LLVM 20.0.0git
CFIFixup.cpp
Go to the documentation of this file.
1//===------ CFIFixup.cpp - Insert CFI remember/restore instructions -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9
10// This pass inserts the necessary instructions to adjust for the inconsistency
11// of the call-frame information caused by final machine basic block layout.
12// The pass relies in constraints LLVM imposes on the placement of
13// save/restore points (cf. ShrinkWrap) and has certain preconditions about
14// placement of CFI instructions:
15// * For any two CFI instructions of the function prologue one dominates
16// and is post-dominated by the other.
17// * The function possibly contains multiple epilogue blocks, where each
18// epilogue block is complete and self-contained, i.e. CSR restore
19// instructions (and the corresponding CFI instructions)
20// are not split across two or more blocks.
21// * CFI instructions are not contained in any loops.
22
23// Thus, during execution, at the beginning and at the end of each basic block,
24// following the prologue, the function can be in one of two states:
25// - "has a call frame", if the function has executed the prologue, and
26// has not executed any epilogue
27// - "does not have a call frame", if the function has not executed the
28// prologue, or has executed an epilogue
29// which can be computed by a single RPO traversal.
30
31// The location of the prologue is determined by finding the first block in the
32// reverse traversal which contains CFI instructions.
33
34// In order to accommodate backends which do not generate unwind info in
35// epilogues we compute an additional property "strong no call frame on entry",
36// which is set for the entry point of the function and for every block
37// reachable from the entry along a path that does not execute the prologue. If
38// this property holds, it takes precedence over the "has a call frame"
39// property.
40
41// From the point of view of the unwind tables, the "has/does not have call
42// frame" state at beginning of each block is determined by the state at the end
43// of the previous block, in layout order. Where these states differ, we insert
44// compensating CFI instructions, which come in two flavours:
45
46// - CFI instructions, which reset the unwind table state to the initial one.
47// This is done by a target specific hook and is expected to be trivial
48// to implement, for example it could be:
49// .cfi_def_cfa <sp>, 0
50// .cfi_same_value <rN>
51// .cfi_same_value <rN-1>
52// ...
53// where <rN> are the callee-saved registers.
54// - CFI instructions, which reset the unwind table state to the one
55// created by the function prologue. These are
56// .cfi_restore_state
57// .cfi_remember_state
58// In this case we also insert a `.cfi_remember_state` after the last CFI
59// instruction in the function prologue.
60//
61// Known limitations:
62// * the pass cannot handle an epilogue preceding the prologue in the basic
63// block layout
64// * the pass does not handle functions where SP is used as a frame pointer and
65// SP adjustments up and down are done in different basic blocks (TODO)
66//===----------------------------------------------------------------------===//
67
69
70#include "llvm/ADT/DenseMap.h"
72#include "llvm/ADT/STLExtras.h"
76#include "llvm/CodeGen/Passes.h"
80#include "llvm/MC/MCAsmInfo.h"
81#include "llvm/MC/MCDwarf.h"
83
84#include <iterator>
85
86using namespace llvm;
87
88#define DEBUG_TYPE "cfi-fixup"
89
90char CFIFixup::ID = 0;
91
93 "Insert CFI remember/restore state instructions", false, false)
94FunctionPass *llvm::createCFIFixup() { return new CFIFixup(); }
95
97 return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
99}
100
102 return llvm::any_of(llvm::reverse(MBB), [](const auto &MI) {
103 return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
105 });
106}
107
108static MachineBasicBlock *
110 // Even though we should theoretically traverse the blocks in post-order, we
111 // can't encode correctly cases where prologue blocks are not laid out in
112 // topological order. Then, assuming topological order, we can just traverse
113 // the function in reverse.
114 for (MachineBasicBlock &MBB : reverse(MF)) {
115 for (MachineInstr &MI : reverse(MBB.instrs())) {
117 continue;
118 PrologueEnd = std::next(MI.getIterator());
119 return &MBB;
120 }
121 }
122 return nullptr;
123}
124
125// Represents the point within a basic block where we can insert an instruction.
126// Note that we need the MachineBasicBlock* as well as the iterator since the
127// iterator can point to the end of the block. Instructions are inserted
128// *before* the iterator.
132};
133
134// Inserts a `.cfi_remember_state` instruction before PrologueEnd and a
135// `.cfi_restore_state` instruction before DstInsertPt. Returns an iterator
136// to the first instruction after the inserted `.cfi_restore_state` instruction.
137static InsertionPoint
139 const InsertionPoint &RestoreInsertPt) {
140 MachineFunction &MF = *RememberInsertPt.MBB->getParent();
142
143 // Insert the `.cfi_remember_state` instruction.
