LLVM 20.0.0git
ARMLowOverheadLoops.cpp
Go to the documentation of this file.
1//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10/// instructions into machine operations.
11/// The expectation is that the loop contains three pseudo instructions:
12/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13/// form should be in the preheader, whereas the while form should be in the
14/// preheaders only predecessor.
15/// - t2LoopDec - placed within in the loop body.
16/// - t2LoopEnd - the loop latch terminator.
17///
18/// In addition to this, we also look for the presence of the VCTP instruction,
19/// which determines whether we can generated the tail-predicated low-overhead
20/// loop form.
21///
22/// Assumptions and Dependencies:
23/// Low-overhead loops are constructed and executed using a setup instruction:
24/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26/// but fixed polarity: WLS can only branch forwards and LE can only branch
27/// backwards. These restrictions mean that this pass is dependent upon block
28/// layout and block sizes, which is why it's the last pass to run. The same is
29/// true for ConstantIslands, but this pass does not increase the size of the
30/// basic blocks, nor does it change the CFG. Instructions are mainly removed
31/// during the transform and pseudo instructions are replaced by real ones. In
32/// some cases, when we have to revert to a 'normal' loop, we have to introduce
33/// multiple instructions for a single pseudo (see RevertWhile and
34/// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35/// are defined to be as large as this maximum sequence of replacement
36/// instructions.
37///
38/// A note on VPR.P0 (the lane mask):
39/// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40/// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41/// They will simply "and" the result of their calculation with the current
42/// value of VPR.P0. You can think of it like this:
43/// \verbatim
44/// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
45/// VPR.P0 &= Value
46/// else
47/// VPR.P0 = Value
48/// \endverbatim
49/// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50/// fall in the "VPT active" case, so we can consider that all VPR writes by
51/// one of those instruction is actually a "and".
52//===----------------------------------------------------------------------===//
53
54#include "ARM.h"
55#include "ARMBaseInstrInfo.h"
56#include "ARMBasicBlockInfo.h"
57#include "ARMSubtarget.h"
58#include "MVETailPredUtils.h"
59#include "Thumb2InstrInfo.h"
60#include "llvm/ADT/SetVector.h"
67#include "llvm/CodeGen/Passes.h"
69#include "llvm/MC/MCInstrDesc.h"
70
71using namespace llvm;
72
73#define DEBUG_TYPE "arm-low-overhead-loops"
74#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
75
76static cl::opt<bool>
77DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
79 cl::init(false));
80
81static cl::opt<bool>
82 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden,
83 cl::desc("Disable omitting 'dls lr, lr' instructions"),
84 cl::init(false));
85
88 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
89}
90
92 return MI->findRegisterDefOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1;
93}
94
95static bool hasVPRUse(MachineInstr &MI) {
96 return MI.findRegisterUseOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1;
97}
98
100 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
101 return Domain == ARMII::DomainMVE;
102}
103
104static int getVecSize(const MachineInstr &MI) {
105 const MCInstrDesc &MCID = MI.getDesc();
106 uint64_t Flags = MCID.TSFlags;
107 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift;
108}
109
111 if (MI.isDebugInstr())
112 return false;
113 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
114}
115
117 const MCInstrDesc &MCID = MI.getDesc();
118 uint64_t Flags = MCID.TSFlags;
119 return (Flags & ARMII::HorizontalReduction) != 0;
120}
121
122namespace {
123
124 using InstSet = SmallPtrSetImpl<MachineInstr *>;
125
126 class PostOrderLoopTraversal {
128 MachineLoopInfo &MLI;
131
132 public:
133 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
134 : ML(ML), MLI(MLI) { }
135
136 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
137 return Order;
138 }
139
140 // Visit all the blocks within the loop, as well as exit blocks and any
141 // blocks properly dominating the header.
142 void ProcessLoop() {
143 std::function<void(MachineBasicBlock *)> Search =
144 [this, &Search](MachineBasicBlock *MBB) -> void {
145 if (!Visited.insert(MBB).second)
146 return;
147
148 for (auto *Succ : MBB->successors()) {
149 if (!ML.contains(Succ))
150 continue;
151 Search(Succ);
152 }
153 Order.push_back(MBB);
154 };
155
156 // Insert exit blocks.
158 ML.getExitBlocks(ExitBlocks);
159 append_range(Order, ExitBlocks);
160
161 // Then add the loop body.
162 Search(ML.getHeader());
163
164 // Then try the preheader and its predecessors.
165 std::function<void(MachineBasicBlock*)> GetPredecessor =
166 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
167 Order.push_back(MBB);
168 if (MBB->pred_size() == 1)
169 GetPredecessor(*MBB->pred_begin());
170 };
171
172 if (auto *Preheader = ML.getLoopPreheader())
173 GetPredecessor(Preheader);
174 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true))
175 GetPredecessor(Preheader);
176 }
177 };
178
179 class VPTBlock {
181
182 public:
183 VPTBlock(MachineInstr *MI) { Insts.push_back(MI); }
184
185 // Have we found an instruction within the block which defines the vpr? If
186 // so, not all the instructions in the block will have the same predicate.
187 bool hasUniformPredicate() { return getDivergent() == nullptr; }
188
189 // If it exists, return the first internal instruction which modifies the
190 // VPR.
191 MachineInstr *getDivergent() {
192 SmallVectorImpl<MachineInstr *> &Insts = getInsts();
193 for (unsigned i = 1; i < Insts.size(); ++i) {
194 MachineInstr *Next = Insts[i];
195 if (isVectorPredicate(Next))
196 return Next; // Found an instruction altering the vpr.
197 }
198 return nullptr;
199 }
200
201 void insert(MachineInstr *MI) {
202 Insts.push_back(MI);
203 // VPT/VPST + 4 predicated instructions.
204 assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
205 }
206
207 bool containsVCTP() const { return llvm::any_of(Insts, isVCTP); }
208
209 unsigned size() const { return Insts.size(); }
210 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
211 };
212
213 // Represent the current state of the VPR and hold all instances which
214 // represent a VPT block, which is a list of instructions that begins with a
215 // VPT/VPST and has a maximum of four proceeding instructions. All
216 // instructions within the block are predicated upon the vpr and we allow
217 // instructions to define the vpr within in the block too.
218 class VPTState {
219 friend struct LowOverheadLoop;
220
222 SetVector<MachineInstr *> CurrentPredicates;
223 std::map<MachineInstr *, SetVector<MachineInstr *>> PredicatedInsts;
224
226 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
227 && "Can't begin VPT without predicate");
228 Blocks.emplace_back(MI);
229 // The execution of MI is predicated upon the current set of instructions
230 // that are AND'ed together to form the VPR predicate value. In the case
231 // that MI is a VPT, CurrentPredicates will also just be MI.
232 PredicatedInsts[MI] = CurrentPredicates;
233 }
234
235 void addInst(MachineInstr *MI) {
236 Blocks.back().insert(MI);
237 PredicatedInsts[MI] = CurrentPredicates;
238 }
239
240 void addPredicate(MachineInstr *MI) {
241 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
242 CurrentPredicates.insert(MI);
243 }
244
245 void resetPredicate(MachineInstr *MI) {
246 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
247 CurrentPredicates.clear();
248 CurrentPredicates.insert(MI);
249 }
250
251 public:
252 // Return whether the given instruction is predicated upon a VCTP.
253 bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
254 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI];
255 if (Exclusive && Predicates.size() != 1)
256 return false;
257 // We do not know how to convert an else predicate of a VCTP.
259 return false;
260 return llvm::any_of(Predicates, isVCTP);
261 }
262
263 // Is the VPST, controlling the block entry, predicated upon a VCTP.
264 bool isEntryPredicatedOnVCTP(VPTBlock &Block, bool Exclusive = false) {
265 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
266 return isPredicatedOnVCTP(Insts.front(), Exclusive);
267 }
268
269 // If this block begins with a VPT, we can check whether it's using
270 // at least one predicated input(s), as well as possible loop invariant
271 // which would result in it being implicitly predicated.
272 bool hasImplicitlyValidVPT(VPTBlock &Block, ReachingDefAnalysis &RDA) {
273 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
274 MachineInstr *VPT = Insts.front();
275 assert(isVPTOpcode(VPT->getOpcode()) &&
276 "Expected VPT block to begin with VPT/VPST");
277
278 if (VPT->getOpcode() == ARM::MVE_VPST)
279 return false;
280
281 // If the VPT block does not define something that is an "output", then
282 // the tail-predicated version will just perform a subset of the original
283 // vpt block, where the last lanes should not be used.
