14#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
15#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
128 MMO.getSuccessOrdering(), MMO.getFailureOrdering()) {}
160 case LegacyLegalizeActions::Legal:
161 Action = LegalizeActions::Legal;
163 case LegacyLegalizeActions::NarrowScalar:
164 Action = LegalizeActions::NarrowScalar;
166 case LegacyLegalizeActions::WidenScalar:
167 Action = LegalizeActions::WidenScalar;
169 case LegacyLegalizeActions::FewerElements:
170 Action = LegalizeActions::FewerElements;
172 case LegacyLegalizeActions::MoreElements:
173 Action = LegalizeActions::MoreElements;
175 case LegacyLegalizeActions::Bitcast:
176 Action = LegalizeActions::Bitcast;
178 case LegacyLegalizeActions::Lower:
179 Action = LegalizeActions::Lower;
181 case LegacyLegalizeActions::Libcall:
182 Action = LegalizeActions::Libcall;
184 case LegacyLegalizeActions::Custom:
185 Action = LegalizeActions::Custom;
187 case LegacyLegalizeActions::Unsupported:
188 Action = LegalizeActions::Unsupported;
190 case LegacyLegalizeActions::NotFound:
191 Action = LegalizeActions::NotFound;
198 std::tie(
RHS.Action,
RHS.TypeIdx,
RHS.NewType);
204 std::function<std::pair<unsigned, LLT>(
const LegalityQuery &)>;
225 MemTy.getSizeInBits() ==
Other.MemTy.getSizeInBits();
235template<
typename Predicate>
238 return P0(Query) && P1(Query);
242template<
typename Predicate,
typename... Args>
248template<
typename Predicate>
251 return P0(Query) || P1(Query);
255template<
typename Predicate,
typename... Args>
264 std::initializer_list<LLT> TypesInit);
269 return Query.Types[TypeIdx] !=
Type;
277 std::initializer_list<std::pair<LLT, LLT>> TypesInit);
281typeTupleInSet(
unsigned TypeIdx0,
unsigned TypeIdx1,
unsigned Type2,
282 std::initializer_list<std::tuple<LLT, LLT, LLT>> TypesInit);
286 unsigned TypeIdx0,
unsigned TypeIdx1,
unsigned MMOIdx,
287 std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit);
384 unsigned FromTypeIdx);
392 unsigned FromTypeIdx);
403 unsigned FromTypeIdx);
435 : Predicate(Predicate), Action(Action), Mutation(Mutation) {}
439 return Predicate(Query);
448 return std::make_pair(0,
LLT{});
454 unsigned AliasOf = 0;
456 bool IsAliasedByAnother =
false;
473 unsigned typeIdx(
unsigned TypeIdx) {
476 "Type Index is out of bounds");
478 TypeIdxsCovered.set(TypeIdx);
483 void markAllIdxsAsCovered() {
485 TypeIdxsCovered.set();
486 ImmIdxsCovered.set();
492 "RuleSet is aliased, change the representative opcode instead");
493 Rules.push_back(Rule);
515 std::initializer_list<LLT> Types) {
517 return actionIf(Action, typeInSet(typeIdx(0), Types));
522 std::initializer_list<LLT> Types,
525 return actionIf(Action, typeInSet(typeIdx(0), Types),
Mutation);
531 std::initializer_list<std::pair<LLT, LLT>> Types) {
533 return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
538 std::initializer_list<std::tuple<LLT, LLT, LLT>> Types) {
540 return actionIf(Action,
541 typeTupleInSet(typeIdx(0), typeIdx(1), typeIdx(2), Types));
548 std::initializer_list<std::pair<LLT, LLT>> Types,
551 return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types),
558 std::initializer_list<LLT> Types) {
561 return actionIf(Action, typeInSet(typeIdx(0), Types));
565 LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types) {
568 return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
575 std::initializer_list<LLT> Types) {
577 return actionIf(Action, all(typeInSet(typeIdx(0), Types),
578 typeInSet(typeIdx(1), Types)));
586 std::initializer_list<LLT> Types0,
587 std::initializer_list<LLT> Types1) {
589 return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
590 typeInSet(typeIdx(1), Types1)));
598 std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) {
600 return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
601 all(typeInSet(typeIdx(1), Types1),
602 typeInSet(typeIdx(2), Types2))));
611 assert((AliasOf == 0 || AliasOf == Opcode) &&
612 "Opcode is already aliased to another opcode");
