28#include "llvm/IR/IntrinsicsLoongArch.h"
37#define DEBUG_TYPE "loongarch-isel-lowering"
42 cl::desc(
"Trap on integer division by zero."),
54 if (Subtarget.hasBasicF())
56 if (Subtarget.hasBasicD())
60 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
62 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
64 if (Subtarget.hasExtLSX())
68 if (Subtarget.hasExtLASX())
69 for (
MVT VT : LASXVTs)
169 if (Subtarget.hasBasicF()) {
193 if (!Subtarget.hasBasicD()) {
204 if (Subtarget.hasBasicD()) {
233 if (Subtarget.hasExtLSX()) {
248 for (
MVT VT : LSXVTs) {
261 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
276 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
278 for (
MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
280 for (
MVT VT : {MVT::v4i32, MVT::v2i64}) {
284 for (
MVT VT : {MVT::v4f32, MVT::v2f64}) {
304 if (Subtarget.hasExtLASX()) {
305 for (
MVT VT : LASXVTs) {
319 for (
MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
334 for (
MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32})
336 for (
MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64})
338 for (
MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
342 for (
MVT VT : {MVT::v8f32, MVT::v4f64}) {
364 if (Subtarget.hasExtLSX())
387 if (Subtarget.hasLAMCAS())
402 switch (
Op.getOpcode()) {
404 return lowerATOMIC_FENCE(
Op, DAG);
406 return lowerEH_DWARF_CFA(
Op, DAG);
408 return lowerGlobalAddress(
Op, DAG);
410 return lowerGlobalTLSAddress(
Op, DAG);
412 return lowerINTRINSIC_WO_CHAIN(
Op, DAG);
414 return lowerINTRINSIC_W_CHAIN(
Op, DAG);
416 return lowerINTRINSIC_VOID(
Op, DAG);
418 return lowerBlockAddress(
Op, DAG);
420 return lowerJumpTable(
Op, DAG);
422 return lowerShiftLeftParts(
Op, DAG);
424 return lowerShiftRightParts(
Op, DAG,
true);
426 return lowerShiftRightParts(
Op, DAG,
false);
428 return lowerConstantPool(
Op, DAG);
430 return lowerFP_TO_SINT(
Op, DAG);
432 return lowerBITCAST(
Op, DAG);
434 return lowerUINT_TO_FP(
Op, DAG);
436 return lowerSINT_TO_FP(
Op, DAG);
438 return lowerVASTART(
Op, DAG);
440 return lowerFRAMEADDR(
Op, DAG);
442 return lowerRETURNADDR(
Op, DAG);
444 return lowerWRITE_REGISTER(
Op, DAG);
446 return lowerINSERT_VECTOR_ELT(
Op, DAG);
448 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
450 return lowerBUILD_VECTOR(
Op, DAG);
452 return lowerVECTOR_SHUFFLE(
Op, DAG);
454 return lowerBITREVERSE(
Op, DAG);
456 return lowerSCALAR_TO_VECTOR(
Op, DAG);
462LoongArchTargetLowering::lowerSCALAR_TO_VECTOR(
SDValue Op,
465 MVT OpVT =
Op.getSimpleValueType();
476 EVT ResTy =
Op->getValueType(0);
487 for (
unsigned int i = 0; i < NewEltNum; i++) {
490 unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)
509 for (
unsigned int i = 0; i < NewEltNum; i++)
510 for (
int j = OrigEltNum / NewEltNum - 1;
j >= 0;
j--)
511 Mask.push_back(j + (OrigEltNum / NewEltNum) * i);
519template <
typename ValType>
522 unsigned CheckStride,
524 ValType ExpectedIndex,
unsigned ExpectedIndexStride) {
528 if (*
I != -1 && *
I != ExpectedIndex)
530 ExpectedIndex += ExpectedIndexStride;
534 for (
unsigned n = 0; n < CheckStride &&
I !=
End; ++n, ++
I)
553 for (
const auto &M : Mask) {
560 if (SplatIndex == -1)
563 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
564 if (fitsRegularPattern<int>(Mask.begin(), 1, Mask.end(), SplatIndex, 0)) {
565 APInt Imm(64, SplatIndex);
599 int SubMask[4] = {-1, -1, -1, -1};
600 for (
unsigned i = 0; i < 4; ++i) {
601 for (
unsigned j = i; j < Mask.size(); j += 4) {
608 if (Idx < 0 || Idx >= 4)
614 if (SubMask[i] == -1)
618 else if (
Idx != -1 &&
Idx != SubMask[i])
625 for (
int i = 3; i >= 0; --i) {
626 int Idx = SubMask[i];
658 const auto &Begin = Mask.begin();
659 const auto &
End = Mask.end();
660 SDValue OriV1 = V1, OriV2 = V2;
662 if (fitsRegularPattern<int>(Begin, 2,
End, 0, 2))
664 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size(), 2))
669 if (fitsRegularPattern<int>(Begin + 1, 2,
End, 0, 2))
671 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size(), 2))
698 const auto &Begin = Mask.begin();
699 const auto &
End = Mask.end();
700 SDValue OriV1 = V1, OriV2 = V2;
702 if (fitsRegularPattern<int>(Begin, 2,
End, 1, 2))
704 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size() + 1, 2))
709 if (fitsRegularPattern<int>(Begin + 1, 2,
End, 1, 2))
711 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size() + 1, 2))
739 const auto &Begin = Mask.begin();
740 const auto &
End = Mask.end();
741 unsigned HalfSize = Mask.size() / 2;
742 SDValue OriV1 = V1, OriV2 = V2;
744 if (fitsRegularPattern<int>(Begin, 2,
End, HalfSize, 1))
746 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size() + HalfSize, 1))
751 if (fitsRegularPattern<int>(Begin + 1, 2,
End, HalfSize, 1))
753 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size() + HalfSize,
782 const auto &Begin = Mask.begin();
783 const auto &
End = Mask.end();
784 SDValue OriV1 = V1, OriV2 = V2;
786 if (fitsRegularPattern<int>(Begin, 2,
End, 0, 1))
788 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size(), 1))
793 if (fitsRegularPattern<int>(Begin + 1, 2,
End, 0, 1))
795 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size(), 1))
822 const auto &Begin = Mask.begin();
823 const auto &Mid = Mask.begin() + Mask.size() / 2;
824 const auto &
End = Mask.end();
825 SDValue OriV1 = V1, OriV2 = V2;
827 if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
829 else if (fitsRegularPattern<int>(Begin, 1, Mid, Mask.size(), 2))
834 if (fitsRegularPattern<int>(Mid, 1,
End, 0, 2))
836 else if (fitsRegularPattern<int>(Mid, 1,
End, Mask.size(), 2))
864 const auto &Begin = Mask.begin();
865 const auto &Mid = Mask.begin() + Mask.size() / 2;
866 const auto &
End = Mask.end();
867 SDValue OriV1 = V1, OriV2 = V2;
869 if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
871 else if (fitsRegularPattern<int>(Begin, 1, Mid, Mask.size() + 1, 2))
876 if (fitsRegularPattern<int>(Mid, 1,
End, 1, 2))
878 else if (fitsRegularPattern<int>(Mid, 1,
End, Mask.size() + 1, 2))
920 "Vector type is unsupported for lsx!");
922 "Two operands have different types!");
924 "Unexpected mask size for shuffle!");
925 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
973 for (
const auto &M : Mask) {
980 if (SplatIndex == -1)
983 const auto &Begin = Mask.begin();
984 const auto &
End = Mask.end();
985 unsigned HalfSize = Mask.size() / 2;
987 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
988 if (fitsRegularPattern<int>(Begin, 1,
End - HalfSize, SplatIndex, 0) &&
989 fitsRegularPattern<int>(Begin + HalfSize, 1,
End, SplatIndex + HalfSize,
991 APInt Imm(64, SplatIndex);
1005 if (Mask.size() <= 4)
1029 const auto &Begin = Mask.begin();
1030 const auto &
End = Mask.end();
1031 unsigned HalfSize = Mask.size() / 2;
1032 unsigned LeftSize = HalfSize / 2;
1033 SDValue OriV1 = V1, OriV2 = V2;
1035 if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize, HalfSize - LeftSize,
1037 fitsRegularPattern<int>(Begin + HalfSize, 2,
End, HalfSize + LeftSize, 1))
1039 else if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize,
1040 Mask.size() + HalfSize - LeftSize, 1) &&
1041 fitsRegularPattern<int>(Begin + HalfSize, 2,
End,
1042 Mask.size() + HalfSize + LeftSize, 1))
1047 if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize, HalfSize - LeftSize,
1049 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End, HalfSize + LeftSize,
1052 else if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize,
1053 Mask.size() + HalfSize - LeftSize, 1) &&
1054 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End,
1055 Mask.size() + HalfSize + LeftSize, 1))
1068 const auto &Begin = Mask.begin();
1069 const auto &
End = Mask.end();
1070 unsigned HalfSize = Mask.size() / 2;
1071 SDValue OriV1 = V1, OriV2 = V2;
1073 if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize, 0, 1) &&
1074 fitsRegularPattern<int>(Begin + HalfSize, 2,
End, HalfSize, 1))
1076 else if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize, Mask.size(), 1) &&
1077 fitsRegularPattern<int>(Begin + HalfSize, 2,
End,
1078 Mask.size() + HalfSize, 1))
1083 if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize, 0, 1) &&
1084 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End, HalfSize, 1))
1086 else if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize, Mask.size(),
1088 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End,
1089 Mask.size() + HalfSize, 1))
1102 const auto &Begin = Mask.begin();
1103 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
1104 const auto &Mid = Mask.begin() + Mask.size() / 2;
1105 const auto &RightMid = Mask.end() - Mask.size() / 4;
1106 const auto &
End = Mask.end();
1107 unsigned HalfSize = Mask.size() / 2;
1108 SDValue OriV1 = V1, OriV2 = V2;
1110 if (fitsRegularPattern<int>(Begin, 1, LeftMid, 0, 2) &&
1111 fitsRegularPattern<int>(Mid, 1, RightMid, HalfSize, 2))
1113 else if (fitsRegularPattern<int>(Begin, 1, LeftMid, Mask.size(), 2) &&
1114 fitsRegularPattern<int>(Mid, 1, RightMid, Mask.size() + HalfSize, 2))
1119 if (fitsRegularPattern<int>(LeftMid, 1, Mid, 0, 2) &&
1120 fitsRegularPattern<int>(RightMid, 1,
End, HalfSize, 2))
1122 else if (fitsRegularPattern<int>(LeftMid, 1, Mid, Mask.size(), 2) &&
1123 fitsRegularPattern<int>(RightMid, 1,
End, Mask.size() + HalfSize, 2))
1137 const auto &Begin = Mask.begin();
1138 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
1139 const auto &Mid = Mask.begin() + Mask.size() / 2;
1140 const auto &RightMid = Mask.end() - Mask.size() / 4;
1141 const auto &
End = Mask.end();
1142 unsigned HalfSize = Mask.size() / 2;
1143 SDValue OriV1 = V1, OriV2 = V2;
1145 if (fitsRegularPattern<int>(Begin, 1, LeftMid, 1, 2) &&
1146 fitsRegularPattern<int>(Mid, 1, RightMid, HalfSize + 1, 2))
1148 else if (fitsRegularPattern<int>(Begin, 1, LeftMid, Mask.size() + 1, 2) &&
1149 fitsRegularPattern<int>(Mid, 1, RightMid, Mask.size() + HalfSize + 1,
1155 if (fitsRegularPattern<int>(LeftMid, 1, Mid, 1, 2) &&
1156 fitsRegularPattern<int>(RightMid, 1,
End, HalfSize + 1, 2))
1158 else if (fitsRegularPattern<int>(LeftMid, 1, Mid, Mask.size() + 1, 2) &&
1159 fitsRegularPattern<int>(RightMid, 1,
End, Mask.size() + HalfSize + 1,
1173 int MaskSize = Mask.size();
1174 int HalfSize = Mask.size() / 2;
1175 const auto &Begin = Mask.begin();
1176 const auto &Mid = Mask.begin() + HalfSize;
1177 const auto &
End = Mask.end();
1189 for (
auto it = Begin; it < Mid; it++) {
1192 else if ((*it >= 0 && *it < HalfSize) ||
1193 (*it >= MaskSize && *it <= MaskSize + HalfSize)) {
1194 int M = *it < HalfSize ? *it : *it - HalfSize;
1199 assert((
int)MaskAlloc.
size() == HalfSize &&
"xvshuf convert failed!");
1201 for (
auto it = Mid; it <
End; it++) {
1204 else if ((*it >= HalfSize && *it < MaskSize) ||
1205 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
1206 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
1211 assert((
int)MaskAlloc.
