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInversionMask);
9333 return Res;
9334}
9335
9336// Only expand vector types if we have the appropriate vector bit operations.
9337static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9338 assert(VT.isVector() && "Expected vector type");
9339 unsigned Len = VT.getScalarSizeInBits();
9340 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9343 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9345}
9346
9348 SDLoc dl(Node);
9349 EVT VT = Node->getValueType(0);
9350 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9351 SDValue Op = Node->getOperand(0);
9352 unsigned Len = VT.getScalarSizeInBits();
9353 assert(VT.isInteger() && "CTPOP not implemented for this type.");
9354
9355 // TODO: Add support for irregular type lengths.
9356 if (!(Len <= 128 && Len % 8 == 0))
9357 return SDValue();
9358
9359 // Only expand vector types if we have the appropriate vector bit operations.
9360 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9361 return SDValue();
9362
9363 // This is the "best" algorithm from
9364 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9365 SDValue Mask55 =
9366 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9367 SDValue Mask33 =
9368 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9369 SDValue Mask0F =
9370 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9371
9372 // v = v - ((v >> 1) & 0x55555555...)
9373 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9374 DAG.getNode(ISD::AND, dl, VT,
9375 DAG.getNode(ISD::SRL, dl, VT, Op,
9376 DAG.getConstant(1, dl, ShVT)),
9377 Mask55));
9378 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9379 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9380 DAG.getNode(ISD::AND, dl, VT,
9381 DAG.getNode(ISD::SRL, dl, VT, Op,
9382 DAG.getConstant(2, dl, ShVT)),
9383 Mask33));
9384 // v = (v + (v >> 4)) & 0x0F0F0F0F...
9385 Op = DAG.getNode(ISD::AND, dl, VT,
9386 DAG.getNode(ISD::ADD, dl, VT, Op,
9387 DAG.getNode(ISD::SRL, dl, VT, Op,
9388 DAG.getConstant(4, dl, ShVT))),
9389 Mask0F);
9390
9391 if (Len <= 8)
9392 return Op;
9393
9394 // Avoid the multiply if we only have 2 bytes to add.
9395 // TODO: Only doing this for scalars because vectors weren't as obviously
9396 // improved.
9397 if (Len == 16 && !VT.isVector()) {
9398 // v = (v + (v >> 8)) & 0x00FF;
9399 return DAG.getNode(ISD::AND, dl, VT,
9400 DAG.getNode(ISD::ADD, dl, VT, Op,
9401 DAG.getNode(ISD::SRL, dl, VT, Op,
9402 DAG.getConstant(8, dl, ShVT))),
9403 DAG.getConstant(0xFF, dl, VT));
9404 }
9405
9406 // v = (v * 0x01010101...) >> (Len - 8)
9407 SDValue V;
9410 SDValue Mask01 =
9411 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9412 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9413 } else {
9414 V = Op;
9415 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9416 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9417 V = DAG.getNode(ISD::ADD, dl, VT, V,
9418 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9419 }
9420 }
9421 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9422}
9423
9425 SDLoc dl(Node);
9426 EVT VT = Node->getValueType(0);
9427 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9428 SDValue Op = Node->getOperand(0);
9429 SDValue Mask = Node->getOperand(1);
9430 SDValue VL = Node->getOperand(2);
9431 unsigned Len = VT.getScalarSizeInBits();
9432 assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9433
9434 // TODO: Add support for irregular type lengths.
9435 if (!(Len <= 128 && Len % 8 == 0))
9436 return SDValue();
9437
9438 // This is same algorithm of expandCTPOP from
9439 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9440 SDValue Mask55 =
9441 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9442 SDValue Mask33 =
9443 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9444 SDValue Mask0F =
9445 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9446
9447 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9448
9449 // v = v - ((v >> 1) & 0x55555555...)
9450 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9451 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9452 DAG.getConstant(1, dl, ShVT), Mask, VL),
9453 Mask55, Mask, VL);
9454 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9455
9456 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9457 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9458 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9459 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9460 DAG.getConstant(2, dl, ShVT), Mask, VL),
9461 Mask33, Mask, VL);
9462 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9463
9464 // v = (v + (v >> 4)) & 0x0F0F0F0F...
9465 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9466 Mask, VL),
9467 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9468 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9469
9470 if (Len <= 8)
9471 return Op;
9472
9473 // v = (v * 0x01010101...) >> (Len - 8)
9474 SDValue V;
9476 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9477 SDValue Mask01 =
9478 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9479 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9480 } else {
9481 V = Op;
9482 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9483 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9484 V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9485 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9486 Mask, VL);
9487 }
9488 }
9489 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9490 Mask, VL);
9491}
9492
9494 SDLoc dl(Node);
9495 EVT VT = Node->getValueType(0);
9496 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9497 SDValue Op = Node->getOperand(0);
9498 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9499
9500 // If the non-ZERO_UNDEF version is supported we can use that instead.
9501 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9503 return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9504
9505 // If the ZERO_UNDEF version is supported use that and handle the zero case.
9507 EVT SetCCVT =
9508 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9509 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9510 SDValue Zero = DAG.getConstant(0, dl, VT);
9511 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9512 return DAG.getSelect(dl, VT, SrcIsZero,
9513 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9514 }
9515
9516 // Only expand vector types if we have the appropriate vector bit operations.
9517 // This includes the operations needed to expand CTPOP if it isn't supported.
9518 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9520 !canExpandVectorCTPOP(*this, VT)) ||
9523 return SDValue();
9524
9525 // for now, we do this:
9526 // x = x | (x >> 1);
9527 // x = x | (x >> 2);
9528 // ...
9529 // x = x | (x >>16);
9530 // x = x | (x >>32); // for 64-bit input
9531 // return popcount(~x);
9532 //
9533 // Ref: "Hacker's Delight" by Henry Warren
9534 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9535 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9536 Op = DAG.getNode(ISD::OR, dl, VT, Op,
9537 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9538 }
9539 Op = DAG.getNOT(dl, Op, VT);
9540 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9541}
9542
9544 SDLoc dl(Node);
9545 EVT VT = Node->getValueType(0);
9546 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9547 SDValue Op = Node->getOperand(0);
9548 SDValue Mask = Node->getOperand(1);
9549 SDValue VL = Node->getOperand(2);
9550 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9551
9552 // do this:
9553 // x = x | (x >> 1);
9554 // x = x | (x >> 2);
9555 // ...
9556 // x = x | (x >>16);
9557 // x = x | (x >>32); // for 64-bit input
9558 // return popcount(~x);
9559 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9560 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9561 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9562 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9563 VL);
9564 }
9565 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9566 Mask, VL);
9567 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9568}
9569
9571 const SDLoc &DL, EVT VT, SDValue Op,
9572 unsigned BitWidth) const {
9573 if (BitWidth != 32 && BitWidth != 64)
9574 return SDValue();
9575 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9576 : APInt(64, 0x0218A392CD3D5DBFULL);
9577 const DataLayout &TD = DAG.getDataLayout();
9578 MachinePointerInfo PtrInfo =
9580 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9581 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9582 SDValue Lookup = DAG.getNode(
9583 ISD::SRL, DL, VT,
9584 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9585 DAG.getConstant(DeBruijn, DL, VT)),
9586 DAG.getShiftAmountConstant(ShiftAmt, VT, DL));
9588
9590 for (unsigned i = 0; i < BitWidth; i++) {
9591 APInt Shl = DeBruijn.shl(i);
9592 APInt Lshr = Shl.lshr(ShiftAmt);
9593 Table[Lshr.getZExtValue()] = i;
9594 }
9595
9596 // Create a ConstantArray in Constant Pool
9597 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9598 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9599 TD.getPrefTypeAlign(CA->getType()));
9600 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9601 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9602 PtrInfo, MVT::i8);
9603 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9604 return ExtLoad;
9605
9606 EVT SetCCVT =
9607 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9608 SDValue Zero = DAG.getConstant(0, DL, VT);
9609 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9610 return DAG.getSelect(DL, VT, SrcIsZero,
9611 DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9612}
9613
9615 SDLoc dl(Node);
9616 EVT VT = Node->getValueType(0);
9617 SDValue Op = Node->getOperand(0);
9618 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9619
9620 // If the non-ZERO_UNDEF version is supported we can use that instead.
9621 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9623 return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9624
9625 // If the ZERO_UNDEF version is supported use that and handle the zero case.
9627 EVT SetCCVT =
9628 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9629 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9630 SDValue Zero = DAG.getConstant(0, dl, VT);
9631 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9632 return DAG.getSelect(dl, VT, SrcIsZero,
9633 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9634 }
9635
9636 // Only expand vector types if we have the appropriate vector bit operations.
9637 // This includes the operations needed to expand CTPOP if it isn't supported.
9638 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9641 !canExpandVectorCTPOP(*this, VT)) ||
9645 return SDValue();
9646
9647 // Emit Table Lookup if ISD::CTPOP used in the fallback path below is going
9648 // to be expanded or converted to a libcall.
9651 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9652 return V;
9653
9654 // for now, we use: { return popcount(~x & (x - 1)); }
9655 // unless the target has ctlz but not ctpop, in which case we use:
9656 // { return 32 - nlz(~x & (x-1)); }
9657 // Ref: "Hacker's Delight" by Henry Warren
9658 SDValue Tmp = DAG.getNode(
9659 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9660 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9661
9662 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9664 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9665 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9666 }
9667
9668 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9669}
9670
9672 SDValue Op = Node->getOperand(0);
9673 SDValue Mask = Node->getOperand(1);
9674 SDValue VL = Node->getOperand(2);
9675 SDLoc dl(Node);
9676 EVT VT = Node->getValueType(0);
9677
9678 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9679 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9680 DAG.getAllOnesConstant(dl, VT), Mask, VL);
9681 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9682 DAG.getConstant(1, dl, VT), Mask, VL);
9683 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9684 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9685}
9686
9688 SelectionDAG &DAG) const {
9689 // %cond = to_bool_vec %source
9690 // %splat = splat /*val=*/VL
9691 // %tz = step_vector
9692 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9693 // %r = vp.reduce.umin %v
9694 SDLoc DL(N);
9695 SDValue Source = N->getOperand(0);
9696 SDValue Mask = N->getOperand(1);
9697 SDValue EVL = N->getOperand(2);
9698 EVT SrcVT = Source.getValueType();
9699 EVT ResVT = N->getValueType(0);
9700 EVT ResVecVT =
9701 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9702
9703 // Convert to boolean vector.
9704 if (SrcVT.getScalarType() != MVT::i1) {
9705 SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9706 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9707 SrcVT.getVectorElementCount());
9708 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9709 DAG.getCondCode(ISD::SETNE), Mask, EVL);
9710 }
9711
9712 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9713 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9714 SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9715 SDValue Select =
9716 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9717 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9718}
9719
9721 SelectionDAG &DAG) const {
9722 SDLoc DL(N);
9723 SDValue Mask = N->getOperand(0);
9724 EVT MaskVT = Mask.getValueType();
9725 EVT BoolVT = MaskVT.getScalarType();
9726
9727 // Find a suitable type for a stepvector.
9728 ConstantRange VScaleRange(1, /*isFullSet=*/true); // Fixed length default.
9729 if (MaskVT.isScalableVector())
9730 VScaleRange = getVScaleRange(&DAG.getMachineFunction().getFunction(), 64);
9731 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9732 uint64_t EltWidth = TLI.getBitWidthForCttzElements(
9733 BoolVT.getTypeForEVT(*DAG.getContext()), MaskVT.getVectorElementCount(),
9734 /*ZeroIsPoison=*/true, &VScaleRange);
9735 // If the step vector element type is smaller than the mask element type,
9736 // use the mask type directly to avoid widening issues.
9737 EltWidth = std::max(EltWidth, BoolVT.getFixedSizeInBits());
9738 EVT StepVT = MVT::getIntegerVT(EltWidth);
9739 EVT StepVecVT = MaskVT.changeVectorElementType(*DAG.getContext(), StepVT);
9740
9741 // If promotion or widening is required to make the type legal, do it here.
9742 // Promotion of integers within LegalizeVectorOps is looking for types of
9743 // the same size but with a smaller number of larger elements, not the usual
9744 // larger size with the same number of larger elements.
9746 TLI.getTypeAction(StepVecVT.getSimpleVT());
9747 SDValue StepVec;
9748 if (TypeAction == TargetLowering::TypePromoteInteger) {
9749 StepVecVT = TLI.getTypeToTransformTo(*DAG.getContext(), StepVecVT);
9750 StepVT = StepVecVT.getVectorElementType();
9751 StepVec = DAG.getStepVector(DL, StepVecVT);
9752 } else if (TypeAction == TargetLowering::TypeWidenVector) {
9753 // For widening, the element count changes. Create a step vector with only
9754 // the original elements valid and zeros for padding. Also widen the mask.
9755 EVT WideVecVT = TLI.getTypeToTransformTo(*DAG.getContext(), StepVecVT);
9756 unsigned WideNumElts = WideVecVT.getVectorNumElements();
9757
9758 // Build widened step vector: <0, 1, ..., OrigNumElts-1, poison, poison, ..>
9759 SDValue OrigStepVec = DAG.getStepVector(DL, StepVecVT);
9760 SDValue UndefStep = DAG.getPOISON(WideVecVT);
9761 StepVec = DAG.getInsertSubvector(DL, UndefStep, OrigStepVec, 0);
9762
9763 // Widen mask: pad with zeros.
9764 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(), BoolVT, WideNumElts);
9765 SDValue ZeroMask = DAG.getConstant(0, DL, WideMaskVT);
9766 Mask = DAG.getInsertSubvector(DL, ZeroMask, Mask, 0);
9767
9768 StepVecVT = WideVecVT;
9769 StepVT = WideVecVT.getVectorElementType();
9770 } else {
9771 StepVec = DAG.getStepVector(DL, StepVecVT);
9772 }
9773
9774 // Zero out lanes with inactive elements, then find the highest remaining
9775 // value from the stepvector.
