LLVM 20.0.0git
TargetInstrInfo.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the target machine instruction set to the code generator.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Uniformity.h"
31#include "llvm/MC/MCInstrInfo.h"
34#include <array>
35#include <cassert>
36#include <cstddef>
37#include <cstdint>
38#include <utility>
39#include <vector>
40
41namespace llvm {
42
43class DFAPacketizer;
44class InstrItineraryData;
45class LiveIntervals;
46class LiveVariables;
47class MachineLoop;
48class MachineMemOperand;
49class MachineModuleInfo;
50class MachineRegisterInfo;
51class MCAsmInfo;
52class MCInst;
53struct MCSchedModel;
54class Module;
55class ScheduleDAG;
56class ScheduleDAGMI;
57class ScheduleHazardRecognizer;
58class SDNode;
59class SelectionDAG;
60class SMSchedule;
61class SwingSchedulerDAG;
62class RegScavenger;
63class TargetRegisterClass;
64class TargetRegisterInfo;
65class TargetSchedModel;
66class TargetSubtargetInfo;
67enum class MachineTraceStrategy;
68
69template <class T> class SmallVectorImpl;
70
71using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
72
76
78 : Destination(&Dest), Source(&Src) {}
79};
80
81/// Used to describe a register and immediate addition.
82struct RegImmPair {
84 int64_t Imm;
85
86 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
87};
88
89/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
90/// It holds the register values, the scale value and the displacement.
91/// It also holds a descriptor for the expression used to calculate the address
92/// from the operands.
94 enum class Formula {
95 Basic = 0, // BaseReg + ScaledReg * Scale + Displacement
96 SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
97 ZExtScaledReg = 2 // BaseReg + zext(ScaledReg) * Scale + Displacement
98 };
99
102 int64_t Scale = 0;
103 int64_t Displacement = 0;
105 ExtAddrMode() = default;
106};
107
108//---------------------------------------------------------------------------
109///
110/// TargetInstrInfo - Interface to description of machine instruction set
111///
113public:
114 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
115 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
116 : CallFrameSetupOpcode(CFSetupOpcode),
117 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
118 ReturnOpcode(ReturnOpcode) {}
122
123 static bool isGenericOpcode(unsigned Opc) {
124 return Opc <= TargetOpcode::GENERIC_OP_END;
125 }
126
127 static bool isGenericAtomicRMWOpcode(unsigned Opc) {
128 return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
129 Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
130 }
131
132 /// Given a machine instruction descriptor, returns the register
133 /// class constraint for OpNum, or NULL.
134 virtual
135 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
136 const TargetRegisterInfo *TRI,
137 const MachineFunction &MF) const;
138
139 /// Return true if the instruction is trivially rematerializable, meaning it
140 /// has no side effects and requires no operands that aren't always available.
141 /// This means the only allowed uses are constants and unallocatable physical
142 /// registers so that the instructions result is independent of the place
143 /// in the function.
145 return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
146 MI.getNumOperands() == 1) ||
147 (MI.getDesc().isRematerializable() &&
149 }
150
151 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
152 /// of instruction rematerialization or sinking.
153 virtual bool isIgnorableUse(const MachineOperand &MO) const {
154 return false;
155 }
156
157 virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
158 MachineCycleInfo *CI) const {
159 return true;
160 }
161
162 /// For a "cheap" instruction which doesn't enable additional sinking,
163 /// should MachineSink break a critical edge to sink it anyways?
165 return false;
166 }
167
168protected:
169 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
170 /// set, this hook lets the target specify whether the instruction is actually
171 /// trivially rematerializable, taking into consideration its operands. This
172 /// predicate must return false if the instruction has any side effects other
173 /// than producing a value, or if it requres any address registers that are
174 /// not always available.
175 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
176
177 /// This method commutes the operands of the given machine instruction MI.
178 /// The operands to be commuted are specified by their indices OpIdx1 and
179 /// OpIdx2.
180 ///
181 /// If a target has any instructions that are commutable but require
182 /// converting to different instructions or making non-trivial changes
183 /// to commute them, this method can be overloaded to do that.
184 /// The default implementation simply swaps the commutable operands.
185 ///
186 /// If NewMI is false, MI is modified in place and returned; otherwise, a
187 /// new machine instruction is created and returned.
188 ///
189 /// Do not call this method for a non-commutable instruction.
190 /// Even though the instruction is commutable, the method may still
191 /// fail to commute the operands, null pointer is returned in such cases.
193 unsigned OpIdx1,
194 unsigned OpIdx2) const;
195
196 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
197 /// operand indices to (ResultIdx1, ResultIdx2).
198 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
199 /// predefined to some indices or be undefined (designated by the special
200 /// value 'CommuteAnyOperandIndex').
201 /// The predefined result indices cannot be re-defined.
202 /// The function returns true iff after the result pair redefinition
203 /// the fixed result pair is equal to or equivalent to the source pair of
204 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
205 /// the pairs (x,y) and (y,x) are equivalent.
206 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
207 unsigned CommutableOpIdx1,
208 unsigned CommutableOpIdx2);
209
210public:
211 /// These methods return the opcode of the frame setup/destroy instructions
212 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
213 /// order to abstract away the difference between operating with a frame
214 /// pointer and operating without, through the use of these two instructions.
215 /// A FrameSetup MI in MF implies MFI::AdjustsStack.
216 ///
217 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
218 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
219
220 /// Returns true if the argument is a frame pseudo instruction.
221 bool isFrameInstr(const MachineInstr &I) const {
222 return I.getOpcode() == getCallFrameSetupOpcode() ||
223 I.getOpcode() == getCallFrameDestroyOpcode();
224 }
225
226 /// Returns true if the argument is a frame setup pseudo instruction.
227 bool isFrameSetup(const MachineInstr &I) const {
228 return I.getOpcode() == getCallFrameSetupOpcode();
229 }
230
231 /// Returns size of the frame associated with the given frame instruction.
232 /// For frame setup instruction this is frame that is set up space set up
233 /// after the instruction. For frame destroy instruction this is the frame
234 /// freed by the caller.
235 /// Note, in some cases a call frame (or a part of it) may be prepared prior
236 /// to the frame setup instruction. It occurs in the calls that involve
237 /// inalloca arguments. This function reports only the size of the frame part
238 /// that is set up between the frame setup and destroy pseudo instructions.
239 int64_t getFrameSize(const MachineInstr &I) const {
240 assert(isFrameInstr(I) && "Not a frame instruction");
241 assert(I.getOperand(0).getImm() >= 0);
242 return I.getOperand(0).getImm();
243 }
244
245 /// Returns the total frame size, which is made up of the space set up inside
246 /// the pair of frame start-stop instructions and the space that is set up
247 /// prior to the pair.
248 int64_t getFrameTotalSize(const MachineInstr &I) const {
249 if (isFrameSetup(I)) {
250 assert(I.getOperand(1).getImm() >= 0 &&
251 "Frame size must not be negative");
252 return getFrameSize(I) + I.getOperand(1).getImm();
253 }
254 return getFrameSize(I);
255 }
256
257 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
258 unsigned getReturnOpcode() const { return ReturnOpcode; }
259
260 /// Returns the actual stack pointer adjustment made by an instruction
261 /// as part of a call sequence. By default, only call frame setup/destroy
262 /// instructions adjust the stack, but targets may want to override this
263 /// to enable more fine-grained adjustment, or adjust by a different value.
264 virtual int getSPAdjust(const MachineInstr &MI) const;
265
266 /// Return true if the instruction is a "coalescable" extension instruction.
267 /// That is, it's like a copy where it's legal for the source to overlap the
268 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
269 /// expected the pre-extension value is available as a subreg of the result
270 /// register. This also returns the sub-register index in SubIdx.
271 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
272 Register &DstReg, unsigned &SubIdx) const {
273 return false;
274 }
275
276 /// If the specified machine instruction is a direct
277 /// load from a stack slot, return the virtual or physical register number of
278 /// the destination along with the FrameIndex of the loaded stack slot. If
279 /// not, return 0. This predicate must return 0 if the instruction has
280 /// any side effects other than loading from the stack slot.
282 int &FrameIndex) const {
283 return 0;
284 }
285
286 /// Optional extension of isLoadFromStackSlot that returns the number of
287 /// bytes loaded from the stack. This must be implemented if a backend
288 /// supports partial stack slot spills/loads to further disambiguate
289 /// what the load does.
291 int &FrameIndex,
292 unsigned &MemBytes) const {
293 MemBytes = 0;
294 return isLoadFromStackSlot(MI, FrameIndex);
295 }
296
297 /// Check for post-frame ptr elimination stack locations as well.
298 /// This uses a heuristic so it isn't reliable for correctness.
300 int &FrameIndex) const {
301 return 0;
302 }
303
304 /// If the specified machine instruction has a load from a stack slot,
305 /// return true along with the FrameIndices of the loaded stack slot and the
306 /// machine mem operands containing the reference.
307 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
308 /// any instructions that loads from the stack. This is just a hint, as some
309 /// cases may be missed.
310 virtual bool hasLoadFromStackSlot(
311 const MachineInstr &MI,
313
314 /// If the specified machine instruction is a direct
315 /// store to a stack slot, return the virtual or physical register number of
316 /// the source reg along with the FrameIndex of the loaded stack slot. If
317 /// not, return 0. This predicate must return 0 if the instruction has
318 /// any side effects other than storing to the stack slot.
320 int &FrameIndex) const {
321 return 0;
322 }
323
324 /// Optional extension of isStoreToStackSlot that returns the number of
325 /// bytes stored to the stack. This must be implemented if a backend
326 /// supports partial stack slot spills/loads to further disambiguate
327 /// what the store does.
329 int &FrameIndex,
330 unsigned &MemBytes) const {
331 MemBytes = 0;
332 return isStoreToStackSlot(MI, FrameIndex);
333 }
334
335 /// Check for post-frame ptr elimination stack locations as well.
336 /// This uses a heuristic, so it isn't reliable for correctness.
338 int &FrameIndex) const {
339 return 0;
340 }
341
342 /// If the specified machine instruction has a store to a stack slot,
343 /// return true along with the FrameIndices of the loaded stack slot and the
344 /// machine mem operands containing the reference.
345 /// If not, return false. Unlike isStoreToStackSlot,
346 /// this returns true for any instructions that stores to the
347 /// stack. This is just a hint, as some cases may be missed.
348 virtual bool hasStoreToStackSlot(
349 const MachineInstr &MI,
351
352 /// Return true if the specified machine instruction
353 /// is a copy of one stack slot to another and has no other effect.
354 /// Provide the identity of the two frame indices.
355 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
356 int &SrcFrameIndex) const {
357 return false;
358 }
359
360 /// Compute the size in bytes and offset within a stack slot of a spilled
361 /// register or subregister.
362 ///
363 /// \param [out] Size in bytes of the spilled value.
364 /// \param [out] Offset in bytes within the stack slot.
365 /// \returns true if both Size and Offset are successfully computed.
366 ///
367 /// Not all subregisters have computable spill slots. For example,
368 /// subregisters registers may not be byte-sized, and a pair of discontiguous
369 /// subregisters has no single offset.
370 ///
371 /// Targets with nontrivial bigendian implementations may need to override
372 /// this, particularly to support spilled vector registers.
373 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
374 unsigned &Size, unsigned &Offset,
375 const MachineFunction &MF) const;
376
377 /// Return true if the given instruction is terminator that is unspillable,
378 /// according to isUnspillableTerminatorImpl.
380 return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
381 }
382
383 /// Returns the size in bytes of the specified MachineInstr, or ~0U
384 /// when this function is not implemented by a target.
385 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
386 return ~0U;
387 }
388
389 /// Return true if the instruction is as cheap as a move instruction.
390 ///
391 /// Targets for different archs need to override this, and different
392 /// micro-architectures can also be finely tuned inside.
393 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
394 return MI.isAsCheapAsAMove();
395 }
396
397 /// Return true if the instruction should be sunk by MachineSink.
398 ///
399 /// MachineSink determines on its own whether the instruction is safe to sink;
400 /// this gives the target a hook to override the default behavior with regards
401 /// to which instructions should be sunk.
402 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
403
404 /// Return false if the instruction should not be hoisted by MachineLICM.
405 ///
406 /// MachineLICM determines on its own whether the instruction is safe to
407 /// hoist; this gives the target a hook to extend this assessment and prevent
408 /// an instruction being hoisted from a given loop for target specific
409 /// reasons.