613 assert(Rules.empty() &&
"Aliasing will discard rules");
621 "Imm Index is out of bounds");
623 ImmIdxsCovered.set(ImmIdx);
632 markAllIdxsAsCovered();
633 return actionIf(LegalizeAction::Legal,
Predicate);
637 return actionFor(LegalizeAction::Legal, Types);
642 return actionFor(LegalizeAction::Legal, Types);
647 return actionFor(LegalizeAction::Legal, Types);
650 std::initializer_list<std::pair<LLT, LLT>> Types) {
653 return actionFor(LegalizeAction::Legal, Types);
656 legalFor(
bool Pred, std::initializer_list<std::tuple<LLT, LLT, LLT>> Types) {
659 return actionFor(LegalizeAction::Legal, Types);
664 markAllIdxsAsCovered();
665 return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
669 std::initializer_list<std::pair<LLT, LLT>> Types) {
670 markAllIdxsAsCovered();
671 return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
677 std::initializer_list<LegalityPredicates::TypePairAndMemDesc>
679 return actionIf(LegalizeAction::Legal,
681 typeIdx(0), typeIdx(1), 0, TypesAndMemDesc));
686 return actionForCartesianProduct(LegalizeAction::Legal, Types);
691 std::initializer_list<LLT> Types1) {
692 return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1);
697 std::initializer_list<LLT> Types1,
698 std::initializer_list<LLT> Types2) {
699 return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1,
705 markAllIdxsAsCovered();
706 return actionIf(LegalizeAction::Legal, always);
714 markAllIdxsAsCovered();
723 markAllIdxsAsCovered();
724 return actionIf(LegalizeAction::Lower, always);
732 markAllIdxsAsCovered();
733 return actionIf(LegalizeAction::Lower,
Predicate);
740 markAllIdxsAsCovered();
746 return actionFor(LegalizeAction::Lower, Types);
752 return actionFor(LegalizeAction::Lower, Types,
Mutation);
757 return actionFor(LegalizeAction::Lower, Types);
763 return actionFor(LegalizeAction::Lower, Types,
Mutation);
768 std::initializer_list<LLT> Types1) {
770 return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1);
775 std::initializer_list<LLT> Types1,
776 std::initializer_list<LLT> Types2) {
778 return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1,
787 markAllIdxsAsCovered();
788 return actionIf(LegalizeAction::Libcall, always);
795 markAllIdxsAsCovered();
796 return actionIf(LegalizeAction::Libcall,
Predicate);
799 return actionFor(LegalizeAction::Libcall, Types);
804 return actionFor(LegalizeAction::Libcall, Types);
807 libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
808 return actionFor(LegalizeAction::Libcall, Types);
811 libcallFor(
bool Pred, std::initializer_list<std::pair<LLT, LLT>> Types) {
814 return actionFor(LegalizeAction::Libcall, Types);
818 return actionForCartesianProduct(LegalizeAction::Libcall, Types);
822 std::initializer_list<LLT> Types1) {
823 return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1);
832 markAllIdxsAsCovered();
841 markAllIdxsAsCovered();
849 return actionFor(LegalizeAction::NarrowScalar, Types,
Mutation);
858 markAllIdxsAsCovered();
867 markAllIdxsAsCovered();
873 markAllIdxsAsCovered();
874 return actionIf(LegalizeAction::Unsupported, always);
877 return actionIf(LegalizeAction::Unsupported,
Predicate);
881 return actionFor(LegalizeAction::Unsupported, Types);
885 return actionIf(LegalizeAction::Unsupported,
893 return actionIf(LegalizeAction::Lower,
901 return actionIf(LegalizeAction::Lower,
908 markAllIdxsAsCovered();
909 return actionIf(LegalizeAction::Custom,
Predicate);
912 return actionFor(LegalizeAction::Custom, Types);
917 return actionFor(LegalizeAction::Custom, Types);
923 return actionFor(LegalizeAction::Custom, Types);
926 std::initializer_list<std::pair<LLT, LLT>> Types) {
929 return actionFor(LegalizeAction::Custom, Types);
933 return actionForCartesianProduct(LegalizeAction::Custom, Types);
939 std::initializer_list<LLT> Types1) {
940 return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
946 std::initializer_list<LLT> Types1,
947 std::initializer_list<LLT> Types2) {