size() == MaskSize &&
"xvshuf convert failed!");
1242 enum HalfMaskType { HighLaneTy, LowLaneTy,
None };
1244 int MaskSize = Mask.size();
1245 int HalfSize = Mask.size() / 2;
1247 HalfMaskType preMask =
None, postMask =
None;
1249 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
1250 return M < 0 || (M >= 0 && M < HalfSize) ||
1251 (M >= MaskSize && M < MaskSize + HalfSize);
1253 preMask = HighLaneTy;
1254 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
1255 return M < 0 || (M >= HalfSize && M < MaskSize) ||
1256 (M >= MaskSize + HalfSize && M < MaskSize * 2);
1258 preMask = LowLaneTy;
1260 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
1261 return M < 0 || (M >= 0 && M < HalfSize) ||
1262 (M >= MaskSize && M < MaskSize + HalfSize);
1264 postMask = HighLaneTy;
1265 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
1266 return M < 0 || (M >= HalfSize && M < MaskSize) ||
1267 (M >= MaskSize + HalfSize && M < MaskSize * 2);
1269 postMask = LowLaneTy;
1277 if (preMask == HighLaneTy && postMask == LowLaneTy) {
1280 if (preMask == LowLaneTy && postMask == HighLaneTy) {
1286 if (!V2.isUndef()) {
1293 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
1294 *it = *it < 0 ? *it : *it - HalfSize;
1296 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
1297 *it = *it < 0 ? *it : *it + HalfSize;
1299 }
else if (preMask == LowLaneTy && postMask == LowLaneTy) {
1305 if (!V2.isUndef()) {
1312 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
1313 *it = *it < 0 ? *it : *it - HalfSize;
1315 }
else if (preMask == HighLaneTy && postMask == HighLaneTy) {
1321 if (!V2.isUndef()) {
1328 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
1329 *it = *it < 0 ? *it : *it + HalfSize;
1345 "Vector type is unsupported for lasx!");
1347 "Two operands have different types!");
1349 "Unexpected mask size for shuffle!");
1350 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
1351 assert(Mask.size() >= 4 &&
"Mask size is less than 4.");
1396 MVT VT =
Op.getSimpleValueType();
1400 bool V1IsUndef = V1.
isUndef();
1401 bool V2IsUndef =
V2.isUndef();
1402 if (V1IsUndef && V2IsUndef)
1415 any_of(OrigMask, [NumElements](
int M) {
return M >= NumElements; })) {
1417 for (
int &M : NewMask)
1418 if (M >= NumElements)
1424 int MaskUpperLimit = OrigMask.
size() * (V2IsUndef ? 1 : 2);
1425 (void)MaskUpperLimit;
1427 [&](
int M) {
return -1 <=
M &&
M < MaskUpperLimit; }) &&
1428 "Out of bounds shuffle index");
1443 if (isa<ConstantSDNode>(
Op))
1445 if (isa<ConstantFPSDNode>(
Op))
1460 EVT ResTy =
Op->getValueType(0);
1462 APInt SplatValue, SplatUndef;
1463 unsigned SplatBitSize;
1468 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
1469 (!Subtarget.hasExtLASX() || !Is256Vec))
1472 if (
Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
1474 SplatBitSize <= 64) {
1476 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
1482 switch (SplatBitSize) {
1486 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
1489 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
1492 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
1495 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
1503 if (ViaVecTy != ResTy)
1516 EVT ResTy =
Node->getValueType(0);
1522 for (
unsigned i = 0; i < NumElts; ++i) {
1524 Node->getOperand(i),
1534LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(
SDValue Op,
1536 EVT VecTy =
Op->getOperand(0)->getValueType(0);
1541 if (isa<ConstantSDNode>(
Idx) &&
1542 (EltTy == MVT::i32 || EltTy == MVT::i64 || EltTy == MVT::f32 ||
1543 EltTy == MVT::f64 ||
Idx->getAsZExtVal() < NumElts / 2))
1550LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(
SDValue Op,
1552 if (isa<ConstantSDNode>(
Op->getOperand(2)))
1576 if (Subtarget.
is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i32) {
1578 "On LA64, only 64-bit registers can be written.");
1579 return Op.getOperand(0);
1582 if (!Subtarget.
is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i64) {
1584 "On LA32, only 32-bit registers can be written.");
1585 return Op.getOperand(0);
1593 if (!isa<ConstantSDNode>(
Op.getOperand(0))) {
1595 "be a constant integer");
1602 EVT VT =
Op.getValueType();
1605 unsigned Depth =
Op.getConstantOperandVal(0);
1606 int GRLenInBytes = Subtarget.
getGRLen() / 8;
1609 int Offset = -(GRLenInBytes * 2);
1624 if (
Op.getConstantOperandVal(0) != 0) {
1626 "return address can only be determined for the current frame");
1660 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
1668 !Subtarget.hasBasicD() &&
"unexpected target features");
1673 auto *
C = dyn_cast<ConstantSDNode>(Op0.
getOperand(1));
1674 if (
C &&
C->getZExtValue() < UINT64_C(0xFFFFFFFF))
1684 dyn_cast<VTSDNode>(Op0.
getOperand(1))->getVT().bitsLT(MVT::i32))
1688 EVT RetVT =
Op.getValueType();
1690 MakeLibCallOptions CallOptions;
1691 CallOptions.setTypeListBeforeSoften(OpVT, RetVT,
true);
1694 std::tie(Result, Chain) =
1702 !Subtarget.hasBasicD() &&
"unexpected target features");
1709 dyn_cast<VTSDNode>(Op0.
getOperand(1))->getVT().bitsLE(MVT::i32))
1713 EVT RetVT =
Op.getValueType();
1715 MakeLibCallOptions CallOptions;
1716 CallOptions.setTypeListBeforeSoften(OpVT, RetVT,
true);
1719 std::tie(Result, Chain) =
1730 if (
Op.getValueType() == MVT::f32 && Op0.
getValueType() == MVT::i32 &&
1731 Subtarget.
is64Bit() && Subtarget.hasBasicF()) {
1747 if (
Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
1748 !Subtarget.hasBasicD()) {
1772 N->getOffset(), Flags);
1780template <
class NodeTy>
1783 bool IsLocal)
const {
1794 assert(Subtarget.
is64Bit() &&
"Large code model requires LA64");
1846 return getAddr(cast<BlockAddressSDNode>(
Op), DAG,
1852 return getAddr(cast<JumpTableSDNode>(
Op), DAG,
1858 return getAddr(cast<ConstantPoolSDNode>(
Op), DAG,
1865 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
1869 if (GV->
isDSOLocal() && isa<GlobalVariable>(GV)) {
1870 if (
auto GCM = dyn_cast<GlobalVariable>(GV)->
getCodeModel())
1879 unsigned Opc,
bool UseGOT,
1897 if (Opc == LoongArch::PseudoLA_TLS_LE && !Large)
1938 Args.push_back(Entry);
1970LoongArchTargetLowering::lowerGlobalTLSAddress(
SDValue Op,
1977 assert((!Large || Subtarget.
is64Bit()) &&
"Large code model requires LA64");
1980 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
1994 return getDynamicTLSAddr(
N, DAG,
1995 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
1996 : LoongArch::PseudoLA_TLS_GD,
2003 return getDynamicTLSAddr(
N, DAG,
2004 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
2005 : LoongArch::PseudoLA_TLS_LD,
2010 return getStaticTLSAddr(
N, DAG,
2011 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
2012 : LoongArch::PseudoLA_TLS_IE,
2019 return getStaticTLSAddr(
N, DAG, LoongArch::PseudoLA_TLS_LE,
2023 return getTLSDescAddr(
N, DAG,
2024 Large ? LoongArch::PseudoLA_TLS_DESC_LARGE
2025 : LoongArch::PseudoLA_TLS_DESC,
2029template <
unsigned N>
2032 auto *CImm = cast<ConstantSDNode>(
Op->getOperand(ImmOp));
2034 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
2035 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
2037 ": argument out of range.");
2044LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(
SDValue Op,
2047 switch (
Op.getConstantOperandVal(0)) {
2050 case Intrinsic::thread_pointer: {
2054 case Intrinsic::loongarch_lsx_vpickve2gr_d:
2055 case Intrinsic::loongarch_lsx_vpickve2gr_du:
2056 case Intrinsic::loongarch_lsx_vreplvei_d:
2057 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
2058 return checkIntrinsicImmArg<1>(
Op, 2, DAG);
2059 case Intrinsic::loongarch_lsx_vreplvei_w:
2060 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
2061 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
2062 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
2063 case Intrinsic::loongarch_lasx_xvpickve_d:
2064 case Intrinsic::loongarch_lasx_xvpickve_d_f:
2065 return checkIntrinsicImmArg<2>(
Op, 2, DAG);
2066 case Intrinsic::loongarch_lasx_xvinsve0_d:
2067 return checkIntrinsicImmArg<2>(
Op, 3, DAG);
2068 case Intrinsic::loongarch_lsx_vsat_b:
2069 case Intrinsic::loongarch_lsx_vsat_bu:
2070 case Intrinsic::loongarch_lsx_vrotri_b:
2071 case Intrinsic::loongarch_lsx_vsllwil_h_b:
2072 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
2073 case Intrinsic::loongarch_lsx_vsrlri_b:
2074 case Intrinsic::loongarch_lsx_vsrari_b:
2075 case Intrinsic::loongarch_lsx_vreplvei_h:
2076 case Intrinsic::loongarch_lasx_xvsat_b:
2077 case Intrinsic::loongarch_lasx_xvsat_bu:
2078 case Intrinsic::loongarch_lasx_xvrotri_b:
2079 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
2080 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
2081 case Intrinsic::loongarch_lasx_xvsrlri_b:
2082 case Intrinsic::loongarch_lasx_xvsrari_b:
2083 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
2084 case Intrinsic::loongarch_lasx_xvpickve_w:
2085 case Intrinsic::loongarch_lasx_xvpickve_w_f:
2086 return checkIntrinsicImmArg<3>(
Op, 2, DAG);
2087 case Intrinsic::loongarch_lasx_xvinsve0_w:
2088 return checkIntrinsicImmArg<3>(
Op, 3, DAG);
2089 case Intrinsic::loongarch_lsx_vsat_h:
2090 case Intrinsic::loongarch_lsx_vsat_hu:
2091 case Intrinsic::loongarch_lsx_vrotri_h:
2092 case Intrinsic::loongarch_lsx_vsllwil_w_h:
2093 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
2094 case Intrinsic::loongarch_lsx_vsrlri_h:
2095 case Intrinsic::loongarch_lsx_vsrari_h:
2096 case Intrinsic::loongarch_lsx_vreplvei_b:
2097 case Intrinsic::loongarch_lasx_xvsat_h:
2098 case Intrinsic::loongarch_lasx_xvsat_hu:
2099 case Intrinsic::loongarch_lasx_xvrotri_h:
2100 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
2101 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
2102 case Intrinsic::loongarch_lasx_xvsrlri_h:
2103 case Intrinsic::loongarch_lasx_xvsrari_h:
2104 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
2105 return checkIntrinsicImmArg<4>(
Op, 2, DAG);
2106 case Intrinsic::loongarch_lsx_vsrlni_b_h:
2107 case Intrinsic::loongarch_lsx_vsrani_b_h:
2108 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
2109 case Intrinsic::loongarch_lsx_vsrarni_b_h:
2110 case Intrinsic::loongarch_lsx_vssrlni_b_h:
2111 case Intrinsic::loongarch_lsx_vssrani_b_h:
2112 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
2113 case Intrinsic::loongarch_lsx_vssrani_bu_h:
2114 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
2115 case Intrinsic::loongarch_lsx_vssrarni_b_h:
2116 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
2117 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
2118 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
2119 case Intrinsic::loongarch_lasx_xvsrani_b_h:
2120 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
2121 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
2122 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
2123 case Intrinsic::loongarch_lasx_xvssrani_b_h:
2124 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
2125 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
2126 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
2127 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
2128 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
2129 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
2130 return checkIntrinsicImmArg<4>(
Op, 3, DAG);
2131 case Intrinsic::loongarch_lsx_vsat_w:
2132 case Intrinsic::loongarch_lsx_vsat_wu:
2133 case Intrinsic::loongarch_lsx_vrotri_w:
2134 case Intrinsic::loongarch_lsx_vsllwil_d_w:
2135 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
2136 case Intrinsic::loongarch_lsx_vsrlri_w:
2137 case Intrinsic::loongarch_lsx_vsrari_w:
2138 case Intrinsic::loongarch_lsx_vslei_bu:
2139 case Intrinsic::loongarch_lsx_vslei_hu:
2140 case Intrinsic::loongarch_lsx_vslei_wu:
2141 case Intrinsic::loongarch_lsx_vslei_du:
2142 case Intrinsic::loongarch_lsx_vslti_bu:
2143 case Intrinsic::loongarch_lsx_vslti_hu:
2144 case Intrinsic::loongarch_lsx_vslti_wu:
2145 case Intrinsic::loongarch_lsx_vslti_du:
2146 case Intrinsic::loongarch_lsx_vbsll_v:
2147 case Intrinsic::loongarch_lsx_vbsrl_v:
