108#define DEBUG_TYPE "instcombine"
116 "Number of instruction combining iterations performed");
117STATISTIC(NumOneIteration,
"Number of functions with one iteration");
118STATISTIC(NumTwoIterations,
"Number of functions with two iterations");
119STATISTIC(NumThreeIterations,
"Number of functions with three iterations");
121 "Number of functions with four or more iterations");
125STATISTIC(NumDeadInst ,
"Number of dead inst eliminated");
131 "Controls which instructions are visited");
138 "instcombine-max-sink-users",
cl::init(32),
139 cl::desc(
"Maximum number of undroppable users for instruction sinking"));
143 cl::desc(
"Maximum array size considered when doing a combine"));
155std::optional<Instruction *>
158 if (
II.getCalledFunction()->isTargetIntrinsic()) {
166 bool &KnownBitsComputed) {
168 if (
II.getCalledFunction()->isTargetIntrinsic()) {
170 *
this,
II, DemandedMask, Known, KnownBitsComputed);
181 if (
II.getCalledFunction()->isTargetIntrinsic()) {
183 *
this,
II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
201 auto *Inst = dyn_cast<Instruction>(
GEP);
208 if (Inst && !
GEP->hasOneUse() && !
GEP->hasAllConstantIndices() &&
209 !
GEP->getSourceElementType()->isIntegerTy(8)) {
223bool InstCombinerImpl::isDesirableIntType(
unsigned BitWidth)
const {
242bool InstCombinerImpl::shouldChangeType(
unsigned FromWidth,
243 unsigned ToWidth)
const {
249 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
254 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
259 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
270bool InstCombinerImpl::shouldChangeType(
Type *
From,
Type *To)
const {
276 unsigned FromWidth =
From->getPrimitiveSizeInBits();
278 return shouldChangeType(FromWidth, ToWidth);
287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&
I);
288 if (!OBO || !OBO->hasNoSignedWrap())
291 const APInt *BVal, *CVal;
296 bool Overflow =
false;
297 switch (
I.getOpcode()) {
298 case Instruction::Add:
299 (void)BVal->
sadd_ov(*CVal, Overflow);
301 case Instruction::Sub:
302 (void)BVal->
ssub_ov(*CVal, Overflow);
304 case Instruction::Mul:
305 (void)BVal->
smul_ov(*CVal, Overflow);
315 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&
I);
316 return OBO && OBO->hasNoUnsignedWrap();
320 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&
I);
321 return OBO && OBO->hasNoSignedWrap();
330 I.clearSubclassOptionalData();
335 I.clearSubclassOptionalData();
336 I.setFastMathFlags(FMF);
345 auto *Cast = dyn_cast<CastInst>(BinOp1->
getOperand(0));
346 if (!Cast || !Cast->hasOneUse())
350 auto CastOpcode = Cast->getOpcode();
351 if (CastOpcode != Instruction::ZExt)
359 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
360 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
386 Cast->dropPoisonGeneratingFlags();
392Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(
Value *Val) {
393 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
396 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
397 Type *CastTy = IntToPtr->getDestTy();
400 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
403 return PtrToInt->getOperand(0);
430 bool Changed =
false;
