66 if (
F.getFnAttribute(
"disable-tail-calls").getValueAsBool())
72 AttrBuilder CallerAttrs(
F.getContext(),
F.getAttributes().getRetAttrs());
73 for (
const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
74 Attribute::DereferenceableOrNull, Attribute::NoAlias,
75 Attribute::NonNull, Attribute::NoUndef,
76 Attribute::Range, Attribute::NoFPClass})
77 CallerAttrs.removeAttribute(Attr);
79 if (CallerAttrs.hasAttributes())
83 if (CallerAttrs.contains(Attribute::ZExt) ||
84 CallerAttrs.contains(Attribute::SExt))
95 for (
unsigned I = 0, E = ArgLocs.
size();
I != E; ++
I) {
112 if (
MRI.getLiveInPhysReg(ArgReg) != Reg)
122 IsSExt =
Call->paramHasAttr(ArgIdx, Attribute::SExt);
123 IsZExt =
Call->paramHasAttr(ArgIdx, Attribute::ZExt);
124 IsNoExt =
Call->paramHasAttr(ArgIdx, Attribute::NoExt);
125 IsInReg =
Call->paramHasAttr(ArgIdx, Attribute::InReg);
126 IsSRet =
Call->paramHasAttr(ArgIdx, Attribute::StructRet);
127 IsNest =
Call->paramHasAttr(ArgIdx, Attribute::Nest);
128 IsByVal =
Call->paramHasAttr(ArgIdx, Attribute::ByVal);
138 "multiple ABI attributes?");
154std::pair<SDValue, SDValue>
159 if (LibcallImpl == RTLIB::Unsupported)
166 Args.reserve(
Ops.size());
169 for (
unsigned i = 0; i <
Ops.size(); ++i) {
171 Type *Ty = i < OpsTypeOverrides.
size() && OpsTypeOverrides[i]
172 ? OpsTypeOverrides[i]
181 Entry.IsZExt = !Entry.IsSExt;
185 Entry.IsSExt = Entry.IsZExt =
false;
187 Args.push_back(Entry);
194 Type *OrigRetTy = RetTy;
197 bool zeroExtend = !signExtend;
202 signExtend = zeroExtend =
false;
208 Callee, std::move(Args))
218 LLVMContext &Context, std::vector<EVT> &MemOps,
unsigned Limit,
219 const MemOp &
Op,
unsigned DstAS,
unsigned SrcAS,
220 const AttributeList &FuncAttributes)
const {
221 if (Limit != ~
unsigned(0) &&
Op.isMemcpyWithFixedDstAlign() &&
222 Op.getSrcAlign() <
Op.getDstAlign())
227 if (VT == MVT::Other) {
231 VT = MVT::LAST_INTEGER_VALUETYPE;
232 if (
Op.isFixedDstAlign())
239 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
250 unsigned NumMemOps = 0;
254 while (VTSize >
Size) {
265 else if (NewVT == MVT::i64 &&
277 if (NewVT == MVT::i8)
286 if (NumMemOps &&
Op.allowOverlap() && NewVTSize <
Size &&
288 VT, DstAS,
Op.isFixedDstAlign() ?
Op.getDstAlign() :
Align(1),
298 if (++NumMemOps > Limit)
301 MemOps.push_back(VT);
326 bool IsSignaling)
const {
331 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
332 &&
"Unsupported setcc type!");
335 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
336 bool ShouldInvertCC =
false;
340 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
341 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
342 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
346 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
347 (VT == MVT::f64) ? RTLIB::UNE_F64 :
348 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
352 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
353 (VT == MVT::f64) ? RTLIB::OGE_F64 :
354 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
358 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
359 (VT == MVT::f64) ? RTLIB::OLT_F64 :
360 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
364 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
365 (VT == MVT::f64) ? RTLIB::OLE_F64 :
366 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
370 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
371 (VT == MVT::f64) ? RTLIB::OGT_F64 :
372 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
375 ShouldInvertCC =
true;
378 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
379 (VT == MVT::f64) ? RTLIB::UO_F64 :
380 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
384 ShouldInvertCC =
true;
387 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
388 (VT == MVT::f64) ? RTLIB::UO_F64 :
389 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
390 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
391 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
392 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
396 ShouldInvertCC =
true;
399 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
400 (VT == MVT::f64) ? RTLIB::OGE_F64 :
401 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
404 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
405 (VT == MVT::f64) ? RTLIB::OGT_F64 :
406 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
409 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
410 (VT == MVT::f64) ? RTLIB::OLE_F64 :
411 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
414 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
415 (VT == MVT::f64) ? RTLIB::OLT_F64 :
416 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
434 if (LC1Impl == RTLIB::Unsupported) {
436 "no libcall available to soften floating-point compare");
440 if (ShouldInvertCC) {
442 CCCode = getSetCCInverse(CCCode, RetVT);
445 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
450 if (LC2Impl == RTLIB::Unsupported) {
452 "no libcall available to soften floating-point compare");
456 "unordered call should be simple boolean");
466 auto Call2 =
makeLibCall(DAG, LC2, RetVT,
Ops, CallOptions, dl, Chain);
469 CCCode = getSetCCInverse(CCCode, RetVT);
470 NewLHS = DAG.
getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
523 if (!TM.shouldAssumeDSOLocal(GV))
543 const APInt &DemandedElts,
546 unsigned Opcode =
Op.getOpcode();
565 if (!Op1C || Op1C->isOpaque())
569 const APInt &
C = Op1C->getAPIntValue();
574 EVT VT =
Op.getValueType();
591 EVT VT =
Op.getValueType();
606 "ShrinkDemandedOp only supports binary operators!");
607 assert(
Op.getNode()->getNumValues() == 1 &&
608 "ShrinkDemandedOp only supports nodes with one result!");
610 EVT VT =
Op.getValueType();
619 Op.getOperand(1).getValueType().getScalarSizeInBits() ==
BitWidth &&
620 "ShrinkDemandedOp only supports operands that have the same size!");
624 if (!
Op.getNode()->hasOneUse())
640 unsigned Opcode =
Op.getOpcode();
650 assert(DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?");
674 const APInt &DemandedElts,
694 bool AssumeSingleUse)
const {
695 EVT VT =
Op.getValueType();
711 EVT VT =
Op.getValueType();
729 switch (
Op.getOpcode()) {
735 EVT SrcVT = Src.getValueType();
736 EVT DstVT =
Op.getValueType();
742 if (NumSrcEltBits == NumDstEltBits)
747 if (SrcVT.
isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
748 unsigned Scale = NumDstEltBits / NumSrcEltBits;
752 for (
unsigned i = 0; i != Scale; ++i) {
753 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
754 unsigned BitOffset = EltOffset * NumSrcEltBits;
757 DemandedSrcBits |=
Sub;
758 for (
unsigned j = 0; j != NumElts; ++j)
760 DemandedSrcElts.
setBit((j * Scale) + i);
765 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
770 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
771 unsigned Scale = NumSrcEltBits / NumDstEltBits;
775 for (
unsigned i = 0; i != NumElts; ++i)
776 if (DemandedElts[i]) {
777 unsigned Offset = (i % Scale) * NumDstEltBits;
779 DemandedSrcElts.
setBit(i / Scale);
783 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
797 return Op.getOperand(0);
799 return Op.getOperand(1);
810 return Op.getOperand(0);
812 return Op.getOperand(1);
822 return Op.getOperand(0);
824 return Op.getOperand(1);
830 return Op.getOperand(0);
834 return Op.getOperand(1);
840 if (std::optional<unsigned> MaxSA =
843 unsigned ShAmt = *MaxSA;
844 unsigned NumSignBits =
847 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
855 if (std::optional<unsigned> MaxSA =
858 unsigned ShAmt = *MaxSA;
862 unsigned NumSignBits =
901 if (NumSignBits >= (
BitWidth - ExBits + 1))
914 EVT SrcVT = Src.getValueType();
915 EVT DstVT =
Op.getValueType();
916 if (IsLE && DemandedElts == 1 &&
932 !DemandedElts[CIdx->getZExtValue()])
943 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
946 if (DemandedSubElts == 0)
956 bool AllUndef =
true, IdentityLHS =
true, IdentityRHS =
true;
957 for (
unsigned i = 0; i != NumElts; ++i) {
958 int M = ShuffleMask[i];
959 if (M < 0 || !DemandedElts[i])
962 IdentityLHS &= (M == (int)i);
963 IdentityRHS &= ((M - NumElts) == i);
969 return Op.getOperand(0);
971 return Op.getOperand(1);
991 unsigned Depth)
const {
992 EVT VT =
Op.getValueType();
1005 unsigned Depth)
const {
1019 "SRL or SRA node is required here!");
1022 if (!N1C || !N1C->
isOne())
1069 unsigned ShiftOpc =
Op.getOpcode();
1070 bool IsSigned =
false;
1074 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1079 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1085 if (NumZero >= 2 && NumSigned < NumZero) {
1090 if (NumSigned >= 1) {
1098 if (NumZero >= 1 && NumSigned < NumZero) {
1118 EVT VT =
Op.getValueType();
1132 Add.getOperand(1)) &&
1163 unsigned Depth,
bool AssumeSingleUse)
const {
1166 "Mask size mismatches value type size!");
1171 EVT VT =
Op.getValueType();
1173 unsigned NumElts = OriginalDemandedElts.
getBitWidth();
1175 "Unexpected vector size");
1178 APInt DemandedElts = OriginalDemandedElts;
1203 bool HasMultiUse =
false;
1204 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse()) {
1213 }
else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1222 switch (
Op.getOpcode()) {
1226 if (!DemandedElts[0])
1231 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1238 if (DemandedElts == 1)
1267 EVT MemVT = LD->getMemoryVT();
1284 APInt DemandedVecElts(DemandedElts);
1286 unsigned Idx = CIdx->getZExtValue();
1290 if (!DemandedElts[Idx])
1307 if (!!DemandedVecElts)
1320 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
1322 APInt DemandedSrcElts = DemandedElts;
1323 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
1334 if (!!DemandedSubElts)
1336 if (!!DemandedSrcElts)
1346 if (NewSub || NewSrc) {
1347 NewSub = NewSub ? NewSub :
Sub;
1348 NewSrc = NewSrc ? NewSrc : Src;
1361 if (Src.getValueType().isScalableVector())
1364 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1365 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
1387 EVT SubVT =
Op.getOperand(0).getValueType();
1388 unsigned NumSubVecs =
Op.getNumOperands();
1390 for (
unsigned i = 0; i != NumSubVecs; ++i) {
1391 APInt DemandedSubElts =
1392 DemandedElts.
extractBits(NumSubElts, i * NumSubElts);
1394 Known2, TLO,
Depth + 1))
1397 if (!!DemandedSubElts)
1407 APInt DemandedLHS, DemandedRHS;
1412 if (!!DemandedLHS || !!DemandedRHS) {
1417 if (!!DemandedLHS) {
1423 if (!!DemandedRHS) {
1435 if (DemandedOp0 || DemandedOp1) {
1436 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1437 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1472 LHSKnown.