410 virtual bool shouldHoist(const MachineInstr &MI,
411 const MachineLoop *FromLoop) const {
412 return true;
413 }
414
415 /// Re-issue the specified 'original' instruction at the
416 /// specific location targeting a new destination register.
417 /// The register in Orig->getOperand(0).getReg() will be substituted by
418 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
419 /// SubIdx.
420 virtual void reMaterialize(MachineBasicBlock &MBB,
422 unsigned SubIdx, const MachineInstr &Orig,
423 const TargetRegisterInfo &TRI) const;
424
425 /// Clones instruction or the whole instruction bundle \p Orig and
426 /// insert into \p MBB before \p InsertBefore. The target may update operands
427 /// that are required to be unique.
428 ///
429 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
431 MachineBasicBlock::iterator InsertBefore,
432 const MachineInstr &Orig) const;
433
434 /// This method must be implemented by targets that
435 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
436 /// may be able to convert a two-address instruction into one or more true
437 /// three-address instructions on demand. This allows the X86 target (for
438 /// example) to convert ADD and SHL instructions into LEA instructions if they
439 /// would require register copies due to two-addressness.
440 ///
441 /// This method returns a null pointer if the transformation cannot be
442 /// performed, otherwise it returns the last new instruction.
443 ///
444 /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
445 /// replacing \p MI with new instructions, even though this function does not
446 /// remove MI.
448 LiveVariables *LV,
449 LiveIntervals *LIS) const {
450 return nullptr;
451 }
452
453 // This constant can be used as an input value of operand index passed to
454 // the method findCommutedOpIndices() to tell the method that the
455 // corresponding operand index is not pre-defined and that the method
456 // can pick any commutable operand.
457 static const unsigned CommuteAnyOperandIndex = ~0U;
458
459 /// This method commutes the operands of the given machine instruction MI.
460 ///
461 /// The operands to be commuted are specified by their indices OpIdx1 and
462 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
463 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
464 /// any arbitrarily chosen commutable operand. If both arguments are set to
465 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
466 /// operands; then commutes them if such operands could be found.
467 ///
468 /// If NewMI is false, MI is modified in place and returned; otherwise, a
469 /// new machine instruction is created and returned.
470 ///
471 /// Do not call this method for a non-commutable instruction or
472 /// for non-commuable operands.
473 /// Even though the instruction is commutable, the method may still
474 /// fail to commute the operands, null pointer is returned in such cases.
476 commuteInstruction(MachineInstr &MI, bool NewMI = false,
477 unsigned OpIdx1 = CommuteAnyOperandIndex,
478 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
479
480 /// Returns true iff the routine could find two commutable operands in the
481 /// given machine instruction.
482 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
483 /// If any of the INPUT values is set to the special value
484 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
485 /// operand, then returns its index in the corresponding argument.
486 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
487 /// looks for 2 commutable operands.
488 /// If INPUT values refer to some operands of MI, then the method simply
489 /// returns true if the corresponding operands are commutable and returns
490 /// false otherwise.
491 ///
492 /// For example, calling this method this way:
493 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
494 /// findCommutedOpIndices(MI, Op1, Op2);
495 /// can be interpreted as a query asking to find an operand that would be
496 /// commutable with the operand#1.
497 virtual bool findCommutedOpIndices(const MachineInstr &MI,
498 unsigned &SrcOpIdx1,
499 unsigned &SrcOpIdx2) const;
500
501 /// Returns true if the target has a preference on the operands order of
502 /// the given machine instruction. And specify if \p Commute is required to
503 /// get the desired operands order.
504 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
505 return false;
506 }
507
508 /// A pair composed of a register and a sub-register index.
509 /// Used to give some type checking when modeling Reg:SubReg.
512 unsigned SubReg;
513
515 : Reg(Reg), SubReg(SubReg) {}
516
517 bool operator==(const RegSubRegPair& P) const {
518 return Reg == P.Reg && SubReg == P.SubReg;
519 }
520 bool operator!=(const RegSubRegPair& P) const {
521 return !(*this == P);
522 }
523 };
524
525 /// A pair composed of a pair of a register and a sub-register index,
526 /// and another sub-register index.
527 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
529 unsigned SubIdx;
530
532 unsigned SubIdx = 0)
534 };
535
536 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
537 /// and \p DefIdx.
538 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
539 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
540 /// flag are not added to this list.
541 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
542 /// two elements:
543 /// - %1:sub1, sub0
544 /// - %2<:0>, sub1
545 ///
546 /// \returns true if it is possible to build such an input sequence
547 /// with the pair \p MI, \p DefIdx. False otherwise.
548 ///
549 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
550 ///
551 /// \note The generic implementation does not provide any support for
552 /// MI.isRegSequenceLike(). In other words, one has to override
553 /// getRegSequenceLikeInputs for target specific instructions.
554 bool
555 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
556 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
557
558 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
559 /// and \p DefIdx.
560 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
561 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
562 /// - %1:sub1, sub0
563 ///
564 /// \returns true if it is possible to build such an input sequence
565 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
566 /// False otherwise.
567 ///
568 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
569 ///
570 /// \note The generic implementation does not provide any support for
571 /// MI.isExtractSubregLike(). In other words, one has to override
572 /// getExtractSubregLikeInputs for target specific instructions.
573 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
574 RegSubRegPairAndIdx &InputReg) const;
575
576 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
577 /// and \p DefIdx.
578 /// \p [out] BaseReg and \p [out] InsertedReg contain
579 /// the equivalent inputs of INSERT_SUBREG.
580 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
581 /// - BaseReg: %0:sub0
582 /// - InsertedReg: %1:sub1, sub3
583 ///
584 /// \returns true if it is possible to build such an input sequence
585 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
586 /// False otherwise.
587 ///
588 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
589 ///
590 /// \note The generic implementation does not provide any support for
591 /// MI.isInsertSubregLike(). In other words, one has to override
592 /// getInsertSubregLikeInputs for target specific instructions.
593 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
594 RegSubRegPair &BaseReg,
595 RegSubRegPairAndIdx &InsertedReg) const;
596
597 /// Return true if two machine instructions would produce identical values.
598 /// By default, this is only true when the two instructions
599 /// are deemed identical except for defs. If this function is called when the
600 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
601 /// aggressive checks.
602 virtual bool produceSameValue(const MachineInstr &MI0,
603 const MachineInstr &MI1,
604 const MachineRegisterInfo *MRI = nullptr) const;
605
606 /// \returns true if a branch from an instruction with opcode \p BranchOpc
607 /// bytes is capable of jumping to a position \p BrOffset bytes away.
608 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
609 int64_t BrOffset) const {
610 llvm_unreachable("target did not implement");
611 }
612
613 /// \returns The block that branch instruction \p MI jumps to.
615 llvm_unreachable("target did not implement");
616 }
617
618 /// Insert an unconditional indirect branch at the end of \p MBB to \p
619 /// NewDestBB. Optionally, insert the clobbered register restoring in \p
620 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
621 /// the offset of the position to insert the new branch.
623 MachineBasicBlock &NewDestBB,
624 MachineBasicBlock &RestoreBB,
625 const DebugLoc &DL, int64_t BrOffset = 0,
626 RegScavenger *RS = nullptr) const {
627 llvm_unreachable("target did not implement");
628 }
629
630 /// Analyze the branching code at the end of MBB, returning
631 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
632 /// implemented for a target). Upon success, this returns false and returns
633 /// with the following information in various cases:
634 ///
635 /// 1. If this block ends with no branches (it just falls through to its succ)
636 /// just return false, leaving TBB/FBB null.
637 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
638 /// the destination block.
639 /// 3. If this block ends with a conditional branch and it falls through to a
640 /// successor block, it sets TBB to be the branch destination block and a
641 /// list of operands that evaluate the condition. These operands can be
642 /// passed to other TargetInstrInfo methods to create new branches.
643 /// 4. If this block ends with a conditional branch followed by an
644 /// unconditional branch, it returns the 'true' destination in TBB, the
645 /// 'false' destination in FBB, and a list of operands that evaluate the
646 /// condition. These operands can be passed to other TargetInstrInfo
647 /// methods to create new branches.
648 ///
649 /// Note that removeBranch and insertBranch must be implemented to support
650 /// cases where this method returns success.
651 ///
652 /// If AllowModify is true, then this routine is allowed to modify the basic
653 /// block (e.g. delete instructions after the unconditional branch).
654 ///
655 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
656 /// before calling this function.
658 MachineBasicBlock *&FBB,
660 bool AllowModify = false) const {
661 return true;
662 }
663
664 /// Represents a predicate at the MachineFunction level. The control flow a
665 /// MachineBranchPredicate represents is:
666 ///
667 /// Reg = LHS `Predicate` RHS == ConditionDef
668 /// if Reg then goto TrueDest else goto FalseDest
669 ///
672 PRED_EQ, // True if two values are equal
673 PRED_NE, // True if two values are not equal
674 PRED_INVALID // Sentinel value
675 };
676
683
684 /// SingleUseCondition is true if ConditionDef is dead except for the
685 /// branch(es) at the end of the basic block.
686 ///
687 bool SingleUseCondition = false;
688
689 explicit MachineBranchPredicate() = default;
690 };
691
692 /// Analyze the branching code at the end of MBB and parse it into the
693 /// MachineBranchPredicate structure if possible. Returns false on success
694 /// and true on failure.
695 ///
696 /// If AllowModify is true, then this routine is allowed to modify the basic
697 /// block (e.g. delete instructions after the unconditional branch).
698 ///
701 bool AllowModify = false) const {
702 return true;
703 }
704
705 /// Remove the branching code at the end of the specific MBB.
706 /// This is only invoked in cases where analyzeBranch returns success. It
707 /// returns the number of instructions that were removed.
708 /// If \p BytesRemoved is non-null, report the change in code size from the
709 /// removed instructions.
711 int *BytesRemoved = nullptr) const {
712 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
713 }
714
715 /// Insert branch code into the end of the specified MachineBasicBlock. The
716 /// operands to this method are the same as those returned by analyzeBranch.
717 /// This is only invoked in cases where analyzeBranch returns success. It
718 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
719 /// report the change in code size from the added instructions.
720 ///
721 /// It is also invoked by tail merging to add unconditional branches in
722 /// cases where analyzeBranch doesn't apply because there was no original
723 /// branch to analyze. At least this much must be implemented, else tail
724 /// merging needs to be disabled.
725 ///
726 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
727 /// before calling this function.
731 const DebugLoc &DL,
732 int *BytesAdded = nullptr) const {
733 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
734 }
735
737 MachineBasicBlock *DestBB,
738 const DebugLoc &DL,
739 int *BytesAdded = nullptr) const {
740 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
741 BytesAdded);
742 }
743
744 /// Object returned by analyzeLoopForPipelining. Allows software pipelining
745 /// implementations to query attributes of the loop being pipelined and to
746 /// apply target-specific updates to the loop once pipelining is complete.
748 public:
750 /// Return true if the given instruction should not be pipelined and should
751 /// be ignored. An example could be a loop comparison, or induction variable
752 /// update with no users being pipelined.
753 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
754
755 /// Return true if the proposed schedule should used. Otherwise return
756 /// false to not pipeline the loop. This function should be used to ensure
757 /// that pipelined loops meet target-specific quality heuristics.
759 return true;
760 }
761
762 /// Create a condition to determine if the trip count of the loop is greater
763 /// than TC, where TC is always one more than for the previous prologue or
764 /// 0 if this is being called for the outermost prologue.
765 ///
766 /// If the trip count is statically known to be greater than TC, return
767 /// true. If the trip count is statically known to be not greater than TC,
768 /// return false. Otherwise return nullopt and fill out Cond with the test
769 /// condition.
770 ///
771 /// Note: This hook is guaranteed to be called from the innermost to the
772 /// outermost prologue of the loop being software pipelined.
773 virtual std::optional<bool>
776
777 /// Create a condition to determine if the remaining trip count for a phase
778 /// is greater than TC. Some instructions such as comparisons may be
779 /// inserted at the bottom of MBB. All instructions expanded for the
780 /// phase must be inserted in MBB before calling this function.
781 /// LastStage0Insts is the map from the original instructions scheduled at
782 /// stage#0 to the expanded instructions for the last iteration of the
783 /// kernel. LastStage0Insts is intended to obtain the instruction that
784 /// refers the latest loop counter value.