948 return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1,
956 std::initializer_list<LLT> Types1) {
959 return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
971 unsigned MinSize = 0) {
974 LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)),
984 LegalizeAction::WidenScalar, sizeNotMultipleOf(typeIdx(TypeIdx),
Size),
991 unsigned MinSize = 0) {
994 LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)),
1001 unsigned MinSize = 0) {
1004 LegalizeAction::WidenScalar,
1005 any(scalarOrEltNarrowerThan(TypeIdx, MinSize),
1006 scalarOrEltSizeNotPow2(typeIdx(TypeIdx))),
1012 return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)),
1018 return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)),
1024 return actionIf(LegalizeAction::FewerElements,
1025 all(
Predicate, isVector(typeIdx(TypeIdx))),
1033 return actionIf(LegalizeAction::WidenScalar,
1034 scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()),
1035 changeElementTo(typeIdx(TypeIdx), Ty));
1040 unsigned TypeIdx,
const LLT Ty) {
1043 return actionIf(LegalizeAction::WidenScalar,
1045 TypeIdx, Ty.getScalarSizeInBits())),
1046 changeElementTo(typeIdx(TypeIdx), Ty));
1052 unsigned VectorSize) {
1056 LegalizeAction::WidenScalar,
1058 const LLT VecTy = Query.
Types[TypeIdx];
1062 const LLT VecTy = Query.
Types[TypeIdx];
1064 unsigned MinSize = VectorSize / NumElts;
1066 return std::make_pair(TypeIdx, NewTy);
1074 return actionIf(LegalizeAction::WidenScalar,
1075 scalarNarrowerThan(TypeIdx, Ty.getSizeInBits()),
1076 changeTo(typeIdx(TypeIdx), Ty));
1090 LegalizeAction::WidenScalar,
1092 const LLT QueryTy = Query.
Types[TypeIdx];
1097 changeTo(typeIdx(TypeIdx), Ty));
1104 return actionIf(LegalizeAction::NarrowScalar,
1105 scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()),
1106 changeElementTo(typeIdx(TypeIdx), Ty));
1113 return actionIf(LegalizeAction::NarrowScalar,
1114 scalarWiderThan(TypeIdx, Ty.getSizeInBits()),
1115 changeTo(typeIdx(TypeIdx), Ty));
1126 LegalizeAction::NarrowScalar,
1128 const LLT QueryTy = Query.
Types[TypeIdx];
1133 changeElementTo(typeIdx(TypeIdx), Ty));
1160 LegalizeAction::WidenScalar,
1162 return Query.
Types[LargeTypeIdx].getScalarSizeInBits() >
1163 Query.
Types[TypeIdx].getSizeInBits();
1172 LegalizeAction::NarrowScalar,
1174 return Query.
Types[NarrowTypeIdx].getScalarSizeInBits() <
1175 Query.
Types[TypeIdx].getSizeInBits();
1189 unsigned TypeIdx,
unsigned LargeTypeIdx) {
1193 return Query.
Types[LargeTypeIdx].getScalarSizeInBits() >
1194 Query.
Types[TypeIdx].getScalarSizeInBits() &&
1199 if (
T.isPointerVector())
1201 return std::make_pair(TypeIdx,
T);
1208 unsigned SmallTypeIdx) {
1212 return Query.
Types[SmallTypeIdx].getScalarSizeInBits() <
1213 Query.
Types[TypeIdx].getScalarSizeInBits() &&
1218 return std::make_pair(TypeIdx,
T);
1227 return actionIf(LegalizeAction::MoreElements,
1228 numElementsNotPow2(typeIdx(TypeIdx)),
1234 unsigned MinElements) {
1238 LegalizeAction::MoreElements,
1246 return std::make_pair(
1256 LegalizeAction::MoreElements,
1265 return std::make_pair(
1272 unsigned MaxElements) {
1276 LegalizeAction::FewerElements,
1286 return std::make_pair(TypeIdx, NewTy);
1298 "Expected element types to agree");
1301 "Unexpected scalable vectors");
1324 add({always, LegalizeAction::UseLegacyRules});
1350 unsigned getOpcodeIdxForOpcode(
unsigned Opcode)
const;
1351 unsigned getActionDefinitionsIdx(
unsigned Opcode)
const;
1382 getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes);
1383 void aliasActionDefinitions(
unsigned OpcodeTo,
unsigned OpcodeFrom);
1399 return getAction(Query).Action == LegalizeAction::Legal;
1404 return Action == LegalizeAction::Legal || Action == LegalizeAction::Custom;
1430 virtual unsigned getExtOpcodeForWideningConstant(
LLT SmallTy)
const;
1433 static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START;
1434 static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END;
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Atomic ordering constants.