144 unsigned CFIIndex =
146 BuildMI(*RememberInsertPt.MBB, RememberInsertPt.Iterator, DebugLoc(),
147 TII.get(TargetOpcode::CFI_INSTRUCTION))
148 .addCFIIndex(CFIIndex);
149
150 // Insert the `.cfi_restore_state` instruction.
152
153 return {RestoreInsertPt.MBB,
154 std::next(BuildMI(*RestoreInsertPt.MBB, RestoreInsertPt.Iterator,
155 DebugLoc(), TII.get(TargetOpcode::CFI_INSTRUCTION))
156 .addCFIIndex(CFIIndex)
157 ->getIterator())};
158}
159
160// Copies all CFI instructions before PrologueEnd and inserts them before
161// DstInsertPt. Returns the iterator to the first instruction after the
162// inserted instructions.
164 const InsertionPoint &DstInsertPt) {
165 MachineFunction &MF = *DstInsertPt.MBB->getParent();
166
167 auto cloneCfiInstructions = [&](MachineBasicBlock::iterator Begin,
169 auto ToClone = map_range(
171 [&](const MachineInstr &MI) { return MF.CloneMachineInstr(&MI); });
172 DstInsertPt.MBB->insert(DstInsertPt.Iterator, ToClone.begin(),
173 ToClone.end());
174 };
175
176 // Clone all CFI instructions from previous blocks.
177 for (auto &MBB : make_range(MF.begin(), PrologueEnd.MBB->getIterator()))
178 cloneCfiInstructions(MBB.begin(), MBB.end());
179 // Clone all CFI instructions from the final prologue block.
180 cloneCfiInstructions(PrologueEnd.MBB->begin(), PrologueEnd.Iterator);
181 return DstInsertPt;
182}
183
186 if (!TFL.enableCFIFixup(MF))
187 return false;
188
189 const unsigned NumBlocks = MF.getNumBlockIDs();
190 if (NumBlocks < 2)
191 return false;
192
193 // Find the prologue and the point where we can issue the first
194 // `.cfi_remember_state`.
195 MachineBasicBlock::iterator PrologueEnd;
196 MachineBasicBlock *PrologueBlock = findPrologueEnd(MF, PrologueEnd);
197 if (PrologueBlock == nullptr)
198 return false;
199
200 struct BlockFlags {
201 bool Reachable : 1;
202 bool StrongNoFrameOnEntry : 1;
203 bool HasFrameOnEntry : 1;
204 bool HasFrameOnExit : 1;
205 };
206 SmallVector<BlockFlags, 32> BlockInfo(NumBlocks,
207 {false, false, false, false});
208 BlockInfo[0].Reachable = true;
209 BlockInfo[0].StrongNoFrameOnEntry = true;
210
211 // Compute the presence/absence of frame at each basic block.
213 for (MachineBasicBlock *MBB : RPOT) {
214 BlockFlags &Info = BlockInfo[MBB->getNumber()];
215
216 // Set to true if the current block contains the prologue or the epilogue,
217 // respectively.
218 bool HasPrologue = MBB == PrologueBlock;
219 bool HasEpilogue = false;
220
221 if (Info.HasFrameOnEntry || HasPrologue)
222 HasEpilogue = containsEpilogue(*MBB);
223
224 // If the function has a call frame at the entry of the current block or the
225 // current block contains the prologue, then the function has a call frame
226 // at the exit of the block, unless the block contains the epilogue.
227 Info.HasFrameOnExit = (Info.HasFrameOnEntry || HasPrologue) && !HasEpilogue;
228
229 // Set the successors' state on entry.
230 for (MachineBasicBlock *Succ : MBB->successors()) {
231 BlockFlags &SuccInfo = BlockInfo[Succ->getNumber()];
232 SuccInfo.Reachable = true;
233 SuccInfo.StrongNoFrameOnEntry |=
234 Info.StrongNoFrameOnEntry && !HasPrologue;
235 SuccInfo.HasFrameOnEntry = Info.HasFrameOnExit;
236 }
237 }
238
239 // Walk the blocks of the function in "physical" order.
240 // Every block inherits the frame state (as recorded in the unwind tables)
241 // of the previous block. If the intended frame state is different, insert
242 // compensating CFI instructions.
243 bool Change = false;
244 // `InsertPt[sectionID]` always points to the point in a preceding block where
245 // we have to insert a `.cfi_remember_state`, in the case that the current
246 // block needs a `.cfi_restore_state`.
248 InsertionPts[PrologueBlock->getSectionID()] = {PrologueBlock, PrologueEnd};
249
250 assert(PrologueEnd != PrologueBlock->begin() &&
251 "Inconsistent notion of \"prologue block\"");
252
253 // No point starting before the prologue block.
254 // TODO: the unwind tables will still be incorrect if an epilogue physically
255 // preceeds the prologue.