785 ///
786 /// MBB can also be a predecessor of the prologue block. Then
787 /// LastStage0Insts must be empty and the compared value is the initial
788 /// value of the trip count.
793 "Target didn't implement "
794 "PipelinerLoopInfo::createRemainingIterationsGreaterCondition!");
795 }
796
797 /// Modify the loop such that the trip count is
798 /// OriginalTC + TripCountAdjust.
799 virtual void adjustTripCount(int TripCountAdjust) = 0;
800
801 /// Called when the loop's preheader has been modified to NewPreheader.
802 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
803
804 /// Called when the loop is being removed. Any instructions in the preheader
805 /// should be removed.
806 ///
807 /// Once this function is called, no other functions on this object are
808 /// valid; the loop has been removed.
809 virtual void disposed() = 0;
810
811 /// Return true if the target can expand pipelined schedule with modulo
812 /// variable expansion.
813 virtual bool isMVEExpanderSupported() { return false; }
814 };
815
816 /// Analyze loop L, which must be a single-basic-block loop, and if the
817 /// conditions can be understood enough produce a PipelinerLoopInfo object.
818 virtual std::unique_ptr<PipelinerLoopInfo>
820 return nullptr;
821 }
822
823 /// Analyze the loop code, return true if it cannot be understood. Upon
824 /// success, this function returns false and returns information about the
825 /// induction variable and compare instruction used at the end.
826 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
827 MachineInstr *&CmpInst) const {
828 return true;
829 }
830
831 /// Generate code to reduce the loop iteration by one and check if the loop
832 /// is finished. Return the value/register of the new loop count. We need
833 /// this function when peeling off one or more iterations of a loop. This
834 /// function assumes the nth iteration is peeled first.
836 MachineBasicBlock &PreHeader,
837 MachineInstr *IndVar, MachineInstr &Cmp,
840 unsigned Iter, unsigned MaxIter) const {
841 llvm_unreachable("Target didn't implement ReduceLoopCount");
842 }
843
844 /// Delete the instruction OldInst and everything after it, replacing it with
845 /// an unconditional branch to NewDest. This is used by the tail merging pass.
847 MachineBasicBlock *NewDest) const;
848
849 /// Return true if it's legal to split the given basic
850 /// block at the specified instruction (i.e. instruction would be the start
851 /// of a new basic block).
854 return true;
855 }
856
857 /// Return true if it's profitable to predicate
858 /// instructions with accumulated instruction latency of "NumCycles"
859 /// of the specified basic block, where the probability of the instructions
860 /// being executed is given by Probability, and Confidence is a measure
861 /// of our confidence that it will be properly predicted.
862 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
863 unsigned ExtraPredCycles,
864 BranchProbability Probability) const {
865 return false;
866 }
867
868 /// Second variant of isProfitableToIfCvt. This one
869 /// checks for the case where two basic blocks from true and false path
870 /// of a if-then-else (diamond) are predicated on mutually exclusive
871 /// predicates, where the probability of the true path being taken is given
872 /// by Probability, and Confidence is a measure of our confidence that it
873 /// will be properly predicted.
874 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
875 unsigned ExtraTCycles,
876 MachineBasicBlock &FMBB, unsigned NumFCycles,
877 unsigned ExtraFCycles,
878 BranchProbability Probability) const {
879 return false;
880 }
881
882 /// Return true if it's profitable for if-converter to duplicate instructions
883 /// of specified accumulated instruction latencies in the specified MBB to
884 /// enable if-conversion.
885 /// The probability of the instructions being executed is given by
886 /// Probability, and Confidence is a measure of our confidence that it
887 /// will be properly predicted.
889 unsigned NumCycles,
890 BranchProbability Probability) const {
891 return false;
892 }
893
894 /// Return the increase in code size needed to predicate a contiguous run of
895 /// NumInsts instructions.
897 unsigned NumInsts) const {
898 return 0;
899 }
900
901 /// Return an estimate for the code size reduction (in bytes) which will be
902 /// caused by removing the given branch instruction during if-conversion.
903 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
904 return getInstSizeInBytes(MI);
905 }
906
907 /// Return true if it's profitable to unpredicate
908 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
909 /// exclusive predicates.
910 /// e.g.
911 /// subeq r0, r1, #1
912 /// addne r0, r1, #1
913 /// =>
914 /// sub r0, r1, #1
915 /// addne r0, r1, #1
916 ///
917 /// This may be profitable is conditional instructions are always executed.
919 MachineBasicBlock &FMBB) const {
920 return false;
921 }
922
923 /// Return true if it is possible to insert a select
924 /// instruction that chooses between TrueReg and FalseReg based on the
925 /// condition code in Cond.
926 ///
927 /// When successful, also return the latency in cycles from TrueReg,
928 /// FalseReg, and Cond to the destination register. In most cases, a select
929 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
930 ///
931 /// Some x86 implementations have 2-cycle cmov instructions.
932 ///
933 /// @param MBB Block where select instruction would be inserted.
934 /// @param Cond Condition returned by analyzeBranch.
935 /// @param DstReg Virtual dest register that the result should write to.
936 /// @param TrueReg Virtual register to select when Cond is true.
937 /// @param FalseReg Virtual register to select when Cond is false.
938 /// @param CondCycles Latency from Cond+Branch to select output.
939 /// @param TrueCycles Latency from TrueReg to select output.
940 /// @param FalseCycles Latency from FalseReg to select output.
943 Register TrueReg, Register FalseReg,
944 int &CondCycles, int &TrueCycles,
945 int &FalseCycles) const {
946 return false;
947 }
948
949 /// Insert a select instruction into MBB before I that will copy TrueReg to
950 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
951 ///
952 /// This function can only be called after canInsertSelect() returned true.
953 /// The condition in Cond comes from analyzeBranch, and it can be assumed
954 /// that the same flags or registers required by Cond are available at the
955 /// insertion point.
956 ///
957 /// @param MBB Block where select instruction should be inserted.
958 /// @param I Insertion point.
959 /// @param DL Source location for debugging.
960 /// @param DstReg Virtual register to be defined by select instruction.
961 /// @param Cond Condition as computed by analyzeBranch.
962 /// @param TrueReg Virtual register to copy when Cond is true.
963 /// @param FalseReg Virtual register to copy when Cons is false.
967 Register TrueReg, Register FalseReg) const {
968 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
969 }
970
971 /// Analyze the given select instruction, returning true if
972 /// it cannot be understood. It is assumed that MI->isSelect() is true.
973 ///
974 /// When successful, return the controlling condition and the operands that
975 /// determine the true and false result values.
976 ///
977 /// Result = SELECT Cond, TrueOp, FalseOp
978 ///
979 /// Some targets can optimize select instructions, for example by predicating
980 /// the instruction defining one of the operands. Such targets should set
981 /// Optimizable.
982 ///
983 /// @param MI Select instruction to analyze.
984 /// @param Cond Condition controlling the select.
985 /// @param TrueOp Operand number of the value selected when Cond is true.
986 /// @param FalseOp Operand number of the value selected when Cond is false.
987 /// @param Optimizable Returned as true if MI is optimizable.
988 /// @returns False on success.
989 virtual bool analyzeSelect(const MachineInstr &MI,
991 unsigned &TrueOp, unsigned &FalseOp,
992 bool &Optimizable) const {
993 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
994 return true;
995 }
996
997 /// Given a select instruction that was understood by
998 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
999 /// merging it with one of its operands. Returns NULL on failure.
1000 ///
1001 /// When successful, returns the new select instruction. The client is
1002 /// responsible for deleting MI.
1003 ///
1004 /// If both sides of the select can be optimized, PreferFalse is used to pick
1005 /// a side.
1006 ///
1007 /// @param MI Optimizable select instruction.
1008 /// @param NewMIs Set that record all MIs in the basic block up to \p
1009 /// MI. Has to be updated with any newly created MI or deleted ones.
1010 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
1011 /// @returns Optimized instruction or NULL.
1014 bool PreferFalse = false) const {
1015 // This function must be implemented if Optimizable is ever set.
1016 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
1017 }
1018
1019 /// Emit instructions to copy a pair of physical registers.
1020 ///
1021 /// This function should support copies within any legal register class as
1022 /// well as any cross-class copies created during instruction selection.
1023 ///
1024 /// The source and destination registers may overlap, which may require a
1025 /// careful implementation when multiple copy instructions are required for
1026 /// large registers. See for example the ARM target.
1027 ///
1028 /// If RenamableDest is true, the copy instruction's destination operand is
1029 /// marked renamable.
1030 /// If RenamableSrc is true, the copy instruction's source operand is
1031 /// marked renamable.
1034 MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
1035 bool RenamableDest = false,
1036 bool RenamableSrc = false) const {
1037 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
1038 }
1039
1040 /// Allow targets to tell MachineVerifier whether a specific register
1041 /// MachineOperand can be used as part of PC-relative addressing.
1042 /// PC-relative addressing modes in many CISC architectures contain
1043 /// (non-PC) registers as offsets or scaling values, which inherently
1044 /// tags the corresponding MachineOperand with OPERAND_PCREL.
1045 ///
1046 /// @param MO The MachineOperand in question. MO.isReg() should always
1047 /// be true.
1048 /// @return Whether this operand is allowed to be used PC-relatively.
1049 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1050 return false;
1051 }
1052
1053 /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1054 /// using a jump table, otherwise -1.
1055 virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1056
1057protected:
1058 /// Target-dependent implementation for IsCopyInstr.
1059 /// If the specific machine instruction is a instruction that moves/copies
1060 /// value from one register to another register return destination and source
1061 /// registers as machine operands.
1062 virtual std::optional<DestSourcePair>
1064 return std::nullopt;
1065 }
1066
1067 virtual std::optional<DestSourcePair>
1069 return std::nullopt;
1070 }
1071
1072 /// Return true if the given terminator MI is not expected to spill. This
1073 /// sets the live interval as not spillable and adjusts phi node lowering to
1074 /// not introduce copies after the terminator. Use with care, these are
1075 /// currently used for hardware loop intrinsics in very controlled situations,
1076 /// created prior to registry allocation in loops that only have single phi
1077 /// users for the terminators value. They may run out of registers if not used
1078 /// carefully.
1079 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1080 return false;
1081 }
1082
1083public:
1084 /// If the specific machine instruction is a instruction that moves/copies
1085 /// value from one register to another register return destination and source
1086 /// registers as machine operands.
1087 /// For COPY-instruction the method naturally returns destination and source
1088 /// registers as machine operands, for all other instructions the method calls
1089 /// target-dependent implementation.
1090 std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1091 if (MI.isCopy()) {
1092 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1093 }
1094 return isCopyInstrImpl(MI);
1095 }
1096
1097 // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1098 // ultimately generates a copy instruction.
1099 std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1100 if (auto IsCopyInstr = isCopyInstr(MI))
1101 return IsCopyInstr;
1102 return isCopyLikeInstrImpl(MI);
1103 }
1104
1105 bool isFullCopyInstr(const MachineInstr &MI) const {
1106 auto DestSrc = isCopyInstr(MI);
1107 if (!DestSrc)
1108 return false;
1109
1110 const MachineOperand *DestRegOp = DestSrc->Destination;
1111 const MachineOperand *SrcRegOp = DestSrc->Source;
1112 return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1113 }
1114
1115 /// If the specific machine instruction is an instruction that adds an
1116 /// immediate value and a register, and stores the result in the given
1117 /// register \c Reg, return a pair of the source register and the offset
1118 /// which has been added.
1119 virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1120 Register Reg) const {
1121 return std::nullopt;
1122 }
1123
1124 /// Returns true if MI is an instruction that defines Reg to have a constant
1125 /// value and the value is recorded in ImmVal. The ImmVal is a result that
1126 /// should be interpreted as modulo size of Reg.
1128 const Register Reg,
1129 int64_t &ImmVal) const {
1130 return false;
1131 }
1132
1133 /// Store the specified register of the given register class to the specified
1134 /// stack frame index. The store instruction is to be added to the given
1135 /// machine basic block before the specified machine instruction. If isKill
1136 /// is true, the register operand is the last use and must be marked kill. If
1137 /// \p SrcReg is being directly spilled as part of assigning a virtual
1138 /// register, \p VReg is the register being assigned. This additional register
1139 /// argument is needed for certain targets when invoked from RegAllocFast to
1140 /// map the spilled physical register to its virtual register. A null register
1141 /// can be passed elsewhere.