9776 SDValue Zeroes = DAG.getConstant(0, DL, StepVecVT);
9777 SDValue ActiveElts = DAG.getSelect(DL, StepVecVT, Mask, StepVec, Zeroes);
9778 SDValue HighestIdx = DAG.getNode(ISD::VECREDUCE_UMAX, DL, StepVT, ActiveElts);
9779 return DAG.getZExtOrTrunc(HighestIdx, DL, N->getValueType(0));
9780}
9781
9783 bool IsNegative) const {
9784 SDLoc dl(N);
9785 EVT VT = N->getValueType(0);
9786 SDValue Op = N->getOperand(0);
9787
9788 // abs(x) -> smax(x,sub(0,x))
9789 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9791 SDValue Zero = DAG.getConstant(0, dl, VT);
9792 Op = DAG.getFreeze(Op);
9793 return DAG.getNode(ISD::SMAX, dl, VT, Op,
9794 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9795 }
9796
9797 // abs(x) -> umin(x,sub(0,x))
9798 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9800 SDValue Zero = DAG.getConstant(0, dl, VT);
9801 Op = DAG.getFreeze(Op);
9802 return DAG.getNode(ISD::UMIN, dl, VT, Op,
9803 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9804 }
9805
9806 // 0 - abs(x) -> smin(x, sub(0,x))
9807 if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9809 SDValue Zero = DAG.getConstant(0, dl, VT);
9810 Op = DAG.getFreeze(Op);
9811 return DAG.getNode(ISD::SMIN, dl, VT, Op,
9812 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9813 }
9814
9815 // Only expand vector types if we have the appropriate vector operations.
9816 if (VT.isVector() &&
9818 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9819 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9821 return SDValue();
9822
9823 Op = DAG.getFreeze(Op);
9824 SDValue Shift = DAG.getNode(
9825 ISD::SRA, dl, VT, Op,
9826 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9827 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9828
9829 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9830 if (!IsNegative)
9831 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9832
9833 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9834 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9835}
9836
9838 SDLoc dl(N);
9839 EVT VT = N->getValueType(0);
9840 SDValue LHS = N->getOperand(0);
9841 SDValue RHS = N->getOperand(1);
9842 bool IsSigned = N->getOpcode() == ISD::ABDS;
9843
9844 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9845 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9846 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9847 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9848 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9849 LHS = DAG.getFreeze(LHS);
9850 RHS = DAG.getFreeze(RHS);
9851 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9852 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9853 return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9854 }
9855
9856 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9857 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) {
9858 LHS = DAG.getFreeze(LHS);
9859 RHS = DAG.getFreeze(RHS);
9860 return DAG.getNode(ISD::OR, dl, VT,
9861 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9862 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9863 }
9864
9865 // If the subtract doesn't overflow then just use abs(sub())
9866 bool IsNonNegative = DAG.SignBitIsZero(LHS) && DAG.SignBitIsZero(RHS);
9867
9868 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, LHS, RHS))
9869 return DAG.getNode(ISD::ABS, dl, VT,
9870 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9871
9872 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, RHS, LHS))
9873 return DAG.getNode(ISD::ABS, dl, VT,
9874 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9875
9876 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9878 LHS = DAG.getFreeze(LHS);
9879 RHS = DAG.getFreeze(RHS);
9880 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9881
9882 // Branchless expansion iff cmp result is allbits:
9883 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9884 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9885 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9886 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9887 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9888 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9889 }
9890
9891 // Similar to the branchless expansion, if we don't prefer selects, use the
9892 // (sign-extended) usubo overflow flag if the (scalar) type is illegal as this
9893 // is more likely to legalize cleanly: abdu(lhs, rhs) -> sub(xor(sub(lhs,
9894 // rhs), uof(lhs, rhs)), uof(lhs, rhs))
9895 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT) &&
9897 SDValue USubO =
9898 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9899 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9900 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9901 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9902 }
9903
9904 // FIXME: Should really try to split the vector in case it's legal on a
9905 // subvector.
9907 return DAG.UnrollVectorOp(N);
9908
9909 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9910 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9911 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9912 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9913}
9914
9916 SDLoc dl(N);
9917 EVT VT = N->getValueType(0);
9918 SDValue LHS = N->getOperand(0);
9919 SDValue RHS = N->getOperand(1);
9920
9921 unsigned Opc = N->getOpcode();
9922 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9923 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9924 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9925 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9926 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9927 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9929 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9930 "Unknown AVG node");
9931
9932 // If the operands are already extended, we can add+shift.
9933 bool IsExt =
9934 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9935 DAG.ComputeNumSignBits(RHS) >= 2) ||
9936 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9937 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9938 if (IsExt) {
9939 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9940 if (!IsFloor)
9941 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9942 return DAG.getNode(ShiftOpc, dl, VT, Sum,
9943 DAG.getShiftAmountConstant(1, VT, dl));
9944 }
9945
9946 // For scalars, see if we can efficiently extend/truncate to use add+shift.
9947 if (VT.isScalarInteger()) {
9948 unsigned BW = VT.getScalarSizeInBits();
9949 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9950 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9951 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9952 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9953 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9954 if (!IsFloor)
9955 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9956 DAG.getConstant(1, dl, ExtVT));
9957 // Just use SRL as we will be truncating away the extended sign bits.
9958 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9959 DAG.getShiftAmountConstant(1, ExtVT, dl));
9960 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9961 }
9962 }
9963
9964 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9965 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9966 SDValue UAddWithOverflow =
9967 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9968
9969 SDValue Sum = UAddWithOverflow.getValue(0);
9970 SDValue Overflow = UAddWithOverflow.getValue(1);
9971
9972 // Right shift the sum by 1
9973 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9974 DAG.getShiftAmountConstant(1, VT, dl));
9975
9976 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9977 SDValue OverflowShl = DAG.getNode(
9978 ISD::SHL, dl, VT, ZeroExtOverflow,
9979 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9980
9981 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9982 }
9983
9984 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9985 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9986 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9987 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9988 LHS = DAG.getFreeze(LHS);
9989 RHS = DAG.getFreeze(RHS);
9990 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9991 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9992 SDValue Shift =
9993 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9994 return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9995}
9996
9998 SDLoc dl(N);
9999 EVT VT = N->getValueType(0);
10000 SDValue Op = N->getOperand(0);
10001
10002 if (!VT.isSimple())
10003 return SDValue();
10004
10005 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10006 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
10007 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
10008 default:
10009 return SDValue();
10010 case MVT::i16:
10011 // Use a rotate by 8. This can be further expanded if necessary.
10012 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
10013 case MVT::i32:
10014 // This is meant for ARM speficially, which has ROTR but no ROTL.
10016 SDValue Mask = DAG.getConstant(0x00FF00FF, dl, VT);
10017 // (x & 0x00FF00FF) rotr 8 | (x rotl 8) & 0x00FF00FF
10018 SDValue And = DAG.getNode(ISD::AND, dl, VT, Op, Mask);
10019 SDValue Rotr =
10020 DAG.getNode(ISD::ROTR, dl, VT, And, DAG.getConstant(8, dl, SHVT));
10021 SDValue Rotl =
10022 DAG.getNode(ISD::ROTR, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10023 SDValue And2 = DAG.getNode(ISD::AND, dl, VT, Rotl, Mask);
10024 return DAG.getNode(ISD::OR, dl, VT, Rotr, And2);
10025 }
10026 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10027 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
10028 DAG.getConstant(0xFF00, dl, VT));
10029 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
10030 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
10031 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
10032 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10033 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
10034 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
10035 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
10036 case MVT::i64:
10037 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
10038 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
10039 DAG.getConstant(255ULL<<8, dl, VT));
10040 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
10041 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
10042 DAG.getConstant(255ULL<<16, dl, VT));
10043 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
10044 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
10045 DAG.getConstant(255ULL<<24, dl, VT));
10046 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
10047 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
10048 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
10049 DAG.getConstant(255ULL<<24, dl, VT));
10050 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10051 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
10052 DAG.getConstant(255ULL<<16, dl, VT));
10053 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
10054 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
10055 DAG.getConstant(255ULL<<8, dl, VT));
10056 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
10057 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
10058 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
10059 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
10060 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
10061 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
10062 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
10063 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
10064 }
10065}
10066
10068 SDLoc dl(N);
10069 EVT VT = N->getValueType(0);
10070 SDValue Op = N->getOperand(0);
10071 SDValue Mask = N->getOperand(1);
10072 SDValue EVL = N->getOperand(2);
10073
10074 if (!VT.isSimple())
10075 return SDValue();
10076
10077 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10078 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
10079 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
10080 default:
10081 return SDValue();
10082 case MVT::i16:
10083 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10084 Mask, EVL);
10085 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10086 Mask, EVL);
10087 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
10088 case MVT::i32:
10089 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10090 Mask, EVL);
10091 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
10092 Mask, EVL);
10093 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
10094 Mask, EVL);
10095 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10096 Mask, EVL);
10097 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10098 DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
10099 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10100 Mask, EVL);
10101 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10102 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10103 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10104 case MVT::i64:
10105 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
10106 Mask, EVL);
10107 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10108 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
10109 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
10110 Mask, EVL);
10111 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10112 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
10113 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
10114 Mask, EVL);
10115 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10116 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
10117 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
10118 Mask, EVL);
10119 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10120 Mask, EVL);
10121 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
10122 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
10123 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10124 Mask, EVL);
10125 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
10126 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
10127 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
10128 Mask, EVL);
10129 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10130 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
10131 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
10132 Mask, EVL);
10133 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
10134 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
10135 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10136 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10137 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
10138 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10139 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
10140 }
10141}
10142
10144 SDLoc dl(N);
10145 EVT VT = N->getValueType(0);
10146 SDValue Op = N->getOperand(0);
10147 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10148 unsigned Sz = VT.getScalarSizeInBits();
10149
10150 SDValue Tmp, Tmp2, Tmp3;
10151
10152 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
10153 // and finally the i1 pairs.
10154 // TODO: We can easily support i4/i2 legal types if any target ever does.
10155 if (Sz >= 8 && isPowerOf2_32(Sz)) {
10156 // Create the masks - repeating the pattern every byte.
10157 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
10158 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
10159 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
10160
10161 // BSWAP if the type is wider than a single byte.
10162 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
10163
10164 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
10165 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
10166 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
10167 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
10168 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
10169 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10170
10171 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
10172 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
10173 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
10174 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
10175 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
10176 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10177
10178 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
10179 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
10180 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
10181 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
10182 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
10183 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10184 return Tmp;
10185 }
10186
10187 Tmp = DAG.getConstant(0, dl, VT);
10188 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
10189 if (I < J)
10190 Tmp2 =
10191 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
10192 else
10193 Tmp2 =
10194 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
10195
10196 APInt Shift = APInt::getOneBitSet(Sz, J);
10197 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
10198 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
10199 }
10200
10201 return Tmp;
10202}
10203
10205 assert(N->getOpcode() == ISD::VP_BITREVERSE);
10206
10207 SDLoc dl(N);
10208 EVT VT = N->getValueType(0);
10209 SDValue Op = N->getOperand(0);
10210 SDValue Mask = N->getOperand(1);
10211 SDValue EVL = N->getOperand(2);
10212 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10213 unsigned Sz = VT.getScalarSizeInBits();
10214
10215 SDValue Tmp, Tmp2, Tmp3;
10216
10217 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
10218 // and finally the i1 pairs.
10219 // TODO: We can easily support i4/i2 legal types if any target ever does.
10220 if (Sz >= 8 && isPowerOf2_32(Sz)) {
10221 // Create the masks - repeating the pattern every byte.
10222 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
10223 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
10224 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
10225
10226 // BSWAP if the type is wider than a single byte.
10227 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
10228
10229 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
10230 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
10231 Mask, EVL);
10232 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10233 DAG.getConstant(Mask4, dl, VT), Mask, EVL);
10234 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
10235 Mask, EVL);
10236 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
10237 Mask, EVL);
10238 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10239
10240 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
10241 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
10242 Mask, EVL);
10243 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10244 DAG.getConstant(Mask2, dl, VT), Mask, EVL);
10245 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
10246 Mask, EVL);
10247 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
10248 Mask, EVL);
10249 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10250
10251 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
10252 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
10253 Mask, EVL);
10254 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10255 DAG.getConstant(Mask1, dl, VT), Mask, EVL);
10256 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
10257 Mask, EVL);
10258 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
10259 Mask, EVL);
10260 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10261 return Tmp;
10262 }
10263 return SDValue();
10264}
10265
10266std::pair<SDValue, SDValue>
10268 SelectionDAG &DAG) const {
10269 SDLoc SL(LD);
10270 SDValue Chain = LD->getChain();
10271 SDValue BasePTR = LD->getBasePtr();
10272 EVT SrcVT = LD->getMemoryVT();
10273 EVT DstVT = LD->getValueType(0);
10274 ISD::LoadExtType ExtType = LD->getExtensionType();
10275
10276 if (SrcVT.isScalableVector())
10277 report_fatal_error("Cannot scalarize scalable vector loads");
10278
10279 unsigned NumElem = SrcVT.getVectorNumElements();
10280
10281 EVT SrcEltVT = SrcVT.getScalarType();
10282 EVT DstEltVT = DstVT.getScalarType();
10283
10284 // A vector must always be stored in memory as-is, i.e. without any padding
10285 // between the elements, since various code depend on it, e.g. in the
10286 // handling of a bitcast of a vector type to int, which may be done with a
10287 // vector store followed by an integer load. A vector that does not have
10288 // elements that are byte-sized must therefore be stored as an integer
10289 // built out of the extracted vector elements.
10290 if (!SrcEltVT.isByteSized()) {
10291 unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
10292 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
10293
10294 unsigned NumSrcBits = SrcVT.getSizeInBits();
10295 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
10296
10297 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
10298 SDValue SrcEltBitMask = DAG.getConstant(
10299 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
10300
10301 // Load the whole vector and avoid masking off the top bits as it makes
10302 // the codegen worse.
