LLVM 22.0.0git
InstructionCombining.cpp
Go to the documentation of this file.
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions. This pass does not modify the CFG. This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14// %Y = add i32 %X, 1
15// %Z = add i32 %Y, 1
16// into:
17// %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23// 1. If a binary operator has a constant operand, it is moved to the RHS
24// 2. Bitwise operators with constant operands are always grouped so that
25// shifts are performed first, then or's, then and's, then xor's.
26// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27// 4. All cmp instructions on boolean values are replaced with logical ops
28// 5. add X, X is represented as (X*2) => (X << 1)
29// 6. Multiplies with a power-of-two constant argument are transformed into
30// shifts.
31// ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm/ADT/APFloat.h"
37#include "llvm/ADT/APInt.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/Statistic.h"
47#include "llvm/Analysis/CFG.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/CFG.h"
64#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DIBuilder.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugInfo.h"
70#include "llvm/IR/Dominators.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/IRBuilder.h"
75#include "llvm/IR/InstrTypes.h"
76#include "llvm/IR/Instruction.h"
79#include "llvm/IR/Intrinsics.h"
80#include "llvm/IR/Metadata.h"
81#include "llvm/IR/Operator.h"
82#include "llvm/IR/PassManager.h"
84#include "llvm/IR/Type.h"
85#include "llvm/IR/Use.h"
86#include "llvm/IR/User.h"
87#include "llvm/IR/Value.h"
88#include "llvm/IR/ValueHandle.h"
93#include "llvm/Support/Debug.h"
102#include <algorithm>
103#include <cassert>
104#include <cstdint>
105#include <memory>
106#include <optional>
107#include <string>
108#include <utility>
109
110#define DEBUG_TYPE "instcombine"
112#include <optional>
113
114using namespace llvm;
115using namespace llvm::PatternMatch;
116
117STATISTIC(NumWorklistIterations,
118 "Number of instruction combining iterations performed");
119STATISTIC(NumOneIteration, "Number of functions with one iteration");
120STATISTIC(NumTwoIterations, "Number of functions with two iterations");
121STATISTIC(NumThreeIterations, "Number of functions with three iterations");
122STATISTIC(NumFourOrMoreIterations,
123 "Number of functions with four or more iterations");
124
125STATISTIC(NumCombined , "Number of insts combined");
126STATISTIC(NumConstProp, "Number of constant folds");
127STATISTIC(NumDeadInst , "Number of dead inst eliminated");
128STATISTIC(NumSunkInst , "Number of instructions sunk");
129STATISTIC(NumExpand, "Number of expansions");
130STATISTIC(NumFactor , "Number of factorizations");
131STATISTIC(NumReassoc , "Number of reassociations");
132DEBUG_COUNTER(VisitCounter, "instcombine-visit",
133 "Controls which instructions are visited");
134
135static cl::opt<bool> EnableCodeSinking("instcombine-code-sinking",
136 cl::desc("Enable code sinking"),
137 cl::init(true));
138
140 "instcombine-max-sink-users", cl::init(32),
141 cl::desc("Maximum number of undroppable users for instruction sinking"));
142
144MaxArraySize("instcombine-maxarray-size", cl::init(1024),
145 cl::desc("Maximum array size considered when doing a combine"));
146
147namespace llvm {
149} // end namespace llvm
150
151// FIXME: Remove this flag when it is no longer necessary to convert
152// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
153// increases variable availability at the cost of accuracy. Variables that
154// cannot be promoted by mem2reg or SROA will be described as living in memory
155// for their entire lifetime. However, passes like DSE and instcombine can
156// delete stores to the alloca, leading to misleading and inaccurate debug
157// information. This flag can be removed when those passes are fixed.
158static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
159 cl::Hidden, cl::init(true));
160
161std::optional<Instruction *>
163 // Handle target specific intrinsics
164 if (II.getCalledFunction()->isTargetIntrinsic()) {
165 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*this, II);
166 }
167 return std::nullopt;
168}
169
171 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
172 bool &KnownBitsComputed) {
173 // Handle target specific intrinsics
174 if (II.getCalledFunction()->isTargetIntrinsic()) {
175 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
176 *this, II, DemandedMask, Known, KnownBitsComputed);
177 }
178 return std::nullopt;
179}
180
182 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
183 APInt &PoisonElts2, APInt &PoisonElts3,
184 std::function<void(Instruction *, unsigned, APInt, APInt &)>
185 SimplifyAndSetOp) {
186 // Handle target specific intrinsics
187 if (II.getCalledFunction()->isTargetIntrinsic()) {
188 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
189 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
190 SimplifyAndSetOp);
191 }
192 return std::nullopt;
193}
194
195bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
196 // Approved exception for TTI use: This queries a legality property of the
197 // target, not an profitability heuristic. Ideally this should be part of
198 // DataLayout instead.
199 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
200}
201
202Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) {
203 if (!RewriteGEP)
204 return llvm::emitGEPOffset(&Builder, DL, GEP);
205
206 IRBuilderBase::InsertPointGuard Guard(Builder);
207 auto *Inst = dyn_cast<Instruction>(GEP);
208 if (Inst)
209 Builder.SetInsertPoint(Inst);
210
211 Value *Offset = EmitGEPOffset(GEP);
212 // Rewrite non-trivial GEPs to avoid duplicating the offset arithmetic.
213 if (Inst && !GEP->hasAllConstantIndices() &&
214 !GEP->getSourceElementType()->isIntegerTy(8)) {
216 *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(),
217 Offset, "", GEP->getNoWrapFlags()));
219 }
220 return Offset;
221}
222
223Value *InstCombinerImpl::EmitGEPOffsets(ArrayRef<GEPOperator *> GEPs,
224 GEPNoWrapFlags NW, Type *IdxTy,
225 bool RewriteGEPs) {
226 auto Add = [&](Value *Sum, Value *Offset) -> Value * {
227 if (Sum)
228 return Builder.CreateAdd(Sum, Offset, "", NW.hasNoUnsignedWrap(),
229 NW.isInBounds());
230 else
231 return Offset;
232 };
233
234 Value *Sum = nullptr;
235 Value *OneUseSum = nullptr;
236 Value *OneUseBase = nullptr;
237 GEPNoWrapFlags OneUseFlags = GEPNoWrapFlags::all();
238 for (GEPOperator *GEP : reverse(GEPs)) {
239 Value *Offset;
240 {
241 // Expand the offset at the point of the previous GEP to enable rewriting.
242 // However, use the original insertion point for calculating Sum.
243 IRBuilderBase::InsertPointGuard Guard(Builder);
244 auto *Inst = dyn_cast<Instruction>(GEP);
245 if (RewriteGEPs && Inst)
246 Builder.SetInsertPoint(Inst);
247
249 if (Offset->getType() != IdxTy)
250 Offset = Builder.CreateVectorSplat(
251 cast<VectorType>(IdxTy)->getElementCount(), Offset);
252 if (GEP->hasOneUse()) {
253 // Offsets of one-use GEPs will be merged into the next multi-use GEP.
254 OneUseSum = Add(OneUseSum, Offset);
255 OneUseFlags = OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags());
256 if (!OneUseBase)
257 OneUseBase = GEP->getPointerOperand();
258 continue;
259 }
260
261 if (OneUseSum)
262 Offset = Add(OneUseSum, Offset);
263
264 // Rewrite the GEP to reuse the computed offset. This also includes
265 // offsets from preceding one-use GEPs.
266 if (RewriteGEPs && Inst &&
267 !(GEP->getSourceElementType()->isIntegerTy(8) &&
268 GEP->getOperand(1) == Offset)) {
270 *Inst,
271 Builder.CreatePtrAdd(
272 OneUseBase ? OneUseBase : GEP->getPointerOperand(), Offset, "",
273 OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags())));
275 }
276 }
277
278 Sum = Add(Sum, Offset);
279 OneUseSum = OneUseBase = nullptr;
280 OneUseFlags = GEPNoWrapFlags::all();
281 }
282 if (OneUseSum)
283 Sum = Add(Sum, OneUseSum);
284 if (!Sum)
285 return Constant::getNullValue(IdxTy);
286 return Sum;
287}
288
289/// Legal integers and common types are considered desirable. This is used to
290/// avoid creating instructions with types that may not be supported well by the
291/// the backend.
292/// NOTE: This treats i8, i16 and i32 specially because they are common
293/// types in frontend languages.
294bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
295 switch (BitWidth) {
296 case 8:
297 case 16:
298 case 32:
299 return true;
300 default:
301 return DL.isLegalInteger(BitWidth);
302 }
303}
304
305/// Return true if it is desirable to convert an integer computation from a
306/// given bit width to a new bit width.
307/// We don't want to convert from a legal or desirable type (like i8) to an
308/// illegal type or from a smaller to a larger illegal type. A width of '1'
309/// is always treated as a desirable type because i1 is a fundamental type in
310/// IR, and there are many specialized optimizations for i1 types.
311/// Common/desirable widths are equally treated as legal to convert to, in
312/// order to open up more combining opportunities.
313bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
314 unsigned ToWidth) const {
315 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
316 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
317
318 // Convert to desirable widths even if they are not legal types.
319 // Only shrink types, to prevent infinite loops.
320 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
321 return true;
322
323 // If this is a legal or desiable integer from type, and the result would be
324 // an illegal type, don't do the transformation.
325 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
326 return false;
327
328 // Otherwise, if both are illegal, do not increase the size of the result. We
329 // do allow things like i160 -> i64, but not i64 -> i160.
330 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
331 return false;
332
333 return true;
334}
335
336/// Return true if it is desirable to convert a computation from 'From' to 'To'.
337/// We don't want to convert from a legal to an illegal type or from a smaller
338/// to a larger illegal type. i1 is always treated as a legal type because it is
339/// a fundamental type in IR, and there are many specialized optimizations for
340/// i1 types.
341bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
342 // TODO: This could be extended to allow vectors. Datalayout changes might be
343 // needed to properly support that.
344 if (!From->isIntegerTy() || !To->isIntegerTy())
345 return false;
346
347 unsigned FromWidth = From->getPrimitiveSizeInBits();
348 unsigned ToWidth = To->getPrimitiveSizeInBits();
349 return shouldChangeType(FromWidth, ToWidth);
350}
351
352// Return true, if No Signed Wrap should be maintained for I.
353// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
354// where both B and C should be ConstantInts, results in a constant that does
355// not overflow. This function only handles the Add/Sub/Mul opcodes. For
356// all other opcodes, the function conservatively returns false.
359 if (!OBO || !OBO->hasNoSignedWrap())
360 return false;
361
362 const APInt *BVal, *CVal;
363 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
364 return false;
365
366 // We reason about Add/Sub/Mul Only.
367 bool Overflow = false;
368 switch (I.getOpcode()) {
369 case Instruction::Add:
370 (void)BVal->sadd_ov(*CVal, Overflow);
371 break;
372 case Instruction::Sub:
373 (void)BVal->ssub_ov(*CVal, Overflow);
374 break;
375 case Instruction::Mul:
376 (void)BVal->smul_ov(*CVal, Overflow);
377 break;
378 default:
379 // Conservatively return false for other opcodes.
380 return false;
381 }
382 return !Overflow;
383}
384
387 return OBO && OBO->hasNoUnsignedWrap();
388}
389
392 return OBO && OBO->hasNoSignedWrap();
393}
394
395/// Conservatively clears subclassOptionalData after a reassociation or
396/// commutation. We preserve fast-math flags when applicable as they can be
397/// preserved.
400 if (!FPMO) {
401 I.clearSubclassOptionalData();
402 return;
403 }
404
405 FastMathFlags FMF = I.getFastMathFlags();
406 I.clearSubclassOptionalData();
407 I.setFastMathFlags(FMF);
408}
409
410/// Combine constant operands of associative operations either before or after a
411/// cast to eliminate one of the associative operations:
412/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
413/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
415 InstCombinerImpl &IC) {
416 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
417 if (!Cast || !Cast->hasOneUse())
418 return false;
419
420 // TODO: Enhance logic for other casts and remove this check.
421 auto CastOpcode = Cast->getOpcode();
422 if (CastOpcode != Instruction::ZExt)
423 return false;
424
425 // TODO: Enhance logic for other BinOps and remove this check.
426 if (!BinOp1->isBitwiseLogicOp())
427 return false;
428
429 auto AssocOpcode = BinOp1->getOpcode();
430 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
431 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
432 return false;
433
434 Constant *C1, *C2;
435 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
436 !match(BinOp2->getOperand(1), m_Constant(C2)))
437 return false;
438
439 // TODO: This assumes a zext cast.
440 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
441 // to the destination type might lose bits.
442
443 // Fold the constants together in the destination type:
444 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
445 const DataLayout &DL = IC.getDataLayout();
446 Type *DestTy = C1->getType();
447 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
448 if (!CastC2)
449 return false;
450 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
451 if (!FoldedC)
452 return false;
453
454 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
455 IC.replaceOperand(*BinOp1, 1, FoldedC);
457 Cast->dropPoisonGeneratingFlags();
458 return true;
459}
460
461// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
462// inttoptr ( ptrtoint (x) ) --> x
463Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
464 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
465 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
466 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
467 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
468 Type *CastTy = IntToPtr->getDestTy();
469 if (PtrToInt &&
470 CastTy->getPointerAddressSpace() ==
471 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
472 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
473 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
474 return PtrToInt->getOperand(0);
475 }
476 return nullptr;
477}
478
479/// This performs a few simplifications for operators that are associative or
480/// commutative:
481///
482/// Commutative operators:
483///
484/// 1. Order operands such that they are listed from right (least complex) to
485/// left (most complex). This puts constants before unary operators before
486/// binary operators.
487///
488/// Associative operators:
489///
490/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
491/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
492///
493/// Associative and commutative operators:
494///
495/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
496/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
497/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
498/// if C1 and C2 are constants.
500 Instruction::BinaryOps Opcode = I.getOpcode();
501 bool Changed = false;
502
503 do {
504 // Order operands such that they are listed from right (least complex) to
505 // left (most complex). This puts constants before unary operators before
506 // binary operators.
507 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
508 getComplexity(I.getOperand(1)))
509 Changed = !I.swapOperands();
510
511 if (I.isCommutative()) {
512 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
513 replaceOperand(I, 0, Pair->first);
514 replaceOperand(I, 1, Pair->second);
515 Changed = true;
516 }
517 }
518
519 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
520 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
521
522 if (I.isAssociative()) {
523 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
524 if (Op0 && Op0->getOpcode() == Opcode) {
525 Value *A = Op0->getOperand(0);
526 Value *B = Op0->getOperand(1);
527 Value *C = I.getOperand(1);
528
529 // Does "B op C" simplify?
530 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
531 // It simplifies to V. Form "A op V".
532 replaceOperand(I, 0, A);
533 replaceOperand(I, 1, V);
534 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
535 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
536
537 // Conservatively clear all optional flags since they may not be
538 // preserved by the reassociation. Reset nsw/nuw based on the above
539 // analysis.
541
542 // Note: this is only valid because SimplifyBinOp doesn't look at
543 // the operands to Op0.
544 if (IsNUW)
545 I.setHasNoUnsignedWrap(true);
546
547 if (IsNSW)
548 I.setHasNoSignedWrap(true);
549
550 Changed = true;
551 ++NumReassoc;
552 continue;
553 }
554 }
555
556 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
557 if (Op1 && Op1->getOpcode() == Opcode) {
558 Value *A = I.getOperand(0);
559 Value *B = Op1->getOperand(0);
560 Value *C = Op1->getOperand(1);
561
562 // Does "A op B" simplify?
563 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
564 // It simplifies to V. Form "V op C".
565 replaceOperand(I, 0, V);
566 replaceOperand(I, 1, C);
567 // Conservatively clear the optional flags, since they may not be
568 // preserved by the reassociation.
570 Changed = true;
571 ++NumReassoc;
572 continue;
573 }
574 }
575 }
576
577 if (I.isAssociative() && I.isCommutative()) {
578 if (simplifyAssocCastAssoc(&I, *this)) {
579 Changed = true;
580 ++NumReassoc;
581 continue;
582 }
583
584 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
585 if (Op0 && Op0->getOpcode() == Opcode) {
586 Value *A = Op0->getOperand(0);
587 Value *B = Op0->getOperand(1);
588 Value *C = I.getOperand(1);
589
590 // Does "C op A" simplify?
591 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
592 // It simplifies to V. Form "V op B".
593 replaceOperand(I, 0, V);
594 replaceOperand(I, 1, B);
595 // Conservatively clear the optional flags, since they may not be
596 // preserved by the reassociation.
598 Changed = true;
599 ++NumReassoc;
600 continue;
601 }
602 }
603
604 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
605 if (Op1 && Op1->getOpcode() == Opcode) {
606 Value *A = I.getOperand(0);
607 Value *B = Op1->getOperand(0);
608 Value *C = Op1->getOperand(1);
609
610 // Does "C op A" simplify?
611 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
612 // It simplifies to V. Form "B op V".
613 replaceOperand(I, 0, B);
614 replaceOperand(I, 1, V);
615 // Conservatively clear the optional flags, since they may not be
616 // preserved by the reassociation.
618 Changed = true;
619 ++NumReassoc;
620 continue;
621 }
622 }
623
624 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
625 // if C1 and C2 are constants.
626 Value *A, *B;
627 Constant *C1, *C2, *CRes;
628 if (Op0 && Op1 &&
629 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
630 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
631 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
632 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
633 bool IsNUW = hasNoUnsignedWrap(I) &&
634 hasNoUnsignedWrap(*Op0) &&
635 hasNoUnsignedWrap(*Op1);
636 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
637 BinaryOperator::CreateNUW(Opcode, A, B) :
638 BinaryOperator::Create(Opcode, A, B);
639
640 if (isa<FPMathOperator>(NewBO)) {
641 FastMathFlags Flags = I.getFastMathFlags() &
642 Op0->getFastMathFlags() &
643 Op1->getFastMathFlags();
644 NewBO->setFastMathFlags(Flags);
645 }
646 InsertNewInstWith(NewBO, I.getIterator());
647 NewBO->takeName(Op1);
648 replaceOperand(I, 0, NewBO);
649 replaceOperand(I, 1, CRes);
650 // Conservatively clear the optional flags, since they may not be
651 // preserved by the reassociation.
653 if (IsNUW)
654 I.setHasNoUnsignedWrap(true);
655
656 Changed = true;
657 continue;
658 }
659 }
660
661 // No further simplifications.
662 return Changed;
663 } while (true);
664}
665
666/// Return whether "X LOp (Y ROp Z)" is always equal to
667/// "(X LOp Y) ROp (X LOp Z)".
670 // X & (Y | Z) <--> (X & Y) | (X & Z)
671 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
672 if (LOp == Instruction::And)
673 return ROp == Instruction::Or || ROp == Instruction::Xor;
674
675 // X | (Y & Z) <--> (X | Y) & (X | Z)
676 if (LOp == Instruction::Or)
677 return ROp == Instruction::And;
678
679 // X * (Y + Z) <--> (X * Y) + (X * Z)
680 // X * (Y - Z) <--> (X * Y) - (X * Z)
681 if (LOp == Instruction::Mul)
682 return ROp == Instruction::Add || ROp == Instruction::Sub;
683
684 return false;
685}
686
687/// Return whether "(X LOp Y) ROp Z" is always equal to
688/// "(X ROp Z) LOp (Y ROp Z)".
692 return leftDistributesOverRight(ROp, LOp);
693
694 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
696
697 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
698 // but this requires knowing that the addition does not overflow and other
699 // such subtleties.
700}
701
702/// This function returns identity value for given opcode, which can be used to
703/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
705 if (isa<Constant>(V))
706 return nullptr;
707
708 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
709}
710
711/// This function predicates factorization using distributive laws. By default,
712/// it just returns the 'Op' inputs. But for special-cases like
713/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
714/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
715/// allow more factorization opportunities.
718 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
719 assert(Op && "Expected a binary operator");
720 LHS = Op->getOperand(0);
721 RHS = Op->getOperand(1);
722 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
723 Constant *C;
724 if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) {
725 // X << C --> X * (1 << C)
727 Instruction::Shl, ConstantInt::get(Op->getType(), 1), C);
728 assert(RHS && "Constant folding of immediate constants failed");
729 return Instruction::Mul;
730 }
731 // TODO: We can add other conversions e.g. shr => div etc.
732 }
733 if (Instruction::isBitwiseLogicOp(TopOpcode)) {
734 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
736 // lshr nneg C, X --> ashr nneg C, X
737 return Instruction::AShr;
738 }
739 }
740 return Op->getOpcode();
741}
742
743/// This tries to simplify binary operations by factorizing out common terms
744/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
747 Instruction::BinaryOps InnerOpcode, Value *A,
748 Value *B, Value *C, Value *D) {
749 assert(A && B && C && D && "All values must be provided");
750
751 Value *V = nullptr;
752 Value *RetVal = nullptr;
753 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
754 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
755
756 // Does "X op' Y" always equal "Y op' X"?
757 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
758
759 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
760 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
761 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
762 // commutative case, "(A op' B) op (C op' A)"?
763 if (A == C || (InnerCommutative && A == D)) {
764 if (A != C)
765 std::swap(C, D);
766 // Consider forming "A op' (B op D)".
767 // If "B op D" simplifies then it can be formed with no cost.
768 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
769
770 // If "B op D" doesn't simplify then only go on if one of the existing
771 // operations "A op' B" and "C op' D" will be zapped as no longer used.
772 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
773 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
774 if (V)
775 RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
776 }
777 }
778
779 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
780 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
781 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
782 // commutative case, "(A op' B) op (B op' D)"?
783 if (B == D || (InnerCommutative && B == C)) {
784 if (B != D)
785 std::swap(C, D);
786 // Consider forming "(A op C) op' B".
787 // If "A op C" simplifies then it can be formed with no cost.
788 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
789
790 // If "A op C" doesn't simplify then only go on if one of the existing
791 // operations "A op' B" and "C op' D" will be zapped as no longer used.
792 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
793 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
794 if (V)
795 RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
796 }
797 }
798
799 if (!RetVal)
800 return nullptr;
801
802 ++NumFactor;
803 RetVal->takeName(&I);
804
805 // Try to add no-overflow flags to the final value.
806 if (isa<BinaryOperator>(RetVal)) {
807 bool HasNSW = false;
808 bool HasNUW = false;
810 HasNSW = I.hasNoSignedWrap();
811 HasNUW = I.hasNoUnsignedWrap();
812 }
813 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
814 HasNSW &= LOBO->hasNoSignedWrap();
815 HasNUW &= LOBO->hasNoUnsignedWrap();
816 }
817
818 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
819 HasNSW &= ROBO->hasNoSignedWrap();
820 HasNUW &= ROBO->hasNoUnsignedWrap();
821 }
822
823 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
824 // We can propagate 'nsw' if we know that
825 // %Y = mul nsw i16 %X, C
826 // %Z = add nsw i16 %Y, %X
827 // =>
828 // %Z = mul nsw i16 %X, C+1
829 //
830 // iff C+1 isn't INT_MIN
831 const APInt *CInt;
832 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
833 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
834
835 // nuw can be propagated with any constant or nuw value.
836 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
837 }
838 }
839 return RetVal;
840}
841
842// If `I` has one Const operand and the other matches `(ctpop (not x))`,
843// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
844// This is only useful is the new subtract can fold so we only handle the
845// following cases:
846// 1) (add/sub/disjoint_or C, (ctpop (not x))
847// -> (add/sub/disjoint_or C', (ctpop x))
848// 1) (cmp pred C, (ctpop (not x))
849// -> (cmp pred C', (ctpop x))
851 unsigned Opc = I->getOpcode();
852 unsigned ConstIdx = 1;
853 switch (Opc) {
854 default:
855 return nullptr;
856 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
857 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
858 // is constant.
859 case Instruction::Sub:
860 ConstIdx = 0;
861 break;
862 case Instruction::ICmp:
863 // Signed predicates aren't correct in some edge cases like for i2 types, as
864 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
865 // comparisons against it are simplfied to unsigned.
866 if (cast<ICmpInst>(I)->isSigned())
867 return nullptr;
868 break;
869 case Instruction::Or:
870 if (!match(I, m_DisjointOr(m_Value(), m_Value())))
871 return nullptr;
872 [[fallthrough]];
873 case Instruction::Add:
874 break;
875 }
876
877 Value *Op;
878 // Find ctpop.
879 if (!match(I->getOperand(1 - ConstIdx),
881 return nullptr;
882
883 Constant *C;
884 // Check other operand is ImmConstant.
885 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
886 return nullptr;
887
888 Type *Ty = Op->getType();
889 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
890 // Need extra check for icmp. Note if this check is true, it generally means
891 // the icmp will simplify to true/false.
892 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) {
893 Constant *Cmp =
895 if (!Cmp || !Cmp->isZeroValue())
896 return nullptr;
897 }
898
899 // Check we can invert `(not x)` for free.
900 bool Consumes = false;
901 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
902 return nullptr;
903 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
904 assert(NotOp != nullptr &&
905 "Desync between isFreeToInvert and getFreelyInverted");
906
907 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
908
909 Value *R = nullptr;
910
911 // Do the transformation here to avoid potentially introducing an infinite
912 // loop.