1144 Register SrcReg, bool isKill, int FrameIndex,
1145 const TargetRegisterClass *RC,
1146 const TargetRegisterInfo *TRI,
1147 Register VReg) const {
1148 llvm_unreachable("Target didn't implement "
1149 "TargetInstrInfo::storeRegToStackSlot!");
1150 }
1151
1152 /// Load the specified register of the given register class from the specified
1153 /// stack frame index. The load instruction is to be added to the given
1154 /// machine basic block before the specified machine instruction. If \p
1155 /// DestReg is being directly reloaded as part of assigning a virtual
1156 /// register, \p VReg is the register being assigned. This additional register
1157 /// argument is needed for certain targets when invoked from RegAllocFast to
1158 /// map the loaded physical register to its virtual register. A null register
1159 /// can be passed elsewhere.
1162 Register DestReg, int FrameIndex,
1163 const TargetRegisterClass *RC,
1164 const TargetRegisterInfo *TRI,
1165 Register VReg) const {
1166 llvm_unreachable("Target didn't implement "
1167 "TargetInstrInfo::loadRegFromStackSlot!");
1168 }
1169
1170 /// This function is called for all pseudo instructions
1171 /// that remain after register allocation. Many pseudo instructions are
1172 /// created to help register allocation. This is the place to convert them
1173 /// into real instructions. The target can edit MI in place, or it can insert
1174 /// new instructions and erase MI. The function should return true if
1175 /// anything was changed.
1176 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1177
1178 /// Check whether the target can fold a load that feeds a subreg operand
1179 /// (or a subreg operand that feeds a store).
1180 /// For example, X86 may want to return true if it can fold
1181 /// movl (%esp), %eax
1182 /// subb, %al, ...
1183 /// Into:
1184 /// subb (%esp), ...
1185 ///
1186 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1187 /// reject subregs - but since this behavior used to be enforced in the
1188 /// target-independent code, moving this responsibility to the targets
1189 /// has the potential of causing nasty silent breakage in out-of-tree targets.
1190 virtual bool isSubregFoldable() const { return false; }
1191
1192 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1193 /// operands which can't be folded into stack references. Operands outside
1194 /// of the range are most likely foldable but it is not guaranteed.
1195 /// These instructions are unique in that stack references for some operands
1196 /// have the same execution cost (e.g. none) as the unfolded register forms.
1197 /// The ranged return is guaranteed to include all operands which can't be
1198 /// folded at zero cost.
1199 virtual std::pair<unsigned, unsigned>
1201
1202 /// Attempt to fold a load or store of the specified stack
1203 /// slot into the specified machine instruction for the specified operand(s).
1204 /// If this is possible, a new instruction is returned with the specified
1205 /// operand folded, otherwise NULL is returned.
1206 /// The new instruction is inserted before MI, and the client is responsible
1207 /// for removing the old instruction.
1208 /// If VRM is passed, the assigned physregs can be inspected by target to
1209 /// decide on using an opcode (note that those assignments can still change).
1211 int FI,
1212 LiveIntervals *LIS = nullptr,
1213 VirtRegMap *VRM = nullptr) const;
1214
1215 /// Same as the previous version except it allows folding of any load and
1216 /// store from / to any address, not just from a specific stack slot.
1218 MachineInstr &LoadMI,
1219 LiveIntervals *LIS = nullptr) const;
1220
1221 /// This function defines the logic to lower COPY instruction to
1222 /// target specific instruction(s).
1223 void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1224
1225 /// Return true when there is potentially a faster code sequence
1226 /// for an instruction chain ending in \p Root. All potential patterns are
1227 /// returned in the \p Pattern vector. Pattern should be sorted in priority
1228 /// order since the pattern evaluator stops checking as soon as it finds a
1229 /// faster sequence.
1230 /// \param Root - Instruction that could be combined with one of its operands
1231 /// \param Patterns - Vector of possible combination patterns
1232 virtual bool getMachineCombinerPatterns(MachineInstr &Root,
1233 SmallVectorImpl<unsigned> &Patterns,
1234 bool DoRegPressureReduce) const;
1235
1236 /// Return true if target supports reassociation of instructions in machine
1237 /// combiner pass to reduce register pressure for a given BB.
1238 virtual bool
1240 const RegisterClassInfo *RegClassInfo) const {
1241 return false;
1242 }
1243
1244 /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1245 virtual void
1247 SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1248
1249 /// Return true when a code sequence can improve throughput. It
1250 /// should be called only for instructions in loops.
1251 /// \param Pattern - combiner pattern
1252 virtual bool isThroughputPattern(unsigned Pattern) const;
1253
1254 /// Return the objective of a combiner pattern.
1255 /// \param Pattern - combiner pattern
1256 virtual CombinerObjective getCombinerObjective(unsigned Pattern) const;
1257
1258 /// Return true if the input \P Inst is part of a chain of dependent ops
1259 /// that are suitable for reassociation, otherwise return false.
1260 /// If the instruction's operands must be commuted to have a previous
1261 /// instruction of the same type define the first source operand, \P Commuted
1262 /// will be set to true.
1263 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1264
1265 /// Return true when \P Inst is both associative and commutative. If \P Invert
1266 /// is true, then the inverse of \P Inst operation must be tested.
1268 bool Invert = false) const {
1269 return false;
1270 }
1271
1272 /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1273 /// for sub and vice versa).
1274 virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1275 return std::nullopt;
1276 }
1277
1278 /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1279 bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1280
1281 /// Return true when \P Inst has reassociable operands in the same \P MBB.
1282 virtual bool hasReassociableOperands(const MachineInstr &Inst,
1283 const MachineBasicBlock *MBB) const;
1284
1285 /// Return true when \P Inst has reassociable sibling.
1286 virtual bool hasReassociableSibling(const MachineInstr &Inst,
1287 bool &Commuted) const;
1288
1289 /// When getMachineCombinerPatterns() finds patterns, this function generates
1290 /// the instructions that could replace the original code sequence. The client
1291 /// has to decide whether the actual replacement is beneficial or not.
1292 /// \param Root - Instruction that could be combined with one of its operands
1293 /// \param Pattern - Combination pattern for Root
1294 /// \param InsInstrs - Vector of new instructions that implement P
1295 /// \param DelInstrs - Old instructions, including Root, that could be
1296 /// replaced by InsInstr
1297 /// \param InstIdxForVirtReg - map of virtual register to instruction in
1298 /// InsInstr that defines it
1299 virtual void genAlternativeCodeSequence(
1300 MachineInstr &Root, unsigned Pattern,
1303 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1304
1305 /// When calculate the latency of the root instruction, accumulate the
1306 /// latency of the sequence to the root latency.
1307 /// \param Root - Instruction that could be combined with one of its operands
1309 return true;
1310 }
1311
1312 /// The returned array encodes the operand index for each parameter because
1313 /// the operands may be commuted; the operand indices for associative
1314 /// operations might also be target-specific. Each element specifies the index
1315 /// of {Prev, A, B, X, Y}.
1316 virtual void
1318 std::array<unsigned, 5> &OperandIndices) const;
1319
1320 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1321 /// reduce critical path length.
1322 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
1326 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1327
1328 /// Reassociation of some instructions requires inverse operations (e.g.
1329 /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1330 /// (new root opcode, new prev opcode) that must be used to reassociate \P
1331 /// Root and \P Prev accoring to \P Pattern.
1332 std::pair<unsigned, unsigned>
1333 getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root,
1334 const MachineInstr &Prev) const;
1335
1336 /// The limit on resource length extension we accept in MachineCombiner Pass.
1337 virtual int getExtendResourceLenLimit() const { return 0; }
1338
1339 /// This is an architecture-specific helper function of reassociateOps.
1340 /// Set special operand attributes for new instructions after reassociation.
1341 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1342 MachineInstr &NewMI1,
1343 MachineInstr &NewMI2) const {}
1344
1345 /// Return true when a target supports MachineCombiner.
1346 virtual bool useMachineCombiner() const { return false; }
1347
1348 /// Return a strategy that MachineCombiner must use when creating traces.
1350
1351 /// Return true if the given SDNode can be copied during scheduling
1352 /// even if it has glue.
1353 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1354
1355protected:
1356 /// Target-dependent implementation for foldMemoryOperand.
1357 /// Target-independent code in foldMemoryOperand will
1358 /// take care of adding a MachineMemOperand to the newly created instruction.
1359 /// The instruction and any auxiliary instructions necessary will be inserted
1360 /// at InsertPt.
1361 virtual MachineInstr *
1364 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1365 LiveIntervals *LIS = nullptr,
1366 VirtRegMap *VRM = nullptr) const {
1367 return nullptr;
1368 }
1369
1370 /// Target-dependent implementation for foldMemoryOperand.
1371 /// Target-independent code in foldMemoryOperand will
1372 /// take care of adding a MachineMemOperand to the newly created instruction.
1373 /// The instruction and any auxiliary instructions necessary will be inserted
1374 /// at InsertPt.
1377 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1378 LiveIntervals *LIS = nullptr) const {
1379 return nullptr;
1380 }
1381
1382 /// Target-dependent implementation of getRegSequenceInputs.
1383 ///
1384 /// \returns true if it is possible to build the equivalent
1385 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1386 ///
1387 /// \pre MI.isRegSequenceLike().
1388 ///
1389 /// \see TargetInstrInfo::getRegSequenceInputs.
1391 const MachineInstr &MI, unsigned DefIdx,
1392 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1393 return false;
1394 }
1395
1396 /// Target-dependent implementation of getExtractSubregInputs.
1397 ///
1398 /// \returns true if it is possible to build the equivalent
1399 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1400 ///
1401 /// \pre MI.isExtractSubregLike().
1402 ///
1403 /// \see TargetInstrInfo::getExtractSubregInputs.
1405 unsigned DefIdx,
1406 RegSubRegPairAndIdx &InputReg) const {
1407 return false;
1408 }
1409
1410 /// Target-dependent implementation of getInsertSubregInputs.
1411 ///
1412 /// \returns true if it is possible to build the equivalent
1413 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1414 ///
1415 /// \pre MI.isInsertSubregLike().
1416 ///
1417 /// \see TargetInstrInfo::getInsertSubregInputs.
1418 virtual bool
1420 RegSubRegPair &BaseReg,
1421 RegSubRegPairAndIdx &InsertedReg) const {
1422 return false;
1423 }
1424
1425public:
1426 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1427 /// a store or a load and a store into two or more instruction. If this is
1428 /// possible, returns true as well as the new instructions by reference.
1429 virtual bool
1431 bool UnfoldLoad, bool UnfoldStore,
1432 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1433 return false;
1434 }
1435
1437 SmallVectorImpl<SDNode *> &NewNodes) const {
1438 return false;
1439 }
1440
1441 /// Returns the opcode of the would be new
1442 /// instruction after load / store are unfolded from an instruction of the
1443 /// specified opcode. It returns zero if the specified unfolding is not
1444 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1445 /// index of the operand which will hold the register holding the loaded
1446 /// value.
1447 virtual unsigned
1448 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1449 unsigned *LoadRegIndex = nullptr) const {
1450 return 0;
1451 }
1452
1453 /// This is used by the pre-regalloc scheduler to determine if two loads are
1454 /// loading from the same base address. It should only return true if the base
1455 /// pointers are the same and the only differences between the two addresses
1456 /// are the offset. It also returns the offsets by reference.
1457 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1458 int64_t &Offset1,
1459 int64_t &Offset2) const {
1460 return false;
1461 }
1462
1463 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1464 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1465 /// On some targets if two loads are loading from
1466 /// addresses in the same cache line, it's better if they are scheduled
1467 /// together. This function takes two integers that represent the load offsets
1468 /// from the common base address. It returns true if it decides it's desirable
1469 /// to schedule the two loads together. "NumLoads" is the number of loads that
1470 /// have already been scheduled after Load1.
1471 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1472 int64_t Offset1, int64_t Offset2,
1473 unsigned NumLoads) const {
1474 return false;
1475 }
1476
1477 /// Get the base operand and byte offset of an instruction that reads/writes
1478 /// memory. This is a convenience function for callers that are only prepared
1479 /// to handle a single base operand.
1480 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1481 /// abstraction that supports negative offsets.
1483 const MachineOperand *&BaseOp, int64_t &Offset,
1484 bool &OffsetIsScalable,
1485 const TargetRegisterInfo *TRI) const;
1486
1487 /// Get zero or more base operands and the byte offset of an instruction that
1488 /// reads/writes memory. Note that there may be zero base operands if the
1489 /// instruction accesses a constant address.