256 MachineFunction::iterator CurrBB = std::next(PrologueBlock->getIterator());
257 bool HasFrame = BlockInfo[PrologueBlock->getNumber()].HasFrameOnExit;
258 while (CurrBB != MF.end()) {
259 const BlockFlags &Info = BlockInfo[CurrBB->getNumber()];
260 if (!Info.Reachable) {
261 ++CurrBB;
262 continue;
263 }
264
265#ifndef NDEBUG
266 if (!Info.StrongNoFrameOnEntry) {
267 for (auto *Pred : CurrBB->predecessors()) {
268 BlockFlags &PredInfo = BlockInfo[Pred->getNumber()];
269 assert((!PredInfo.Reachable ||
270 Info.HasFrameOnEntry == PredInfo.HasFrameOnExit) &&
271 "Inconsistent call frame state");
272 }
273 }
274#endif
275
276 // If the block is the first block in its section, then it doesn't have a
277 // frame on entry.
278 HasFrame &= !CurrBB->isBeginSection();
279 if (!Info.StrongNoFrameOnEntry && Info.HasFrameOnEntry && !HasFrame) {
280 // Reset to the "after prologue" state.
281
282 InsertionPoint &InsertPt = InsertionPts[CurrBB->getSectionID()];
283 if (InsertPt.MBB == nullptr) {
284 // CurBB is the first block in its section, so there is no "after
285 // prologue" state. Clone the CFI instructions from the prologue block
286 // to create it.
287 InsertPt = cloneCfiPrologue({PrologueBlock, PrologueEnd},
288 {&*CurrBB, CurrBB->begin()});
289 } else {
290 // There's an earlier block known to have a stack frame. Insert a
291 // `.cfi_remember_state` instruction into that block and a
292 // `.cfi_restore_state` instruction at the beginning of the current
293 // block.
294 InsertPt =
295 insertRememberRestorePair(InsertPt, {&*CurrBB, CurrBB->begin()});
296 }
297 Change = true;
298 } else if ((Info.StrongNoFrameOnEntry || !Info.HasFrameOnEntry) &&
299 HasFrame) {
300 // Reset to the state upon function entry.
301 TFL.resetCFIToInitialState(*CurrBB);
302 Change = true;
303 }
304
305 HasFrame = Info.HasFrameOnExit;
306 ++CurrBB;
307 }
308
309 return Change;
310}
MachineBasicBlock & MBB
static InsertionPoint insertRememberRestorePair(const InsertionPoint &RememberInsertPt, const InsertionPoint &RestoreInsertPt)
Definition: CFIFixup.cpp:138
static InsertionPoint cloneCfiPrologue(const InsertionPoint &PrologueEnd, const InsertionPoint &DstInsertPt)
Definition: CFIFixup.cpp:163
static bool isPrologueCFIInstruction(const MachineInstr &MI)
Definition: CFIFixup.cpp:96
static MachineBasicBlock * findPrologueEnd(MachineFunction &MF, MachineBasicBlock::iterator &PrologueEnd)
Definition: CFIFixup.cpp:109
static bool containsEpilogue(const MachineBasicBlock &MBB)
Definition: CFIFixup.cpp:101
Contains definition of the base CFIFixup pass.
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file defines the DenseMap class.
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
Definition: CFIFixup.cpp:184
static char ID
Definition: CFIFixup.h:23
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
static MCCFIInstruction createRememberState(MCSymbol *L, SMLoc Loc={})
.cfi_remember_state Save all current rules for all registers.
Definition: MCDwarf.h:676
static MCCFIInstruction createRestoreState(MCSymbol *L, SMLoc Loc={})
.cfi_restore_state Restore the previously saved state.
Definition: MCDwarf.h:681
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
MBBSectionID getSectionID() const
Returns the section ID of this basic block.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< succ_iterator > successors()
unsigned addFrameInst(const MCCFIInstruction &Inst)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
unsigned getNumBlockIDs() const
getNumBlockIDs - Return the number of MBB ID's allocated.
MachineInstr * CloneMachineInstr(const MachineInstr *Orig)
Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...
const MachineInstrBuilder & addCFIIndex(unsigned CFIIndex) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Information about stack frame layout on the target.
virtual void resetCFIToInitialState(MachineBasicBlock &MBB) const
Emit CFI instructions that recreate the state of the unwind information upon fucntion entry.
virtual bool enableCFIFixup(MachineFunction &MF) const
Returns true if we may need to fix the unwind information for the function.
TargetInstrInfo - Interface to description of machine instruction set.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
self_iterator getIterator()
Definition: ilist_node.h:132
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
auto map_range(ContainerTy &&C, FuncTy F)
Definition: STLExtras.h:377
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
Definition: STLExtras.h:573
FunctionPass * createCFIFixup()
Creates CFI Fixup pass.
MachineBasicBlock::iterator Iterator
Definition: CFIFixup.cpp:131
MachineBasicBlock * MBB
Definition: CFIFixup.cpp:130