One == ~RHSC->getAPIntValue()) {
1484 unsigned NumSubElts =
1505 Known2, TLO,
Depth + 1))
1531 if (DemandedOp0 || DemandedOp1) {
1532 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1533 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1552 Known2, TLO,
Depth + 1)) {
1576 if (DemandedOp0 || DemandedOp1) {
1577 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1578 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1589 for (
int I = 0;
I != 2; ++
I) {
1592 SDValue Alt =
Op.getOperand(1 -
I).getOperand(0);
1593 SDValue C2 =
Op.getOperand(1 -
I).getOperand(1);
1595 for (
int J = 0; J != 2; ++J) {
1648 if (
C->getAPIntValue() == Known2.
One) {
1657 if (!
C->isAllOnes() &&
DemandedBits.isSubsetOf(
C->getAPIntValue())) {
1669 if (ShiftC->getAPIntValue().ult(
BitWidth)) {
1670 uint64_t ShiftAmt = ShiftC->getZExtValue();
1673 : Ones.
lshr(ShiftAmt);
1690 if (!
C || !
C->isAllOnes())
1700 if (DemandedOp0 || DemandedOp1) {
1701 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1702 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1713 Known, TLO,
Depth + 1))
1716 Known2, TLO,
Depth + 1))
1728 Known, TLO,
Depth + 1))
1731 Known2, TLO,
Depth + 1))
1739 Known, TLO,
Depth + 1))
1742 Known2, TLO,
Depth + 1))
1785 if (std::optional<unsigned> KnownSA =
1787 unsigned ShAmt = *KnownSA;
1797 if (std::optional<unsigned> InnerSA =
1799 unsigned C1 = *InnerSA;
1801 int Diff = ShAmt - C1;
1820 if (ShAmt < InnerBits &&
DemandedBits.getActiveBits() <= InnerBits &&
1838 InnerOp, DemandedElts,
Depth + 2)) {
1839 unsigned InnerShAmt = *SA2;
1840 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1842 (InnerBits - InnerShAmt + ShAmt) &&
1870 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
1881 Op.getNode()->hasOneUse()) {
1892 assert(DemandedSize <= SmallVTBits &&
1893 "Narrowed below demanded bits?");
1923 Flags.setNoUnsignedWrap(IsNUW);
1928 NewShiftAmt, Flags);
1954 if (std::optional<unsigned> MaxSA =
1956 unsigned ShAmt = *MaxSA;
1957 unsigned NumSignBits =
1960 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1970 if (std::optional<unsigned> KnownSA =
1972 unsigned ShAmt = *KnownSA;
1982 if (std::optional<unsigned> InnerSA =
1984 unsigned C1 = *InnerSA;
1986 int Diff = ShAmt - C1;
2002 if (std::optional<unsigned> InnerSA =
2004 unsigned C1 = *InnerSA;
2006 unsigned Combined = std::min(C1 + ShAmt,
BitWidth - 1);
2018 if (
Op->getFlags().hasExact())
2053 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2067 if (std::optional<unsigned> MaxSA =
2069 unsigned ShAmt = *MaxSA;
2073 unsigned NumSignBits =
2082 DemandedElts,
Depth + 1))
2106 if (std::optional<unsigned> KnownSA =
2108 unsigned ShAmt = *KnownSA;
2115 if (std::optional<unsigned> InnerSA =
2117 unsigned LowBits =
BitWidth - ShAmt;
2122 if (*InnerSA == ShAmt) {
2132 unsigned NumSignBits =
2134 if (NumSignBits > ShAmt)
2144 if (
Op->getFlags().hasExact())
2181 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2191 DemandedElts,
Depth + 1))
2204 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2210 Known, TLO,
Depth + 1))
2226 Known2 <<= (IsFSHL ? Amt : (
BitWidth - Amt));
2227 Known >>= (IsFSHL ? (
BitWidth - Amt) : Amt);
2234 Op0, Demanded0, DemandedElts, TLO.
DAG,
Depth + 1);
2236 Op1, Demanded1, DemandedElts, TLO.
DAG,
Depth + 1);
2237 if (DemandedOp0 || DemandedOp1) {
2238 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2239 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2251 Known2, TLO,
Depth + 1))
2267 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2283 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2288 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2307 unsigned Opc =
Op.getOpcode();
2314 unsigned NumSignBits =
2318 if (NumSignBits >= NumDemandedUpperBits)
2384 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2416 unsigned MinSignedBits =
2418 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2421 if (!AlreadySignExtended) {
2439 InputDemandedBits.
setBit(ExVTBits - 1);
2449 if (Known.
Zero[ExVTBits - 1])
2453 if (Known.
One[ExVTBits - 1]) {
2463 EVT HalfVT =
Op.getOperand(0).getValueType();
2477 Known = KnownHi.
concat(KnownLo);
2486 EVT SrcVT = Src.getValueType();
2495 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2506 APInt InDemandedElts = DemandedElts.
zext(InElts);
2517 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2527 EVT SrcVT = Src.getValueType();
2532 APInt InDemandedElts = DemandedElts.
zext(InElts);
2537 InDemandedBits.
setBit(InBits - 1);
2543 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2580 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2590 EVT SrcVT = Src.getValueType();
2597 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2602 APInt InDemandedElts = DemandedElts.
zext(InElts);
2611 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2620 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2633 Src, TruncMask, DemandedElts, TLO.
DAG,
Depth + 1))
2638 switch (Src.getOpcode()) {
2649 if (Src.getNode()->hasOneUse()) {
2661 std::optional<unsigned> ShAmtC =
2663 if (!ShAmtC || *ShAmtC >=
BitWidth)
2665 unsigned ShVal = *ShAmtC;
2695 Known.
Zero |= ~InMask;
2696 Known.
One &= (~Known.Zero);
2702 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2703 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2712 if (CIdx->getAPIntValue().ult(NumSrcElts))
2719 DemandedSrcBits = DemandedSrcBits.
trunc(EltBitWidth);
2728 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2730 TLO.
DAG.
getNode(
Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2744 EVT SrcVT = Src.getValueType();
2754 if ((OpVTLegal || i32Legal) && VT.
isSimple() && SrcVT != MVT::f16 &&
2755 SrcVT != MVT::f128) {
2757 EVT Ty = OpVTLegal ? VT : MVT::i32;
2761 unsigned OpVTSizeInBits =
Op.getValueSizeInBits();
2762 if (!OpVTLegal && OpVTSizeInBits > 32)
2764 unsigned ShVal =
Op.getValueSizeInBits() - 1;
2774 unsigned Scale =
BitWidth / NumSrcEltBits;
2778 for (
unsigned i = 0; i != Scale; ++i) {
2779 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2780 unsigned BitOffset = EltOffset * NumSrcEltBits;
2782 if (!
Sub.isZero()) {
2783 DemandedSrcBits |=
Sub;
2784 for (
unsigned j = 0; j != NumElts; ++j)
2785 if (DemandedElts[j])
2786 DemandedSrcElts.
setBit((j * Scale) + i);
2790 APInt KnownSrcUndef, KnownSrcZero;
2792 KnownSrcZero, TLO,
Depth + 1))
2797 KnownSrcBits, TLO,
Depth + 1))
2799 }
else if (IsLE && (NumSrcEltBits %
BitWidth) == 0) {
2801 unsigned Scale = NumSrcEltBits /
BitWidth;
2805 for (
unsigned i = 0; i != NumElts; ++i)
2806 if (DemandedElts[i]) {
2809 DemandedSrcElts.
setBit(i / Scale);
2813 APInt KnownSrcUndef, KnownSrcZero;
2815 KnownSrcZero, TLO,
Depth + 1))
2821 KnownSrcBits, TLO,
Depth + 1))
2827 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2849 if (
C &&
C->getAPIntValue().countr_zero() == CTZ) {
2865 if (
Op.getOperand(0).getValueType() !=
Op.getOperand(1).getValueType())
2873 SDValue Op0 =
Op.getOperand(0), Op1 =
Op.getOperand(1);
2878 auto GetDemandedBitsLHSMask = [&](
APInt Demanded,
2887 DemandedElts, KnownOp0, TLO,
Depth + 1) ||
2904 Op0, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2906 Op1, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2907 if (DemandedOp0 || DemandedOp1) {
2908 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2909 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2923 if (
C && !
C->isAllOnes() && !
C->isOne() &&
2924 (
C->getAPIntValue() | HighMask).isAllOnes()) {
2936 auto getShiftLeftAmt = [&HighMask](
SDValue Mul) ->
unsigned {
2963 if (
unsigned ShAmt = getShiftLeftAmt(Op0))
2966 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2967 return foldMul(
ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2971 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2972 return foldMul(
ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2980 Op.getOpcode() !=
ISD::SUB, Flags.hasNoSignedWrap(),
2981 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
3002 Known.
Zero |= SignMask;
3003 Known.
One &= ~SignMask;
3020 Known, TLO,
Depth + 1) ||
3034 Known.
Zero &= ~SignMask0;
3035 Known.
One &= ~SignMask0;
3050 Known.
Zero ^= SignMask;
3051 Known.
One ^= SignMask;
3062 if (
Op.getValueType().isScalableVector())
3081 auto *C = dyn_cast<ConstantSDNode>(V);
3082 return C && C->isOpaque();
3103 const APInt &DemandedElts,
3109 APInt KnownUndef, KnownZero;
3123 const APInt &UndefOp0,
3124 const APInt &UndefOp1) {
3127 "Vector binop only");
3132 UndefOp1.
getBitWidth() == NumElts &&
"Bad type for undef analysis");
3134 auto getUndefOrConstantElt = [&](
SDValue V,
unsigned Index,
3135 const APInt &UndefVals) {
3136 if (UndefVals[Index])
3152 for (
unsigned i = 0; i != NumElts; ++i) {
3171 bool AssumeSingleUse)
const {
3172 EVT VT =
Op.getValueType();
3173 unsigned Opcode =
Op.getOpcode();
3174 APInt DemandedElts = OriginalDemandedElts;
3188 "Mask size mismatches value type element count!");
3197 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse())
3201 if (DemandedElts == 0) {
3216 auto SimplifyDemandedVectorEltsBinOp = [&](
SDValue Op0,
SDValue Op1) {
3221 if (NewOp0 || NewOp1) {
3224 NewOp1 ? NewOp1 : Op1,
Op->getFlags());
3232 if (!DemandedElts[0]) {
3241 EVT SrcVT = Src.getValueType();
3248 for (
unsigned I = 0;
I != NumElts; ++
I) {
3249 if (DemandedElts[
I]) {
3250 unsigned Offset =
I * EltSize;
3263 if (NumSrcElts == NumElts)
3265 KnownZero, TLO,
Depth + 1);
3267 APInt SrcDemandedElts, SrcZero, SrcUndef;
3271 if ((NumElts % NumSrcElts) == 0) {
3272 unsigned Scale = NumElts / NumSrcElts;
3284 for (
unsigned i = 0; i != NumElts; ++i)
3285 if (DemandedElts[i]) {
3286 unsigned Ofs = (i % Scale) * EltSizeInBits;
