40#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
41#define LLVM_CODEGEN_MACHINEPIPELINER_H
114 bool useSwingModuloScheduler();
115 bool useWindowScheduler(
bool Changed);
120 SUnit *Dst =
nullptr;
122 unsigned Distance = 0;
130 : Dst(PredOrSucc), Pred(Dep), Distance(0u) {
201 struct SwingSchedulerDDGEdges {
206 void initEdges(
SUnit *SU);
211 std::vector<SwingSchedulerDDGEdges> EdgesVec;
212 SwingSchedulerDDGEdges EntrySUEdges;
213 SwingSchedulerDDGEdges ExitSUEdges;
217 SwingSchedulerDDGEdges &getEdges(
const SUnit *SU);
218 const SwingSchedulerDDGEdges &getEdges(
const SUnit *SU)
const;
233 std::unique_ptr<SwingSchedulerDDG> DDG;
240 bool Scheduled =
false;
244 unsigned II_setByPragma = 0;
254 int ZeroLatencyDepth = 0;
255 int ZeroLatencyHeight = 0;
257 NodeInfo() =
default;
260 std::vector<NodeInfo> ScheduleInfo;
262 enum OrderKind { BottomUp = 0, TopDown = 1 };
279 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
283 std::vector<SUnit> &SUnits;
289 std::vector<int> *Node2Idx;
290 unsigned NumPaths = 0u;
291 static unsigned MaxPaths;
295 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
296 Node2Idx =
new std::vector<int>(SUs.size());
298 for (
const auto &NodeNum : Topo)
299 Node2Idx->at(NodeNum) =
Idx++;
301 Circuits &operator=(
const Circuits &other) =
delete;
302 Circuits(
const Circuits &other) =
delete;
303 ~Circuits() {
delete Node2Idx; }
328 RegClassInfo(rci), II_setByPragma(
II), LoopPipelinerInfo(PLI),
330 P.MF->getSubtarget().getSMSMutations(Mutations);
332 Mutations.push_back(std::make_unique<CopyToPhiMutation>());
357 return ScheduleInfo[
Node->NodeNum].ZeroLatencyDepth;
366 return ScheduleInfo[
Node->NodeNum].ZeroLatencyHeight;
379 InstrChanges.
find(SU);
380 if (It != InstrChanges.
end())
381 return It->second.first;
386 Mutations.push_back(std::move(
Mutation));
394 void addLoopCarriedDependences(
AAResults *AA);
395 void updatePhiDependences();
396 void changeDependences();
397 unsigned calculateResMII();
398 unsigned calculateRecMII(NodeSetType &RecNodeSets);
399 void findCircuits(NodeSetType &NodeSets);
400 void fuseRecs(NodeSetType &NodeSets);
401 void removeDuplicateNodes(NodeSetType &NodeSets);
402 void computeNodeFunctions(NodeSetType &NodeSets);
403 void registerPressureFilter(NodeSetType &NodeSets);
404 void colocateNodeSets(NodeSetType &NodeSets);
405 void checkNodeSets(NodeSetType &NodeSets);
406 void groupRemainingNodes(NodeSetType &NodeSets);
409 void computeNodeOrder(NodeSetType &NodeSets);
410 void checkValidNodeOrder(
const NodeSetType &Circuits)
const;
415 unsigned &OffsetPos,
unsigned &NewBase,
417 void postProcessDAG();
419 void setMII(
unsigned ResMII,
unsigned RecMII);
428 bool HasRecurrence =
false;
431 unsigned MaxDepth = 0;
432 unsigned Colocate = 0;
433 SUnit *ExceedPressure =
nullptr;
434 unsigned Latency = 0;
441 : Nodes(S,
E), HasRecurrence(
true) {
458 for (
auto *
Node : Nodes)
459 SUnitToDistance[
Node] = 0;
461 for (
unsigned I = 1,
E = Nodes.size();
I <=
E; ++
I) {
463 SUnit *V = Nodes[
I % Nodes.size()];
465 SUnit *SuccSUnit = Succ.getDst();
468 if (SUnitToDistance[U] + Succ.getLatency() > SUnitToDistance[V]) {
469 SUnitToDistance[V] = SUnitToDistance[U] + Succ.getLatency();
474 SUnit *FirstNode = Nodes[0];
475 SUnit *LastNode = Nodes[Nodes.size() - 1];
482 if (PI.getSrc() != FirstNode || !PI.isOrderDep() ||
485 SUnitToDistance[FirstNode] =
486 std::max(SUnitToDistance[FirstNode], SUnitToDistance[LastNode] + 1);
490 Latency = SUnitToDistance[Nodes.front()];
497 template <
typename UnaryPredicate>
bool remove_if(UnaryPredicate
P) {
525 for (
SUnit *SU : *
this) {
526 MaxMOV = std::max(MaxMOV, SSD->
getMOV(SU));
527 MaxDepth = std::max(MaxDepth, SSD->
getDepth(SU));
538 HasRecurrence =
false;
542 ExceedPressure =
nullptr;
552 if (RecMII ==
RHS.RecMII) {
553 if (Colocate != 0 &&
RHS.Colocate != 0 && Colocate !=
RHS.Colocate)
554 return Colocate <
RHS.Colocate;
555 if (MaxMOV ==