10303 SDValue Load =
10304 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
10305 LD->getPointerInfo(), SrcIntVT, LD->getBaseAlign(),
10306 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10307
10309 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10310 unsigned ShiftIntoIdx =
10311 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10312 SDValue ShiftAmount = DAG.getShiftAmountConstant(
10313 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
10314 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
10315 SDValue Elt =
10316 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
10317 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
10318
10319 if (ExtType != ISD::NON_EXTLOAD) {
10320 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
10321 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
10322 }
10323
10324 Vals.push_back(Scalar);
10325 }
10326
10327 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10328 return std::make_pair(Value, Load.getValue(1));
10329 }
10330
10331 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
10332 assert(SrcEltVT.isByteSized());
10333
10335 SmallVector<SDValue, 8> LoadChains;
10336
10337 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10338 SDValue ScalarLoad = DAG.getExtLoad(
10339 ExtType, SL, DstEltVT, Chain, BasePTR,
10340 LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT,
10341 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10342
10343 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
10344
10345 Vals.push_back(ScalarLoad.getValue(0));
10346 LoadChains.push_back(ScalarLoad.getValue(1));
10347 }
10348
10349 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
10350 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10351
10352 return std::make_pair(Value, NewChain);
10353}
10354
10356 SelectionDAG &DAG) const {
10357 SDLoc SL(ST);
10358
10359 SDValue Chain = ST->getChain();
10360 SDValue BasePtr = ST->getBasePtr();
10361 SDValue Value = ST->getValue();
10362 EVT StVT = ST->getMemoryVT();
10363
10364 if (StVT.isScalableVector())
10365 report_fatal_error("Cannot scalarize scalable vector stores");
10366
10367 // The type of the data we want to save
10368 EVT RegVT = Value.getValueType();
10369 EVT RegSclVT = RegVT.getScalarType();
10370
10371 // The type of data as saved in memory.
10372 EVT MemSclVT = StVT.getScalarType();
10373
10374 unsigned NumElem = StVT.getVectorNumElements();
10375
10376 // A vector must always be stored in memory as-is, i.e. without any padding
10377 // between the elements, since various code depend on it, e.g. in the
10378 // handling of a bitcast of a vector type to int, which may be done with a
10379 // vector store followed by an integer load. A vector that does not have
10380 // elements that are byte-sized must therefore be stored as an integer
10381 // built out of the extracted vector elements.
10382 if (!MemSclVT.isByteSized()) {
10383 unsigned NumBits = StVT.getSizeInBits();
10384 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
10385
10386 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
10387
10388 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10389 SDValue Elt = DAG.getExtractVectorElt(SL, RegSclVT, Value, Idx);
10390 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10391 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10392 unsigned ShiftIntoIdx =
10393 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10394 SDValue ShiftAmount =
10395 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10396 SDValue ShiftedElt =
10397 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10398 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10399 }
10400
10401 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10402 ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10403 ST->getAAInfo());
10404 }
10405
10406 // Store Stride in bytes
10407 unsigned Stride = MemSclVT.getSizeInBits() / 8;
10408 assert(Stride && "Zero stride!");
10409 // Extract each of the elements from the original vector and save them into
10410 // memory individually.
10412 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10413 SDValue Elt = DAG.getExtractVectorElt(SL, RegSclVT, Value, Idx);
10414
10415 SDValue Ptr =
10416 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10417
10418 // This scalar TruncStore may be illegal, but we legalize it later.
10419 SDValue Store = DAG.getTruncStore(
10420 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10421 MemSclVT, ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10422 ST->getAAInfo());
10423
10424 Stores.push_back(Store);
10425 }
10426
10427 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10428}
10429
10430std::pair<SDValue, SDValue>
10432 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10433 "unaligned indexed loads not implemented!");
10434 SDValue Chain = LD->getChain();
10435 SDValue Ptr = LD->getBasePtr();
10436 EVT VT = LD->getValueType(0);
10437 EVT LoadedVT = LD->getMemoryVT();
10438 SDLoc dl(LD);
10439 auto &MF = DAG.getMachineFunction();
10440
10441 if (VT.isFloatingPoint() || VT.isVector()) {
10442 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10443 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10444 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10445 LoadedVT.isVector()) {
10446 // Scalarize the load and let the individual components be handled.
10447 return scalarizeVectorLoad(LD, DAG);
10448 }
10449
10450 // Expand to a (misaligned) integer load of the same size,
10451 // then bitconvert to floating point or vector.
10452 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10453 LD->getMemOperand());
10454 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10455 if (LoadedVT != VT)
10456 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10457 ISD::ANY_EXTEND, dl, VT, Result);
10458
10459 return std::make_pair(Result, newLoad.getValue(1));
10460 }
10461
10462 // Copy the value to a (aligned) stack slot using (unaligned) integer
10463 // loads and stores, then do a (aligned) load from the stack slot.
10464 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10465 unsigned LoadedBytes = LoadedVT.getStoreSize();
10466 unsigned RegBytes = RegVT.getSizeInBits() / 8;
10467 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10468
10469 // Make sure the stack slot is also aligned for the register type.
10470 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10471 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10473 SDValue StackPtr = StackBase;
10474 unsigned Offset = 0;
10475
10476 EVT PtrVT = Ptr.getValueType();
10477 EVT StackPtrVT = StackPtr.getValueType();
10478
10479 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10480 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10481
10482 // Do all but one copies using the full register width.
10483 for (unsigned i = 1; i < NumRegs; i++) {
10484 // Load one integer register's worth from the original location.
10485 SDValue Load = DAG.getLoad(
10486 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10487 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10488 // Follow the load with a store to the stack slot. Remember the store.
10489 Stores.push_back(DAG.getStore(
10490 Load.getValue(1), dl, Load, StackPtr,
10491 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10492 // Increment the pointers.
10493 Offset += RegBytes;
10494
10495 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10496 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10497 }
10498
10499 // The last copy may be partial. Do an extending load.
10500 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10501 8 * (LoadedBytes - Offset));
10502 SDValue Load = DAG.getExtLoad(
10503 ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10504 LD->getPointerInfo().getWithOffset(Offset), MemVT, LD->getBaseAlign(),
10505 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10506 // Follow the load with a store to the stack slot. Remember the store.
10507 // On big-endian machines this requires a truncating store to ensure
10508 // that the bits end up in the right place.
10509 Stores.push_back(DAG.getTruncStore(
10510 Load.getValue(1), dl, Load, StackPtr,
10511 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10512
10513 // The order of the stores doesn't matter - say it with a TokenFactor.
10514 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10515
10516 // Finally, perform the original load only redirected to the stack slot.
10517 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10518 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10519 LoadedVT);
10520
10521 // Callers expect a MERGE_VALUES node.
10522 return std::make_pair(Load, TF);
10523 }
10524
10525 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10526 "Unaligned load of unsupported type.");
10527
10528 // Compute the new VT that is half the size of the old one. This is an
10529 // integer MVT.
10530 unsigned NumBits = LoadedVT.getSizeInBits();
10531 EVT NewLoadedVT;
10532 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10533 NumBits >>= 1;
10534
10535 Align Alignment = LD->getBaseAlign();
10536 unsigned IncrementSize = NumBits / 8;
10537 ISD::LoadExtType HiExtType = LD->getExtensionType();
10538
10539 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10540 if (HiExtType == ISD::NON_EXTLOAD)
10541 HiExtType = ISD::ZEXTLOAD;
10542
10543 // Load the value in two parts
10544 SDValue Lo, Hi;
10545 if (DAG.getDataLayout().isLittleEndian()) {
10546 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10547 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10548 LD->getAAInfo());
10549
10550 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10551 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10552 LD->getPointerInfo().getWithOffset(IncrementSize),
10553 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10554 LD->getAAInfo());
10555 } else {
10556 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10557 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10558 LD->getAAInfo());
10559
10560 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10561 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10562 LD->getPointerInfo().getWithOffset(IncrementSize),
10563 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10564 LD->getAAInfo());
10565 }
10566
10567 // aggregate the two parts
10568 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10569 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10570 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10571
10572 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10573 Hi.getValue(1));
10574
10575 return std::make_pair(Result, TF);
10576}
10577
10579 SelectionDAG &DAG) const {
10580 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10581 "unaligned indexed stores not implemented!");
10582 SDValue Chain = ST->getChain();
10583 SDValue Ptr = ST->getBasePtr();
10584 SDValue Val = ST->getValue();
10585 EVT VT = Val.getValueType();
10586 Align Alignment = ST->getBaseAlign();
10587 auto &MF = DAG.getMachineFunction();
10588 EVT StoreMemVT = ST->getMemoryVT();
10589
10590 SDLoc dl(ST);
10591 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10592 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10593 if (isTypeLegal(intVT)) {
10594 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10595 StoreMemVT.isVector()) {
10596 // Scalarize the store and let the individual components be handled.
10597 SDValue Result = scalarizeVectorStore(ST, DAG);
10598 return Result;
10599 }
10600 // Expand to a bitconvert of the value to the integer type of the
10601 // same size, then a (misaligned) int store.
10602 // FIXME: Does not handle truncating floating point stores!
10603 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10604 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10605 Alignment, ST->getMemOperand()->getFlags());
10606 return Result;
10607 }
10608 // Do a (aligned) store to a stack slot, then copy from the stack slot
10609 // to the final destination using (unaligned) integer loads and stores.
10610 MVT RegVT = getRegisterType(
10611 *DAG.getContext(),
10612 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10613 EVT PtrVT = Ptr.getValueType();
10614 unsigned StoredBytes = StoreMemVT.getStoreSize();
10615 unsigned RegBytes = RegVT.getSizeInBits() / 8;
10616 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10617
10618 // Make sure the stack slot is also aligned for the register type.
10619 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10620 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10621
10622 // Perform the original store, only redirected to the stack slot.
10623 SDValue Store = DAG.getTruncStore(
10624 Chain, dl, Val, StackPtr,
10625 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10626
10627 EVT StackPtrVT = StackPtr.getValueType();
10628
10629 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10630 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10632 unsigned Offset = 0;
10633
10634 // Do all but one copies using the full register width.
10635 for (unsigned i = 1; i < NumRegs; i++) {
10636 // Load one integer register's worth from the stack slot.
10637 SDValue Load = DAG.getLoad(
10638 RegVT, dl, Store, StackPtr,
10639 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10640 // Store it to the final location. Remember the store.
10641 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10642 ST->getPointerInfo().getWithOffset(Offset),
10643 ST->getBaseAlign(),
10644 ST->getMemOperand()->getFlags()));
10645 // Increment the pointers.
10646 Offset += RegBytes;
10647 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10648 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10649 }
10650
10651 // The last store may be partial. Do a truncating store. On big-endian
10652 // machines this requires an extending load from the stack slot to ensure
10653 // that the bits are in the right place.
10654 EVT LoadMemVT =
10655 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10656
10657 // Load from the stack slot.
10658 SDValue Load = DAG.getExtLoad(
10659 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10660 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10661
10662 Stores.push_back(DAG.getTruncStore(
10663 Load.getValue(1), dl, Load, Ptr,
10664 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10665 ST->getBaseAlign(), ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10666 // The order of the stores doesn't matter - say it with a TokenFactor.
10667 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10668 return Result;
10669 }
10670
10671 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10672 "Unaligned store of unknown type.");
10673 // Get the half-size VT
10674 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10675 unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10676 unsigned IncrementSize = NumBits / 8;
10677
10678 // Divide the stored value in two parts.
10679 SDValue ShiftAmount =
10680 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10681 SDValue Lo = Val;
10682 // If Val is a constant, replace the upper bits with 0. The SRL will constant
10683 // fold and not use the upper bits. A smaller constant may be easier to
10684 // materialize.
10685 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10686 Lo = DAG.getNode(
10687 ISD::AND, dl, VT, Lo,
10688 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10689 VT));
10690 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10691
10692 // Store the two parts
10693 SDValue Store1, Store2;
10694 Store1 = DAG.getTruncStore(Chain, dl,
10695 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10696 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10697 ST->getMemOperand()->getFlags());
10698
10699 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10700 Store2 = DAG.getTruncStore(
10701 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10702 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10703 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10704
10705 SDValue Result =
10706 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10707 return Result;
10708}
10709
10710SDValue
10712 const SDLoc &DL, EVT DataVT,
10713 SelectionDAG &DAG,
10714 bool IsCompressedMemory) const {
10716 EVT AddrVT = Addr.getValueType();
10717 EVT MaskVT = Mask.getValueType();
10718 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10719 "Incompatible types of Data and Mask");
10720 if (IsCompressedMemory) {
10721 // Incrementing the pointer according to number of '1's in the mask.
10722 if (DataVT.isScalableVector()) {
10723 EVT MaskExtVT = MaskVT.changeElementType(*DAG.getContext(), MVT::i32);
10724 SDValue MaskExt = DAG.getNode(ISD::ZERO_EXTEND, DL, MaskExtVT, Mask);
10725 Increment = DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i32, MaskExt);
10726 } else {
10727 EVT MaskIntVT =
10728 EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10729 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10730 if (MaskIntVT.getSizeInBits() < 32) {
10731 MaskInIntReg =
10732 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10733 MaskIntVT = MVT::i32;
10734 }
10735 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10736 }
10737 // Scale is an element size in bytes.
10738 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10739 AddrVT);
10740 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10741 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10742 } else
10743 Increment = DAG.getTypeSize(DL, AddrVT, DataVT.getStoreSize());
10744
10745 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10746}
10747
10749 EVT VecVT, const SDLoc &dl,
10750 ElementCount SubEC) {
10751 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10752 "Cannot index a scalable vector within a fixed-width vector");
10753
10754 unsigned NElts = VecVT.getVectorMinNumElements();
10755 unsigned NumSubElts = SubEC.getKnownMinValue();
10756 EVT IdxVT = Idx.getValueType();
10757
10758 if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10759 // If this is a constant index and we know the value plus the number of the
10760 // elements in the subvector minus one is less than the minimum number of
10761 // elements then it's safe to return Idx.