913 switch (Opc) {
914 case Instruction::Sub:
915 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
916 break;
917 case Instruction::Or:
918 case Instruction::Add:
919 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
920 break;
921 case Instruction::ICmp:
922 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
923 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
924 break;
925 default:
926 llvm_unreachable("Unhandled Opcode");
927 }
928 assert(R != nullptr);
929 return replaceInstUsesWith(*I, R);
930}
931
932// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
933// IFF
934// 1) the logic_shifts match
935// 2) either both binops are binops and one is `and` or
936// BinOp1 is `and`
937// (logic_shift (inv_logic_shift C1, C), C) == C1 or
938//
939// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
940//
941// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
942// IFF
943// 1) the logic_shifts match
944// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
945//
946// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
947//
948// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
949// IFF
950// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
951// 2) Binop2 is `not`
952//
953// -> (arithmetic_shift Binop1((not X), Y), Amt)
954
956 const DataLayout &DL = I.getDataLayout();
957 auto IsValidBinOpc = [](unsigned Opc) {
958 switch (Opc) {
959 default:
960 return false;
961 case Instruction::And:
962 case Instruction::Or:
963 case Instruction::Xor:
964 case Instruction::Add:
965 // Skip Sub as we only match constant masks which will canonicalize to use
966 // add.
967 return true;
968 }
969 };
970
971 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
972 // constraints.
973 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
974 unsigned ShOpc) {
975 assert(ShOpc != Instruction::AShr);
976 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
977 ShOpc == Instruction::Shl;
978 };
979
980 auto GetInvShift = [](unsigned ShOpc) {
981 assert(ShOpc != Instruction::AShr);
982 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
983 };
984
985 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
986 unsigned ShOpc, Constant *CMask,
987 Constant *CShift) {
988 // If the BinOp1 is `and` we don't need to check the mask.
989 if (BinOpc1 == Instruction::And)
990 return true;
991
992 // For all other possible transfers we need complete distributable
993 // binop/shift (anything but `add` + `lshr`).
994 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
995 return false;
996
997 // If BinOp2 is `and`, any mask works (this only really helps for non-splat
998 // vecs, otherwise the mask will be simplified and the following check will
999 // handle it).
1000 if (BinOpc2 == Instruction::And)
1001 return true;
1002
1003 // Otherwise, need mask that meets the below requirement.
1004 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
1005 Constant *MaskInvShift =
1006 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1007 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
1008 CMask;
1009 };
1010
1011 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
1012 Constant *CMask, *CShift;
1013 Value *X, *Y, *ShiftedX, *Mask, *Shift;
1014 if (!match(I.getOperand(ShOpnum),
1015 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
1016 return nullptr;
1017 if (!match(I.getOperand(1 - ShOpnum),
1019 m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))),
1020 m_Value(ShiftedX)),
1021 m_Value(Mask))))
1022 return nullptr;
1023 // Make sure we are matching instruction shifts and not ConstantExpr
1024 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
1025 auto *IX = dyn_cast<Instruction>(ShiftedX);
1026 if (!IY || !IX)
1027 return nullptr;
1028
1029 // LHS and RHS need same shift opcode
1030 unsigned ShOpc = IY->getOpcode();
1031 if (ShOpc != IX->getOpcode())
1032 return nullptr;
1033
1034 // Make sure binop is real instruction and not ConstantExpr
1035 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
1036 if (!BO2)
1037 return nullptr;
1038
1039 unsigned BinOpc = BO2->getOpcode();
1040 // Make sure we have valid binops.
1041 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
1042 return nullptr;
1043
1044 if (ShOpc == Instruction::AShr) {
1045 if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
1046 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
1047 Value *NotX = Builder.CreateNot(X);
1048 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
1050 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
1051 }
1052
1053 return nullptr;
1054 }
1055
1056 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
1057 // distribute to drop the shift irrelevant of constants.
1058 if (BinOpc == I.getOpcode() &&
1059 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
1060 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
1061 Value *NewBinOp1 = Builder.CreateBinOp(
1062 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
1063 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
1064 }
1065
1066 // Otherwise we can only distribute by constant shifting the mask, so
1067 // ensure we have constants.
1068 if (!match(Shift, m_ImmConstant(CShift)))
1069 return nullptr;
1070 if (!match(Mask, m_ImmConstant(CMask)))
1071 return nullptr;
1072
1073 // Check if we can distribute the binops.
1074 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1075 return nullptr;
1076
1077 Constant *NewCMask =
1078 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1079 Value *NewBinOp2 = Builder.CreateBinOp(
1080 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
1081 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
1082 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
1083 NewBinOp1, CShift);
1084 };
1085
1086 if (Instruction *R = MatchBinOp(0))
1087 return R;
1088 return MatchBinOp(1);
1089}
1090
1091// (Binop (zext C), (select C, T, F))
1092// -> (select C, (binop 1, T), (binop 0, F))
1093//
1094// (Binop (sext C), (select C, T, F))
1095// -> (select C, (binop -1, T), (binop 0, F))
1096//
1097// Attempt to simplify binary operations into a select with folded args, when
1098// one operand of the binop is a select instruction and the other operand is a
1099// zext/sext extension, whose value is the select condition.
1102 // TODO: this simplification may be extended to any speculatable instruction,
1103 // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1104 Instruction::BinaryOps Opc = I.getOpcode();
1105 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1106 Value *A, *CondVal, *TrueVal, *FalseVal;
1107 Value *CastOp;
1108
1109 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1110 return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1111 A->getType()->getScalarSizeInBits() == 1 &&
1112 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1113 m_Value(FalseVal)));
1114 };
1115
1116 // Make sure one side of the binop is a select instruction, and the other is a
1117 // zero/sign extension operating on a i1.
1118 if (MatchSelectAndCast(LHS, RHS))
1119 CastOp = LHS;
1120 else if (MatchSelectAndCast(RHS, LHS))
1121 CastOp = RHS;
1122 else
1123 return nullptr;
1124
1125 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1126 bool IsCastOpRHS = (CastOp == RHS);
1127 bool IsZExt = isa<ZExtInst>(CastOp);
1128 Constant *C;
1129
1130 if (IsTrueArm) {
1131 C = Constant::getNullValue(V->getType());
1132 } else if (IsZExt) {
1133 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1134 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1135 } else {
1136 C = Constant::getAllOnesValue(V->getType());
1137 }
1138
1139 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1140 : Builder.CreateBinOp(Opc, C, V);
1141 };
1142
1143 // If the value used in the zext/sext is the select condition, or the negated
1144 // of the select condition, the binop can be simplified.
1145 if (CondVal == A) {
1146 Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1147 return SelectInst::Create(CondVal, NewTrueVal,
1148 NewFoldedConst(true, FalseVal));
1149 }
1150
1151 if (match(A, m_Not(m_Specific(CondVal)))) {
1152 Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1153 return SelectInst::Create(CondVal, NewTrueVal,
1154 NewFoldedConst(false, FalseVal));
1155 }
1156
1157 return nullptr;
1158}
1159
1161 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1164 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1165 Value *A, *B, *C, *D;
1166 Instruction::BinaryOps LHSOpcode, RHSOpcode;
1167
1168 if (Op0)
1169 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1170 if (Op1)
1171 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1172
1173 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
1174 // a common term.
1175 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1176 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1177 return V;
1178
1179 // The instruction has the form "(A op' B) op (C)". Try to factorize common
1180 // term.
1181 if (Op0)
1182 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1183 if (Value *V =
1184 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1185 return V;
1186
1187 // The instruction has the form "(B) op (C op' D)". Try to factorize common
1188 // term.
1189 if (Op1)
1190 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1191 if (Value *V =
1192 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1193 return V;
1194
1195 return nullptr;
1196}
1197
1198/// This tries to simplify binary operations which some other binary operation
1199/// distributes over either by factorizing out common terms
1200/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1201/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1202/// Returns the simplified value, or null if it didn't simplify.
1204 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1207 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1208
1209 // Factorization.
1210 if (Value *R = tryFactorizationFolds(I))
1211 return R;
1212
1213 // Expansion.
1214 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1215 // The instruction has the form "(A op' B) op C". See if expanding it out
1216 // to "(A op C) op' (B op C)" results in simplifications.
1217 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1218 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1219
1220 // Disable the use of undef because it's not safe to distribute undef.
1221 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1222 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1223 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1224
1225 // Do "A op C" and "B op C" both simplify?
1226 if (L && R) {
1227 // They do! Return "L op' R".
1228 ++NumExpand;
1229 C = Builder.CreateBinOp(InnerOpcode, L, R);
1230 C->takeName(&I);
1231 return C;
1232 }
1233
1234 // Does "A op C" simplify to the identity value for the inner opcode?
1235 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1236 // They do! Return "B op C".
1237 ++NumExpand;
1238 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1239 C->takeName(&I);
1240 return C;
1241 }
1242
1243 // Does "B op C" simplify to the identity value for the inner opcode?
1244 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1245 // They do! Return "A op C".
1246 ++NumExpand;
1247 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1248 C->takeName(&I);
1249 return C;
1250 }
1251 }
1252
1253 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1254 // The instruction has the form "A op (B op' C)". See if expanding it out
1255 // to "(A op B) op' (A op C)" results in simplifications.
1256 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1257 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1258
1259 // Disable the use of undef because it's not safe to distribute undef.
1260 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1261 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1262 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1263
1264 // Do "A op B" and "A op C" both simplify?
1265 if (L && R) {
1266 // They do! Return "L op' R".
1267 ++NumExpand;
1268 A = Builder.CreateBinOp(InnerOpcode, L, R);
1269 A->takeName(&I);
1270 return A;
1271 }
1272
1273 // Does "A op B" simplify to the identity value for the inner opcode?
1274 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1275 // They do! Return "A op C".
1276 ++NumExpand;
1277 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1278 A->takeName(&I);
1279 return A;
1280 }
1281
1282 // Does "A op C" simplify to the identity value for the inner opcode?
1283 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1284 // They do! Return "A op B".
1285 ++NumExpand;
1286 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1287 A->takeName(&I);
1288 return A;
1289 }
1290 }
1291
1292 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1293}
1294
1295static std::optional<std::pair<Value *, Value *>>
1297 if (LHS->getParent() != RHS->getParent())
1298 return std::nullopt;
1299
1300 if (LHS->getNumIncomingValues() < 2)
1301 return std::nullopt;
1302
1303 if (!equal(LHS->blocks(), RHS->blocks()))
1304 return std::nullopt;
1305
1306 Value *L0 = LHS->getIncomingValue(0);
1307 Value *R0 = RHS->getIncomingValue(0);
1308
1309 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1310 Value *L1 = LHS->getIncomingValue(I);
1311 Value *R1 = RHS->getIncomingValue(I);
1312
1313 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1314 continue;
1315
1316 return std::nullopt;
1317 }
1318
1319 return std::optional(std::pair(L0, R0));
1320}
1321
1322std::optional<std::pair<Value *, Value *>>
1323InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1326 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1327 return std::nullopt;
1328 switch (LHSInst->getOpcode()) {
1329 case Instruction::PHI:
1331 case Instruction::Select: {
1332 Value *Cond = LHSInst->getOperand(0);
1333 Value *TrueVal = LHSInst->getOperand(1);
1334 Value *FalseVal = LHSInst->getOperand(2);
1335 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1336 FalseVal == RHSInst->getOperand(1))
1337 return std::pair(TrueVal, FalseVal);
1338 return std::nullopt;
1339 }
1340 case Instruction::Call: {
1341 // Match min(a, b) and max(a, b)
1342 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1343 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1344 if (LHSMinMax && RHSMinMax &&
1345 LHSMinMax->getPredicate() ==
1347 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1348 LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1349 (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1350 LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1351 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1352 return std::nullopt;
1353 }
1354 default:
1355 return std::nullopt;
1356 }
1357}
1358
1360 Value *LHS,
1361 Value *RHS) {
1362 Value *A, *B, *C, *D, *E, *F;
1363 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1364 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1365 if (!LHSIsSelect && !RHSIsSelect)
1366 return nullptr;
1367
1369 ? nullptr
1370 : cast<SelectInst>(LHSIsSelect ? LHS : RHS);
1371
1372 FastMathFlags FMF;
1374 if (isa<FPMathOperator>(&I)) {
1375 FMF = I.getFastMathFlags();
1376 Builder.setFastMathFlags(FMF);
1377 }
1378
1379 Instruction::BinaryOps Opcode = I.getOpcode();
1380 SimplifyQuery Q = SQ.getWithInstruction(&I);
1381
1382 Value *Cond, *True = nullptr, *False = nullptr;
1383
1384 // Special-case for add/negate combination. Replace the zero in the negation
1385 // with the trailing add operand:
1386 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1387 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1388 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1389 // We need an 'add' and exactly 1 arm of the select to have been simplified.
1390 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1391 return nullptr;
1392 Value *N;
1393 if (True && match(FVal, m_Neg(m_Value(N)))) {
1394 Value *Sub = Builder.CreateSub(Z, N);
1395 return Builder.CreateSelect(Cond, True, Sub, I.getName(), SI);
1396 }
1397 if (False && match(TVal, m_Neg(m_Value(N)))) {
1398 Value *Sub = Builder.CreateSub(Z, N);
1399 return Builder.CreateSelect(Cond, Sub, False, I.getName(), SI);
1400 }
1401 return nullptr;
1402 };
1403
1404 if (LHSIsSelect && RHSIsSelect && A == D) {
1405 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1406 Cond = A;
1407 True = simplifyBinOp(Opcode, B, E, FMF, Q);
1408 False = simplifyBinOp(Opcode, C, F, FMF, Q);
1409
1410 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1411 if (False && !True)
1412 True = Builder.CreateBinOp(Opcode, B, E);
1413 else if (True && !False)
1414 False = Builder.CreateBinOp(Opcode, C, F);
1415 }
1416 } else if (LHSIsSelect && LHS->hasOneUse()) {
1417 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1418 Cond = A;
1419 True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1420 False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1421 if (Value *NewSel = foldAddNegate(B, C, RHS))
1422 return NewSel;
1423 } else if (RHSIsSelect && RHS->hasOneUse()) {
1424 // X op (D ? E : F) -> D ? (X op E) : (X op F)
1425 Cond = D;
1426 True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1427 False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1428 if (Value *NewSel = foldAddNegate(E, F, LHS))
1429 return NewSel;
1430 }
1431
1432 if (!True || !False)
1433 return nullptr;
1434
1435 Value *NewSI = Builder.CreateSelect(Cond, True, False, I.getName(), SI);
1436 NewSI->takeName(&I);
1437 return NewSI;
1438}
1439
1440/// Freely adapt every user of V as-if V was changed to !V.
1441/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1443 assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1444 for (User *U : make_early_inc_range(I->users())) {
1445 if (U == IgnoredUser)
1446 continue; // Don't consider this user.
1447 switch (cast<Instruction>(U)->getOpcode()) {
1448 case Instruction::Select: {
1449 auto *SI = cast<SelectInst>(U);
1450 SI->swapValues();
1451 SI->swapProfMetadata();
1452 break;
1453 }
1454 case Instruction::Br: {
1456 BI->swapSuccessors(); // swaps prof metadata too
1457 if (BPI)
1458 BPI->swapSuccEdgesProbabilities(BI->getParent());
1459 break;
1460 }
1461 case Instruction::Xor:
1463 // Add to worklist for DCE.
1465 break;
1466 default:
1467 llvm_unreachable("Got unexpected user - out of sync with "
1468 "canFreelyInvertAllUsersOf() ?");
1469 }
1470 }
1471
1472 // Update pre-existing debug value uses.
1473 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1474 llvm::findDbgValues(I, DbgVariableRecords);
1475
1476 for (DbgVariableRecord *DbgVal : DbgVariableRecords) {
1477 SmallVector<uint64_t, 1> Ops = {dwarf::DW_OP_not};
1478 for (unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
1479 Idx != End; ++Idx)
1480 if (DbgVal->getVariableLocationOp(Idx) == I)
1481 DbgVal->setExpression(
1482 DIExpression::appendOpsToArg(DbgVal->getExpression(), Ops, Idx));
1483 }
1484}
1485
1486/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1487/// constant zero (which is the 'negate' form).
1488Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1489 Value *NegV;
1490 if (match(V, m_Neg(m_Value(NegV))))
1491 return NegV;
1492
1493 // Constants can be considered to be negated values if they can be folded.
1495 return ConstantExpr::getNeg(C);
1496
1498 if (C->getType()->getElementType()->isIntegerTy())
1499 return ConstantExpr::getNeg(C);
1500
1502 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1503 Constant *Elt = CV->getAggregateElement(i);
1504 if (!Elt)
1505 return nullptr;
1506
1507 if (isa<UndefValue>(Elt))
1508 continue;
1509
1510 if (!isa<ConstantInt>(Elt))
1511 return nullptr;
1512 }
1513 return ConstantExpr::getNeg(CV);
1514 }
1515
1516 // Negate integer vector splats.
1517 if (auto *CV = dyn_cast<Constant>(V))
1518 if (CV->getType()->isVectorTy() &&
1519 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1520 return ConstantExpr::getNeg(CV);
1521
1522 return nullptr;
1523}
1524
1525// Try to fold:
1526// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1527// -> ({s|u}itofp (int_binop x, y))
1528// 2) (fp_binop ({s|u}itofp x), FpC)
1529// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1530//
1531// Assuming the sign of the cast for x/y is `OpsFromSigned`.
1532Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1533 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
1535
1536 Type *FPTy = BO.getType();
1537 Type *IntTy = IntOps[0]->getType();
1538
1539 unsigned IntSz = IntTy->getScalarSizeInBits();
1540 // This is the maximum number of inuse bits by the integer where the int -> fp
1541 // casts are exact.
1542 unsigned MaxRepresentableBits =
1544
1545 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1546 // checks later on.
1547 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1548
1549 // NB: This only comes up if OpsFromSigned is true, so there is no need to
1550 // cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1551 auto IsNonZero = [&](unsigned OpNo) -> bool {
1552 if (OpsKnown[OpNo].hasKnownBits() &&
1553 OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
1554 return true;
1555 return isKnownNonZero(IntOps[OpNo], SQ);
1556 };
1557
1558 auto IsNonNeg = [&](unsigned OpNo) -> bool {
1559 // NB: This matches the impl in ValueTracking, we just try to use cached
1560 // knownbits here. If we ever start supporting WithCache for
1561 // `isKnownNonNegative`, change this to an explicit call.
1562 return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
1563 };
1564
1565 // Check if we know for certain that ({s|u}itofp op) is exact.
1566 auto IsValidPromotion = [&](unsigned OpNo) -> bool {
1567 // Can we treat this operand as the desired sign?
1568 if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
1569 !IsNonNeg(OpNo))
1570 return false;
1571
1572 // If fp precision >= bitwidth(op) then its exact.
1573 // NB: This is slightly conservative for `sitofp`. For signed conversion, we
1574 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1575 // handled specially. We can't, however, increase the bound arbitrarily for
1576 // `sitofp` as for larger sizes, it won't sign extend.
1577 if (MaxRepresentableBits < IntSz) {
1578 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1579 // numSignBits(op).
1580 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1581 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1582 if (OpsFromSigned)
1583 NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
1584 // Finally for unsigned check that fp precision >= bitwidth(op) -
1585 // numLeadingZeros(op).
1586 else {
1587 NumUsedLeadingBits[OpNo] =
1588 IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
1589 }
1590 }
1591 // NB: We could also check if op is known to be a power of 2 or zero (which
1592 // will always be representable). Its unlikely, however, that is we are
1593 // unable to bound op in any way we will be able to pass the overflow checks
1594 // later on.
1595
1596 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1597 return false;
1598 // Signed + Mul also requires that op is non-zero to avoid -0 cases.
1599 return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
1600 IsNonZero(OpNo);
1601 };
1602
1603 // If we have a constant rhs, see if we can losslessly convert it to an int.
1604 if (Op1FpC != nullptr) {
1605 // Signed + Mul req non-zero
1606 if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
1607 !match(Op1FpC, m_NonZeroFP()))
1608 return nullptr;
1609
1611 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1612 IntTy, DL);
1613 if (Op1IntC == nullptr)
1614 return nullptr;
1615 if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
1616 : Instruction::UIToFP,
1617 Op1IntC, FPTy, DL) != Op1FpC)
1618 return nullptr;
1619
1620 // First try to keep sign of cast the same.
1621 IntOps[1] = Op1IntC;
1622 }
1623
1624 // Ensure lhs/rhs integer types match.
1625 if (IntTy != IntOps[1]->getType())
1626 return nullptr;
1627
1628 if (Op1FpC == nullptr) {
1629 if (!IsValidPromotion(1))
1630 return nullptr;
1631 }
1632 if (!IsValidPromotion(0))
1633 return nullptr;
1634
1635 // Final we check if the integer version of the binop will not overflow.
1637 // Because of the precision check, we can often rule out overflows.
1638 bool NeedsOverflowCheck = true;
1639 // Try to conservatively rule out overflow based on the already done precision
1640 // checks.
1641 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1642 unsigned OverflowMaxCurBits =
1643 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1644 bool OutputSigned = OpsFromSigned;
1645 switch (BO.getOpcode()) {
1646 case Instruction::FAdd:
1647 IntOpc = Instruction::Add;
1648 OverflowMaxOutputBits += OverflowMaxCurBits;
1649 break;
1650 case Instruction::FSub:
1651 IntOpc = Instruction::Sub;
1652 OverflowMaxOutputBits += OverflowMaxCurBits;
1653 break;
1654 case Instruction::FMul:
1655 IntOpc = Instruction::Mul;
1656 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1657 break;
1658 default:
1659 llvm_unreachable("Unsupported binop");
1660 }
1661 // The precision check may have already ruled out overflow.
1662 if (OverflowMaxOutputBits < IntSz) {
1663 NeedsOverflowCheck = false;
1664 // We can bound unsigned overflow from sub to in range signed value (this is
1665 // what allows us to avoid the overflow check for sub).
1666 if (IntOpc == Instruction::Sub)
1667 OutputSigned = true;
1668 }
1669
1670 // Precision check did not rule out overflow, so need to check.
1671 // TODO: If we add support for `WithCache` in `willNotOverflow`, change
1672 // `IntOps[...]` arguments to `KnownOps[...]`.
1673 if (NeedsOverflowCheck &&
1674 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1675 return nullptr;
1676
1677 Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1678 if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1679 IntBO->setHasNoSignedWrap(OutputSigned);
1680 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1681 }
1682 if (OutputSigned)
1683 return new SIToFPInst(IntBinOp, FPTy);
1684 return new UIToFPInst(IntBinOp, FPTy);
1685}
1686
1687// Try to fold:
1688// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1689// -> ({s|u}itofp (int_binop x, y))
1690// 2) (fp_binop ({s|u}itofp x), FpC)
1691// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1692Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
1693 // Don't perform the fold on vectors, as the integer operation may be much
1694 // more expensive than the float operation in that case.
1695 if (BO.getType()->isVectorTy())
1696 return nullptr;
1697
1698 std::array<Value *, 2> IntOps = {nullptr, nullptr};
1699 Constant *Op1FpC = nullptr;
1700 // Check for:
1701 // 1) (binop ({s|u}itofp x), ({s|u}itofp y))
1702 // 2) (binop ({s|u}itofp x), FpC)
1703 if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
1704 !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
1705 return nullptr;
1706
1707 if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
1708 !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
1709 !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
1710 return nullptr;
1711
1712 // Cache KnownBits a bit to potentially save some analysis.
1713 SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
1714
1715 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1716 // different constraints depending on the sign of the cast.
1717 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1718 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
1719 IntOps, Op1FpC, OpsKnown))
1720 return R;
1721 return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
1722 Op1FpC, OpsKnown);
1723}
1724
1725/// A binop with a constant operand and a sign-extended boolean operand may be
1726/// converted into a select of constants by applying the binary operation to
1727/// the constant with the two possible values of the extended boolean (0 or -1).
1728Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1729 // TODO: Handle non-commutative binop (constant is operand 0).
1730 // TODO: Handle zext.
1731 // TODO: Peek through 'not' of cast.
1732 Value *BO0 = BO.getOperand(0);
1733 Value *BO1 = BO.getOperand(1);
1734 Value *X;
1735 Constant *C;
1736 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1737 !X->getType()->isIntOrIntVectorTy(1))
1738 return nullptr;
1739
1740 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1743 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1744 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1745 return createSelectInstWithUnknownProfile(X, TVal, FVal);
1746}
1747
1749 bool IsTrueArm) {
1751 for (Value *Op : I.operands()) {
1752 Value *V = nullptr;
1753 if (Op == SI) {
1754 V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue();
1755 } else if (match(SI->getCondition(),
1758 m_Specific(Op), m_Value(V))) &&
1760 // Pass
1761 } else {
1762 V = Op;
1763 }
1764 Ops.push_back(V);
1765 }
1766
1767 return simplifyInstructionWithOperands(&I, Ops, I.getDataLayout());
1768}
1769
1771 Value *NewOp, InstCombiner &IC) {
1772 Instruction *Clone = I.clone();
1773 Clone->replaceUsesOfWith(SI, NewOp);
1775 IC.InsertNewInstBefore(Clone, I.getIterator());
1776 return Clone;
1777}
1778
1780 bool FoldWithMultiUse,
1781 bool SimplifyBothArms) {
1782 // Don't modify shared select instructions unless set FoldWithMultiUse
1783 if (!SI->hasOneUse() && !FoldWithMultiUse)
1784 return nullptr;
1785
1786 Value *TV = SI->getTrueValue();
1787 Value *FV = SI->getFalseValue();
1788
1789 // Bool selects with constant operands can be folded to logical ops.