284 if (isVPTOpcode(VPT->getOpcode()) &&
285 all_of(Block.getInsts(), [](const MachineInstr *MI) {
286 return !MI->mayStore() && !MI->mayLoad() &&
287 !isHorizontalReduction(*MI) && !isVCTP(MI);
288 }))
289 return true;
290
291 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
292 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
293 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
294 };
295
296 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
297 MachineOperand &MO = MI->getOperand(Idx);
298 if (!MO.isReg() || !MO.getReg())
299 return true;
300
302 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
303 if (Defs.empty())
304 return true;
305
306 for (auto *Def : Defs)
307 if (Def->getParent() == VPT->getParent())
308 return false;
309 return true;
310 };
311
312 // Check that at least one of the operands is directly predicated on a
313 // vctp and allow an invariant value too.
314 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
315 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
316 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
317 }
318
320 // All predication within the loop should be based on vctp. If the block
321 // isn't predicated on entry, check whether the vctp is within the block
322 // and that all other instructions are then predicated on it.
323 for (auto &Block : Blocks) {
324 if (isEntryPredicatedOnVCTP(Block, false) &&
325 !any_of(drop_begin(Block.getInsts()), [](const MachineInstr *MI) {
326 return getVPTInstrPredicate(*MI) == ARMVCC::Else;
327 }))
328 continue;
329 if (hasImplicitlyValidVPT(Block, RDA))
330 continue;
331
332 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
333 // We don't know how to convert a block with just a VPT;VCTP into
334 // anything valid once we remove the VCTP. For now just bail out.
335 assert(isVPTOpcode(Insts.front()->getOpcode()) &&
336 "Expected VPT block to start with a VPST or VPT!");
337 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
338 isVCTP(Insts.back()))
339 return false;
340
341 for (auto *MI : Insts) {
342 // Check that any internal VCTPs are 'Then' predicated.
344 return false;
345 // Skip other instructions that build up the predicate.
346 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
347 continue;
348 // Check that any other instructions are predicated upon a vctp.
349 // TODO: We could infer when VPTs are implicitly predicated on the
350 // vctp (when the operands are predicated).
351 if (!isPredicatedOnVCTP(MI)) {
352 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
353 return false;
354 }
355 }
356 }
357 return true;
358 }
359 };
360
361 struct LowOverheadLoop {
362
364 MachineBasicBlock *Preheader = nullptr;
365 MachineLoopInfo &MLI;
367 const TargetRegisterInfo &TRI;
368 const ARMBaseInstrInfo &TII;
369 MachineFunction *MF = nullptr;
370 MachineBasicBlock::iterator StartInsertPt;
371 MachineBasicBlock *StartInsertBB = nullptr;
372 MachineInstr *Start = nullptr;
373 MachineInstr *Dec = nullptr;
374 MachineInstr *End = nullptr;
375 MachineOperand TPNumElements;
378 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute;
379 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs;
381 bool Revert = false;
382 bool CannotTailPredicate = false;
383 VPTState VPTstate;
384
385 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
387 const ARMBaseInstrInfo &TII)
388 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
389 TPNumElements(MachineOperand::CreateImm(0)) {
390 MF = ML.getHeader()->getParent();
391 if (auto *MBB = ML.getLoopPreheader())
392 Preheader = MBB;
393 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true))
394 Preheader = MBB;
395 }
396
397 // If this is an MVE instruction, check that we know how to use tail
398 // predication with it. Record VPT blocks and return whether the
399 // instruction is valid for tail predication.
400 bool ValidateMVEInst(MachineInstr *MI);
401
402 void AnalyseMVEInst(MachineInstr *MI) {
403 CannotTailPredicate = !ValidateMVEInst(MI);
404 }
405
406 bool IsTailPredicationLegal() const {
407 // For now, let's keep things really simple and only support a single
408 // block for tail predication.
409 return !Revert && FoundAllComponents() && !VCTPs.empty() &&
410 !CannotTailPredicate && ML.getNumBlocks() == 1;
411 }
412
413 // Given that MI is a VCTP, check that is equivalent to any other VCTPs
414 // found.
415 bool AddVCTP(MachineInstr *MI);
416
417 // Check that the predication in the loop will be equivalent once we
418 // perform the conversion. Also ensure that we can provide the number
419 // of elements to the loop start instruction.
420 bool ValidateTailPredicate();
421
422 // Check that any values available outside of the loop will be the same
423 // after tail predication conversion.
424 bool ValidateLiveOuts();
425
426 // Check the branch targets are within range and we satisfy our
427 // restrictions.
428 void Validate(ARMBasicBlockUtils *BBUtils);
429
430 bool FoundAllComponents() const {
431 return Start && Dec && End;
432 }
433
434 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTstate.Blocks; }
435
436 // Return the operand for the loop start instruction. This will be the loop
437 // iteration count, or the number of elements if we're tail predicating.
438 MachineOperand &getLoopStartOperand() {
439 if (IsTailPredicationLegal())
440 return TPNumElements;
441 return Start->getOperand(1);
442 }
443
444 unsigned getStartOpcode() const {
445 bool IsDo = isDoLoopStart(*Start);
446 if (!IsTailPredicationLegal())
447 return IsDo ? ARM::t2DLS : ARM::t2WLS;
448
449 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
450 }
451
452 void dump() const {
453 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
454 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
455 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
456 if (!VCTPs.empty()) {
457 dbgs() << "ARM Loops: Found VCTP(s):\n";
458 for (auto *MI : VCTPs)
459 dbgs() << " - " << *MI;
460 }
461 if (!FoundAllComponents())
462 dbgs() << "ARM Loops: Not a low-overhead loop.\n";
463 else if (!(Start && Dec && End))
464 dbgs() << "ARM Loops: Failed to find all loop components.\n";
465 }
466 };
467
468 class ARMLowOverheadLoops : public MachineFunctionPass {
469 MachineFunction *MF = nullptr;
470 MachineLoopInfo *MLI = nullptr;
471 ReachingDefAnalysis *RDA = nullptr;
472 const ARMBaseInstrInfo *TII = nullptr;
473 MachineRegisterInfo *MRI = nullptr;
474 const TargetRegisterInfo *TRI = nullptr;
475 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
476
477 public:
478 static char ID;
479
480 ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
481
482 void getAnalysisUsage(AnalysisUsage &AU) const override {
483 AU.setPreservesCFG();
487 }
488
489 bool runOnMachineFunction(MachineFunction &MF) override;
490
493 MachineFunctionProperties::Property::NoVRegs).set(
494 MachineFunctionProperties::Property::TracksLiveness);
495 }
496
497 StringRef getPassName() const override {
499 }
500
501 private:
502 bool ProcessLoop(MachineLoop *ML);
503
504 bool RevertNonLoops();
505
506 void RevertWhile(MachineInstr *MI) const;
507 void RevertDo(MachineInstr *MI) const;
508
509 bool RevertLoopDec(MachineInstr *MI) const;
510
511 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
512
513 void RevertLoopEndDec(MachineInstr *MI) const;
514
515 void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
516
517 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
518
519 void Expand(LowOverheadLoop &LoLoop);
520
521 void IterationCountDCE(LowOverheadLoop &LoLoop);
522 };
523}
524
525char ARMLowOverheadLoops::ID = 0;
526
528 false, false)
529
530static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
531 InstSet &ToRemove, InstSet &Ignore) {
532
533 // Check that we can remove all of Killed without having to modify any IT
534 // blocks.
535 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
536 // Collect the dead code and the MBBs in which they reside.
538 for (auto *Dead : Killed)
539 BasicBlocks.insert(Dead->getParent());
540
541 // Collect IT blocks in all affected basic blocks.
542 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
543 for (auto *MBB : BasicBlocks) {
544 for (auto &IT : *MBB) {
545 if (IT.getOpcode() != ARM::t2IT)
546 continue;
548 ITBlocks[&IT]);
549 }
550 }
551
552 // If we're removing all of the instructions within an IT block, then
553 // also remove the IT instruction.