10762 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10763 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10764 return Idx;
10765 SDValue VS =
10766 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10767 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10768 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10769 DAG.getConstant(NumSubElts, dl, IdxVT));
10770 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10771 }
10772 if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10773 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10774 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10775 DAG.getConstant(Imm, dl, IdxVT));
10776 }
10777 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10778 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10779 DAG.getConstant(MaxIndex, dl, IdxVT));
10780}
10781
10782SDValue
10784 EVT VecVT, SDValue Index,
10785 const SDNodeFlags PtrArithFlags) const {
10787 DAG, VecPtr, VecVT,
10789 Index, PtrArithFlags);
10790}
10791
10792SDValue
10794 EVT VecVT, EVT SubVecVT, SDValue Index,
10795 const SDNodeFlags PtrArithFlags) const {
10796 SDLoc dl(Index);
10797 // Make sure the index type is big enough to compute in.
10798 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10799
10800 EVT EltVT = VecVT.getVectorElementType();
10801
10802 // Calculate the element offset and add it to the pointer.
10803 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10804 assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10805 "Converting bits to bytes lost precision");
10806 assert(SubVecVT.getVectorElementType() == EltVT &&
10807 "Sub-vector must be a vector with matching element type");
10808 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10809 SubVecVT.getVectorElementCount());
10810
10811 EVT IdxVT = Index.getValueType();
10812 if (SubVecVT.isScalableVector())
10813 Index =
10814 DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10815 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10816
10817 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10818 DAG.getConstant(EltSize, dl, IdxVT));
10819 return DAG.getMemBasePlusOffset(VecPtr, Index, dl, PtrArithFlags);
10820}
10821
10822//===----------------------------------------------------------------------===//
10823// Implementation of Emulated TLS Model
10824//===----------------------------------------------------------------------===//
10825
10827 SelectionDAG &DAG) const {
10828 // Access to address of TLS varialbe xyz is lowered to a function call:
10829 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10830 EVT PtrVT = getPointerTy(DAG.getDataLayout());
10831 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10832 SDLoc dl(GA);
10833
10834 ArgListTy Args;
10835 const GlobalValue *GV =
10837 SmallString<32> NameString("__emutls_v.");
10838 NameString += GV->getName();
10839 StringRef EmuTlsVarName(NameString);
10840 const GlobalVariable *EmuTlsVar =
10841 GV->getParent()->getNamedGlobal(EmuTlsVarName);
10842 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10843 Args.emplace_back(DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT), VoidPtrType);
10844
10845 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10846
10848 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10849 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10850 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10851
10852 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10853 // At last for X86 targets, maybe good for other targets too?
10855 MFI.setAdjustsStack(true); // Is this only for X86 target?
10856 MFI.setHasCalls(true);
10857
10858 assert((GA->getOffset() == 0) &&
10859 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10860 return CallResult.first;
10861}
10862
10864 SelectionDAG &DAG) const {
10865 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10866 if (!isCtlzFast())
10867 return SDValue();
10868 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10869 SDLoc dl(Op);
10870 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10871 EVT VT = Op.getOperand(0).getValueType();
10872 SDValue Zext = Op.getOperand(0);
10873 if (VT.bitsLT(MVT::i32)) {
10874 VT = MVT::i32;
10875 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10876 }
10877 unsigned Log2b = Log2_32(VT.getSizeInBits());
10878 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10879 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10880 DAG.getConstant(Log2b, dl, MVT::i32));
10881 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10882 }
10883 return SDValue();
10884}
10885
10887 SDValue Op0 = Node->getOperand(0);
10888 SDValue Op1 = Node->getOperand(1);
10889 EVT VT = Op0.getValueType();
10890 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10891 unsigned Opcode = Node->getOpcode();
10892 SDLoc DL(Node);
10893
10894 // If both sign bits are zero, flip UMIN/UMAX <-> SMIN/SMAX if legal.
10895 unsigned AltOpcode;
10896 switch (Opcode) {
10897 case ISD::SMIN:
10898 AltOpcode = ISD::UMIN;
10899 break;
10900 case ISD::SMAX:
10901 AltOpcode = ISD::UMAX;
10902 break;
10903 case ISD::UMIN:
10904 AltOpcode = ISD::SMIN;
10905 break;
10906 case ISD::UMAX:
10907 AltOpcode = ISD::SMAX;
10908 break;
10909 default:
10910 llvm_unreachable("Unknown MINMAX opcode");
10911 }
10912 if (isOperationLegal(AltOpcode, VT) && DAG.SignBitIsZero(Op0) &&
10913 DAG.SignBitIsZero(Op1))
10914 return DAG.getNode(AltOpcode, DL, VT, Op0, Op1);
10915
10916 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10917 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10919 Op0 = DAG.getFreeze(Op0);
10920 SDValue Zero = DAG.getConstant(0, DL, VT);
10921 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10922 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10923 }
10924
10925 // umin(x,y) -> sub(x,usubsat(x,y))
10926 // TODO: Missing freeze(Op0)?
10927 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10929 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10930 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10931 }
10932
10933 // umax(x,y) -> add(x,usubsat(y,x))
10934 // TODO: Missing freeze(Op0)?
10935 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10937 return DAG.getNode(ISD::ADD, DL, VT, Op0,
10938 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10939 }
10940
10941 // FIXME: Should really try to split the vector in case it's legal on a
10942 // subvector.
10944 return DAG.UnrollVectorOp(Node);
10945
10946 // Attempt to find an existing SETCC node that we can reuse.
10947 // TODO: Do we need a generic doesSETCCNodeExist?
10948 // TODO: Missing freeze(Op0)/freeze(Op1)?
10949 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10950 ISD::CondCode PrefCommuteCC,
10951 ISD::CondCode AltCommuteCC) {
10952 SDVTList BoolVTList = DAG.getVTList(BoolVT);
10953 for (ISD::CondCode CC : {PrefCC, AltCC}) {
10954 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10955 {Op0, Op1, DAG.getCondCode(CC)})) {
10956 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10957 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10958 }
10959 }
10960 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10961 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10962 {Op0, Op1, DAG.getCondCode(CC)})) {
10963 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10964 return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10965 }
10966 }
10967 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10968 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10969 };
10970
10971 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10972 // -> Y = (A < B) ? B : A
10973 // -> Y = (A >= B) ? A : B
10974 // -> Y = (A <= B) ? B : A
10975 switch (Opcode) {
10976 case ISD::SMAX:
10977 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10978 case ISD::SMIN:
10979 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10980 case ISD::UMAX:
10981 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10982 case ISD::UMIN:
10983 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10984 }
10985
10986 llvm_unreachable("How did we get here?");
10987}
10988
10990 unsigned Opcode = Node->getOpcode();
10991 SDValue LHS = Node->getOperand(0);
10992 SDValue RHS = Node->getOperand(1);
10993 EVT VT = LHS.getValueType();
10994 SDLoc dl(Node);
10995
10996 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10997 assert(VT.isInteger() && "Expected operands to be integers");
10998
10999 // usub.sat(a, b) -> umax(a, b) - b
11000 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
11001 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
11002 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
11003 }
11004
11005 // usub.sat(a, 1) -> sub(a, zext(a != 0))
11006 if (Opcode == ISD::USUBSAT && isOneOrOneSplat(RHS)) {
11007 LHS = DAG.getFreeze(LHS);
11008 SDValue Zero = DAG.getConstant(0, dl, VT);
11009 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11010 SDValue IsNonZero = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETNE);
11011 SDValue Subtrahend = DAG.getBoolExtOrTrunc(IsNonZero, dl, VT, BoolVT);
11012 Subtrahend =
11013 DAG.getNode(ISD::AND, dl, VT, Subtrahend, DAG.getConstant(1, dl, VT));
11014 return DAG.getNode(ISD::SUB, dl, VT, LHS, Subtrahend);
11015 }
11016
11017 // uadd.sat(a, b) -> umin(a, ~b) + b
11018 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
11019 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
11020 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
11021 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
11022 }
11023
11024 unsigned OverflowOp;
11025 switch (Opcode) {
11026 case ISD::SADDSAT:
11027 OverflowOp = ISD::SADDO;
11028 break;
11029 case ISD::UADDSAT:
11030 OverflowOp = ISD::UADDO;
11031 break;
11032 case ISD::SSUBSAT:
11033 OverflowOp = ISD::SSUBO;
11034 break;
11035 case ISD::USUBSAT:
11036 OverflowOp = ISD::USUBO;
11037 break;
11038 default:
11039 llvm_unreachable("Expected method to receive signed or unsigned saturation "
11040 "addition or subtraction node.");
11041 }
11042
11043 // FIXME: Should really try to split the vector in case it's legal on a
11044 // subvector.
11046 return DAG.UnrollVectorOp(Node);
11047
11048 unsigned BitWidth = LHS.getScalarValueSizeInBits();
11049 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11050 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11051 SDValue SumDiff = Result.getValue(0);
11052 SDValue Overflow = Result.getValue(1);
11053 SDValue Zero = DAG.getConstant(0, dl, VT);
11054 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
11055
11056 if (Opcode == ISD::UADDSAT) {
11058 // (LHS + RHS) | OverflowMask
11059 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
11060 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
11061 }
11062 // Overflow ? 0xffff.... : (LHS + RHS)
11063 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
11064 }
11065
11066 if (Opcode == ISD::USUBSAT) {
11068 // (LHS - RHS) & ~OverflowMask
11069 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
11070 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
11071 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
11072 }
11073 // Overflow ? 0 : (LHS - RHS)
11074 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
11075 }
11076
11077 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
11080
11081 KnownBits KnownLHS = DAG.computeKnownBits(LHS);
11082 KnownBits KnownRHS = DAG.computeKnownBits(RHS);
11083
11084 // If either of the operand signs are known, then they are guaranteed to
11085 // only saturate in one direction. If non-negative they will saturate
11086 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
11087 //
11088 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
11089 // sign of 'y' has to be flipped.
11090
11091 bool LHSIsNonNegative = KnownLHS.isNonNegative();
11092 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
11093 : KnownRHS.isNegative();
11094 if (LHSIsNonNegative || RHSIsNonNegative) {
11095 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11096 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
11097 }
11098
11099 bool LHSIsNegative = KnownLHS.isNegative();
11100 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
11101 : KnownRHS.isNonNegative();
11102 if (LHSIsNegative || RHSIsNegative) {
11103 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
11104 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
11105 }
11106 }
11107
11108 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
11110 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
11111 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
11112 DAG.getConstant(BitWidth - 1, dl, VT));
11113 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
11114 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
11115}
11116
11118 unsigned Opcode = Node->getOpcode();
11119 SDValue LHS = Node->getOperand(0);
11120 SDValue RHS = Node->getOperand(1);
11121 EVT VT = LHS.getValueType();
11122 EVT ResVT = Node->getValueType(0);
11123 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11124 SDLoc dl(Node);
11125
11126 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
11127 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
11128 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
11129 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
11130
11131 // We can't perform arithmetic on i1 values. Extending them would
11132 // probably result in worse codegen, so let's just use two selects instead.
11133 // Some targets are also just better off using selects rather than subtraction
11134 // because one of the conditions can be merged with one of the selects.
11135 // And finally, if we don't know the contents of high bits of a boolean value
11136 // we can't perform any arithmetic either.
11138 BoolVT.getScalarSizeInBits() == 1 ||
11140 SDValue SelectZeroOrOne =
11141 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
11142 DAG.getConstant(0, dl, ResVT));
11143 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
11144 SelectZeroOrOne);
11145 }
11146
11148 std::swap(IsGT, IsLT);
11149 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
11150 ResVT);
11151}
11152
11154 unsigned Opcode = Node->getOpcode();
11155 bool IsSigned = Opcode == ISD::SSHLSAT;
11156 SDValue LHS = Node->getOperand(0);
11157 SDValue RHS = Node->getOperand(1);
11158 EVT VT = LHS.getValueType();
11159 SDLoc dl(Node);
11160
11161 assert((Node->getOpcode() == ISD::SSHLSAT ||
11162 Node->getOpcode() == ISD::USHLSAT) &&
11163 "Expected a SHLSAT opcode");
11164 assert(VT.isInteger() && "Expected operands to be integers");
11165
11167 return DAG.UnrollVectorOp(Node);
11168
11169 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
11170
11171 unsigned BW = VT.getScalarSizeInBits();
11172 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11173 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
11174 SDValue Orig =
11175 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
11176
11177 SDValue SatVal;
11178 if (IsSigned) {
11179 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
11180 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
11181 SDValue Cond =
11182 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
11183 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
11184 } else {
11185 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
11186 }
11187 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
11188 return DAG.getSelect(dl, VT, Cond, SatVal, Result);
11189}
11190
11192 bool Signed, SDValue &Lo, SDValue &Hi,
11193 SDValue LHS, SDValue RHS,
11194 SDValue HiLHS, SDValue HiRHS) const {
11195 EVT VT = LHS.getValueType();
11196 assert(RHS.getValueType() == VT && "Mismatching operand types");
11197
11198 assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS));
11199 assert((!Signed || !HiLHS) &&
11200 "Signed flag should only be set when HiLHS and RiRHS are null");
11201
11202 // We'll expand the multiplication by brute force because we have no other
11203 // options. This is a trivially-generalized version of the code from
11204 // Hacker's Delight (itself derived from Knuth's Algorithm M from section
11205 // 4.3.1). If Signed is set, we can use arithmetic right shifts to propagate
11206 // sign bits while calculating the Hi half.
11207 unsigned Bits = VT.getSizeInBits();
11208 unsigned HalfBits = Bits / 2;
11209 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
11210 SDValue LL = DAG.getNode(ISD::AND, dl, VT, LHS, Mask);
11211 SDValue RL = DAG.getNode(ISD::AND, dl, VT, RHS, Mask);
11212
11213 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LL, RL);
11214 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
11215
11216 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
11217 // This is always an unsigned shift.