3287 SrcDemandedBits.
setBits(Ofs, Ofs + EltSizeInBits);
3299 for (
unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3303 for (
unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3304 unsigned Elt = Scale * SrcElt + SubElt;
3305 if (DemandedElts[Elt])
3313 for (
unsigned i = 0; i != NumSrcElts; ++i) {
3314 if (SrcDemandedElts[i]) {
3316 KnownZero.
setBits(i * Scale, (i + 1) * Scale);
3318 KnownUndef.
setBits(i * Scale, (i + 1) * Scale);
3326 if ((NumSrcElts % NumElts) == 0) {
3327 unsigned Scale = NumSrcElts / NumElts;
3335 for (
unsigned i = 0; i != NumElts; ++i) {
3336 if (DemandedElts[i]) {
3366 [&](
SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3368 bool Updated =
false;
3369 for (
unsigned i = 0; i != NumElts; ++i) {
3380 for (
unsigned i = 0; i != NumElts; ++i) {
3382 if (
SrcOp.isUndef()) {
3384 }
else if (EltSizeInBits ==
SrcOp.getScalarValueSizeInBits() &&
3392 EVT SubVT =
Op.getOperand(0).getValueType();
3393 unsigned NumSubVecs =
Op.getNumOperands();
3395 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3398 APInt SubUndef, SubZero;
3402 KnownUndef.
insertBits(SubUndef, i * NumSubElts);
3403 KnownZero.
insertBits(SubZero, i * NumSubElts);
3408 bool FoundNewSub =
false;
3410 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3414 SubOp, SubElts, TLO.
DAG,
Depth + 1);
3415 DemandedSubOps.
push_back(NewSubOp ? NewSubOp : SubOp);
3416 FoundNewSub = NewSubOp ?
true : FoundNewSub;
3432 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3434 APInt DemandedSrcElts = DemandedElts;
3435 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3438 if (!DemandedSubElts)
3441 APInt SubUndef, SubZero;
3447 if (!DemandedSrcElts && !Src.isUndef())
3461 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3464 if (NewSrc || NewSub) {
3465 NewSrc = NewSrc ? NewSrc : Src;
3466 NewSub = NewSub ? NewSub :
Sub;
3468 NewSub,
Op.getOperand(2));
3477 if (Src.getValueType().isScalableVector())
3480 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3481 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3483 APInt SrcUndef, SrcZero;
3493 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3509 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3510 unsigned Idx = CIdx->getZExtValue();
3511 if (!DemandedElts[Idx])
3514 APInt DemandedVecElts(DemandedElts);
3517 KnownZero, TLO,
Depth + 1))
3526 APInt VecUndef, VecZero;
3540 APInt UndefSel, ZeroSel;
3546 APInt DemandedLHS(DemandedElts);
3547 APInt DemandedRHS(DemandedElts);
3548 APInt UndefLHS, ZeroLHS;
3549 APInt UndefRHS, ZeroRHS;
3557 KnownUndef = UndefLHS & UndefRHS;
3558 KnownZero = ZeroLHS & ZeroRHS;
3562 APInt DemandedSel = DemandedElts & ~KnownZero;
3563 if (DemandedSel != DemandedElts)
3576 APInt DemandedLHS(NumElts, 0);
3577 APInt DemandedRHS(NumElts, 0);
3578 for (
unsigned i = 0; i != NumElts; ++i) {
3579 int M = ShuffleMask[i];
3580 if (M < 0 || !DemandedElts[i])
3582 assert(0 <= M && M < (
int)(2 * NumElts) &&
"Shuffle index out of range");
3583 if (M < (
int)NumElts)
3586 DemandedRHS.
setBit(M - NumElts);
3592 bool FoldLHS = !DemandedLHS && !LHS.isUndef();
3593 bool FoldRHS = !DemandedRHS && !RHS.isUndef();
3594 if (FoldLHS || FoldRHS) {
3595 LHS = FoldLHS ? TLO.
DAG.
getUNDEF(LHS.getValueType()) : LHS;
3596 RHS = FoldRHS ? TLO.
DAG.
getUNDEF(RHS.getValueType()) : RHS;
3603 APInt UndefLHS, ZeroLHS;
3604 APInt UndefRHS, ZeroRHS;
3613 bool Updated =
false;
3614 bool IdentityLHS =
true, IdentityRHS =
true;
3616 for (
unsigned i = 0; i != NumElts; ++i) {
3617 int &M = NewMask[i];
3620 if (!DemandedElts[i] || (M < (
int)NumElts && UndefLHS[M]) ||
3621 (M >= (
int)NumElts && UndefRHS[M - NumElts])) {
3625 IdentityLHS &= (M < 0) || (M == (
int)i);
3626 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3631 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.
LegalOps) {
3639 for (
unsigned i = 0; i != NumElts; ++i) {
3640 int M = ShuffleMask[i];
3643 }
else if (M < (
int)NumElts) {
3649 if (UndefRHS[M - NumElts])
3651 if (ZeroRHS[M - NumElts])
3660 APInt SrcUndef, SrcZero;
3662 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3663 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3671 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3672 DemandedSrcElts == 1) {
3685 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() ==
ISD::AND &&
3686 Op->isOnlyUserOf(Src.getNode()) &&
3687 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3689 EVT SrcVT = Src.getValueType();
3696 ISD::AND,
DL, SrcVT, {Src.getOperand(1), Mask})) {
3710 if (Op0 == Op1 &&
Op->isOnlyUserOf(Op0.
getNode())) {
3711 APInt UndefLHS, ZeroLHS;
3733 APInt UndefRHS, ZeroRHS;
3737 APInt UndefLHS, ZeroLHS;
3742 KnownZero = ZeroLHS & ZeroRHS;
3748 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3760 APInt UndefRHS, ZeroRHS;
3764 APInt UndefLHS, ZeroLHS;
3769 KnownZero = ZeroLHS;
3770 KnownUndef = UndefLHS & UndefRHS;
3775 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3786 APInt SrcUndef, SrcZero;
3792 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3797 KnownUndef &= DemandedElts0;
3798 KnownZero &= DemandedElts0;
3803 if (DemandedElts.
isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3810 KnownZero |= SrcZero;
3811 KnownUndef &= SrcUndef;
3812 KnownUndef &= ~KnownZero;
3816 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3824 KnownZero, TLO,
Depth + 1))
3829 Op.getOperand(0), DemandedElts, TLO.
DAG,
Depth + 1))
3844 KnownZero, TLO,
Depth + 1))
3851 KnownZero, TLO,
Depth))
3857 TLO,
Depth, AssumeSingleUse))
3863 assert((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero");
3877 const APInt &DemandedElts,
3879 unsigned Depth)
const {
3884 "Should use MaskedValueIsZero if you don't know whether Op"
3885 " is a target node!");
3892 unsigned Depth)
const {
3899 unsigned Depth)
const {
3911 unsigned Depth)
const {
3920 unsigned Depth)
const {
3925 "Should use ComputeNumSignBits if you don't know whether Op"
3926 " is a target node!");
3943 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3944 " is a target node!");
3955 "Should use SimplifyDemandedBits if you don't know whether Op"
3956 " is a target node!");
3969 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3970 " is a target node!");
4003 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
4004 " is a target node!");
4011 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
4023 "Should use canCreateUndefOrPoison if you don't know whether Op"
4024 " is a target node!");
4030 const APInt &DemandedElts,
4033 unsigned Depth)
const {
4038 "Should use isKnownNeverNaN if you don't know whether Op"
4039 " is a target node!");
4044 const APInt &DemandedElts,
4047 unsigned Depth)
const {
4052 "Should use isSplatValue if you don't know whether Op"
4053 " is a target node!");
4068 CVal = CN->getAPIntValue();
4069 EltWidth =
N.getValueType().getScalarSizeInBits();
4076 CVal = CVal.
trunc(EltWidth);
4082 return CVal.
isOne();
4124 return (
N->isOne() && !SExt) || (SExt && (
N->getValueType(0) != MVT::i1));
4127 return N->isAllOnes() && SExt;
4136 DAGCombinerInfo &DCI)
const {
4165 if (AndC &&
isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4168 AndC->getAPIntValue().getActiveBits());
4195 if (isXAndYEqZeroPreferableToXAndYEqY(
Cond, OpVT) &&
4203 if (DCI.isBeforeLegalizeOps() ||
4232 DAGCombinerInfo &DCI)
const {
4236 SelectionDAG &DAG = DCI.DAG;
4273SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4275 const SDLoc &
DL)
const {
4286 ConstantSDNode *C01;
4315 auto checkConstants = [&
I1, &I01]() ->
bool {
4320 if (checkConstants()) {
4328 if (!checkConstants())
4334 const unsigned KeptBits =
I1.logBase2();
4335 const unsigned KeptBitsMinusOne = I01.
logBase2();
4338 if (KeptBits != (KeptBitsMinusOne + 1))
4343 SelectionDAG &DAG = DCI.DAG;
4352 return DAG.
getSetCC(
DL, SCCVT, SExtInReg,
X, NewCond);
4356SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4358 DAGCombinerInfo &DCI,
const SDLoc &
DL)
const {
4360 "Should be a comparison with 0.");
4362 "Valid only for [in]equality comparisons.");
4364 unsigned NewShiftOpcode;
4367 SelectionDAG &DAG = DCI.DAG;
4370 auto Match = [&NewShiftOpcode, &
X, &
C, &
Y, &DAG,
this](
SDValue V) {
4374 unsigned OldShiftOpcode =
V.getOpcode();
4375 switch (OldShiftOpcode) {
4387 C =
V.getOperand(0);
4388 ConstantSDNode *CC =
4392 Y =
V.getOperand(1);
4394 ConstantSDNode *XC =
4397 X, XC, CC,
Y, OldShiftOpcode, NewShiftOpcode, DAG);
4414 EVT VT =
X.getValueType();
4429 DAGCombinerInfo &DCI)
const {
4432 "Unexpected binop");
4438 SelectionDAG &DAG = DCI.DAG;
4460 if (!DCI.isCalledByLegalizer())
4461 DCI.AddToWorklist(YShl1.
getNode());
4476 if (CTPOP.getOpcode() !=
ISD::CTPOP || !CTPOP.hasOneUse())
4479 EVT CTVT = CTPOP.getValueType();
4480 SDValue CTOp = CTPOP.getOperand(0);
4500 for (
unsigned i = 0; i <
Passes; i++) {
4549 auto getRotateSource = [](
SDValue X) {
4551 return X.getOperand(0);
4558 if (
SDValue R = getRotateSource(N0))
4591 if (!C1 || !C1->
isZero())
4616 if (
Or.getOperand(0) ==
Other) {
4617 X =
Or.getOperand(0);
4618 Y =
Or.getOperand(1);
4621 if (
Or.getOperand(1) ==
Other) {
4622 X =
Or.getOperand(1);
4623 Y =
Or.getOperand(0);
4633 if (matchOr(F0, F1)) {
4640 if (matchOr(F1, F0)) {
4656 const SDLoc &dl)
const {
4666 bool N0ConstOrSplat =
4668 bool N1ConstOrSplat =
4676 if (N0ConstOrSplat && !N1ConstOrSplat &&
4679 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4685 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4690 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4699 const APInt &C1 = N1C->getAPIntValue();
4715 !Attr.hasFnAttr(Attribute::MinSize)) {
4719 return DAG.
getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4750 const APInt &C1 = N1C->getAPIntValue();
4766 if ((
C->getAPIntValue()+1).isPowerOf2()) {
4767 MinBits =
C->getAPIntValue().countr_one();
4778 MinBits = LN0->getMemoryVT().getSizeInBits();
4782 MinBits = LN0->getMemoryVT().getSizeInBits();
4793 MinBits >= ReqdBits) {
4798 if (MinBits == 1 && C1 == 1)
4817 if (TopSetCC.
getValueType() == MVT::i1 && VT == MVT::i1 &&
4851 unsigned bestWidth = 0, bestOffset = 0;
4852 if (Lod->isSimple() && Lod->isUnindexed() &&
4853 (Lod->getMemoryVT().isByteSized() ||
4855 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4857 unsigned maskWidth = origWidth;
4861 origWidth = Lod->getMemoryVT().getSizeInBits();
4865 for (
unsigned width = 8; width < origWidth; width *= 2) {
4870 unsigned maxOffset = origWidth - width;
4871 for (
unsigned offset = 0; offset <= maxOffset; offset += 8) {
4872 if (Mask.isSubsetOf(newMask)) {
4873 unsigned ptrOffset =
4875 unsigned IsFast = 0;
4876 assert((ptrOffset % 8) == 0 &&
"Non-Bytealigned pointer offset");
4881 *DAG.
getContext(), Layout, newVT, Lod->getAddressSpace(),
4882 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4884 bestOffset = ptrOffset / 8;
4885 bestMask = Mask.lshr(offset);
4898 SDValue Ptr = Lod->getBasePtr();
4899 if (bestOffset != 0)
4902 DAG.
getLoad(newVT, dl, Lod->getChain(), Ptr,
4903 Lod->getPointerInfo().getWithOffset(bestOffset),
4904 Lod->getBaseAlign());
4983 ExtDstTy != ExtSrcTy &&
"Unexpected types!");
4990 return DAG.
getSetCC(dl, VT, ZextOp,
4992 }
else if ((N1C->isZero() || N1C->isOne()) &&
5039 return DAG.
getSetCC(dl, VT, Val, N1,
5042 }
else if (N1C->isOne()) {
5125 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1,
Cond, DCI, dl))
5132 const APInt &C1 = N1C->getAPIntValue();
5134 APInt MinVal, MaxVal;
5156 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5176 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5224 if (
SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5225 VT, N0, N1,
Cond, DCI, dl))
5232 bool CmpZero = N1C->isZero();
5233 bool CmpNegOne = N1C->isAllOnes();
5234 if ((CmpZero || CmpNegOne) && N0.
hasOneUse()) {
5237 unsigned EltBits = V.getScalarValueSizeInBits();
5238 if (V.getOpcode() !=
ISD::OR || (EltBits % 2) != 0)
5246 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5249 Hi = RHS.getOperand(0);
5254 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5257 Hi = LHS.getOperand(0);
5265 unsigned HalfBits = EltBits / 2;
5276 if (IsConcat(N0,
Lo,
Hi))
5277 return MergeConcat(
Lo,
Hi);
5315 const APInt &C1 = N1C->getAPIntValue();
5330 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5331 if (AndRHS->getAPIntValue().isPowerOf2() &&
5338 }
else if (
Cond ==
ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5358 const APInt &AndRHSC = AndRHS->getAPIntValue();
5410 return DAG.
getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5418 assert(!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value");
5439 !
isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5458 if (CFP->getValueAPF().isInfinity()) {
5459 bool IsNegInf = CFP->getValueAPF().isNegative();
5470 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5479 "Integer types should be handled by FoldSetCC");
5485 if (UOF ==
unsigned(EqTrue))
5490 if (NewCond !=
Cond &&
5493 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5500 if ((isSignedIntSetCC(
Cond) || isUnsignedIntSetCC(
Cond)) &&
5537 bool LegalRHSImm =
false;
5545 DAG.
getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5553 DAG.
getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5563 DAG.
getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5568 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5577 if (
SDValue V = foldSetCCWithBinOp(VT, N0, N1,
Cond, dl, DCI))
5583 if (
SDValue V = foldSetCCWithBinOp(VT, N1, N0,
Cond, dl, DCI))
5586 if (
SDValue V = foldSetCCWithAnd(VT, N0, N1,
Cond, dl, DCI))
5589 if (
SDValue V = foldSetCCWithOr(VT, N0, N1,
Cond, dl, DCI))
5598 if (!
isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5600 if (
SDValue Folded = buildUREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5603 if (
SDValue Folded = buildSREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5616 N0 = DAG.
getNOT(dl, Temp, OpVT);
5625 Temp = DAG.
getNOT(dl, N0, OpVT);
5632 Temp = DAG.
getNOT(dl, N1, OpVT);
5639 Temp = DAG.
getNOT(dl, N0, OpVT);
5646 Temp = DAG.
getNOT(dl, N1, OpVT);
5655 N0 = DAG.
getNode(ExtendCode, dl, VT, N0);
5690 GA = GASD->getGlobal();
5691 Offset += GASD->getOffset();
5695 if (
N->isAnyAdd()) {
5700 Offset += V->getSExtValue();
5705 Offset += V->getSExtValue();
5726 unsigned S = Constraint.
size();
5729 switch (Constraint[0]) {
5760 if (S > 1 && Constraint[0] ==
'{' && Constraint[S - 1] ==
'}') {
5761 if (S == 8 && Constraint.
substr(1, 6) ==
"memory")
5789 std::vector<SDValue> &
Ops,
5792 if (Constraint.
size() > 1)
5795 char ConstraintLetter = Constraint[0];
5796 switch (ConstraintLetter) {
5816 bool IsBool =
C->getConstantIntValue()->getBitWidth() == 1;
5826 if (ConstraintLetter !=
'n') {
5829 GA->getValueType(0),
5830 Offset + GA->getOffset()));
5835 BA->getBlockAddress(), BA->getValueType(0),
5836 Offset + BA->getOffset(), BA->getTargetFlags()));
5844 const unsigned OpCode =
Op.getOpcode();
5847 Op =
Op.getOperand(1);
5851 Op =
Op.getOperand(0);
5868std::pair<unsigned, const TargetRegisterClass *>
5874 assert(*(Constraint.
end() - 1) ==
'}' &&
"Not a brace enclosed constraint?");
5879 std::pair<unsigned, const TargetRegisterClass *> R =
5891 std::pair<unsigned, const TargetRegisterClass *> S =
5892 std::make_pair(PR, RC);
5937 unsigned maCount = 0;
5943 unsigned LabelNo = 0;
5946 ConstraintOperands.emplace_back(std::move(CI));
5950 if (OpInfo.multipleAlternatives.size() > maCount)
5951 maCount = OpInfo.multipleAlternatives.size();
5953 OpInfo.ConstraintVT = MVT::Other;
5956 switch (OpInfo.Type) {
5959 if (OpInfo.isIndirect) {
5960 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5966 assert(!
Call.getType()->isVoidTy() &&
"Bad inline asm!");
5968 OpInfo.ConstraintVT =
5972 assert(ResNo == 0 &&
"Asm only has one result!");
5973 OpInfo.ConstraintVT =
5979 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5990 if (OpInfo.CallOperandVal) {
5991 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5992 if (OpInfo.isIndirect) {
5993 OpTy =
Call.getParamElementType(ArgNo);
5994 assert(OpTy &&
"Indirect operand must have elementtype attribute");
5999 if (STy->getNumElements() == 1)
6000 OpTy = STy->getElementType(0);
6005 unsigned BitSize =
DL.getTypeSizeInBits(OpTy);
6026 if (!ConstraintOperands.empty()) {
6028 unsigned bestMAIndex = 0;
6029 int bestWeight = -1;
6035 for (maIndex = 0; maIndex < maCount; ++maIndex) {
6037 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6038 cIndex != eIndex; ++cIndex) {
6047 if (OpInfo.hasMatchingInput()) {
6049 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6050 if ((OpInfo.ConstraintVT.isInteger() !=
6051 Input.ConstraintVT.isInteger()) ||
6052 (OpInfo.ConstraintVT.getSizeInBits() !=
6053 Input.ConstraintVT.getSizeInBits())) {
6064 weightSum += weight;
6067 if (weightSum > bestWeight) {
6068 bestWeight = weightSum;
6069 bestMAIndex = maIndex;
6076 cInfo.selectAlternative(bestMAIndex);
6081 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6082 cIndex != eIndex; ++cIndex) {
6089 if (OpInfo.hasMatchingInput()) {
6092 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6093 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6095 OpInfo.ConstraintVT);
6096 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6098 Input.ConstraintVT);
6099 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
6100 OpInfo.ConstraintVT.isFloatingPoint();
6101 const bool InOpIsIntOrFP =
Input.ConstraintVT.isInteger() ||
6102 Input.ConstraintVT.isFloatingPoint();
6103 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
6104 (MatchRC.second != InputRC.second)) {
6106 " with a matching output constraint of"
6107 " incompatible type!");
6113 return ConstraintOperands;
6148 if (maIndex >= (
int)
info.multipleAlternatives.size())
6149 rCodes = &
info.Codes;
6151 rCodes = &
info.multipleAlternatives[maIndex].Codes;
6155 for (
const std::string &rCode : *rCodes) {
6158 if (weight > BestWeight)
6159 BestWeight = weight;
6172 Value *CallOperandVal =
info.CallOperandVal;
6175 if (!CallOperandVal)
6178 switch (*constraint) {
6242 Ret.
reserve(OpInfo.Codes.size());
6275 "need immediate or other");
6280 std::vector<SDValue> ResultOps;
6282 return !ResultOps.empty();
6290 assert(!OpInfo.Codes.empty() &&
"Must have at least one constraint");
6293 if (OpInfo.Codes.size() == 1) {
6294 OpInfo.ConstraintCode = OpInfo.Codes[0];
6301 unsigned BestIdx = 0;
6302 for (
const unsigned E =
G.size();
6309 if (BestIdx + 1 == E) {
6315 OpInfo.ConstraintCode =
G[BestIdx].first;
6316 OpInfo.ConstraintType =
G[BestIdx].second;
6320 if (OpInfo.ConstraintCode ==
"X" && OpInfo.CallOperandVal) {
6324 Value *v = OpInfo.CallOperandVal;
6330 OpInfo.ConstraintCode =
"i";
6337 OpInfo.ConstraintCode = Repl;
6351 EVT VT =
N->getValueType(0);
6355 bool UseSRA =
false;
6362 EVT CT =
C->getValueType(0);
6363 APInt Divisor =
C->getAPIntValue();
6386 "Expected matchUnaryPredicate to return one element for scalable "
6393 Factor = Factors[0];
6411 EVT VT =
N->getValueType(0);
6415 bool UseSRL =
false;
6422 EVT CT =
C->getValueType(0);
6423 APInt Divisor =
C->getAPIntValue();
6449 "Expected matchUnaryPredicate to return one element for scalable "
6456 Factor = Factors[0];
6499 EVT VT =
N->getValueType(0);
6535 bool IsAfterLegalization,
6536 bool IsAfterLegalTypes,
6539 EVT VT =
N->getValueType(0);
6565 if (
N->getFlags().hasExact())
6575 APInt Divisor =
C->getAPIntValue().trunc(EltBits);
6577 int NumeratorFactor = 0;
6588 NumeratorFactor = 1;
6591 NumeratorFactor = -1;
6609 SDValue MagicFactor, Factor, Shift, ShiftMask;
6617 Shifts.
size() == 1 && ShiftMasks.