2148 case Intrinsic::loongarch_lasx_xvsat_w:
2149 case Intrinsic::loongarch_lasx_xvsat_wu:
2150 case Intrinsic::loongarch_lasx_xvrotri_w:
2151 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
2152 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
2153 case Intrinsic::loongarch_lasx_xvsrlri_w:
2154 case Intrinsic::loongarch_lasx_xvsrari_w:
2155 case Intrinsic::loongarch_lasx_xvslei_bu:
2156 case Intrinsic::loongarch_lasx_xvslei_hu:
2157 case Intrinsic::loongarch_lasx_xvslei_wu:
2158 case Intrinsic::loongarch_lasx_xvslei_du:
2159 case Intrinsic::loongarch_lasx_xvslti_bu:
2160 case Intrinsic::loongarch_lasx_xvslti_hu:
2161 case Intrinsic::loongarch_lasx_xvslti_wu:
2162 case Intrinsic::loongarch_lasx_xvslti_du:
2163 case Intrinsic::loongarch_lasx_xvbsll_v:
2164 case Intrinsic::loongarch_lasx_xvbsrl_v:
2165 return checkIntrinsicImmArg<5>(
Op, 2, DAG);
2166 case Intrinsic::loongarch_lsx_vseqi_b:
2167 case Intrinsic::loongarch_lsx_vseqi_h:
2168 case Intrinsic::loongarch_lsx_vseqi_w:
2169 case Intrinsic::loongarch_lsx_vseqi_d:
2170 case Intrinsic::loongarch_lsx_vslei_b:
2171 case Intrinsic::loongarch_lsx_vslei_h:
2172 case Intrinsic::loongarch_lsx_vslei_w:
2173 case Intrinsic::loongarch_lsx_vslei_d:
2174 case Intrinsic::loongarch_lsx_vslti_b:
2175 case Intrinsic::loongarch_lsx_vslti_h:
2176 case Intrinsic::loongarch_lsx_vslti_w:
2177 case Intrinsic::loongarch_lsx_vslti_d:
2178 case Intrinsic::loongarch_lasx_xvseqi_b:
2179 case Intrinsic::loongarch_lasx_xvseqi_h:
2180 case Intrinsic::loongarch_lasx_xvseqi_w:
2181 case Intrinsic::loongarch_lasx_xvseqi_d:
2182 case Intrinsic::loongarch_lasx_xvslei_b:
2183 case Intrinsic::loongarch_lasx_xvslei_h:
2184 case Intrinsic::loongarch_lasx_xvslei_w:
2185 case Intrinsic::loongarch_lasx_xvslei_d:
2186 case Intrinsic::loongarch_lasx_xvslti_b:
2187 case Intrinsic::loongarch_lasx_xvslti_h:
2188 case Intrinsic::loongarch_lasx_xvslti_w:
2189 case Intrinsic::loongarch_lasx_xvslti_d:
2190 return checkIntrinsicImmArg<5>(
Op, 2, DAG,
true);
2191 case Intrinsic::loongarch_lsx_vsrlni_h_w:
2192 case Intrinsic::loongarch_lsx_vsrani_h_w:
2193 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
2194 case Intrinsic::loongarch_lsx_vsrarni_h_w:
2195 case Intrinsic::loongarch_lsx_vssrlni_h_w:
2196 case Intrinsic::loongarch_lsx_vssrani_h_w:
2197 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
2198 case Intrinsic::loongarch_lsx_vssrani_hu_w:
2199 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
2200 case Intrinsic::loongarch_lsx_vssrarni_h_w:
2201 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
2202 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
2203 case Intrinsic::loongarch_lsx_vfrstpi_b:
2204 case Intrinsic::loongarch_lsx_vfrstpi_h:
2205 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
2206 case Intrinsic::loongarch_lasx_xvsrani_h_w:
2207 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
2208 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
2209 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
2210 case Intrinsic::loongarch_lasx_xvssrani_h_w:
2211 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
2212 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
2213 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
2214 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
2215 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
2216 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
2217 case Intrinsic::loongarch_lasx_xvfrstpi_b:
2218 case Intrinsic::loongarch_lasx_xvfrstpi_h:
2219 return checkIntrinsicImmArg<5>(
Op, 3, DAG);
2220 case Intrinsic::loongarch_lsx_vsat_d:
2221 case Intrinsic::loongarch_lsx_vsat_du:
2222 case Intrinsic::loongarch_lsx_vrotri_d:
2223 case Intrinsic::loongarch_lsx_vsrlri_d:
2224 case Intrinsic::loongarch_lsx_vsrari_d:
2225 case Intrinsic::loongarch_lasx_xvsat_d:
2226 case Intrinsic::loongarch_lasx_xvsat_du:
2227 case Intrinsic::loongarch_lasx_xvrotri_d:
2228 case Intrinsic::loongarch_lasx_xvsrlri_d:
2229 case Intrinsic::loongarch_lasx_xvsrari_d:
2230 return checkIntrinsicImmArg<6>(
Op, 2, DAG);
2231 case Intrinsic::loongarch_lsx_vsrlni_w_d:
2232 case Intrinsic::loongarch_lsx_vsrani_w_d:
2233 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
2234 case Intrinsic::loongarch_lsx_vsrarni_w_d:
2235 case Intrinsic::loongarch_lsx_vssrlni_w_d:
2236 case Intrinsic::loongarch_lsx_vssrani_w_d:
2237 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
2238 case Intrinsic::loongarch_lsx_vssrani_wu_d:
2239 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
2240 case Intrinsic::loongarch_lsx_vssrarni_w_d:
2241 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
2242 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
2243 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
2244 case Intrinsic::loongarch_lasx_xvsrani_w_d:
2245 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
2246 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
2247 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
2248 case Intrinsic::loongarch_lasx_xvssrani_w_d:
2249 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
2250 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
2251 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
2252 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
2253 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
2254 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
2255 return checkIntrinsicImmArg<6>(
Op, 3, DAG);
2256 case Intrinsic::loongarch_lsx_vsrlni_d_q:
2257 case Intrinsic::loongarch_lsx_vsrani_d_q:
2258 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
2259 case Intrinsic::loongarch_lsx_vsrarni_d_q:
2260 case Intrinsic::loongarch_lsx_vssrlni_d_q:
2261 case Intrinsic::loongarch_lsx_vssrani_d_q:
2262 case Intrinsic::loongarch_lsx_vssrlni_du_q:
2263 case Intrinsic::loongarch_lsx_vssrani_du_q:
2264 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
2265 case Intrinsic::loongarch_lsx_vssrarni_d_q:
2266 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
2267 case Intrinsic::loongarch_lsx_vssrarni_du_q:
2268 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
2269 case Intrinsic::loongarch_lasx_xvsrani_d_q:
2270 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
2271 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
2272 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
2273 case Intrinsic::loongarch_lasx_xvssrani_d_q:
2274 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
2275 case Intrinsic::loongarch_lasx_xvssrani_du_q:
2276 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
2277 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
2278 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
2279 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
2280 return checkIntrinsicImmArg<7>(
Op, 3, DAG);
2281 case Intrinsic::loongarch_lsx_vnori_b:
2282 case Intrinsic::loongarch_lsx_vshuf4i_b:
2283 case Intrinsic::loongarch_lsx_vshuf4i_h:
2284 case Intrinsic::loongarch_lsx_vshuf4i_w:
2285 case Intrinsic::loongarch_lasx_xvnori_b:
2286 case Intrinsic::loongarch_lasx_xvshuf4i_b:
2287 case Intrinsic::loongarch_lasx_xvshuf4i_h:
2288 case Intrinsic::loongarch_lasx_xvshuf4i_w:
2289 case Intrinsic::loongarch_lasx_xvpermi_d:
2290 return checkIntrinsicImmArg<8>(
Op, 2, DAG);
2291 case Intrinsic::loongarch_lsx_vshuf4i_d:
2292 case Intrinsic::loongarch_lsx_vpermi_w:
2293 case Intrinsic::loongarch_lsx_vbitseli_b:
2294 case Intrinsic::loongarch_lsx_vextrins_b:
2295 case Intrinsic::loongarch_lsx_vextrins_h:
2296 case Intrinsic::loongarch_lsx_vextrins_w:
2297 case Intrinsic::loongarch_lsx_vextrins_d:
2298 case Intrinsic::loongarch_lasx_xvshuf4i_d:
2299 case Intrinsic::loongarch_lasx_xvpermi_w:
2300 case Intrinsic::loongarch_lasx_xvpermi_q:
2301 case Intrinsic::loongarch_lasx_xvbitseli_b:
2302 case Intrinsic::loongarch_lasx_xvextrins_b:
2303 case Intrinsic::loongarch_lasx_xvextrins_h:
2304 case Intrinsic::loongarch_lasx_xvextrins_w:
2305 case Intrinsic::loongarch_lasx_xvextrins_d:
2306 return checkIntrinsicImmArg<8>(
Op, 3, DAG);
2307 case Intrinsic::loongarch_lsx_vrepli_b:
2308 case Intrinsic::loongarch_lsx_vrepli_h:
2309 case Intrinsic::loongarch_lsx_vrepli_w:
2310 case Intrinsic::loongarch_lsx_vrepli_d:
2311 case Intrinsic::loongarch_lasx_xvrepli_b:
2312 case Intrinsic::loongarch_lasx_xvrepli_h:
2313 case Intrinsic::loongarch_lasx_xvrepli_w:
2314 case Intrinsic::loongarch_lasx_xvrepli_d:
2315 return checkIntrinsicImmArg<10>(
Op, 1, DAG,
true);
2316 case Intrinsic::loongarch_lsx_vldi:
2317 case Intrinsic::loongarch_lasx_xvldi:
2318 return checkIntrinsicImmArg<13>(
Op, 1, DAG,
true);
2333LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(
SDValue Op,
2337 EVT VT =
Op.getValueType();
2339 const StringRef ErrorMsgOOR =
"argument out of range";
2340 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
2341 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
2343 switch (
Op.getConstantOperandVal(1)) {
2346 case Intrinsic::loongarch_crc_w_b_w:
2347 case Intrinsic::loongarch_crc_w_h_w:
2348 case Intrinsic::loongarch_crc_w_w_w:
2349 case Intrinsic::loongarch_crc_w_d_w:
2350 case Intrinsic::loongarch_crcc_w_b_w:
2351 case Intrinsic::loongarch_crcc_w_h_w:
2352 case Intrinsic::loongarch_crcc_w_w_w:
2353 case Intrinsic::loongarch_crcc_w_d_w:
2355 case Intrinsic::loongarch_csrrd_w:
2356 case Intrinsic::loongarch_csrrd_d: {
2357 unsigned Imm =
Op.getConstantOperandVal(2);
2358 return !isUInt<14>(Imm)
2363 case Intrinsic::loongarch_csrwr_w:
2364 case Intrinsic::loongarch_csrwr_d: {
2365 unsigned Imm =
Op.getConstantOperandVal(3);
2366 return !isUInt<14>(Imm)
2369 {Chain,
Op.getOperand(2),
2372 case Intrinsic::loongarch_csrxchg_w:
2373 case Intrinsic::loongarch_csrxchg_d: {
2374 unsigned Imm =
Op.getConstantOperandVal(4);
2375 return !isUInt<14>(Imm)
2378 {Chain,
Op.getOperand(2),
Op.getOperand(3),
2381 case Intrinsic::loongarch_iocsrrd_d: {
2386#define IOCSRRD_CASE(NAME, NODE) \
2387 case Intrinsic::loongarch_##NAME: { \
2388 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
2389 {Chain, Op.getOperand(2)}); \
2395 case Intrinsic::loongarch_cpucfg: {
2397 {Chain,
Op.getOperand(2)});
2399 case Intrinsic::loongarch_lddir_d: {
2400 unsigned Imm =
Op.getConstantOperandVal(3);
2401 return !isUInt<8>(Imm)
2405 case Intrinsic::loongarch_movfcsr2gr: {
2406 if (!Subtarget.hasBasicF())
2408 unsigned Imm =
Op.getConstantOperandVal(2);
2409 return !isUInt<2>(Imm)
2414 case Intrinsic::loongarch_lsx_vld:
2415 case Intrinsic::loongarch_lsx_vldrepl_b:
2416 case Intrinsic::loongarch_lasx_xvld:
2417 case Intrinsic::loongarch_lasx_xvldrepl_b:
2418 return !isInt<12>(cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2421 case Intrinsic::loongarch_lsx_vldrepl_h:
2422 case Intrinsic::loongarch_lasx_xvldrepl_h:
2423 return !isShiftedInt<11, 1>(
2424 cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2426 Op,
"argument out of range or not a multiple of 2", DAG)
2428 case Intrinsic::loongarch_lsx_vldrepl_w:
2429 case Intrinsic::loongarch_lasx_xvldrepl_w:
2430 return !isShiftedInt<10, 2>(
2431 cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2433 Op,
"argument out of range or not a multiple of 4", DAG)
2435 case Intrinsic::loongarch_lsx_vldrepl_d:
2436 case Intrinsic::loongarch_lasx_xvldrepl_d:
2437 return !isShiftedInt<9, 3>(
2438 cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2440 Op,
"argument out of range or not a multiple of 8", DAG)
2451 return Op.getOperand(0);
2459 uint64_t IntrinsicEnum =
Op.getConstantOperandVal(1);
2461 const StringRef ErrorMsgOOR =
"argument out of range";
2462 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
2463 const StringRef ErrorMsgReqLA32 =
"requires loongarch32";
2464 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
2466 switch (IntrinsicEnum) {
2470 case Intrinsic::loongarch_cacop_d:
2471 case Intrinsic::loongarch_cacop_w: {
2472 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.
is64Bit())
2474 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.