11218 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
11219
11220 unsigned ShiftOpc = Signed ? ISD::SRA : ISD::SRL;
11221 SDValue LH = DAG.getNode(ShiftOpc, dl, VT, LHS, Shift);
11222 SDValue RH = DAG.getNode(ShiftOpc, dl, VT, RHS, Shift);
11223
11224 SDValue U =
11225 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LH, RL), TH);
11226 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
11227 SDValue UH = DAG.getNode(ShiftOpc, dl, VT, U, Shift);
11228
11229 SDValue V =
11230 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LL, RH), UL);
11231 SDValue VH = DAG.getNode(ShiftOpc, dl, VT, V, Shift);
11232
11233 Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
11234 DAG.getNode(ISD::SHL, dl, VT, V, Shift));
11235
11236 Hi = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LH, RH),
11237 DAG.getNode(ISD::ADD, dl, VT, UH, VH));
11238
11239 // If HiLHS and HiRHS are set, multiply them by the opposite low part and add
11240 // the products to Hi.
11241 if (HiLHS) {
11242 Hi = DAG.getNode(ISD::ADD, dl, VT, Hi,
11243 DAG.getNode(ISD::ADD, dl, VT,
11244 DAG.getNode(ISD::MUL, dl, VT, HiRHS, LHS),
11245 DAG.getNode(ISD::MUL, dl, VT, RHS, HiLHS)));
11246 }
11247}
11248
11250 bool Signed, const SDValue LHS,
11251 const SDValue RHS, SDValue &Lo,
11252 SDValue &Hi) const {
11253 EVT VT = LHS.getValueType();
11254 assert(RHS.getValueType() == VT && "Mismatching operand types");
11255 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
11256 // We can fall back to a libcall with an illegal type for the MUL if we
11257 // have a libcall big enough.
11258 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
11259 if (WideVT == MVT::i16)
11260 LC = RTLIB::MUL_I16;
11261 else if (WideVT == MVT::i32)
11262 LC = RTLIB::MUL_I32;
11263 else if (WideVT == MVT::i64)
11264 LC = RTLIB::MUL_I64;
11265 else if (WideVT == MVT::i128)
11266 LC = RTLIB::MUL_I128;
11267
11268 RTLIB::LibcallImpl LibcallImpl = getLibcallImpl(LC);
11269 if (LibcallImpl == RTLIB::Unsupported) {
11270 forceExpandMultiply(DAG, dl, Signed, Lo, Hi, LHS, RHS);
11271 return;
11272 }
11273
11274 SDValue HiLHS, HiRHS;
11275 if (Signed) {
11276 // The high part is obtained by SRA'ing all but one of the bits of low
11277 // part.
11278 unsigned LoSize = VT.getFixedSizeInBits();
11279 SDValue Shift = DAG.getShiftAmountConstant(LoSize - 1, VT, dl);
11280 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, Shift);
11281 HiRHS = DAG.getNode(ISD::SRA, dl, VT, RHS, Shift);
11282 } else {
11283 HiLHS = DAG.getConstant(0, dl, VT);
11284 HiRHS = DAG.getConstant(0, dl, VT);
11285 }
11286
11287 // Attempt a libcall.
11288 SDValue Ret;
11290 CallOptions.setIsSigned(Signed);
11291 CallOptions.setIsPostTypeLegalization(true);
11293 // Halves of WideVT are packed into registers in different order
11294 // depending on platform endianness. This is usually handled by
11295 // the C calling convention, but we can't defer to it in
11296 // the legalizer.
11297 SDValue Args[] = {LHS, HiLHS, RHS, HiRHS};
11298 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11299 } else {
11300 SDValue Args[] = {HiLHS, LHS, HiRHS, RHS};
11301 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11302 }
11304 "Ret value is a collection of constituent nodes holding result.");
11305 if (DAG.getDataLayout().isLittleEndian()) {
11306 // Same as above.
11307 Lo = Ret.getOperand(0);
11308 Hi = Ret.getOperand(1);
11309 } else {
11310 Lo = Ret.getOperand(1);
11311 Hi = Ret.getOperand(0);
11312 }
11313}
11314
11315SDValue
11317 assert((Node->getOpcode() == ISD::SMULFIX ||
11318 Node->getOpcode() == ISD::UMULFIX ||
11319 Node->getOpcode() == ISD::SMULFIXSAT ||
11320 Node->getOpcode() == ISD::UMULFIXSAT) &&
11321 "Expected a fixed point multiplication opcode");
11322
11323 SDLoc dl(Node);
11324 SDValue LHS = Node->getOperand(0);
11325 SDValue RHS = Node->getOperand(1);
11326 EVT VT = LHS.getValueType();
11327 unsigned Scale = Node->getConstantOperandVal(2);
11328 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
11329 Node->getOpcode() == ISD::UMULFIXSAT);
11330 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
11331 Node->getOpcode() == ISD::SMULFIXSAT);
11332 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11333 unsigned VTSize = VT.getScalarSizeInBits();
11334
11335 if (!Scale) {
11336 // [us]mul.fix(a, b, 0) -> mul(a, b)
11337 if (!Saturating) {
11339 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11340 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
11341 SDValue Result =
11342 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11343 SDValue Product = Result.getValue(0);
11344 SDValue Overflow = Result.getValue(1);
11345 SDValue Zero = DAG.getConstant(0, dl, VT);
11346
11347 APInt MinVal = APInt::getSignedMinValue(VTSize);
11348 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
11349 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
11350 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11351 // Xor the inputs, if resulting sign bit is 0 the product will be
11352 // positive, else negative.
11353 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
11354 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
11355 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
11356 return DAG.getSelect(dl, VT, Overflow, Result, Product);
11357 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
11358 SDValue Result =
11359 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11360 SDValue Product = Result.getValue(0);
11361 SDValue Overflow = Result.getValue(1);
11362
11363 APInt MaxVal = APInt::getMaxValue(VTSize);
11364 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11365 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
11366 }
11367 }
11368
11369 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
11370 "Expected scale to be less than the number of bits if signed or at "
11371 "most the number of bits if unsigned.");
11372 assert(LHS.getValueType() == RHS.getValueType() &&
11373 "Expected both operands to be the same type");
11374
11375 // Get the upper and lower bits of the result.
11376 SDValue Lo, Hi;
11377 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
11378 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
11379 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
11380 if (VT.isVector())
11381 WideVT =
11383 if (isOperationLegalOrCustom(LoHiOp, VT)) {
11384 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
11385 Lo = Result.getValue(0);
11386 Hi = Result.getValue(1);
11387 } else if (isOperationLegalOrCustom(HiOp, VT)) {
11388 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11389 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
11390 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
11391 // Try for a multiplication using a wider type.
11392 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
11393 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
11394 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
11395 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
11396 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
11397 SDValue Shifted =
11398 DAG.getNode(ISD::SRA, dl, WideVT, Res,
11399 DAG.getShiftAmountConstant(VTSize, WideVT, dl));
11400 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
11401 } else if (VT.isVector()) {
11402 return SDValue();
11403 } else {
11404 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
11405 }
11406
11407 if (Scale == VTSize)
11408 // Result is just the top half since we'd be shifting by the width of the
11409 // operand. Overflow impossible so this works for both UMULFIX and
11410 // UMULFIXSAT.
11411 return Hi;
11412
11413 // The result will need to be shifted right by the scale since both operands
11414 // are scaled. The result is given to us in 2 halves, so we only want part of
11415 // both in the result.
11416 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
11417 DAG.getShiftAmountConstant(Scale, VT, dl));
11418 if (!Saturating)
11419 return Result;
11420
11421 if (!Signed) {
11422 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11423 // widened multiplication) aren't all zeroes.
11424
11425 // Saturate to max if ((Hi >> Scale) != 0),
11426 // which is the same as if (Hi > ((1 << Scale) - 1))
11427 APInt MaxVal = APInt::getMaxValue(VTSize);
11428 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11429 dl, VT);
11430 Result = DAG.getSelectCC(dl, Hi, LowMask,
11431 DAG.getConstant(MaxVal, dl, VT), Result,
11432 ISD::SETUGT);
11433
11434 return Result;
11435 }
11436
11437 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11438 // widened multiplication) aren't all ones or all zeroes.
11439
11440 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11441 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11442
11443 if (Scale == 0) {
11444 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11445 DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11446 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11447 // Saturated to SatMin if wide product is negative, and SatMax if wide
11448 // product is positive ...
11449 SDValue Zero = DAG.getConstant(0, dl, VT);
11450 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11451 ISD::SETLT);
11452 // ... but only if we overflowed.
11453 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11454 }
11455
11456 // We handled Scale==0 above so all the bits to examine is in Hi.
11457
11458 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11459 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11460 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11461 dl, VT);
11462 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11463 // Saturate to min if (Hi >> (Scale - 1)) < -1),
11464 // which is the same as if (HI < (-1 << (Scale - 1))
11465 SDValue HighMask =
11466 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11467 dl, VT);
11468 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11469 return Result;
11470}
11471
11472SDValue
11474 SDValue LHS, SDValue RHS,
11475 unsigned Scale, SelectionDAG &DAG) const {
11476 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11477 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11478 "Expected a fixed point division opcode");
11479
11480 EVT VT = LHS.getValueType();
11481 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11482 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11483 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11484
11485 // If there is enough room in the type to upscale the LHS or downscale the
11486 // RHS before the division, we can perform it in this type without having to
11487 // resize. For signed operations, the LHS headroom is the number of
11488 // redundant sign bits, and for unsigned ones it is the number of zeroes.
11489 // The headroom for the RHS is the number of trailing zeroes.
11490 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11492 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11493
11494 // For signed saturating operations, we need to be able to detect true integer
11495 // division overflow; that is, when you have MIN / -EPS. However, this
11496 // is undefined behavior and if we emit divisions that could take such
11497 // values it may cause undesired behavior (arithmetic exceptions on x86, for
11498 // example).
11499 // Avoid this by requiring an extra bit so that we never get this case.
11500 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11501 // signed saturating division, we need to emit a whopping 32-bit division.
11502 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11503 return SDValue();
11504
11505 unsigned LHSShift = std::min(LHSLead, Scale);
11506 unsigned RHSShift = Scale - LHSShift;
11507
11508 // At this point, we know that if we shift the LHS up by LHSShift and the
11509 // RHS down by RHSShift, we can emit a regular division with a final scaling
11510 // factor of Scale.
11511
11512 if (LHSShift)
11513 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11514 DAG.getShiftAmountConstant(LHSShift, VT, dl));
11515 if (RHSShift)
11516 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11517 DAG.getShiftAmountConstant(RHSShift, VT, dl));
11518
11519 SDValue Quot;
11520 if (Signed) {
11521 // For signed operations, if the resulting quotient is negative and the
11522 // remainder is nonzero, subtract 1 from the quotient to round towards
11523 // negative infinity.
11524 SDValue Rem;
11525 // FIXME: Ideally we would always produce an SDIVREM here, but if the
11526 // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11527 // we couldn't just form a libcall, but the type legalizer doesn't do it.
11528 if (isTypeLegal(VT) &&
11530 Quot = DAG.getNode(ISD::SDIVREM, dl,
11531 DAG.getVTList(VT, VT),
11532 LHS, RHS);
11533 Rem = Quot.getValue(1);
11534 Quot = Quot.getValue(0);
11535 } else {
11536 Quot = DAG.getNode(ISD::SDIV, dl, VT,
11537 LHS, RHS);
11538 Rem = DAG.getNode(ISD::SREM, dl, VT,
11539 LHS, RHS);
11540 }
11541 SDValue Zero = DAG.getConstant(0, dl, VT);
11542 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11543 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11544 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11545 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11546 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11547 DAG.getConstant(1, dl, VT));
11548 Quot = DAG.getSelect(dl, VT,
11549 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11550 Sub1, Quot);
11551 } else
11552 Quot = DAG.getNode(ISD::UDIV, dl, VT,
11553 LHS, RHS);
11554
11555 return Quot;
11556}
11557
11559 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11560 SDLoc dl(Node);
11561 SDValue LHS = Node->getOperand(0);
11562 SDValue RHS = Node->getOperand(1);
11563 bool IsAdd = Node->getOpcode() == ISD::UADDO;
11564
11565 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11566 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11567 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11568 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11569 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11570 { LHS, RHS, CarryIn });
11571 Result = SDValue(NodeCarry.getNode(), 0);
11572 Overflow = SDValue(NodeCarry.getNode(), 1);
11573 return;
11574 }
11575
11576 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11577 LHS.getValueType(), LHS, RHS);
11578
11579 EVT ResultType = Node->getValueType(1);
11580 EVT SetCCType = getSetCCResultType(
11581 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11582 SDValue SetCC;
11583 if (IsAdd && isOneConstant(RHS)) {
11584 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11585 // the live range of X. We assume comparing with 0 is cheap.
11586 // The general case (X + C) < C is not necessarily beneficial. Although we
11587 // reduce the live range of X, we may introduce the materialization of
11588 // constant C.
11589 SetCC =
11590 DAG.getSetCC(dl, SetCCType, Result,
11591 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11592 } else if (IsAdd && isAllOnesConstant(RHS)) {
11593 // Special case: uaddo X, -1 overflows if X != 0.
11594 SetCC =
11595 DAG.getSetCC(dl, SetCCType, LHS,
11596 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11597 } else {
11598 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11599 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11600 }
11601 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11602}
11603
11605 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11606 SDLoc dl(Node);
11607 SDValue LHS = Node->getOperand(0);
11608 SDValue RHS = Node->getOperand(1);
11609 bool IsAdd = Node->getOpcode() == ISD::SADDO;
11610
11611 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11612 LHS.getValueType(), LHS, RHS);
11613
11614 EVT ResultType = Node->getValueType(1);
11615 EVT OType = getSetCCResultType(
11616 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11617
11618 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11619 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11620 if (isOperationLegal(OpcSat, LHS.getValueType())) {
11621 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11622 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11623 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11624 return;
11625 }
11626
11627 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11628
11629 // For an addition, the result should be less than one of the operands (LHS)
11630 // if and only if the other operand (RHS) is negative, otherwise there will
11631 // be overflow.