RHS.MaxMOV)
556 return MaxDepth >
RHS.MaxDepth;
557 return MaxMOV <
RHS.MaxMOV;
559 return RecMII >
RHS.RecMII;
563 return RecMII ==
RHS.RecMII && MaxMOV ==
RHS.MaxMOV &&
564 MaxDepth ==
RHS.MaxDepth;
573#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
604 int InitiationInterval = 0;
608 int calculateResMIIDFA()
const;
610 bool isOverbooked()
const;
619 int positiveModulo(
int Dividend,
int Divisor)
const {
621 int R = Dividend % Divisor;
627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
633 : STI(ST), SM(ST->getSchedModel()), ST(ST),
TII(ST->getInstrInfo()),
634 DAG(DAG), UseDFA(ST->useDFAforSMS()),
635 ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
636 IssueWidth(SM.IssueWidth) {
676 std::map<SUnit *, int> InstrToCycle;
686 int InitiationInterval = 0;
698 : ST(mf->getSubtarget()),
MRI(mf->getRegInfo()),
699 ProcItinResources(&ST, DAG) {}
702 ScheduledInstrs.
clear();
703 InstrToCycle.clear();
706 InitiationInterval = 0;
711 InitiationInterval = ii;
712 ProcItinResources.
init(ii);
737 bool insert(
SUnit *SU,
int StartCycle,
int EndCycle,
int II);
752 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
753 if (it == InstrToCycle.end())
755 return (it->second - FirstCycle) / InitiationInterval;
761 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
762 assert(it != InstrToCycle.end() &&
"Instruction hasn't been scheduled.");
763 return (it->second - FirstCycle) % InitiationInterval;
768 return (LastCycle - FirstCycle) / InitiationInterval;
773 return ScheduledInstrs[cycle];
782 const std::deque<SUnit *> &Instrs)
const;
790 std::deque<SUnit *> &Insts)
const;
unsigned const MachineRegisterInfo * MRI
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
Represent the analysis usage information of a pass.
iterator find(const_arg_type_t< KeyT > Val)
A possibly irreducible generalization of a Loop.
Itinerary data supplied by a subtarget to be used by a target.
Represents a single loop in the control flow graph.
Generic base class for all target subtargets.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
The main class in the implementation of the target independent software pipeliner pass.
const TargetInstrInfo * TII
bool runOnMachineFunction(MachineFunction &MF) override
The "main" function for implementing Swing Modulo Scheduling.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const MachineDominatorTree * MDT
const MachineLoopInfo * MLI
MachineOptimizationRemarkEmitter * ORE
RegisterClassInfo RegClassInfo
const InstrItineraryData * InstrItins
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A NodeSet contains a set of SUnit DAG nodes with additional information that assigns a priority to th...
SUnit * getNode(unsigned i) const
SetVector< SUnit * >::const_iterator iterator
void print(raw_ostream &os) const
bool isExceedSU(SUnit *SU)
void insert(iterator S, iterator E)
void setRecMII(unsigned mii)
void computeNodeSetInfo(SwingSchedulerDAG *SSD)
Summarize node functions for the entire node set.
unsigned count(SUnit *SU) const
void setColocate(unsigned c)
NodeSet(iterator S, iterator E, const SwingSchedulerDAG *DAG)
bool operator>(const NodeSet &RHS) const
Sort the node sets by importance.
int compareRecMII(NodeSet &RHS)
bool operator!=(const NodeSet &RHS) const
LLVM_DUMP_METHOD void dump() const
bool operator==(const NodeSet &RHS) const
bool remove_if(UnaryPredicate P)
void setExceedPressure(SUnit *SU)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Wrapper class representing virtual and physical registers.
int calculateResMII() const
void initProcResourceVectors(const MCSchedModel &SM, SmallVectorImpl< uint64_t > &Masks)
ResourceManager(const TargetSubtargetInfo *ST, ScheduleDAGInstrs *DAG)
void init(int II)
Initialize resources with the initiation interval II.
bool canReserveResources(SUnit &SU, int Cycle)
Check if the resources occupied by a machine instruction are available in the current state.