1490 /// It returns false if MI does not read/write memory.
1491 /// It returns false if base operands and offset could not be determined.
1492 /// It is not guaranteed to always recognize base operands and offsets in all
1493 /// cases.
1494 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1495 /// abstraction that supports negative offsets.
1498 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
1499 const TargetRegisterInfo *TRI) const {
1500 return false;
1501 }
1502
1503 /// Return true if the instruction contains a base register and offset. If
1504 /// true, the function also sets the operand position in the instruction
1505 /// for the base register and offset.
1507 unsigned &BasePos,
1508 unsigned &OffsetPos) const {
1509 return false;
1510 }
1511
1512 /// Target dependent implementation to get the values constituting the address
1513 /// MachineInstr that is accessing memory. These values are returned as a
1514 /// struct ExtAddrMode which contains all relevant information to make up the
1515 /// address.
1516 virtual std::optional<ExtAddrMode>
1518 const TargetRegisterInfo *TRI) const {
1519 return std::nullopt;
1520 }
1521
1522 /// Check if it's possible and beneficial to fold the addressing computation
1523 /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1524 /// memory instruction is a user of the virtual register `Reg`, which in turn
1525 /// is the ultimate destination of zero or more COPY instructions from the
1526 /// output register of `AddrI`.
1527 /// Return the adddressing mode after folding in `AM`.
1529 const MachineInstr &AddrI,
1530 ExtAddrMode &AM) const {
1531 return false;
1532 }
1533
1534 /// Emit a load/store instruction with the same value register as `MemI`, but
1535 /// using the address from `AM`. The addressing mode must have been obtained
1536 /// from `canFoldIntoAddr` for the same memory instruction.
1538 const ExtAddrMode &AM) const {
1539 llvm_unreachable("target did not implement emitLdStWithAddr()");
1540 }
1541
1542 /// Returns true if MI's Def is NullValueReg, and the MI
1543 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1544 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1545 /// function can return true even if becomes zero. Specifically cases such as
1546 /// NullValueReg = shl NullValueReg, 63.
1548 const Register NullValueReg,
1549 const TargetRegisterInfo *TRI) const {
1550 return false;
1551 }
1552
1553 /// If the instruction is an increment of a constant value, return the amount.
1554 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1555 return false;
1556 }
1557
1558 /// Returns true if the two given memory operations should be scheduled
1559 /// adjacent. Note that you have to add:
1560 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1561 /// or
1562 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1563 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1564 ///
1565 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1566 /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1567 /// operations.
1568 /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1569 /// scaled by a runtime quantity.
1570 /// \p ClusterSize is the number of operations in the resulting load/store
1571 /// cluster if this hook returns true.
1572 /// \p NumBytes is the number of bytes that will be loaded from all the
1573 /// clustered loads if this hook returns true.
1575 int64_t Offset1, bool OffsetIsScalable1,
1577 int64_t Offset2, bool OffsetIsScalable2,
1578 unsigned ClusterSize,
1579 unsigned NumBytes) const {
1580 llvm_unreachable("target did not implement shouldClusterMemOps()");
1581 }
1582
1583 /// Reverses the branch condition of the specified condition list,
1584 /// returning false on success and true if it cannot be reversed.
1585 virtual bool
1587 return true;
1588 }
1589
1590 /// Insert a noop into the instruction stream at the specified point.
1591 virtual void insertNoop(MachineBasicBlock &MBB,
1593
1594 /// Insert noops into the instruction stream at the specified point.
1595 virtual void insertNoops(MachineBasicBlock &MBB,
1597 unsigned Quantity) const;
1598
1599 /// Return the noop instruction to use for a noop.
1600 virtual MCInst getNop() const;
1601
1602 /// Return true for post-incremented instructions.
1603 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1604
1605 /// Returns true if the instruction is already predicated.
1606 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1607
1608 /// Assumes the instruction is already predicated and returns true if the
1609 /// instruction can be predicated again.
1610 virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1611 assert(isPredicated(MI) && "Instruction is not predicated");
1612 return false;
1613 }
1614
1615 // Returns a MIRPrinter comment for this machine operand.
1616 virtual std::string
1618 unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1619
1620 /// Returns true if the instruction is a
1621 /// terminator instruction that has not been predicated.
1622 bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1623
1624 /// Returns true if MI is an unconditional tail call.
1625 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1626 return false;
1627 }
1628
1629 /// Returns true if the tail call can be made conditional on BranchCond.
1631 const MachineInstr &TailCall) const {
1632 return false;
1633 }
1634
1635 /// Replace the conditional branch in MBB with a conditional tail call.
1638 const MachineInstr &TailCall) const {
1639 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1640 }
1641
1642 /// Convert the instruction into a predicated instruction.
1643 /// It returns true if the operation was successful.
1644 virtual bool PredicateInstruction(MachineInstr &MI,
1645 ArrayRef<MachineOperand> Pred) const;
1646
1647 /// Returns true if the first specified predicate
1648 /// subsumes the second, e.g. GE subsumes GT.
1650 ArrayRef<MachineOperand> Pred2) const {
1651 return false;
1652 }
1653
1654 /// If the specified instruction defines any predicate
1655 /// or condition code register(s) used for predication, returns true as well
1656 /// as the definition predicate(s) by reference.
1657 /// SkipDead should be set to false at any point that dead
1658 /// predicate instructions should be considered as being defined.
1659 /// A dead predicate instruction is one that is guaranteed to be removed
1660 /// after a call to PredicateInstruction.
1662 std::vector<MachineOperand> &Pred,
1663 bool SkipDead) const {
1664 return false;
1665 }
1666
1667 /// Return true if the specified instruction can be predicated.
1668 /// By default, this returns true for every instruction with a
1669 /// PredicateOperand.
1670 virtual bool isPredicable(const MachineInstr &MI) const {
1671 return MI.getDesc().isPredicable();
1672 }
1673
1674 /// Return true if it's safe to move a machine
1675 /// instruction that defines the specified register class.
1676 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1677 return true;
1678 }
1679
1680 /// Test if the given instruction should be considered a scheduling boundary.
1681 /// This primarily includes labels and terminators.
1682 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1683 const MachineBasicBlock *MBB,
1684 const MachineFunction &MF) const;
1685
1686 /// Measure the specified inline asm to determine an approximation of its
1687 /// length.
1688 virtual unsigned getInlineAsmLength(
1689 const char *Str, const MCAsmInfo &MAI,
1690 const TargetSubtargetInfo *STI = nullptr) const;
1691
1692 /// Allocate and return a hazard recognizer to use for this target when
1693 /// scheduling the machine instructions before register allocation.
1694 virtual ScheduleHazardRecognizer *
1696 const ScheduleDAG *DAG) const;
1697
1698 /// Allocate and return a hazard recognizer to use for this target when
1699 /// scheduling the machine instructions before register allocation.
1700 virtual ScheduleHazardRecognizer *
1702 const ScheduleDAGMI *DAG) const;
1703
1704 /// Allocate and return a hazard recognizer to use for this target when
1705 /// scheduling the machine instructions after register allocation.
1706 virtual ScheduleHazardRecognizer *
1708 const ScheduleDAG *DAG) const;
1709
1710 /// Allocate and return a hazard recognizer to use for by non-scheduling
1711 /// passes.
1712 virtual ScheduleHazardRecognizer *
1714 return nullptr;
1715 }
1716
1717 /// Provide a global flag for disabling the PreRA hazard recognizer that
1718 /// targets may choose to honor.
1719 bool usePreRAHazardRecognizer() const;
1720
1721 /// For a comparison instruction, return the source registers
1722 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1723 /// compares against in CmpValue. Return true if the comparison instruction
1724 /// can be analyzed.
1725 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1726 Register &SrcReg2, int64_t &Mask,
1727 int64_t &Value) const {
1728 return false;
1729 }
1730
1731 /// See if the comparison instruction can be converted
1732 /// into something more efficient. E.g., on ARM most instructions can set the
1733 /// flags register, obviating the need for a separate CMP.
1734 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1735 Register SrcReg2, int64_t Mask,
1736 int64_t Value,
1737 const MachineRegisterInfo *MRI) const {
1738 return false;
1739 }
1740 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1741
1742 /// Try to remove the load by folding it to a register operand at the use.
1743 /// We fold the load instructions if and only if the
1744 /// def and use are in the same BB. We only look at one load and see
1745 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1746 /// defined by the load we are trying to fold. DefMI returns the machine
1747 /// instruction that defines FoldAsLoadDefReg, and the function returns
1748 /// the machine instruction generated due to folding.
1750 const MachineRegisterInfo *MRI,
1751 Register &FoldAsLoadDefReg,
1752 MachineInstr *&DefMI) const {
1753 return nullptr;
1754 }
1755
1756 /// 'Reg' is known to be defined by a move immediate instruction,
1757 /// try to fold the immediate into the use instruction.
1758 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1759 /// then the caller may assume that DefMI has been erased from its parent
1760 /// block. The caller may assume that it will not be erased by this
1761 /// function otherwise.
1764 return false;
1765 }
1766
1767 /// Return the number of u-operations the given machine
1768 /// instruction will be decoded to on the target cpu. The itinerary's
1769 /// IssueWidth is the number of microops that can be dispatched each
1770 /// cycle. An instruction with zero microops takes no dispatch resources.
1771 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1772 const MachineInstr &MI) const;
1773
1774 /// Return true for pseudo instructions that don't consume any
1775 /// machine resources in their current form. These are common cases that the
1776 /// scheduler should consider free, rather than conservatively handling them
1777 /// as instructions with no itinerary.
1778 bool isZeroCost(unsigned Opcode) const {
1779 return Opcode <= TargetOpcode::COPY;
1780 }
1781
1782 virtual std::optional<unsigned>
1783 getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1784 unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1785
1786 /// Compute and return the use operand latency of a given pair of def and use.
1787 /// In most cases, the static scheduling itinerary was enough to determine the
1788 /// operand latency. But it may not be possible for instructions with variable
1789 /// number of defs / uses.
1790 ///
1791 /// This is a raw interface to the itinerary that may be directly overridden
1792 /// by a target. Use computeOperandLatency to get the best estimate of
1793 /// latency.
1794 virtual std::optional<unsigned>
1795 getOperandLatency(const InstrItineraryData *ItinData,
1796 const MachineInstr &DefMI, unsigned DefIdx,
1797 const MachineInstr &UseMI, unsigned UseIdx) const;
1798
1799 /// Compute the instruction latency of a given instruction.
1800 /// If the instruction has higher cost when predicated, it's returned via
1801 /// PredCost.
1802 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1803 const MachineInstr &MI,
1804 unsigned *PredCost = nullptr) const;
1805
1806 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1807
1808 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1809 SDNode *Node) const;
1810
1811 /// Return the default expected latency for a def based on its opcode.
1812 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1813 const MachineInstr &DefMI) const;
1814
1815 /// Return true if this opcode has high latency to its result.
1816 virtual bool isHighLatencyDef(int opc) const { return false; }
1817
1818 /// Compute operand latency between a def of 'Reg'
1819 /// and a use in the current loop. Return true if the target considered
1820 /// it 'high'. This is used by optimization passes such as machine LICM to
1821 /// determine whether it makes sense to hoist an instruction out even in a
1822 /// high register pressure situation.
1823 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1824 const MachineRegisterInfo *MRI,
1825 const MachineInstr &DefMI, unsigned DefIdx,
1826 const MachineInstr &UseMI,
1827 unsigned UseIdx) const {
1828 return false;
1829 }
1830
1831 /// Compute operand latency of a def of 'Reg'. Return true
1832 /// if the target considered it 'low'.
1833 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1834 const MachineInstr &DefMI,
1835 unsigned DefIdx) const;
1836
1837 /// Perform target-specific instruction verification.
1838 virtual bool verifyInstruction(const MachineInstr &MI,
1839 StringRef &ErrInfo) const {
1840 return true;
1841 }
1842
1843 /// Return the current execution domain and bit mask of
1844 /// possible domains for instruction.
1845 ///
1846 /// Some micro-architectures have multiple execution domains, and multiple
1847 /// opcodes that perform the same operation in different domains. For
1848 /// example, the x86 architecture provides the por, orps, and orpd
1849 /// instructions that all do the same thing. There is a latency penalty if a
1850 /// register is written in one domain and read in another.