438 Changed = !
I.swapOperands();
440 if (
I.isCommutative()) {
441 if (
auto Pair = matchSymmetricPair(
I.getOperand(0),
I.getOperand(1))) {
451 if (
I.isAssociative()) {
474 I.setHasNoUnsignedWrap(
true);
477 I.setHasNoSignedWrap(
true);
506 if (
I.isAssociative() &&
I.isCommutative()) {
569 if (isa<FPMathOperator>(NewBO)) {
583 I.setHasNoUnsignedWrap(
true);
601 if (LOp == Instruction::And)
602 return ROp == Instruction::Or || ROp == Instruction::Xor;
605 if (LOp == Instruction::Or)
606 return ROp == Instruction::And;
610 if (LOp == Instruction::Mul)
611 return ROp == Instruction::Add || ROp == Instruction::Sub;
634 if (isa<Constant>(V))
648 assert(
Op &&
"Expected a binary operator");
649 LHS =
Op->getOperand(0);
650 RHS =
Op->getOperand(1);
651 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
656 Instruction::Shl, ConstantInt::get(
Op->getType(), 1),
C);
657 assert(
RHS &&
"Constant folding of immediate constants failed");
658 return Instruction::Mul;
663 if (OtherOp && OtherOp->
getOpcode() == Instruction::AShr &&
666 return Instruction::AShr;
669 return Op->getOpcode();
678 assert(
A &&
B &&
C &&
D &&
"All values must be provided");
681 Value *RetVal =
nullptr;
692 if (
A ==
C || (InnerCommutative &&
A ==
D)) {
712 if (
B ==
D || (InnerCommutative &&
B ==
C)) {
735 if (isa<OverflowingBinaryOperator>(RetVal)) {
738 if (isa<OverflowingBinaryOperator>(&
I)) {
739 HasNSW =
I.hasNoSignedWrap();
740 HasNUW =
I.hasNoUnsignedWrap();
742 if (
auto *LOBO = dyn_cast<OverflowingBinaryOperator>(
LHS)) {
743 HasNSW &= LOBO->hasNoSignedWrap();
744 HasNUW &= LOBO->hasNoUnsignedWrap();
747 if (
auto *ROBO = dyn_cast<OverflowingBinaryOperator>(
RHS)) {
748 HasNSW &= ROBO->hasNoSignedWrap();
749 HasNUW &= ROBO->hasNoUnsignedWrap();
752 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
762 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
765 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
780 unsigned Opc =
I->getOpcode();
781 unsigned ConstIdx = 1;
788 case Instruction::Sub:
791 case Instruction::ICmp:
798 case Instruction::Or:
802 case Instruction::Add:
808 if (!
match(
I->getOperand(1 - ConstIdx),
821 if (Opc == Instruction::ICmp && !cast<ICmpInst>(
I)->isEquality()) {
824 if (!Cmp || !Cmp->isZeroValue())
829 bool Consumes =
false;
833 assert(NotOp !=
nullptr &&
834 "Desync between isFreeToInvert and getFreelyInverted");
843 case Instruction::Sub:
846 case Instruction::Or:
847 case Instruction::Add:
850 case Instruction::ICmp:
886 auto IsValidBinOpc = [](
unsigned Opc) {
890 case Instruction::And:
891 case Instruction::Or:
892 case Instruction::Xor:
893 case Instruction::Add:
902 auto IsCompletelyDistributable = [](
unsigned BinOpc1,
unsigned BinOpc2,
904 assert(ShOpc != Instruction::AShr);
905 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
906 ShOpc == Instruction::Shl;
909 auto GetInvShift = [](
unsigned ShOpc) {
910 assert(ShOpc != Instruction::AShr);
911 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
914 auto CanDistributeBinops = [&](
unsigned BinOpc1,
unsigned BinOpc2,
918 if (BinOpc1 == Instruction::And)
923 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
929 if (BinOpc2 == Instruction::And)
940 auto MatchBinOp = [&](
unsigned ShOpnum) ->
Instruction * {
942 Value *
X, *
Y, *ShiftedX, *Mask, *Shift;
943 if (!
match(
I.getOperand(ShOpnum),
946 if (!
match(
I.getOperand(1 - ShOpnum),
953 auto *IY = dyn_cast<Instruction>(
I.getOperand(ShOpnum));
954 auto *IX = dyn_cast<Instruction>(ShiftedX);
959 unsigned ShOpc = IY->getOpcode();
960 if (ShOpc != IX->getOpcode())
964 auto *BO2 = dyn_cast<Instruction>(
I.getOperand(1 - ShOpnum));
968 unsigned BinOpc = BO2->getOpcode();
970 if (!IsValidBinOpc(
I.getOpcode()) || !IsValidBinOpc(BinOpc))
973 if (ShOpc == Instruction::AShr) {
987 if (BinOpc ==
I.getOpcode() &&
988 IsCompletelyDistributable(
I.getOpcode(), BinOpc, ShOpc)) {
1003 if (!CanDistributeBinops(
I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1017 return MatchBinOp(1);
1035 Value *
A, *CondVal, *TrueVal, *FalseVal;
1038 auto MatchSelectAndCast = [&](
Value *CastOp,
Value *SelectOp) {