size() == 1 &&
6618 "Expected matchUnaryPredicate to return one element for scalable "
6626 MagicFactor = MagicFactors[0];
6627 Factor = Factors[0];
6629 ShiftMask = ShiftMasks[0];
6673 SDValue Q = GetMULHS(N0, MagicFactor);
6703 bool IsAfterLegalization,
6704 bool IsAfterLegalTypes,
6707 EVT VT =
N->getValueType(0);
6733 if (
N->getFlags().hasExact())
6746 if (IsAfterLegalTypes && VT.
isVector()) {
6756 bool UseNPQ =
false, UsePreShift =
false, UsePostShift =
false;
6764 APInt Divisor =
C->getAPIntValue().trunc(EltBits);
6766 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6770 if (Divisor.
isOne()) {
6771 PreShift = PostShift = DAG.
getUNDEF(ShSVT);
6772 MagicFactor = NPQFactor = DAG.
getUNDEF(SVT);
6776 Divisor, std::min(KnownLeadingZeros, Divisor.
countl_zero()));
6781 "We shouldn't generate an undefined shift!");
6783 "We shouldn't generate an undefined shift!");
6785 "Unexpected pre-shift");
6792 UseNPQ |= magics.
IsAdd;
6793 UsePreShift |= magics.
PreShift != 0;
6809 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6817 NPQFactors.
size() == 1 && PostShifts.
size() == 1 &&
6818 "Expected matchUnaryPredicate to return one for scalable vectors");
6825 PreShift = PreShifts[0];
6826 MagicFactor = MagicFactors[0];
6827 PostShift = PostShifts[0];
6877 Q = GetMULHU(Q, MagicFactor);
6890 NPQ = GetMULHU(NPQ, NPQFactor);
6909 return DAG.
getSelect(dl, VT, IsOne, N0, Q);
6923 if (SplatValue != Values.
end()) {
6928 Replacement = *SplatValue;
6932 if (!AlternativeReplacement)
6935 Replacement = AlternativeReplacement;
6945SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6948 DAGCombinerInfo &DCI,
6949 const SDLoc &
DL)
const {
6951 if (
SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6953 for (SDNode *
N : Built)
6954 DCI.AddToWorklist(
N);
6962TargetLowering::prepareUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6964 DAGCombinerInfo &DCI,
const SDLoc &
DL,
6965 SmallVectorImpl<SDNode *> &Created)
const {
6972 "Only applicable for (in)equality comparisons.");
6974 SelectionDAG &DAG = DCI.DAG;
6985 bool ComparingWithAllZeros =
true;
6986 bool AllComparisonsWithNonZerosAreTautological =
true;
6987 bool HadTautologicalLanes =
false;
6988 bool AllLanesAreTautological =
true;
6989 bool HadEvenDivisor =
false;
6990 bool AllDivisorsArePowerOfTwo =
true;
6991 bool HadTautologicalInvertedLanes =
false;
6994 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
7000 const APInt &
Cmp = CCmp->getAPIntValue();
7002 ComparingWithAllZeros &=
Cmp.isZero();
7008 bool TautologicalInvertedLane =
D.ule(Cmp);
7009 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
7014 bool TautologicalLane =
D.isOne() || TautologicalInvertedLane;
7015 HadTautologicalLanes |= TautologicalLane;
7016 AllLanesAreTautological &= TautologicalLane;
7022 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
7025 unsigned K =
D.countr_zero();
7026 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7027 APInt D0 =
D.lshr(K);
7030 HadEvenDivisor |= (
K != 0);
7033 AllDivisorsArePowerOfTwo &= D0.
isOne();
7037 unsigned W =
D.getBitWidth();
7039 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7052 "We are expecting that K is always less than all-ones for ShSVT");
7055 if (TautologicalLane) {
7081 if (AllLanesAreTautological)
7086 if (AllDivisorsArePowerOfTwo)
7091 if (HadTautologicalLanes) {
7106 "Expected matchBinaryPredicate to return one element for "
7117 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
7121 "Expecting that the types on LHS and RHS of comparisons match.");
7131 if (HadEvenDivisor) {
7144 if (!HadTautologicalInvertedLanes)
7150 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7157 SDValue TautologicalInvertedChannels =
7167 DL, SETCCVT, SETCCVT);
7169 Replacement, NewCC);
7177 TautologicalInvertedChannels);
7187SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7190 DAGCombinerInfo &DCI,
7191 const SDLoc &
DL)
const {
7193 if (
SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
7195 assert(Built.
size() <= 7 &&
"Max size prediction failed.");
7196 for (SDNode *
N : Built)
7197 DCI.AddToWorklist(
N);
7205TargetLowering::prepareSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7207 DAGCombinerInfo &DCI,
const SDLoc &
DL,
7208 SmallVectorImpl<SDNode *> &Created)
const {
7232 "Only applicable for (in)equality comparisons.");
7234 SelectionDAG &DAG = DCI.DAG;
7248 if (!CompTarget || !CompTarget->
isZero())
7251 bool HadIntMinDivisor =
false;
7252 bool HadOneDivisor =
false;
7253 bool AllDivisorsAreOnes =
true;
7254 bool HadEvenDivisor =
false;
7255 bool NeedToApplyOffset =
false;
7256 bool AllDivisorsArePowerOfTwo =
true;
7259 auto BuildSREMPattern = [&](ConstantSDNode *
C) {
7267 APInt
D =
C->getAPIntValue();
7271 HadIntMinDivisor |=
D.isMinSignedValue();
7274 HadOneDivisor |=
D.isOne();
7275 AllDivisorsAreOnes &=
D.isOne();
7278 unsigned K =
D.countr_zero();
7279 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7280 APInt D0 =
D.
lshr(K);
7282 if (!
D.isMinSignedValue()) {
7285 HadEvenDivisor |= (
K != 0);
7290 AllDivisorsArePowerOfTwo &= D0.
isOne();
7294 unsigned W =
D.getBitWidth();
7296 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7302 if (!
D.isMinSignedValue()) {
7305 NeedToApplyOffset |=
A != 0;
7312 "We are expecting that A is always less than all-ones for SVT");
7314 "We are expecting that K is always less than all-ones for ShSVT");
7354 if (AllDivisorsAreOnes)
7359 if (AllDivisorsArePowerOfTwo)
7362 SDValue PVal, AVal, KVal, QVal;
7364 if (HadOneDivisor) {
7384 QAmts.
size() == 1 &&
7385 "Expected matchUnaryPredicate to return one element for scalable "
7403 if (NeedToApplyOffset) {
7415 if (HadEvenDivisor) {
7430 if (!HadIntMinDivisor)
7436 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7471 MaskedIsZero, Fold);
7479 EVT VT =
Op.getValueType();
7502 bool LegalOps,
bool OptForSize,
7504 unsigned Depth)
const {
7506 if (
Op.getOpcode() ==
ISD::FNEG ||
Op.getOpcode() == ISD::VP_FNEG) {
7508 return Op.getOperand(0);
7518 EVT VT =
Op.getValueType();
7519 unsigned Opcode =
Op.getOpcode();
7529 auto RemoveDeadNode = [&](
SDValue N) {
7530 if (
N &&
N.getNode()->use_empty())
7539 std::list<HandleSDNode> Handles;
7550 if (LegalOps && !IsOpLegal)
7579 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7587 return N.isUndef() ||
7588 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7592 if (LegalOps && !IsOpLegal)
7609 if (!Flags.hasNoSignedZeros())
7623 Handles.emplace_back(NegX);
7634 if (NegX && (CostX <= CostY)) {
7638 RemoveDeadNode(NegY);
7647 RemoveDeadNode(NegX);
7654 if (!Flags.hasNoSignedZeros())
7679 Handles.emplace_back(NegX);
7690 if (NegX && (CostX <= CostY)) {
7694 RemoveDeadNode(NegY);
7700 if (
C->isExactlyValue(2.0) &&
Op.getOpcode() ==
ISD::FMUL)
7708 RemoveDeadNode(NegX);
7716 if (!Flags.hasNoSignedZeros())
7719 SDValue X =
Op.getOperand(0),
Y =
Op.getOperand(1), Z =
Op.getOperand(2);
7728 Handles.emplace_back(NegZ);
7736 Handles.emplace_back(NegX);
7747 if (NegX && (CostX <= CostY)) {
7748 Cost = std::min(CostX, CostZ);
7751 RemoveDeadNode(NegY);
7757 Cost = std::min(CostY, CostZ);
7760 RemoveDeadNode(NegX);
7770 return DAG.
getNode(Opcode,
DL, VT, NegV);
7786 RemoveDeadNode(NegLHS);
7791 Handles.emplace_back(NegLHS);
7804 RemoveDeadNode(NegLHS);
7805 RemoveDeadNode(NegRHS);
7809 Cost = std::min(CostLHS, CostRHS);
7810 return DAG.
getSelect(
DL, VT,
Op.getOperand(0), NegLHS, NegRHS);
7839 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7852 if ((
Signed && HasSMUL_LOHI) || (!