1790 if (SI->getType()->isIntOrIntVectorTy(1))
1791 return nullptr;
1792
1793 // Avoid breaking min/max reduction pattern,
1794 // which is necessary for vectorization later.
1796 for (Value *IntrinOp : Op.operands())
1797 if (auto *PN = dyn_cast<PHINode>(IntrinOp))
1798 for (Value *PhiOp : PN->operands())
1799 if (PhiOp == &Op)
1800 return nullptr;
1801
1802 // Test if a FCmpInst instruction is used exclusively by a select as
1803 // part of a minimum or maximum operation. If so, refrain from doing
1804 // any other folding. This helps out other analyses which understand
1805 // non-obfuscated minimum and maximum idioms. And in this case, at
1806 // least one of the comparison operands has at least one user besides
1807 // the compare (the select), which would often largely negate the
1808 // benefit of folding anyway.
1809 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1810 if (CI->hasOneUse()) {
1811 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1812 if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
1813 !CI->isCommutative())
1814 return nullptr;
1815 }
1816 }
1817
1818 // Make sure that one of the select arms folds successfully.
1819 Value *NewTV = simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/true);
1820 Value *NewFV =
1821 simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/false);
1822 if (!NewTV && !NewFV)
1823 return nullptr;
1824
1825 if (SimplifyBothArms && !(NewTV && NewFV))
1826 return nullptr;
1827
1828 // Create an instruction for the arm that did not fold.
1829 if (!NewTV)
1830 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1831 if (!NewFV)
1832 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1833 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1834}
1835
1837 Value *InValue, BasicBlock *InBB,
1838 const DataLayout &DL,
1839 const SimplifyQuery SQ) {
1840 // NB: It is a precondition of this transform that the operands be
1841 // phi translatable!
1843 for (Value *Op : I.operands()) {
1844 if (Op == PN)
1845 Ops.push_back(InValue);
1846 else
1847 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1848 }
1849
1850 // Don't consider the simplification successful if we get back a constant
1851 // expression. That's just an instruction in hiding.
1852 // Also reject the case where we simplify back to the phi node. We wouldn't
1853 // be able to remove it in that case.
1855 &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1856 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1857 return NewVal;
1858
1859 // Check if incoming PHI value can be replaced with constant
1860 // based on implied condition.
1861 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1862 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1863 if (TerminatorBI && TerminatorBI->isConditional() &&
1864 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1865 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1866 std::optional<bool> ImpliedCond = isImpliedCondition(
1867 TerminatorBI->getCondition(), ICmp->getCmpPredicate(), Ops[0], Ops[1],
1868 DL, LHSIsTrue);
1869 if (ImpliedCond)
1870 return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1871 }
1872
1873 return nullptr;
1874}
1875
1877 bool AllowMultipleUses) {
1878 unsigned NumPHIValues = PN->getNumIncomingValues();
1879 if (NumPHIValues == 0)
1880 return nullptr;
1881
1882 // We normally only transform phis with a single use. However, if a PHI has
1883 // multiple uses and they are all the same operation, we can fold *all* of the
1884 // uses into the PHI.
1885 bool OneUse = PN->hasOneUse();
1886 bool IdenticalUsers = false;
1887 if (!AllowMultipleUses && !OneUse) {
1888 // Walk the use list for the instruction, comparing them to I.
1889 for (User *U : PN->users()) {
1891 if (UI != &I && !I.isIdenticalTo(UI))
1892 return nullptr;
1893 }
1894 // Otherwise, we can replace *all* users with the new PHI we form.
1895 IdenticalUsers = true;
1896 }
1897
1898 // Check that all operands are phi-translatable.
1899 for (Value *Op : I.operands()) {
1900 if (Op == PN)
1901 continue;
1902
1903 // Non-instructions never require phi-translation.
1904 auto *I = dyn_cast<Instruction>(Op);
1905 if (!I)
1906 continue;
1907
1908 // Phi-translate can handle phi nodes in the same block.
1909 if (isa<PHINode>(I))
1910 if (I->getParent() == PN->getParent())
1911 continue;
1912
1913 // Operand dominates the block, no phi-translation necessary.
1914 if (DT.dominates(I, PN->getParent()))
1915 continue;
1916
1917 // Not phi-translatable, bail out.
1918 return nullptr;
1919 }
1920
1921 // Check to see whether the instruction can be folded into each phi operand.
1922 // If there is one operand that does not fold, remember the BB it is in.
1923 SmallVector<Value *> NewPhiValues;
1924 SmallVector<unsigned int> OpsToMoveUseToIncomingBB;
1925 bool SeenNonSimplifiedInVal = false;
1926 for (unsigned i = 0; i != NumPHIValues; ++i) {
1927 Value *InVal = PN->getIncomingValue(i);
1928 BasicBlock *InBB = PN->getIncomingBlock(i);
1929
1930 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1931 NewPhiValues.push_back(NewVal);
1932 continue;
1933 }
1934
1935 // Handle some cases that can't be fully simplified, but where we know that
1936 // the two instructions will fold into one.
1937 auto WillFold = [&]() {
1938 if (!InVal->hasUseList() || !InVal->hasOneUser())
1939 return false;
1940
1941 // icmp of ucmp/scmp with constant will fold to icmp.
1942 const APInt *Ignored;
1943 if (isa<CmpIntrinsic>(InVal) &&
1944 match(&I, m_ICmp(m_Specific(PN), m_APInt(Ignored))))
1945 return true;
1946
1947 // icmp eq zext(bool), 0 will fold to !bool.
1948 if (isa<ZExtInst>(InVal) &&
1949 cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) &&
1950 match(&I,
1952 return true;
1953
1954 return false;
1955 };
1956
1957 if (WillFold()) {
1958 OpsToMoveUseToIncomingBB.push_back(i);
1959 NewPhiValues.push_back(nullptr);
1960 continue;
1961 }
1962
1963 if (!OneUse && !IdenticalUsers)
1964 return nullptr;
1965
1966 if (SeenNonSimplifiedInVal)
1967 return nullptr; // More than one non-simplified value.
1968 SeenNonSimplifiedInVal = true;
1969
1970 // If there is exactly one non-simplified value, we can insert a copy of the
1971 // operation in that block. However, if this is a critical edge, we would
1972 // be inserting the computation on some other paths (e.g. inside a loop).
1973 // Only do this if the pred block is unconditionally branching into the phi
1974 // block. Also, make sure that the pred block is not dead code.
1976 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(InBB))
1977 return nullptr;
1978
1979 NewPhiValues.push_back(nullptr);
1980 OpsToMoveUseToIncomingBB.push_back(i);
1981
1982 // Do not push the operation across a loop backedge. This could result in
1983 // an infinite combine loop, and is generally non-profitable (especially
1984 // if the operation was originally outside the loop).
1985 if (isBackEdge(InBB, PN->getParent()))
1986 return nullptr;
1987 }
1988
1989 // Clone the instruction that uses the phi node and move it into the incoming
1990 // BB because we know that the next iteration of InstCombine will simplify it.
1992 for (auto OpIndex : OpsToMoveUseToIncomingBB) {
1994 BasicBlock *OpBB = PN->getIncomingBlock(OpIndex);
1995
1996 Instruction *Clone = Clones.lookup(OpBB);
1997 if (!Clone) {
1998 Clone = I.clone();
1999 for (Use &U : Clone->operands()) {
2000 if (U == PN)
2001 U = Op;
2002 else
2003 U = U->DoPHITranslation(PN->getParent(), OpBB);
2004 }
2005 Clone = InsertNewInstBefore(Clone, OpBB->getTerminator()->getIterator());
2006 Clones.insert({OpBB, Clone});
2007 // We may have speculated the instruction.
2009 }
2010
2011 NewPhiValues[OpIndex] = Clone;
2012 }
2013
2014 // Okay, we can do the transformation: create the new PHI node.
2015 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
2016 InsertNewInstBefore(NewPN, PN->getIterator());
2017 NewPN->takeName(PN);
2018 NewPN->setDebugLoc(PN->getDebugLoc());
2019
2020 for (unsigned i = 0; i != NumPHIValues; ++i)
2021 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
2022
2023 if (IdenticalUsers) {
2024 // Collect and deduplicate users up-front to avoid iterator invalidation.
2026 for (User *U : PN->users()) {
2028 if (User == &I)
2029 continue;
2030 ToReplace.insert(User);
2031 }
2032 for (Instruction *I : ToReplace) {
2033 replaceInstUsesWith(*I, NewPN);
2035 }
2036 OneUse = true;
2037 }
2038
2039 if (OneUse) {
2040 replaceAllDbgUsesWith(*PN, *NewPN, *PN, DT);
2041 }
2042 return replaceInstUsesWith(I, NewPN);
2043}
2044
2046 if (!BO.isAssociative())
2047 return nullptr;
2048
2049 // Find the interleaved binary ops.
2050 auto Opc = BO.getOpcode();
2051 auto *BO0 = dyn_cast<BinaryOperator>(BO.getOperand(0));
2052 auto *BO1 = dyn_cast<BinaryOperator>(BO.getOperand(1));
2053 if (!BO0 || !BO1 || !BO0->hasNUses(2) || !BO1->hasNUses(2) ||
2054 BO0->getOpcode() != Opc || BO1->getOpcode() != Opc ||
2055 !BO0->isAssociative() || !BO1->isAssociative() ||
2056 BO0->getParent() != BO1->getParent())
2057 return nullptr;
2058
2059 assert(BO.isCommutative() && BO0->isCommutative() && BO1->isCommutative() &&
2060 "Expected commutative instructions!");
2061
2062 // Find the matching phis, forming the recurrences.
2063 PHINode *PN0, *PN1;
2064 Value *Start0, *Step0, *Start1, *Step1;
2065 if (!matchSimpleRecurrence(BO0, PN0, Start0, Step0) || !PN0->hasOneUse() ||
2066 !matchSimpleRecurrence(BO1, PN1, Start1, Step1) || !PN1->hasOneUse() ||
2067 PN0->getParent() != PN1->getParent())
2068 return nullptr;
2069
2070 assert(PN0->getNumIncomingValues() == 2 && PN1->getNumIncomingValues() == 2 &&
2071 "Expected PHIs with two incoming values!");
2072
2073 // Convert the start and step values to constants.
2074 auto *Init0 = dyn_cast<Constant>(Start0);
2075 auto *Init1 = dyn_cast<Constant>(Start1);
2076 auto *C0 = dyn_cast<Constant>(Step0);
2077 auto *C1 = dyn_cast<Constant>(Step1);
2078 if (!Init0 || !Init1 || !C0 || !C1)
2079 return nullptr;
2080
2081 // Fold the recurrence constants.
2082 auto *Init = ConstantFoldBinaryInstruction(Opc, Init0, Init1);
2083 auto *C = ConstantFoldBinaryInstruction(Opc, C0, C1);
2084 if (!Init || !C)
2085 return nullptr;
2086
2087 // Create the reduced PHI.
2088 auto *NewPN = PHINode::Create(PN0->getType(), PN0->getNumIncomingValues(),
2089 "reduced.phi");
2090
2091 // Create the new binary op.
2092 auto *NewBO = BinaryOperator::Create(Opc, NewPN, C);
2093 if (Opc == Instruction::FAdd || Opc == Instruction::FMul) {
2094 // Intersect FMF flags for FADD and FMUL.
2095 FastMathFlags Intersect = BO0->getFastMathFlags() &
2096 BO1->getFastMathFlags() & BO.getFastMathFlags();
2097 NewBO->setFastMathFlags(Intersect);
2098 } else {
2099 OverflowTracking Flags;
2100 Flags.AllKnownNonNegative = false;
2101 Flags.AllKnownNonZero = false;
2102 Flags.mergeFlags(*BO0);
2103 Flags.mergeFlags(*BO1);
2104 Flags.mergeFlags(BO);
2105 Flags.applyFlags(*NewBO);
2106 }
2107 NewBO->takeName(&BO);
2108
2109 for (unsigned I = 0, E = PN0->getNumIncomingValues(); I != E; ++I) {
2110 auto *V = PN0->getIncomingValue(I);
2111 auto *BB = PN0->getIncomingBlock(I);
2112 if (V == Init0) {
2113 assert(((PN1->getIncomingValue(0) == Init1 &&
2114 PN1->getIncomingBlock(0) == BB) ||
2115 (PN1->getIncomingValue(1) == Init1 &&
2116 PN1->getIncomingBlock(1) == BB)) &&
2117 "Invalid incoming block!");
2118 NewPN->addIncoming(Init, BB);
2119 } else if (V == BO0) {
2120 assert(((PN1->getIncomingValue(0) == BO1 &&
2121 PN1->getIncomingBlock(0) == BB) ||
2122 (PN1->getIncomingValue(1) == BO1 &&
2123 PN1->getIncomingBlock(1) == BB)) &&
2124 "Invalid incoming block!");
2125 NewPN->addIncoming(NewBO, BB);
2126 } else
2127 llvm_unreachable("Unexpected incoming value!");
2128 }
2129
2130 LLVM_DEBUG(dbgs() << " Combined " << *PN0 << "\n " << *BO0
2131 << "\n with " << *PN1 << "\n " << *BO1
2132 << '\n');
2133
2134 // Insert the new recurrence and remove the old (dead) ones.
2135 InsertNewInstWith(NewPN, PN0->getIterator());
2136 InsertNewInstWith(NewBO, BO0->getIterator());
2137
2144
2145 return replaceInstUsesWith(BO, NewBO);
2146}
2147
2149 // Attempt to fold binary operators whose operands are simple recurrences.
2150 if (auto *NewBO = foldBinopWithRecurrence(BO))
2151 return NewBO;
2152
2153 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
2154 // we are guarding against replicating the binop in >1 predecessor.
2155 // This could miss matching a phi with 2 constant incoming values.
2156 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
2157 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
2158 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
2159 Phi0->getNumOperands() != Phi1->getNumOperands())
2160 return nullptr;
2161
2162 // TODO: Remove the restriction for binop being in the same block as the phis.
2163 if (BO.getParent() != Phi0->getParent() ||
2164 BO.getParent() != Phi1->getParent())
2165 return nullptr;
2166
2167 // Fold if there is at least one specific constant value in phi0 or phi1's
2168 // incoming values that comes from the same block and this specific constant
2169 // value can be used to do optimization for specific binary operator.
2170 // For example:
2171 // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
2172 // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
2173 // %add = add i32 %phi0, %phi1
2174 // ==>
2175 // %add = phi i32 [%j, %bb0], [%i, %bb1]
2177 /*AllowRHSConstant*/ false);
2178 if (C) {
2179 SmallVector<Value *, 4> NewIncomingValues;
2180 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
2181 auto &Phi0Use = std::get<0>(T);
2182 auto &Phi1Use = std::get<1>(T);
2183 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
2184 return false;
2185 Value *Phi0UseV = Phi0Use.get();
2186 Value *Phi1UseV = Phi1Use.get();
2187 if (Phi0UseV == C)
2188 NewIncomingValues.push_back(Phi1UseV);
2189 else if (Phi1UseV == C)
2190 NewIncomingValues.push_back(Phi0UseV);
2191 else
2192 return false;
2193 return true;
2194 };
2195
2196 if (all_of(zip(Phi0->operands(), Phi1->operands()),
2197 CanFoldIncomingValuePair)) {
2198 PHINode *NewPhi =
2199 PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
2200 assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
2201 "The number of collected incoming values should equal the number "
2202 "of the original PHINode operands!");
2203 for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
2204 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
2205 return NewPhi;
2206 }
2207 }
2208
2209 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2210 return nullptr;
2211
2212 // Match a pair of incoming constants for one of the predecessor blocks.
2213 BasicBlock *ConstBB, *OtherBB;
2214 Constant *C0, *C1;
2215 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
2216 ConstBB = Phi0->getIncomingBlock(0);
2217 OtherBB = Phi0->getIncomingBlock(1);
2218 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
2219 ConstBB = Phi0->getIncomingBlock(1);
2220 OtherBB = Phi0->getIncomingBlock(0);
2221 } else {
2222 return nullptr;
2223 }
2224 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
2225 return nullptr;
2226
2227 // The block that we are hoisting to must reach here unconditionally.
2228 // Otherwise, we could be speculatively executing an expensive or
2229 // non-speculative op.
2230 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
2231 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2232 !DT.isReachableFromEntry(OtherBB))
2233 return nullptr;
2234
2235 // TODO: This check could be tightened to only apply to binops (div/rem) that
2236 // are not safe to speculatively execute. But that could allow hoisting
2237 // potentially expensive instructions (fdiv for example).
2238 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
2240 return nullptr;
2241
2242 // Fold constants for the predecessor block with constant incoming values.
2243 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
2244 if (!NewC)
2245 return nullptr;
2246
2247 // Make a new binop in the predecessor block with the non-constant incoming
2248 // values.
2249 Builder.SetInsertPoint(PredBlockBranch);
2250 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
2251 Phi0->getIncomingValueForBlock(OtherBB),
2252 Phi1->getIncomingValueForBlock(OtherBB));
2253 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
2254 NotFoldedNewBO->copyIRFlags(&BO);
2255
2256 // Replace the binop with a phi of the new values. The old phis are dead.
2257 PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
2258 NewPhi->addIncoming(NewBO, OtherBB);
2259 NewPhi->addIncoming(NewC, ConstBB);
2260 return NewPhi;
2261}
2262
2264 if (!isa<Constant>(I.getOperand(1)))
2265 return nullptr;
2266
2267 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
2268 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
2269 return NewSel;
2270 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
2271 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
2272 return NewPhi;
2273 }
2274 return nullptr;
2275}
2276
2278 // If this GEP has only 0 indices, it is the same pointer as
2279 // Src. If Src is not a trivial GEP too, don't combine
2280 // the indices.
2281 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2282 !Src.hasOneUse())
2283 return false;
2284 return true;
2285}
2286
2287/// Find a constant NewC that has property:
2288/// shuffle(NewC, ShMask) = C
2289/// Returns nullptr if such a constant does not exist e.g. ShMask=<0,0> C=<1,2>
2290///
2291/// A 1-to-1 mapping is not required. Example:
2292/// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <poison,5,6,poison>
2294 VectorType *NewCTy) {
2295 if (isa<ScalableVectorType>(NewCTy)) {
2296 Constant *Splat = C->getSplatValue();
2297 if (!Splat)
2298 return nullptr;
2300 }
2301
2302 if (cast<FixedVectorType>(NewCTy)->getNumElements() >
2303 cast<FixedVectorType>(C->getType())->getNumElements())
2304 return nullptr;
2305
2306 unsigned NewCNumElts = cast<FixedVectorType>(NewCTy)->getNumElements();
2307 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
2308 SmallVector<Constant *, 16> NewVecC(NewCNumElts, PoisonScalar);
2309 unsigned NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
2310 for (unsigned I = 0; I < NumElts; ++I) {
2311 Constant *CElt = C->getAggregateElement(I);
2312 if (ShMask[I] >= 0) {
2313 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
2314 Constant *NewCElt = NewVecC[ShMask[I]];
2315 // Bail out if:
2316 // 1. The constant vector contains a constant expression.
2317 // 2. The shuffle needs an element of the constant vector that can't
2318 // be mapped to a new constant vector.
2319 // 3. This is a widening shuffle that copies elements of V1 into the
2320 // extended elements (extending with poison is allowed).
2321 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2322 I >= NewCNumElts)
2323 return nullptr;
2324 NewVecC[ShMask[I]] = CElt;
2325 }
2326 }
2327 return ConstantVector::get(NewVecC);
2328}
2329
2330// Get the result of `Vector Op Splat` (or Splat Op Vector if \p SplatLHS).
2332 Constant *Splat, bool SplatLHS,
2333 const DataLayout &DL) {
2334 ElementCount EC = cast<VectorType>(Vector->getType())->getElementCount();
2336 Constant *RHS = Vector;
2337 if (!SplatLHS)
2338 std::swap(LHS, RHS);
2339 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
2340}
2341
2343 if (!isa<VectorType>(Inst.getType()))
2344 return nullptr;
2345
2346 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
2347 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
2348 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
2349 cast<VectorType>(Inst.getType())->getElementCount());
2350 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
2351 cast<VectorType>(Inst.getType())->getElementCount());
2352
2353 auto foldConstantsThroughSubVectorInsertSplat =
2354 [&](Value *MaybeSubVector, Value *MaybeSplat,
2355 bool SplatLHS) -> Instruction * {
2356 Value *Idx;
2357 Constant *Splat, *SubVector, *Dest;
2358 if (!match(MaybeSplat, m_ConstantSplat(m_Constant(Splat))) ||
2359 !match(MaybeSubVector,
2360 m_VectorInsert(m_Constant(Dest), m_Constant(SubVector),
2361 m_Value(Idx))))
2362 return nullptr;
2363 SubVector =
2364 constantFoldBinOpWithSplat(Opcode, SubVector, Splat, SplatLHS, DL);
2365 Dest = constantFoldBinOpWithSplat(Opcode, Dest, Splat, SplatLHS, DL);
2366 if (!SubVector || !Dest)
2367 return nullptr;
2368 auto *InsertVector =
2369 Builder.CreateInsertVector(Dest->getType(), Dest, SubVector, Idx);
2370 return replaceInstUsesWith(Inst, InsertVector);
2371 };
2372
2373 // If one operand is a constant splat and the other operand is a
2374 // `vector.insert` where both the destination and subvector are constant,
2375 // apply the operation to both the destination and subvector, returning a new
2376 // constant `vector.insert`. This helps constant folding for scalable vectors.
2377 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2378 /*MaybeSubVector=*/LHS, /*MaybeSplat=*/RHS, /*SplatLHS=*/false))
2379 return Folded;
2380 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2381 /*MaybeSubVector=*/RHS, /*MaybeSplat=*/LHS, /*SplatLHS=*/true))
2382 return Folded;
2383
2384 // If both operands of the binop are vector concatenations, then perform the
2385 // narrow binop on each pair of the source operands followed by concatenation
2386 // of the results.
2387 Value *L0, *L1, *R0, *R1;
2388 ArrayRef<int> Mask;
2389 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
2390 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
2391 LHS->hasOneUse() && RHS->hasOneUse() &&
2392 cast<ShuffleVectorInst>(LHS)->isConcat() &&
2393 cast<ShuffleVectorInst>(RHS)->isConcat()) {
2394 // This transform does not have the speculative execution constraint as
2395 // below because the shuffle is a concatenation. The new binops are
2396 // operating on exactly the same elements as the existing binop.
2397 // TODO: We could ease the mask requirement to allow different undef lanes,
2398 // but that requires an analysis of the binop-with-undef output value.
2399 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
2400 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2401 BO->copyIRFlags(&Inst);
2402 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
2403 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2404 BO->copyIRFlags(&Inst);
2405 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
2406 }
2407
2408 auto createBinOpReverse = [&](Value *X, Value *Y) {
2409 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2410 if (auto *BO = dyn_cast<BinaryOperator>(V))
2411 BO->copyIRFlags(&Inst);
2412 Module *M = Inst.getModule();
2414 M, Intrinsic::vector_reverse, V->getType());
2415 return CallInst::Create(F, V);
2416 };
2417
2418 // NOTE: Reverse shuffles don't require the speculative execution protection
2419 // below because they don't affect which lanes take part in the computation.
2420
2421 Value *V1, *V2;
2422 if (match(LHS, m_VecReverse(m_Value(V1)))) {
2423 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2424 if (match(RHS, m_VecReverse(m_Value(V2))) &&
2425 (LHS->hasOneUse() || RHS->hasOneUse() ||
2426 (LHS == RHS && LHS->hasNUses(2))))
2427 return createBinOpReverse(V1, V2);
2428
2429 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2430 if (LHS->hasOneUse() && isSplatValue(RHS))
2431 return createBinOpReverse(V1, RHS);
2432 }
2433 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2434 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
2435 return createBinOpReverse(LHS, V2);
2436
2437 auto createBinOpVPReverse = [&](Value *X, Value *Y, Value *EVL) {
2438 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2439 if (auto *BO = dyn_cast<BinaryOperator>(V))
2440 BO->copyIRFlags(&Inst);
2441
2442 ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
2443 Value *AllTrueMask = Builder.CreateVectorSplat(EC, Builder.getTrue());
2444 Module *M = Inst.getModule();
2446 M, Intrinsic::experimental_vp_reverse, V->getType());
2447 return CallInst::Create(F, {V, AllTrueMask, EVL});
2448 };
2449
2450 Value *EVL;
2452 m_Value(V1), m_AllOnes(), m_Value(EVL)))) {
2453 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2455 m_Value(V2), m_AllOnes(), m_Specific(EVL))) &&
2456 (LHS->hasOneUse() || RHS->hasOneUse() ||
2457 (LHS == RHS && LHS->hasNUses(2))))
2458 return createBinOpVPReverse(V1, V2, EVL);
2459
2460 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2461 if (LHS->hasOneUse() && isSplatValue(RHS))
2462 return createBinOpVPReverse(V1, RHS, EVL);
2463 }
2464 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2465 else if (isSplatValue(LHS) &&
2467 m_Value(V2), m_AllOnes(), m_Value(EVL))))
2468 return createBinOpVPReverse(LHS, V2, EVL);
2469
2470 // It may not be safe to reorder shuffles and things like div, urem, etc.
2471 // because we may trap when executing those ops on unknown vector elements.
2472 // See PR20059.