11632 // For a subtraction, the result should be less than one of the operands
11633 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11634 // otherwise there will be overflow.
11635 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11636 SDValue ConditionRHS =
11637 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11638
11639 Overflow = DAG.getBoolExtOrTrunc(
11640 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11641 ResultType, ResultType);
11642}
11643
11645 SDValue &Overflow, SelectionDAG &DAG) const {
11646 SDLoc dl(Node);
11647 EVT VT = Node->getValueType(0);
11648 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11649 SDValue LHS = Node->getOperand(0);
11650 SDValue RHS = Node->getOperand(1);
11651 bool isSigned = Node->getOpcode() == ISD::SMULO;
11652
11653 // For power-of-two multiplications we can use a simpler shift expansion.
11654 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11655 const APInt &C = RHSC->getAPIntValue();
11656 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11657 if (C.isPowerOf2()) {
11658 // smulo(x, signed_min) is same as umulo(x, signed_min).
11659 bool UseArithShift = isSigned && !C.isMinSignedValue();
11660 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11661 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11662 Overflow = DAG.getSetCC(dl, SetCCVT,
11663 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11664 dl, VT, Result, ShiftAmt),
11665 LHS, ISD::SETNE);
11666 return true;
11667 }
11668 }
11669
11670 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11671 if (VT.isVector())
11672 WideVT =
11674
11675 SDValue BottomHalf;
11676 SDValue TopHalf;
11677 static const unsigned Ops[2][3] =
11680 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11681 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11682 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11683 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11684 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11685 RHS);
11686 TopHalf = BottomHalf.getValue(1);
11687 } else if (isTypeLegal(WideVT)) {
11688 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11689 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11690 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11691 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11692 SDValue ShiftAmt =
11693 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11694 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11695 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11696 } else {
11697 if (VT.isVector())
11698 return false;
11699
11700 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11701 }
11702
11703 Result = BottomHalf;
11704 if (isSigned) {
11705 SDValue ShiftAmt = DAG.getShiftAmountConstant(
11706 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11707 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11708 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11709 } else {
11710 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11711 DAG.getConstant(0, dl, VT), ISD::SETNE);
11712 }
11713
11714 // Truncate the result if SetCC returns a larger type than needed.
11715 EVT RType = Node->getValueType(1);
11716 if (RType.bitsLT(Overflow.getValueType()))
11717 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11718
11719 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11720 "Unexpected result type for S/UMULO legalization");
11721 return true;
11722}
11723
11725 SDLoc dl(Node);
11726 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11727 SDValue Op = Node->getOperand(0);
11728 EVT VT = Op.getValueType();
11729
11730 // Try to use a shuffle reduction for power of two vectors.
11731 if (VT.isPow2VectorType()) {
11733 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11734 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11735 break;
11736
11737 SDValue Lo, Hi;
11738 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11739 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11740 VT = HalfVT;
11741
11742 // Stop if splitting is enough to make the reduction legal.
11743 if (isOperationLegalOrCustom(Node->getOpcode(), HalfVT))
11744 return DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Op,
11745 Node->getFlags());
11746 }
11747 }
11748
11749 if (VT.isScalableVector())
11751 "Expanding reductions for scalable vectors is undefined.");
11752
11753 EVT EltVT = VT.getVectorElementType();
11754 unsigned NumElts = VT.getVectorNumElements();
11755
11757 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11758
11759 SDValue Res = Ops[0];
11760 for (unsigned i = 1; i < NumElts; i++)
11761 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11762
11763 // Result type may be wider than element type.
11764 if (EltVT != Node->getValueType(0))
11765 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11766 return Res;
11767}
11768
11770 SDLoc dl(Node);
11771 SDValue AccOp = Node->getOperand(0);
11772 SDValue VecOp = Node->getOperand(1);
11773 SDNodeFlags Flags = Node->getFlags();
11774
11775 EVT VT = VecOp.getValueType();
11776 EVT EltVT = VT.getVectorElementType();
11777
11778 if (VT.isScalableVector())
11780 "Expanding reductions for scalable vectors is undefined.");
11781
11782 unsigned NumElts = VT.getVectorNumElements();
11783
11785 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11786
11787 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11788
11789 SDValue Res = AccOp;
11790 for (unsigned i = 0; i < NumElts; i++)
11791 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11792
11793 return Res;
11794}
11795
11797 SelectionDAG &DAG) const {
11798 EVT VT = Node->getValueType(0);
11799 SDLoc dl(Node);
11800 bool isSigned = Node->getOpcode() == ISD::SREM;
11801 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11802 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11803 SDValue Dividend = Node->getOperand(0);
11804 SDValue Divisor = Node->getOperand(1);
11805 if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11806 SDVTList VTs = DAG.getVTList(VT, VT);
11807 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11808 return true;
11809 }
11810 if (isOperationLegalOrCustom(DivOpc, VT)) {
11811 // X % Y -> X-X/Y*Y
11812 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11813 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11814 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11815 return true;
11816 }
11817 return false;
11818}
11819
11821 SelectionDAG &DAG) const {
11822 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11823 SDLoc dl(SDValue(Node, 0));
11824 SDValue Src = Node->getOperand(0);
11825
11826 // DstVT is the result type, while SatVT is the size to which we saturate
11827 EVT SrcVT = Src.getValueType();
11828 EVT DstVT = Node->getValueType(0);
11829
11830 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11831 unsigned SatWidth = SatVT.getScalarSizeInBits();
11832 unsigned DstWidth = DstVT.getScalarSizeInBits();
11833 assert(SatWidth <= DstWidth &&
11834 "Expected saturation width smaller than result width");
11835
11836 // Determine minimum and maximum integer values and their corresponding
11837 // floating-point values.
11838 APInt MinInt, MaxInt;
11839 if (IsSigned) {
11840 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11841 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11842 } else {
11843 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11844 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11845 }
11846
11847 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11848 // libcall emission cannot handle this. Large result types will fail.
11849 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11850 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11851 SrcVT = Src.getValueType();
11852 }
11853
11854 const fltSemantics &Sem = SrcVT.getFltSemantics();
11855 APFloat MinFloat(Sem);
11856 APFloat MaxFloat(Sem);
11857
11858 APFloat::opStatus MinStatus =
11859 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11860 APFloat::opStatus MaxStatus =
11861 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11862 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11863 !(MaxStatus & APFloat::opStatus::opInexact);
11864
11865 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11866 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11867
11868 // If the integer bounds are exactly representable as floats and min/max are
11869 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11870 // of comparisons and selects.
11871 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11873 if (AreExactFloatBounds && MinMaxLegal) {
11874 SDValue Clamped = Src;
11875
11876 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11877 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11878 // Clamp by MaxFloat from above. NaN cannot occur.
11879 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11880 // Convert clamped value to integer.
11881 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11882 dl, DstVT, Clamped);
11883
11884 // In the unsigned case we're done, because we mapped NaN to MinFloat,
11885 // which will cast to zero.
11886 if (!IsSigned)
11887 return FpToInt;
11888
11889 // Otherwise, select 0 if Src is NaN.
11890 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11891 EVT SetCCVT =
11892 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11893 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11894 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11895 }
11896
11897 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11898 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11899
11900 // Result of direct conversion. The assumption here is that the operation is
11901 // non-trapping and it's fine to apply it to an out-of-range value if we
11902 // select it away later.
11903 SDValue FpToInt =
11904 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11905
11906 SDValue Select = FpToInt;
11907
11908 EVT SetCCVT =
11909 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11910
11911 // If Src ULT MinFloat, select MinInt. In particular, this also selects
11912 // MinInt if Src is NaN.
11913 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11914 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11915 // If Src OGT MaxFloat, select MaxInt.
11916 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11917 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11918
11919 // In the unsigned case we are done, because we mapped NaN to MinInt, which
11920 // is already zero.
11921 if (!IsSigned)
11922 return Select;
11923
11924 // Otherwise, select 0 if Src is NaN.
11925 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11926 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11927 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11928}
11929
11931 const SDLoc &dl,
11932 SelectionDAG &DAG) const {
11933 EVT OperandVT = Op.getValueType();
11934 if (OperandVT.getScalarType() == ResultVT.getScalarType())
11935 return Op;
11936 EVT ResultIntVT = ResultVT.changeTypeToInteger();
11937 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11938 // can induce double-rounding which may alter the results. We can
11939 // correct for this using a trick explained in: Boldo, Sylvie, and
11940 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11941 // World Congress. 2005.
11942 SDValue Narrow = DAG.getFPExtendOrRound(Op, dl, ResultVT);
11943 SDValue NarrowAsWide = DAG.getFPExtendOrRound(Narrow, dl, OperandVT);
11944
11945 // We can keep the narrow value as-is if narrowing was exact (no
11946 // rounding error), the wide value was NaN (the narrow value is also
11947 // NaN and should be preserved) or if we rounded to the odd value.
11948 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, Narrow);
11949 SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11950 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11951 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11952 EVT ResultIntVTCCVT = getSetCCResultType(
11953 DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11954 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11955 // The result is already odd so we don't need to do anything.
11956 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11957
11958 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11959 Op.getValueType());
11960 // We keep results which are exact, odd or NaN.
11961 SDValue KeepNarrow =
11962 DAG.getSetCC(dl, WideSetCCVT, Op, NarrowAsWide, ISD::SETUEQ);
11963 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11964 // We morally performed a round-down if AbsNarrow is smaller than
11965 // AbsWide.
11966 SDValue AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11967 SDValue AbsNarrowAsWide = DAG.getNode(ISD::FABS, dl, OperandVT, NarrowAsWide);
11968 SDValue NarrowIsRd =
11969 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11970 // If the narrow value is odd or exact, pick it.
11971 // Otherwise, narrow is even and corresponds to either the rounded-up
11972 // or rounded-down value. If narrow is the rounded-down value, we want
11973 // the rounded-up value as it will be odd.
11974 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11975 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11976 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11977 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11978}
11979
11981 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11982 SDValue Op = Node->getOperand(0);
11983 EVT VT = Node->getValueType(0);
11984 SDLoc dl(Node);
11985 if (VT.getScalarType() == MVT::bf16) {
11986 if (Node->getConstantOperandVal(1) == 1) {
11987 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11988 }
11989 EVT OperandVT = Op.getValueType();
11990 SDValue IsNaN = DAG.getSetCC(
11991 dl,
11992 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11993 Op, Op, ISD::SETUO);
11994
11995 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11996 // can induce double-rounding which may alter the results. We can
11997 // correct for this using a trick explained in: Boldo, Sylvie, and
11998 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11999 // World Congress. 2005.
12000 EVT F32 = VT.changeElementType(*DAG.getContext(), MVT::f32);
12001 EVT I32 = F32.changeTypeToInteger();
12002 Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
12003 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
12004
12005 // Conversions should set NaN's quiet bit. This also prevents NaNs from
12006 // turning into infinities.
12007 SDValue NaN =
12008 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
12009
12010 // Factor in the contribution of the low 16 bits.
12011 SDValue One = DAG.getConstant(1, dl, I32);
12012 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
12013 DAG.getShiftAmountConstant(16, I32, dl));
12014 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
12015 SDValue RoundingBias =
12016 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
12017 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
12018
12019 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
12020 // 0x80000000.
12021 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
12022
12023 // Now that we have rounded, shift the bits into position.
12024 Op = DAG.getNode(ISD::SRL, dl, I32, Op,
12025 DAG.getShiftAmountConstant(16, I32, dl));
12026 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
12027 EVT I16 = I32.changeElementType(*DAG.getContext(), MVT::i16);
12028 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
12029 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
12030 }
12031 return SDValue();
12032}
12033
12035 SelectionDAG &DAG) const {
12036 assert((Node->getOpcode() == ISD::VECTOR_SPLICE_LEFT ||
12037 Node->getOpcode() == ISD::VECTOR_SPLICE_RIGHT) &&
12038 "Unexpected opcode!");
12039 assert(Node->getValueType(0).isScalableVector() &&
12040 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
12041
12042 EVT VT = Node->getValueType(0);
12043 SDValue V1 = Node->getOperand(0);
12044 SDValue V2 = Node->getOperand(1);
12045 uint64_t Imm = Node->getConstantOperandVal(2);
12046 SDLoc DL(Node);
12047
12048 // Expand through memory thusly:
12049 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
12050 // Store V1, Ptr
12051 // Store V2, Ptr + sizeof(V1)
12052 // If (Imm < 0)
12053 // TrailingElts = -Imm
12054 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
12055 // else
12056 // Ptr = Ptr + (Imm * sizeof(VT.Elt))
12057 // Res = Load Ptr
12058
12059 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
12060
12062 VT.getVectorElementCount() * 2);
12063 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
12064 EVT PtrVT = StackPtr.getValueType();
12065 auto &MF = DAG.getMachineFunction();
12066 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
12067 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
12068
12069 // Store the lo part of CONCAT_VECTORS(V1, V2)
12070 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
12071 // Store the hi part of CONCAT_VECTORS(V1, V2)
12072 SDValue VTBytes = DAG.getTypeSize(DL, PtrVT, VT.getStoreSize());
12073 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, VTBytes);
12074 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
12075
12076 if (Node->getOpcode() == ISD::VECTOR_SPLICE_LEFT) {
12077 // Load back the required element. getVectorElementPointer takes care of
12078 // clamping the index if it's out-of-bounds.
12079 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
12080 // Load the spliced result
12081 return DAG.getLoad(VT, DL, StoreV2, StackPtr,
12083 }
12084
12085 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
12086 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
12087 SDValue TrailingBytes = DAG.getConstant(Imm * EltByteSize, DL, PtrVT);
12088
12089 if (Imm > VT.getVectorMinNumElements())
12090 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VTBytes);
12091
12092 // Calculate the start address of the spliced result.