1851 ///
1852 /// This function returns a pair (domain, mask) containing the execution
1853 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1854 /// function can be used to change the opcode to one of the domains in the
1855 /// bit mask. Instructions whose execution domain can't be changed should
1856 /// return a 0 mask.
1857 ///
1858 /// The execution domain numbers don't have any special meaning except domain
1859 /// 0 is used for instructions that are not associated with any interesting
1860 /// execution domain.
1861 ///
1862 virtual std::pair<uint16_t, uint16_t>
1864 return std::make_pair(0, 0);
1865 }
1866
1867 /// Change the opcode of MI to execute in Domain.
1868 ///
1869 /// The bit (1 << Domain) must be set in the mask returned from
1870 /// getExecutionDomain(MI).
1871 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1872
1873 /// Returns the preferred minimum clearance
1874 /// before an instruction with an unwanted partial register update.
1875 ///
1876 /// Some instructions only write part of a register, and implicitly need to
1877 /// read the other parts of the register. This may cause unwanted stalls
1878 /// preventing otherwise unrelated instructions from executing in parallel in
1879 /// an out-of-order CPU.
1880 ///
1881 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1882 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1883 /// the instruction needs to wait for the old value of the register to become
1884 /// available:
1885 ///
1886 /// addps %xmm1, %xmm0
1887 /// movaps %xmm0, (%rax)
1888 /// cvtsi2ss %rbx, %xmm0
1889 ///
1890 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1891 /// instruction before it can issue, even though the high bits of %xmm0
1892 /// probably aren't needed.
1893 ///
1894 /// This hook returns the preferred clearance before MI, measured in
1895 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1896 /// instructions before MI. It should only return a positive value for
1897 /// unwanted dependencies. If the old bits of the defined register have
1898 /// useful values, or if MI is determined to otherwise read the dependency,
1899 /// the hook should return 0.
1900 ///
1901 /// The unwanted dependency may be handled by:
1902 ///
1903 /// 1. Allocating the same register for an MI def and use. That makes the
1904 /// unwanted dependency identical to a required dependency.
1905 ///
1906 /// 2. Allocating a register for the def that has no defs in the previous N
1907 /// instructions.
1908 ///
1909 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1910 /// allows the target to insert a dependency breaking instruction.
1911 ///
1912 virtual unsigned
1914 const TargetRegisterInfo *TRI) const {
1915 // The default implementation returns 0 for no partial register dependency.
1916 return 0;
1917 }
1918
1919 /// Return the minimum clearance before an instruction that reads an
1920 /// unused register.
1921 ///
1922 /// For example, AVX instructions may copy part of a register operand into
1923 /// the unused high bits of the destination register.
1924 ///
1925 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1926 ///
1927 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1928 /// false dependence on any previous write to %xmm0.
1929 ///
1930 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1931 /// does not take an operand index. Instead sets \p OpNum to the index of the
1932 /// unused register.
1933 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1934 const TargetRegisterInfo *TRI) const {
1935 // The default implementation returns 0 for no undef register dependency.
1936 return 0;
1937 }
1938
1939 /// Insert a dependency-breaking instruction
1940 /// before MI to eliminate an unwanted dependency on OpNum.
1941 ///
1942 /// If it wasn't possible to avoid a def in the last N instructions before MI
1943 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1944 /// unwanted dependency.
1945 ///
1946 /// On x86, an xorps instruction can be used as a dependency breaker:
1947 ///
1948 /// addps %xmm1, %xmm0
1949 /// movaps %xmm0, (%rax)
1950 /// xorps %xmm0, %xmm0
1951 /// cvtsi2ss %rbx, %xmm0
1952 ///
1953 /// An <imp-kill> operand should be added to MI if an instruction was
1954 /// inserted. This ties the instructions together in the post-ra scheduler.
1955 ///
1956 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1957 const TargetRegisterInfo *TRI) const {}
1958
1959 /// Create machine specific model for scheduling.
1960 virtual DFAPacketizer *
1962 return nullptr;
1963 }
1964
1965 /// Sometimes, it is possible for the target
1966 /// to tell, even without aliasing information, that two MIs access different
1967 /// memory addresses. This function returns true if two MIs access different
1968 /// memory addresses and false otherwise.
1969 ///
1970 /// Assumes any physical registers used to compute addresses have the same
1971 /// value for both instructions. (This is the most useful assumption for
1972 /// post-RA scheduling.)
1973 ///
1974 /// See also MachineInstr::mayAlias, which is implemented on top of this
1975 /// function.
1976 virtual bool
1978 const MachineInstr &MIb) const {
1979 assert(MIa.mayLoadOrStore() &&
1980 "MIa must load from or modify a memory location");
1981 assert(MIb.mayLoadOrStore() &&
1982 "MIb must load from or modify a memory location");
1983 return false;
1984 }
1985
1986 /// Return the value to use for the MachineCSE's LookAheadLimit,
1987 /// which is a heuristic used for CSE'ing phys reg defs.
1988 virtual unsigned getMachineCSELookAheadLimit() const {
1989 // The default lookahead is small to prevent unprofitable quadratic
1990 // behavior.
1991 return 5;
1992 }
1993
1994 /// Return the maximal number of alias checks on memory operands. For
1995 /// instructions with more than one memory operands, the alias check on a
1996 /// single MachineInstr pair has quadratic overhead and results in
1997 /// unacceptable performance in the worst case. The limit here is to clamp
1998 /// that maximal checks performed. Usually, that's the product of memory
1999 /// operand numbers from that pair of MachineInstr to be checked. For
2000 /// instance, with two MachineInstrs with 4 and 5 memory operands
2001 /// correspondingly, a total of 20 checks are required. With this limit set to
2002 /// 16, their alias check is skipped. We choose to limit the product instead
2003 /// of the individual instruction as targets may have special MachineInstrs
2004 /// with a considerably high number of memory operands, such as `ldm` in ARM.
2005 /// Setting this limit per MachineInstr would result in either too high
2006 /// overhead or too rigid restriction.
2007 virtual unsigned getMemOperandAACheckLimit() const { return 16; }
2008
2009 /// Return an array that contains the ids of the target indices (used for the
2010 /// TargetIndex machine operand) and their names.
2011 ///
2012 /// MIR Serialization is able to serialize only the target indices that are
2013 /// defined by this method.
2016 return {};
2017 }
2018
2019 /// Decompose the machine operand's target flags into two values - the direct
2020 /// target flag value and any of bit flags that are applied.
2021 virtual std::pair<unsigned, unsigned>
2023 return std::make_pair(0u, 0u);
2024 }
2025
2026 /// Return an array that contains the direct target flag values and their
2027 /// names.
2028 ///
2029 /// MIR Serialization is able to serialize only the target flags that are
2030 /// defined by this method.
2033 return {};
2034 }
2035
2036 /// Return an array that contains the bitmask target flag values and their
2037 /// names.
2038 ///
2039 /// MIR Serialization is able to serialize only the target flags that are
2040 /// defined by this method.
2043 return {};
2044 }
2045
2046 /// Return an array that contains the MMO target flag values and their
2047 /// names.
2048 ///
2049 /// MIR Serialization is able to serialize only the MMO target flags that are
2050 /// defined by this method.
2053 return {};
2054 }
2055
2056 /// Determines whether \p Inst is a tail call instruction. Override this
2057 /// method on targets that do not properly set MCID::Return and MCID::Call on
2058 /// tail call instructions."
2059 virtual bool isTailCall(const MachineInstr &Inst) const {
2060 return Inst.isReturn() && Inst.isCall();
2061 }
2062
2063 /// True if the instruction is bound to the top of its basic block and no
2064 /// other instructions shall be inserted before it. This can be implemented
2065 /// to prevent register allocator to insert spills for \p Reg before such
2066 /// instructions.
2068 Register Reg = Register()) const {
2069 return false;
2070 }
2071
2072 /// Allows targets to use appropriate copy instruction while spilitting live
2073 /// range of a register in register allocation.
2075 const MachineFunction &MF) const {
2076 return TargetOpcode::COPY;
2077 }
2078
2079 /// During PHI eleimination lets target to make necessary checks and
2080 /// insert the copy to the PHI destination register in a target specific
2081 /// manner.
2084 const DebugLoc &DL, Register Src, Register Dst) const {
2085 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2086 .addReg(Src);
2087 }
2088
2089 /// During PHI eleimination lets target to make necessary checks and
2090 /// insert the copy to the PHI destination register in a target specific
2091 /// manner.
2094 const DebugLoc &DL, Register Src,
2095 unsigned SrcSubReg,
2096 Register Dst) const {
2097 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2098 .addReg(Src, 0, SrcSubReg);
2099 }
2100
2101 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2102 /// information for a set of outlining candidates. Returns std::nullopt if the
2103 /// candidates are not suitable for outlining. \p MinRepeats is the minimum
2104 /// number of times the instruction sequence must be repeated.
2105 virtual std::optional<std::unique_ptr<outliner::OutlinedFunction>>
2107 const MachineModuleInfo &MMI,
2108 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
2109 unsigned MinRepeats) const {
2111 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2112 }
2113
2114 /// Optional target hook to create the LLVM IR attributes for the outlined
2115 /// function. If overridden, the overriding function must call the default
2116 /// implementation.
2118 Function &F, std::vector<outliner::Candidate> &Candidates) const;
2119
2120protected:
2121 /// Target-dependent implementation for getOutliningTypeImpl.
2122 virtual outliner::InstrType
2124 MachineBasicBlock::iterator &MIT, unsigned Flags) const {
2126 "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2127 }
2128
2129public:
2130 /// Returns how or if \p MIT should be outlined. \p Flags is the
2131 /// target-specific information returned by isMBBSafeToOutlineFrom.
2134 unsigned Flags) const;
2135
2136 /// Optional target hook that returns true if \p MBB is safe to outline from,
2137 /// and returns any target-specific information in \p Flags.
2139 unsigned &Flags) const;
2140
2141 /// Optional target hook which partitions \p MBB into outlinable ranges for
2142 /// instruction mapping purposes. Each range is defined by two iterators:
2143 /// [start, end).
2144 ///
2145 /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2146 /// top of the block should come before ranges closer to the end of the block.
2147 ///
2148 /// Ranges cannot overlap.
2149 ///
2150 /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2151 ///
2152 /// All instructions not present in an outlinable range are considered
2153 /// illegal.
2154 virtual SmallVector<
2155 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
2156 getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2157 return {std::make_pair(MBB.begin(), MBB.end())};
2158 }
2159
2160 /// Insert a custom frame for outlined functions.
2162 const outliner::OutlinedFunction &OF) const {
2164 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2165 }
2166
2167 /// Insert a call to an outlined function into the program.
2168 /// Returns an iterator to the spot where we inserted the call. This must be
2169 /// implemented by the target.
2173 outliner::Candidate &C) const {
2175 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2176 }
2177
2178 /// Insert an architecture-specific instruction to clear a register. If you
2179 /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2180 /// \p AllowSideEffects to \p false.
2183 DebugLoc &DL,
2184 bool AllowSideEffects = true) const {
2185#if 0
2186 // FIXME: This should exist once all platforms that use stack protectors
2187 // implements it.
2189 "Target didn't implement TargetInstrInfo::buildClearRegister!");
2190#endif
2191 }
2192
2193 /// Return true if the function can safely be outlined from.
2194 /// A function \p MF is considered safe for outlining if an outlined function
2195 /// produced from instructions in F will produce a program which produces the
2196 /// same output for any set of given inputs.
2198 bool OutlineFromLinkOnceODRs) const {
2199 llvm_unreachable("Target didn't implement "
2200 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2201 }
2202
2203 /// Return true if the function should be outlined from by default.
2205 return false;
2206 }
2207
2208 /// Return true if the function is a viable candidate for machine function
2209 /// splitting. The criteria for if a function can be split may vary by target.
2210 virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2211
2212 /// Return true if the MachineBasicBlock can safely be split to the cold
2213 /// section. On AArch64, certain instructions may cause a block to be unsafe
2214 /// to split to the cold section.
2215 virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2216 return true;
2217 }
2218
2219 /// Produce the expression describing the \p MI loading a value into
2220 /// the physical register \p Reg. This hook should only be used with
2221 /// \p MIs belonging to VReg-less functions.
2222 virtual std::optional<ParamLoadedValue>
2224
2225 /// Given the generic extension instruction \p ExtMI, returns true if this
2226 /// extension is a likely candidate for being folded into an another
2227 /// instruction.