2474 return nullptr;
2475
2476 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
2477 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
2478 if (auto *BO = dyn_cast<BinaryOperator>(XY))
2479 BO->copyIRFlags(&Inst);
2480 return new ShuffleVectorInst(XY, M);
2481 };
2482
2483 // If both arguments of the binary operation are shuffles that use the same
2484 // mask and shuffle within a single vector, move the shuffle after the binop.
2485 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
2486 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
2487 V1->getType() == V2->getType() &&
2488 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2489 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2490 return createBinOpShuffle(V1, V2, Mask);
2491 }
2492
2493 // If both arguments of a commutative binop are select-shuffles that use the
2494 // same mask with commuted operands, the shuffles are unnecessary.
2495 if (Inst.isCommutative() &&
2496 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
2497 match(RHS,
2498 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
2499 auto *LShuf = cast<ShuffleVectorInst>(LHS);
2500 auto *RShuf = cast<ShuffleVectorInst>(RHS);
2501 // TODO: Allow shuffles that contain undefs in the mask?
2502 // That is legal, but it reduces undef knowledge.
2503 // TODO: Allow arbitrary shuffles by shuffling after binop?
2504 // That might be legal, but we have to deal with poison.
2505 if (LShuf->isSelect() &&
2506 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
2507 RShuf->isSelect() &&
2508 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
2509 // Example:
2510 // LHS = shuffle V1, V2, <0, 5, 6, 3>
2511 // RHS = shuffle V2, V1, <0, 5, 6, 3>
2512 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2513 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
2514 NewBO->copyIRFlags(&Inst);
2515 return NewBO;
2516 }
2517 }
2518
2519 // If one argument is a shuffle within one vector and the other is a constant,
2520 // try moving the shuffle after the binary operation. This canonicalization
2521 // intends to move shuffles closer to other shuffles and binops closer to
2522 // other binops, so they can be folded. It may also enable demanded elements
2523 // transforms.
2524 Constant *C;
2526 m_Mask(Mask))),
2527 m_ImmConstant(C)))) {
2528 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
2529 "Shuffle should not change scalar type");
2530
2531 bool ConstOp1 = isa<Constant>(RHS);
2532 if (Constant *NewC =
2534 // For fixed vectors, lanes of NewC not used by the shuffle will be poison
2535 // which will cause UB for div/rem. Mask them with a safe constant.
2536 if (isa<FixedVectorType>(V1->getType()) && Inst.isIntDivRem())
2537 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
2538
2539 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2540 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2541 Value *NewLHS = ConstOp1 ? V1 : NewC;
2542 Value *NewRHS = ConstOp1 ? NewC : V1;
2543 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2544 }
2545 }
2546
2547 // Try to reassociate to sink a splat shuffle after a binary operation.
2548 if (Inst.isAssociative() && Inst.isCommutative()) {
2549 // Canonicalize shuffle operand as LHS.
2550 if (isa<ShuffleVectorInst>(RHS))
2551 std::swap(LHS, RHS);
2552
2553 Value *X;
2554 ArrayRef<int> MaskC;
2555 int SplatIndex;
2556 Value *Y, *OtherOp;
2557 if (!match(LHS,
2558 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2559 !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
2560 X->getType() != Inst.getType() ||
2561 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2562 return nullptr;
2563
2564 // FIXME: This may not be safe if the analysis allows undef elements. By
2565 // moving 'Y' before the splat shuffle, we are implicitly assuming
2566 // that it is not undef/poison at the splat index.
2567 if (isSplatValue(OtherOp, SplatIndex)) {
2568 std::swap(Y, OtherOp);
2569 } else if (!isSplatValue(Y, SplatIndex)) {
2570 return nullptr;
2571 }
2572
2573 // X and Y are splatted values, so perform the binary operation on those
2574 // values followed by a splat followed by the 2nd binary operation:
2575 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2576 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2577 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2578 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2579 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2580
2581 // Intersect FMF on both new binops. Other (poison-generating) flags are
2582 // dropped to be safe.
2583 if (isa<FPMathOperator>(R)) {
2584 R->copyFastMathFlags(&Inst);
2585 R->andIRFlags(RHS);
2586 }
2587 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2588 NewInstBO->copyIRFlags(R);
2589 return R;
2590 }
2591
2592 return nullptr;
2593}
2594
2595/// Try to narrow the width of a binop if at least 1 operand is an extend of
2596/// of a value. This requires a potentially expensive known bits check to make
2597/// sure the narrow op does not overflow.
2598Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2599 // We need at least one extended operand.
2600 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2601
2602 // If this is a sub, we swap the operands since we always want an extension
2603 // on the RHS. The LHS can be an extension or a constant.
2604 if (BO.getOpcode() == Instruction::Sub)
2605 std::swap(Op0, Op1);
2606
2607 Value *X;
2608 bool IsSext = match(Op0, m_SExt(m_Value(X)));
2609 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2610 return nullptr;
2611
2612 // If both operands are the same extension from the same source type and we
2613 // can eliminate at least one (hasOneUse), this might work.
2614 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2615 Value *Y;
2616 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2617 cast<Operator>(Op1)->getOpcode() == CastOpc &&
2618 (Op0->hasOneUse() || Op1->hasOneUse()))) {
2619 // If that did not match, see if we have a suitable constant operand.
2620 // Truncating and extending must produce the same constant.
2621 Constant *WideC;
2622 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2623 return nullptr;
2624 Constant *NarrowC = getLosslessInvCast(WideC, X->getType(), CastOpc, DL);
2625 if (!NarrowC)
2626 return nullptr;
2627 Y = NarrowC;
2628 }
2629
2630 // Swap back now that we found our operands.
2631 if (BO.getOpcode() == Instruction::Sub)
2632 std::swap(X, Y);
2633
2634 // Both operands have narrow versions. Last step: the math must not overflow
2635 // in the narrow width.
2636 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2637 return nullptr;
2638
2639 // bo (ext X), (ext Y) --> ext (bo X, Y)
2640 // bo (ext X), C --> ext (bo X, C')
2641 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2642 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2643 if (IsSext)
2644 NewBinOp->setHasNoSignedWrap();
2645 else
2646 NewBinOp->setHasNoUnsignedWrap();
2647 }
2648 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2649}
2650
2651/// Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y))
2652/// transform.
2657
2658/// Thread a GEP operation with constant indices through the constant true/false
2659/// arms of a select.
2661 InstCombiner::BuilderTy &Builder) {
2662 if (!GEP.hasAllConstantIndices())
2663 return nullptr;
2664
2665 Instruction *Sel;
2666 Value *Cond;
2667 Constant *TrueC, *FalseC;
2668 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2669 !match(Sel,
2670 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2671 return nullptr;
2672
2673 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2674 // Propagate 'inbounds' and metadata from existing instructions.
2675 // Note: using IRBuilder to create the constants for efficiency.
2676 SmallVector<Value *, 4> IndexC(GEP.indices());
2677 GEPNoWrapFlags NW = GEP.getNoWrapFlags();
2678 Type *Ty = GEP.getSourceElementType();
2679 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW);
2680 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW);
2681 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2682}
2683
2684// Canonicalization:
2685// gep T, (gep i8, base, C1), (Index + C2) into
2686// gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
2688 GEPOperator *Src,
2689 InstCombinerImpl &IC) {
2690 if (GEP.getNumIndices() != 1)
2691 return nullptr;
2692 auto &DL = IC.getDataLayout();
2693 Value *Base;
2694 const APInt *C1;
2695 if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1))))
2696 return nullptr;
2697 Value *VarIndex;
2698 const APInt *C2;
2699 Type *PtrTy = Src->getType()->getScalarType();
2700 unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy);
2701 if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2))))
2702 return nullptr;
2703 if (C1->getBitWidth() != IndexSizeInBits ||
2704 C2->getBitWidth() != IndexSizeInBits)
2705 return nullptr;
2706 Type *BaseType = GEP.getSourceElementType();
2708 return nullptr;
2709 APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType));
2710 APInt NewOffset = TypeSize * *C2 + *C1;
2711 if (NewOffset.isZero() ||
2712 (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) {
2714 if (GEP.hasNoUnsignedWrap() &&
2715 cast<GEPOperator>(Src)->hasNoUnsignedWrap() &&
2716 match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()))) {
2718 if (GEP.isInBounds() && cast<GEPOperator>(Src)->isInBounds())
2719 Flags |= GEPNoWrapFlags::inBounds();
2720 }
2721
2722 Value *GEPConst =
2723 IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset), "", Flags);
2724 return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex, Flags);
2725 }
2726
2727 return nullptr;
2728}
2729
2730/// Combine constant offsets separated by variable offsets.
2731/// ptradd (ptradd (ptradd p, C1), x), C2 -> ptradd (ptradd p, x), C1+C2
2733 InstCombinerImpl &IC) {
2734 if (!GEP.hasAllConstantIndices())
2735 return nullptr;
2736
2739 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
2740 while (true) {
2741 if (!InnerGEP)
2742 return nullptr;
2743
2744 NW = NW.intersectForReassociate(InnerGEP->getNoWrapFlags());
2745 if (InnerGEP->hasAllConstantIndices())
2746 break;
2747
2748 if (!InnerGEP->hasOneUse())
2749 return nullptr;
2750
2751 Skipped.push_back(InnerGEP);
2752 InnerGEP = dyn_cast<GetElementPtrInst>(InnerGEP->getPointerOperand());
2753 }
2754
2755 // The two constant offset GEPs are directly adjacent: Let normal offset
2756 // merging handle it.
2757 if (Skipped.empty())
2758 return nullptr;
2759
2760 // FIXME: This one-use check is not strictly necessary. Consider relaxing it
2761 // if profitable.
2762 if (!InnerGEP->hasOneUse())
2763 return nullptr;
2764
2765 // Don't bother with vector splats.
2766 Type *Ty = GEP.getType();
2767 if (InnerGEP->getType() != Ty)
2768 return nullptr;
2769
2770 const DataLayout &DL = IC.getDataLayout();
2771 APInt Offset(DL.getIndexTypeSizeInBits(Ty), 0);
2772 if (!GEP.accumulateConstantOffset(DL, Offset) ||
2773 !InnerGEP->accumulateConstantOffset(DL, Offset))
2774 return nullptr;
2775
2776 IC.replaceOperand(*Skipped.back(), 0, InnerGEP->getPointerOperand());
2777 for (GetElementPtrInst *SkippedGEP : Skipped)
2778 SkippedGEP->setNoWrapFlags(NW);
2779
2780 return IC.replaceInstUsesWith(
2781 GEP,
2782 IC.Builder.CreatePtrAdd(Skipped.front(), IC.Builder.getInt(Offset), "",
2783 NW.intersectForOffsetAdd(GEP.getNoWrapFlags())));
2784}
2785
2787 GEPOperator *Src) {
2788 // Combine Indices - If the source pointer to this getelementptr instruction
2789 // is a getelementptr instruction with matching element type, combine the
2790 // indices of the two getelementptr instructions into a single instruction.
2791 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2792 return nullptr;
2793
2794 if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this))
2795 return I;
2796
2797 if (auto *I = combineConstantOffsets(GEP, *this))
2798 return I;
2799
2800 if (Src->getResultElementType() != GEP.getSourceElementType())
2801 return nullptr;
2802
2803 // Find out whether the last index in the source GEP is a sequential idx.
2804 bool EndsWithSequential = false;
2805 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2806 I != E; ++I)
2807 EndsWithSequential = I.isSequential();
2808 if (!EndsWithSequential)
2809 return nullptr;
2810
2811 // Replace: gep (gep %P, long B), long A, ...
2812 // With: T = long A+B; gep %P, T, ...
2813 Value *SO1 = Src->getOperand(Src->getNumOperands() - 1);
2814 Value *GO1 = GEP.getOperand(1);
2815
2816 // If they aren't the same type, then the input hasn't been processed
2817 // by the loop above yet (which canonicalizes sequential index types to
2818 // intptr_t). Just avoid transforming this until the input has been
2819 // normalized.
2820 if (SO1->getType() != GO1->getType())
2821 return nullptr;
2822
2823 Value *Sum =
2824 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2825 // Only do the combine when we are sure the cost after the
2826 // merge is never more than that before the merge.
2827 if (Sum == nullptr)
2828 return nullptr;
2829
2831 Indices.append(Src->op_begin() + 1, Src->op_end() - 1);
2832 Indices.push_back(Sum);
2833 Indices.append(GEP.op_begin() + 2, GEP.op_end());
2834
2835 // Don't create GEPs with more than one non-zero index.
2836 unsigned NumNonZeroIndices = count_if(Indices, [](Value *Idx) {
2837 auto *C = dyn_cast<Constant>(Idx);
2838 return !C || !C->isNullValue();
2839 });
2840 if (NumNonZeroIndices > 1)
2841 return nullptr;
2842
2843 return replaceInstUsesWith(
2844 GEP, Builder.CreateGEP(
2845 Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2847}
2848
2851 bool &DoesConsume, unsigned Depth) {
2852 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2853 // ~(~(X)) -> X.
2854 Value *A, *B;
2855 if (match(V, m_Not(m_Value(A)))) {
2856 DoesConsume = true;
2857 return A;
2858 }
2859
2860 Constant *C;
2861 // Constants can be considered to be not'ed values.
2862 if (match(V, m_ImmConstant(C)))
2863 return ConstantExpr::getNot(C);
2864
2866 return nullptr;
2867
2868 // The rest of the cases require that we invert all uses so don't bother
2869 // doing the analysis if we know we can't use the result.
2870 if (!WillInvertAllUses)
2871 return nullptr;
2872
2873 // Compares can be inverted if all of their uses are being modified to use
2874 // the ~V.
2875 if (auto *I = dyn_cast<CmpInst>(V)) {
2876 if (Builder != nullptr)
2877 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2878 I->getOperand(1));
2879 return NonNull;
2880 }
2881
2882 // If `V` is of the form `A + B` then `-1 - V` can be folded into
2883 // `(-1 - B) - A` if we are willing to invert all of the uses.
2884 if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2885 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2886 DoesConsume, Depth))
2887 return Builder ? Builder->CreateSub(BV, A) : NonNull;
2888 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2889 DoesConsume, Depth))
2890 return Builder ? Builder->CreateSub(AV, B) : NonNull;
2891 return nullptr;
2892 }
2893
2894 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2895 // into `A ^ B` if we are willing to invert all of the uses.
2896 if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2897 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2898 DoesConsume, Depth))
2899 return Builder ? Builder->CreateXor(A, BV) : NonNull;
2900 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2901 DoesConsume, Depth))
2902 return Builder ? Builder->CreateXor(AV, B) : NonNull;
2903 return nullptr;
2904 }
2905
2906 // If `V` is of the form `B - A` then `-1 - V` can be folded into
2907 // `A + (-1 - B)` if we are willing to invert all of the uses.
2908 if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2909 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2910 DoesConsume, Depth))
2911 return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2912 return nullptr;
2913 }
2914
2915 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2916 // into `A s>> B` if we are willing to invert all of the uses.
2917 if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2918 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2919 DoesConsume, Depth))
2920 return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2921 return nullptr;
2922 }
2923
2924 Value *Cond;
2925 // LogicOps are special in that we canonicalize them at the cost of an
2926 // instruction.
2927 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2929 // Selects/min/max with invertible operands are freely invertible
2930 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2931 bool LocalDoesConsume = DoesConsume;
2932 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2933 LocalDoesConsume, Depth))
2934 return nullptr;
2935 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2936 LocalDoesConsume, Depth)) {
2937 DoesConsume = LocalDoesConsume;
2938 if (Builder != nullptr) {
2939 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2940 DoesConsume, Depth);
2941 assert(NotB != nullptr &&
2942 "Unable to build inverted value for known freely invertable op");
2943 if (auto *II = dyn_cast<IntrinsicInst>(V))
2944 return Builder->CreateBinaryIntrinsic(
2945 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2946 return Builder->CreateSelect(Cond, NotA, NotB);
2947 }
2948 return NonNull;
2949 }
2950 }
2951
2952 if (PHINode *PN = dyn_cast<PHINode>(V)) {
2953 bool LocalDoesConsume = DoesConsume;
2955 for (Use &U : PN->operands()) {
2956 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2957 Value *NewIncomingVal = getFreelyInvertedImpl(
2958 U.get(), /*WillInvertAllUses=*/false,
2959 /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
2960 if (NewIncomingVal == nullptr)
2961 return nullptr;
2962 // Make sure that we can safely erase the original PHI node.
2963 if (NewIncomingVal == V)
2964 return nullptr;
2965 if (Builder != nullptr)
2966 IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
2967 }
2968
2969 DoesConsume = LocalDoesConsume;
2970 if (Builder != nullptr) {
2972 Builder->SetInsertPoint(PN);
2973 PHINode *NewPN =
2974 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
2975 for (auto [Val, Pred] : IncomingValues)
2976 NewPN->addIncoming(Val, Pred);
2977 return NewPN;
2978 }
2979 return NonNull;
2980 }
2981
2982 if (match(V, m_SExtLike(m_Value(A)))) {
2983 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2984 DoesConsume, Depth))
2985 return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
2986 return nullptr;
2987 }
2988
2989 if (match(V, m_Trunc(m_Value(A)))) {
2990 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2991 DoesConsume, Depth))
2992 return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
2993 return nullptr;
2994 }
2995
2996 // De Morgan's Laws:
2997 // (~(A | B)) -> (~A & ~B)
2998 // (~(A & B)) -> (~A | ~B)
2999 auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
3000 bool IsLogical, Value *A,
3001 Value *B) -> Value * {
3002 bool LocalDoesConsume = DoesConsume;
3003 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
3004 LocalDoesConsume, Depth))
3005 return nullptr;
3006 if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3007 LocalDoesConsume, Depth)) {
3008 auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
3009 LocalDoesConsume, Depth);
3010 DoesConsume = LocalDoesConsume;
3011 if (IsLogical)
3012 return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
3013 return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
3014 }
3015
3016 return nullptr;
3017 };
3018
3019 if (match(V, m_Or(m_Value(A), m_Value(B))))
3020 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
3021 B);
3022
3023 if (match(V, m_And(m_Value(A), m_Value(B))))
3024 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
3025 B);
3026
3027 if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
3028 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
3029 B);
3030
3031 if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
3032 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
3033 B);
3034
3035 return nullptr;
3036}
3037
3038/// Return true if we should canonicalize the gep to an i8 ptradd.
3040 Value *PtrOp = GEP.getOperand(0);
3041 Type *GEPEltType = GEP.getSourceElementType();
3042 if (GEPEltType->isIntegerTy(8))
3043 return false;
3044
3045 // Canonicalize scalable GEPs to an explicit offset using the llvm.vscale
3046 // intrinsic. This has better support in BasicAA.
3047 if (GEPEltType->isScalableTy())
3048 return true;
3049
3050 // gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two multiplies
3051 // together.
3052 if (GEP.getNumIndices() == 1 &&
3053 match(GEP.getOperand(1),
3055 m_Shl(m_Value(), m_ConstantInt())))))
3056 return true;
3057
3058 // gep (gep %p, C1), %x, C2 is expanded so the two constants can
3059 // possibly be merged together.
3060 auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp);
3061 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
3062 any_of(GEP.indices(), [](Value *V) {
3063 const APInt *C;
3064 return match(V, m_APInt(C)) && !C->isZero();
3065 });
3066}
3067
3069 IRBuilderBase &Builder) {
3070 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
3071 if (!Op1)
3072 return nullptr;
3073
3074 // Don't fold a GEP into itself through a PHI node. This can only happen
3075 // through the back-edge of a loop. Folding a GEP into itself means that
3076 // the value of the previous iteration needs to be stored in the meantime,
3077 // thus requiring an additional register variable to be live, but not
3078 // actually achieving anything (the GEP still needs to be executed once per
3079 // loop iteration).
3080 if (Op1 == &GEP)
3081 return nullptr;
3082 GEPNoWrapFlags NW = Op1->getNoWrapFlags();
3083
3084 int DI = -1;
3085
3086 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
3087 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
3088 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
3089 Op1->getSourceElementType() != Op2->getSourceElementType())
3090 return nullptr;
3091
3092 // As for Op1 above, don't try to fold a GEP into itself.
3093 if (Op2 == &GEP)
3094 return nullptr;
3095
3096 // Keep track of the type as we walk the GEP.
3097 Type *CurTy = nullptr;
3098
3099 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
3100 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
3101 return nullptr;
3102
3103 if (Op1->getOperand(J) != Op2->getOperand(J)) {
3104 if (DI == -1) {
3105 // We have not seen any differences yet in the GEPs feeding the
3106 // PHI yet, so we record this one if it is allowed to be a
3107 // variable.
3108
3109 // The first two arguments can vary for any GEP, the rest have to be
3110 // static for struct slots
3111 if (J > 1) {
3112 assert(CurTy && "No current type?");
3113 if (CurTy->isStructTy())
3114 return nullptr;
3115 }
3116
3117 DI = J;
3118 } else {
3119 // The GEP is different by more than one input. While this could be
3120 // extended to support GEPs that vary by more than one variable it
3121 // doesn't make sense since it greatly increases the complexity and
3122 // would result in an R+R+R addressing mode which no backend
3123 // directly supports and would need to be broken into several
3124 // simpler instructions anyway.
3125 return nullptr;
3126 }
3127 }
3128
3129 // Sink down a layer of the type for the next iteration.
3130 if (J > 0) {
3131 if (J == 1) {
3132 CurTy = Op1->getSourceElementType();
3133 } else {
3134 CurTy =
3135 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
3136 }
3137 }
3138 }
3139
3140 NW &= Op2->getNoWrapFlags();
3141 }
3142
3143 // If not all GEPs are identical we'll have to create a new PHI node.
3144 // Check that the old PHI node has only one use so that it will get
3145 // removed.
3146 if (DI != -1 && !PN->hasOneUse())
3147 return nullptr;
3148
3149 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
3150 NewGEP->setNoWrapFlags(NW);
3151
3152 if (DI == -1) {
3153 // All the GEPs feeding the PHI are identical. Clone one down into our
3154 // BB so that it can be merged with the current GEP.
3155 } else {
3156 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
3157 // into the current block so it can be merged, and create a new PHI to
3158 // set that index.
3159 PHINode *NewPN;
3160 {
3161 IRBuilderBase::InsertPointGuard Guard(Builder);
3162 Builder.SetInsertPoint(PN);
3163 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
3164 PN->getNumOperands());
3165 }
3166
3167 for (auto &I : PN->operands())
3168 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
3169 PN->getIncomingBlock(I));
3170
3171 NewGEP->setOperand(DI, NewPN);
3172 }
3173
3174 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
3175 return NewGEP;
3176}
3177
3179 Value *PtrOp = GEP.getOperand(0);
3180 SmallVector<Value *, 8> Indices(GEP.indices());
3181 Type *GEPType = GEP.getType();
3182 Type *GEPEltType = GEP.getSourceElementType();
3183 if (Value *V =
3184 simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(),
3185 SQ.getWithInstruction(&GEP)))
3186 return replaceInstUsesWith(GEP, V);
3187
3188 // For vector geps, use the generic demanded vector support.
3189 // Skip if GEP return type is scalable. The number of elements is unknown at
3190 // compile-time.
3191 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
3192 auto VWidth = GEPFVTy->getNumElements();
3193 APInt PoisonElts(VWidth, 0);
3194 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
3195 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
3196 PoisonElts)) {
3197 if (V != &GEP)
3198 return replaceInstUsesWith(GEP, V);
3199 return &GEP;
3200 }
3201 }
3202
3203 // Eliminate unneeded casts for indices, and replace indices which displace
3204 // by multiples of a zero size type with zero.
3205 bool MadeChange = false;
3206
3207 // Index width may not be the same width as pointer width.
3208 // Data layout chooses the right type based on supported integer types.
3209 Type *NewScalarIndexTy =
3210 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
3211
3213 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
3214 ++I, ++GTI) {
3215 // Skip indices into struct types.
3216 if (GTI.isStruct())
3217 continue;
3218
3219 Type *IndexTy = (*I)->getType();
3220 Type *NewIndexType =
3221 IndexTy->isVectorTy()
3222 ? VectorType::get(NewScalarIndexTy,
3223 cast<VectorType>(IndexTy)->getElementCount())
3224 : NewScalarIndexTy;
3225
3226 // If the element type has zero size then any index over it is equivalent
3227 // to an index of zero, so replace it with zero if it is not zero already.
3228 Type *EltTy = GTI.getIndexedType();
3229 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
3230 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
3231 *I = Constant::getNullValue(NewIndexType);
3232 MadeChange = true;
3233 }
3234
3235 if (IndexTy != NewIndexType) {
3236 // If we are using a wider index than needed for this platform, shrink
3237 // it to what we need. If narrower, sign-extend it to what we need.
3238 // This explicit cast can make subsequent optimizations more obvious.
3239 if (IndexTy->getScalarSizeInBits() <
3240 NewIndexType->getScalarSizeInBits()) {
3241 if (GEP.hasNoUnsignedWrap() && GEP.hasNoUnsignedSignedWrap())
3242 *I = Builder.CreateZExt(*I, NewIndexType, "", /*IsNonNeg=*/true);
3243 else
3244 *I = Builder.CreateSExt(*I, NewIndexType);
3245 } else {
3246 *I = Builder.CreateTrunc(*I, NewIndexType, "", GEP.hasNoUnsignedWrap(),
3247 GEP.hasNoUnsignedSignedWrap());
3248 }
3249 MadeChange = true;
3250 }
3251 }
3252 if (MadeChange)
3253 return &GEP;
3254
3255 // Canonicalize constant GEPs to i8 type.