Kind getKind() const
Returns an enum value representing the kind of the dependence.
@ Output
A register output-dependence (aka WAW).
@ Order
Any other ordering dependency.
@ Anti
A register anti-dependence (aka WAR).
@ Data
Regular data dependence (aka true-dependence).
void setLatency(unsigned Lat)
Sets the latency for this edge.
unsigned getLatency() const
Returns the latency value for this edge, which roughly means the minimum number of cycles that must e...
bool isAssignedRegDep() const
Tests if this is a Data dependence that is associated with a register.
bool isArtificial() const
Tests if this is an Order dependence that is marked as "artificial", meaning it isn't necessary for c...
unsigned getReg() const
Returns the register associated with this edge.
bool isBarrier() const
Tests if this is an Order dependence that is marked as a barrier.
This class represents the scheduled code.
std::deque< SUnit * > reorderInstructions(const SwingSchedulerDAG *SSD, const std::deque< SUnit * > &Instrs) const
void setInitiationInterval(int ii)
Set the initiation interval for this schedule.
SmallSet< SUnit *, 8 > computeUnpipelineableNodes(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
Determine transitive dependences of unpipelineable instructions.
void dump() const
Utility function used for debugging to print the schedule.
bool insert(SUnit *SU, int StartCycle, int EndCycle, int II)
Try to schedule the node at the specified StartCycle and continue until the node is schedule or the E...
int earliestCycleInChain(const SwingSchedulerDDGEdge &Dep, const SwingSchedulerDDG *DDG)
Return the cycle of the earliest scheduled instruction in the dependence chain.
unsigned getMaxStageCount()
Return the maximum stage count needed for this schedule.
void print(raw_ostream &os) const
Print the schedule information to the given output.
bool onlyHasLoopCarriedOutputOrOrderPreds(SUnit *SU, const SwingSchedulerDDG *DDG) const
Return true if all scheduled predecessors are loop-carried output/order dependencies.
int stageScheduled(SUnit *SU) const
Return the stage for a scheduled instruction.
bool isScheduledAtStage(SUnit *SU, unsigned StageNum)
Return true if the instruction is scheduled at the specified stage.
void orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, std::deque< SUnit * > &Insts) const
Order the instructions within a cycle so that the definitions occur before the uses.
bool isValidSchedule(SwingSchedulerDAG *SSD)
int getInitiationInterval() const
Return the initiation interval for this schedule.
std::deque< SUnit * > & getInstructions(int cycle)
Return the instructions that are scheduled at the specified cycle.
int getFirstCycle() const
Return the first cycle in the completed schedule.
bool isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, MachineInstr *Def, MachineOperand &MO) const
Return true if the instruction is a definition that is loop carried and defines the use on the next i...
unsigned cycleScheduled(SUnit *SU) const
Return the cycle for a scheduled instruction.
void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int II, SwingSchedulerDAG *DAG)
Compute the scheduling start slot for the instruction.
SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG)
bool normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
bool isLoopCarried(const SwingSchedulerDAG *SSD, MachineInstr &Phi) const
Return true if the scheduled Phi has a loop carried operand.
int latestCycleInChain(const SwingSchedulerDDGEdge &Dep, const SwingSchedulerDDG *DDG)
Return the cycle of the latest scheduled instruction in the dependence chain.
int getFinalCycle() const
Return the last cycle in the finalized schedule.
void finalizeSchedule(SwingSchedulerDAG *SSD)
After the schedule has been formed, call this function to combine the instructions from the different...
Scheduling unit. This is a node in the scheduling DAG.
A ScheduleDAG for scheduling lists of MachineInstr.
const MachineLoopInfo * MLI
Mutate the DAG as a postpass after normal DAG building.
This class can compute a topological ordering for SUnits and provides methods for dynamically updatin...
std::vector< SUnit > SUnits
The scheduling units.
MachineFunction & MF
Machine function.