is64Bit())
2478 int Imm2 = cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue();
2479 if (!isUInt<5>(Imm1) || !isInt<12>(Imm2))
2483 case Intrinsic::loongarch_dbar: {
2485 return !isUInt<15>(Imm)
2490 case Intrinsic::loongarch_ibar: {
2492 return !isUInt<15>(Imm)
2497 case Intrinsic::loongarch_break: {
2499 return !isUInt<15>(Imm)
2504 case Intrinsic::loongarch_movgr2fcsr: {
2505 if (!Subtarget.hasBasicF())
2508 return !isUInt<2>(Imm)
2515 case Intrinsic::loongarch_syscall: {
2517 return !isUInt<15>(Imm)
2522#define IOCSRWR_CASE(NAME, NODE) \
2523 case Intrinsic::loongarch_##NAME: { \
2524 SDValue Op3 = Op.getOperand(3); \
2525 return Subtarget.is64Bit() \
2526 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
2527 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
2528 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
2529 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
2536 case Intrinsic::loongarch_iocsrwr_d: {
2544#define ASRT_LE_GT_CASE(NAME) \
2545 case Intrinsic::loongarch_##NAME: { \
2546 return !Subtarget.is64Bit() \
2547 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
2552#undef ASRT_LE_GT_CASE
2553 case Intrinsic::loongarch_ldpte_d: {
2554 unsigned Imm =
Op.getConstantOperandVal(3);
2560 case Intrinsic::loongarch_lsx_vst:
2561 case Intrinsic::loongarch_lasx_xvst:
2562 return !isInt<12>(cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue())
2565 case Intrinsic::loongarch_lasx_xvstelm_b:
2566 return (!isInt<8>(cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2567 !isUInt<5>(
Op.getConstantOperandVal(5)))
2570 case Intrinsic::loongarch_lsx_vstelm_b:
2571 return (!isInt<8>(cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2572 !isUInt<4>(
Op.getConstantOperandVal(5)))
2575 case Intrinsic::loongarch_lasx_xvstelm_h:
2576 return (!isShiftedInt<8, 1>(
2577 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2578 !isUInt<4>(
Op.getConstantOperandVal(5)))
2580 Op,
"argument out of range or not a multiple of 2", DAG)
2582 case Intrinsic::loongarch_lsx_vstelm_h:
2583 return (!isShiftedInt<8, 1>(
2584 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2585 !isUInt<3>(
Op.getConstantOperandVal(5)))
2587 Op,
"argument out of range or not a multiple of 2", DAG)
2589 case Intrinsic::loongarch_lasx_xvstelm_w:
2590 return (!isShiftedInt<8, 2>(
2591 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2592 !isUInt<3>(
Op.getConstantOperandVal(5)))
2594 Op,
"argument out of range or not a multiple of 4", DAG)
2596 case Intrinsic::loongarch_lsx_vstelm_w:
2597 return (!isShiftedInt<8, 2>(
2598 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2599 !isUInt<2>(
Op.getConstantOperandVal(5)))
2601 Op,
"argument out of range or not a multiple of 4", DAG)
2603 case Intrinsic::loongarch_lasx_xvstelm_d:
2604 return (!isShiftedInt<8, 3>(
2605 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2606 !isUInt<2>(
Op.getConstantOperandVal(5)))
2608 Op,
"argument out of range or not a multiple of 8", DAG)
2610 case Intrinsic::loongarch_lsx_vstelm_d:
2611 return (!isShiftedInt<8, 3>(
2612 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2613 !isUInt<1>(
Op.getConstantOperandVal(5)))
2615 Op,
"argument out of range or not a multiple of 8", DAG)
2626 EVT VT =
Lo.getValueType();
2667 EVT VT =
Lo.getValueType();
2759 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
2760 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0);
2764 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
2770 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0, NewOp1);
2797 StringRef ErrorMsg,
bool WithChain =
true) {
2802 Results.push_back(
N->getOperand(0));
2805template <
unsigned N>
2810 const StringRef ErrorMsgOOR =
"argument out of range";
2811 unsigned Imm =
Node->getConstantOperandVal(2);
2812 if (!isUInt<N>(Imm)) {
2845 switch (
N->getConstantOperandVal(0)) {
2848 case Intrinsic::loongarch_lsx_vpickve2gr_b:
2849 replaceVPICKVE2GRResults<4>(
N,
Results, DAG, Subtarget,
2852 case Intrinsic::loongarch_lsx_vpickve2gr_h:
2853 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
2854 replaceVPICKVE2GRResults<3>(
N,
Results, DAG, Subtarget,
2857 case Intrinsic::loongarch_lsx_vpickve2gr_w:
2858 replaceVPICKVE2GRResults<2>(
N,
Results, DAG, Subtarget,
2861 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
2862 replaceVPICKVE2GRResults<4>(
N,
Results, DAG, Subtarget,
2865 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
2866 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
2867 replaceVPICKVE2GRResults<3>(
N,
Results, DAG, Subtarget,
2870 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
2871 replaceVPICKVE2GRResults<2>(
N,
Results, DAG, Subtarget,
2874 case Intrinsic::loongarch_lsx_bz_b:
2875 case Intrinsic::loongarch_lsx_bz_h:
2876 case Intrinsic::loongarch_lsx_bz_w:
2877 case Intrinsic::loongarch_lsx_bz_d:
2878 case Intrinsic::loongarch_lasx_xbz_b:
2879 case Intrinsic::loongarch_lasx_xbz_h:
2880 case Intrinsic::loongarch_lasx_xbz_w:
2881 case Intrinsic::loongarch_lasx_xbz_d:
2885 case Intrinsic::loongarch_lsx_bz_v:
2886 case Intrinsic::loongarch_lasx_xbz_v:
2890 case Intrinsic::loongarch_lsx_bnz_b:
2891 case Intrinsic::loongarch_lsx_bnz_h:
2892 case Intrinsic::loongarch_lsx_bnz_w:
2893 case Intrinsic::loongarch_lsx_bnz_d:
2894 case Intrinsic::loongarch_lasx_xbnz_b:
2895 case Intrinsic::loongarch_lasx_xbnz_h:
2896 case Intrinsic::loongarch_lasx_xbnz_w:
2897 case Intrinsic::loongarch_lasx_xbnz_d:
2901 case Intrinsic::loongarch_lsx_bnz_v:
2902 case Intrinsic::loongarch_lasx_xbnz_v:
2912 EVT VT =
N->getValueType(0);
2913 switch (
N->getOpcode()) {
2919 "Unexpected custom legalisation");
2927 "Unexpected custom legalisation");
2929 Subtarget.hasDiv32() && VT == MVT::i32
2937 "Unexpected custom legalisation");
2946 "Unexpected custom legalisation");
2951 "Unexpected custom legalisation");
2956 if (Src.getValueType() == MVT::f16)
2967 EVT OpVT = Src.getValueType();
2971 std::tie(Result, Chain) =
2978 EVT SrcVT = Src.getValueType();
2979 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.
is64Bit() &&
2980 Subtarget.hasBasicF()) {
2989 "Unexpected custom legalisation");
2992 TLI.expandFP_TO_UINT(
N, Tmp1, Tmp2, DAG);
2998 assert((VT == MVT::i16 || VT == MVT::i32) &&
2999 "Unexpected custom legalization");
3020 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.
is64Bit())) &&
3021 "Unexpected custom legalization");
3041 "Unexpected custom legalisation");
3049 const StringRef ErrorMsgOOR =
"argument out of range";
3050 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
3051 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
3053 switch (
N->getConstantOperandVal(1)) {
3056 case Intrinsic::loongarch_movfcsr2gr: {
3057 if (!Subtarget.hasBasicF()) {
3062 if (!isUInt<2>(Imm)) {
3074#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
3075 case Intrinsic::loongarch_##NAME: { \
3076 SDValue NODE = DAG.getNode( \
3077 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
3078 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
3079 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
3080 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
3081 Results.push_back(NODE.getValue(1)); \
3090#undef CRC_CASE_EXT_BINARYOP
3092#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
3093 case Intrinsic::loongarch_##NAME: { \
3094 SDValue NODE = DAG.getNode( \
3095 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
3097 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
3098 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
3099 Results.push_back(NODE.getValue(1)); \
3104#undef CRC_CASE_EXT_UNARYOP
3105#define CSR_CASE(ID) \
3106 case Intrinsic::loongarch_##ID: { \
3107 if (!Subtarget.is64Bit()) \
3108 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
3116 case Intrinsic::loongarch_csrrd_w: {
3118 if (!isUInt<14>(Imm)) {
3130 case Intrinsic::loongarch_csrwr_w: {
3131 unsigned Imm =
N->getConstantOperandVal(3);
3132 if (!isUInt<14>(Imm)) {
3145 case Intrinsic::loongarch_csrxchg_w: {
3146 unsigned Imm =
N->getConstantOperandVal(4);
3147 if (!isUInt<14>(Imm)) {
3161#define IOCSRRD_CASE(NAME, NODE) \
3162 case Intrinsic::loongarch_##NAME: { \
3163 SDValue IOCSRRDResults = \
3164 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
3165 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
3166 Results.push_back( \
3167 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
3168 Results.push_back(IOCSRRDResults.getValue(1)); \
3175 case Intrinsic::loongarch_cpucfg: {
3184 case Intrinsic::loongarch_lddir_d: {
3197 "On LA64, only 64-bit registers can be read.");
3200 "On LA32, only 32-bit registers can be read.");
3202 Results.push_back(
N->getOperand(0));
3213 OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
3230 SDValue FirstOperand =
N->getOperand(0);
3231 SDValue SecondOperand =
N->getOperand(1);
3232 unsigned FirstOperandOpc = FirstOperand.
getOpcode();
3233 EVT ValTy =
N->getValueType(0);
3236 unsigned SMIdx, SMLen;
3242 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)) ||
3253 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.
getOperand(1))))
3294 NewOperand = FirstOperand;
3297 msb = lsb + SMLen - 1;
3301 if (FirstOperandOpc ==
ISD::SRA || FirstOperandOpc ==
ISD::SRL || lsb == 0)
3322 SDValue FirstOperand =
N->getOperand(0);
3324 EVT ValTy =
N->getValueType(0);
3327 unsigned MaskIdx, MaskLen;
3333 !(CN = dyn_cast<ConstantSDNode>(FirstOperand.
getOperand(1))) ||
3338 if (!(CN = dyn_cast<ConstantSDNode>(
N->getOperand(1))))
3342 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
3355 EVT ValTy =
N->getValueType(0);
3356 SDValue N0 =
N->getOperand(0), N1 =
N->getOperand(1);
3360 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
3362 bool SwapAndRetried =
false;
3367 if (ValBits != 32 && ValBits != 64)
3377 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3380 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3382 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
3383 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3385 (MaskIdx0 + MaskLen0 <= ValBits)) {
3399 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3402 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3404 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3406 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
3407 (MaskIdx0 + MaskLen0 <= ValBits)) {
3422 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3424 (MaskIdx0 + MaskLen0 <= 64) &&
3425 (CN1 = dyn_cast<ConstantSDNode>(N1->getOperand(1))) &&
3432 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
3433 : (MaskIdx0 + MaskLen0 - 1),
3445 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3447 MaskIdx0 == 0 && (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3449 (MaskIdx0 + MaskLen0 <= ValBits)) {
3464 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3466 (CN1 = dyn_cast<ConstantSDNode>(N1)) &&
3472 DAG.
getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
3473 : (MaskIdx0 + MaskLen0 - 1),
3488 unsigned MaskIdx, MaskLen;
3489 if (N1.getOpcode() ==
ISD::SHL && N1.getOperand(0).getOpcode() ==
ISD::AND &&
3490 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3492 MaskIdx == 0 && (CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3514 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3516 N1.getOperand(0).getOpcode() ==
ISD::SHL &&
3517 (CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3530 if (!SwapAndRetried) {
3532 SwapAndRetried =
true;
3536 SwapAndRetried =
false;
3548 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3562 if (!SwapAndRetried) {
3564 SwapAndRetried =
true;
3574 switch (V.getNode()->getOpcode()) {
3576 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
3585 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
3586 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
3593 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
3594 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
3671 SDNode *AndNode =
N->getOperand(0).getNode();
3679 SDValue CmpInputValue =
N->getOperand(1);