12093 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
12094
12095 // Load the spliced result
12096 return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
12098}
12099
12101 SelectionDAG &DAG) const {
12102 SDLoc DL(Node);
12103 SDValue Vec = Node->getOperand(0);
12104 SDValue Mask = Node->getOperand(1);
12105 SDValue Passthru = Node->getOperand(2);
12106
12107 EVT VecVT = Vec.getValueType();
12108 EVT ScalarVT = VecVT.getScalarType();
12109 EVT MaskVT = Mask.getValueType();
12110 EVT MaskScalarVT = MaskVT.getScalarType();
12111
12112 // Needs to be handled by targets that have scalable vector types.
12113 if (VecVT.isScalableVector())
12114 report_fatal_error("Cannot expand masked_compress for scalable vectors.");
12115
12116 SDValue StackPtr = DAG.CreateStackTemporary(
12117 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
12118 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
12119 MachinePointerInfo PtrInfo =
12121
12122 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
12123 SDValue Chain = DAG.getEntryNode();
12124 SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
12125
12126 bool HasPassthru = !Passthru.isUndef();
12127
12128 // If we have a passthru vector, store it on the stack, overwrite the matching
12129 // positions and then re-write the last element that was potentially
12130 // overwritten even though mask[i] = false.
12131 if (HasPassthru)
12132 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
12133
12134 SDValue LastWriteVal;
12135 APInt PassthruSplatVal;
12136 bool IsSplatPassthru =
12137 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
12138
12139 if (IsSplatPassthru) {
12140 // As we do not know which position we wrote to last, we cannot simply
12141 // access that index from the passthru vector. So we first check if passthru
12142 // is a splat vector, to use any element ...
12143 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
12144 } else if (HasPassthru) {
12145 // ... if it is not a splat vector, we need to get the passthru value at
12146 // position = popcount(mask) and re-load it from the stack before it is
12147 // overwritten in the loop below.
12148 EVT PopcountVT = ScalarVT.changeTypeToInteger();
12149 SDValue Popcount = DAG.getNode(
12151 MaskVT.changeVectorElementType(*DAG.getContext(), MVT::i1), Mask);
12152 Popcount = DAG.getNode(
12154 MaskVT.changeVectorElementType(*DAG.getContext(), PopcountVT),
12155 Popcount);
12156 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
12157 SDValue LastElmtPtr =
12158 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
12159 LastWriteVal = DAG.getLoad(
12160 ScalarVT, DL, Chain, LastElmtPtr,
12162 Chain = LastWriteVal.getValue(1);
12163 }
12164
12165 unsigned NumElms = VecVT.getVectorNumElements();
12166 for (unsigned I = 0; I < NumElms; I++) {
12167 SDValue ValI = DAG.getExtractVectorElt(DL, ScalarVT, Vec, I);
12168 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
12169 Chain = DAG.getStore(
12170 Chain, DL, ValI, OutPtr,
12172
12173 // Get the mask value and add it to the current output position. This
12174 // either increments by 1 if MaskI is true or adds 0 otherwise.
12175 // Freeze in case we have poison/undef mask entries.
12176 SDValue MaskI = DAG.getExtractVectorElt(DL, MaskScalarVT, Mask, I);
12177 MaskI = DAG.getFreeze(MaskI);
12178 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
12179 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
12180 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
12181
12182 if (HasPassthru && I == NumElms - 1) {
12183 SDValue EndOfVector =
12184 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
12185 SDValue AllLanesSelected =
12186 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
12187 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
12188 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
12189
12190 // Re-write the last ValI if all lanes were selected. Otherwise,
12191 // overwrite the last write it with the passthru value.
12192 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
12193 LastWriteVal, SDNodeFlags::Unpredictable);
12194 Chain = DAG.getStore(
12195 Chain, DL, LastWriteVal, OutPtr,
12197 }
12198 }
12199
12200 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
12201}
12202
12204 SelectionDAG &DAG) const {
12205 SDLoc DL(N);
12206 SDValue Acc = N->getOperand(0);
12207 SDValue MulLHS = N->getOperand(1);
12208 SDValue MulRHS = N->getOperand(2);
12209 EVT AccVT = Acc.getValueType();
12210 EVT MulOpVT = MulLHS.getValueType();
12211
12212 EVT ExtMulOpVT =
12214 MulOpVT.getVectorElementCount());
12215
12216 unsigned ExtOpcLHS, ExtOpcRHS;
12217 switch (N->getOpcode()) {
12218 default:
12219 llvm_unreachable("Unexpected opcode");
12221 ExtOpcLHS = ExtOpcRHS = ISD::ZERO_EXTEND;
12222 break;
12224 ExtOpcLHS = ExtOpcRHS = ISD::SIGN_EXTEND;
12225 break;
12227 ExtOpcLHS = ExtOpcRHS = ISD::FP_EXTEND;
12228 break;
12229 }
12230
12231 if (ExtMulOpVT != MulOpVT) {
12232 MulLHS = DAG.getNode(ExtOpcLHS, DL, ExtMulOpVT, MulLHS);
12233 MulRHS = DAG.getNode(ExtOpcRHS, DL, ExtMulOpVT, MulRHS);
12234 }
12235 SDValue Input = MulLHS;
12236 if (N->getOpcode() == ISD::PARTIAL_REDUCE_FMLA) {
12237 if (!llvm::isOneOrOneSplatFP(MulRHS))
12238 Input = DAG.getNode(ISD::FMUL, DL, ExtMulOpVT, MulLHS, MulRHS);
12239 } else if (!llvm::isOneOrOneSplat(MulRHS)) {
12240 Input = DAG.getNode(ISD::MUL, DL, ExtMulOpVT, MulLHS, MulRHS);
12241 }
12242
12243 unsigned Stride = AccVT.getVectorMinNumElements();
12244 unsigned ScaleFactor = MulOpVT.getVectorMinNumElements() / Stride;
12245
12246 // Collect all of the subvectors
12247 std::deque<SDValue> Subvectors = {Acc};
12248 for (unsigned I = 0; I < ScaleFactor; I++)
12249 Subvectors.push_back(DAG.getExtractSubvector(DL, AccVT, Input, I * Stride));
12250
12251 unsigned FlatNode =
12252 N->getOpcode() == ISD::PARTIAL_REDUCE_FMLA ? ISD::FADD : ISD::ADD;
12253
12254 // Flatten the subvector tree
12255 while (Subvectors.size() > 1) {
12256 Subvectors.push_back(
12257 DAG.getNode(FlatNode, DL, AccVT, {Subvectors[0], Subvectors[1]}));
12258 Subvectors.pop_front();
12259 Subvectors.pop_front();
12260 }
12261
12262 assert(Subvectors.size() == 1 &&
12263 "There should only be one subvector after tree flattening");
12264
12265 return Subvectors[0];
12266}
12267
12268/// Given a store node \p StoreNode, return true if it is safe to fold that node
12269/// into \p FPNode, which expands to a library call with output pointers.
12271 SDNode *FPNode) {
12273 SmallVector<const SDNode *, 8> DeferredNodes;
12275
12276 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
12277 for (SDValue Op : StoreNode->ops())
12278 if (Op.getNode() != FPNode)
12279 Worklist.push_back(Op.getNode());
12280
12282 while (!Worklist.empty()) {
12283 const SDNode *Node = Worklist.pop_back_val();
12284 auto [_, Inserted] = Visited.insert(Node);
12285 if (!Inserted)
12286 continue;
12287
12288 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
12289 return false;
12290
12291 // Reached the FPNode (would result in a cycle).
12292 // OR Reached CALLSEQ_START (would result in nested call sequences).
12293 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
12294 return false;
12295
12296 if (Node->getOpcode() == ISD::CALLSEQ_END) {
12297 // Defer looking into call sequences (so we can check we're outside one).
12298 // We still need to look through these for the predecessor check.
12299 DeferredNodes.push_back(Node);
12300 continue;
12301 }
12302
12303 for (SDValue Op : Node->ops())
12304 Worklist.push_back(Op.getNode());
12305 }
12306
12307 // True if we're outside a call sequence and don't have the FPNode as a
12308 // predecessor. No cycles or nested call sequences possible.
12309 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
12310 MaxSteps);
12311}
12312
12314 SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node,
12316 std::optional<unsigned> CallRetResNo) const {
12317 if (LC == RTLIB::UNKNOWN_LIBCALL)
12318 return false;
12319
12320 RTLIB::LibcallImpl LibcallImpl = getLibcallImpl(LC);
12321 if (LibcallImpl == RTLIB::Unsupported)
12322 return false;
12323
12324 LLVMContext &Ctx = *DAG.getContext();
12325 EVT VT = Node->getValueType(0);
12326 unsigned NumResults = Node->getNumValues();
12327
12328 // Find users of the node that store the results (and share input chains). The
12329 // destination pointers can be used instead of creating stack allocations.
12330 SDValue StoresInChain;
12331 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
12332 for (SDNode *User : Node->users()) {
12334 continue;
12335 auto *ST = cast<StoreSDNode>(User);
12336 SDValue StoreValue = ST->getValue();
12337 unsigned ResNo = StoreValue.getResNo();
12338 // Ensure the store corresponds to an output pointer.
12339 if (CallRetResNo == ResNo)
12340 continue;
12341 // Ensure the store to the default address space and not atomic or volatile.
12342 if (!ST->isSimple() || ST->getAddressSpace() != 0)
12343 continue;
12344 // Ensure all store chains are the same (so they don't alias).
12345 if (StoresInChain && ST->getChain() != StoresInChain)
12346 continue;
12347 // Ensure the store is properly aligned.
12348 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
12349 if (ST->getAlign() <
12350 DAG.getDataLayout().getABITypeAlign(StoreType->getScalarType()))
12351 continue;
12352 // Avoid:
12353 // 1. Creating cyclic dependencies.
12354 // 2. Expanding the node to a call within a call sequence.
12356 continue;
12357 ResultStores[ResNo] = ST;
12358 StoresInChain = ST->getChain();
12359 }
12360
12361 ArgListTy Args;
12362
12363 // Pass the arguments.
12364 for (const SDValue &Op : Node->op_values()) {
12365 EVT ArgVT = Op.getValueType();
12366 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
12367 Args.emplace_back(Op, ArgTy);
12368 }
12369
12370 // Pass the output pointers.
12371 SmallVector<SDValue, 2> ResultPtrs(NumResults);
12373 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
12374 if (ResNo == CallRetResNo)
12375 continue;
12376 EVT ResVT = Node->getValueType(ResNo);
12377 SDValue ResultPtr = ST ? ST->getBasePtr() : DAG.CreateStackTemporary(ResVT);
12378 ResultPtrs[ResNo] = ResultPtr;
12379 Args.emplace_back(ResultPtr, PointerTy);
12380 }
12381
12382 SDLoc DL(Node);
12383
12385 // Pass the vector mask (if required).
12386 EVT MaskVT = getSetCCResultType(DAG.getDataLayout(), Ctx, VT);
12387 SDValue Mask = DAG.getBoolConstant(true, DL, MaskVT, VT);
12388 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
12389 }
12390
12391 Type *RetType = CallRetResNo.has_value()
12392 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
12393 : Type::getVoidTy(Ctx);
12394 SDValue InChain = StoresInChain ? StoresInChain : DAG.getEntryNode();
12395 SDValue Callee =
12396 DAG.getExternalSymbol(LibcallImpl, getPointerTy(DAG.getDataLayout()));
12398 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
12399 getLibcallImplCallingConv(LibcallImpl), RetType, Callee, std::move(Args));
12400
12401 auto [Call, CallChain] = LowerCallTo(CLI);
12402
12403 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
12404 if (ResNo == CallRetResNo) {
12405 Results.push_back(Call);
12406 continue;
12407 }
12408 MachinePointerInfo PtrInfo;
12409 SDValue LoadResult = DAG.getLoad(Node->getValueType(ResNo), DL, CallChain,
12410 ResultPtr, PtrInfo);
12411 SDValue OutChain = LoadResult.getValue(1);
12412
12413 if (StoreSDNode *ST = ResultStores[ResNo]) {
12414 // Replace store with the library call.
12415 DAG.ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
12416 PtrInfo = ST->getPointerInfo();
12417 } else {
12419 DAG.getMachineFunction(),
12420 cast<FrameIndexSDNode>(ResultPtr)->getIndex());
12421 }
12422
12423 Results.push_back(LoadResult);
12424 }
12425
12426 return true;
12427}
12428
12430 SDValue &LHS, SDValue &RHS,
12431 SDValue &CC, SDValue Mask,
12432 SDValue EVL, bool &NeedInvert,
12433 const SDLoc &dl, SDValue &Chain,
12434 bool IsSignaling) const {
12435 MVT OpVT = LHS.getSimpleValueType();
12436 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
12437 NeedInvert = false;
12438 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
12439 bool IsNonVP = !EVL;
12440 switch (getCondCodeAction(CCCode, OpVT)) {
12441 default:
12442 llvm_unreachable("Unknown condition code action!");
12444 // Nothing to do.
12445 break;
12448 if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
12449 std::swap(LHS, RHS);
12450 CC = DAG.getCondCode(InvCC);
12451 return true;
12452 }
12453 // Swapping operands didn't work. Try inverting the condition.
12454 bool NeedSwap = false;
12455 InvCC = getSetCCInverse(CCCode, OpVT);
12456 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
12457 // If inverting the condition is not enough, try swapping operands
12458 // on top of it.
12459 InvCC = ISD::getSetCCSwappedOperands(InvCC);
12460 NeedSwap = true;
12461 }
12462 if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
12463 CC = DAG.getCondCode(InvCC);
12464 NeedInvert = true;
12465 if (NeedSwap)
12466 std::swap(LHS, RHS);
12467 return true;
12468 }
12469
12470 // Special case: expand i1 comparisons using logical operations.