Signed && HasUMUL_LOHI)) {
7880 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false)) {
7881 Result.push_back(
Lo);
7882 Result.push_back(
Hi);
7885 Result.push_back(Zero);
7886 Result.push_back(Zero);
7897 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
true)) {
7898 Result.push_back(
Lo);
7899 Result.push_back(
Hi);
7904 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7919 if (!MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false))
7922 Result.push_back(
Lo);
7929 Result.push_back(
Hi);
7942 if (!MakeMUL_LOHI(LL, RH,
Lo,
Hi,
false))
7949 if (!MakeMUL_LOHI(LH, RL,
Lo,
Hi,
false))
8002 N->getOperand(0),
N->getOperand(1), Result, HiLoVT,
8003 DAG, Kind, LL, LH, RL, RH);
8005 assert(Result.size() == 2);
8037 unsigned Opcode =
N->getOpcode();
8038 EVT VT =
N->getValueType(0);
8045 "Unexpected opcode");
8051 APInt Divisor = CN->getAPIntValue();
8059 if (Divisor.
uge(HalfMaxPlus1))
8077 unsigned TrailingZeros = 0;
8091 if (HalfMaxPlus1.
urem(Divisor).
isOne()) {
8092 assert(!LL == !LH &&
"Expected both input halves or no input halves!");
8094 std::tie(LL, LH) = DAG.
SplitScalar(
N->getOperand(0), dl, HiLoVT, HiLoVT);
8098 if (TrailingZeros) {
8166 std::tie(QuotL, QuotH) = DAG.
SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
8167 Result.push_back(QuotL);
8168 Result.push_back(QuotH);
8174 if (TrailingZeros) {
8179 Result.push_back(RemL);
8195 EVT VT =
Node->getValueType(0);
8205 bool IsFSHL =
Node->getOpcode() == ISD::VP_FSHL;
8208 EVT ShVT = Z.getValueType();
8214 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8215 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8216 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, IsFSHL ? ShAmt : InvShAmt, Mask,
8218 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8226 ShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, Z, BitMask, Mask, VL);
8230 InvShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, NotZ, BitMask, Mask, VL);
8233 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8234 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitMask, ShAmt, Mask, VL);
8239 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, ShAmt, Mask, VL);
8241 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT, ShY1, InvShAmt, Mask, VL);
8244 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT, ShX1, InvShAmt, Mask, VL);
8245 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, ShAmt, Mask, VL);
8248 return DAG.
getNode(ISD::VP_OR,
DL, VT, ShX, ShY, Mask, VL);
8253 if (
Node->isVPOpcode())
8256 EVT VT =
Node->getValueType(0);
8272 EVT ShVT = Z.getValueType();
8341 EVT VT =
Node->getValueType(0);
8359 if (!AllowVectorOps && VT.
isVector() &&
8377 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8379 HsVal = DAG.
getNode(HsOpc,
DL, VT, Op0, HsAmt);
8385 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8396 EVT VT =
Node->getValueType(0);
8400 unsigned Opcode =
Node->getOpcode();
8405 for (
unsigned I = 0;
I < BW; ++
I) {
8433 unsigned ShAmt = Opcode ==
ISD::CLMULR ? BW - 1 : BW;
8444 assert(
Node->getNumOperands() == 3 &&
"Not a double-shift!");
8445 EVT VT =
Node->getValueType(0);
8496 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8498 EVT SrcVT = Src.getValueType();
8499 EVT DstVT =
Node->getValueType(0);
8503 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8506 if (
Node->isStrictFPOpcode())
8569 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8572 EVT SrcVT = Src.getValueType();
8573 EVT DstVT =
Node->getValueType(0);
8594 if (
Node->isStrictFPOpcode()) {
8596 {
Node->getOperand(0), Src });
8597 Chain = Result.getValue(1);
8611 if (
Node->isStrictFPOpcode()) {
8613 Node->getOperand(0),
true);
8619 bool Strict =
Node->isStrictFPOpcode() ||
8638 if (
Node->isStrictFPOpcode()) {
8640 { Chain, Src, FltOfs });
8662 Result = DAG.
getSelect(dl, DstVT, Sel, True, False);
8672 if (
Node->isStrictFPOpcode())
8676 EVT SrcVT = Src.getValueType();
8677 EVT DstVT =
Node->getValueType(0);
8681 if (
Node->getFlags().hasNonNeg() &&
8729 unsigned Opcode =
Node->getOpcode();
8734 if (
Node->getFlags().hasNoNaNs()) {
8736 EVT VT =
Node->getValueType(0);
8755 EVT VT =
Node->getValueType(0);
8758 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8768 if (!
Node->getFlags().hasNoNaNs()) {
8781 return DAG.
getNode(NewOp, dl, VT, Quiet0, Quiet1,
Node->getFlags());
8787 if ((
Node->getFlags().hasNoNaNs() ||
8790 (
Node->getFlags().hasNoSignedZeros() ||
8793 unsigned IEEE2018Op =
8796 return DAG.
getNode(IEEE2018Op, dl, VT,
Node->getOperand(0),
8797 Node->getOperand(1),
Node->getFlags());
8814 unsigned Opc =
N->getOpcode();
8815 EVT VT =
N->getValueType(0);
8828 bool MinMaxMustRespectOrderedZero =
false;
8832 MinMaxMustRespectOrderedZero =
true;
8846 if (!
N->getFlags().hasNoNaNs() &&
8855 if (!MinMaxMustRespectOrderedZero && !
N->getFlags().hasNoSignedZeros() &&
8878 unsigned Opc =
Node->getOpcode();
8879 EVT VT =
Node->getValueType(0);
8888 if (!Flags.hasNoNaNs()) {
8899 return DAG.
getNode(NewOp,
DL, VT, LHS, RHS, Flags);
8904 if (Flags.hasNoNaNs() ||
8906 unsigned IEEE2019Op =
8909 return DAG.
getNode(IEEE2019Op,
DL, VT, LHS, RHS, Flags);
8914 if ((Flags.hasNoNaNs() ||
8920 return DAG.
getNode(IEEE2008Op,
DL, VT, LHS, RHS, Flags);
8974 bool IsOrdered = NanTest ==
fcNone;
8975 bool IsUnordered = NanTest ==
fcNan;
8978 if (!IsOrdered && !IsUnordered)
8979 return std::nullopt;
8981 if (OrderedMask ==
fcZero &&
8987 return std::nullopt;
8994 EVT OperandVT =
Op.getValueType();
9006 if (OperandVT == MVT::ppcf128) {
9009 OperandVT = MVT::f64;
9016 bool IsF80 = (ScalarFloatVT == MVT::f80);
9020 if (Flags.hasNoFPExcept() &&
9023 bool IsInvertedFP =
false;
9027 FPTestMask = InvertedFPCheck;
9028 IsInvertedFP =
true;
9040 OrderedFPTestMask = FPTestMask;
9042 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
9044 if (std::optional<bool> IsCmp0 =
9047 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
9054 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
9057 if (FPTestMask ==
fcNan &&
9063 bool IsOrderedInf = FPTestMask ==
fcInf;
9066 : UnorderedCmpOpcode,
9077 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
9082 : UnorderedCmpOpcode,
9093 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
9112 return DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal,
9113 IsOrdered ? OrderedOp : UnorderedOp);
9136 DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
9138 return DAG.
getNode(LogicOp,
DL, ResultVT, IsFinite, IsNormal);
9145 bool IsInverted =
false;
9148 Test = InvertedCheck;
9162 const unsigned ExplicitIntBitInF80 = 63;
9163 APInt ExpMask = Inf;
9165 ExpMask.
clearBit(ExplicitIntBitInF80);
9179 const auto appendResult = [&](
SDValue PartialRes) {
9189 const auto getIntBitIsSet = [&]() ->
SDValue {
9190 if (!IntBitIsSetV) {
9191 APInt IntBitMask(BitSize, 0);
9192 IntBitMask.
setBit(ExplicitIntBitInF80);
9197 return IntBitIsSetV;
9225 appendResult(PartialRes);
9234 appendResult(ExpIsZero);
9244 else if (PartialCheck ==
fcZero)
9248 appendResult(PartialRes);
9261 appendResult(PartialRes);
9264 if (
unsigned PartialCheck =
Test &
fcInf) {
9267 else if (PartialCheck ==
fcInf)
9274 appendResult(PartialRes);
9277 if (
unsigned PartialCheck =
Test &
fcNan) {
9278 APInt InfWithQnanBit = Inf | QNaNBitMask;
9280 if (PartialCheck ==
fcNan) {
9293 }
else if (PartialCheck ==
fcQNan) {
9305 appendResult(PartialRes);
9310 APInt ExpLSB = ExpMask & ~(ExpMask.
shl(1));
9313 APInt ExpLimit = ExpMask - ExpLSB;
9326 appendResult(PartialRes);
9349 EVT VT =
Node->getValueType(0);
9356 if (!(Len <= 128 && Len % 8 == 0))
9415 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9426 EVT VT =
Node->getValueType(0);
9435 if (!(Len <= 128 && Len % 8 == 0))
9447 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9450 Tmp1 = DAG.
getNode(ISD::VP_AND, dl, VT,
9454 Op = DAG.
getNode(ISD::VP_SUB, dl, VT,
Op, Tmp1, Mask, VL);
9457 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op, Mask33, Mask, VL);
9458 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT,
9462 Op = DAG.
getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9467 Tmp5 = DAG.
getNode(ISD::VP_ADD, dl, VT,
Op, Tmp4, Mask, VL);
9468 Op = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9479 V = DAG.
getNode(ISD::VP_MUL, dl, VT,
Op, Mask01, Mask, VL);
9482 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9484 V = DAG.
getNode(ISD::VP_ADD, dl, VT, V,
9485 DAG.
getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9495 EVT VT =
Node->getValueType(0);
9534 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9545 EVT VT =
Node->getValueType(0);
9559 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9562 DAG.
getNode(ISD::VP_SRL, dl, VT,
Op, Tmp, Mask, VL), Mask,
9567 return DAG.
getNode(ISD::VP_CTPOP, dl, VT,
Op, Mask, VL);
9576 :
APInt(64, 0x0218A392CD3D5DBFULL);
9590 for (
unsigned i = 0; i <
BitWidth; i++) {
9616 EVT VT =
Node->getValueType(0);
9676 EVT VT =
Node->getValueType(0);
9684 return DAG.
getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9698 EVT SrcVT = Source.getValueType();
9699 EVT ResVT =
N->getValueType(0);
9708 Source = DAG.
getNode(ISD::VP_SETCC,
DL, SrcVT, Source, AllZero,
9716 DAG.
getNode(ISD::VP_SELECT,
DL, ResVecVT, Source, StepVec,
Splat, EVL);
9717 return DAG.
getNode(ISD::VP_REDUCE_UMIN,
DL, ResVT, ExtEVL,
Select, Mask, EVL);
9724 EVT MaskVT = Mask.getValueType();
9734 true, &VScaleRange);
9768 StepVecVT = WideVecVT;
9783 bool IsNegative)
const {
9785 EVT VT =
N->getValueType(0);
9839 EVT VT =
N->getValueType(0);
9917 EVT VT =
N->getValueType(0);
9921 unsigned Opc =
N->getOpcode();
9930 "Unknown AVG node");
9942 return DAG.