2229 MachineRegisterInfo &MRI) const {
2230 return false;
2231 }
2232
2233 /// Return MIR formatter to format/parse MIR operands. Target can override
2234 /// this virtual function and return target specific MIR formatter.
2235 virtual const MIRFormatter *getMIRFormatter() const {
2236 if (!Formatter)
2237 Formatter = std::make_unique<MIRFormatter>();
2238 return Formatter.get();
2239 }
2240
2241 /// Returns the target-specific default value for tail duplication.
2242 /// This value will be used if the tail-dup-placement-threshold argument is
2243 /// not provided.
2244 virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2245 return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2246 }
2247
2248 /// Returns the target-specific default value for tail merging.
2249 /// This value will be used if the tail-merge-size argument is not provided.
2250 virtual unsigned getTailMergeSize(const MachineFunction &MF) const {
2251 return 3;
2252 }
2253
2254 /// Returns the callee operand from the given \p MI.
2255 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2256 return MI.getOperand(0);
2257 }
2258
2259 /// Return the uniformity behavior of the given instruction.
2260 virtual InstructionUniformity
2263 }
2264
2265 /// Returns true if the given \p MI defines a TargetIndex operand that can be
2266 /// tracked by their offset, can have values, and can have debug info
2267 /// associated with it. If so, sets \p Index and \p Offset of the target index
2268 /// operand.
2270 int64_t &Offset) const {
2271 return false;
2272 }
2273
2274 // Get the call frame size just before MI.
2275 unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2276
2277 /// Fills in the necessary MachineOperands to refer to a frame index.
2278 /// The best way to understand this is to print `asm(""::"m"(x));` after
2279 /// finalize-isel. Example:
2280 /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2281 /// we would add placeholders for: ^ ^ ^ ^
2283 int FI) const {
2284 llvm_unreachable("unknown number of operands necessary");
2285 }
2286
2287private:
2288 mutable std::unique_ptr<MIRFormatter> Formatter;
2289 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2290 unsigned CatchRetOpcode;
2291 unsigned ReturnOpcode;
2292};
2293
2294/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2298
2300 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2301 SubRegInfo::getEmptyKey());
2302 }
2303
2305 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2306 SubRegInfo::getTombstoneKey());
2307 }
2308
2309 /// Reuse getHashValue implementation from
2310 /// std::pair<unsigned, unsigned>.
2311 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2312 return DenseMapInfo<std::pair<Register, unsigned>>::getHashValue(
2313 std::make_pair(Val.Reg, Val.SubReg));
2314 }
2315
2318 return LHS == RHS;
2319 }
2320};
2321
2322} // end namespace llvm
2323
2324#endif // LLVM_CODEGEN_TARGETINSTRINFO_H
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
SmallVector< int16_t, MAX_SRC_OPERANDS_NUM > OperandIndices
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
uint32_t Index
uint64_t Size
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Machine Check Debug Module
Contains all data structures shared between the outliner implemented in MachineOutliner....
unsigned const TargetRegisterInfo * TRI
unsigned Reg
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:661
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
Itinerary data supplied by a subtarget to be used by a target.
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
MIRFormater - Interface to format MIR operand based on target.
Definition: MIRFormatter.h:32
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
bool isReturn(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:946
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:956
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
static MachineOperand CreateImm(int64_t Val)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Represents one node in the SelectionDAG.
This class represents the scheduled code.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:228
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
Object returned by analyzeLoopForPipelining.
virtual bool isMVEExpanderSupported()
Return true if the target can expand pipelined schedule with modulo variable expansion.
virtual void disposed()=0
Called when the loop is being removed.
virtual void createRemainingIterationsGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, DenseMap< MachineInstr *, MachineInstr * > &LastStage0Insts)
Create a condition to determine if the remaining trip count for a phase is greater than TC.
virtual void adjustTripCount(int TripCountAdjust)=0
Modify the loop such that the trip count is OriginalTC + TripCountAdjust.
virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const =0
Return true if the given instruction should not be pipelined and should be ignored.
virtual void setPreheader(MachineBasicBlock *NewPreheader)=0
Called when the loop's preheader has been modified to NewPreheader.
virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS)
Return true if the proposed schedule should used.
virtual std::optional< bool > createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond)=0
Create a condition to determine if the trip count of the loop is greater than TC, where TC is always ...
TargetInstrInfo - Interface to description of machine instruction set.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual SmallVector< std::pair< MachineBasicBlock::iterator, MachineBasicBlock::iterator > > getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook which partitions MBB into outlinable ranges for instruction mapping purposes.
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
virtual bool isBasicBlockPrologue(const MachineInstr &MI, Register Reg=Register()) const
True if the instruction is bound to the top of its basic block and no other instructions shall be ins...
virtual bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const
Reverses the branch condition of the specified condition list, returning false on success and true if...
virtual MachineInstr * optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, Register &FoldAsLoadDefReg, MachineInstr *&DefMI) const
Try to remove the load by folding it to a register operand at the use.
virtual unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const
Remove the branching code at the end of the specific MBB.
virtual std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
virtual bool ClobbersPredicate(MachineInstr &MI, std::vector< MachineOperand > &Pred, bool SkipDead) const
If the specified instruction defines any predicate or condition code register(s) used for predication...
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const
Assumes the instruction is already predicated and returns true if the instruction can be predicated a...
virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const
Compute operand latency of a def of 'Reg'.
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const
This is an architecture-specific helper function of reassociateOps.
bool isZeroCost(unsigned Opcode) const
Return true for pseudo instructions that don't consume any machine resources in their current form.
virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects=true) const
Insert an architecture-specific instruction to clear a register.
virtual void getFrameIndexOperands(SmallVectorImpl< MachineOperand > &Ops, int FI) const
Fills in the necessary MachineOperands to refer to a frame index.
virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify=false) const
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI, MachineRegisterInfo &MRI) const
Given the generic extension instruction ExtMI, returns true if this extension is a likely candidate f...
virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo, MachineCycleInfo *CI) const
virtual std::optional< DestSourcePair > isCopyLikeInstrImpl(const MachineInstr &MI) const
virtual unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Returns the preferred minimum clearance before an instruction with an unwanted partial register updat...
virtual bool canMakeTailCallConditional(SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Returns true if the tail call can be made conditional on BranchCond.
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const
Return the number of u-operations the given machine instruction will be decoded to on the target cpu.
virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &) const
Create machine specific model for scheduling.
virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar, MachineInstr &Cmp, SmallVectorImpl< MachineOperand > &Cond, SmallVectorImpl< MachineInstr * > &PrevInsts, unsigned Iter, unsigned MaxIter) const
Generate code to reduce the loop iteration by one and check if the loop is finished.
virtual bool isPostIncrement(const MachineInstr &MI) const
Return true for post-incremented instructions.
bool isTriviallyReMaterializable(const MachineInstr &MI) const
Return true if the instruction is trivially rematerializable, meaning it has no side effects and requ...
virtual int getSPAdjust(const MachineInstr &MI) const
Returns the actual stack pointer adjustment made by an instruction as part of a call sequence.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const
Load the specified register of the given register class from the specified stack frame index.
virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const
Return true if the instruction is a "coalescable" extension instruction.
virtual void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset=0, RegScavenger *RS=nullptr) const
Insert an unconditional indirect branch at the end of MBB to NewDestBB.
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const
Delete the instruction OldInst and everything after it, replacing it with an unconditional branch to ...
virtual ArrayRef< std::pair< MachineMemOperand::Flags, const char * > > getSerializableMachineMemOperandTargetFlags() const
Return an array that contains the MMO target flag values and their names.
virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const
Return true if the instruction contains a base register and offset.
virtual bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Pred) const
Convert the instruction into a predicated instruction.
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const
Returns the opcode of the would be new instruction after load / store are unfolded from an instructio...
bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const
Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
virtual outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Target-dependent implementation for getOutliningTypeImpl.
virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify=false) const
Analyze the branching code at the end of MBB and parse it into the MachineBranchPredicate structure i...
virtual bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Target-dependent implementation of getInsertSubregInputs.
virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const
Return true if the function should be outlined from by default.
outliner::InstrType getOutliningType(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Returns how or if MIT should be outlined.
virtual MachineInstr * optimizeSelect(MachineInstr &MI, SmallPtrSetImpl< MachineInstr * > &NewMIs, bool PreferFalse=false) const
Given a select instruction that was understood by analyzeSelect and returned Optimizable = true,...
virtual bool isThroughputPattern(unsigned Pattern) const
Return true when a code sequence can improve throughput.
virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, const MachineInstr &AddrI, ExtAddrMode &AM) const
Check if it's possible and beneficial to fold the addressing computation AddrI into the addressing mo...
virtual const MIRFormatter * getMIRFormatter() const
Return MIR formatter to format/parse MIR operands.
virtual std::pair< unsigned, unsigned > getPatchpointUnfoldableRange(const MachineInstr &MI) const
For a patchpoint, stackmap, or statepoint intrinsic, return the range of operands which can't be fold...
virtual bool shouldReduceRegisterPressure(const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const
Return true if target supports reassociation of instructions in machine combiner pass to reduce regis...
virtual ArrayRef< std::pair< int, const char * > > getSerializableTargetIndices() const
Return an array that contains the ids of the target indices (used for the TargetIndex machine operand...
bool isFullCopyInstr(const MachineInstr &MI) const
virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Return the minimum clearance before an instruction that reads an unused register.
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const
Store the specified register of the given register class to the specified stack frame index.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual void mergeOutliningCandidateAttributes(Function &F, std::vector< outliner::Candidate > &Candidates) const
Optional target hook to create the LLVM IR attributes for the outlined function.
virtual bool preservesZeroValueInReg(const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const
Returns true if MI's Def is NullValueReg, and the MI does not change the Zero value.
virtual bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const
Perform target-specific instruction verification.
virtual void finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs) const
Fix up the placeholder we may add in genAlternativeCodeSequence().
virtual bool isUnconditionalTailCall(const MachineInstr &MI) const
Returns true if MI is an unconditional tail call.
bool isUnpredicatedTerminator(const MachineInstr &MI) const
Returns true if the instruction is a terminator instruction that has not been predicated.
virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const
Compute operand latency between a def of 'Reg' and a use in the current loop.
bool isUnspillableTerminator(const MachineInstr *MI) const
Return true if the given instruction is terminator that is unspillable, according to isUnspillableTer...
virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const
Return true if it's profitable to unpredicate one side of a 'diamond', i.e.
virtual bool useMachineCombiner() const
Return true when a target supports MachineCombiner.
virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
Insert a noop into the instruction stream at the specified point.
virtual bool SubsumesPredicate(ArrayRef< MachineOperand > Pred1, ArrayRef< MachineOperand > Pred2) const
Returns true if the first specified predicate subsumes the second, e.g.
bool isFrameInstr(const MachineInstr &I) const
Returns true if the argument is a frame pseudo instruction.
virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Insert a dependency-breaking instruction before MI to eliminate an unwanted dependency on OpNum.
virtual bool getRegSequenceLikeInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Target-dependent implementation of getRegSequenceInputs.
virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const
Second variant of isProfitableToIfCvt.
virtual int getExtendResourceLenLimit() const
The limit on resource length extension we accept in MachineCombiner Pass.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const
Allocate and return a hazard recognizer to use for by non-scheduling passes.
virtual void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const
Insert a select instruction into MBB before I that will copy TrueReg to DstReg when Cond is true,...
virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const MachineFunction &MF) const
Compute the size in bytes and offset within a stack slot of a spilled register or subregister.
virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAGMI *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual bool shouldBreakCriticalEdgeToSink(MachineInstr &MI) const
For a "cheap" instruction which doesn't enable additional sinking, should MachineSink break a critica...
virtual bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const
Sometimes, it is possible for the target to tell, even without aliasing information,...
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const
unsigned getReturnOpcode() const
virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI=nullptr) const
Measure the specified inline asm to determine an approximation of its length.
virtual bool isIgnorableUse(const MachineOperand &MO) const
Given MO is a PhysReg use return if it can be ignored for the purpose of instruction rematerializatio...
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const
Produce the expression describing the MI loading a value into the physical register Reg.
void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const
This function defines the logic to lower COPY instruction to target specific instruction(s).
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct load from a stack slot, return the virtual or physic...