3687 CN = dyn_cast<ConstantSDNode>(CmpInputValue);
3690 AndInputValue1 = AndInputValue1.
getOperand(0);
3694 if (AndInputValue2 != CmpInputValue)
3727 TruncInputValue1, TruncInputValue2);
3749template <
unsigned N>
3753 bool IsSigned =
false) {
3755 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(ImmOp));
3757 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
3758 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
3760 ": argument out of range.");
3766template <
unsigned N>
3770 EVT ResTy =
Node->getValueType(0);
3771 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(ImmOp));
3774 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
3775 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
3777 ": argument out of range.");
3782 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
3788 EVT ResTy =
Node->getValueType(0);
3796 EVT ResTy =
Node->getValueType(0);
3805template <
unsigned N>
3808 EVT ResTy =
Node->getValueType(0);
3809 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(2));
3811 if (!isUInt<N>(CImm->getZExtValue())) {
3813 ": argument out of range.");
3823template <
unsigned N>
3826 EVT ResTy =
Node->getValueType(0);
3827 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(2));
3829 if (!isUInt<N>(CImm->getZExtValue())) {
3831 ": argument out of range.");
3840template <
unsigned N>
3843 EVT ResTy =
Node->getValueType(0);
3844 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(2));
3846 if (!isUInt<N>(CImm->getZExtValue())) {
3848 ": argument out of range.");
3862 switch (
N->getConstantOperandVal(0)) {
3865 case Intrinsic::loongarch_lsx_vadd_b:
3866 case Intrinsic::loongarch_lsx_vadd_h:
3867 case Intrinsic::loongarch_lsx_vadd_w:
3868 case Intrinsic::loongarch_lsx_vadd_d:
3869 case Intrinsic::loongarch_lasx_xvadd_b:
3870 case Intrinsic::loongarch_lasx_xvadd_h:
3871 case Intrinsic::loongarch_lasx_xvadd_w:
3872 case Intrinsic::loongarch_lasx_xvadd_d:
3875 case Intrinsic::loongarch_lsx_vaddi_bu:
3876 case Intrinsic::loongarch_lsx_vaddi_hu:
3877 case Intrinsic::loongarch_lsx_vaddi_wu:
3878 case Intrinsic::loongarch_lsx_vaddi_du:
3879 case Intrinsic::loongarch_lasx_xvaddi_bu:
3880 case Intrinsic::loongarch_lasx_xvaddi_hu:
3881 case Intrinsic::loongarch_lasx_xvaddi_wu:
3882 case Intrinsic::loongarch_lasx_xvaddi_du:
3884 lowerVectorSplatImm<5>(
N, 2, DAG));
3885 case Intrinsic::loongarch_lsx_vsub_b:
3886 case Intrinsic::loongarch_lsx_vsub_h:
3887 case Intrinsic::loongarch_lsx_vsub_w:
3888 case Intrinsic::loongarch_lsx_vsub_d:
3889 case Intrinsic::loongarch_lasx_xvsub_b:
3890 case Intrinsic::loongarch_lasx_xvsub_h:
3891 case Intrinsic::loongarch_lasx_xvsub_w:
3892 case Intrinsic::loongarch_lasx_xvsub_d:
3895 case Intrinsic::loongarch_lsx_vsubi_bu:
3896 case Intrinsic::loongarch_lsx_vsubi_hu:
3897 case Intrinsic::loongarch_lsx_vsubi_wu:
3898 case Intrinsic::loongarch_lsx_vsubi_du:
3899 case Intrinsic::loongarch_lasx_xvsubi_bu:
3900 case Intrinsic::loongarch_lasx_xvsubi_hu:
3901 case Intrinsic::loongarch_lasx_xvsubi_wu:
3902 case Intrinsic::loongarch_lasx_xvsubi_du:
3904 lowerVectorSplatImm<5>(
N, 2, DAG));
3905 case Intrinsic::loongarch_lsx_vneg_b:
3906 case Intrinsic::loongarch_lsx_vneg_h:
3907 case Intrinsic::loongarch_lsx_vneg_w:
3908 case Intrinsic::loongarch_lsx_vneg_d:
3909 case Intrinsic::loongarch_lasx_xvneg_b:
3910 case Intrinsic::loongarch_lasx_xvneg_h:
3911 case Intrinsic::loongarch_lasx_xvneg_w:
3912 case Intrinsic::loongarch_lasx_xvneg_d:
3916 APInt(
N->getValueType(0).getScalarType().getSizeInBits(), 0,
3918 SDLoc(
N),
N->getValueType(0)),
3920 case Intrinsic::loongarch_lsx_vmax_b:
3921 case Intrinsic::loongarch_lsx_vmax_h:
3922 case Intrinsic::loongarch_lsx_vmax_w:
3923 case Intrinsic::loongarch_lsx_vmax_d:
3924 case Intrinsic::loongarch_lasx_xvmax_b:
3925 case Intrinsic::loongarch_lasx_xvmax_h:
3926 case Intrinsic::loongarch_lasx_xvmax_w:
3927 case Intrinsic::loongarch_lasx_xvmax_d:
3930 case Intrinsic::loongarch_lsx_vmax_bu:
3931 case Intrinsic::loongarch_lsx_vmax_hu:
3932 case Intrinsic::loongarch_lsx_vmax_wu:
3933 case Intrinsic::loongarch_lsx_vmax_du:
3934 case Intrinsic::loongarch_lasx_xvmax_bu:
3935 case Intrinsic::loongarch_lasx_xvmax_hu:
3936 case Intrinsic::loongarch_lasx_xvmax_wu:
3937 case Intrinsic::loongarch_lasx_xvmax_du:
3940 case Intrinsic::loongarch_lsx_vmaxi_b:
3941 case Intrinsic::loongarch_lsx_vmaxi_h:
3942 case Intrinsic::loongarch_lsx_vmaxi_w:
3943 case Intrinsic::loongarch_lsx_vmaxi_d:
3944 case Intrinsic::loongarch_lasx_xvmaxi_b:
3945 case Intrinsic::loongarch_lasx_xvmaxi_h:
3946 case Intrinsic::loongarch_lasx_xvmaxi_w:
3947 case Intrinsic::loongarch_lasx_xvmaxi_d:
3949 lowerVectorSplatImm<5>(
N, 2, DAG,
true));
3950 case Intrinsic::loongarch_lsx_vmaxi_bu:
3951 case Intrinsic::loongarch_lsx_vmaxi_hu:
3952 case Intrinsic::loongarch_lsx_vmaxi_wu:
3953 case Intrinsic::loongarch_lsx_vmaxi_du:
3954 case Intrinsic::loongarch_lasx_xvmaxi_bu:
3955 case Intrinsic::loongarch_lasx_xvmaxi_hu:
3956 case Intrinsic::loongarch_lasx_xvmaxi_wu:
3957 case Intrinsic::loongarch_lasx_xvmaxi_du:
3959 lowerVectorSplatImm<5>(
N, 2, DAG));
3960 case Intrinsic::loongarch_lsx_vmin_b:
3961 case Intrinsic::loongarch_lsx_vmin_h:
3962 case Intrinsic::loongarch_lsx_vmin_w:
3963 case Intrinsic::loongarch_lsx_vmin_d:
3964 case Intrinsic::loongarch_lasx_xvmin_b:
3965 case Intrinsic::loongarch_lasx_xvmin_h:
3966 case Intrinsic::loongarch_lasx_xvmin_w:
3967 case Intrinsic::loongarch_lasx_xvmin_d:
3970 case Intrinsic::loongarch_lsx_vmin_bu:
3971 case Intrinsic::loongarch_lsx_vmin_hu:
3972 case Intrinsic::loongarch_lsx_vmin_wu:
3973 case Intrinsic::loongarch_lsx_vmin_du:
3974 case Intrinsic::loongarch_lasx_xvmin_bu:
3975 case Intrinsic::loongarch_lasx_xvmin_hu:
3976 case Intrinsic::loongarch_lasx_xvmin_wu:
3977 case Intrinsic::loongarch_lasx_xvmin_du:
3980 case Intrinsic::loongarch_lsx_vmini_b:
3981 case Intrinsic::loongarch_lsx_vmini_h:
3982 case Intrinsic::loongarch_lsx_vmini_w:
3983 case Intrinsic::loongarch_lsx_vmini_d:
3984 case Intrinsic::loongarch_lasx_xvmini_b:
3985 case Intrinsic::loongarch_lasx_xvmini_h:
3986 case Intrinsic::loongarch_lasx_xvmini_w:
3987 case Intrinsic::loongarch_lasx_xvmini_d:
3989 lowerVectorSplatImm<5>(
N, 2, DAG,
true));
3990 case Intrinsic::loongarch_lsx_vmini_bu:
3991 case Intrinsic::loongarch_lsx_vmini_hu:
3992 case Intrinsic::loongarch_lsx_vmini_wu:
3993 case Intrinsic::loongarch_lsx_vmini_du:
3994 case Intrinsic::loongarch_lasx_xvmini_bu:
3995 case Intrinsic::loongarch_lasx_xvmini_hu:
3996 case Intrinsic::loongarch_lasx_xvmini_wu:
3997 case Intrinsic::loongarch_lasx_xvmini_du:
3999 lowerVectorSplatImm<5>(
N, 2, DAG));
4000 case Intrinsic::loongarch_lsx_vmul_b:
4001 case Intrinsic::loongarch_lsx_vmul_h:
4002 case Intrinsic::loongarch_lsx_vmul_w:
4003 case Intrinsic::loongarch_lsx_vmul_d:
4004 case Intrinsic::loongarch_lasx_xvmul_b:
4005 case Intrinsic::loongarch_lasx_xvmul_h:
4006 case Intrinsic::loongarch_lasx_xvmul_w:
4007 case Intrinsic::loongarch_lasx_xvmul_d:
4010 case Intrinsic::loongarch_lsx_vmadd_b:
4011 case Intrinsic::loongarch_lsx_vmadd_h:
4012 case Intrinsic::loongarch_lsx_vmadd_w:
4013 case Intrinsic::loongarch_lsx_vmadd_d:
4014 case Intrinsic::loongarch_lasx_xvmadd_b:
4015 case Intrinsic::loongarch_lasx_xvmadd_h:
4016 case Intrinsic::loongarch_lasx_xvmadd_w:
4017 case Intrinsic::loongarch_lasx_xvmadd_d: {
4018 EVT ResTy =
N->getValueType(0);
4023 case Intrinsic::loongarch_lsx_vmsub_b:
4024 case Intrinsic::loongarch_lsx_vmsub_h:
4025 case Intrinsic::loongarch_lsx_vmsub_w:
4026 case Intrinsic::loongarch_lsx_vmsub_d:
4027 case Intrinsic::loongarch_lasx_xvmsub_b:
4028 case Intrinsic::loongarch_lasx_xvmsub_h:
4029 case Intrinsic::loongarch_lasx_xvmsub_w:
4030 case Intrinsic::loongarch_lasx_xvmsub_d: {
4031 EVT ResTy =
N->getValueType(0);
4036 case Intrinsic::loongarch_lsx_vdiv_b:
4037 case Intrinsic::loongarch_lsx_vdiv_h:
4038 case Intrinsic::loongarch_lsx_vdiv_w:
4039 case Intrinsic::loongarch_lsx_vdiv_d:
4040 case Intrinsic::loongarch_lasx_xvdiv_b:
4041 case Intrinsic::loongarch_lasx_xvdiv_h:
4042 case Intrinsic::loongarch_lasx_xvdiv_w:
4043 case Intrinsic::loongarch_lasx_xvdiv_d:
4046 case Intrinsic::loongarch_lsx_vdiv_bu:
4047 case Intrinsic::loongarch_lsx_vdiv_hu:
4048 case Intrinsic::loongarch_lsx_vdiv_wu:
4049 case Intrinsic::loongarch_lsx_vdiv_du:
4050 case Intrinsic::loongarch_lasx_xvdiv_bu:
4051 case Intrinsic::loongarch_lasx_xvdiv_hu:
4052 case Intrinsic::loongarch_lasx_xvdiv_wu:
4053 case Intrinsic::loongarch_lasx_xvdiv_du:
4056 case Intrinsic::loongarch_lsx_vmod_b:
4057 case Intrinsic::loongarch_lsx_vmod_h:
4058 case Intrinsic::loongarch_lsx_vmod_w:
4059 case Intrinsic::loongarch_lsx_vmod_d:
4060 case Intrinsic::loongarch_lasx_xvmod_b:
4061 case Intrinsic::loongarch_lasx_xvmod_h:
4062 case Intrinsic::loongarch_lasx_xvmod_w:
4063 case Intrinsic::loongarch_lasx_xvmod_d:
4066 case Intrinsic::loongarch_lsx_vmod_bu:
4067 case Intrinsic::loongarch_lsx_vmod_hu:
4068 case Intrinsic::loongarch_lsx_vmod_wu:
4069 case Intrinsic::loongarch_lsx_vmod_du:
4070 case Intrinsic::loongarch_lasx_xvmod_bu:
4071 case Intrinsic::loongarch_lasx_xvmod_hu:
4072 case Intrinsic::loongarch_lasx_xvmod_wu:
4073 case Intrinsic::loongarch_lasx_xvmod_du:
4076 case Intrinsic::loongarch_lsx_vand_v:
4077 case Intrinsic::loongarch_lasx_xvand_v:
4080 case Intrinsic::loongarch_lsx_vor_v:
4081 case Intrinsic::loongarch_lasx_xvor_v:
4084 case Intrinsic::loongarch_lsx_vxor_v:
4085 case Intrinsic::loongarch_lasx_xvxor_v:
4088 case Intrinsic::loongarch_lsx_vnor_v:
4089 case Intrinsic::loongarch_lasx_xvnor_v: {
4094 case Intrinsic::loongarch_lsx_vandi_b:
4095 case Intrinsic::loongarch_lasx_xvandi_b:
4097 lowerVectorSplatImm<8>(
N, 2, DAG));
4098 case Intrinsic::loongarch_lsx_vori_b:
4099 case Intrinsic::loongarch_lasx_xvori_b:
4101 lowerVectorSplatImm<8>(
N, 2, DAG));
4102 case Intrinsic::loongarch_lsx_vxori_b:
4103 case Intrinsic::loongarch_lasx_xvxori_b:
4105 lowerVectorSplatImm<8>(
N, 2, DAG));
4106 case Intrinsic::loongarch_lsx_vsll_b:
4107 case Intrinsic::loongarch_lsx_vsll_h:
4108 case Intrinsic::loongarch_lsx_vsll_w:
4109 case Intrinsic::loongarch_lsx_vsll_d:
4110 case Intrinsic::loongarch_lasx_xvsll_b:
4111 case Intrinsic::loongarch_lasx_xvsll_h:
4112 case Intrinsic::loongarch_lasx_xvsll_w:
4113 case Intrinsic::loongarch_lasx_xvsll_d:
4116 case Intrinsic::loongarch_lsx_vslli_b:
4117 case Intrinsic::loongarch_lasx_xvslli_b:
4119 lowerVectorSplatImm<3>(
N, 2, DAG));
4120 case Intrinsic::loongarch_lsx_vslli_h:
4121 case Intrinsic::loongarch_lasx_xvslli_h:
4123 lowerVectorSplatImm<4>(
N, 2, DAG));
4124 case Intrinsic::loongarch_lsx_vslli_w:
4125 case Intrinsic::loongarch_lasx_xvslli_w:
4127 lowerVectorSplatImm<5>(
N, 2, DAG));
4128 case Intrinsic::loongarch_lsx_vslli_d:
4129 case Intrinsic::loongarch_lasx_xvslli_d:
4131 lowerVectorSplatImm<6>(
N, 2, DAG));
4132 case Intrinsic::loongarch_lsx_vsrl_b:
4133 case Intrinsic::loongarch_lsx_vsrl_h:
4134 case Intrinsic::loongarch_lsx_vsrl_w:
4135 case Intrinsic::loongarch_lsx_vsrl_d:
4136 case Intrinsic::loongarch_lasx_xvsrl_b:
4137 case Intrinsic::loongarch_lasx_xvsrl_h:
4138 case Intrinsic::loongarch_lasx_xvsrl_w:
4139 case Intrinsic::loongarch_lasx_xvsrl_d:
4142 case Intrinsic::loongarch_lsx_vsrli_b:
4143 case Intrinsic::loongarch_lasx_xvsrli_b:
4145 lowerVectorSplatImm<3>(
N, 2, DAG));
4146 case Intrinsic::loongarch_lsx_vsrli_h:
4147 case Intrinsic::loongarch_lasx_xvsrli_h:
4149 lowerVectorSplatImm<4>(
N, 2, DAG));
4150 case Intrinsic::loongarch_lsx_vsrli_w:
4151 case Intrinsic::loongarch_lasx_xvsrli_w:
4153 lowerVectorSplatImm<5>(
N, 2, DAG));
4154 case Intrinsic::loongarch_lsx_vsrli_d:
4155 case Intrinsic::loongarch_lasx_xvsrli_d:
4157 lowerVectorSplatImm<6>(
N, 2, DAG));
4158 case Intrinsic::loongarch_lsx_vsra_b:
4159 case Intrinsic::loongarch_lsx_vsra_h:
4160 case Intrinsic::loongarch_lsx_vsra_w:
4161 case Intrinsic::loongarch_lsx_vsra_d:
4162 case Intrinsic::loongarch_lasx_xvsra_b:
4163 case Intrinsic::loongarch_lasx_xvsra_h:
4164 case Intrinsic::loongarch_lasx_xvsra_w:
4165 case Intrinsic::loongarch_lasx_xvsra_d:
4168 case Intrinsic::loongarch_lsx_vsrai_b:
4169 case Intrinsic::loongarch_lasx_xvsrai_b:
4171 lowerVectorSplatImm<3>(
N, 2, DAG));
4172 case Intrinsic::loongarch_lsx_vsrai_h:
4173 case Intrinsic::loongarch_lasx_xvsrai_h:
4175 lowerVectorSplatImm<4>(
N, 2, DAG));
4176 case Intrinsic::loongarch_lsx_vsrai_w:
4177 case Intrinsic::loongarch_lasx_xvsrai_w:
4179 lowerVectorSplatImm<5>(
N, 2, DAG));
4180 case Intrinsic::loongarch_lsx_vsrai_d:
4181 case Intrinsic::loongarch_lasx_xvsrai_d:
4183 lowerVectorSplatImm<6>(
N, 2, DAG));
4184 case Intrinsic::loongarch_lsx_vclz_b:
4185 case Intrinsic::loongarch_lsx_vclz_h:
4186 case Intrinsic::loongarch_lsx_vclz_w:
4187 case Intrinsic::loongarch_lsx_vclz_d:
4188 case Intrinsic::loongarch_lasx_xvclz_b:
4189 case Intrinsic::loongarch_lasx_xvclz_h:
4190 case Intrinsic::loongarch_lasx_xvclz_w:
4191 case Intrinsic::loongarch_lasx_xvclz_d:
4193 case Intrinsic::loongarch_lsx_vpcnt_b:
4194 case Intrinsic::loongarch_lsx_vpcnt_h:
4195 case Intrinsic::loongarch_lsx_vpcnt_w:
4196 case Intrinsic::loongarch_lsx_vpcnt_d:
4197 case Intrinsic::loongarch_lasx_xvpcnt_b:
4198 case Intrinsic::loongarch_lasx_xvpcnt_h:
4199 case Intrinsic::loongarch_lasx_xvpcnt_w:
4200 case Intrinsic::loongarch_lasx_xvpcnt_d:
4202 case Intrinsic::loongarch_lsx_vbitclr_b:
4203 case Intrinsic::loongarch_lsx_vbitclr_h:
4204 case Intrinsic::loongarch_lsx_vbitclr_w:
4205 case Intrinsic::loongarch_lsx_vbitclr_d:
4206 case Intrinsic::loongarch_lasx_xvbitclr_b:
4207 case Intrinsic::loongarch_lasx_xvbitclr_h:
4208 case Intrinsic::loongarch_lasx_xvbitclr_w:
4209 case Intrinsic::loongarch_lasx_xvbitclr_d:
4211 case Intrinsic::loongarch_lsx_vbitclri_b:
4212 case Intrinsic::loongarch_lasx_xvbitclri_b:
4213 return lowerVectorBitClearImm<3>(
N, DAG);
4214 case Intrinsic::loongarch_lsx_vbitclri_h:
4215 case Intrinsic::loongarch_lasx_xvbitclri_h:
4216 return lowerVectorBitClearImm<4>(
N, DAG);
4217 case Intrinsic::loongarch_lsx_vbitclri_w:
4218 case Intrinsic::loongarch_lasx_xvbitclri_w:
4219 return lowerVectorBitClearImm<5>(
N, DAG);
4220 case Intrinsic::loongarch_lsx_vbitclri_d:
4221 case Intrinsic::loongarch_lasx_xvbitclri_d:
4222 return lowerVectorBitClearImm<6>(
N, DAG);
4223 case Intrinsic::loongarch_lsx_vbitset_b:
4224 case Intrinsic::loongarch_lsx_vbitset_h:
4225 case Intrinsic::loongarch_lsx_vbitset_w:
4226 case Intrinsic::loongarch_lsx_vbitset_d:
4227 case Intrinsic::loongarch_lasx_xvbitset_b:
4228 case Intrinsic::loongarch_lasx_xvbitset_h:
4229 case Intrinsic::loongarch_lasx_xvbitset_w:
4230 case Intrinsic::loongarch_lasx_xvbitset_d: {
4231 EVT VecTy =
N->getValueType(0);
4237 case Intrinsic::loongarch_lsx_vbitseti_b:
4238 case Intrinsic::loongarch_lasx_xvbitseti_b:
4239 return lowerVectorBitSetImm<3>(
N, DAG);
4240 case Intrinsic::loongarch_lsx_vbitseti_h:
4241 case Intrinsic::loongarch_lasx_xvbitseti_h:
4242 return lowerVectorBitSetImm<4>(
N, DAG);
4243 case Intrinsic::loongarch_lsx_vbitseti_w:
4244 case Intrinsic::loongarch_lasx_xvbitseti_w:
4245 return lowerVectorBitSetImm<5>(
N, DAG);
4246 case Intrinsic::loongarch_lsx_vbitseti_d:
4247 case Intrinsic::loongarch_lasx_xvbitseti_d:
4248 return lowerVectorBitSetImm<6>(
N, DAG);
4249 case Intrinsic::loongarch_lsx_vbitrev_b:
4250 case Intrinsic::loongarch_lsx_vbitrev_h:
4251 case Intrinsic::loongarch_lsx_vbitrev_w:
4252 case Intrinsic::loongarch_lsx_vbitrev_d:
4253 case Intrinsic::loongarch_lasx_xvbitrev_b:
4254 case Intrinsic::loongarch_lasx_xvbitrev_h:
4255 case Intrinsic::loongarch_lasx_xvbitrev_w:
4256 case Intrinsic::loongarch_lasx_xvbitrev_d: {
4257 EVT VecTy =
N->getValueType(0);
4263 case Intrinsic::loongarch_lsx_vbitrevi_b:
4264 case Intrinsic::loongarch_lasx_xvbitrevi_b:
4265 return lowerVectorBitRevImm<3>(
N, DAG);
4266 case Intrinsic::loongarch_lsx_vbitrevi_h:
4267 case Intrinsic::loongarch_lasx_xvbitrevi_h:
4268 return lowerVectorBitRevImm<4>(
N, DAG);
4269 case Intrinsic::loongarch_lsx_vbitrevi_w:
4270 case Intrinsic::loongarch_lasx_xvbitrevi_w:
4271 return lowerVectorBitRevImm<5>(
N, DAG);
4272 case Intrinsic::loongarch_lsx_vbitrevi_d:
4273 case Intrinsic::loongarch_lasx_xvbitrevi_d:
4274 return lowerVectorBitRevImm<6>(
N, DAG);
4275 case Intrinsic::loongarch_lsx_vfadd_s:
4276 case Intrinsic::loongarch_lsx_vfadd_d:
4277 case Intrinsic::loongarch_lasx_xvfadd_s:
4278 case Intrinsic::loongarch_lasx_xvfadd_d:
4281 case Intrinsic::loongarch_lsx_vfsub_s:
4282 case Intrinsic::loongarch_lsx_vfsub_d:
4283 case Intrinsic::loongarch_lasx_xvfsub_s:
4284 case Intrinsic::loongarch_lasx_xvfsub_d:
4287 case Intrinsic::loongarch_lsx_vfmul_s:
4288 case Intrinsic::loongarch_lsx_vfmul_d:
4289 case Intrinsic::loongarch_lasx_xvfmul_s:
4290 case Intrinsic::loongarch_lasx_xvfmul_d:
4293 case Intrinsic::loongarch_lsx_vfdiv_s:
4294 case Intrinsic::loongarch_lsx_vfdiv_d:
4295 case Intrinsic::loongarch_lasx_xvfdiv_s:
4296 case Intrinsic::loongarch_lasx_xvfdiv_d:
4299 case Intrinsic::loongarch_lsx_vfmadd_s:
4300 case Intrinsic::loongarch_lsx_vfmadd_d:
4301 case Intrinsic::loongarch_lasx_xvfmadd_s:
4302 case Intrinsic::loongarch_lasx_xvfmadd_d:
4304 N->getOperand(2),
N->getOperand(3));
4305 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
4307 N->getOperand(1),
N->getOperand(2),
4308 legalizeIntrinsicImmArg<4>(
N, 3, DAG, Subtarget));
4309 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
4310 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
4312 N->getOperand(1),
N->getOperand(2),
4313 legalizeIntrinsicImmArg<3>(
N, 3, DAG, Subtarget));
4314 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
4315 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
4317 N->getOperand(1),
N->getOperand(2),
4318 legalizeIntrinsicImmArg<2>(
N, 3, DAG, Subtarget));
4319 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
4321 N->getOperand(1),
N->getOperand(2),
4322 legalizeIntrinsicImmArg<1>(
N, 3, DAG, Subtarget));
4323 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
4324 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
4325 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
4326 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
4327 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
4328 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
4329 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
4330 case Intrinsic::loongarch_lasx_xvreplgr2vr_d:
4334 case Intrinsic::loongarch_lsx_vreplve_b:
4335 case Intrinsic::loongarch_lsx_vreplve_h:
4336 case Intrinsic::loongarch_lsx_vreplve_w:
4337 case Intrinsic::loongarch_lsx_vreplve_d:
4338 case Intrinsic::loongarch_lasx_xvreplve_b:
4339 case Intrinsic::loongarch_lasx_xvreplve_h:
4340 case Intrinsic::loongarch_lasx_xvreplve_w:
4341 case Intrinsic::loongarch_lasx_xvreplve_d:
4353 switch (
N->getOpcode()) {
4390 MF->
insert(It, BreakMBB);
4394 SinkMBB->splice(SinkMBB->end(),
MBB, std::next(
MI.getIterator()),
MBB->
end());
4395 SinkMBB->transferSuccessorsAndUpdatePHIs(
MBB);
4413 BreakMBB->addSuccessor(SinkMBB);
4425 switch (
MI.getOpcode()) {
4428 case LoongArch::PseudoVBZ:
4429 CondOpc = LoongArch::VSETEQZ_V;
4431 case LoongArch::PseudoVBZ_B:
4432 CondOpc = LoongArch::VSETANYEQZ_B;
4434 case LoongArch::PseudoVBZ_H:
4435 CondOpc = LoongArch::VSETANYEQZ_H;
4437 case LoongArch::PseudoVBZ_W:
4438 CondOpc = LoongArch::VSETANYEQZ_W;
4440 case LoongArch::PseudoVBZ_D:
4441 CondOpc = LoongArch::VSETANYEQZ_D;
4443 case LoongArch::PseudoVBNZ:
4444 CondOpc = LoongArch::VSETNEZ_V;
4446 case LoongArch::PseudoVBNZ_B:
4447 CondOpc = LoongArch::VSETALLNEZ_B;
4449 case LoongArch::PseudoVBNZ_H:
4450 CondOpc = LoongArch::VSETALLNEZ_H;
4452 case LoongArch::PseudoVBNZ_W:
4453 CondOpc = LoongArch::VSETALLNEZ_W;
4455 case LoongArch::PseudoVBNZ_D:
4456 CondOpc = LoongArch::VSETALLNEZ_D;
4458 case LoongArch::PseudoXVBZ:
4459 CondOpc = LoongArch::XVSETEQZ_V;
4461 case LoongArch::PseudoXVBZ_B:
4462 CondOpc = LoongArch::XVSETANYEQZ_B;
4464 case LoongArch::PseudoXVBZ_H:
4465 CondOpc = LoongArch::XVSETANYEQZ_H;
4467 case LoongArch::PseudoXVBZ_W:
4468 CondOpc = LoongArch::XVSETANYEQZ_W;
4470 case LoongArch::PseudoXVBZ_D:
4471 CondOpc = LoongArch::XVSETANYEQZ_D;
4473 case LoongArch::PseudoXVBNZ:
4474 CondOpc = LoongArch::XVSETNEZ_V;
4476 case LoongArch::PseudoXVBNZ_B:
4477 CondOpc = LoongArch::XVSETALLNEZ_B;
4479 case LoongArch::PseudoXVBNZ_H:
4480 CondOpc = LoongArch::XVSETALLNEZ_H;
4482 case LoongArch::PseudoXVBNZ_W:
4483 CondOpc = LoongArch::XVSETALLNEZ_W;
4485 case LoongArch::PseudoXVBNZ_D:
4486 CondOpc = LoongArch::XVSETALLNEZ_D;
4501 F->insert(It, FalseBB);
4502 F->insert(It, TrueBB);
4503 F->insert(It, SinkBB);
4506 SinkBB->
splice(SinkBB->
end(), BB, std::next(
MI.getIterator()), BB->
end());
4510 Register FCC =
MRI.createVirtualRegister(&LoongArch::CFRRegClass);
4519 Register RD1 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
4527 Register RD2 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
4535 MI.getOperand(0).getReg())
4542 MI.eraseFromParent();
4551 switch (
MI.getOpcode()) {
4554 case LoongArch::PseudoXVINSGR2VR_B:
4556 InsOp = LoongArch::VINSGR2VR_B;
4558 case LoongArch::PseudoXVINSGR2VR_H:
4560 InsOp = LoongArch::VINSGR2VR_H;
4572 unsigned Idx =
MI.getOperand(3).getImm();
4575 if (
Idx >= HalfSize) {
4576 ScratchReg1 =
MRI.createVirtualRegister(RC);
4577 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::XVPERMI_Q), ScratchReg1)
4583 Register ScratchSubReg1 =
MRI.createVirtualRegister(SubRC);
4584 Register ScratchSubReg2 =
MRI.createVirtualRegister(SubRC);
4586 .
