40#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
41#define LLVM_CODEGEN_MACHINEPIPELINER_H
113 bool useSwingModuloScheduler();
114 bool useWindowScheduler(
bool Changed);
126 bool Scheduled =
false;
130 unsigned II_setByPragma = 0;
140 int ZeroLatencyDepth = 0;
141 int ZeroLatencyHeight = 0;
143 NodeInfo() =
default;
146 std::vector<NodeInfo> ScheduleInfo;
148 enum OrderKind { BottomUp = 0, TopDown = 1 };
165 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
169 std::vector<SUnit> &SUnits;
175 std::vector<int> *Node2Idx;
176 unsigned NumPaths = 0u;
177 static unsigned MaxPaths;
181 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
182 Node2Idx =
new std::vector<int>(SUs.size());
184 for (
const auto &NodeNum : Topo)
185 Node2Idx->at(NodeNum) =
Idx++;
187 Circuits &operator=(
const Circuits &other) =
delete;
188 Circuits(
const Circuits &other) =
delete;
189 ~Circuits() {
delete Node2Idx; }
214 RegClassInfo(rci), II_setByPragma(
II), LoopPipelinerInfo(PLI),
216 P.MF->getSubtarget().getSMSMutations(Mutations);
218 Mutations.push_back(std::make_unique<CopyToPhiMutation>());
243 return ScheduleInfo[
Node->NodeNum].ZeroLatencyDepth;
252 return ScheduleInfo[
Node->NodeNum].ZeroLatencyHeight;
265 bool isSucc =
true)
const;
285 InstrChanges.
find(SU);
286 if (It != InstrChanges.
end())
287 return It->second.first;
292 Mutations.push_back(std::move(
Mutation));
298 void addLoopCarriedDependences(
AAResults *AA);
299 void updatePhiDependences();
300 void changeDependences();
301 unsigned calculateResMII();
302 unsigned calculateRecMII(NodeSetType &RecNodeSets);
303 void findCircuits(NodeSetType &NodeSets);
304 void fuseRecs(NodeSetType &NodeSets);
305 void removeDuplicateNodes(NodeSetType &NodeSets);
306 void computeNodeFunctions(NodeSetType &NodeSets);
307 void registerPressureFilter(NodeSetType &NodeSets);
308 void colocateNodeSets(NodeSetType &NodeSets);
309 void checkNodeSets(NodeSetType &NodeSets);
310 void groupRemainingNodes(NodeSetType &NodeSets);
313 void computeNodeOrder(NodeSetType &NodeSets);
314 void checkValidNodeOrder(
const NodeSetType &Circuits)
const;
319 unsigned &OffsetPos,
unsigned &NewBase,
321 void postProcessDAG();
323 void setMII(
unsigned ResMII,
unsigned RecMII);
332 bool HasRecurrence =
false;
335 unsigned MaxDepth = 0;
336 unsigned Colocate = 0;
337 SUnit *ExceedPressure =
nullptr;
338 unsigned Latency = 0;
345 : Nodes(S,
E), HasRecurrence(
true) {
361 for (
auto *
Node : Nodes)
362 SUnitToDistance[
Node] = 0;
364 for (
unsigned I = 1,
E = Nodes.size();
I <=
E; ++
I) {
366 SUnit *V = Nodes[
I % Nodes.size()];
367 for (
const SDep &Succ : U->Succs) {
371 if (SUnitToDistance[U] + Succ.
getLatency() > SUnitToDistance[V]) {
372 SUnitToDistance[V] = SUnitToDistance[U] + Succ.
getLatency();
377 SUnit *FirstNode = Nodes[0];
378 SUnit *LastNode = Nodes[Nodes.size() - 1];
380 for (
auto &PI : LastNode->
Preds) {
385 if (PI.getSUnit() != FirstNode || PI.getKind() !=
SDep::Order ||
388 SUnitToDistance[FirstNode] =
389 std::max(SUnitToDistance[FirstNode], SUnitToDistance[LastNode] + 1);
393 Latency = SUnitToDistance[Nodes.front()];
400 template <
typename UnaryPredicate>
bool remove_if(UnaryPredicate
P) {
428 for (
SUnit *SU : *
this) {
429 MaxMOV = std::max(MaxMOV, SSD->
getMOV(SU));
430 MaxDepth = std::max(MaxDepth, SSD->
getDepth(SU));
441 HasRecurrence =
false;
445 ExceedPressure =
nullptr;
455 if (RecMII ==
RHS.RecMII) {
456 if (Colocate != 0 &&
RHS.Colocate != 0 && Colocate !=
RHS.Colocate)
457 return Colocate <
RHS.Colocate;
458 if (MaxMOV ==
RHS.MaxMOV)
459 return MaxDepth >
RHS.MaxDepth;
460 return MaxMOV <
RHS.MaxMOV;
462 return RecMII >
RHS.RecMII;
466 return RecMII ==
RHS.RecMII && MaxMOV ==
RHS.MaxMOV &&
467 MaxDepth ==
RHS.MaxDepth;
476#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
507 int InitiationInterval = 0;
511 int calculateResMIIDFA()
const;
513 bool isOverbooked()
const;
522 int positiveModulo(
int Dividend,
int Divisor)
const {
524 int R = Dividend % Divisor;
530#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
536 : STI(ST), SM(ST->getSchedModel()), ST(ST),
TII(ST->getInstrInfo()),
537 DAG(DAG), UseDFA(ST->useDFAforSMS()),
538 ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
539 IssueWidth(SM.IssueWidth) {
579 std::map<SUnit *, int> InstrToCycle;
589 int InitiationInterval = 0;