556 for (auto *Dead : Killed) {
557 if (MachineOperand *MO =
558 Dead->findRegisterUseOperand(ARM::ITSTATE, /*TRI=*/nullptr)) {
559 MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
560 RemoveITs.insert(IT);
561 auto &CurrentBlock = ITBlocks[IT];
562 CurrentBlock.erase(Dead);
563 if (CurrentBlock.empty())
564 ModifiedITs.erase(IT);
565 else
566 ModifiedITs.insert(IT);
567 }
568 }
569 if (!ModifiedITs.empty())
570 return false;
571 Killed.insert(RemoveITs.begin(), RemoveITs.end());
572 return true;
573 };
574
577 return false;
578
579 if (WontCorruptITs(Uses, RDA)) {
580 ToRemove.insert(Uses.begin(), Uses.end());
581 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
582 << " - can also remove:\n";
583 for (auto *Use : Uses)
584 dbgs() << " - " << *Use);
585
588 if (WontCorruptITs(Killed, RDA)) {
589 ToRemove.insert(Killed.begin(), Killed.end());
590 LLVM_DEBUG(for (auto *Dead : Killed)
591 dbgs() << " - " << *Dead);
592 }
593 return true;
594 }
595 return false;
596}
597
598bool LowOverheadLoop::ValidateTailPredicate() {
599 if (!IsTailPredicationLegal()) {
600 LLVM_DEBUG(if (VCTPs.empty())
601 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
602 dbgs() << "ARM Loops: Tail-predication is not valid.\n");
603 return false;
604 }
605
606 assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
607 assert(ML.getBlocks().size() == 1 &&
608 "Shouldn't be processing a loop with more than one block");
609
611 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
612 return false;
613 }
614
615 if (!VPTstate.isValid(RDA)) {
616 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
617 return false;
618 }
619
620 if (!ValidateLiveOuts()) {
621 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
622 return false;
623 }
624
625 // For tail predication, we need to provide the number of elements, instead
626 // of the iteration count, to the loop start instruction. The number of
627 // elements is provided to the vctp instruction, so we need to check that
628 // we can use this register at InsertPt.
629 MachineInstr *VCTP = VCTPs.back();
630 if (Start->getOpcode() == ARM::t2DoLoopStartTP ||
631 Start->getOpcode() == ARM::t2WhileLoopStartTP) {
632 TPNumElements = Start->getOperand(2);
633 StartInsertPt = Start;
634 StartInsertBB = Start->getParent();
635 } else {
636 TPNumElements = VCTP->getOperand(1);
637 MCRegister NumElements = TPNumElements.getReg().asMCReg();
638
639 // If the register is defined within loop, then we can't perform TP.
640 // TODO: Check whether this is just a mov of a register that would be
641 // available.
642 if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
643 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
644 return false;
645 }
646
647 // The element count register maybe defined after InsertPt, in which case we
648 // need to try to move either InsertPt or the def so that the [w|d]lstp can
649 // use the value.
650
651 if (StartInsertPt != StartInsertBB->end() &&
652 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
653 if (auto *ElemDef =
654 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
655 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
656 ElemDef->removeFromParent();
657 StartInsertBB->insert(StartInsertPt, ElemDef);
659 << "ARM Loops: Moved element count def: " << *ElemDef);
660 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
661 StartInsertPt->removeFromParent();
662 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
663 &*StartInsertPt);
664 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
665 } else {
666 // If we fail to move an instruction and the element count is provided
667 // by a mov, use the mov operand if it will have the same value at the
668 // insertion point
669 MachineOperand Operand = ElemDef->getOperand(1);
670 if (isMovRegOpcode(ElemDef->getOpcode()) &&
671 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
672 RDA.getUniqueReachingMIDef(&*StartInsertPt,
673 Operand.getReg().asMCReg())) {
674 TPNumElements = Operand;
675 NumElements = TPNumElements.getReg();
676 } else {
678 << "ARM Loops: Unable to move element count to loop "
679 << "start instruction.\n");
680 return false;
681 }
682 }
683 }
684 }
685
686 // Especially in the case of while loops, InsertBB may not be the
687 // preheader, so we need to check that the register isn't redefined
688 // before entering the loop.
689 auto CannotProvideElements = [this](MachineBasicBlock *MBB,
690 MCRegister NumElements) {
691 if (MBB->empty())
692 return false;
693 // NumElements is redefined in this block.
694 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
695 return true;
696
697 // Don't continue searching up through multiple predecessors.
698 if (MBB->pred_size() > 1)
699 return true;
700
701 return false;
702 };
703
704 // Search backwards for a def, until we get to InsertBB.
705 MachineBasicBlock *MBB = Preheader;
706 while (MBB && MBB != StartInsertBB) {
707 if (CannotProvideElements(MBB, NumElements)) {
708 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
709 return false;
710 }
711 MBB = *MBB->pred_begin();
712 }
713 }
714
715 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
716 // world the [w|d]lstp instruction would be last instruction in the preheader
717 // and so it would only affect instructions within the loop body. But due to
718 // scheduling, and/or the logic in this pass (above), the insertion point can
719 // be moved earlier. So if the Loop Start isn't the last instruction in the
720 // preheader, and if the initial element count is smaller than the vector
721 // width, the Loop Start instruction will immediately generate one or more
722 // false lane mask which can, incorrectly, affect the proceeding MVE
723 // instructions in the preheader.
724 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
725 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
726 return false;
727 }
728
729 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they
730 // need to compute an output size that is smaller than the VCTP mask operates
731 // on. The VecSize of the DoubleWidthResult is the larger vector size - the
732 // size it extends into, so any VCTP VecSize <= is valid.
733 unsigned VCTPVecSize = getVecSize(*VCTP);
734 for (MachineInstr *MI : DoubleWidthResultInstrs) {
735 unsigned InstrVecSize = getVecSize(*MI);
736 if (InstrVecSize > VCTPVecSize) {
737 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP "
738 << "VecSize:\n" << *MI);
739 return false;
740 }
741 }
742
743 // Check that the value change of the element count is what we expect and
744 // that the predication will be equivalent. For this we need:
745 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
746 // and we can also allow register copies within the chain too.
747 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
748 return -getAddSubImmediate(*MI) == ExpectedVecWidth;
749 };
750
752 // Remove modifications to the element count since they have no purpose in a
753 // tail predicated loop. Explicitly refer to the vctp operand no matter which
754 // register NumElements has been assigned to, since that is what the
755 // modifications will be using
756 if (auto *Def = RDA.getUniqueReachingMIDef(
757 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
760 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
761
762 Ignore.insert(VCTPs.begin(), VCTPs.end());
763
764 if (TryRemove(Def, RDA, ElementChain, Ignore)) {
765 bool FoundSub = false;
766
767 for (auto *MI : ElementChain) {
768 if (isMovRegOpcode(MI->getOpcode()))
769 continue;
770
771 if (isSubImmOpcode(MI->getOpcode())) {
772 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
773 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
774 " count: " << *MI);
775 return false;
776 }
777 FoundSub = true;
778 } else {
779 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
780 " count: " << *MI);
781 return false;
782 }
783 }
784 ToRemove.insert(ElementChain.begin(), ElementChain.end());
785 }
786 }
787
788 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we
789 // can also remove any extra instructions in the preheader, which often
790 // includes a now unused MOV.
791 if ((Start->getOpcode() == ARM::t2DoLoopStartTP ||
792 Start->getOpcode() == ARM::t2WhileLoopStartTP) &&
793 Preheader && !Preheader->empty() &&
794 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
795 if (auto *Def = RDA.getUniqueReachingMIDef(
796 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
798 Ignore.insert(VCTPs.begin(), VCTPs.end());
799 TryRemove(Def, RDA, ToRemove, Ignore);
800 }
801 }
802
803 return true;
804}
805
806static bool isRegInClass(const MachineOperand &MO,
807 const TargetRegisterClass *Class) {
808 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
809}
810
811// MVE 'narrowing' operate on half a lane, reading from half and writing
812// to half, which are referred to has the top and bottom half. The other
813// half retains its previous value.
815 const MCInstrDesc &MCID = MI.getDesc();
816 uint64_t Flags = MCID.TSFlags;
817 return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
818}
819
820// Some MVE instructions read from the top/bottom halves of their operand(s)
821// and generate a vector result with result elements that are double the
822// width of the input.