3256 if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
3257 APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0);
3258 if (GEP.accumulateConstantOffset(DL, Offset))
3259 return replaceInstUsesWith(
3260 GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "",
3261 GEP.getNoWrapFlags()));
3262 }
3263
3265 Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP));
3266 Value *NewGEP =
3267 Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags());
3268 return replaceInstUsesWith(GEP, NewGEP);
3269 }
3270
3271 // Strip trailing zero indices.
3272 auto *LastIdx = dyn_cast<Constant>(Indices.back());
3273 if (LastIdx && LastIdx->isNullValue() && !LastIdx->getType()->isVectorTy()) {
3274 return replaceInstUsesWith(
3275 GEP, Builder.CreateGEP(GEP.getSourceElementType(), PtrOp,
3276 drop_end(Indices), "", GEP.getNoWrapFlags()));
3277 }
3278
3279 // Strip leading zero indices.
3280 auto *FirstIdx = dyn_cast<Constant>(Indices.front());
3281 if (FirstIdx && FirstIdx->isNullValue() &&
3282 !FirstIdx->getType()->isVectorTy()) {
3284 ++GTI;
3285 if (!GTI.isStruct())
3286 return replaceInstUsesWith(GEP, Builder.CreateGEP(GTI.getIndexedType(),
3287 GEP.getPointerOperand(),
3288 drop_begin(Indices), "",
3289 GEP.getNoWrapFlags()));
3290 }
3291
3292 // Scalarize vector operands; prefer splat-of-gep.as canonical form.
3293 // Note that this looses information about undef lanes; we run it after
3294 // demanded bits to partially mitigate that loss.
3295 if (GEPType->isVectorTy() && llvm::any_of(GEP.operands(), [](Value *Op) {
3296 return Op->getType()->isVectorTy() && getSplatValue(Op);
3297 })) {
3298 SmallVector<Value *> NewOps;
3299 for (auto &Op : GEP.operands()) {
3300 if (Op->getType()->isVectorTy())
3301 if (Value *Scalar = getSplatValue(Op)) {
3302 NewOps.push_back(Scalar);
3303 continue;
3304 }
3305 NewOps.push_back(Op);
3306 }
3307
3308 Value *Res = Builder.CreateGEP(GEP.getSourceElementType(), NewOps[0],
3309 ArrayRef(NewOps).drop_front(), GEP.getName(),
3310 GEP.getNoWrapFlags());
3311 if (!Res->getType()->isVectorTy()) {
3312 ElementCount EC = cast<VectorType>(GEPType)->getElementCount();
3313 Res = Builder.CreateVectorSplat(EC, Res);
3314 }
3315 return replaceInstUsesWith(GEP, Res);
3316 }
3317
3318 bool SeenNonZeroIndex = false;
3319 for (auto [IdxNum, Idx] : enumerate(Indices)) {
3320 auto *C = dyn_cast<Constant>(Idx);
3321 if (C && C->isNullValue())
3322 continue;
3323
3324 if (!SeenNonZeroIndex) {
3325 SeenNonZeroIndex = true;
3326 continue;
3327 }
3328
3329 // GEP has multiple non-zero indices: Split it.
3330 ArrayRef<Value *> FrontIndices = ArrayRef(Indices).take_front(IdxNum);
3331 Value *FrontGEP =
3332 Builder.CreateGEP(GEPEltType, PtrOp, FrontIndices,
3333 GEP.getName() + ".split", GEP.getNoWrapFlags());
3334
3335 SmallVector<Value *> BackIndices;
3336 BackIndices.push_back(Constant::getNullValue(NewScalarIndexTy));
3337 append_range(BackIndices, drop_begin(Indices, IdxNum));
3339 GetElementPtrInst::getIndexedType(GEPEltType, FrontIndices), FrontGEP,
3340 BackIndices, GEP.getNoWrapFlags());
3341 }
3342
3343 // Check to see if the inputs to the PHI node are getelementptr instructions.
3344 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
3345 if (Value *NewPtrOp = foldGEPOfPhi(GEP, PN, Builder))
3346 return replaceOperand(GEP, 0, NewPtrOp);
3347 }
3348
3349 if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
3350 if (Instruction *I = visitGEPOfGEP(GEP, Src))
3351 return I;
3352
3353 if (GEP.getNumIndices() == 1) {
3354 unsigned AS = GEP.getPointerAddressSpace();
3355 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3356 DL.getIndexSizeInBits(AS)) {
3357 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
3358
3359 if (TyAllocSize == 1) {
3360 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
3361 // but only if the result pointer is only used as if it were an integer.
3362 // (The case where the underlying object is the same is handled by
3363 // InstSimplify.)
3364 Value *X = GEP.getPointerOperand();
3365 Value *Y;
3366 if (match(GEP.getOperand(1), m_Sub(m_PtrToIntOrAddr(m_Value(Y)),
3368 GEPType == Y->getType()) {
3369 bool HasNonAddressBits =
3370 DL.getAddressSizeInBits(AS) != DL.getPointerSizeInBits(AS);
3371 bool Changed = false;
3372 GEP.replaceUsesWithIf(Y, [&](Use &U) {
3373 bool ShouldReplace = isa<PtrToAddrInst>(U.getUser()) ||
3374 (!HasNonAddressBits &&
3375 isa<ICmpInst, PtrToIntInst>(U.getUser()));
3376 Changed |= ShouldReplace;
3377 return ShouldReplace;
3378 });
3379 return Changed ? &GEP : nullptr;
3380 }
3381 } else if (auto *ExactIns =
3382 dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) {
3383 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
3384 Value *V;
3385 if (ExactIns->isExact()) {
3386 if ((has_single_bit(TyAllocSize) &&
3387 match(GEP.getOperand(1),
3388 m_Shr(m_Value(V),
3389 m_SpecificInt(countr_zero(TyAllocSize))))) ||
3390 match(GEP.getOperand(1),
3391 m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) {
3392 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3393 GEP.getPointerOperand(), V,
3394 GEP.getNoWrapFlags());
3395 }
3396 }
3397 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3398 // Try to canonicalize non-i8 element type to i8 if the index is an
3399 // exact instruction. If the index is an exact instruction (div/shr)
3400 // with a constant RHS, we can fold the non-i8 element scale into the
3401 // div/shr (similiar to the mul case, just inverted).
3402 const APInt *C;
3403 std::optional<APInt> NewC;
3404 if (has_single_bit(TyAllocSize) &&
3405 match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) &&
3406 C->uge(countr_zero(TyAllocSize)))
3407 NewC = *C - countr_zero(TyAllocSize);
3408 else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) {
3409 APInt Quot;
3410 uint64_t Rem;
3411 APInt::udivrem(*C, TyAllocSize, Quot, Rem);
3412 if (Rem == 0)
3413 NewC = Quot;
3414 } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) {
3415 APInt Quot;
3416 int64_t Rem;
3417 APInt::sdivrem(*C, TyAllocSize, Quot, Rem);
3418 // For sdiv we need to make sure we arent creating INT_MIN / -1.
3419 if (!Quot.isAllOnes() && Rem == 0)
3420 NewC = Quot;
3421 }
3422
3423 if (NewC.has_value()) {
3424 Value *NewOp = Builder.CreateBinOp(
3425 static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V,
3426 ConstantInt::get(V->getType(), *NewC));
3427 cast<BinaryOperator>(NewOp)->setIsExact();
3428 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3429 GEP.getPointerOperand(), NewOp,
3430 GEP.getNoWrapFlags());
3431 }
3432 }
3433 }
3434 }
3435 }
3436 // We do not handle pointer-vector geps here.
3437 if (GEPType->isVectorTy())
3438 return nullptr;
3439
3440 if (!GEP.isInBounds()) {
3441 unsigned IdxWidth =
3442 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
3443 APInt BasePtrOffset(IdxWidth, 0);
3444 Value *UnderlyingPtrOp =
3445 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, BasePtrOffset);
3446 bool CanBeNull, CanBeFreed;
3447 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
3448 DL, CanBeNull, CanBeFreed);
3449 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3450 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
3451 BasePtrOffset.isNonNegative()) {
3452 APInt AllocSize(IdxWidth, DerefBytes);
3453 if (BasePtrOffset.ule(AllocSize)) {
3455 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
3456 }
3457 }
3458 }
3459 }
3460
3461 // nusw + nneg -> nuw
3462 if (GEP.hasNoUnsignedSignedWrap() && !GEP.hasNoUnsignedWrap() &&
3463 all_of(GEP.indices(), [&](Value *Idx) {
3464 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3465 })) {
3466 GEP.setNoWrapFlags(GEP.getNoWrapFlags() | GEPNoWrapFlags::noUnsignedWrap());
3467 return &GEP;
3468 }
3469
3470 // These rewrites are trying to preserve inbounds/nuw attributes. So we want
3471 // to do this after having tried to derive "nuw" above.
3472 if (GEP.getNumIndices() == 1) {
3473 // Given (gep p, x+y) we want to determine the common nowrap flags for both
3474 // geps if transforming into (gep (gep p, x), y).
3475 auto GetPreservedNoWrapFlags = [&](bool AddIsNUW) {
3476 // We can preserve both "inbounds nuw", "nusw nuw" and "nuw" if we know
3477 // that x + y does not have unsigned wrap.
3478 if (GEP.hasNoUnsignedWrap() && AddIsNUW)
3479 return GEP.getNoWrapFlags();
3480 return GEPNoWrapFlags::none();
3481 };
3482
3483 // Try to replace ADD + GEP with GEP + GEP.
3484 Value *Idx1, *Idx2;
3485 if (match(GEP.getOperand(1),
3486 m_OneUse(m_AddLike(m_Value(Idx1), m_Value(Idx2))))) {
3487 // %idx = add i64 %idx1, %idx2
3488 // %gep = getelementptr i32, ptr %ptr, i64 %idx
3489 // as:
3490 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1
3491 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2
3492 bool NUW = match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()));
3493 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3494 auto *NewPtr =
3495 Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(),
3496 Idx1, "", NWFlags);
3497 return replaceInstUsesWith(GEP,
3498 Builder.CreateGEP(GEP.getSourceElementType(),
3499 NewPtr, Idx2, "", NWFlags));
3500 }
3501 ConstantInt *C;
3502 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAddLike(
3503 m_Value(Idx1), m_ConstantInt(C))))))) {
3504 // %add = add nsw i32 %idx1, idx2
3505 // %sidx = sext i32 %add to i64
3506 // %gep = getelementptr i32, ptr %ptr, i64 %sidx
3507 // as:
3508 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
3509 // %newgep = getelementptr i32, ptr %newptr, i32 idx2
3510 bool NUW = match(GEP.getOperand(1),
3512 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3513 auto *NewPtr = Builder.CreateGEP(
3514 GEP.getSourceElementType(), GEP.getPointerOperand(),
3515 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", NWFlags);
3516 return replaceInstUsesWith(
3517 GEP,
3518 Builder.CreateGEP(GEP.getSourceElementType(), NewPtr,
3519 Builder.CreateSExt(C, GEP.getOperand(1)->getType()),
3520 "", NWFlags));
3521 }
3522 }
3523
3525 return R;
3526
3527 return nullptr;
3528}
3529
3531 Instruction *AI) {
3533 return true;
3534 if (auto *LI = dyn_cast<LoadInst>(V))
3535 return isa<GlobalVariable>(LI->getPointerOperand());
3536 // Two distinct allocations will never be equal.
3537 return isAllocLikeFn(V, &TLI) && V != AI;
3538}
3539
3540/// Given a call CB which uses an address UsedV, return true if we can prove the
3541/// call's only possible effect is storing to V.
3542static bool isRemovableWrite(CallBase &CB, Value *UsedV,
3543 const TargetLibraryInfo &TLI) {
3544 if (!CB.use_empty())
3545 // TODO: add recursion if returned attribute is present
3546 return false;
3547
3548 if (CB.isTerminator())
3549 // TODO: remove implementation restriction
3550 return false;
3551
3552 if (!CB.willReturn() || !CB.doesNotThrow())
3553 return false;
3554
3555 // If the only possible side effect of the call is writing to the alloca,
3556 // and the result isn't used, we can safely remove any reads implied by the
3557 // call including those which might read the alloca itself.
3558 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
3559 return Dest && Dest->Ptr == UsedV;
3560}
3561
3562static std::optional<ModRefInfo>
3564 const TargetLibraryInfo &TLI, bool KnowInit) {
3566 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
3567 Worklist.push_back(AI);
3569
3570 do {
3571 Instruction *PI = Worklist.pop_back_val();
3572 for (User *U : PI->users()) {
3574 switch (I->getOpcode()) {
3575 default:
3576 // Give up the moment we see something we can't handle.
3577 return std::nullopt;
3578
3579 case Instruction::AddrSpaceCast:
3580 case Instruction::BitCast:
3581 case Instruction::GetElementPtr:
3582 Users.emplace_back(I);
3583 Worklist.push_back(I);
3584 continue;
3585
3586 case Instruction::ICmp: {
3587 ICmpInst *ICI = cast<ICmpInst>(I);
3588 // We can fold eq/ne comparisons with null to false/true, respectively.
3589 // We also fold comparisons in some conditions provided the alloc has
3590 // not escaped (see isNeverEqualToUnescapedAlloc).
3591 if (!ICI->isEquality())
3592 return std::nullopt;
3593 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
3594 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
3595 return std::nullopt;
3596
3597 // Do not fold compares to aligned_alloc calls, as they may have to
3598 // return null in case the required alignment cannot be satisfied,
3599 // unless we can prove that both alignment and size are valid.
3600 auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
3601 // Check if alignment and size of a call to aligned_alloc is valid,
3602 // that is alignment is a power-of-2 and the size is a multiple of the
3603 // alignment.
3604 const APInt *Alignment;
3605 const APInt *Size;
3606 return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
3607 match(CB->getArgOperand(1), m_APInt(Size)) &&
3608 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
3609 };
3610 auto *CB = dyn_cast<CallBase>(AI);
3611 LibFunc TheLibFunc;
3612 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3613 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3614 !AlignmentAndSizeKnownValid(CB))
3615 return std::nullopt;
3616 Users.emplace_back(I);
3617 continue;
3618 }
3619
3620 case Instruction::Call:
3621 // Ignore no-op and store intrinsics.
3623 switch (II->getIntrinsicID()) {
3624 default:
3625 return std::nullopt;
3626
3627 case Intrinsic::memmove:
3628 case Intrinsic::memcpy:
3629 case Intrinsic::memset: {
3631 if (MI->isVolatile())
3632 return std::nullopt;
3633 // Note: this could also be ModRef, but we can still interpret that
3634 // as just Mod in that case.
3635 ModRefInfo NewAccess =
3636 MI->getRawDest() == PI ? ModRefInfo::Mod : ModRefInfo::Ref;
3637 if ((Access & ~NewAccess) != ModRefInfo::NoModRef)
3638 return std::nullopt;
3639 Access |= NewAccess;
3640 [[fallthrough]];
3641 }
3642 case Intrinsic::assume:
3643 case Intrinsic::invariant_start:
3644 case Intrinsic::invariant_end:
3645 case Intrinsic::lifetime_start:
3646 case Intrinsic::lifetime_end:
3647 case Intrinsic::objectsize:
3648 Users.emplace_back(I);
3649 continue;
3650 case Intrinsic::launder_invariant_group:
3651 case Intrinsic::strip_invariant_group:
3652 Users.emplace_back(I);
3653 Worklist.push_back(I);
3654 continue;
3655 }
3656 }
3657
3658 if (Family && getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
3659 getAllocationFamily(I, &TLI) == Family) {
3660 Users.emplace_back(I);
3661 continue;
3662 }
3663
3664 if (Family && getReallocatedOperand(cast<CallBase>(I)) == PI &&
3665 getAllocationFamily(I, &TLI) == Family) {
3666 Users.emplace_back(I);
3667 Worklist.push_back(I);
3668 continue;
3669 }
3670
3671 if (!isRefSet(Access) &&
3672 isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
3674 Users.emplace_back(I);
3675 continue;
3676 }
3677
3678 return std::nullopt;
3679
3680 case Instruction::Store: {
3682 if (SI->isVolatile() || SI->getPointerOperand() != PI)
3683 return std::nullopt;
3684 if (isRefSet(Access))
3685 return std::nullopt;
3687 Users.emplace_back(I);
3688 continue;
3689 }
3690
3691 case Instruction::Load: {
3692 LoadInst *LI = cast<LoadInst>(I);
3693 if (LI->isVolatile() || LI->getPointerOperand() != PI)
3694 return std::nullopt;
3695 if (isModSet(Access))
3696 return std::nullopt;
3698 Users.emplace_back(I);
3699 continue;
3700 }
3701 }
3702 llvm_unreachable("missing a return?");
3703 }
3704 } while (!Worklist.empty());
3705
3707 return Access;
3708}
3709
3712
3713 // If we have a malloc call which is only used in any amount of comparisons to
3714 // null and free calls, delete the calls and replace the comparisons with true
3715 // or false as appropriate.
3716
3717 // This is based on the principle that we can substitute our own allocation
3718 // function (which will never return null) rather than knowledge of the
3719 // specific function being called. In some sense this can change the permitted
3720 // outputs of a program (when we convert a malloc to an alloca, the fact that
3721 // the allocation is now on the stack is potentially visible, for example),
3722 // but we believe in a permissible manner.
3724
3725 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
3726 // before each store.
3728 std::unique_ptr<DIBuilder> DIB;
3729 if (isa<AllocaInst>(MI)) {
3730 findDbgUsers(&MI, DVRs);
3731 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
3732 }
3733
3734 // Determine what getInitialValueOfAllocation would return without actually
3735 // allocating the result.
3736 bool KnowInitUndef = false;
3737 bool KnowInitZero = false;
3738 Constant *Init =
3740 if (Init) {
3741 if (isa<UndefValue>(Init))
3742 KnowInitUndef = true;
3743 else if (Init->isNullValue())
3744 KnowInitZero = true;
3745 }
3746 // The various sanitizers don't actually return undef memory, but rather
3747 // memory initialized with special forms of runtime poison
3748 auto &F = *MI.getFunction();
3749 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
3750 F.hasFnAttribute(Attribute::SanitizeAddress))
3751 KnowInitUndef = false;
3752
3753 auto Removable =
3754 isAllocSiteRemovable(&MI, Users, TLI, KnowInitZero | KnowInitUndef);
3755 if (Removable) {
3756 for (WeakTrackingVH &User : Users) {
3757 // Lowering all @llvm.objectsize and MTI calls first because they may use
3758 // a bitcast/GEP of the alloca we are removing.
3759 if (!User)
3760 continue;
3761
3763
3765 if (II->getIntrinsicID() == Intrinsic::objectsize) {
3766 SmallVector<Instruction *> InsertedInstructions;
3767 Value *Result = lowerObjectSizeCall(
3768 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
3769 for (Instruction *Inserted : InsertedInstructions)
3770 Worklist.add(Inserted);
3771 replaceInstUsesWith(*I, Result);
3773 User = nullptr; // Skip examining in the next loop.
3774 continue;
3775 }
3776 if (auto *MTI = dyn_cast<MemTransferInst>(I)) {
3777 if (KnowInitZero && isRefSet(*Removable)) {
3779 Builder.SetInsertPoint(MTI);
3780 auto *M = Builder.CreateMemSet(
3781 MTI->getRawDest(),
3782 ConstantInt::get(Type::getInt8Ty(MI.getContext()), 0),
3783 MTI->getLength(), MTI->getDestAlign());
3784 M->copyMetadata(*MTI);
3785 }
3786 }
3787 }
3788 }
3789 for (WeakTrackingVH &User : Users) {
3790 if (!User)
3791 continue;
3792
3794
3795 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
3797 ConstantInt::get(Type::getInt1Ty(C->getContext()),
3798 C->isFalseWhenEqual()));
3799 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3800 for (auto *DVR : DVRs)
3801 if (DVR->isAddressOfVariable())
3803 } else {
3804 // Casts, GEP, or anything else: we're about to delete this instruction,
3805 // so it can not have any valid uses.
3806 Constant *Replace;
3807 if (isa<LoadInst>(I)) {
3808 assert(KnowInitZero || KnowInitUndef);
3809 Replace = KnowInitUndef ? UndefValue::get(I->getType())
3810 : Constant::getNullValue(I->getType());
3811 } else
3812 Replace = PoisonValue::get(I->getType());
3813 replaceInstUsesWith(*I, Replace);
3814 }
3816 }
3817
3819 // Replace invoke with a NOP intrinsic to maintain the original CFG
3820 Module *M = II->getModule();
3821 Function *F = Intrinsic::getOrInsertDeclaration(M, Intrinsic::donothing);
3822 auto *NewII = InvokeInst::Create(
3823 F, II->getNormalDest(), II->getUnwindDest(), {}, "", II->getParent());
3824 NewII->setDebugLoc(II->getDebugLoc());
3825 }
3826
3827 // Remove debug intrinsics which describe the value contained within the
3828 // alloca. In addition to removing dbg.{declare,addr} which simply point to
3829 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3830 //
3831 // ```
3832 // define void @foo(i32 %0) {
3833 // %a = alloca i32 ; Deleted.
3834 // store i32 %0, i32* %a
3835 // dbg.value(i32 %0, "arg0") ; Not deleted.
3836 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
3837 // call void @trivially_inlinable_no_op(i32* %a)
3838 // ret void
3839 // }
3840 // ```
3841 //
3842 // This may not be required if we stop describing the contents of allocas
3843 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3844 // the LowerDbgDeclare utility.
3845 //
3846 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3847 // "arg0" dbg.value may be stale after the call. However, failing to remove
3848 // the DW_OP_deref dbg.value causes large gaps in location coverage.
3849 //
3850 // FIXME: the Assignment Tracking project has now likely made this
3851 // redundant (and it's sometimes harmful).
3852 for (auto *DVR : DVRs)
3853 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3854 DVR->eraseFromParent();
3855
3856 return eraseInstFromFunction(MI);
3857 }
3858 return nullptr;
3859}
3860
3861/// Move the call to free before a NULL test.
3862///
3863/// Check if this free is accessed after its argument has been test
3864/// against NULL (property 0).
3865/// If yes, it is legal to move this call in its predecessor block.
3866///
3867/// The move is performed only if the block containing the call to free
3868/// will be removed, i.e.:
3869/// 1. it has only one predecessor P, and P has two successors
3870/// 2. it contains the call, noops, and an unconditional branch
3871/// 3. its successor is the same as its predecessor's successor
3872///
3873/// The profitability is out-of concern here and this function should
3874/// be called only if the caller knows this transformation would be
3875/// profitable (e.g., for code size).
3877 const DataLayout &DL) {
3878 Value *Op = FI.getArgOperand(0);
3879 BasicBlock *FreeInstrBB = FI.getParent();
3880 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
3881
3882 // Validate part of constraint #1: Only one predecessor
3883 // FIXME: We can extend the number of predecessor, but in that case, we
3884 // would duplicate the call to free in each predecessor and it may
3885 // not be profitable even for code size.
3886 if (!PredBB)
3887 return nullptr;
3888
3889 // Validate constraint #2: Does this block contains only the call to
3890 // free, noops, and an unconditional branch?
3891 BasicBlock *SuccBB;
3892 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
3893 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
3894 return nullptr;
3895
3896 // If there are only 2 instructions in the block, at this point,
3897 // this is the call to free and unconditional.
3898 // If there are more than 2 instructions, check that they are noops
3899 // i.e., they won't hurt the performance of the generated code.
3900 if (FreeInstrBB->size() != 2) {
3901 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
3902 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3903 continue;
3904 auto *Cast = dyn_cast<CastInst>(&Inst);
3905 if (!Cast || !Cast->isNoopCast(DL))
3906 return nullptr;
3907 }
3908 }
3909 // Validate the rest of constraint #1 by matching on the pred branch.
3910 Instruction *TI = PredBB->getTerminator();
3911 BasicBlock *TrueBB, *FalseBB;
3912 CmpPredicate Pred;
3913 if (!match(TI, m_Br(m_ICmp(Pred,
3915 m_Specific(Op->stripPointerCasts())),
3916 m_Zero()),
3917 TrueBB, FalseBB)))
3918 return nullptr;
3919 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3920 return nullptr;
3921
3922 // Validate constraint #3: Ensure the null case just falls through.
3923 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3924 return nullptr;
3925 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3926 "Broken CFG: missing edge from predecessor to successor");
3927
3928 // At this point, we know that everything in FreeInstrBB can be moved
3929 // before TI.
3930 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3931 if (&Instr == FreeInstrBBTerminator)
3932 break;
3933 Instr.moveBeforePreserving(TI->getIterator());
3934 }
3935 assert(FreeInstrBB->size() == 1 &&
3936 "Only the branch instruction should remain");
3937
3938 // Now that we've moved the call to free before the NULL check, we have to
3939 // remove any attributes on its parameter that imply it's non-null, because
3940 // those attributes might have only been valid because of the NULL check, and
3941 // we can get miscompiles if we keep them. This is conservative if non-null is
3942 // also implied by something other than the NULL check, but it's guaranteed to
3943 // be correct, and the conservativeness won't matter in practice, since the
3944 // attributes are irrelevant for the call to free itself and the pointer
3945 // shouldn't be used after the call.