MachineInstr * foldMemoryOperand(MachineInstr &MI, ArrayRef< unsigned > Ops, int FI, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Attempt to fold a load or store of the specified stack slot into the specified machine instruction fo...
virtual bool shouldClusterMemOps(ArrayRef< const MachineOperand * > BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef< const MachineOperand * > BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const
Returns true if the two given memory operations should be scheduled adjacent.
virtual unsigned getLiveRangeSplitOpcode(Register Reg, const MachineFunction &MF) const
Allows targets to use appropriate copy instruction while spilitting live range of a register in regis...
virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t Mask, int64_t Value, const MachineRegisterInfo *MRI) const
See if the comparison instruction can be converted into something more efficient.
virtual unsigned getMemOperandAACheckLimit() const
Return the maximal number of alias checks on memory operands.
virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const
Return true if the function can safely be outlined from.
virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const
Return true if the MachineBasicBlock can safely be split to the cold section.
virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const
Insert a custom frame for outlined functions.
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const
This is a used by the pre-regalloc scheduler to determine (in conjunction with areLoadsFromSameBasePt...
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const
Return true if the given SDNode can be copied during scheduling even if it has glue.
virtual std::optional< ExtAddrMode > getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const
Target dependent implementation to get the values constituting the address MachineInstr that is acces...
virtual std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const
Target-dependent implementation for IsCopyInstr.
virtual MachineInstr * createPHIDestinationCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const
Returns true if MI is an instruction that defines Reg to have a constant value and the value is recor...
static bool isGenericOpcode(unsigned Opc)
TargetInstrInfo & operator=(const TargetInstrInfo &)=delete
std::optional< DestSourcePair > isCopyLikeInstr(const MachineInstr &MI) const
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const
Return an array that contains the bitmask target flag values and their names.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise).
virtual bool isSubregFoldable() const
Check whether the target can fold a load that feeds a subreg operand (or a subreg operand that feeds ...
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual MCInst getNop() const
Return the noop instruction to use for a noop.
unsigned getCallFrameSizeAt(MachineInstr &MI) const
virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
virtual MachineInstr & duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const
Clones instruction or the whole instruction bundle Orig and insert into MBB before InsertBefore.
virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
std::pair< unsigned, unsigned > getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root, const MachineInstr &Prev) const
Reassociation of some instructions requires inverse operations (e.g.
virtual std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr &MI) const
Return the current execution domain and bit mask of possible domains for instruction.
virtual bool optimizeCondBranch(MachineInstr &MI) const
virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, MachineInstr *&CmpInst) const
Analyze the loop code, return true if it cannot be understood.
virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook that returns true if MBB is safe to outline from, and returns any target-specifi...
unsigned getCatchReturnOpcode() const
virtual void getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, std::array< unsigned, 5 > &OperandIndices) const
The returned array encodes the operand index for each parameter because the operands may be commuted;...
virtual unsigned getTailMergeSize(const MachineFunction &MF) const
Returns the target-specific default value for tail merging.
virtual InstructionUniformity getInstructionUniformity(const MachineInstr &MI) const
Return the uniformity behavior of the given instruction.
virtual bool isAsCheapAsAMove(const MachineInstr &MI) const
Return true if the instruction is as cheap as a move instruction.
virtual bool isTailCall(const MachineInstr &Inst) const
Determines whether Inst is a tail call instruction.
virtual const MachineOperand & getCalleeOperand(const MachineInstr &MI) const
Returns the callee operand from the given MI.
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
int64_t getFrameTotalSize(const MachineInstr &I) const
Returns the total frame size, which is made up of the space set up inside the pair of frame start-sto...
MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI=false, unsigned OpIdx1=CommuteAnyOperandIndex, unsigned OpIdx2=CommuteAnyOperandIndex) const
This method commutes the operands of the given machine instruction MI.
virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const
'Reg' is known to be defined by a move immediate instruction, try to fold the immediate into the use ...
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const
unfoldMemoryOperand - Separate a single instruction which folded a load or a store or a load and a st...
virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const
Return true if the specified machine instruction is a copy of one stack slot to another and has no ot...
virtual std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual int getJumpTableIndex(const MachineInstr &MI) const
Return an index for MachineJumpTableInfo if insn is an indirect jump using a jump table,...
virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert=false) const
Return true when \P Inst is both associative and commutative.
virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index, int64_t &Offset) const
Returns true if the given MI defines a TargetIndex operand that can be tracked by their offset,...
virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const
Allow targets to tell MachineVerifier whether a specific register MachineOperand can be used as part ...
virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const
Re-issue the specified 'original' instruction at the specific location targeting a new destination re...
virtual std::optional< std::unique_ptr< outliner::OutlinedFunction > > getOutliningCandidateInfo(const MachineModuleInfo &MMI, std::vector< outliner::Candidate > &RepeatedSequenceLocs, unsigned MinRepeats) const
Returns a outliner::OutlinedFunction struct containing target-specific information for a set of outli...
virtual MachineInstr * createPHISourceCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const
Insert a call to an outlined function into the program.
virtual std::optional< unsigned > getInverseOpcode(unsigned Opcode) const
Return the inverse operation opcode if it exists for \P Opcode (e.g.
TargetInstrInfo(unsigned CFSetupOpcode=~0u, unsigned CFDestroyOpcode=~0u, unsigned CatchRetOpcode=~0u, unsigned ReturnOpcode=~0u)
virtual void insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const
Insert noops into the instruction stream at the specified point.
unsigned getCallFrameDestroyOpcode() const
int64_t getFrameSize(const MachineInstr &I) const
Returns size of the frame associated with the given frame instruction.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual MachineBasicBlock * getBranchDestBlock(const MachineInstr &MI) const
virtual bool isPredicated(const MachineInstr &MI) const
Returns true if the instruction is already predicated.
bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Build the equivalent inputs of a INSERT_SUBREG for the given MI and DefIdx.
virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Replace the conditional branch in MBB with a conditional tail call.
TargetInstrInfo(const TargetInstrInfo &)=delete
virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const
Return an estimate for the code size reduction (in bytes) which will be caused by removing the given ...
virtual ~TargetInstrInfo()
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const
Compute the instruction latency of a given instruction.
virtual bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI=nullptr) const
Return true if two machine instructions would produce identical values.
bool isFrameSetup(const MachineInstr &I) const
Returns true if the argument is a frame setup pseudo instruction.
virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, unsigned NumInsts) const
Return the increase in code size needed to predicate a contiguous run of NumInsts instructions.
virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const
When calculate the latency of the root instruction, accumulate the latency of the sequence to the roo...
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const
Return true if the input \P Inst is part of a chain of dependent ops that are suitable for reassociat...
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl< MachineOperand > &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const
Analyze the given select instruction, returning true if it cannot be understood.
virtual bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const
Get zero or more base operands and the byte offset of an instruction that reads/writes memory.
virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const
Returns the size in bytes of the specified MachineInstr, or ~0U when this function is not implemented...
virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const
Return true if it's profitable for if-converter to duplicate instructions of specified accumulated in...
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const
Emit instructions to copy a pair of physical registers.
virtual unsigned getPredicationCost(const MachineInstr &MI) const
virtual bool shouldSink(const MachineInstr &MI) const
Return true if the instruction should be sunk by MachineSink.
virtual MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const
This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_ADDR flag.
virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const
Change the opcode of MI to execute in Domain.
virtual CombinerObjective getCombinerObjective(unsigned Pattern) const
Return the objective of a combiner pattern.
virtual bool isPredicable(const MachineInstr &MI) const
Return true if the specified instruction can be predicated.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned) const
Decompose the machine operand's target flags into two values - the direct target flag value and any o...
virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const
Return true if it's safe to move a machine instruction that defines the specified register class.
virtual bool canInsertSelect(const MachineBasicBlock &MBB, ArrayRef< MachineOperand > Cond, Register DstReg, Register TrueReg, Register FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const
Return true if it is possible to insert a select instruction that chooses between TrueReg and FalseRe...
virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const
Return true if the function is a viable candidate for machine function splitting.
virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const
Return a strategy that MachineCombiner must use when creating traces.
bool getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Build the equivalent inputs of a REG_SEQUENCE for the given MI and DefIdx.
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const
Return true if the given terminator MI is not expected to spill.
virtual std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const
If the specific machine instruction is an instruction that adds an immediate value and a register,...
unsigned defaultDefLatency(const MCSchedModel &SchedModel, const MachineInstr &DefMI) const
Return the default expected latency for a def based on its opcode.
void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, ArrayRef< unsigned > OperandIndices, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg) const
Attempt to reassociate \P Root and \P Prev according to \P Pattern to reduce critical path length.
static bool isGenericAtomicRMWOpcode(unsigned Opc)
virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const
Returns true if the target has a preference on the operands order of the given machine instruction.
static const unsigned CommuteAnyOperandIndex
virtual bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const
Return true when \P Inst has reassociable sibling.
virtual std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const
virtual bool isHighLatencyDef(int opc) const
Return true if this opcode has high latency to its result.
virtual MachineInstr * emitLdStWithAddr(MachineInstr &MemI, const ExtAddrMode &AM) const
Emit a load/store instruction with the same value register as MemI, but using the address from AM.
virtual bool expandPostRAPseudo(MachineInstr &MI) const
This function is called for all pseudo instructions that remain after register allocation.
static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, unsigned CommutableOpIdx1, unsigned CommutableOpIdx2)
Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable operand indices to (ResultIdx1,...
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const
Return an array that contains the direct target flag values and their names.
virtual bool shouldHoist(const MachineInstr &MI, const MachineLoop *FromLoop) const
Return false if the instruction should not be hoisted by MachineLICM.
bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Build the equivalent inputs of a EXTRACT_SUBREG for the given MI and DefIdx.
virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Target-dependent implementation of getExtractSubregInputs.
virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const
Returns the target-specific default value for tail duplication.
bool usePreRAHazardRecognizer() const
Provide a global flag for disabling the PreRA hazard recognizer that targets may choose to honor.
unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, MachineBasicBlock *DestBB, const DebugLoc &DL, int *BytesAdded=nullptr) const
virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const
If the instruction is an increment of a constant value, return the amount.
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const
Optional extension of isStoreToStackSlot that returns the number of bytes stored to the stack.
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const
This is used by the pre-regalloc scheduler to determine if two loads are loading from the same base a...
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl< SDNode * > &NewNodes) const
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
virtual unsigned getMachineCSELookAheadLimit() const
Return the value to use for the MachineCSE's LookAheadLimit, which is a heuristic used for CSE'ing ph...
virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const
Return true if it's legal to split the given basic block at the specified instruction (i....
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const
Optional extension of isLoadFromStackSlot that returns the number of bytes loaded from the stack.
bool getMemOperandWithOffset(const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const
Get the base operand and byte offset of an instruction that reads/writes memory.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
TargetSubtargetInfo - Generic base class for all target subtargets.
LLVM Value Representation.
Definition: Value.h:74
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineTraceStrategy
Strategies for selecting traces.
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
CodeGenOptLevel
Code generation optimization level.
Definition: CodeGen.h:54
InstructionUniformity
Enum describing how instructions behave with respect to uniformity and divergence,...
Definition: Uniformity.h:18
@ Default
The result values are uniform if and only if all operands are uniform.
#define N
static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val)
Reuse getHashValue implementation from std::pair<unsigned, unsigned>.
static TargetInstrInfo::RegSubRegPair getTombstoneKey()
static TargetInstrInfo::RegSubRegPair getEmptyKey()
static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, const TargetInstrInfo::RegSubRegPair &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52
const MachineOperand * Source
DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
const MachineOperand * Destination
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
ExtAddrMode()=default
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:256
Used to describe a register and immediate addition.
RegImmPair(Register Reg, int64_t Imm)
Represents a predicate at the MachineFunction level.
bool SingleUseCondition
SingleUseCondition is true if ConditionDef is dead except for the branch(es) at the end of the basic ...
A pair composed of a pair of a register and a sub-register index, and another sub-register index.
RegSubRegPairAndIdx(Register Reg=Register(), unsigned SubReg=0, unsigned SubIdx=0)
A pair composed of a register and a sub-register index.
bool operator==(const RegSubRegPair &P) const
RegSubRegPair(Register Reg=Register(), unsigned SubReg=0)
bool operator!=(const RegSubRegPair &P) const
An individual sequence of instructions to be replaced with a call to an outlined function.
The information necessary to create an outlined function for some class of candidate.