Interface for Targets to specify which operations they can successfully select and how the others sho...
Implement a low-level type suitable for MachineInstr level instruction selection.
This file implements the SmallBitVector class.
This file defines the SmallVector class.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr bool isFixedVector() const
Returns true if the LLT is a fixed vector.
static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy)
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & clampScalar(bool Pred, unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
LegalizeRuleSet & maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx)
Narrow the scalar to match the size of another.
LegalizeRuleSet & widenScalarOrEltToNextPow2OrMinSize(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & customForCartesianProduct(bool Pred, std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is custom when the predicate is true and type indexes 0 and 1 are all in their respec...
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & maxScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned SmallTypeIdx)
Conditionally narrow the scalar or elt to match the size of another.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & legalFor(bool Pred, std::initializer_list< std::tuple< LLT, LLT, LLT > > Types)
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Remove elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
void aliasTo(unsigned Opcode)
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & libcall()
The instruction is emitted as a library call.
LegalizeRuleSet & libcallFor(std::initializer_list< LLT > Types)
LLVM_ABI bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const
Check if there is no imm index which is obviously not handled by the LegalizeRuleSet in any way at al...
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet()=default
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & clampMinNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MinElements)
Limit the number of elements in EltTy vectors to at least MinElements.
LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & unsupportedFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & legalFor(bool Pred, std::initializer_list< LLT > Types)
LegalizeRuleSet & widenVectorEltsToVectorMinSize(unsigned TypeIdx, unsigned VectorSize)
Ensure the vector size is at least as wide as VectorSize by promoting the element.
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is legal when type indexes 0 and 1 are both their respective lists.
LegalizeRuleSet & lowerIfMemSizeNotPow2()
Lower a memory operation if the memory size, rounded to bytes, is not a power of 2.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types, LegalizeMutation Mutation)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & minScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned LargeTypeIdx)
Conditionally widen the scalar or elt to match the size of another.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & lowerIfMemSizeNotByteSizePow2()
Lower a memory operation if the memory access size is not a round power of 2 byte size.
LegalizeRuleSet & minScalar(bool Pred, unsigned TypeIdx, const LLT Ty)
LegalizeRuleSet & moreElementsToNextPow2(unsigned TypeIdx)
Add more elements to the vector to reach the next power of two.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is custom when type indexes 0 and 1 are both in their respective lists.
LegalizeRuleSet & legalForTypeWithAnyImm(std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & lowerFor(std::initializer_list< std::pair< LLT, LLT > > Types)
The instruction is lowered when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & narrowScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Narrow the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & narrowScalarFor(std::initializer_list< std::pair< LLT, LLT > > Types, LegalizeMutation Mutation)
Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any type pair in the given lis...
LegalizeRuleSet & narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation)
LegalizeRuleSet & customFor(bool Pred, std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx)
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
bool isAliasedByAnother()
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1, std::initializer_list< LLT > Types2)
The instruction is legal when type indexes 0, 1, and 2 are both their respective lists.
LegalizeRuleSet & alignNumElementsTo(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Set number of elements to nearest larger multiple of NumElts.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
LegalizeRuleSet & clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Express EltTy vectors strictly using vectors with NumElts elements (or scalars when NumElts equals 1)...
LegalizeRuleSet & minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx)
Widen the scalar to match the size of another.
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & minScalarOrEltIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & libcallFor(std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & customFor(bool Pred, std::initializer_list< LLT > Types)
LegalizeRuleSet & fallback()
Fallback on the previous implementation.
LegalizeRuleSet & legalForTypeWithAnyImm(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list and imm index 0 is anything.
LegalizeRuleSet & lowerForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1, std::initializer_list< LLT > Types2)
The instruction is lowered when type indexes 0, 1, and 2 are all in their respective lists.