824 const MCInstrDesc &MCID = MI.getDesc();
825 uint64_t Flags = MCID.TSFlags;
826 return (Flags & ARMII::DoubleWidthResult) != 0;
827}
828
829// Can this instruction generate a non-zero result when given only zeroed
830// operands? This allows us to know that, given operands with false bytes
831// zeroed by masked loads, that the result will also contain zeros in those
832// bytes.
834
835 // Check for instructions which can write into a larger element size,
836 // possibly writing into a previous zero'd lane.
838 return true;
839
840 switch (MI.getOpcode()) {
841 default:
842 break;
843 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
844 // fp16 -> fp32 vector conversions.
845 // Instructions that perform a NOT will generate 1s from 0s.
846 case ARM::MVE_VMVN:
847 case ARM::MVE_VORN:
848 // Count leading zeros will do just that!
849 case ARM::MVE_VCLZs8:
850 case ARM::MVE_VCLZs16:
851 case ARM::MVE_VCLZs32:
852 return true;
853 }
854 return false;
855}
856
857// Look at its register uses to see if it only can only receive zeros
858// into its false lanes which would then produce zeros. Also check that
859// the output register is also defined by an FalseLanesZero instruction
860// so that if tail-predication happens, the lanes that aren't updated will
861// still be zeros.
863 const TargetRegisterClass *QPRs,
865 InstSet &FalseLanesZero) {
867 return false;
868
869 bool isPredicated = isVectorPredicated(&MI);
870 // Predicated loads will write zeros to the falsely predicated bytes of the
871 // destination register.
872 if (MI.mayLoad())
873 return isPredicated;
874
875 auto IsZeroInit = [](MachineInstr *Def) {
876 return !isVectorPredicated(Def) &&
877 Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
878 Def->getOperand(1).getImm() == 0;
879 };
880
881 bool AllowScalars = isHorizontalReduction(MI);
882 for (auto &MO : MI.operands()) {
883 if (!MO.isReg() || !MO.getReg())
884 continue;
885 if (!isRegInClass(MO, QPRs) && AllowScalars)
886 continue;
887 // Skip the lr predicate reg
889 if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2)
890 continue;
891
892 // Check that this instruction will produce zeros in its false lanes:
893 // - If it only consumes false lanes zero or constant 0 (vmov #0)
894 // - If it's predicated, it only matters that it's def register already has
895 // false lane zeros, so we can ignore the uses.
897 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
898 if (Defs.empty())
899 return false;
900 for (auto *Def : Defs) {
901 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
902 continue;
903 if (MO.isUse() && isPredicated)
904 continue;
905 return false;
906 }
907 }
908 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
909 return true;
910}
911
912bool LowOverheadLoop::ValidateLiveOuts() {
913 // We want to find out if the tail-predicated version of this loop will
914 // produce the same values as the loop in its original form. For this to
915 // be true, the newly inserted implicit predication must not change the
916 // the (observable) results.
917 // We're doing this because many instructions in the loop will not be
918 // predicated and so the conversion from VPT predication to tail-predication
919 // can result in different values being produced; due to the tail-predication
920 // preventing many instructions from updating their falsely predicated
921 // lanes. This analysis assumes that all the instructions perform lane-wise
922 // operations and don't perform any exchanges.
923 // A masked load, whether through VPT or tail predication, will write zeros
924 // to any of the falsely predicated bytes. So, from the loads, we know that
925 // the false lanes are zeroed and here we're trying to track that those false
926 // lanes remain zero, or where they change, the differences are masked away
927 // by their user(s).
928 // All MVE stores have to be predicated, so we know that any predicate load
929 // operands, or stored results are equivalent already. Other explicitly
930 // predicated instructions will perform the same operation in the original
931 // loop and the tail-predicated form too. Because of this, we can insert
932 // loads, stores and other predicated instructions into our Predicated
933 // set and build from there.
934 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
935 SetVector<MachineInstr *> FalseLanesUnknown;
938 MachineBasicBlock *Header = ML.getHeader();
939
940 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n");
941
942 for (auto &MI : *Header) {
943 if (!shouldInspect(MI))
944 continue;
945
946 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
947 continue;
948
950 bool retainsOrReduces =
952
953 if (isPredicated)
954 Predicated.insert(&MI);
955 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
956 FalseLanesZero.insert(&MI);
957 else if (MI.getNumDefs() == 0)
958 continue;
959 else if (!isPredicated && retainsOrReduces) {
960 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI);
961 return false;
962 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy)
963 FalseLanesUnknown.insert(&MI);
964 }
965
966 LLVM_DEBUG({
967 dbgs() << " Predicated:\n";
968 for (auto *I : Predicated)
969 dbgs() << " " << *I;
970 dbgs() << " FalseLanesZero:\n";
971 for (auto *I : FalseLanesZero)
972 dbgs() << " " << *I;
973 dbgs() << " FalseLanesUnknown:\n";
974 for (auto *I : FalseLanesUnknown)
975 dbgs() << " " << *I;
976 });
977
978 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
981 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
982 for (auto *Use : Uses) {
983 if (Use != MI && !Predicated.count(Use))
984 return false;
985 }
986 return true;
987 };
988
989 // Visit the unknowns in reverse so that we can start at the values being
990 // stored and then we can work towards the leaves, hopefully adding more
991 // instructions to Predicated. Successfully terminating the loop means that
992 // all the unknown values have to found to be masked by predicated user(s).
993 // For any unpredicated values, we store them in NonPredicated so that we
994 // can later check whether these form a reduction.
995 SmallPtrSet<MachineInstr*, 2> NonPredicated;
996 for (auto *MI : reverse(FalseLanesUnknown)) {
997 for (auto &MO : MI->operands()) {
998 if (!isRegInClass(MO, QPRs) || !MO.isDef())
999 continue;
1000 if (!HasPredicatedUsers(MI, MO, Predicated)) {
1001 LLVM_DEBUG(dbgs() << " Found an unknown def of : "
1002 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
1003 NonPredicated.insert(MI);
1004 break;
1005 }
1006 }
1007 // Any unknown false lanes have been masked away by the user(s).
1008 if (!NonPredicated.contains(MI))
1009 Predicated.insert(MI);
1010 }
1011
1014 ML.getExitBlocks(ExitBlocks);
1015 assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
1016 assert(ExitBlocks.size() == 1 && "Expected a single exit block");
1017 MachineBasicBlock *ExitBB = ExitBlocks.front();
1018 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
1019 // TODO: Instead of blocking predication, we could move the vctp to the exit
1020 // block and calculate it's operand there in or the preheader.
1021 if (RegMask.PhysReg == ARM::VPR) {
1022 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block.");
1023 return false;
1024 }
1025 // Check Q-regs that are live in the exit blocks. We don't collect scalars
1026 // because they won't be affected by lane predication.
1027 if (QPRs->contains(RegMask.PhysReg))
1028 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1029 LiveOutMIs.insert(MI);
1030 }
1031
1032 // We've already validated that any VPT predication within the loop will be
1033 // equivalent when we perform the predication transformation; so we know that
1034 // any VPT predicated instruction is predicated upon VCTP. Any live-out
1035 // instruction needs to be predicated, so check this here. The instructions
1036 // in NonPredicated have been found to be a reduction that we can ensure its
1037 // legality. Any MQPRCopy found will need to validate its input as if it was
1038 // live out.
1039 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end());
1040 while (!Worklist.empty()) {
1041 MachineInstr *MI = Worklist.pop_back_val();
1042 if (MI->getOpcode() == ARM::MQPRCopy) {
1043 VMOVCopies.insert(MI);
1044 MachineInstr *CopySrc =
1045 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg());
1046 if (CopySrc)
1047 Worklist.push_back(CopySrc);
1048 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1049 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI);
1050 VMOVCopies.clear();
1051 return false;
1052 }
1053 }
1054
1055 return true;
1056}
1057
1058void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1059 if (Revert)
1060 return;
1061
1062 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1063 // can only jump back.
1064 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1065 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1066 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1067 ? End->getOperand(1).getMBB()
1068 : End->getOperand(2).getMBB();
1069 // TODO Maybe there's cases where the target doesn't have to be the header,
1070 // but for now be safe and revert.
1071 if (TgtBB != ML.getHeader()) {
1072 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1073 return false;
1074 }
1075
1076 // The WLS and LE instructions have 12-bits for the label offset. WLS
1077 // requires a positive offset, while LE uses negative.