3946 AttributeList Attrs = FI.getAttributes();
3947 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3948 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3949 if (Dereferenceable.isValid()) {
3950 uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3951 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3952 Attribute::Dereferenceable);
3953 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3954 }
3955 FI.setAttributes(Attrs);
3956
3957 return &FI;
3958}
3959
3961 // free undef -> unreachable.
3962 if (isa<UndefValue>(Op)) {
3963 // Leave a marker since we can't modify the CFG here.
3965 return eraseInstFromFunction(FI);
3966 }
3967
3968 // If we have 'free null' delete the instruction. This can happen in stl code
3969 // when lots of inlining happens.
3971 return eraseInstFromFunction(FI);
3972
3973 // If we had free(realloc(...)) with no intervening uses, then eliminate the
3974 // realloc() entirely.
3976 if (CI && CI->hasOneUse())
3977 if (Value *ReallocatedOp = getReallocatedOperand(CI))
3978 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3979
3980 // If we optimize for code size, try to move the call to free before the null
3981 // test so that simplify cfg can remove the empty block and dead code
3982 // elimination the branch. I.e., helps to turn something like:
3983 // if (foo) free(foo);
3984 // into
3985 // free(foo);
3986 //
3987 // Note that we can only do this for 'free' and not for any flavor of
3988 // 'operator delete'; there is no 'operator delete' symbol for which we are
3989 // permitted to invent a call, even if we're passing in a null pointer.
3990 if (MinimizeSize) {
3991 LibFunc Func;
3992 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3994 return I;
3995 }
3996
3997 return nullptr;
3998}
3999
4001 Value *RetVal = RI.getReturnValue();
4002 if (!RetVal)
4003 return nullptr;
4004
4005 Function *F = RI.getFunction();
4006 Type *RetTy = RetVal->getType();
4007 if (RetTy->isPointerTy()) {
4008 bool HasDereferenceable =
4009 F->getAttributes().getRetDereferenceableBytes() > 0;
4010 if (F->hasRetAttribute(Attribute::NonNull) ||
4011 (HasDereferenceable &&
4013 if (Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
4014 return replaceOperand(RI, 0, V);
4015 }
4016 }
4017
4018 if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
4019 return nullptr;
4020
4021 FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
4022 if (ReturnClass == fcNone)
4023 return nullptr;
4024
4025 KnownFPClass KnownClass;
4026 Value *Simplified =
4027 SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, &RI);
4028 if (!Simplified)
4029 return nullptr;
4030
4031 return ReturnInst::Create(RI.getContext(), Simplified);
4032}
4033
4034// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
4036 // Try to remove the previous instruction if it must lead to unreachable.
4037 // This includes instructions like stores and "llvm.assume" that may not get
4038 // removed by simple dead code elimination.
4039 bool Changed = false;
4040 while (Instruction *Prev = I.getPrevNode()) {
4041 // While we theoretically can erase EH, that would result in a block that
4042 // used to start with an EH no longer starting with EH, which is invalid.
4043 // To make it valid, we'd need to fixup predecessors to no longer refer to
4044 // this block, but that changes CFG, which is not allowed in InstCombine.
4045 if (Prev->isEHPad())
4046 break; // Can not drop any more instructions. We're done here.
4047
4049 break; // Can not drop any more instructions. We're done here.
4050 // Otherwise, this instruction can be freely erased,
4051 // even if it is not side-effect free.
4052
4053 // A value may still have uses before we process it here (for example, in
4054 // another unreachable block), so convert those to poison.
4055 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
4056 eraseInstFromFunction(*Prev);
4057 Changed = true;
4058 }
4059 return Changed;
4060}
4061
4066
4068 assert(BI.isUnconditional() && "Only for unconditional branches.");
4069
4070 // If this store is the second-to-last instruction in the basic block
4071 // (excluding debug info) and if the block ends with
4072 // an unconditional branch, try to move the store to the successor block.
4073
4074 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
4075 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
4076 do {
4077 if (BBI != FirstInstr)
4078 --BBI;
4079 } while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
4080
4081 return dyn_cast<StoreInst>(BBI);
4082 };
4083
4084 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
4086 return &BI;
4087
4088 return nullptr;
4089}
4090
4093 if (!DeadEdges.insert({From, To}).second)
4094 return;
4095
4096 // Replace phi node operands in successor with poison.
4097 for (PHINode &PN : To->phis())
4098 for (Use &U : PN.incoming_values())
4099 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
4100 replaceUse(U, PoisonValue::get(PN.getType()));
4101 addToWorklist(&PN);
4102 MadeIRChange = true;
4103 }
4104
4105 Worklist.push_back(To);
4106}
4107
4108// Under the assumption that I is unreachable, remove it and following
4109// instructions. Changes are reported directly to MadeIRChange.
4112 BasicBlock *BB = I->getParent();
4113 for (Instruction &Inst : make_early_inc_range(
4114 make_range(std::next(BB->getTerminator()->getReverseIterator()),
4115 std::next(I->getReverseIterator())))) {
4116 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
4117 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
4118 MadeIRChange = true;
4119 }
4120 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
4121 continue;
4122 // RemoveDIs: erase debug-info on this instruction manually.
4123 Inst.dropDbgRecords();
4125 MadeIRChange = true;
4126 }
4127
4130 MadeIRChange = true;
4131 for (Value *V : Changed)
4133 }
4134
4135 // Handle potentially dead successors.
4136 for (BasicBlock *Succ : successors(BB))
4137 addDeadEdge(BB, Succ, Worklist);
4138}
4139
4142 while (!Worklist.empty()) {
4143 BasicBlock *BB = Worklist.pop_back_val();
4144 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
4145 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
4146 }))
4147 continue;
4148
4150 }
4151}
4152
4154 BasicBlock *LiveSucc) {
4156 for (BasicBlock *Succ : successors(BB)) {
4157 // The live successor isn't dead.
4158 if (Succ == LiveSucc)
4159 continue;
4160
4161 addDeadEdge(BB, Succ, Worklist);
4162 }
4163
4165}
4166
4168 if (BI.isUnconditional())
4170
4171 // Change br (not X), label True, label False to: br X, label False, True
4172 Value *Cond = BI.getCondition();
4173 Value *X;
4174 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
4175 // Swap Destinations and condition...
4176 BI.swapSuccessors();
4177 if (BPI)
4178 BPI->swapSuccEdgesProbabilities(BI.getParent());
4179 return replaceOperand(BI, 0, X);
4180 }
4181
4182 // Canonicalize logical-and-with-invert as logical-or-with-invert.
4183 // This is done by inverting the condition and swapping successors:
4184 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
4185 Value *Y;
4186 if (isa<SelectInst>(Cond) &&
4187 match(Cond,
4189 Value *NotX = Builder.CreateNot(X, "not." + X->getName());
4190 Value *Or = Builder.CreateLogicalOr(NotX, Y);
4191 BI.swapSuccessors();
4192 if (BPI)
4193 BPI->swapSuccEdgesProbabilities(BI.getParent());
4194 return replaceOperand(BI, 0, Or);
4195 }
4196
4197 // If the condition is irrelevant, remove the use so that other
4198 // transforms on the condition become more effective.
4199 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
4200 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
4201
4202 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
4203 CmpPredicate Pred;
4204 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
4205 !isCanonicalPredicate(Pred)) {
4206 // Swap destinations and condition.
4207 auto *Cmp = cast<CmpInst>(Cond);
4208 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
4209 BI.swapSuccessors();
4210 if (BPI)
4211 BPI->swapSuccEdgesProbabilities(BI.getParent());
4212 Worklist.push(Cmp);
4213 return &BI;
4214 }
4215
4216 if (isa<UndefValue>(Cond)) {
4217 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
4218 return nullptr;
4219 }
4220 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4222 BI.getSuccessor(!CI->getZExtValue()));
4223 return nullptr;
4224 }
4225
4226 // Replace all dominated uses of the condition with true/false
4227 // Ignore constant expressions to avoid iterating over uses on other
4228 // functions.
4229 if (!isa<Constant>(Cond) && BI.getSuccessor(0) != BI.getSuccessor(1)) {
4230 for (auto &U : make_early_inc_range(Cond->uses())) {
4231 BasicBlockEdge Edge0(BI.getParent(), BI.getSuccessor(0));
4232 if (DT.dominates(Edge0, U)) {
4233 replaceUse(U, ConstantInt::getTrue(Cond->getType()));
4234 addToWorklist(cast<Instruction>(U.getUser()));
4235 continue;
4236 }
4237 BasicBlockEdge Edge1(BI.getParent(), BI.getSuccessor(1));
4238 if (DT.dominates(Edge1, U)) {
4239 replaceUse(U, ConstantInt::getFalse(Cond->getType()));
4240 addToWorklist(cast<Instruction>(U.getUser()));
4241 }
4242 }
4243 }
4244
4245 DC.registerBranch(&BI);
4246 return nullptr;
4247}
4248
4249// Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
4250// we can prove that both (switch C) and (switch X) go to the default when cond
4251// is false/true.
4254 bool IsTrueArm) {
4255 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
4256 auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
4257 if (!C)
4258 return nullptr;
4259
4260 BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
4261 if (CstBB != SI.getDefaultDest())
4262 return nullptr;
4263 Value *X = Select->getOperand(3 - CstOpIdx);
4264 CmpPredicate Pred;
4265 const APInt *RHSC;
4266 if (!match(Select->getCondition(),
4267 m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
4268 return nullptr;
4269 if (IsTrueArm)
4270 Pred = ICmpInst::getInversePredicate(Pred);
4271
4272 // See whether we can replace the select with X
4274 for (auto Case : SI.cases())
4275 if (!CR.contains(Case.getCaseValue()->getValue()))
4276 return nullptr;
4277
4278 return X;
4279}
4280
4282 Value *Cond = SI.getCondition();
4283 Value *Op0;
4284 ConstantInt *AddRHS;
4285 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
4286 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
4287 for (auto Case : SI.cases()) {
4288 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
4289 assert(isa<ConstantInt>(NewCase) &&
4290 "Result of expression should be constant");
4291 Case.setValue(cast<ConstantInt>(NewCase));
4292 }
4293 return replaceOperand(SI, 0, Op0);
4294 }
4295
4296 ConstantInt *SubLHS;
4297 if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
4298 // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
4299 for (auto Case : SI.cases()) {
4300 Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
4301 assert(isa<ConstantInt>(NewCase) &&
4302 "Result of expression should be constant");
4303 Case.setValue(cast<ConstantInt>(NewCase));
4304 }
4305 return replaceOperand(SI, 0, Op0);
4306 }
4307
4308 uint64_t ShiftAmt;
4309 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
4310 ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
4311 all_of(SI.cases(), [&](const auto &Case) {
4312 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
4313 })) {
4314 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
4316 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
4317 Shl->hasOneUse()) {
4318 Value *NewCond = Op0;
4319 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
4320 // If the shift may wrap, we need to mask off the shifted bits.
4321 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4322 NewCond = Builder.CreateAnd(
4323 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
4324 }
4325 for (auto Case : SI.cases()) {
4326 const APInt &CaseVal = Case.getCaseValue()->getValue();
4327 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
4328 : CaseVal.lshr(ShiftAmt);
4329 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
4330 }
4331 return replaceOperand(SI, 0, NewCond);
4332 }
4333 }
4334
4335 // Fold switch(zext/sext(X)) into switch(X) if possible.
4336 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
4337 bool IsZExt = isa<ZExtInst>(Cond);
4338 Type *SrcTy = Op0->getType();
4339 unsigned NewWidth = SrcTy->getScalarSizeInBits();
4340
4341 if (all_of(SI.cases(), [&](const auto &Case) {
4342 const APInt &CaseVal = Case.getCaseValue()->getValue();
4343 return IsZExt ? CaseVal.isIntN(NewWidth)
4344 : CaseVal.isSignedIntN(NewWidth);
4345 })) {
4346 for (auto &Case : SI.cases()) {
4347 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4348 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4349 }
4350 return replaceOperand(SI, 0, Op0);
4351 }
4352 }
4353
4354 // Fold switch(select cond, X, Y) into switch(X/Y) if possible
4355 if (auto *Select = dyn_cast<SelectInst>(Cond)) {
4356 if (Value *V =
4357 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
4358 return replaceOperand(SI, 0, V);
4359 if (Value *V =
4360 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
4361 return replaceOperand(SI, 0, V);
4362 }
4363
4364 KnownBits Known = computeKnownBits(Cond, &SI);
4365 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
4366 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
4367
4368 // Compute the number of leading bits we can ignore.
4369 // TODO: A better way to determine this would use ComputeNumSignBits().
4370 for (const auto &C : SI.cases()) {
4371 LeadingKnownZeros =
4372 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
4373 LeadingKnownOnes =
4374 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
4375 }
4376
4377 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
4378
4379 // Shrink the condition operand if the new type is smaller than the old type.
4380 // But do not shrink to a non-standard type, because backend can't generate
4381 // good code for that yet.
4382 // TODO: We can make it aggressive again after fixing PR39569.
4383 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
4384 shouldChangeType(Known.getBitWidth(), NewWidth)) {
4385 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
4386 Builder.SetInsertPoint(&SI);
4387 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
4388
4389 for (auto Case : SI.cases()) {
4390 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4391 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4392 }
4393 return replaceOperand(SI, 0, NewCond);
4394 }
4395
4396 if (isa<UndefValue>(Cond)) {
4397 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
4398 return nullptr;
4399 }
4400 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4402 SI.findCaseValue(CI)->getCaseSuccessor());
4403 return nullptr;
4404 }
4405
4406 return nullptr;
4407}
4408
4410InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
4412 if (!WO)
4413 return nullptr;
4414
4415 Intrinsic::ID OvID = WO->getIntrinsicID();
4416 const APInt *C = nullptr;
4417 if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
4418 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
4419 OvID == Intrinsic::umul_with_overflow)) {
4420 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
4421 if (C->isAllOnes())
4422 return BinaryOperator::CreateNeg(WO->getLHS());
4423 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
4424 if (C->isPowerOf2()) {
4425 return BinaryOperator::CreateShl(
4426 WO->getLHS(),
4427 ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
4428 }
4429 }
4430 }
4431
4432 // We're extracting from an overflow intrinsic. See if we're the only user.
4433 // That allows us to simplify multiple result intrinsics to simpler things
4434 // that just get one value.
4435 if (!WO->hasOneUse())
4436 return nullptr;
4437
4438 // Check if we're grabbing only the result of a 'with overflow' intrinsic
4439 // and replace it with a traditional binary instruction.
4440 if (*EV.idx_begin() == 0) {
4441 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4442 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
4443 // Replace the old instruction's uses with poison.
4444 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
4446 return BinaryOperator::Create(BinOp, LHS, RHS);
4447 }
4448
4449 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
4450
4451 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
4452 if (OvID == Intrinsic::usub_with_overflow)
4453 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
4454
4455 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
4456 // +1 is not possible because we assume signed values.
4457 if (OvID == Intrinsic::smul_with_overflow &&
4458 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4459 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4460
4461 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
4462 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4463 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4464 // Only handle even bitwidths for performance reasons.
4465 if (BitWidth % 2 == 0)
4466 return new ICmpInst(
4467 ICmpInst::ICMP_UGT, WO->getLHS(),
4468 ConstantInt::get(WO->getLHS()->getType(),
4470 }
4471
4472 // If only the overflow result is used, and the right hand side is a
4473 // constant (or constant splat), we can remove the intrinsic by directly
4474 // checking for overflow.
4475 if (C) {
4476 // Compute the no-wrap range for LHS given RHS=C, then construct an
4477 // equivalent icmp, potentially using an offset.
4478 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
4479 WO->getBinaryOp(), *C, WO->getNoWrapKind());
4480
4481 CmpInst::Predicate Pred;
4482 APInt NewRHSC, Offset;
4483 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
4484 auto *OpTy = WO->getRHS()->getType();
4485 auto *NewLHS = WO->getLHS();
4486 if (Offset != 0)
4487 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
4488 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
4489 ConstantInt::get(OpTy, NewRHSC));
4490 }
4491
4492 return nullptr;
4493}
4494
4497 InstCombiner::BuilderTy &Builder) {
4498 // Helper to fold frexp of select to select of frexp.
4499
4500 if (!SelectInst->hasOneUse() || !FrexpCall->hasOneUse())
4501 return nullptr;
4503 Value *TrueVal = SelectInst->getTrueValue();
4504 Value *FalseVal = SelectInst->getFalseValue();
4505
4506 const APFloat *ConstVal = nullptr;
4507 Value *VarOp = nullptr;
4508 bool ConstIsTrue = false;
4509
4510 if (match(TrueVal, m_APFloat(ConstVal))) {
4511 VarOp = FalseVal;
4512 ConstIsTrue = true;
4513 } else if (match(FalseVal, m_APFloat(ConstVal))) {
4514 VarOp = TrueVal;
4515 ConstIsTrue = false;
4516 } else {
4517 return nullptr;
4518 }
4519
4520 Builder.SetInsertPoint(&EV);
4521
4522 CallInst *NewFrexp =
4523 Builder.CreateCall(FrexpCall->getCalledFunction(), {VarOp}, "frexp");
4524 NewFrexp->copyIRFlags(FrexpCall);
4525
4526 Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0, "mantissa");
4527
4528 int Exp;
4529 APFloat Mantissa = frexp(*ConstVal, Exp, APFloat::rmNearestTiesToEven);
4530
4531 Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
4532
4533 Value *NewSel = Builder.CreateSelectFMF(
4534 Cond, ConstIsTrue ? ConstantMantissa : NewEV,
4535 ConstIsTrue ? NewEV : ConstantMantissa, SelectInst, "select.frexp");
4536 return NewSel;
4537}
4539 Value *Agg = EV.getAggregateOperand();
4540
4541 if (!EV.hasIndices())
4542 return replaceInstUsesWith(EV, Agg);
4543
4544 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
4545 SQ.getWithInstruction(&EV)))
4546 return replaceInstUsesWith(EV, V);
4547
4548 Value *Cond, *TrueVal, *FalseVal;
4550 m_Value(Cond), m_Value(TrueVal), m_Value(FalseVal)))))) {
4551 auto *SelInst =
4552 cast<SelectInst>(cast<IntrinsicInst>(Agg)->getArgOperand(0));
4553 if (Value *Result =
4554 foldFrexpOfSelect(EV, cast<IntrinsicInst>(Agg), SelInst, Builder))
4555 return replaceInstUsesWith(EV, Result);
4556 }
4558 // We're extracting from an insertvalue instruction, compare the indices
4559 const unsigned *exti, *exte, *insi, *inse;
4560 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
4561 exte = EV.idx_end(), inse = IV->idx_end();
4562 exti != exte && insi != inse;
4563 ++exti, ++insi) {
4564 if (*insi != *exti)
4565 // The insert and extract both reference distinctly different elements.
4566 // This means the extract is not influenced by the insert, and we can
4567 // replace the aggregate operand of the extract with the aggregate
4568 // operand of the insert. i.e., replace
4569 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4570 // %E = extractvalue { i32, { i32 } } %I, 0
4571 // with
4572 // %E = extractvalue { i32, { i32 } } %A, 0
4573 return ExtractValueInst::Create(IV->getAggregateOperand(),
4574 EV.getIndices());
4575 }
4576 if (exti == exte && insi == inse)
4577 // Both iterators are at the end: Index lists are identical. Replace
4578 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4579 // %C = extractvalue { i32, { i32 } } %B, 1, 0
4580 // with "i32 42"
4581 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
4582 if (exti == exte) {
4583 // The extract list is a prefix of the insert list. i.e. replace
4584 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4585 // %E = extractvalue { i32, { i32 } } %I, 1
4586 // with
4587 // %X = extractvalue { i32, { i32 } } %A, 1
4588 // %E = insertvalue { i32 } %X, i32 42, 0
4589 // by switching the order of the insert and extract (though the
4590 // insertvalue should be left in, since it may have other uses).
4591 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
4592 EV.getIndices());
4593 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
4594 ArrayRef(insi, inse));
4595 }
4596 if (insi == inse)
4597 // The insert list is a prefix of the extract list
4598 // We can simply remove the common indices from the extract and make it
4599 // operate on the inserted value instead of the insertvalue result.
4600 // i.e., replace
4601 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4602 // %E = extractvalue { i32, { i32 } } %I, 1, 0
4603 // with
4604 // %E extractvalue { i32 } { i32 42 }, 0
4605 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
4606 ArrayRef(exti, exte));
4607 }
4608
4609 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4610 return R;
4611
4612 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4613 // Bail out if the aggregate contains scalable vector type
4614 if (auto *STy = dyn_cast<StructType>(Agg->getType());
4615 STy && STy->isScalableTy())
4616 return nullptr;
4617
4618 // If the (non-volatile) load only has one use, we can rewrite this to a
4619 // load from a GEP. This reduces the size of the load. If a load is used
4620 // only by extractvalue instructions then this either must have been
4621 // optimized before, or it is a struct with padding, in which case we
4622 // don't want to do the transformation as it loses padding knowledge.
4623 if (L->isSimple() && L->hasOneUse()) {
4624 // extractvalue has integer indices, getelementptr has Value*s. Convert.
4625 SmallVector<Value*, 4> Indices;
4626 // Prefix an i32 0 since we need the first element.
4627 Indices.push_back(Builder.getInt32(0));
4628 for (unsigned Idx : EV.indices())
4629 Indices.push_back(Builder.getInt32(Idx));
4630
4631 // We need to insert these at the location of the old load, not at that of
4632 // the extractvalue.
4633 Builder.SetInsertPoint(L);
4634 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
4635 L->getPointerOperand(), Indices);
4636 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
4637 // Whatever aliasing information we had for the orignal load must also
4638 // hold for the smaller load, so propagate the annotations.
4639 NL->setAAMetadata(L->getAAMetadata());
4640 // Returning the load directly will cause the main loop to insert it in
4641 // the wrong spot, so use replaceInstUsesWith().
4642 return replaceInstUsesWith(EV, NL);
4643 }
4644 }
4645
4646 if (auto *PN = dyn_cast<PHINode>(Agg))
4647 if (Instruction *Res = foldOpIntoPhi(EV, PN))
4648 return Res;
4649
4650 // Canonicalize extract (select Cond, TV, FV)
4651 // -> select cond, (extract TV), (extract FV)
4652 if (auto *SI = dyn_cast<SelectInst>(Agg))
4653 if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
4654 return R;
4655
4656 // We could simplify extracts from other values. Note that nested extracts may
4657 // already be simplified implicitly by the above: extract (extract (insert) )
4658 // will be translated into extract ( insert ( extract ) ) first and then just
4659 // the value inserted, if appropriate. Similarly for extracts from single-use
4660 // loads: extract (extract (load)) will be translated to extract (load (gep))
4661 // and if again single-use then via load (gep (gep)) to load (gep).
4662 // However, double extracts from e.g. function arguments or return values
4663 // aren't handled yet.
4664 return nullptr;
4665}
4666
4667/// Return 'true' if the given typeinfo will match anything.
4668static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
4669 switch (Personality) {
4673 // The GCC C EH and Rust personality only exists to support cleanups, so
4674 // it's not clear what the semantics of catch clauses are.
4675 return false;
4677 return false;
4679 // While __gnat_all_others_value will match any Ada exception, it doesn't
4680 // match foreign exceptions (or didn't, before gcc-4.7).
4681 return false;
4692 return TypeInfo->isNullValue();
4693 }
4694 llvm_unreachable("invalid enum");
4695}
4696
4697static bool shorter_filter(const Value *LHS, const Value *RHS) {
4698 return
4699 cast<ArrayType>(LHS->getType())->getNumElements()
4700 <
4701 cast<ArrayType>(RHS->getType())->getNumElements();
4702}
4703
4705 // The logic here should be correct for any real-world personality function.
4706 // However if that turns out not to be true, the offending logic can always
4707 // be conditioned on the personality function, like the catch-all logic is.
4708 EHPersonality Personality =
4709 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
4710
4711 // Simplify the list of clauses, eg by removing repeated catch clauses
4712 // (these are often created by inlining).
4713 bool MakeNewInstruction = false; // If true, recreate using the following:
4714 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
4715 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
4716
4717 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
4718 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
4719 bool isLastClause = i + 1 == e;
4720 if (LI.isCatch(i)) {
4721 // A catch clause.
4722 Constant *CatchClause = LI.getClause(i);
4723 Constant *TypeInfo = CatchClause->stripPointerCasts();
4724
4725 // If we already saw this clause, there is no point in having a second
4726 // copy of it.
4727 if (AlreadyCaught.insert(TypeInfo).second) {
4728 // This catch clause was not already seen.
4729 NewClauses.push_back(CatchClause);
4730 } else {
4731 // Repeated catch clause - drop the redundant copy.
4732 MakeNewInstruction = true;
4733 }
4734
4735 // If this is a catch-all then there is no point in keeping any following
4736 // clauses or marking the landingpad as having a cleanup.
4737 if (isCatchAll(Personality, TypeInfo)) {
4738 if (!isLastClause)
4739 MakeNewInstruction = true;
4740 CleanupFlag = false;
4741 break;
4742 }
4743 } else {
4744 // A filter clause. If any of the filter elements were already caught
4745 // then they can be dropped from the filter. It is tempting to try to
4746 // exploit the filter further by saying that any typeinfo that does not
4747 // occur in the filter can't be caught later (and thus can be dropped).
4748 // However this would be wrong, since typeinfos can match without being
4749 // equal (for example if one represents a C++ class, and the other some
4750 // class derived from it).