LegalizeRuleSet & legalFor(std::initializer_list< std::pair< LLT, LLT > > Types)
The instruction is legal when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & libcallFor(bool Pred, std::initializer_list< LLT > Types)
LegalizeRuleSet & libcallFor(bool Pred, std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & legalFor(bool Pred, std::initializer_list< std::pair< LLT, LLT > > Types)
unsigned getAlias() const
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & unsupportedIfMemSizeNotPow2()
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1, std::initializer_list< LLT > Types2)
The instruction is custom when type indexes 0, 1, and 2 are all in their respective lists.
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
void setIsAliasedByAnother()
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & lowerForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is lowered when type indexes 0 and 1 are both in their respective lists.
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The instruction is lowered if predicate is true.
LegalizeRuleSet & legalForTypesWithMemDesc(std::initializer_list< LegalityPredicates::TypePairAndMemDesc > TypesAndMemDesc)
The instruction is legal when type indexes 0 and 1 along with the memory size and minimum alignment i...
LegalizeRuleSet & libcallIf(LegalityPredicate Predicate)
Like legalIf, but for the Libcall action.
LegalizeRuleSet & maxScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & customFor(std::initializer_list< std::pair< LLT, LLT > > Types)
The instruction is custom when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & minScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty if condition is met.
unsigned immIdx(unsigned ImmIdx)
LLVM_ABI bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const
Check if there is no type index which is obviously not handled by the LegalizeRuleSet in any way at a...
LegalizeRuleSet & widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LLVM_ABI LegalizeActionStep apply(const LegalityQuery &Query) const
Apply the ruleset to the given LegalityQuery.
LegalizeRuleSet & lowerFor(std::initializer_list< std::pair< LLT, LLT > > Types, LegalizeMutation Mutation)
The instruction is lowered when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & widenScalarToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar to the next multiple of Size.
A single rule in a legalizer info ruleset.
std::pair< unsigned, LLT > determineMutation(const LegalityQuery &Query) const
Determine the change to make.
bool match(const LegalityQuery &Query) const
Test whether the LegalityQuery matches.
LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, LegalizeMutation Mutation=nullptr)
LegalizeAction getAction() const
virtual ~LegalizerInfo()=default
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
LegacyLegalizerInfo & getLegacyLegalizerInfo()
bool isLegalOrCustom(const LegalityQuery &Query) const
virtual bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const
Called for instructions with the Custom LegalizationAction.
bool isLegal(const LegalityQuery &Query) const
virtual bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const
LegalizeActionStep getAction(const LegalityQuery &Query) const
Determine what action should be taken to legalize the described instruction.
Interface to description of machine instruction set.
Representation of each machine instruction.
A description of a memory reference used in the backend.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isScalar(unsigned TypeIdx)
True iff the specified type index is a scalar.
LLVM_ABI LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx)
True iff the specified MMO index has a size (rounded to bytes) that is not a power of 2.
LLVM_ABI LegalityPredicate numElementsNotPow2(unsigned TypeIdx)
True iff the specified type index is a vector whose element count is not a power of 2.
LLVM_ABI LegalityPredicate isPointerVector(unsigned TypeIdx)
True iff the specified type index is a vector of pointers (with any address space).
LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx)
True iff the specified type index is a pointer (with any address space).
LLVM_ABI LegalityPredicate vectorElementCountIsLessThanOrEqualTo(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a vector with a number of elements that's less than or equal to ...
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering)
True iff the specified MMO index has at an atomic ordering of at Ordering or stronger.
LLVM_ABI LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx)
True iff the specified type index is a scalar or vector whose element size is not a power of 2.
LLVM_ABI LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a larger total bit size than second type index.
LLVM_ABI LegalityPredicate typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, std::initializer_list< std::pair< LLT, LLT > > TypesInit)
True iff the given types for the given pair of type indexes is one of the specified type pairs.
LLVM_ABI LegalityPredicate vectorElementCountIsGreaterThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a vector with a number of elements that's greater than the given...
LLVM_ABI LegalityPredicate memSizeNotByteSizePow2(unsigned MMOIdx)
True iff the specified MMO index has a size that is not an even byte size, or that even byte size is ...
Predicate any(Predicate P0, Predicate P1)
True iff P0 or P1 are true.
LLVM_ABI LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy)
True if the type index is a vector with element type EltTy.
LLVM_ABI LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the specified type indices are both the same bit size.