addReg(ScratchReg1, 0, LoongArch::sub_128);
4593 if (
Idx >= HalfSize)
4594 ScratchReg2 =
MRI.createVirtualRegister(RC);
4596 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::SUBREG_TO_REG), ScratchReg2)
4599 .
addImm(LoongArch::sub_128);
4601 if (
Idx >= HalfSize)
4607 MI.eraseFromParent();
4614 assert(Subtarget.hasExtLSX());
4621 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
4622 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
4623 Register ScratchReg3 =
MRI.createVirtualRegister(RC);
4627 TII->get(Subtarget.
is64Bit() ? LoongArch::VINSGR2VR_D
4628 : LoongArch::VINSGR2VR_W),
4635 TII->get(Subtarget.
is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W),
4639 TII->get(Subtarget.
is64Bit() ? LoongArch::VPICKVE2GR_D
4640 : LoongArch::VPICKVE2GR_W),
4645 MI.eraseFromParent();
4654 switch (
MI.getOpcode()) {
4657 case LoongArch::DIV_W:
4658 case LoongArch::DIV_WU:
4659 case LoongArch::MOD_W:
4660 case LoongArch::MOD_WU:
4661 case LoongArch::DIV_D:
4662 case LoongArch::DIV_DU:
4663 case LoongArch::MOD_D:
4664 case LoongArch::MOD_DU:
4667 case LoongArch::WRFCSR: {
4669 LoongArch::FCSR0 +
MI.getOperand(0).getImm())
4670 .
addReg(
MI.getOperand(1).getReg());
4671 MI.eraseFromParent();
4674 case LoongArch::RDFCSR: {
4677 MI.getOperand(0).getReg())
4678 .
addReg(LoongArch::FCSR0 +
MI.getOperand(1).getImm());
4680 MI.eraseFromParent();
4683 case LoongArch::PseudoVBZ:
4684 case LoongArch::PseudoVBZ_B:
4685 case LoongArch::PseudoVBZ_H:
4686 case LoongArch::PseudoVBZ_W:
4687 case LoongArch::PseudoVBZ_D:
4688 case LoongArch::PseudoVBNZ:
4689 case LoongArch::PseudoVBNZ_B:
4690 case LoongArch::PseudoVBNZ_H:
4691 case LoongArch::PseudoVBNZ_W:
4692 case LoongArch::PseudoVBNZ_D:
4693 case LoongArch::PseudoXVBZ:
4694 case LoongArch::PseudoXVBZ_B:
4695 case LoongArch::PseudoXVBZ_H:
4696 case LoongArch::PseudoXVBZ_W:
4697 case LoongArch::PseudoXVBZ_D:
4698 case LoongArch::PseudoXVBNZ:
4699 case LoongArch::PseudoXVBNZ_B:
4700 case LoongArch::PseudoXVBNZ_H:
4701 case LoongArch::PseudoXVBNZ_W:
4702 case LoongArch::PseudoXVBNZ_D:
4704 case LoongArch::PseudoXVINSGR2VR_B:
4705 case LoongArch::PseudoXVINSGR2VR_H:
4707 case LoongArch::PseudoCTPOP:
4709 case TargetOpcode::STATEPOINT:
4715 MI.addOperand(*
MI.getMF(),
4717 LoongArch::R1,
true,
4728 unsigned *
Fast)
const {
4729 if (!Subtarget.hasUAL())
4743#define NODE_NAME_CASE(node) \
4744 case LoongArchISD::node: \
4745 return "LoongArchISD::" #node;
4825#undef NODE_NAME_CASE
4838 LoongArch::R7, LoongArch::R8, LoongArch::R9,
4839 LoongArch::R10, LoongArch::R11};
4843 LoongArch::F3, LoongArch::F4, LoongArch::F5,
4844 LoongArch::F6, LoongArch::F7};
4847 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
4848 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
4851 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
4852 LoongArch::VR6, LoongArch::VR7};
4855 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
4856 LoongArch::XR6, LoongArch::XR7};
4862 unsigned ValNo2,
MVT ValVT2,
MVT LocVT2,
4864 unsigned GRLenInBytes = GRLen / 8;
4897 unsigned ValNo,
MVT ValVT,
4899 CCState &State,
bool IsFixed,
bool IsRet,
4901 unsigned GRLen =
DL.getLargestLegalIntTypeSizeInBits();
4902 assert((GRLen == 32 || GRLen == 64) &&
"Unspport GRLen");
4903 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
4908 if (IsRet && ValNo > 1)
4912 bool UseGPRForFloat =
true;
4922 UseGPRForFloat = !IsFixed;
4931 UseGPRForFloat =
true;
4933 if (UseGPRForFloat && ValVT == MVT::f32) {
4936 }
else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
4939 }
else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
4950 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
4952 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
4955 if (RegIdx != std::size(
ArgGPRs) && RegIdx % 2 == 1)
4964 "PendingLocs and PendingArgFlags out of sync");
4982 PendingLocs.
size() <= 2) {
4983 assert(PendingLocs.
size() == 2 &&
"Unexpected PendingLocs.size()");
4988 PendingLocs.
clear();
4989 PendingArgFlags.
clear();
4996 unsigned StoreSizeBytes = GRLen / 8;
4999 if (ValVT == MVT::f32 && !UseGPRForFloat)
5001 else if (ValVT == MVT::f64 && !UseGPRForFloat)
5015 if (!PendingLocs.
empty()) {
5017 assert(PendingLocs.
size() > 2 &&
"Unexpected PendingLocs.size()");
5018 for (
auto &It : PendingLocs) {
5020 It.convertToReg(Reg);
5025 PendingLocs.clear();
5026 PendingArgFlags.
clear();
5029 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
5030 "Expected an GRLenVT at this stage");
5047void LoongArchTargetLowering::analyzeInputArgs(
5050 LoongArchCCAssignFn Fn)
const {
5052 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
5054 Type *ArgTy =
nullptr;
5056 ArgTy = FType->getReturnType();
5057 else if (Ins[i].isOrigArg())
5058 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
5062 CCInfo,
true, IsRet, ArgTy)) {
5063 LLVM_DEBUG(
dbgs() <<
"InputArg #" << i <<
" has unhandled type " << ArgVT
5070void LoongArchTargetLowering::analyzeOutputArgs(
5073 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn)
const {
5074 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
5075 MVT ArgVT = Outs[i].VT;
5076 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty :
nullptr;
5080 CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
5081 LLVM_DEBUG(
dbgs() <<
"OutputArg #" << i <<
" has unhandled type " << ArgVT
5122 if (In.isOrigArg()) {
5127 if ((
BitWidth <= 32 && In.Flags.isSExt()) ||
5128 (
BitWidth < 32 && In.Flags.isZExt())) {
5188 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5192 LoongArch::R23, LoongArch::R24, LoongArch::R25,
5193 LoongArch::R26, LoongArch::R27, LoongArch::R28,
5194 LoongArch::R29, LoongArch::R30, LoongArch::R31};
5201 if (LocVT == MVT::f32) {
5204 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
5205 LoongArch::F26, LoongArch::F27};
5212 if (LocVT == MVT::f64) {
5215 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
5216 LoongArch::F30_64, LoongArch::F31_64};
5245 "GHC calling convention requires the F and D extensions");
5250 unsigned GRLenInBytes = Subtarget.
getGRLen() / 8;
5252 std::vector<SDValue> OutChains;
5261 analyzeInputArgs(MF, CCInfo, Ins,
false,
CC_LoongArch);
5263 for (
unsigned i = 0, e = ArgLocs.
size(); i != e; ++i) {
5275 unsigned ArgIndex = Ins[i].OrigArgIndex;
5276 unsigned ArgPartOffset = Ins[i].PartOffset;
5277 assert(ArgPartOffset == 0);
5278 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
5280 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
5303 int VaArgOffset, VarArgsSaveSize;
5309 VarArgsSaveSize = 0;
5311 VarArgsSaveSize = GRLenInBytes * (ArgRegs.
size() -
Idx);
5312 VaArgOffset = -VarArgsSaveSize;
5318 LoongArchFI->setVarArgsFrameIndex(FI);
5326 VarArgsSaveSize += GRLenInBytes;
5331 for (
unsigned I =
Idx;
I < ArgRegs.
size();
5332 ++
I, VaArgOffset += GRLenInBytes) {
5340 cast<StoreSDNode>(Store.getNode())
5342 ->setValue((
Value *)
nullptr);
5343 OutChains.push_back(Store);
5345 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
5350 if (!OutChains.empty()) {
5351 OutChains.push_back(Chain);
5366 if (
N->getNumValues() != 1)
5368 if (!
N->hasNUsesOfValue(1, 0))
5371 SDNode *Copy = *
N->user_begin();
5377 if (Copy->getGluedNode())
5381 bool HasRet =
false;
5382 for (
SDNode *Node : Copy->users()) {
5391 Chain = Copy->getOperand(0);
5396bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
5400 auto CalleeCC = CLI.CallConv;
5401 auto &Outs = CLI.Outs;
5403 auto CallerCC = Caller.getCallingConv();
5410 for (
auto &VA : ArgLocs)
5416 auto IsCallerStructRet = Caller.hasStructRetAttr();
5417 auto IsCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
5418 if (IsCallerStructRet || IsCalleeStructRet)
5422 for (
auto &Arg : Outs)
5423 if (Arg.Flags.isByVal())
5428 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
5429 if (CalleeCC != CallerCC) {
5430 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
5431 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
5469 analyzeOutputArgs(MF, ArgCCInfo, Outs,
false, &CLI,
CC_LoongArch);
5473 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
5479 "site marked musttail");
5486 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
5488 if (!Flags.isByVal())
5492 unsigned Size = Flags.getByValSize();
5493 Align Alignment = Flags.getNonZeroByValAlign();
5500 Chain = DAG.
getMemcpy(Chain,
DL, FIPtr, Arg, SizeNode, Alignment,
5502 false,
nullptr, std::nullopt,
5514 for (
unsigned i = 0, j = 0, e = ArgLocs.
size(); i != e; ++i) {
5516 SDValue ArgValue = OutVals[i];
5529 unsigned ArgIndex = Outs[i].OrigArgIndex;
5530 unsigned ArgPartOffset = Outs[i].PartOffset;
5531 assert(ArgPartOffset == 0);
5536 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
5537 SDValue PartValue = OutVals[i + 1];
5538 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
5548 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
5552 for (
const auto &Part : Parts) {
5553 SDValue PartValue = Part.first;
5554 SDValue PartOffset = Part.second;
5561 ArgValue = SpillSlot;
5567 if (Flags.isByVal())
5568 ArgValue = ByValArgs[j++];
5575 assert(!IsTailCall &&
"Tail call not allowed if stack is used "
5576 "for passing parameters");
5579 if (!StackPtr.getNode())
5592 if (!MemOpChains.