601 : ST(mf->getSubtarget()),
MRI(mf->getRegInfo()),
602 ProcItinResources(&ST, DAG) {}
605 ScheduledInstrs.
clear();
606 InstrToCycle.clear();
609 InitiationInterval = 0;
614 InitiationInterval = ii;
615 ProcItinResources.
init(ii);
638 bool insert(
SUnit *SU,
int StartCycle,
int EndCycle,
int II);
653 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
654 if (it == InstrToCycle.end())
656 return (it->second - FirstCycle) / InitiationInterval;
662 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
663 assert(it != InstrToCycle.end() &&
"Instruction hasn't been scheduled.");
664 return (it->second - FirstCycle) % InitiationInterval;
669 return (LastCycle - FirstCycle) / InitiationInterval;
674 return ScheduledInstrs[cycle];
683 const std::deque<SUnit *> &Instrs)
const;
691 std::deque<SUnit *> &Insts)
const;
unsigned const MachineRegisterInfo * MRI
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
Represent the analysis usage information of a pass.
iterator find(const_arg_type_t< KeyT > Val)
A possibly irreducible generalization of a Loop.
Itinerary data supplied by a subtarget to be used by a target.
Represents a single loop in the control flow graph.
Generic base class for all target subtargets.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
The main class in the implementation of the target independent software pipeliner pass.
const TargetInstrInfo * TII
bool runOnMachineFunction(MachineFunction &MF) override
The "main" function for implementing Swing Modulo Scheduling.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const MachineDominatorTree * MDT
const MachineLoopInfo * MLI
MachineOptimizationRemarkEmitter * ORE
RegisterClassInfo RegClassInfo
const InstrItineraryData * InstrItins
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A NodeSet contains a set of SUnit DAG nodes with additional information that assigns a priority to th...
SUnit * getNode(unsigned i) const
SetVector< SUnit * >::const_iterator iterator
void print(raw_ostream &os) const
bool isExceedSU(SUnit *SU)
void insert(iterator S, iterator E)
void setRecMII(unsigned mii)
void computeNodeSetInfo(SwingSchedulerDAG *SSD)
Summarize node functions for the entire node set.
unsigned count(SUnit *SU) const
void setColocate(unsigned c)
NodeSet(iterator S, iterator E, const SwingSchedulerDAG *DAG)
bool operator>(const NodeSet &RHS) const
Sort the node sets by importance.
int compareRecMII(NodeSet &RHS)
bool operator!=(const NodeSet &RHS) const
LLVM_DUMP_METHOD void dump() const
bool operator==(const NodeSet &RHS) const
bool remove_if(UnaryPredicate P)
void setExceedPressure(SUnit *SU)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Wrapper class representing virtual and physical registers.
int calculateResMII() const
void initProcResourceVectors(const MCSchedModel &SM, SmallVectorImpl< uint64_t > &Masks)
ResourceManager(const TargetSubtargetInfo *ST, ScheduleDAGInstrs *DAG)
void init(int II)
Initialize resources with the initiation interval II.
bool canReserveResources(SUnit &SU, int Cycle)
Check if the resources occupied by a machine instruction are available in the current state.
Kind getKind() const
Returns an enum value representing the kind of the dependence.
@ Order
Any other ordering dependency.
@ Anti
A register anti-dependence (aka WAR).
unsigned getLatency() const
Returns the latency value for this edge, which roughly means the minimum number of cycles that must e...
This class represents the scheduled code.
std::deque< SUnit * > reorderInstructions(const SwingSchedulerDAG *SSD, const std::deque< SUnit * > &Instrs) const
int earliestCycleInChain(const SDep &Dep)
Return the cycle of the earliest scheduled instruction in the dependence chain.
void setInitiationInterval(int ii)
Set the initiation interval for this schedule.