SUnit ExitSU
Special node for the region exit.
A vector that has set insertion semantics.
bool remove_if(UnaryPredicate P)
Remove items from the set vector based on a predicate function.
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
typename vector_type::const_iterator const_iterator
void clear()
Completely clear the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
unsigned getInstrBaseReg(SUnit *SU) const
Return the new base register that was stored away for the changed instruction.
unsigned getDepth(SUnit *Node)
The depth, in the dependence graph, for a node.
int getASAP(SUnit *Node)
Return the earliest time an instruction may be scheduled.
void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule)
Apply changes to the instruction if needed.
const SwingSchedulerDDG * getDDG() const
void finishBlock() override
Clean up after the software pipeliner runs.
void fixupRegisterOverlaps(std::deque< SUnit * > &Instrs)
Attempt to fix the degenerate cases when the instruction serialization causes the register lifetimes ...
bool hasNewSchedule()
Return true if the loop kernel has been scheduled.
void addMutation(std::unique_ptr< ScheduleDAGMutation > Mutation)
SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, const RegisterClassInfo &rci, unsigned II, TargetInstrInfo::PipelinerLoopInfo *PLI)
int getZeroLatencyDepth(SUnit *Node)
The maximum unweighted length of a path from an arbitrary node to the given node in which each edge h...
bool isLoopCarriedDep(const SwingSchedulerDDGEdge &Edge) const
Return true for an order or output dependence that is loop carried potentially.
void schedule() override
We override the schedule function in ScheduleDAGInstrs to implement the scheduling part of the Swing ...
int getMOV(SUnit *Node)
The mobility function, which the number of slots in which an instruction may be scheduled.
int getZeroLatencyHeight(SUnit *Node)
The maximum unweighted length of a path from the given node to an arbitrary node in which each edge h...
static bool classof(const ScheduleDAGInstrs *DAG)
unsigned getHeight(SUnit *Node)
The height, in the dependence graph, for a node.
int getALAP(SUnit *Node)
Return the latest time an instruction my be scheduled.
Represents a dependence between two instruction.
SUnit * getDst() const
Returns the SUnit to which the edge points (destination node).
Register getReg() const
Returns the register associated with the edge.
void setDistance(unsigned D)
Sets the distance value for the edge.
bool isBarrier() const
Returns true if the edge represents unknown scheduling barrier.
void setLatency(unsigned Latency)
Sets the latency for the edge.
bool isAntiDep() const
Returns true if the edge represents anti dependence.
bool isAssignedRegDep() const
Tests if this is a Data dependence that is associated with a register.
bool isArtificial() const
Returns true if the edge represents an artificial dependence.
bool ignoreDependence(bool IgnoreAnti) const
Returns true for DDG nodes that we ignore when computing the cost functions.
bool isOrderDep() const
Returns true if the edge represents a dependence that is not data, anti or output dependence.
unsigned getLatency() const
Returns the latency value for the edge.
SUnit * getSrc() const
Returns the SUnit from which the edge comes (source node).
unsigned getDistance() const
Returns the distance value for the edge.
bool isOutputDep() const
Returns true if the edge represents output dependence.
SwingSchedulerDDGEdge(SUnit *PredOrSucc, const SDep &Dep, bool IsSucc)
Creates an edge corresponding to an edge represented by PredOrSucc and Dep in the original DAG.
Represents dependencies between instructions.
const EdgesType & getInEdges(const SUnit *SU) const
const EdgesType & getOutEdges(const SUnit *SU) const
Object returned by analyzeLoopForPipelining.
TargetInstrInfo - Interface to description of machine instruction set.
TargetSubtargetInfo - Generic base class for all target subtargets.
This class implements an extremely fast bulk output stream that can only output to a stream.
std::set< NodeId > NodeSet
This is an optimization pass for GlobalISel generic memory operations.
void initializeMachinePipelinerPass(PassRegistry &)
cl::opt< bool > SwpEnableCopyToPhi
static const int DefaultProcResSize
cl::opt< int > SwpForceIssueWidth
A command line argument to force pipeliner to use specified issue width.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Machine model for scheduling, bundling, and heuristics.
Cache the target analysis information about the loop.
MachineInstr * LoopInductionVar
SmallVector< MachineOperand, 4 > BrCond
MachineInstr * LoopCompare
std::unique_ptr< TargetInstrInfo::PipelinerLoopInfo > LoopPipelinerInfo