1078 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1079 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1080 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1081 return false;
1082 }
1083
1084 if (isWhileLoopStart(*Start)) {
1085 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start);
1086 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) ||
1087 !BBUtils->isBBInRange(Start, TargetBB, 4094)) {
1088 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1089 return false;
1090 }
1091 }
1092 return true;
1093 };
1094
1095 StartInsertPt = MachineBasicBlock::iterator(Start);
1096 StartInsertBB = Start->getParent();
1097 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1098 << *StartInsertPt);
1099
1100 Revert = !ValidateRanges(Start, End, BBUtils, ML);
1101 CannotTailPredicate = !ValidateTailPredicate();
1102}
1103
1104bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1105 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1106 if (VCTPs.empty()) {
1107 VCTPs.push_back(MI);
1108 return true;
1109 }
1110
1111 // If we find another VCTP, check whether it uses the same value as the main VCTP.
1112 // If it does, store it in the VCTPs set, else refuse it.
1113 MachineInstr *Prev = VCTPs.back();
1114 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1115 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1116 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1117 "definition from the main VCTP");
1118 return false;
1119 }
1120 VCTPs.push_back(MI);
1121 return true;
1122}
1123
1125
1126 auto GetFrameIndex = [](MachineMemOperand *Operand) {
1127 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue();
1128 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) {
1129 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) {
1130 return FS->getFrameIndex();
1131 }
1132 }
1133 return -1;
1134 };
1135
1136 auto IsStackOp = [GetFrameIndex](MachineInstr *I) {
1137 switch (I->getOpcode()) {
1138 case ARM::MVE_VSTRWU32:
1139 case ARM::MVE_VLDRWU32: {
1140 return I->getOperand(1).getReg() == ARM::SP &&
1141 I->memoperands().size() == 1 &&
1142 GetFrameIndex(I->memoperands().front()) >= 0;
1143 }
1144 default:
1145 return false;
1146 }
1147 };
1148
1149 // An unpredicated vector register spill is allowed if all of the uses of the
1150 // stack slot are within the loop
1151 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI))
1152 return false;
1153
1154 // Search all blocks after the loop for accesses to the same stack slot.
1155 // ReachingDefAnalysis doesn't work for sp as it relies on registers being
1156 // live-out (which sp never is) to know what blocks to look in
1157 if (MI->memoperands().size() == 0)
1158 return false;
1159 int FI = GetFrameIndex(MI->memoperands().front());
1160
1161 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo();
1162 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI))
1163 return false;
1164
1166 ML->getExitBlocks(Frontier);
1167 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()};
1168 unsigned Idx = 0;
1169 while (Idx < Frontier.size()) {
1170 MachineBasicBlock *BB = Frontier[Idx];
1171 bool LookAtSuccessors = true;
1172 for (auto &I : *BB) {
1173 if (!IsStackOp(&I) || I.memoperands().size() == 0)
1174 continue;
1175 if (GetFrameIndex(I.memoperands().front()) != FI)
1176 continue;
1177 // If this block has a store to the stack slot before any loads then we
1178 // can ignore the block
1179 if (I.getOpcode() == ARM::MVE_VSTRWU32) {
1180 LookAtSuccessors = false;
1181 break;
1182 }
1183 // If the store and the load are using the same stack slot then the
1184 // store isn't valid for tail predication
1185 if (I.getOpcode() == ARM::MVE_VLDRWU32)
1186 return false;
1187 }
1188
1189 if (LookAtSuccessors) {
1190 for (auto *Succ : BB->successors()) {
1191 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ))
1192 Frontier.push_back(Succ);
1193 }
1194 }
1195 Visited.insert(BB);
1196 Idx++;
1197 }
1198
1199 return true;
1200}
1201
1202bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) {
1203 if (CannotTailPredicate)
1204 return false;
1205
1206 if (!shouldInspect(*MI))
1207 return true;
1208
1209 if (MI->getOpcode() == ARM::MVE_VPSEL ||
1210 MI->getOpcode() == ARM::MVE_VPNOT) {
1211 // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1212 // 1) It will use the VPR as a predicate operand, but doesn't have to be
1213 // instead a VPT block, which means we can assert while building up
1214 // the VPT block because we don't find another VPT or VPST to being a new
1215 // one.
1216 // 2) VPSEL still requires a VPR operand even after tail predicating,
1217 // which means we can't remove it unless there is another
1218 // instruction, such as vcmp, that can provide the VPR def.
1219 return false;
1220 }
1221
1222 // Record all VCTPs and check that they're equivalent to one another.
1223 if (isVCTP(MI) && !AddVCTP(MI))
1224 return false;
1225
1226 // Inspect uses first so that any instructions that alter the VPR don't
1227 // alter the predicate upon themselves.
1228 const MCInstrDesc &MCID = MI->getDesc();
1229 bool IsUse = false;
1230 unsigned LastOpIdx = MI->getNumOperands() - 1;
1231 for (const auto &Op : enumerate(reverse(MCID.operands()))) {
1232 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1233 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1234 continue;
1235
1236 if (ARM::isVpred(Op.value().OperandType)) {
1237 VPTstate.addInst(MI);
1238 IsUse = true;
1239 } else if (MI->getOpcode() != ARM::MVE_VPST) {
1240 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1241 return false;
1242 }
1243 }
1244
1245 // If we find an instruction that has been marked as not valid for tail
1246 // predication, only allow the instruction if it's contained within a valid
1247 // VPT block.
1248 bool RequiresExplicitPredication =
1250 if (isDomainMVE(MI) && RequiresExplicitPredication) {
1251 if (MI->getOpcode() == ARM::MQPRCopy)
1252 return true;
1253 if (!IsUse && producesDoubleWidthResult(*MI)) {
1254 DoubleWidthResultInstrs.insert(MI);
1255 return true;
1256 }
1257
1258 LLVM_DEBUG(if (!IsUse) dbgs()
1259 << "ARM Loops: Can't tail predicate: " << *MI);
1260 return IsUse;
1261 }
1262
1263 // If the instruction is already explicitly predicated, then the conversion
1264 // will be fine, but ensure that all store operations are predicated.
1265 if (MI->mayStore() && !ValidateMVEStore(MI, &ML))
1266 return IsUse;
1267
1268 // If this instruction defines the VPR, update the predicate for the
1269 // proceeding instructions.
1270 if (isVectorPredicate(MI)) {
1271 // Clear the existing predicate when we're not in VPT Active state,
1272 // otherwise we add to it.
1273 if (!isVectorPredicated(MI))
1274 VPTstate.resetPredicate(MI);
1275 else
1276 VPTstate.addPredicate(MI);
1277 }
1278
1279 // Finally once the predicate has been modified, we can start a new VPT
1280 // block if necessary.
1281 if (isVPTOpcode(MI->getOpcode()))
1282 VPTstate.CreateVPTBlock(MI);
1283
1284 return true;
1285}
1286
1287bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1289 if (!ST.hasLOB())
1290 return false;
1291
1292 MF = &mf;
1293 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1294
1295 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1296 RDA = &getAnalysis<ReachingDefAnalysis>();
1297 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1298 MRI = &MF->getRegInfo();
1299 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1300 TRI = ST.getRegisterInfo();
1301 BBUtils = std::make_unique<ARMBasicBlockUtils>(*MF);
1302 BBUtils->computeAllBlockSizes();
1303 BBUtils->adjustBBOffsetsAfter(&MF->front());
1304
1305 bool Changed = false;
1306 for (auto *ML : *MLI) {
1307 if (ML->isOutermost())
1308 Changed |= ProcessLoop(ML);
1309 }
1310 Changed |= RevertNonLoops();
1311 return Changed;
1312}
1313
1314bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1315 bool Changed = false;
1316
1317 // Process inner loops first.
1318 for (MachineLoop *L : *ML)
1319 Changed |= ProcessLoop(L);
1320
1321 LLVM_DEBUG({
1322 dbgs() << "ARM Loops: Processing loop containing:\n";
1323 if (auto *Preheader = ML->getLoopPreheader())
1324 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1325 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true))
1326 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1327 for (auto *MBB : ML->getBlocks())
1328 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n";
1329 });
1330
1331 // Search the given block for a loop start instruction. If one isn't found,
1332 // and there's only one predecessor block, search that one too.
1333 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1334 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1335 for (auto &MI : *MBB) {
1336 if (isLoopStart(MI))
1337 return &MI;
1338 }
1339 if (MBB->pred_size() == 1)
1340 return SearchForStart(*MBB->pred_begin());
1341 return nullptr;
1342 };
1343
1344 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1345 // Search the preheader for the start intrinsic.