getNode(ShiftOpc, dl, VT, Sum,
9951 LHS = DAG.
getNode(ExtOpc, dl, ExtVT, LHS);
9952 RHS = DAG.
getNode(ExtOpc, dl, ExtVT, RHS);
9994 return DAG.
getNode(SumOpc, dl, VT, Sign, Shift);
9999 EVT VT =
N->getValueType(0);
10006 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
10069 EVT VT =
N->getValueType(0);
10078 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
10087 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
10097 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10101 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10102 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10103 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10107 Tmp7 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
10108 DAG.
getConstant(255ULL << 8, dl, VT), Mask, EVL);
10111 Tmp6 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
10112 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
10115 Tmp5 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
10116 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
10121 Tmp4 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp4,
10122 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
10125 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp3,
10126 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
10129 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10130 DAG.
getConstant(255ULL << 8, dl, VT), Mask, EVL);
10133 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
10134 Tmp6 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
10135 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10136 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10137 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
10138 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10139 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
10145 EVT VT =
N->getValueType(0);
10188 for (
unsigned I = 0, J = Sz-1;
I < Sz; ++
I, --J) {
10205 assert(
N->getOpcode() == ISD::VP_BITREVERSE);
10208 EVT VT =
N->getValueType(0);
10227 Tmp = (Sz > 8 ? DAG.
getNode(ISD::VP_BSWAP, dl, VT,
Op, Mask, EVL) :
Op);
10232 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10238 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10243 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10249 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10254 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10260 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10266std::pair<SDValue, SDValue>
10270 SDValue Chain = LD->getChain();
10271 SDValue BasePTR = LD->getBasePtr();
10272 EVT SrcVT = LD->getMemoryVT();
10273 EVT DstVT = LD->getValueType(0);
10305 LD->getPointerInfo(), SrcIntVT, LD->getBaseAlign(),
10306 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10309 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10310 unsigned ShiftIntoIdx =
10321 Scalar = DAG.
getNode(ExtendOp, SL, DstEltVT, Scalar);
10328 return std::make_pair(
Value, Load.getValue(1));
10337 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10339 ExtType, SL, DstEltVT, Chain, BasePTR,
10340 LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT,
10341 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10352 return std::make_pair(
Value, NewChain);
10359 SDValue Chain = ST->getChain();
10360 SDValue BasePtr = ST->getBasePtr();
10362 EVT StVT = ST->getMemoryVT();
10388 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10392 unsigned ShiftIntoIdx =
10401 return DAG.
getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10402 ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10408 assert(Stride &&
"Zero stride!");
10412 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10420 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10421 MemSclVT, ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10430std::pair<SDValue, SDValue>
10433 "unaligned indexed loads not implemented!");
10434 SDValue Chain = LD->getChain();
10435 SDValue Ptr = LD->getBasePtr();
10436 EVT VT = LD->getValueType(0);
10437 EVT LoadedVT = LD->getMemoryVT();
10453 LD->getMemOperand());
10455 if (LoadedVT != VT)
10459 return std::make_pair(Result, newLoad.
getValue(1));
10467 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10473 SDValue StackPtr = StackBase;
10477 EVT StackPtrVT = StackPtr.getValueType();
10483 for (
unsigned i = 1; i < NumRegs; i++) {
10486 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(
Offset),
10487 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10490 Load.getValue(1), dl, Load, StackPtr,
10501 8 * (LoadedBytes -
Offset));
10504 LD->getPointerInfo().getWithOffset(
Offset), MemVT, LD->getBaseAlign(),
10505 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10510 Load.getValue(1), dl, Load, StackPtr,
10517 Load = DAG.
getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10522 return std::make_pair(Load, TF);
10526 "Unaligned load of unsupported type.");
10535 Align Alignment = LD->getBaseAlign();
10536 unsigned IncrementSize = NumBits / 8;
10547 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10552 LD->getPointerInfo().getWithOffset(IncrementSize),
10553 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10556 Hi = DAG.
getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10557 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10562 LD->getPointerInfo().getWithOffset(IncrementSize),
10563 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10575 return std::make_pair(Result, TF);
10581 "unaligned indexed stores not implemented!");
10582 SDValue Chain = ST->getChain();
10583 SDValue Ptr = ST->getBasePtr();
10584 SDValue Val = ST->getValue();
10586 Align Alignment = ST->getBaseAlign();
10588 EVT StoreMemVT = ST->getMemoryVT();
10604 Result = DAG.
getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10605 Alignment, ST->getMemOperand()->getFlags());
10616 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10624 Chain, dl, Val, StackPtr,
10627 EVT StackPtrVT = StackPtr.getValueType();
10635 for (
unsigned i = 1; i < NumRegs; i++) {
10638 RegVT, dl, Store, StackPtr,
10642 ST->getPointerInfo().getWithOffset(
Offset),
10643 ST->getBaseAlign(),
10644 ST->getMemOperand()->getFlags()));
10663 Load.getValue(1), dl, Load, Ptr,
10664 ST->getPointerInfo().getWithOffset(
Offset), LoadMemVT,
10665 ST->getBaseAlign(), ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10672 "Unaligned store of unknown type.");
10676 unsigned IncrementSize = NumBits / 8;
10696 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10697 ST->getMemOperand()->getFlags());
10702 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10703 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10714 bool IsCompressedMemory)
const {
10717 EVT MaskVT = Mask.getValueType();
10719 "Incompatible types of Data and Mask");
10720 if (IsCompressedMemory) {
10733 MaskIntVT = MVT::i32;
10752 "Cannot index a scalable vector within a fixed-width vector");
10763 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10777 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10787 DAG, VecPtr, VecVT,
10789 Index, PtrArithFlags);
10805 "Converting bits to bytes lost precision");
10807 "Sub-vector must be a vector with matching element type");
10811 EVT IdxVT = Index.getValueType();
10842 assert(EmuTlsVar &&
"Cannot find EmuTlsVar ");
10843 Args.emplace_back(DAG.
getGlobalAddress(EmuTlsVar, dl, PtrVT), VoidPtrType);
10850 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
10859 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10860 return CallResult.first;
10871 EVT VT =
Op.getOperand(0).getValueType();
10873 if (VT.
bitsLT(MVT::i32)) {
10891 unsigned Opcode =
Node->getOpcode();
10895 unsigned AltOpcode;
10914 return DAG.
getNode(AltOpcode,
DL, VT, Op0, Op1);
10955 {Op0, Op1, DAG.getCondCode(CC)})) {
10962 {Op0, Op1, DAG.getCondCode(CC)})) {
10990 unsigned Opcode =
Node->getOpcode();
10993 EVT VT = LHS.getValueType();
10996 assert(VT == RHS.getValueType() &&
"Expected operands to be the same type");
11024 unsigned OverflowOp;
11039 llvm_unreachable(
"Expected method to receive signed or unsigned saturation "
11040 "addition or subtraction node.");
11048 unsigned BitWidth = LHS.getScalarValueSizeInBits();
11051 SDValue SumDiff = Result.getValue(0);
11052 SDValue Overflow = Result.getValue(1);
11074 return DAG.
getSelect(dl, VT, Overflow, Zero, SumDiff);
11094 if (LHSIsNonNegative || RHSIsNonNegative) {
11096 return DAG.
getSelect(dl, VT, Overflow, SatMax, SumDiff);
11102 if (LHSIsNegative || RHSIsNegative) {
11104 return DAG.
getSelect(dl, VT, Overflow, SatMin, SumDiff);
11114 return DAG.
getSelect(dl, VT, Overflow, Result, SumDiff);
11118 unsigned Opcode =
Node->getOpcode();
11121 EVT VT = LHS.getValueType();
11122 EVT ResVT =
Node->getValueType(0);
11154 unsigned Opcode =
Node->getOpcode();
11158 EVT VT = LHS.getValueType();
11163 "Expected a SHLSAT opcode");
11195 EVT VT = LHS.getValueType();
11196 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11198 assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS));
11200 "Signed flag should only be set when HiLHS and RiRHS are null");
11208 unsigned HalfBits = Bits / 2;
11253 EVT VT = LHS.getValueType();
11254 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11258 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
11259 if (WideVT == MVT::i16)
11260 LC = RTLIB::MUL_I16;
11261 else if (WideVT == MVT::i32)
11262 LC = RTLIB::MUL_I32;
11263 else if (WideVT == MVT::i64)
11264 LC = RTLIB::MUL_I64;
11265 else if (WideVT == MVT::i128)
11266 LC = RTLIB::MUL_I128;
11269 if (LibcallImpl == RTLIB::Unsupported) {
11297 SDValue Args[] = {LHS, HiLHS, RHS, HiRHS};
11298 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11300 SDValue Args[] = {HiLHS, LHS, HiRHS, RHS};
11301 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11304 "Ret value is a collection of constituent nodes holding result.");
11321 "Expected a fixed point multiplication opcode");
11326 EVT VT = LHS.getValueType();
11327 unsigned Scale =
Node->getConstantOperandVal(2);
11343 SDValue Product = Result.getValue(0);
11344 SDValue Overflow = Result.getValue(1);
11355 Result = DAG.
getSelect(dl, VT, ProdNeg, SatMin, SatMax);
11356 return DAG.
getSelect(dl, VT, Overflow, Result, Product);
11360 SDValue Product = Result.getValue(0);
11361 SDValue Overflow = Result.getValue(1);
11365 return DAG.
getSelect(dl, VT, Overflow, SatMax, Product);
11370 "Expected scale to be less than the number of bits if signed or at "
11371 "most the number of bits if unsigned.");
11372 assert(LHS.getValueType() == RHS.getValueType() &&
11373 "Expected both operands to be the same type");
11385 Lo = Result.getValue(0);
11386 Hi = Result.getValue(1);
11389 Hi = DAG.
getNode(HiOp, dl, VT, LHS, RHS);
11407 if (Scale == VTSize)
11453 return DAG.
getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11478 "Expected a fixed point division opcode");
11480 EVT VT = LHS.getValueType();
11502 if (LHSLead + RHSTrail < Scale + (
unsigned)(Saturating &&
Signed))
11505 unsigned LHSShift = std::min(LHSLead, Scale);
11506 unsigned RHSShift = Scale - LHSShift;
11570 { LHS, RHS, CarryIn });
11577 LHS.getValueType(), LHS, RHS);
11579 EVT ResultType =
Node->getValueType(1);
11590 DAG.
getSetCC(dl, SetCCType, Result,
11599 SetCC = DAG.
getSetCC(dl, SetCCType, Result, LHS, CC);
11612 LHS.getValueType(), LHS, RHS);
11614 EVT ResultType =
Node->getValueType(1);
11621 SDValue Sat = DAG.
getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11640 DAG.
getNode(
ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11641 ResultType, ResultType);
11647 EVT VT =
Node->getValueType(0);
11655 const APInt &
C = RHSC->getAPIntValue();
11657 if (
C.isPowerOf2()) {
11659 bool UseArithShift = isSigned && !