SmallSet< SUnit *, 8 > computeUnpipelineableNodes(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
Determine transitive dependences of unpipelineable instructions.
void dump() const
Utility function used for debugging to print the schedule.
bool insert(SUnit *SU, int StartCycle, int EndCycle, int II)
Try to schedule the node at the specified StartCycle and continue until the node is schedule or the E...
unsigned getMaxStageCount()
Return the maximum stage count needed for this schedule.
void print(raw_ostream &os) const
Print the schedule information to the given output.
int latestCycleInChain(const SDep &Dep)
Return the cycle of the latest scheduled instruction in the dependence chain.
int stageScheduled(SUnit *SU) const
Return the stage for a scheduled instruction.
bool isScheduledAtStage(SUnit *SU, unsigned StageNum)
Return true if the instruction is scheduled at the specified stage.
void orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, std::deque< SUnit * > &Insts) const
Order the instructions within a cycle so that the definitions occur before the uses.
bool isValidSchedule(SwingSchedulerDAG *SSD)
int getInitiationInterval() const
Return the initiation interval for this schedule.
std::deque< SUnit * > & getInstructions(int cycle)
Return the instructions that are scheduled at the specified cycle.
int getFirstCycle() const
Return the first cycle in the completed schedule.
bool isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, MachineInstr *Def, MachineOperand &MO) const
Return true if the instruction is a definition that is loop carried and defines the use on the next i...
unsigned cycleScheduled(SUnit *SU) const
Return the cycle for a scheduled instruction.
void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int II, SwingSchedulerDAG *DAG)
Compute the scheduling start slot for the instruction.
SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG)
bool onlyHasLoopCarriedOutputOrOrderPreds(SUnit *SU, SwingSchedulerDAG *DAG) const
Return true if all scheduled predecessors are loop-carried output/order dependencies.
bool normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
bool isLoopCarried(const SwingSchedulerDAG *SSD, MachineInstr &Phi) const
Return true if the scheduled Phi has a loop carried operand.
int getFinalCycle() const
Return the last cycle in the finalized schedule.
void finalizeSchedule(SwingSchedulerDAG *SSD)
After the schedule has been formed, call this function to combine the instructions from the different...
Scheduling unit. This is a node in the scheduling DAG.
SmallVector< SDep, 4 > Preds
All sunit predecessors.
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
A ScheduleDAG for scheduling lists of MachineInstr.
const MachineLoopInfo * MLI
Mutate the DAG as a postpass after normal DAG building.
This class can compute a topological ordering for SUnits and provides methods for dynamically updatin...
std::vector< SUnit > SUnits
The scheduling units.
MachineFunction & MF
Machine function.
SUnit ExitSU
Special node for the region exit.
A vector that has set insertion semantics.
bool remove_if(UnaryPredicate P)
Remove items from the set vector based on a predicate function.
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
typename vector_type::const_iterator const_iterator
void clear()
Completely clear the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc=true) const
Return true for an order or output dependence that is loop carried potentially.
unsigned getInstrBaseReg(SUnit *SU) const
Return the new base register that was stored away for the changed instruction.
unsigned getDepth(SUnit *Node)
The depth, in the dependence graph, for a node.
int getASAP(SUnit *Node)
Return the earliest time an instruction may be scheduled.
void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule)
Apply changes to the instruction if needed.
void finishBlock() override
Clean up after the software pipeliner runs.
void fixupRegisterOverlaps(std::deque< SUnit * > &Instrs)
Attempt to fix the degenerate cases when the instruction serialization causes the register lifetimes ...
bool hasNewSchedule()
Return true if the loop kernel has been scheduled.
void addMutation(std::unique_ptr< ScheduleDAGMutation > Mutation)
SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, const RegisterClassInfo &rci, unsigned II, TargetInstrInfo::PipelinerLoopInfo *PLI)
int getZeroLatencyDepth(SUnit *Node)
The maximum unweighted length of a path from an arbitrary node to the given node in which each edge h...
unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep)
The distance function, which indicates that operation V of iteration I depends on operations U of ite...
void schedule() override
We override the schedule function in ScheduleDAGInstrs to implement the scheduling part of the Swing ...
int getMOV(SUnit *Node)
The mobility function, which the number of slots in which an instruction may be scheduled.
int getZeroLatencyHeight(SUnit *Node)
The maximum unweighted length of a path from the given node to an arbitrary node in which each edge h...
bool isBackedge(SUnit *Source, const SDep &Dep)
Return true if the dependence is a back-edge in the data dependence graph.
static bool classof(const ScheduleDAGInstrs *DAG)
unsigned getHeight(SUnit *Node)
The height, in the dependence graph, for a node.
int getALAP(SUnit *Node)
Return the latest time an instruction my be scheduled.
Object returned by analyzeLoopForPipelining.
TargetInstrInfo - Interface to description of machine instruction set.
TargetSubtargetInfo - Generic base class for all target subtargets.
This class implements an extremely fast bulk output stream that can only output to a stream.
std::set< NodeId > NodeSet
This is an optimization pass for GlobalISel generic memory operations.
void initializeMachinePipelinerPass(PassRegistry &)
cl::opt< bool > SwpEnableCopyToPhi
static const int DefaultProcResSize
cl::opt< int > SwpForceIssueWidth
A command line argument to force pipeliner to use specified issue width.
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Machine model for scheduling, bundling, and heuristics.
Cache the target analysis information about the loop.
MachineInstr * LoopInductionVar
SmallVector< MachineOperand, 4 > BrCond
MachineInstr * LoopCompare
std::unique_ptr< TargetInstrInfo::PipelinerLoopInfo > LoopPipelinerInfo