12471 if (OpVT == MVT::i1) {
12472 SDValue Ret;
12473 switch (CCCode) {
12474 default:
12475 llvm_unreachable("Unknown integer setcc!");
12476 case ISD::SETEQ: // X == Y --> ~(X ^ Y)
12477 Ret = DAG.getNOT(dl, DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS),
12478 MVT::i1);
12479 break;
12480 case ISD::SETNE: // X != Y --> (X ^ Y)
12481 Ret = DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS);
12482 break;
12483 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
12484 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
12485 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, RHS,
12486 DAG.getNOT(dl, LHS, MVT::i1));
12487 break;
12488 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
12489 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
12490 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, LHS,
12491 DAG.getNOT(dl, RHS, MVT::i1));
12492 break;
12493 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
12494 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
12495 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, RHS,
12496 DAG.getNOT(dl, LHS, MVT::i1));
12497 break;
12498 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
12499 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
12500 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, LHS,
12501 DAG.getNOT(dl, RHS, MVT::i1));
12502 break;
12503 }
12504
12505 LHS = DAG.getZExtOrTrunc(Ret, dl, VT);
12506 RHS = SDValue();
12507 CC = SDValue();
12508 return true;
12509 }
12510
12512 unsigned Opc = 0;
12513 switch (CCCode) {
12514 default:
12515 llvm_unreachable("Don't know how to expand this condition!");
12516 case ISD::SETUO:
12517 if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
12518 CC1 = ISD::SETUNE;
12519 CC2 = ISD::SETUNE;
12520 Opc = ISD::OR;
12521 break;
12522 }
12524 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
12525 NeedInvert = true;
12526 [[fallthrough]];
12527 case ISD::SETO:
12529 "If SETO is expanded, SETOEQ must be legal!");
12530 CC1 = ISD::SETOEQ;
12531 CC2 = ISD::SETOEQ;
12532 Opc = ISD::AND;
12533 break;
12534 case ISD::SETONE:
12535 case ISD::SETUEQ:
12536 // If the SETUO or SETO CC isn't legal, we might be able to use
12537 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
12538 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
12539 // the operands.
12540 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
12541 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
12542 isCondCodeLegal(ISD::SETOLT, OpVT))) {
12543 CC1 = ISD::SETOGT;
12544 CC2 = ISD::SETOLT;
12545 Opc = ISD::OR;
12546 NeedInvert = ((unsigned)CCCode & 0x8U);
12547 break;
12548 }
12549 [[fallthrough]];
12550 case ISD::SETOEQ:
12551 case ISD::SETOGT:
12552 case ISD::SETOGE:
12553 case ISD::SETOLT:
12554 case ISD::SETOLE:
12555 case ISD::SETUNE:
12556 case ISD::SETUGT:
12557 case ISD::SETUGE:
12558 case ISD::SETULT:
12559 case ISD::SETULE:
12560 // If we are floating point, assign and break, otherwise fall through.
12561 if (!OpVT.isInteger()) {
12562 // We can use the 4th bit to tell if we are the unordered
12563 // or ordered version of the opcode.
12564 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
12565 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
12566 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
12567 break;
12568 }
12569 // Fallthrough if we are unsigned integer.
12570 [[fallthrough]];
12571 case ISD::SETLE:
12572 case ISD::SETGT:
12573 case ISD::SETGE:
12574 case ISD::SETLT:
12575 case ISD::SETNE:
12576 case ISD::SETEQ:
12577 // If all combinations of inverting the condition and swapping operands
12578 // didn't work then we have no means to expand the condition.
12579 llvm_unreachable("Don't know how to expand this condition!");
12580 }
12581
12582 SDValue SetCC1, SetCC2;
12583 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
12584 // If we aren't the ordered or unorder operation,
12585 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
12586 if (IsNonVP) {
12587 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12588 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12589 } else {
12590 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12591 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12592 }
12593 } else {
12594 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
12595 if (IsNonVP) {
12596 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12597 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12598 } else {
12599 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12600 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12601 }
12602 }
12603 if (Chain)
12604 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
12605 SetCC2.getValue(1));
12606 if (IsNonVP)
12607 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
12608 else {
12609 // Transform the binary opcode to the VP equivalent.
12610 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
12611 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
12612 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12613 }
12614 RHS = SDValue();
12615 CC = SDValue();
12616 return true;
12617 }
12618 }
12619 return false;
12620}
12621
12623 SelectionDAG &DAG) const {
12624 EVT VT = Node->getValueType(0);
12625 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
12626 // split into two equal parts.
12627 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
12628 return SDValue();
12629
12630 // Restrict expansion to cases where both parts can be concatenated.
12631 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
12632 if (LoVT != HiVT || !isTypeLegal(LoVT))
12633 return SDValue();
12634
12635 SDLoc DL(Node);
12636 unsigned Opcode = Node->getOpcode();
12637
12638 // Don't expand if the result is likely to be unrolled anyway.
12639 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
12640 return SDValue();
12641
12642 SmallVector<SDValue, 4> LoOps, HiOps;
12643 for (const SDValue &V : Node->op_values()) {
12644 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
12645 LoOps.push_back(Lo);
12646 HiOps.push_back(Hi);
12647 }
12648
12649 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
12650 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
12651 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
12652}
12653
12655 const SDLoc &DL,
12656 EVT InVecVT, SDValue EltNo,
12657 LoadSDNode *OriginalLoad,
12658 SelectionDAG &DAG) const {
12659 assert(OriginalLoad->isSimple());
12660
12661 EVT VecEltVT = InVecVT.getVectorElementType();
12662
12663 // If the vector element type is not a multiple of a byte then we are unable
12664 // to correctly compute an address to load only the extracted element as a
12665 // scalar.
12666 if (!VecEltVT.isByteSized())
12667 return SDValue();
12668
12669 ISD::LoadExtType ExtTy =
12670 ResultVT.bitsGT(VecEltVT) ? ISD::EXTLOAD : ISD::NON_EXTLOAD;
12671 if (!isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
12672 return SDValue();
12673
12674 std::optional<unsigned> ByteOffset;
12675 Align Alignment = OriginalLoad->getAlign();
12677 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
12678 int Elt = ConstEltNo->getZExtValue();
12679 ByteOffset = VecEltVT.getSizeInBits() * Elt / 8;
12680 MPI = OriginalLoad->getPointerInfo().getWithOffset(*ByteOffset);
12681 Alignment = commonAlignment(Alignment, *ByteOffset);
12682 } else {
12683 // Discard the pointer info except the address space because the memory
12684 // operand can't represent this new access since the offset is variable.
12685 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
12686 Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8);
12687 }
12688
12689 if (!shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT, ByteOffset))
12690 return SDValue();
12691
12692 unsigned IsFast = 0;
12693 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT,
12694 OriginalLoad->getAddressSpace(), Alignment,
12695 OriginalLoad->getMemOperand()->getFlags(), &IsFast) ||
12696 !IsFast)
12697 return SDValue();
12698
12699 // The original DAG loaded the entire vector from memory, so arithmetic
12700 // within it must be inbounds.
12702 DAG, OriginalLoad->getBasePtr(), InVecVT, EltNo);
12703
12704 // We are replacing a vector load with a scalar load. The new load must have
12705 // identical memory op ordering to the original.
12706 SDValue Load;
12707 if (ResultVT.bitsGT(VecEltVT)) {
12708 // If the result type of vextract is wider than the load, then issue an
12709 // extending load instead.
12710 ISD::LoadExtType ExtType = isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, VecEltVT)
12712 : ISD::EXTLOAD;
12713 Load = DAG.getExtLoad(ExtType, DL, ResultVT, OriginalLoad->getChain(),
12714 NewPtr, MPI, VecEltVT, Alignment,
12715 OriginalLoad->getMemOperand()->getFlags(),
12716 OriginalLoad->getAAInfo());
12717 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
12718 } else {
12719 // The result type is narrower or the same width as the vector element
12720 Load = DAG.getLoad(VecEltVT, DL, OriginalLoad->getChain(), NewPtr, MPI,
12721 Alignment, OriginalLoad->getMemOperand()->getFlags(),
12722 OriginalLoad->getAAInfo());
12723 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
12724 if (ResultVT.bitsLT(VecEltVT))
12725 Load = DAG.getNode(ISD::TRUNCATE, DL, ResultVT, Load);
12726 else
12727 Load = DAG.getBitcast(ResultVT, Load);
12728 }
12729
12730 return Load;
12731}
unsigned const MachineRegisterInfo * MRI
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT F32
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define _
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
#define T
#define T1
#define P(N)
Function const char * Passes
R600 Clause Merge
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
This file contains some templates that are useful if you are working with the STL at all.
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
Value * RHS
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1410
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
Definition APFloat.h:1221
APInt bitcastToAPInt() const
Definition APFloat.h:1416
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1201
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1161
void changeSign()
Definition APFloat.h:1360
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1172
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1584
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1769
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1415
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition APInt.h:450
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1023
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:230
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1549
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1400
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1394
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1044
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1521
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:207
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1339
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:372
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:259
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1677
void setSignBit()
Set the sign bit to 1.
Definition APInt.h:1349
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1497
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition APInt.h:217
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:330
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1250
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1405
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:835
void negate()
Negate this APInt in place.
Definition APInt.h:1477
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1648
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1607
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition APInt.h:1540
unsigned countLeadingZeros() const
Definition APInt.h:1615
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition APInt.h:357
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1444
unsigned logBase2() const
Definition APInt.h:1770
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition APInt.h:476
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
void setAllBits()
Set every bit to 1.
Definition APInt.h:1328
LLVM_ABI APInt multiplicativeInverse() const
Definition APInt.cpp:1285
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition APInt.h:406
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1151
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:996
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1376
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1258
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1426
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:297
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1397
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:287
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:240
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
Definition APInt.h:1451
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1571
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:859
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
unsigned countr_one() const
Count the number of trailing one bits.
Definition APInt.h:1665
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1222
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
Definition APInt.h:1352
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:720
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
This class represents a range of values.
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:214
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
Definition InlineAsm.h:104
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:214
Machine Value Type.
SimpleValueType SimpleTy
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags getFlags() const
Return the raw flags of the source value,.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getAlign() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
Definition Module.h:445
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
iterator end() const
Definition ArrayRef.h:343
iterator begin() const
Definition ArrayRef.h:342
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
iterator end() const
Definition StringRef.h:114
Class to represent struct types.
LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
std::vector< ArgListEntry > ArgListTy
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
bool expandMultipleResultFPLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={}) const
Expands a node with multiple results to an FP or vector libcall.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SmallVector< ConstraintPair > ConstraintGroup
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, const SDValue LHS, const SDValue RHS, SDValue &Lo, SDValue &Hi) const
Calculate full product of LHS and RHS either via a libcall or through brute force expansion of the mu...
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandCLMUL(SDNode *N, SelectionDAG &DAG) const
Expand carryless multiply.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
virtual unsigned computeNumSignBitsForTargetInstr(GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed, SDValue &Lo, SDValue &Hi, SDValue LHS, SDValue RHS, SDValue HiLHS=SDValue(), SDValue HiRHS=SDValue()) const
Calculate the product twice the width of LHS and RHS.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
~TargetLowering() override
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis, Register R, KnownFPClass &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue getInboundsVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
Definition Triple.h:795
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition Type.h:296
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
Definition Value.cpp:712
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
Definition TypeSize.h:180
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3020
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:818
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:261
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:787
@ PTRADD
PTRADD represents pointer arithmetic semantics, for targets that opt in using shouldPreservePtrArith(...
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:538
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:275
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:600
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:778
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:394
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:294
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:522
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:264
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:400
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:852
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:518
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:220
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:879
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:584
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:417
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:746
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:909
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:280
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:528
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:992
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:254
@ CLMUL
Carry-less multiplication operations.
Definition ISDOpcodes.h:773
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:407
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:843
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:714
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:664
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:786
@ PARTIAL_REDUCE_FMLA
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:352
@ BRIND
BRIND - Indirect branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:541
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:548
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:374
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:795
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:247
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:671
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:230
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:348
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:703
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:764
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:649
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:614
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:576
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:849
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:810
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:386
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:356
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
Definition ISDOpcodes.h:653
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:898
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:887
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:413
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:977
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:804
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:328
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:477
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:925
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:179
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:738
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:205
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:709
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
Definition ISDOpcodes.h:656
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:304
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:241
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:565
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:958
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:920
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:944
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:855
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:832
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:534
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:365
@ CALLSEQ_START
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence,...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:721
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:213
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:556
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
void stable_sort(R &&Range)
Definition STLExtras.h:2106
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
InstructionCost Cost
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2544
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
void * PointerTy
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
LLVM_ABI void reportFatalInternalError(Error Err)
Report a fatal error that indicates a bug in LLVM.
Definition Error.cpp:173
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:331
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
Definition STLExtras.h:1775
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:163
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
@ Other
Any other memory.
Definition ModRef.h:68
To bit_cast(const From &from) noexcept
Definition bit.h:90
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
Definition APFloat.h:1632
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
@ Increment
Incrementally increasing token ID.
Definition AllocToken.h:26
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:373
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:177
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
Definition ValueTypes.h:430
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
Definition ValueTypes.h:412
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:304
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
Definition KnownBits.h:189
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:258
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:245
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:164
KnownBits byteSwap() const
Definition KnownBits.h:522
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:292
KnownBits reverseBits() const
Definition KnownBits.h:526
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:236
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:175
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:324
bool isSignUnknown() const
Returns true if we don't know the sign bit.
Definition KnownBits.h:69
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:314
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:183
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:251
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:170
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition KnownBits.h:289
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
Matching combinators.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
static LLVM_ABI SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
std::string ConstraintCode
This contains the actual string for the code, like "m".
LLVM_ABI unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
LLVM_ABI bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
LLVM_ABI void AddToWorklist(SDNode *N)
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
MakeLibCallOptions & setIsSigned(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
Magic data for optimising unsigned division by a constant.
static LLVM_ABI UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...