1346 // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1347 // with potentially multiple set.loop.iterations, so we need to enable this.
1348 if (LoLoop.Preheader)
1349 LoLoop.Start = SearchForStart(LoLoop.Preheader);
1350 else
1351 return Changed;
1352
1353 // Find the low-overhead loop components and decide whether or not to fall
1354 // back to a normal loop. Also look for a vctp instructions and decide
1355 // whether we can convert that predicate using tail predication.
1356 for (auto *MBB : reverse(ML->getBlocks())) {
1357 for (auto &MI : *MBB) {
1358 if (MI.isDebugValue())
1359 continue;
1360 else if (MI.getOpcode() == ARM::t2LoopDec)
1361 LoLoop.Dec = &MI;
1362 else if (MI.getOpcode() == ARM::t2LoopEnd)
1363 LoLoop.End = &MI;
1364 else if (MI.getOpcode() == ARM::t2LoopEndDec)
1365 LoLoop.End = LoLoop.Dec = &MI;
1366 else if (isLoopStart(MI))
1367 LoLoop.Start = &MI;
1368 else if (MI.getDesc().isCall()) {
1369 // TODO: Though the call will require LE to execute again, does this
1370 // mean we should revert? Always executing LE hopefully should be
1371 // faster than performing a sub,cmp,br or even subs,br.
1372 LoLoop.Revert = true;
1373 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1374 } else {
1375 // Record VPR defs and build up their corresponding vpt blocks.
1376 // Check we know how to tail predicate any mve instructions.
1377 LoLoop.AnalyseMVEInst(&MI);
1378 }
1379 }
1380 }
1381
1382 LLVM_DEBUG(LoLoop.dump());
1383 if (!LoLoop.FoundAllComponents()) {
1384 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1385 return Changed;
1386 }
1387
1388 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
1389 "Expected t2WhileLoopStart to be removed before regalloc!");
1390
1391 // Check that the only instruction using LoopDec is LoopEnd. This can only
1392 // happen when the Dec and End are separate, not a single t2LoopEndDec.
1393 // TODO: Check for copy chains that really have no effect.
1394 if (LoLoop.Dec != LoLoop.End) {
1396 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1397 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1398 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1399 LoLoop.Revert = true;
1400 }
1401 }
1402 LoLoop.Validate(BBUtils.get());
1403 Expand(LoLoop);
1404 return true;
1405}
1406
1407// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1408// beq that branches to the exit branch.
1409// TODO: We could also try to generate a cbz if the value in LR is also in
1410// another low register.
1411void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1412 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1414 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1415 ARM::tBcc : ARM::t2Bcc;
1416
1417 RevertWhileLoopStartLR(MI, TII, BrOpc);
1418}
1419
1420void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1421 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1423}
1424
1425bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1426 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1427 MachineBasicBlock *MBB = MI->getParent();
1429 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1430 if (I->getOpcode() == ARM::t2LoopEnd) {
1431 Ignore.insert(&*I);
1432 break;
1433 }
1434 }
1435
1436 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1437 bool SetFlags =
1439
1440 llvm::RevertLoopDec(MI, TII, SetFlags);
1441 return SetFlags;
1442}
1443
1444// Generate a subs, or sub and cmp, and a branch instead of an LE.
1445void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1446 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1447
1448 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1449 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1450 ARM::tBcc : ARM::t2Bcc;
1451
1452 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1453}
1454
1455// Generate a subs, or sub and cmp, and a branch instead of an LE.
1456void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1457 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1458 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1459 MachineBasicBlock *MBB = MI->getParent();
1460
1462 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1463 MIB.addDef(ARM::LR);
1464 MIB.add(MI->getOperand(1));
1465 MIB.addImm(1);
1466 MIB.addImm(ARMCC::AL);
1467 MIB.addReg(ARM::NoRegister);
1468 MIB.addReg(ARM::CPSR);
1469 MIB->getOperand(5).setIsDef(true);
1470
1471 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1472 unsigned BrOpc =
1473 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1474
1475 // Create bne
1476 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1477 MIB.add(MI->getOperand(2)); // branch target
1478 MIB.addImm(ARMCC::NE); // condition code
1479 MIB.addReg(ARM::CPSR);
1480
1481 MI->eraseFromParent();
1482}
1483
1484// Perform dead code elimation on the loop iteration count setup expression.
1485// If we are tail-predicating, the number of elements to be processed is the
1486// operand of the VCTP instruction in the vector body, see getCount(), which is
1487// register $r3 in this example:
1488//
1489// $lr = big-itercount-expression
1490// ..
1491// $lr = t2DoLoopStart renamable $lr
1492// vector.body:
1493// ..
1494// $vpr = MVE_VCTP32 renamable $r3
1495// renamable $lr = t2LoopDec killed renamable $lr, 1
1496// t2LoopEnd renamable $lr, %vector.body
1497// tB %end
1498//
1499// What we would like achieve here is to replace the do-loop start pseudo
1500// instruction t2DoLoopStart with:
1501//
1502// $lr = MVE_DLSTP_32 killed renamable $r3
1503//
1504// Thus, $r3 which defines the number of elements, is written to $lr,
1505// and then we want to delete the whole chain that used to define $lr,
1506// see the comment below how this chain could look like.
1507//
1508void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1509 if (!LoLoop.IsTailPredicationLegal())
1510 return;
1511
1512 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1513
1514 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1);
1515 if (!Def) {
1516 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1517 return;
1518 }
1519
1520 // Collect and remove the users of iteration count.
1521 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec,
1522 LoLoop.End };
1523 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1524 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1525}
1526
1527MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1528 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1529 // When using tail-predication, try to delete the dead code that was used to
1530 // calculate the number of loop iterations.
1531 IterationCountDCE(LoLoop);
1532
1533 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1534 MachineInstr *Start = LoLoop.Start;
1535 MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1536 unsigned Opc = LoLoop.getStartOpcode();
1537 MachineOperand &Count = LoLoop.getLoopStartOperand();
1538
1539 // A DLS lr, lr we needn't emit
1540 MachineInstr* NewStart;
1541 if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() &&
1542 Count.getReg() == ARM::LR) {
1543 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1544 NewStart = nullptr;
1545 } else {
1547 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1548
1549 MIB.addDef(ARM::LR);
1550 MIB.add(Count);
1551 if (isWhileLoopStart(*Start))
1552 MIB.addMBB(getWhileLoopStartTargetBB(*Start));
1553
1554 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1555 NewStart = &*MIB;
1556 }
1557
1558 LoLoop.ToRemove.insert(Start);
1559 return NewStart;
1560}
1561
1562void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1563 auto RemovePredicate = [](MachineInstr *MI) {
1564 if (MI->isDebugInstr())
1565 return;
1566 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1568 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1569 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1570 "Expected Then predicate!");
1571 MI->getOperand(PIdx).setImm(ARMVCC::None);
1572 MI->getOperand(PIdx + 1).setReg(0);
1573 };
1574
1575 for (auto &Block : LoLoop.getVPTBlocks()) {
1576 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1577
1578 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1579 assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1580 // Replace the VCMP with a VPT
1582 BuildMI(*At->getParent(), At, At->getDebugLoc(),
1583 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1584 MIB.addImm(ARMVCC::Then);
1585 // Register one
1586 MIB.add(TheVCMP->getOperand(1));
1587 // Register two
1588 MIB.add(TheVCMP->getOperand(2));
1589 // The comparison code, e.g. ge, eq, lt
1590 MIB.add(TheVCMP->getOperand(3));
1591 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1592 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1593 LoLoop.ToRemove.insert(TheVCMP);
1594 TheVCMP = nullptr;
1595 };
1596
1597 if (LoLoop.VPTstate.isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1598 MachineInstr *VPST = Insts.front();
1599 if (Block.hasUniformPredicate()) {
1600 // A vpt block starting with VPST, is only predicated upon vctp and has no
1601 // internal vpr defs:
1602 // - Remove vpst.
1603 // - Unpredicate the remaining instructions.
1604 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1605 for (unsigned i = 1; i < Insts.size(); ++i)
1606 RemovePredicate(Insts[i]);
1607 } else {
1608 // The VPT block has a non-uniform predicate but it uses a vpst and its
1609 // entry is guarded only by a vctp, which means we:
1610 // - Need to remove the original vpst.