empty())
5598 for (
auto &Reg : RegsToPass) {
5599 Chain = DAG.
getCopyToReg(Chain,
DL, Reg.first, Reg.second, Glue);
5626 for (
auto &Reg : RegsToPass)
5632 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
5633 assert(Mask &&
"Missing call preserved mask for calling convention");
5651 assert(Subtarget.
is64Bit() &&
"Medium code model requires LA64");
5655 assert(Subtarget.
is64Bit() &&
"Large code model requires LA64");
5678 analyzeInputArgs(MF, RetCCInfo, Ins,
true,
CC_LoongArch);
5681 for (
auto &VA : RVLocs) {
5702 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
5704 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
5708 Outs[i].Flags, CCInfo,
true,
true,
5735 for (
unsigned i = 0, e = RVLocs.
size(); i < e; ++i) {
5759 if (!Subtarget.hasExtLSX())
5762 if (VT == MVT::f32) {
5763 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff;
5764 return (masked == 0x3e000000 || masked == 0x40000000);
5767 if (VT == MVT::f64) {
5768 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff;
5769 return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000);
5775bool LoongArchTargetLowering::isFPImmLegal(
const APFloat &Imm,
EVT VT,
5776 bool ForCodeSize)
const {
5778 if (VT == MVT::f32 && !Subtarget.hasBasicF())
5780 if (VT == MVT::f64 && !Subtarget.hasBasicD())
5782 return (Imm.isZero() || Imm.isExactlyValue(1.0) ||
isFPImmVLDILegal(Imm, VT));
5793bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
5796 return isa<LoadInst>(
I) || isa<StoreInst>(
I);
5798 if (isa<LoadInst>(
I))
5803 Type *Ty =
I->getOperand(0)->getType();
5822 return Y.getValueType().isScalarInteger() && !isa<ConstantSDNode>(
Y);
5828 unsigned Intrinsic)
const {
5829 switch (Intrinsic) {
5832 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
5833 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
5834 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
5835 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
5837 Info.memVT = MVT::i32;
5838 Info.ptrVal =
I.getArgOperand(0);
5857 "Unable to expand");
5858 unsigned MinWordSize = 4;
5871 Intrinsic::ptrmask, {PtrTy, IntTy},
5872 {
Addr, ConstantInt::get(IntTy, ~(
uint64_t)(MinWordSize - 1))},
nullptr,
5876 Value *PtrLSB = Builder.
CreateAnd(AddrInt, MinWordSize - 1,
"PtrLSB");
5878 ShiftAmt = Builder.
CreateTrunc(ShiftAmt, WordType,
"ShiftAmt");
5880 ConstantInt::get(WordType,
5884 Value *ValOperand_Shifted =
5886 ShiftAmt,
"ValOperand_Shifted");
5889 NewOperand = Builder.
CreateOr(ValOperand_Shifted, Inv_Mask,
"AndOperand");
5891 NewOperand = ValOperand_Shifted;
5917 if (Subtarget.hasLAM_BH() && Subtarget.
is64Bit() &&
5925 if (Subtarget.hasLAMCAS()) {
5947 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
5949 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
5951 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
5953 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
5955 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
5957 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
5959 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
5961 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
5971 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
5973 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
5975 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
5977 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
5989 if (Subtarget.hasLAMCAS())
6002 Value *FailureOrdering =
6006 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
6012 CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
6036 unsigned GRLen = Subtarget.
getGRLen();
6065 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
6068 Builder.
CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
6095 const Constant *PersonalityFn)
const {
6096 return LoongArch::R4;
6100 const Constant *PersonalityFn)
const {
6101 return LoongArch::R5;
6112 int RefinementSteps = VT.
getScalarType() == MVT::f64 ? 2 : 1;
6113 return RefinementSteps;
6118 int &RefinementSteps,
6119 bool &UseOneConstNR,
6120 bool Reciprocal)
const {
6121 if (Subtarget.hasFrecipe()) {
6125 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
6126 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
6127 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
6128 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
6129 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
6148 int &RefinementSteps)
const {
6149 if (Subtarget.hasFrecipe()) {
6153 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
6154 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
6155 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
6156 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
6157 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
6174LoongArchTargetLowering::getConstraintType(
StringRef Constraint)
const {
6192 if (Constraint.
size() == 1) {
6193 switch (Constraint[0]) {
6208 if (Constraint ==
"ZC" || Constraint ==
"ZB")
6224std::pair<unsigned, const TargetRegisterClass *>
6225LoongArchTargetLowering::getRegForInlineAsmConstraint(
6229 if (Constraint.
size() == 1) {
6230 switch (Constraint[0]) {
6235 return std::make_pair(0U, &LoongArch::GPRRegClass);
6237 if (Subtarget.hasBasicF() && VT == MVT::f32)
6238 return std::make_pair(0U, &LoongArch::FPR32RegClass);
6239 if (Subtarget.hasBasicD() && VT == MVT::f64)
6240 return std::make_pair(0U, &LoongArch::FPR64RegClass);
6241 if (Subtarget.hasExtLSX() &&
6242 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
6243 return std::make_pair(0U, &LoongArch::LSX128RegClass);
6244 if (Subtarget.hasExtLASX() &&
6245 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
6246 return std::make_pair(0U, &LoongArch::LASX256RegClass);
6266 bool IsFP = Constraint[2] ==
'f';
6267 std::pair<StringRef, StringRef> Temp = Constraint.
split(
'$');
6268 std::pair<unsigned, const TargetRegisterClass *>
R;
6270 TRI, join_items(
"", Temp.first, Temp.second), VT);
6273 unsigned RegNo =
R.first;
6274 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
6275 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
6276 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
6277 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
6287void LoongArchTargetLowering::LowerAsmOperandForConstraint(
6291 if (Constraint.
size() == 1) {
6292 switch (Constraint[0]) {
6295 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op)) {
6297 if (isInt<16>(CVal))
6304 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op)) {
6306 if (isInt<12>(CVal))
6313 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op))
6314 if (
C->getZExtValue() == 0)
6320 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op)) {
6322 if (isUInt<12>(CVal))
6334#define GET_REGISTER_MATCHER
6335#include "LoongArchGenAsmMatcher.inc"
6341 std::string NewRegName =
Name.second.str();
6343 if (Reg == LoongArch::NoRegister)
6345 if (Reg == LoongArch::NoRegister)
6349 if (!ReservedRegs.
test(Reg))
6365 if (
auto *ConstNode = dyn_cast<ConstantSDNode>(
C.getNode())) {
6366 const APInt &Imm = ConstNode->getAPIntValue();
6368 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
6369 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
6372 if (ConstNode->hasOneUse() &&
6373 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
6374 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
6380 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
6381 unsigned Shifts = Imm.countr_zero();
6387 APInt ImmPop = Imm.ashr(Shifts);
6388 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
6392 APInt ImmSmall =
APInt(Imm.getBitWidth(), 1ULL << Shifts,
true);
6393 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
6394 (ImmSmall - Imm).isPowerOf2())
6404 Type *Ty,
unsigned AS,
6420 !(isShiftedInt<14, 2>(AM.
BaseOffs) && Subtarget.hasUAL()))
6447 return isInt<12>(Imm);
6451 return isInt<12>(Imm);
6458 if (
auto *LD = dyn_cast<LoadSDNode>(Val)) {
6459 EVT MemVT = LD->getMemoryVT();
6460 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
6471 return Subtarget.
is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
6480 if (
Y.getValueType().isVector())
6483 return !isa<ConstantSDNode>(
Y);
6492 Type *Ty,
bool IsSigned)
const {
6513 Align &PrefAlign)
const {
6514 if (!isa<MemIntrinsic>(CI))
6519 PrefAlign =
Align(8);
6522 PrefAlign =
Align(4);
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType)
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI)
static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
#define NODE_NAME_CASE(node)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
Function Alias Analysis Results
static uint64_t getConstant(const Value *IndexValue)
static SDValue getTargetNode(GlobalAddressSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
Analysis containing CSE Info
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromRegLoc(const CSKYSubtarget &Subtarget, SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
static SDValue performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
const MCPhysReg ArgFPR32s[]
static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
static bool fitsRegularPattern(typename SmallVectorImpl< ValType >::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl< ValType >::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride)
Determine whether a range fits a regular pattern of values.
static void canonicalizeShuffleVectorByLane(const SDLoc &DL, MutableArrayRef< int > Mask, MVT VT, SDValue &V1, SDValue &V2, SelectionDAG &DAG)
Shuffle vectors by lane to generate more optimized instructions.
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static cl::opt< bool > ZeroDivCheck("loongarch-check-zero-division", cl::Hidden, cl::desc("Trap on integer division by zero."), cl::init(false))
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Dispatching routine to lower various 256-bit LoongArch vector shuffles.
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static void emitErrorAndReplaceIntrinsicResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, StringRef ErrorMsg, bool WithChain=true)
static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVH (if possible).
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, unsigned ValNo, MVT ValVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, bool IsRet, Type *OrigTy)
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG)
static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
#define CRC_CASE_EXT_BINARYOP(NAME, NODE)
static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG)
static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG)
static MachineBasicBlock * insertDivByZeroTrap(MachineInstr &MI, MachineBasicBlock *MBB)
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG)
static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG)
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKEV (if possible).
static void replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, bool IsSigned=false)
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2)
const MCPhysReg ArgFPR64s[]
static MachineBasicBlock * emitPseudoCTPOP(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
#define IOCSRWR_CASE(NAME, NODE)
#define CRC_CASE_EXT_UNARYOP(NAME, NODE)
static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKOD (if possible).
static MachineBasicBlock * emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
const MCPhysReg ArgGPRs[]
static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVL (if possible).
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, unsigned ExtOpc=ISD::ANY_EXTEND)
static void replaceVecCondBranchResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
#define ASRT_LE_GT_CASE(NAME)
static bool isConstantOrUndef(const SDValue Op)
static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
static MachineBasicBlock * emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVH (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF (if possible).
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRRD_CASE(NAME, NODE)
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Dispatching routine to lower various 128-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVL (if possible).
static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG)
static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op)
static void replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKOD (if possible).
static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, AtomicRMWInst::BinOp BinOp)
static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VSHUF.
static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode)
unsigned const TargetRegisterInfo * TRI
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Class for arbitrary precision integers.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getCompareOperand()
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
bool isFloatingPointOperation() const
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM Basic Block Representation.
bool test(unsigned Idx) const
A "pseudo-class" with methods for operating on BUILD_VECTORs.
CCState - This class holds information needed while lowering arguments and return values.
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
SmallVectorImpl< ISD::ArgFlagsTy > & getPendingArgFlags()
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
int64_t AllocateStack(unsigned Size, Align Alignment)
AllocateStack - Allocate a chunk of stack space with the specified size and alignment.
void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
SmallVectorImpl< CCValAssign > & getPendingLocs()
void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
void addLoc(const CCValAssign &V)
CCValAssign - Represent assignment of one arg/retval to a location.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo=0)
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Argument * getArg(unsigned i) const
Common base class shared among various IRBuilders.
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
AtomicRMWInst * CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val, MaybeAlign Align, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
LoongArchMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private Lo...
void addSExt32Register(Register Reg)
const LoongArchRegisterInfo * getRegisterInfo() const override
const LoongArchInstrInfo * getInstrInfo() const override
unsigned getMaxBytesForAlignment() const
Align getPrefFunctionAlignment() const
unsigned getGRLen() const
Align getPrefLoopAlignment() const
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override
Return true if result of the specified node is used by a return node only.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Determine if the target supports unaligned memory accesses.
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
bool signExtendConstant(const ConstantInt *CI) const override
Return true if this constant should be sign extended when promoting to a larger type.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const override
Returns true if arguments should be sign-extended in lib calls.
bool isFPImmVLDILegal(const APFloat &Imm, EVT VT) const
bool shouldExtendTypeInLibCall(EVT Type) const override
Returns true if arguments should be extended in lib calls.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
LoongArchTargetLowering(const TargetMachine &TM, const LoongArchSubtarget &STI)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override
Return a reciprocal estimate value for the input operand.
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
Wrapper class representing physical registers. Should be passed by value.
bool hasFeature(unsigned Feature) const
bool is128BitVector() const
Return true if this is a 128-bit vector type.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
static auto fixedlen_vector_valuetypes()
bool is256BitVector() const
Return true if this is a 256-bit vector type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void addLiveIn(MCRegister Reg, Register vreg=Register())
addLiveIn - Add the specified register as a live-in.
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
size_t use_size() const
Return the number of uses of this node.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), AAResults *AA=nullptr)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue getRegister(Register Reg, EVT VT)
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
MachineFunction & getMachineFunction() const
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
SDValue getRegisterMask(const uint32_t *RegMask)
LLVMContext * getContext() const
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
typename SuperClass::const_iterator const_iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
void setMaxBytesForAlignment(unsigned MaxBytes)
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
bool useTLSDESC() const
Returns true if this target uses TLS Descriptors.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
This class is used to represent EVT's, which are used to parameterize some operations.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ MEMBARRIER
MEMBARRIER - Compiler barrier only; generate a no-op.
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ BR_JT
BR_JT - Jumptable branch.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ABI getTargetABI(StringRef ABIName)
Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
AtomicOrdering
Atomic ordering for LLVM's memory model.
unsigned getKillRegState(bool B)
DWARFExpression::Operation Op
constexpr unsigned BitWidth
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Align getNonZeroOrigAlign() const
Register getFrameRegister(const MachineFunction &MF) const override
BitVector getReservedRegs(const MachineFunction &MF) const override
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT, bool Value=true)