4751 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
4752 Constant *FilterClause = LI.getClause(i);
4753 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
4754 unsigned NumTypeInfos = FilterType->getNumElements();
4755
4756 // An empty filter catches everything, so there is no point in keeping any
4757 // following clauses or marking the landingpad as having a cleanup. By
4758 // dealing with this case here the following code is made a bit simpler.
4759 if (!NumTypeInfos) {
4760 NewClauses.push_back(FilterClause);
4761 if (!isLastClause)
4762 MakeNewInstruction = true;
4763 CleanupFlag = false;
4764 break;
4765 }
4766
4767 bool MakeNewFilter = false; // If true, make a new filter.
4768 SmallVector<Constant *, 16> NewFilterElts; // New elements.
4769 if (isa<ConstantAggregateZero>(FilterClause)) {
4770 // Not an empty filter - it contains at least one null typeinfo.
4771 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
4772 Constant *TypeInfo =
4774 // If this typeinfo is a catch-all then the filter can never match.
4775 if (isCatchAll(Personality, TypeInfo)) {
4776 // Throw the filter away.
4777 MakeNewInstruction = true;
4778 continue;
4779 }
4780
4781 // There is no point in having multiple copies of this typeinfo, so
4782 // discard all but the first copy if there is more than one.
4783 NewFilterElts.push_back(TypeInfo);
4784 if (NumTypeInfos > 1)
4785 MakeNewFilter = true;
4786 } else {
4787 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
4788 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
4789 NewFilterElts.reserve(NumTypeInfos);
4790
4791 // Remove any filter elements that were already caught or that already
4792 // occurred in the filter. While there, see if any of the elements are
4793 // catch-alls. If so, the filter can be discarded.
4794 bool SawCatchAll = false;
4795 for (unsigned j = 0; j != NumTypeInfos; ++j) {
4796 Constant *Elt = Filter->getOperand(j);
4797 Constant *TypeInfo = Elt->stripPointerCasts();
4798 if (isCatchAll(Personality, TypeInfo)) {
4799 // This element is a catch-all. Bail out, noting this fact.
4800 SawCatchAll = true;
4801 break;
4802 }
4803
4804 // Even if we've seen a type in a catch clause, we don't want to
4805 // remove it from the filter. An unexpected type handler may be
4806 // set up for a call site which throws an exception of the same
4807 // type caught. In order for the exception thrown by the unexpected
4808 // handler to propagate correctly, the filter must be correctly
4809 // described for the call site.
4810 //
4811 // Example:
4812 //
4813 // void unexpected() { throw 1;}
4814 // void foo() throw (int) {
4815 // std::set_unexpected(unexpected);
4816 // try {
4817 // throw 2.0;
4818 // } catch (int i) {}
4819 // }
4820
4821 // There is no point in having multiple copies of the same typeinfo in
4822 // a filter, so only add it if we didn't already.
4823 if (SeenInFilter.insert(TypeInfo).second)
4824 NewFilterElts.push_back(cast<Constant>(Elt));
4825 }
4826 // A filter containing a catch-all cannot match anything by definition.
4827 if (SawCatchAll) {
4828 // Throw the filter away.
4829 MakeNewInstruction = true;
4830 continue;
4831 }
4832
4833 // If we dropped something from the filter, make a new one.
4834 if (NewFilterElts.size() < NumTypeInfos)
4835 MakeNewFilter = true;
4836 }
4837 if (MakeNewFilter) {
4838 FilterType = ArrayType::get(FilterType->getElementType(),
4839 NewFilterElts.size());
4840 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
4841 MakeNewInstruction = true;
4842 }
4843
4844 NewClauses.push_back(FilterClause);
4845
4846 // If the new filter is empty then it will catch everything so there is
4847 // no point in keeping any following clauses or marking the landingpad
4848 // as having a cleanup. The case of the original filter being empty was
4849 // already handled above.
4850 if (MakeNewFilter && !NewFilterElts.size()) {
4851 assert(MakeNewInstruction && "New filter but not a new instruction!");
4852 CleanupFlag = false;
4853 break;
4854 }
4855 }
4856 }
4857
4858 // If several filters occur in a row then reorder them so that the shortest
4859 // filters come first (those with the smallest number of elements). This is
4860 // advantageous because shorter filters are more likely to match, speeding up
4861 // unwinding, but mostly because it increases the effectiveness of the other
4862 // filter optimizations below.
4863 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
4864 unsigned j;
4865 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4866 for (j = i; j != e; ++j)
4867 if (!isa<ArrayType>(NewClauses[j]->getType()))
4868 break;
4869
4870 // Check whether the filters are already sorted by length. We need to know
4871 // if sorting them is actually going to do anything so that we only make a
4872 // new landingpad instruction if it does.
4873 for (unsigned k = i; k + 1 < j; ++k)
4874 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
4875 // Not sorted, so sort the filters now. Doing an unstable sort would be
4876 // correct too but reordering filters pointlessly might confuse users.
4877 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
4879 MakeNewInstruction = true;
4880 break;
4881 }
4882
4883 // Look for the next batch of filters.
4884 i = j + 1;
4885 }
4886
4887 // If typeinfos matched if and only if equal, then the elements of a filter L
4888 // that occurs later than a filter F could be replaced by the intersection of
4889 // the elements of F and L. In reality two typeinfos can match without being
4890 // equal (for example if one represents a C++ class, and the other some class
4891 // derived from it) so it would be wrong to perform this transform in general.
4892 // However the transform is correct and useful if F is a subset of L. In that
4893 // case L can be replaced by F, and thus removed altogether since repeating a
4894 // filter is pointless. So here we look at all pairs of filters F and L where
4895 // L follows F in the list of clauses, and remove L if every element of F is
4896 // an element of L. This can occur when inlining C++ functions with exception
4897 // specifications.
4898 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
4899 // Examine each filter in turn.
4900 Value *Filter = NewClauses[i];
4901 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
4902 if (!FTy)
4903 // Not a filter - skip it.
4904 continue;
4905 unsigned FElts = FTy->getNumElements();
4906 // Examine each filter following this one. Doing this backwards means that
4907 // we don't have to worry about filters disappearing under us when removed.
4908 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
4909 Value *LFilter = NewClauses[j];
4910 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
4911 if (!LTy)
4912 // Not a filter - skip it.
4913 continue;
4914 // If Filter is a subset of LFilter, i.e. every element of Filter is also
4915 // an element of LFilter, then discard LFilter.
4916 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
4917 // If Filter is empty then it is a subset of LFilter.
4918 if (!FElts) {
4919 // Discard LFilter.
4920 NewClauses.erase(J);
4921 MakeNewInstruction = true;
4922 // Move on to the next filter.
4923 continue;
4924 }
4925 unsigned LElts = LTy->getNumElements();
4926 // If Filter is longer than LFilter then it cannot be a subset of it.
4927 if (FElts > LElts)
4928 // Move on to the next filter.
4929 continue;
4930 // At this point we know that LFilter has at least one element.
4931 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
4932 // Filter is a subset of LFilter iff Filter contains only zeros (as we
4933 // already know that Filter is not longer than LFilter).
4935 assert(FElts <= LElts && "Should have handled this case earlier!");
4936 // Discard LFilter.
4937 NewClauses.erase(J);
4938 MakeNewInstruction = true;
4939 }
4940 // Move on to the next filter.
4941 continue;
4942 }
4943 ConstantArray *LArray = cast<ConstantArray>(LFilter);
4944 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
4945 // Since Filter is non-empty and contains only zeros, it is a subset of
4946 // LFilter iff LFilter contains a zero.
4947 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
4948 for (unsigned l = 0; l != LElts; ++l)
4949 if (LArray->getOperand(l)->isNullValue()) {
4950 // LFilter contains a zero - discard it.
4951 NewClauses.erase(J);
4952 MakeNewInstruction = true;
4953 break;
4954 }
4955 // Move on to the next filter.
4956 continue;
4957 }
4958 // At this point we know that both filters are ConstantArrays. Loop over
4959 // operands to see whether every element of Filter is also an element of
4960 // LFilter. Since filters tend to be short this is probably faster than
4961 // using a method that scales nicely.
4963 bool AllFound = true;
4964 for (unsigned f = 0; f != FElts; ++f) {
4965 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
4966 AllFound = false;
4967 for (unsigned l = 0; l != LElts; ++l) {
4968 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
4969 if (LTypeInfo == FTypeInfo) {
4970 AllFound = true;
4971 break;
4972 }
4973 }
4974 if (!AllFound)
4975 break;
4976 }
4977 if (AllFound) {
4978 // Discard LFilter.
4979 NewClauses.erase(J);
4980 MakeNewInstruction = true;
4981 }
4982 // Move on to the next filter.
4983 }
4984 }
4985
4986 // If we changed any of the clauses, replace the old landingpad instruction
4987 // with a new one.
4988 if (MakeNewInstruction) {
4990 NewClauses.size());
4991 for (Constant *C : NewClauses)
4992 NLI->addClause(C);
4993 // A landing pad with no clauses must have the cleanup flag set. It is
4994 // theoretically possible, though highly unlikely, that we eliminated all
4995 // clauses. If so, force the cleanup flag to true.
4996 if (NewClauses.empty())
4997 CleanupFlag = true;
4998 NLI->setCleanup(CleanupFlag);
4999 return NLI;
5000 }
5001
5002 // Even if none of the clauses changed, we may nonetheless have understood
5003 // that the cleanup flag is pointless. Clear it if so.
5004 if (LI.isCleanup() != CleanupFlag) {
5005 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
5006 LI.setCleanup(CleanupFlag);
5007 return &LI;
5008 }
5009
5010 return nullptr;
5011}
5012
5013Value *
5015 // Try to push freeze through instructions that propagate but don't produce
5016 // poison as far as possible. If an operand of freeze does not produce poison
5017 // then push the freeze through to the operands that are not guaranteed
5018 // non-poison. The actual transform is as follows.
5019 // Op1 = ... ; Op1 can be poison
5020 // Op0 = Inst(Op1, NonPoisonOps...)
5021 // ... = Freeze(Op0)
5022 // =>
5023 // Op1 = ...
5024 // Op1.fr = Freeze(Op1)
5025 // ... = Inst(Op1.fr, NonPoisonOps...)
5026
5027 auto CanPushFreeze = [](Value *V) {
5028 if (!isa<Instruction>(V) || isa<PHINode>(V))
5029 return false;
5030
5031 // We can't push the freeze through an instruction which can itself create
5032 // poison. If the only source of new poison is flags, we can simply
5033 // strip them (since we know the only use is the freeze and nothing can
5034 // benefit from them.)
5036 /*ConsiderFlagsAndMetadata*/ false);
5037 };
5038
5039 // Pushing freezes up long instruction chains can be expensive. Instead,
5040 // we directly push the freeze all the way to the leaves. However, we leave
5041 // deduplication of freezes on the same value for freezeOtherUses().
5042 Use *OrigUse = &OrigFI.getOperandUse(0);
5045 Worklist.push_back(OrigUse);
5046 while (!Worklist.empty()) {
5047 auto *U = Worklist.pop_back_val();
5048 Value *V = U->get();
5049 if (!CanPushFreeze(V)) {
5050 // If we can't push through the original instruction, abort the transform.
5051 if (U == OrigUse)
5052 return nullptr;
5053
5054 auto *UserI = cast<Instruction>(U->getUser());
5055 Builder.SetInsertPoint(UserI);
5056 Value *Frozen = Builder.CreateFreeze(V, V->getName() + ".fr");
5057 U->set(Frozen);
5058 continue;
5059 }
5060
5061 auto *I = cast<Instruction>(V);
5062 if (!Visited.insert(I).second)
5063 continue;
5064
5065 // reverse() to emit freezes in a more natural order.
5066 for (Use &Op : reverse(I->operands())) {
5067 Value *OpV = Op.get();
5069 continue;
5070 Worklist.push_back(&Op);
5071 }
5072
5073 I->dropPoisonGeneratingAnnotations();
5074 this->Worklist.add(I);
5075 }
5076
5077 return OrigUse->get();
5078}
5079
5081 PHINode *PN) {
5082 // Detect whether this is a recurrence with a start value and some number of
5083 // backedge values. We'll check whether we can push the freeze through the
5084 // backedge values (possibly dropping poison flags along the way) until we
5085 // reach the phi again. In that case, we can move the freeze to the start
5086 // value.
5087 Use *StartU = nullptr;
5089 for (Use &U : PN->incoming_values()) {
5090 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
5091 // Add backedge value to worklist.
5092 Worklist.push_back(U.get());
5093 continue;
5094 }
5095
5096 // Don't bother handling multiple start values.
5097 if (StartU)
5098 return nullptr;
5099 StartU = &U;
5100 }
5101
5102 if (!StartU || Worklist.empty())
5103 return nullptr; // Not a recurrence.
5104
5105 Value *StartV = StartU->get();
5106 BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
5107 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
5108 // We can't insert freeze if the start value is the result of the
5109 // terminator (e.g. an invoke).
5110 if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
5111 return nullptr;
5112
5115 while (!Worklist.empty()) {
5116 Value *V = Worklist.pop_back_val();
5117 if (!Visited.insert(V).second)
5118 continue;
5119
5120 if (Visited.size() > 32)
5121 return nullptr; // Limit the total number of values we inspect.
5122
5123 // Assume that PN is non-poison, because it will be after the transform.
5124 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
5125 continue;
5126
5129 /*ConsiderFlagsAndMetadata*/ false))
5130 return nullptr;
5131
5132 DropFlags.push_back(I);
5133 append_range(Worklist, I->operands());
5134 }
5135
5136 for (Instruction *I : DropFlags)
5137 I->dropPoisonGeneratingAnnotations();
5138
5139 if (StartNeedsFreeze) {
5140 Builder.SetInsertPoint(StartBB->getTerminator());
5141 Value *FrozenStartV = Builder.CreateFreeze(StartV,
5142 StartV->getName() + ".fr");
5143 replaceUse(*StartU, FrozenStartV);
5144 }
5145 return replaceInstUsesWith(FI, PN);
5146}
5147
5149 Value *Op = FI.getOperand(0);
5150
5151 if (isa<Constant>(Op) || Op->hasOneUse())
5152 return false;
5153
5154 // Move the freeze directly after the definition of its operand, so that
5155 // it dominates the maximum number of uses. Note that it may not dominate
5156 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
5157 // the normal/default destination. This is why the domination check in the
5158 // replacement below is still necessary.
5159 BasicBlock::iterator MoveBefore;
5160 if (isa<Argument>(Op)) {
5161 MoveBefore =
5163 } else {
5164 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
5165 if (!MoveBeforeOpt)
5166 return false;
5167 MoveBefore = *MoveBeforeOpt;
5168 }
5169
5170 // Re-point iterator to come after any debug-info records.
5171 MoveBefore.setHeadBit(false);
5172
5173 bool Changed = false;
5174 if (&FI != &*MoveBefore) {
5175 FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
5176 Changed = true;
5177 }
5178
5179 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
5180 bool Dominates = DT.dominates(&FI, U);
5181 Changed |= Dominates;
5182 return Dominates;
5183 });
5184
5185 return Changed;
5186}
5187
5188// Check if any direct or bitcast user of this value is a shuffle instruction.
5190 for (auto *U : V->users()) {
5192 return true;
5193 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
5194 return true;
5195 }
5196 return false;
5197}
5198
5200 Value *Op0 = I.getOperand(0);
5201
5202 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
5203 return replaceInstUsesWith(I, V);
5204
5205 // freeze (phi const, x) --> phi const, (freeze x)
5206 if (auto *PN = dyn_cast<PHINode>(Op0)) {
5207 if (Instruction *NV = foldOpIntoPhi(I, PN))
5208 return NV;
5209 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
5210 return NV;
5211 }
5212
5214 return replaceInstUsesWith(I, NI);
5215
5216 // If I is freeze(undef), check its uses and fold it to a fixed constant.
5217 // - or: pick -1
5218 // - select's condition: if the true value is constant, choose it by making
5219 // the condition true.
5220 // - phi: pick the common constant across operands
5221 // - default: pick 0
5222 //
5223 // Note that this transform is intentionally done here rather than
5224 // via an analysis in InstSimplify or at individual user sites. That is
5225 // because we must produce the same value for all uses of the freeze -
5226 // it's the reason "freeze" exists!
5227 //
5228 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
5229 // duplicating logic for binops at least.
5230 auto getUndefReplacement = [&](Type *Ty) {
5231 auto pickCommonConstantFromPHI = [](PHINode &PN) -> Value * {
5232 // phi(freeze(undef), C, C). Choose C for freeze so the PHI can be
5233 // removed.
5234 Constant *BestValue = nullptr;
5235 for (Value *V : PN.incoming_values()) {
5236 if (match(V, m_Freeze(m_Undef())))
5237 continue;
5238
5240 if (!C)
5241 return nullptr;
5242
5244 return nullptr;
5245
5246 if (BestValue && BestValue != C)
5247 return nullptr;
5248
5249 BestValue = C;
5250 }
5251 return BestValue;
5252 };
5253
5254 Value *NullValue = Constant::getNullValue(Ty);
5255 Value *BestValue = nullptr;
5256 for (auto *U : I.users()) {
5257 Value *V = NullValue;
5258 if (match(U, m_Or(m_Value(), m_Value())))
5260 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
5261 V = ConstantInt::getTrue(Ty);
5262 else if (match(U, m_c_Select(m_Specific(&I), m_Value(V)))) {
5263 if (V == &I || !isGuaranteedNotToBeUndefOrPoison(V, &AC, &I, &DT))
5264 V = NullValue;
5265 } else if (auto *PHI = dyn_cast<PHINode>(U)) {
5266 if (Value *MaybeV = pickCommonConstantFromPHI(*PHI))
5267 V = MaybeV;
5268 }
5269
5270 if (!BestValue)
5271 BestValue = V;
5272 else if (BestValue != V)
5273 BestValue = NullValue;
5274 }
5275 assert(BestValue && "Must have at least one use");
5276 assert(BestValue != &I && "Cannot replace with itself");
5277 return BestValue;
5278 };
5279
5280 if (match(Op0, m_Undef())) {
5281 // Don't fold freeze(undef/poison) if it's used as a vector operand in
5282 // a shuffle. This may improve codegen for shuffles that allow
5283 // unspecified inputs.
5285 return nullptr;
5286 return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
5287 }
5288
5289 auto getFreezeVectorReplacement = [](Constant *C) -> Constant * {
5290 Type *Ty = C->getType();
5291 auto *VTy = dyn_cast<FixedVectorType>(Ty);
5292 if (!VTy)
5293 return nullptr;
5294 unsigned NumElts = VTy->getNumElements();
5295 Constant *BestValue = Constant::getNullValue(VTy->getScalarType());
5296 for (unsigned i = 0; i != NumElts; ++i) {
5297 Constant *EltC = C->getAggregateElement(i);
5298 if (EltC && !match(EltC, m_Undef())) {
5299 BestValue = EltC;
5300 break;
5301 }
5302 }
5303 return Constant::replaceUndefsWith(C, BestValue);
5304 };
5305
5306 Constant *C;
5307 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement() &&
5308 !C->containsConstantExpression()) {
5309 if (Constant *Repl = getFreezeVectorReplacement(C))
5310 return replaceInstUsesWith(I, Repl);
5311 }
5312
5313 // Replace uses of Op with freeze(Op).
5314 if (freezeOtherUses(I))
5315 return &I;
5316
5317 return nullptr;
5318}
5319
5320/// Check for case where the call writes to an otherwise dead alloca. This
5321/// shows up for unused out-params in idiomatic C/C++ code. Note that this
5322/// helper *only* analyzes the write; doesn't check any other legality aspect.
5324 auto *CB = dyn_cast<CallBase>(I);
5325 if (!CB)
5326 // TODO: handle e.g. store to alloca here - only worth doing if we extend
5327 // to allow reload along used path as described below. Otherwise, this
5328 // is simply a store to a dead allocation which will be removed.
5329 return false;
5330 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
5331 if (!Dest)
5332 return false;
5333 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
5334 if (!AI)
5335 // TODO: allow malloc?
5336 return false;
5337 // TODO: allow memory access dominated by move point? Note that since AI
5338 // could have a reference to itself captured by the call, we would need to
5339 // account for cycles in doing so.
5340 SmallVector<const User *> AllocaUsers;
5342 auto pushUsers = [&](const Instruction &I) {
5343 for (const User *U : I.users()) {
5344 if (Visited.insert(U).second)
5345 AllocaUsers.push_back(U);
5346 }
5347 };
5348 pushUsers(*AI);
5349 while (!AllocaUsers.empty()) {
5350 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
5351 if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) {
5352 pushUsers(*UserI);
5353 continue;
5354 }
5355 if (UserI == CB)
5356 continue;
5357 // TODO: support lifetime.start/end here
5358 return false;
5359 }
5360 return true;
5361}
5362
5363/// Try to move the specified instruction from its current block into the
5364/// beginning of DestBlock, which can only happen if it's safe to move the
5365/// instruction past all of the instructions between it and the end of its
5366/// block.
5368 BasicBlock *DestBlock) {
5369 BasicBlock *SrcBlock = I->getParent();
5370
5371 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
5372 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
5373 I->isTerminator())
5374 return false;
5375
5376 // Do not sink static or dynamic alloca instructions. Static allocas must
5377 // remain in the entry block, and dynamic allocas must not be sunk in between
5378 // a stacksave / stackrestore pair, which would incorrectly shorten its
5379 // lifetime.
5380 if (isa<AllocaInst>(I))
5381 return false;
5382
5383 // Do not sink into catchswitch blocks.
5384 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
5385 return false;
5386
5387 // Do not sink convergent call instructions.
5388 if (auto *CI = dyn_cast<CallInst>(I)) {
5389 if (CI->isConvergent())
5390 return false;
5391 }
5392
5393 // Unless we can prove that the memory write isn't visibile except on the
5394 // path we're sinking to, we must bail.
5395 if (I->mayWriteToMemory()) {
5396 if (!SoleWriteToDeadLocal(I, TLI))
5397 return false;
5398 }
5399
5400 // We can only sink load instructions if there is nothing between the load and
5401 // the end of block that could change the value.
5402 if (I->mayReadFromMemory() &&
5403 !I->hasMetadata(LLVMContext::MD_invariant_load)) {
5404 // We don't want to do any sophisticated alias analysis, so we only check
5405 // the instructions after I in I's parent block if we try to sink to its
5406 // successor block.
5407 if (DestBlock->getUniquePredecessor() != I->getParent())
5408 return false;
5409 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
5410 E = I->getParent()->end();
5411 Scan != E; ++Scan)
5412 if (Scan->mayWriteToMemory())
5413 return false;
5414 }
5415
5416 I->dropDroppableUses([&](const Use *U) {
5417 auto *I = dyn_cast<Instruction>(U->getUser());
5418 if (I && I->getParent() != DestBlock) {
5419 Worklist.add(I);
5420 return true;
5421 }
5422 return false;
5423 });
5424 /// FIXME: We could remove droppable uses that are not dominated by
5425 /// the new position.
5426
5427 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
5428 I->moveBefore(*DestBlock, InsertPos);
5429 ++NumSunkInst;
5430
5431 // Also sink all related debug uses from the source basic block. Otherwise we
5432 // get debug use before the def. Attempt to salvage debug uses first, to
5433 // maximise the range variables have location for. If we cannot salvage, then
5434 // mark the location undef: we know it was supposed to receive a new location
5435 // here, but that computation has been sunk.
5436 SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
5437 findDbgUsers(I, DbgVariableRecords);
5438 if (!DbgVariableRecords.empty())
5439 tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
5440 DbgVariableRecords);
5441
5442 // PS: there are numerous flaws with this behaviour, not least that right now
5443 // assignments can be re-ordered past other assignments to the same variable
5444 // if they use different Values. Creating more undef assignements can never be
5445 // undone. And salvaging all users outside of this block can un-necessarily
5446 // alter the lifetime of the live-value that the variable refers to.
5447 // Some of these things can be resolved by tolerating debug use-before-defs in
5448 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend
5449 // being used for more architectures.
5450
5451 return true;
5452}
5453
5455 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
5456 BasicBlock *DestBlock,
5457 SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
5458 // For all debug values in the destination block, the sunk instruction
5459 // will still be available, so they do not need to be dropped.
5460
5461 // Fetch all DbgVariableRecords not already in the destination.
5462 SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
5463 for (auto &DVR : DbgVariableRecords)
5464 if (DVR->getParent() != DestBlock)
5465 DbgVariableRecordsToSalvage.push_back(DVR);
5466
5467 // Fetch a second collection, of DbgVariableRecords in the source block that
5468 // we're going to sink.
5469 SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
5470 for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
5471 if (DVR->getParent() == SrcBlock)
5472 DbgVariableRecordsToSink.push_back(DVR);
5473
5474 // Sort DbgVariableRecords according to their position in the block. This is a
5475 // partial order: DbgVariableRecords attached to different instructions will
5476 // be ordered by the instruction order, but DbgVariableRecords attached to the
5477 // same instruction won't have an order.
5478 auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
5479 return B->getInstruction()->comesBefore(A->getInstruction());
5480 };
5481 llvm::stable_sort(DbgVariableRecordsToSink, Order);
5482
5483 // If there are two assignments to the same variable attached to the same
5484 // instruction, the ordering between the two assignments is important. Scan
5485 // for this (rare) case and establish which is the last assignment.