1611 // - Then need to unpredicate any following instructions, until
1612 // we come across the divergent vpr def.
1613 // - Insert a new vpst to predicate the instruction(s) that following
1614 // the divergent vpr def.
1615 MachineInstr *Divergent = Block.getDivergent();
1616 MachineBasicBlock *MBB = Divergent->getParent();
1617 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1618 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1619 ++DivergentNext;
1620
1621 bool DivergentNextIsPredicated =
1622 DivergentNext != MBB->end() &&
1623 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1624
1625 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1626 I != E; ++I)
1627 RemovePredicate(&*I);
1628
1629 // Check if the instruction defining vpr is a vcmp so it can be combined
1630 // with the VPST This should be the divergent instruction
1632 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1633
1634 if (DivergentNextIsPredicated) {
1635 // Insert a VPST at the divergent only if the next instruction
1636 // would actually use it. A VCMP following a VPST can be
1637 // merged into a VPT so do that instead if the VCMP exists.
1638 if (!VCMP) {
1639 // Create a VPST (with a null mask for now, we'll recompute it
1640 // later)
1642 BuildMI(*Divergent->getParent(), Divergent,
1643 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1644 MIB.addImm(0);
1645 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1646 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1647 } else {
1648 // No RDA checks are necessary here since the VPST would have been
1649 // directly after the VCMP
1650 ReplaceVCMPWithVPT(VCMP, VCMP);
1651 }
1652 }
1653 }
1654 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1655 LoLoop.ToRemove.insert(VPST);
1656 } else if (Block.containsVCTP()) {
1657 // The vctp will be removed, so either the entire block will be dead or
1658 // the block mask of the vp(s)t will need to be recomputed.
1659 MachineInstr *VPST = Insts.front();
1660 if (Block.size() == 2) {
1661 assert(VPST->getOpcode() == ARM::MVE_VPST &&
1662 "Found a VPST in an otherwise empty vpt block");
1663 LoLoop.ToRemove.insert(VPST);
1664 } else
1665 LoLoop.BlockMasksToRecompute.insert(VPST);
1666 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1667 // If this block starts with a VPST then attempt to merge it with the
1668 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1669 // block that no longer exists
1670 MachineInstr *VPST = Insts.front();
1671 auto Next = ++MachineBasicBlock::iterator(VPST);
1673 "The instruction after a VPST must be predicated");
1674 (void)Next;
1675 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1676 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1677 !LoLoop.ToRemove.contains(VprDef)) {
1678 MachineInstr *VCMP = VprDef;
1679 // The VCMP and VPST can only be merged if the VCMP's operands will have
1680 // the same values at the VPST.
1681 // If any of the instructions between the VCMP and VPST are predicated
1682 // then a different code path is expected to have merged the VCMP and
1683 // VPST already.
1684 if (std::none_of(++MachineBasicBlock::iterator(VCMP),
1686 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1687 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1688 ReplaceVCMPWithVPT(VCMP, VPST);
1689 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1690 LoLoop.ToRemove.insert(VPST);
1691 }
1692 }
1693 }
1694 }
1695
1696 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1697}
1698
1699void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1700
1701 // Combine the LoopDec and LoopEnd instructions into LE(TP).
1702 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1703 MachineInstr *End = LoLoop.End;
1704 MachineBasicBlock *MBB = End->getParent();
1705 unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1706 ARM::MVE_LETP : ARM::t2LEUpdate;
1707 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1708 TII->get(Opc));
1709 MIB.addDef(ARM::LR);
1710 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1711 MIB.add(End->getOperand(Off + 0));
1712 MIB.add(End->getOperand(Off + 1));
1713 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1714 LoLoop.ToRemove.insert(LoLoop.Dec);
1715 LoLoop.ToRemove.insert(End);
1716 return &*MIB;
1717 };
1718
1719 // TODO: We should be able to automatically remove these branches before we
1720 // get here - probably by teaching analyzeBranch about the pseudo
1721 // instructions.
1722 // If there is an unconditional branch, after I, that just branches to the
1723 // next block, remove it.
1724 auto RemoveDeadBranch = [](MachineInstr *I) {
1725 MachineBasicBlock *BB = I->getParent();
1727 if (Terminator->isUnconditionalBranch() && I != Terminator) {
1728 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1729 if (BB->isLayoutSuccessor(Succ)) {
1730 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1731 Terminator->eraseFromParent();
1732 }
1733 }
1734 };
1735
1736 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid.
1737 // Anything other MQPRCopy can be converted to MVE_VORR later on.
1738 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) {
1739 for (auto *MI : VMOVCopies) {
1740 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI);
1741 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1742 MachineBasicBlock *MBB = MI->getParent();
1743 Register Dst = MI->getOperand(0).getReg();
1744 Register Src = MI->getOperand(1).getReg();
1745 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1746 ARM::D0 + (Dst - ARM::Q0) * 2)
1747 .addReg(ARM::D0 + (Src - ARM::Q0) * 2)
1749 (void)MIB1;
1750 LLVM_DEBUG(dbgs() << " into " << *MIB1);
1751 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1752 ARM::D0 + (Dst - ARM::Q0) * 2 + 1)
1753 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1)
1755 LLVM_DEBUG(dbgs() << " and " << *MIB2);
1756 (void)MIB2;
1757 MI->eraseFromParent();
1758 }
1759 };
1760
1761 if (LoLoop.Revert) {
1762 if (isWhileLoopStart(*LoLoop.Start))
1763 RevertWhile(LoLoop.Start);
1764 else
1765 RevertDo(LoLoop.Start);
1766 if (LoLoop.Dec == LoLoop.End)
1767 RevertLoopEndDec(LoLoop.End);
1768 else
1769 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1770 } else {
1771 ExpandVMOVCopies(LoLoop.VMOVCopies);
1772 LoLoop.Start = ExpandLoopStart(LoLoop);
1773 if (LoLoop.Start)
1774 RemoveDeadBranch(LoLoop.Start);
1775 LoLoop.End = ExpandLoopEnd(LoLoop);
1776 RemoveDeadBranch(LoLoop.End);
1777 if (LoLoop.IsTailPredicationLegal())
1778 ConvertVPTBlocks(LoLoop);
1779 for (auto *I : LoLoop.ToRemove) {
1780 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1781 I->eraseFromParent();
1782 }
1783 for (auto *I : LoLoop.BlockMasksToRecompute) {
1784 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1786 LLVM_DEBUG(dbgs() << " ... done: " << *I);
1787 }
1788 }
1789
1790 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1791 DFS.ProcessLoop();
1792 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1793 fullyRecomputeLiveIns(PostOrder);
1794
1795 for (auto *MBB : reverse(PostOrder))
1797
1798 // We've moved, removed and inserted new instructions, so update RDA.