C.isMinSignedValue();
11662 Overflow = DAG.
getSetCC(dl, SetCCVT,
11664 dl, VT, Result, ShiftAmt),
11677 static const unsigned Ops[2][3] =
11682 TopHalf = DAG.
getNode(
Ops[isSigned][0], dl, VT, LHS, RHS);
11688 LHS = DAG.
getNode(
Ops[isSigned][2], dl, WideVT, LHS);
11689 RHS = DAG.
getNode(
Ops[isSigned][2], dl, WideVT, RHS);
11703 Result = BottomHalf;
11710 Overflow = DAG.
getSetCC(dl, SetCCVT, TopHalf,
11715 EVT RType =
Node->getValueType(1);
11720 "Unexpected result type for S/UMULO legalization");
11728 EVT VT =
Op.getValueType();
11751 "Expanding reductions for scalable vectors is undefined.");
11760 for (
unsigned i = 1; i < NumElts; i++)
11761 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i],
Node->getFlags());
11764 if (EltVT !=
Node->getValueType(0))
11780 "Expanding reductions for scalable vectors is undefined.");
11790 for (
unsigned i = 0; i < NumElts; i++)
11791 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i], Flags);
11798 EVT VT =
Node->getValueType(0);
11807 Result = DAG.
getNode(DivRemOpc, dl, VTs, Dividend, Divisor).
getValue(1);
11812 SDValue Divide = DAG.
getNode(DivOpc, dl, VT, Dividend, Divisor);
11827 EVT SrcVT = Src.getValueType();
11828 EVT DstVT =
Node->getValueType(0);
11833 assert(SatWidth <= DstWidth &&
11834 "Expected saturation width smaller than result width");
11838 APInt MinInt, MaxInt;
11849 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11851 SrcVT = Src.getValueType();
11873 if (AreExactFloatBounds && MinMaxLegal) {
11882 dl, DstVT, Clamped);
11894 return DAG.
getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11933 EVT OperandVT =
Op.getValueType();
11959 Op.getValueType());
11963 KeepNarrow = DAG.
getNode(
ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11974 SDValue Adjust = DAG.
getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11976 Op = DAG.
getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11983 EVT VT =
Node->getValueType(0);
11986 if (
Node->getConstantOperandVal(1) == 1) {
11989 EVT OperandVT =
Op.getValueType();
12001 EVT I32 =
F32.changeTypeToInteger();
12038 "Unexpected opcode!");
12039 assert(
Node->getValueType(0).isScalableVector() &&
12040 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
12042 EVT VT =
Node->getValueType(0);
12064 EVT PtrVT = StackPtr.getValueType();
12081 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr,
12096 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr2,
12109 EVT MaskVT = Mask.getValueType();
12126 bool HasPassthru = !Passthru.
isUndef();
12132 Chain = DAG.
getStore(Chain,
DL, Passthru, StackPtr, PtrInfo);
12135 APInt PassthruSplatVal;
12136 bool IsSplatPassthru =
12139 if (IsSplatPassthru) {
12143 LastWriteVal = DAG.
getConstant(PassthruSplatVal,
DL, ScalarVT);
12144 }
else if (HasPassthru) {
12160 ScalarVT,
DL, Chain, LastElmtPtr,
12166 for (
unsigned I = 0;
I < NumElms;
I++) {
12170 Chain,
DL, ValI, OutPtr,
12182 if (HasPassthru &&
I == NumElms - 1) {
12192 LastWriteVal = DAG.
getSelect(
DL, ScalarVT, AllLanesSelected, ValI,
12195 Chain,
DL, LastWriteVal, OutPtr,
12200 return DAG.
getLoad(VecVT,
DL, Chain, StackPtr, PtrInfo);
12207 SDValue MulLHS =
N->getOperand(1);
12208 SDValue MulRHS =
N->getOperand(2);
12216 unsigned ExtOpcLHS, ExtOpcRHS;
12217 switch (
N->getOpcode()) {
12231 if (ExtMulOpVT != MulOpVT) {
12232 MulLHS = DAG.
getNode(ExtOpcLHS,
DL, ExtMulOpVT, MulLHS);
12233 MulRHS = DAG.
getNode(ExtOpcRHS,
DL, ExtMulOpVT, MulRHS);
12247 std::deque<SDValue> Subvectors = {Acc};
12248 for (
unsigned I = 0;
I < ScaleFactor;
I++)
12251 unsigned FlatNode =
12255 while (Subvectors.size() > 1) {
12256 Subvectors.push_back(
12257 DAG.
getNode(FlatNode,
DL, AccVT, {Subvectors[0], Subvectors[1]}));
12258 Subvectors.pop_front();
12259 Subvectors.pop_front();
12262 assert(Subvectors.size() == 1 &&
12263 "There should only be one subvector after tree flattening");
12265 return Subvectors[0];
12278 if (
Op.getNode() != FPNode)
12282 while (!Worklist.
empty()) {
12316 std::optional<unsigned> CallRetResNo)
const {
12317 if (LC == RTLIB::UNKNOWN_LIBCALL)
12321 if (LibcallImpl == RTLIB::Unsupported)
12325 EVT VT =
Node->getValueType(0);
12326 unsigned NumResults =
Node->getNumValues();
12336 SDValue StoreValue = ST->getValue();
12337 unsigned ResNo = StoreValue.
getResNo();
12339 if (CallRetResNo == ResNo)
12342 if (!ST->isSimple() || ST->getAddressSpace() != 0)
12345 if (StoresInChain && ST->getChain() != StoresInChain)
12349 if (ST->getAlign() <
12357 ResultStores[ResNo] = ST;
12358 StoresInChain = ST->getChain();
12365 EVT ArgVT =
Op.getValueType();
12367 Args.emplace_back(
Op, ArgTy);
12374 if (ResNo == CallRetResNo)
12376 EVT ResVT =
Node->getValueType(ResNo);
12378 ResultPtrs[ResNo] = ResultPtr;
12379 Args.emplace_back(ResultPtr,
PointerTy);
12391 Type *RetType = CallRetResNo.has_value()
12392 ?
Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
12404 if (ResNo == CallRetResNo) {
12410 ResultPtr, PtrInfo);
12416 PtrInfo = ST->getPointerInfo();
12423 Results.push_back(LoadResult);
12432 SDValue EVL,
bool &NeedInvert,
12434 bool IsSignaling)
const {
12435 MVT OpVT = LHS.getSimpleValueType();
12437 NeedInvert =
false;
12438 assert(!EVL == !Mask &&
"VP Mask and EVL must either both be set or unset");
12439 bool IsNonVP = !EVL;
12454 bool NeedSwap =
false;
12455 InvCC = getSetCCInverse(CCCode, OpVT);
12471 if (OpVT == MVT::i1) {
12486 DAG.
getNOT(dl, LHS, MVT::i1));
12491 DAG.
getNOT(dl, RHS, MVT::i1));
12496 DAG.
getNOT(dl, LHS, MVT::i1));
12501 DAG.
getNOT(dl, RHS, MVT::i1));
12524 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
12529 "If SETO is expanded, SETOEQ must be legal!");
12546 NeedInvert = ((
unsigned)CCCode & 0x8U);
12587 SetCC1 = DAG.
getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12588 SetCC2 = DAG.
getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12590 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12591 SetCC2 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12596 SetCC1 = DAG.
getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12597 SetCC2 = DAG.
getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12599 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12600 SetCC2 = DAG.
getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12607 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2);
12612 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12624 EVT VT =
Node->getValueType(0);
12636 unsigned Opcode =
Node->getOpcode();
12674 std::optional<unsigned> ByteOffset;
12678 int Elt = ConstEltNo->getZExtValue();
12692 unsigned IsFast = 0;
12702 DAG, OriginalLoad->
getBasePtr(), InVecVT, EltNo);
12707 if (ResultVT.
bitsGT(VecEltVT)) {
12714 NewPtr, MPI, VecEltVT, Alignment,
12724 if (ResultVT.
bitsLT(VecEltVT))
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Function const char * Passes
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
static constexpr roundingMode rmTowardZero
static constexpr roundingMode rmNearestTiesToEven
opStatus
IEEE-754R 7: Default exception handling.
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
void clearAllBits()
Set every bit to 0.
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
void negate()
Negate this APInt in place.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned countLeadingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
void setAllBits()
Set every bit to 1.
LLVM_ABI APInt multiplicativeInverse() const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
ConstantFP - Floating Point Values [float, double].
This class represents a range of values.
const APInt & getAPIntValue() const
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Context object for machine code objects.
Base class for the full range of assembler expressions which are needed for parsing.
Wrapper class representing physical registers. Should be passed by value.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setAdjustsStack(bool V)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags getFlags() const
Return the raw flags of the source value,.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
std::vector< ArgListEntry > ArgListTy
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
bool expandMultipleResultFPLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={}) const
Expands a node with multiple results to an FP or vector libcall.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SmallVector< ConstraintPair > ConstraintGroup
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, const SDValue LHS, const SDValue RHS, SDValue &Lo, SDValue &Hi) const
Calculate full product of LHS and RHS either via a libcall or through brute force expansion of the mu...
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandCLMUL(SDNode *N, SelectionDAG &DAG) const
Expand carryless multiply.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
virtual unsigned computeNumSignBitsForTargetInstr(GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed, SDValue &Lo, SDValue &Hi, SDValue LHS, SDValue RHS, SDValue HiLHS=SDValue(), SDValue HiRHS=SDValue()) const
Calculate the product twice the width of LHS and RHS.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
~TargetLowering() override
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis, Register R, KnownFPClass &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue getInboundsVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ PTRADD
PTRADD represents pointer arithmetic semantics, for targets that opt in using shouldPreservePtrArith(...
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ CLMUL
Carry-less multiplication operations.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ BRIND
BRIND - Indirect branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ CALLSEQ_START
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence,...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
This is an optimization pass for GlobalISel generic memory operations.
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
LLVM_ABI void reportFatalInternalError(Error Err)
Report a fatal error that indicates a bug in LLVM.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned Log2(Align A)
Returns the log2 of the alignment.
@ Increment
Incrementally increasing token ID.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
bool isUnknown() const
Returns true if we don't know any bits.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
bool isSignUnknown() const
Returns true if we don't know the sign bit.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
unsigned ShiftAmount
shift amount
static LLVM_ABI SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
std::string ConstraintCode
This contains the actual string for the code, like "m".
LLVM_ABI unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
LLVM_ABI bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
bool isBeforeLegalizeOps() const
LLVM_ABI void AddToWorklist(SDNode *N)
bool isCalledByLegalizer() const
bool isBeforeLegalize() const
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
ArrayRef< EVT > OpsVTBeforeSoften
bool IsPostTypeLegalization
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
ArrayRef< Type * > OpsTypeOverrides
MakeLibCallOptions & setIsSigned(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
bool LegalOperations() const
Magic data for optimising unsigned division by a constant.
unsigned PreShift
pre-shift amount
static LLVM_ABI UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...
unsigned PostShift
post-shift amount