5486 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5488 if (DbgVariableRecordsToSink.size() > 1) {
5490 // Count how many assignments to each variable there is per instruction.
5491 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5492 DebugVariable DbgUserVariable =
5493 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5494 DVR->getDebugLoc()->getInlinedAt());
5495 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5496 }
5497
5498 // If there are any instructions with two assignments, add them to the
5499 // FilterOutMap to record that they need extra filtering.
5501 for (auto It : CountMap) {
5502 if (It.second > 1) {
5503 FilterOutMap[It.first] = nullptr;
5504 DupSet.insert(It.first.first);
5505 }
5506 }
5507
5508 // For all instruction/variable pairs needing extra filtering, find the
5509 // latest assignment.
5510 for (const Instruction *Inst : DupSet) {
5511 for (DbgVariableRecord &DVR :
5512 llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
5513 DebugVariable DbgUserVariable =
5514 DebugVariable(DVR.getVariable(), DVR.getExpression(),
5515 DVR.getDebugLoc()->getInlinedAt());
5516 auto FilterIt =
5517 FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
5518 if (FilterIt == FilterOutMap.end())
5519 continue;
5520 if (FilterIt->second != nullptr)
5521 continue;
5522 FilterIt->second = &DVR;
5523 }
5524 }
5525 }
5526
5527 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter
5528 // out any duplicate assignments identified above.
5530 SmallSet<DebugVariable, 4> SunkVariables;
5531 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5533 continue;
5534
5535 DebugVariable DbgUserVariable =
5536 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5537 DVR->getDebugLoc()->getInlinedAt());
5538
5539 // For any variable where there were multiple assignments in the same place,
5540 // ignore all but the last assignment.
5541 if (!FilterOutMap.empty()) {
5542 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5543 auto It = FilterOutMap.find(IVP);
5544
5545 // Filter out.
5546 if (It != FilterOutMap.end() && It->second != DVR)
5547 continue;
5548 }
5549
5550 if (!SunkVariables.insert(DbgUserVariable).second)
5551 continue;
5552
5553 if (DVR->isDbgAssign())
5554 continue;
5555
5556 DVRClones.emplace_back(DVR->clone());
5557 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
5558 }
5559
5560 // Perform salvaging without the clones, then sink the clones.
5561 if (DVRClones.empty())
5562 return;
5563
5564 salvageDebugInfoForDbgValues(*I, DbgVariableRecordsToSalvage);
5565
5566 // The clones are in reverse order of original appearance. Assert that the
5567 // head bit is set on the iterator as we _should_ have received it via
5568 // getFirstInsertionPt. Inserting like this will reverse the clone order as
5569 // we'll repeatedly insert at the head, such as:
5570 // DVR-3 (third insertion goes here)
5571 // DVR-2 (second insertion goes here)
5572 // DVR-1 (first insertion goes here)
5573 // Any-Prior-DVRs
5574 // InsertPtInst
5575 assert(InsertPos.getHeadBit());
5576 for (DbgVariableRecord *DVRClone : DVRClones) {
5577 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5578 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
5579 }
5580}
5581
5583 while (!Worklist.isEmpty()) {
5584 // Walk deferred instructions in reverse order, and push them to the
5585 // worklist, which means they'll end up popped from the worklist in-order.
5586 while (Instruction *I = Worklist.popDeferred()) {
5587 // Check to see if we can DCE the instruction. We do this already here to
5588 // reduce the number of uses and thus allow other folds to trigger.
5589 // Note that eraseInstFromFunction() may push additional instructions on
5590 // the deferred worklist, so this will DCE whole instruction chains.
5593 ++NumDeadInst;
5594 continue;
5595 }
5596
5597 Worklist.push(I);
5598 }
5599
5600 Instruction *I = Worklist.removeOne();
5601 if (I == nullptr) continue; // skip null values.
5602
5603 // Check to see if we can DCE the instruction.
5606 ++NumDeadInst;
5607 continue;
5608 }
5609
5610 if (!DebugCounter::shouldExecute(VisitCounter))
5611 continue;
5612
5613 // See if we can trivially sink this instruction to its user if we can
5614 // prove that the successor is not executed more frequently than our block.
5615 // Return the UserBlock if successful.
5616 auto getOptionalSinkBlockForInst =
5617 [this](Instruction *I) -> std::optional<BasicBlock *> {
5618 if (!EnableCodeSinking)
5619 return std::nullopt;
5620
5621 BasicBlock *BB = I->getParent();
5622 BasicBlock *UserParent = nullptr;
5623 unsigned NumUsers = 0;
5624
5625 for (Use &U : I->uses()) {
5626 User *User = U.getUser();
5627 if (User->isDroppable())
5628 continue;
5629 if (NumUsers > MaxSinkNumUsers)
5630 return std::nullopt;
5631
5632 Instruction *UserInst = cast<Instruction>(User);
5633 // Special handling for Phi nodes - get the block the use occurs in.
5634 BasicBlock *UserBB = UserInst->getParent();
5635 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
5636 UserBB = PN->getIncomingBlock(U);
5637 // Bail out if we have uses in different blocks. We don't do any
5638 // sophisticated analysis (i.e finding NearestCommonDominator of these
5639 // use blocks).
5640 if (UserParent && UserParent != UserBB)
5641 return std::nullopt;
5642 UserParent = UserBB;
5643
5644 // Make sure these checks are done only once, naturally we do the checks
5645 // the first time we get the userparent, this will save compile time.
5646 if (NumUsers == 0) {
5647 // Try sinking to another block. If that block is unreachable, then do
5648 // not bother. SimplifyCFG should handle it.
5649 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
5650 return std::nullopt;
5651
5652 auto *Term = UserParent->getTerminator();
5653 // See if the user is one of our successors that has only one
5654 // predecessor, so that we don't have to split the critical edge.
5655 // Another option where we can sink is a block that ends with a
5656 // terminator that does not pass control to other block (such as
5657 // return or unreachable or resume). In this case:
5658 // - I dominates the User (by SSA form);
5659 // - the User will be executed at most once.
5660 // So sinking I down to User is always profitable or neutral.
5661 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
5662 return std::nullopt;
5663
5664 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
5665 }
5666
5667 NumUsers++;
5668 }
5669
5670 // No user or only has droppable users.
5671 if (!UserParent)
5672 return std::nullopt;
5673
5674 return UserParent;
5675 };
5676
5677 auto OptBB = getOptionalSinkBlockForInst(I);
5678 if (OptBB) {
5679 auto *UserParent = *OptBB;
5680 // Okay, the CFG is simple enough, try to sink this instruction.
5681 if (tryToSinkInstruction(I, UserParent)) {
5682 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
5683 MadeIRChange = true;
5684 // We'll add uses of the sunk instruction below, but since
5685 // sinking can expose opportunities for it's *operands* add
5686 // them to the worklist
5687 for (Use &U : I->operands())
5688 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
5689 Worklist.push(OpI);
5690 }
5691 }
5692
5693 // Now that we have an instruction, try combining it to simplify it.
5694 Builder.SetInsertPoint(I);
5695 Builder.CollectMetadataToCopy(
5696 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5697
5698#ifndef NDEBUG
5699 std::string OrigI;
5700#endif
5701 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS););
5702 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
5703
5704 if (Instruction *Result = visit(*I)) {
5705 ++NumCombined;
5706 // Should we replace the old instruction with a new one?
5707 if (Result != I) {
5708 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
5709 << " New = " << *Result << '\n');
5710
5711 // We copy the old instruction's DebugLoc to the new instruction, unless
5712 // InstCombine already assigned a DebugLoc to it, in which case we
5713 // should trust the more specifically selected DebugLoc.
5714 Result->setDebugLoc(Result->getDebugLoc().orElse(I->getDebugLoc()));
5715 // We also copy annotation metadata to the new instruction.
5716 Result->copyMetadata(*I, LLVMContext::MD_annotation);
5717 // Everything uses the new instruction now.
5718 I->replaceAllUsesWith(Result);
5719
5720 // Move the name to the new instruction first.
5721 Result->takeName(I);
5722
5723 // Insert the new instruction into the basic block...
5724 BasicBlock *InstParent = I->getParent();
5725 BasicBlock::iterator InsertPos = I->getIterator();
5726
5727 // Are we replace a PHI with something that isn't a PHI, or vice versa?
5728 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
5729 // We need to fix up the insertion point.
5730 if (isa<PHINode>(I)) // PHI -> Non-PHI
5731 InsertPos = InstParent->getFirstInsertionPt();
5732 else // Non-PHI -> PHI
5733 InsertPos = InstParent->getFirstNonPHIIt();
5734 }
5735
5736 Result->insertInto(InstParent, InsertPos);
5737
5738 // Push the new instruction and any users onto the worklist.
5739 Worklist.pushUsersToWorkList(*Result);
5740 Worklist.push(Result);
5741
5743 } else {
5744 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
5745 << " New = " << *I << '\n');
5746
5747 // If the instruction was modified, it's possible that it is now dead.
5748 // if so, remove it.
5751 } else {
5752 Worklist.pushUsersToWorkList(*I);
5753 Worklist.push(I);
5754 }
5755 }
5756 MadeIRChange = true;
5757 }
5758 }
5759
5760 Worklist.zap();
5761 return MadeIRChange;
5762}
5763
5764// Track the scopes used by !alias.scope and !noalias. In a function, a
5765// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5766// by both sets. If not, the declaration of the scope can be safely omitted.
5767// The MDNode of the scope can be omitted as well for the instructions that are
5768// part of this function. We do not do that at this point, as this might become
5769// too time consuming to do.
5771 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
5772 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
5773
5774public:
5776 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
5777 if (!I->hasMetadataOtherThanDebugLoc())
5778 return;
5779
5780 auto Track = [](Metadata *ScopeList, auto &Container) {
5781 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5782 if (!MDScopeList || !Container.insert(MDScopeList).second)
5783 return;
5784 for (const auto &MDOperand : MDScopeList->operands())
5785 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
5786 Container.insert(MDScope);
5787 };
5788
5789 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5790 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5791 }
5792
5795 if (!Decl)
5796 return false;
5797
5798 assert(Decl->use_empty() &&
5799 "llvm.experimental.noalias.scope.decl in use ?");
5800 const MDNode *MDSL = Decl->getScopeList();
5801 assert(MDSL->getNumOperands() == 1 &&
5802 "llvm.experimental.noalias.scope should refer to a single scope");
5803 auto &MDOperand = MDSL->getOperand(0);
5804 if (auto *MD = dyn_cast<MDNode>(MDOperand))
5805 return !UsedAliasScopesAndLists.contains(MD) ||
5806 !UsedNoAliasScopesAndLists.contains(MD);
5807
5808 // Not an MDNode ? throw away.
5809 return true;
5810 }
5811};
5812
5813/// Populate the IC worklist from a function, by walking it in reverse
5814/// post-order and adding all reachable code to the worklist.
5815///
5816/// This has a couple of tricks to make the code faster and more powerful. In
5817/// particular, we constant fold and DCE instructions as we go, to avoid adding
5818/// them to the worklist (this significantly speeds up instcombine on code where
5819/// many instructions are dead or constant). Additionally, if we find a branch
5820/// whose condition is a known constant, we only visit the reachable successors.
5822 bool MadeIRChange = false;
5824 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
5825 DenseMap<Constant *, Constant *> FoldedConstants;
5826 AliasScopeTracker SeenAliasScopes;
5827
5828 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
5829 for (BasicBlock *Succ : successors(BB))
5830 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
5831 for (PHINode &PN : Succ->phis())
5832 for (Use &U : PN.incoming_values())
5833 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5834 U.set(PoisonValue::get(PN.getType()));
5835 MadeIRChange = true;
5836 }
5837 };
5838
5839 for (BasicBlock *BB : RPOT) {
5840 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
5841 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
5842 })) {
5843 HandleOnlyLiveSuccessor(BB, nullptr);
5844 continue;
5845 }
5846 LiveBlocks.insert(BB);
5847
5848 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
5849 // ConstantProp instruction if trivially constant.
5850 if (!Inst.use_empty() &&
5851 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5852 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
5853 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
5854 << '\n');
5855 Inst.replaceAllUsesWith(C);
5856 ++NumConstProp;
5857 if (isInstructionTriviallyDead(&Inst, &TLI))
5858 Inst.eraseFromParent();
5859 MadeIRChange = true;
5860 continue;
5861 }
5862
5863 // See if we can constant fold its operands.
5864 for (Use &U : Inst.operands()) {
5866 continue;
5867
5868 auto *C = cast<Constant>(U);
5869 Constant *&FoldRes = FoldedConstants[C];
5870 if (!FoldRes)
5871 FoldRes = ConstantFoldConstant(C, DL, &TLI);
5872
5873 if (FoldRes != C) {
5874 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5875 << "\n Old = " << *C
5876 << "\n New = " << *FoldRes << '\n');
5877 U = FoldRes;
5878 MadeIRChange = true;
5879 }
5880 }
5881
5882 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
5883 // these call instructions consumes non-trivial amount of time and
5884 // provides no value for the optimization.
5885 if (!Inst.isDebugOrPseudoInst()) {
5886 InstrsForInstructionWorklist.push_back(&Inst);
5887 SeenAliasScopes.analyse(&Inst);
5888 }
5889 }
5890
5891 // If this is a branch or switch on a constant, mark only the single
5892 // live successor. Otherwise assume all successors are live.
5893 Instruction *TI = BB->getTerminator();
5894 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
5895 if (isa<UndefValue>(BI->getCondition())) {
5896 // Branch on undef is UB.
5897 HandleOnlyLiveSuccessor(BB, nullptr);
5898 continue;
5899 }
5900 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5901 bool CondVal = Cond->getZExtValue();
5902 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5903 continue;
5904 }
5905 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5906 if (isa<UndefValue>(SI->getCondition())) {
5907 // Switch on undef is UB.
5908 HandleOnlyLiveSuccessor(BB, nullptr);
5909 continue;
5910 }
5911 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5912 HandleOnlyLiveSuccessor(BB,
5913 SI->findCaseValue(Cond)->getCaseSuccessor());
5914 continue;
5915 }
5916 }
5917 }
5918
5919 // Remove instructions inside unreachable blocks. This prevents the
5920 // instcombine code from having to deal with some bad special cases, and
5921 // reduces use counts of instructions.
5922 for (BasicBlock &BB : F) {
5923 if (LiveBlocks.count(&BB))
5924 continue;
5925
5926 unsigned NumDeadInstInBB;
5927 NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
5928
5929 MadeIRChange |= NumDeadInstInBB != 0;
5930 NumDeadInst += NumDeadInstInBB;
5931 }
5932
5933 // Once we've found all of the instructions to add to instcombine's worklist,
5934 // add them in reverse order. This way instcombine will visit from the top
5935 // of the function down. This jives well with the way that it adds all uses
5936 // of instructions to the worklist after doing a transformation, thus avoiding
5937 // some N^2 behavior in pathological cases.
5938 Worklist.reserve(InstrsForInstructionWorklist.size());
5939 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
5940 // DCE instruction if trivially dead. As we iterate in reverse program
5941 // order here, we will clean up whole chains of dead instructions.
5942 if (isInstructionTriviallyDead(Inst, &TLI) ||
5943 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
5944 ++NumDeadInst;
5945 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
5946 salvageDebugInfo(*Inst);
5947 Inst->eraseFromParent();
5948 MadeIRChange = true;
5949 continue;
5950 }
5951
5952 Worklist.push(Inst);
5953 }
5954
5955 return MadeIRChange;
5956}
5957
5959 // Collect backedges.
5961 for (BasicBlock *BB : RPOT) {
5962 Visited.insert(BB);
5963 for (BasicBlock *Succ : successors(BB))
5964 if (Visited.contains(Succ))
5965 BackEdges.insert({BB, Succ});
5966 }
5967 ComputedBackEdges = true;
5968}
5969
5975 const InstCombineOptions &Opts) {
5976 auto &DL = F.getDataLayout();
5977 bool VerifyFixpoint = Opts.VerifyFixpoint &&
5978 !F.hasFnAttribute("instcombine-no-verify-fixpoint");
5979
5980 /// Builder - This is an IRBuilder that automatically inserts new
5981 /// instructions into the worklist when they are created.
5983 F.getContext(), TargetFolder(DL),
5984 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
5985 Worklist.add(I);
5986 if (auto *Assume = dyn_cast<AssumeInst>(I))
5987 AC.registerAssumption(Assume);
5988 }));
5989
5991
5992 // Lower dbg.declare intrinsics otherwise their value may be clobbered
5993 // by instcombiner.
5994 bool MadeIRChange = false;
5996 MadeIRChange = LowerDbgDeclare(F);
5997
5998 // Iterate while there is work to do.
5999 unsigned Iteration = 0;
6000 while (true) {
6001 if (Iteration >= Opts.MaxIterations && !VerifyFixpoint) {
6002 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
6003 << " on " << F.getName()
6004 << " reached; stopping without verifying fixpoint\n");
6005 break;
6006 }
6007
6008 ++Iteration;
6009 ++NumWorklistIterations;
6010 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
6011 << F.getName() << "\n");
6012
6013 InstCombinerImpl IC(Worklist, Builder, F, AA, AC, TLI, TTI, DT, ORE, BFI,
6014 BPI, PSI, DL, RPOT);
6016 bool MadeChangeInThisIteration = IC.prepareWorklist(F);
6017 MadeChangeInThisIteration |= IC.run();
6018 if (!MadeChangeInThisIteration)
6019 break;
6020
6021 MadeIRChange = true;
6022 if (Iteration > Opts.MaxIterations) {
6024 "Instruction Combining on " + Twine(F.getName()) +
6025 " did not reach a fixpoint after " + Twine(Opts.MaxIterations) +
6026 " iterations. " +
6027 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
6028 "'instcombine-no-verify-fixpoint' to suppress this error.");
6029 }
6030 }
6031
6032 if (Iteration == 1)
6033 ++NumOneIteration;
6034 else if (Iteration == 2)
6035 ++NumTwoIterations;
6036 else if (Iteration == 3)
6037 ++NumThreeIterations;
6038 else
6039 ++NumFourOrMoreIterations;
6040
6041 return MadeIRChange;
6042}
6043
6045
6047 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
6048 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
6049 OS, MapClassName2PassName);
6050 OS << '<';
6051 OS << "max-iterations=" << Options.MaxIterations << ";";
6052 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
6053 OS << '>';
6054}
6055
6056char InstCombinePass::ID = 0;
6057
6060 auto &LRT = AM.getResult<LastRunTrackingAnalysis>(F);
6061 // No changes since last InstCombine pass, exit early.
6062 if (LRT.shouldSkip(&ID))
6063 return PreservedAnalyses::all();
6064
6065 auto &AC = AM.getResult<AssumptionAnalysis>(F);
6066 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6067 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
6069 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
6070
6071 auto *AA = &AM.getResult<AAManager>(F);
6072 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
6073 ProfileSummaryInfo *PSI =
6074 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
6075 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6076 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
6078
6079 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6080 BFI, BPI, PSI, Options)) {
6081 // No changes, all analyses are preserved.
6082 LRT.update(&ID, /*Changed=*/false);
6083 return PreservedAnalyses::all();
6084 }
6085
6086 // Mark all the analyses that instcombine updates as preserved.
6088 LRT.update(&ID, /*Changed=*/true);
6091 return PA;
6092}
6093
6109
6111 if (skipFunction(F))
6112 return false;
6113
6114 // Required analyses.
6115 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6116 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6117 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
6119 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6121
6122 // Optional analyses.
6123 ProfileSummaryInfo *PSI =
6125 BlockFrequencyInfo *BFI =
6126 (PSI && PSI->hasProfileSummary()) ?
6128 nullptr;
6129 BranchProbabilityInfo *BPI = nullptr;
6130 if (auto *WrapperPass =
6132 BPI = &WrapperPass->getBPI();
6133
6134 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6135 BFI, BPI, PSI, InstCombineOptions());
6136}
6137
6139
6143
6145 "Combine redundant instructions", false, false)
6156 "Combine redundant instructions", false, false)
6157
6158// Initialization Routines
6162
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI)
DXIL Resource Access
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static bool isSigned(unsigned int Opcode)
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
Definition IVUsers.cpp:48
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static Constant * constantFoldBinOpWithSplat(unsigned Opcode, Constant *Vector, Constant *Splat, bool SplatLHS, const DataLayout &DL)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * combineConstantOffsets(GetElementPtrInst &GEP, InstCombinerImpl &IC)
Combine constant offsets separated by variable offsets.
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static Value * foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall, SelectInst *SelectInst, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static std::optional< ModRefInfo > isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI, bool KnowInit)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file contains the declarations for metadata subclasses.
#define T
uint64_t IntrinsicInst * II
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
unsigned OpIndex
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Definition APFloat.cpp:296
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1758
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:423
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition APInt.cpp:1890
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition Pass.cpp:270
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition ArrayRef.h:224
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
uint64_t getNumElements() const
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
LLVM_ABI uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition Attributes.h:223
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
Definition BasicBlock.h:482
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
size_t size() const
Definition BasicBlock.h:480
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Definition InstrTypes.h:374
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:294
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
Definition Constants.h:433
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition Constants.h:776
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
Definition Constants.h:517
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
Definition Constant.h:219
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(unsigned CounterName)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
bool empty() const
Definition DenseMap.h:109
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:322
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
idx_iterator idx_end() const
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
idx_iterator idx_begin() const
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
FunctionPass(char &pid)
Definition Pass.h:316
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition Pass.cpp:188
const BasicBlock & getEntryBlock() const
Definition Function.h:807
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags all()
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForReassociate(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep (gep, p, y), x).
bool hasNoUnsignedWrap() const
bool isInBounds() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
static GEPNoWrapFlags none()
GEPNoWrapFlags getNoWrapFlags() const
Definition Operator.h:425
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2039
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Definition IRBuilder.h:538
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
Definition IRBuilder.h:75
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI InstCombinePass(InstCombineOptions Opts={})
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * foldBinopWithRecurrence(BinaryOperator &BO)
Try to fold binary operators whose operands are simple interleaved recurrences to a single recurrence...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
Value * SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask, KnownFPClass &Known, Instruction *CxtI, unsigned Depth=0)
Attempts to replace V with a simpler value based on the demanded floating-point classes.
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
SimplifyQuery SQ
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
TargetLibraryInfo & TLI
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
const DataLayout & DL
DomConditionCache DC
const bool MinimizeSize
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
DominatorTree & DT
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
BuilderTy & Builder
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
Definition InstVisitor.h:87
The legacy pass manager's instcombine pass.
Definition InstCombine.h:68
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void add(Instruction *I)
Add instruction to the worklist.
LLVM_ABI void dropUBImplyingAttrsAndMetadata(ArrayRef< unsigned > Keep={})
Drop any attributes or metadata that can cause immediate undefined behavior.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
bool isShift() const
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
bool isIntDivRem() const
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
A wrapper class for inspecting calls to intrinsic functions.
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
Root of the metadata hierarchy.
Definition Metadata.h:64
Value * getLHS() const
Value * getRHS() const
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
MDNode * getScopeList() const
OptimizationRemarkEmitter legacy analysis pass.
The optimization diagnostic interface.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
Definition Constants.h:1468
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition Registry.h:44
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:150
This instruction constructs a fixed permutation of two input vectors.
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Multiway switch.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
Definition Type.cpp:62
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Use * op_iterator
Definition User.h:279
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:21
op_iterator op_begin()
Definition User.h:284
const Use & getOperandUse(unsigned i) const
Definition User.h:245
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
op_iterator op_end()
Definition User.h:286
LLVM_ABI bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
Definition User.cpp:115
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition Value.h:759
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
bool hasUseList() const
Check if this Value has a use-list.
Definition Value.h:344
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition Value.cpp:150
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:881
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Value handle that is nullable, but tries to track the Value.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
reverse_self_iterator getReverseIterator()
Definition ilist_node.h:126
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
Splat_match< T > m_ConstantSplat(const T &SubPattern)
Match a constant splat. TODO: Extend this to non-constant splats.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_VectorInsert(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2058
LLVM_ABI void initializeInstructionCombiningPassPass(PassRegistry &)
LLVM_ABI unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
Definition Local.cpp:2485
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
bool succ_empty(const Instruction *I)
Definition CFG.h:257
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI FunctionPass * createInstructionCombiningPass()
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1724
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
gep_type_iterator gep_type_end(const User *GEP)
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
Definition Local.cpp:2468
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition Local.cpp:22
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool LowerDbgDeclare(Function &F)
Lowers dbg.declare records into appropriate set of dbg.value records.
Definition Local.cpp:1795
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, DIBuilder &Builder)
Inserts a dbg.value record before a store to an alloca'd value that has an associated dbg....
Definition Local.cpp:1662
LLVM_ABI void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
Definition Local.cpp:2037
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
Definition Local.cpp:2414
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:323
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
Definition ModRef.h:28
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
@ ModRef
The access may reference and may modify the value stored in memory.
Definition ModRef.h:36
@ Mod
The access may modify the value stored in memory.
Definition ModRef.h:34
@ NoModRef
The access neither references nor modifies the value stored in memory.
Definition ModRef.h:30
TargetTransformInfo TTI
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1961
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2088
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
bool isRefSet(const ModRefInfo MRI)
Definition ModRef.h:52
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition KnownBits.h:251
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
SimplifyQuery getWithInstruction(const Instruction *I) const