1799 RDA->reset();
1800}
1801
1802bool ARMLowOverheadLoops::RevertNonLoops() {
1803 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1804 bool Changed = false;
1805
1806 for (auto &MBB : *MF) {
1812
1813 for (auto &I : MBB) {
1814 if (isLoopStart(I))
1815 Starts.push_back(&I);
1816 else if (I.getOpcode() == ARM::t2LoopDec)
1817 Decs.push_back(&I);
1818 else if (I.getOpcode() == ARM::t2LoopEnd)
1819 Ends.push_back(&I);
1820 else if (I.getOpcode() == ARM::t2LoopEndDec)
1821 EndDecs.push_back(&I);
1822 else if (I.getOpcode() == ARM::MQPRCopy)
1823 MQPRCopies.push_back(&I);
1824 }
1825
1826 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() &&
1827 MQPRCopies.empty())
1828 continue;
1829
1830 Changed = true;
1831
1832 for (auto *Start : Starts) {
1833 if (isWhileLoopStart(*Start))
1834 RevertWhile(Start);
1835 else
1836 RevertDo(Start);
1837 }
1838 for (auto *Dec : Decs)
1839 RevertLoopDec(Dec);
1840
1841 for (auto *End : Ends)
1843 for (auto *End : EndDecs)
1844 RevertLoopEndDec(End);
1845 for (auto *MI : MQPRCopies) {
1846 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI);
1847 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1848 MachineBasicBlock *MBB = MI->getParent();
1849 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR),
1850 MI->getOperand(0).getReg())
1851 .add(MI->getOperand(1))
1852 .add(MI->getOperand(1));
1853 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg());
1854 MI->eraseFromParent();
1855 }
1856 }
1857 return Changed;
1858}
1859
1861 return new ARMLowOverheadLoops();
1862}
unsigned const MachineRegisterInfo * MRI
static bool isDomainMVE(MachineInstr *MI)
SmallPtrSet< MachineInstr *, 2 > Uses
static bool isVectorPredicated(MachineInstr *MI)
ReachingDefAnalysis & RDA
static bool canGenerateNonZeros(const MachineInstr &MI)
static bool isHorizontalReduction(const MachineInstr &MI)
ReachingDefAnalysis InstSet & ToRemove
static bool producesDoubleWidthResult(const MachineInstr &MI)
static bool hasVPRUse(MachineInstr &MI)
static bool isRegInClass(const MachineOperand &MO, const TargetRegisterClass *Class)
static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML)
static bool isVectorPredicate(MachineInstr *MI)
static bool retainsPreviousHalfElement(const MachineInstr &MI)
static bool shouldInspect(MachineInstr &MI)
static cl::opt< bool > DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), cl::init(false))
static bool producesFalseLanesZero(MachineInstr &MI, const TargetRegisterClass *QPRs, const ReachingDefAnalysis &RDA, InstSet &FalseLanesZero)
#define DEBUG_TYPE
static int getVecSize(const MachineInstr &MI)
#define ARM_LOW_OVERHEAD_LOOPS_NAME
static cl::opt< bool > DisableOmitDLS("arm-disable-omit-dls", cl::Hidden, cl::desc("Disable omitting 'dls lr, lr' instructions"), cl::init(false))
ReachingDefAnalysis InstSet InstSet & Ignore
MachineBasicBlock & MBB
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
bool End
Definition: ELF_riscv.cpp:480
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define I(x, y, z)
Definition: MD5.cpp:58
static ARM::PredBlockMask CreateVPTBlock(MachineBasicBlock::instr_iterator &Iter, MachineBasicBlock::instr_iterator EndIter, SmallVectorImpl< MachineInstr * > &DeadInstructions)
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
This class represents an Operation in the Expression.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
ArrayRef< MCOperandInfo > operands() const
Definition: MCInstrDesc.h:239
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
static MCRegister from(unsigned Val)
Check the provided unsigned value is a valid MCRegister.
Definition: MCRegister.h:74
unsigned pred_size() const
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
iterator_range< livein_iterator > liveins() const
MachineInstr & instr_back()
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
iterator_range< succ_iterator > successors()
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
MachineInstrBundleIterator< MachineInstr > iterator
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const MachineFunctionProperties & getProperties() const
Get the function properties.
const MachineBasicBlock & front() const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:575
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:347
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:499
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
MachineBasicBlock * findLoopPreheader(MachineLoop *L, bool SpeculativePreheader=false, bool FindMultiLoopPreheader=false) const
Find the block that either is the loop preheader, or could speculatively be used as the preheader.
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
unsigned getOperandNo() const
Returns the index of this operand in the instruction that it belongs to.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
void setIsDef(bool Val=true)
Change a def to a use, or a use to a def.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Special value supplied for machine level alias analysis.
This class provides the reaching def analysis.
bool isSafeToMoveForwards(MachineInstr *From, MachineInstr *To) const
Return whether From can be moved forwards to just before To.
bool isSafeToDefRegAt(MachineInstr *MI, MCRegister PhysReg) const
Return whether a MachineInstr could be inserted at MI and safely define the given register without af...
bool isSafeToRemove(MachineInstr *MI, InstSet &ToRemove) const
Return whether removing this instruction will have no effect on the program, returning the redundant ...
MachineInstr * getLocalLiveOutMIDef(MachineBasicBlock *MBB, MCRegister PhysReg) const
Return the local MI that produces the live out value for PhysReg, or nullptr for a non-live out or no...
MachineInstr * getMIOperand(MachineInstr *MI, unsigned Idx) const
If a single MachineInstr creates the reaching definition, for MIs operand at Idx, then return it.
void getReachingLocalUses(MachineInstr *MI, MCRegister PhysReg, InstSet &Uses) const
Provides the uses, in the same block as MI, of register that MI defines.
void reset()
Re-run the analysis.
bool hasLocalDefBefore(MachineInstr *MI, MCRegister PhysReg) const
Provide whether the register has been defined in the same basic block as, and before,...
bool hasSameReachingDef(MachineInstr *A, MachineInstr *B, MCRegister PhysReg) const
Return whether A and B use the same def of PhysReg.
void getGlobalUses(MachineInstr *MI, MCRegister PhysReg, InstSet &Uses) const
Collect the users of the value stored in PhysReg, which is defined by MI.
void collectKilledOperands(MachineInstr *MI, InstSet &Dead) const
Assuming MI is dead, recursively search the incoming operands which are killed by MI and collect thos...
bool isSafeToMoveBackwards(MachineInstr *From, MachineInstr *To) const
Return whether From can be moved backwards to just after To.
void getGlobalReachingDefs(MachineInstr *MI, MCRegister PhysReg, InstSet &Defs) const
Collect all possible definitions of the value stored in PhysReg, which is used by MI.
MachineInstr * getUniqueReachingMIDef(MachineInstr *MI, MCRegister PhysReg) const
If a single MachineInstr creates the reaching definition, then return it.
bool isReachingDefLiveOut(MachineInstr *MI, MCRegister PhysReg) const
Return whether the reaching def for MI also is live out of its parent block.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
Definition: Register.h:110
A vector that has set insertion semantics.
Definition: SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
void clear()
Completely clear the SetVector.
Definition: SetVector.h:273
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
Definition: SetVector.h:254
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:401
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
iterator end() const
Definition: SmallPtrSet.h:477
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
iterator begin() const
Definition: SmallPtrSet.h:472
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:458
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
@ ValidForTailPredication
Definition: ARMBaseInfo.h:418
@ HorizontalReduction
Definition: ARMBaseInfo.h:425
@ RetainsPreviousHalfElement
Definition: ARMBaseInfo.h:422
bool isPredicated(const MCInst &MI, const MCInstrInfo *MCII)
bool isVpred(OperandType op)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool isDoLoopStart(const MachineInstr &MI)
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
int findFirstVPTPredOperandIdx(const MachineInstr &MI)
ARMVCC::VPTCodes getVPTInstrPredicate(const MachineInstr &MI, Register &PredReg)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
static bool isVCTP(const MachineInstr *MI)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2448
static bool isVPTOpcode(int Opc)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
static unsigned getTailPredVectorWidth(unsigned Opcode)
static std::array< MachineOperand, 2 > predOps(ARMCC::CondCodes Pred, unsigned PredReg=0)
Get the operands corresponding to the given Pred value.
FunctionPass * createARMLowOverheadLoopsPass()
static bool isMovRegOpcode(int Opc)
static bool isSubImmOpcode(int Opc)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
static bool isLoopStart(const MachineInstr &MI)
void RevertWhileLoopStartLR(MachineInstr *MI, const TargetInstrInfo *TII, unsigned BrOpc=ARM::t2Bcc, bool UseCmp=false)
void recomputeLivenessFlags(MachineBasicBlock &MBB)
Recomputes dead and kill flags in MBB.
static unsigned VCTPOpcodeToLSTP(unsigned Opcode, bool IsDoLoop)
void addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, Register DestReg)
void RevertLoopEnd(MachineInstr *MI, const TargetInstrInfo *TII, unsigned BrOpc=ARM::t2Bcc, bool SkipCmp=false)
void RevertLoopDec(MachineInstr *MI, const TargetInstrInfo *TII, bool SetFlags=false)
MachineBasicBlock * getWhileLoopStartTargetBB(const MachineInstr &MI)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
static bool isWhileLoopStart(const MachineInstr &MI)
static unsigned VCMPOpcodeToVPT(unsigned Opcode)
void RevertDoLoopStart(MachineInstr *MI, const TargetInstrInfo *TII)
int getAddSubImmediate(MachineInstr &MI)
void recomputeVPTBlockMask(MachineInstr &Instr)
void fullyRecomputeLiveIns(ArrayRef< MachineBasicBlock * > MBBs)
Convenience function for recomputing live-in's for a set of MBBs until the computation converges.
Definition: LivePhysRegs.h:215
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
Pair of physical register and lane mask.