LLVM_ABI LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or vector with an element type that's narrower than the...
LLVM_ABI LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size)
True if the total bitwidth of the specified type index is Size bits.
LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type)
True iff the given type index is not the specified type.
LLVM_ABI LegalityPredicate isVector(unsigned TypeIdx)
True iff the specified type index is a vector.
LLVM_ABI LegalityPredicate sizeNotPow2(unsigned TypeIdx)
True iff the specified type index is a scalar whose size is not a power of.
LLVM_ABI LegalityPredicate typeTupleInSet(unsigned TypeIdx0, unsigned TypeIdx1, unsigned Type2, std::initializer_list< std::tuple< LLT, LLT, LLT > > TypesInit)
True iff the given types for the given tuple of type indexes is one of the specified type tuple.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typePairAndMemDescInSet(unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, std::initializer_list< TypePairAndMemDesc > TypesAndMemDescInit)
True iff the given types for the given pair of type indexes is one of the specified type pairs.
LLVM_ABI LegalityPredicate sizeNotMultipleOf(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar whose size is not a multiple of Size.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
Predicate predNot(Predicate P)
True iff P is false.
LLVM_ABI LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's wider than the given size.
LLVM_ABI LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's narrower than the given size.
@ FewerElements
The (vector) operation should be implemented by splitting it into sub-vectors where the operation is ...
@ Legal
The operation is expected to be selectable directly by the target, and no transformation is necessary...
@ Libcall
The operation should be implemented as a call to some kind of runtime support library.
@ Unsupported
This operation is completely unsupported on the target.
@ Lower
The operation itself must be expressed in terms of simpler actions on this target.
@ UseLegacyRules
Fall back onto the old rules.
@ WidenScalar
The operation should be implemented in terms of a wider scalar base-type.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
@ NarrowScalar
The operation should be synthesized from multiple instructions acting on a narrower scalar base-type.
@ Custom
The target wants to do something special with this combination of operand and type.
@ NotFound
Sentinel value for when no action was found in the specified table.
@ MoreElements
The (vector) operation should be implemented by widening the input vector and ignoring the lanes adde...
LLVM_ABI LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min=0)
Add more elements to the type for the given type index to the next power of.
LLVM_ABI LegalizeMutation changeElementCountTo(unsigned TypeIdx, unsigned FromTypeIdx)
Keep the same scalar or element type as TypeIdx, but take the number of elements from FromTypeIdx.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx)
Keep the same scalar or element type as the given type index.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar type or vector element type for the given type index to next multiple of Size.
LLVM_ABI LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx)
Change the scalar size or element size to have the same scalar size as type index FromIndex.
@ OPERAND_FIRST_GENERIC_IMM
@ OPERAND_LAST_GENERIC_IMM
This is an optimization pass for GlobalISel generic memory operations.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
std::function< std::pair< unsigned, LLT >(const LegalityQuery &)> LegalizeMutation
std::function< bool(const LegalityQuery &)> LegalityPredicate
LLVM_ABI cl::opt< bool > DisableGISelLegalityCheck
const MachineInstr * machineFunctionIsIllegal(const MachineFunction &MF)
Checks that MIR is fully legal, returns an illegal instruction if it's not, nullptr otherwise.
AtomicOrdering
Atomic ordering for LLVM's memory model.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LegacyLegalizeActions::LegacyLegalizeAction Action
The action to take or the final answer.
bool operator==(const TypePairAndMemDesc &Other) const
bool isCompatible(const TypePairAndMemDesc &Other) const
MemDesc(const MachineMemOperand &MMO)
MemDesc(LLT MemoryTy, uint64_t AlignInBits, AtomicOrdering Ordering, AtomicOrdering FailureOrdering)
AtomicOrdering FailureOrdering
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
LLVM_ABI raw_ostream & print(raw_ostream &OS) const
constexpr LegalityQuery(unsigned Opcode, ArrayRef< LLT > Types, ArrayRef< MemDesc > MMODescrs={})
LegalizeAction Action
The action to take or the final answer.
LegalizeActionStep(LegacyLegalizeActionStep Step)
LLT NewType
If describing an action, the new type for TypeIdx. Otherwise LLT{}.
unsigned TypeIdx
If describing an action, the type index to change. Otherwise zero.
LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, const LLT NewType)
bool operator==(const LegalizeActionStep &RHS) const