1040 A->getType()->getScalarSizeInBits() == 1 &&
1047 if (MatchSelectAndCast(
LHS,
RHS))
1049 else if (MatchSelectAndCast(
RHS,
LHS))
1054 auto NewFoldedConst = [&](
bool IsTrueArm,
Value *V) {
1055 bool IsCastOpRHS = (CastOp ==
RHS);
1056 bool IsZExt = isa<ZExtInst>(CastOp);
1061 }
else if (IsZExt) {
1062 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1075 Value *NewTrueVal = NewFoldedConst(
false, TrueVal);
1077 NewFoldedConst(
true, FalseVal));
1081 Value *NewTrueVal = NewFoldedConst(
true, TrueVal);
1083 NewFoldedConst(
false, FalseVal));
1104 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1224static std::optional<std::pair<Value *, Value *>>
1226 if (
LHS->getParent() !=
RHS->getParent())
1227 return std::nullopt;
1229 if (
LHS->getNumIncomingValues() < 2)
1230 return std::nullopt;
1233 return std::nullopt;
1235 Value *L0 =
LHS->getIncomingValue(0);
1236 Value *R0 =
RHS->getIncomingValue(0);
1238 for (
unsigned I = 1, E =
LHS->getNumIncomingValues();
I != E; ++
I) {
1242 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1245 return std::nullopt;
1248 return std::optional(std::pair(L0, R0));
1251std::optional<std::pair<Value *, Value *>>
1252InstCombinerImpl::matchSymmetricPair(
Value *LHS,
Value *RHS) {
1253 Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1254 Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1256 return std::nullopt;
1258 case Instruction::PHI:
1260 case Instruction::Select: {
1266 return std::pair(TrueVal, FalseVal);
1267 return std::nullopt;
1269 case Instruction::Call: {
1273 if (LHSMinMax && RHSMinMax &&
1280 return std::pair(LHSMinMax->
getLHS(), LHSMinMax->
getRHS());
1281 return std::nullopt;
1284 return std::nullopt;
1294 if (!LHSIsSelect && !RHSIsSelect)
1299 if (isa<FPMathOperator>(&
I)) {
1300 FMF =
I.getFastMathFlags();
1307 Value *
Cond, *True =
nullptr, *False =
nullptr;
1315 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1330 if (LHSIsSelect && RHSIsSelect &&
A ==
D) {
1339 else if (True && !False)
1347 if (
Value *NewSel = foldAddNegate(
B,
C,
RHS))
1354 if (
Value *NewSel = foldAddNegate(E,
F,
LHS))
1358 if (!True || !False)
1369 assert(!isa<Constant>(
I) &&
"Shouldn't invert users of constant");
1371 if (U == IgnoredUser)
1373 switch (cast<Instruction>(U)->
getOpcode()) {
1374 case Instruction::Select: {
1375 auto *SI = cast<SelectInst>(U);
1377 SI->swapProfMetadata();
1380 case Instruction::Br: {
1387 case Instruction::Xor:
1394 "canFreelyInvertAllUsersOf() ?");
1401Value *InstCombinerImpl::dyn_castNegVal(
Value *V)
const {
1411 if (
C->getType()->getElementType()->isIntegerTy())
1415 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1420 if (isa<UndefValue>(Elt))
1423 if (!isa<ConstantInt>(Elt))
1430 if (
auto *CV = dyn_cast<Constant>(V))
1431 if (CV->getType()->isVectorTy() &&
1432 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1445Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1446 BinaryOperator &BO,
bool OpsFromSigned, std::array<Value *, 2> IntOps,
1450 Type *IntTy = IntOps[0]->getType();
1455 unsigned MaxRepresentableBits =
1460 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1464 auto IsNonZero = [&](
unsigned OpNo) ->
bool {
1465 if (OpsKnown[OpNo].hasKnownBits() &&
1466 OpsKnown[OpNo].getKnownBits(
SQ).isNonZero())
1471 auto IsNonNeg = [&](
unsigned OpNo) ->
bool {
1475 return OpsKnown[OpNo].getKnownBits(
SQ).isNonNegative();
1479 auto IsValidPromotion = [&](
unsigned OpNo) ->
bool {
1481 if (OpsFromSigned != isa<SIToFPInst>(BO.
getOperand(OpNo)) &&
1490 if (MaxRepresentableBits < IntSz) {
1500 NumUsedLeadingBits[OpNo] =
1501 IntSz - OpsKnown[OpNo].getKnownBits(
SQ).countMinLeadingZeros();
1509 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1512 return !OpsFromSigned || BO.
getOpcode() != Instruction::FMul ||
1517 if (Op1FpC !=
nullptr) {
1519 if (OpsFromSigned && BO.
getOpcode() == Instruction::FMul &&
1524 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1526 if (Op1IntC ==
nullptr)
1529 : Instruction::UIToFP,
1530 Op1IntC, FPTy,
DL) != Op1FpC)
1534 IntOps[1] = Op1IntC;
1538 if (IntTy != IntOps[1]->
getType())
1541 if (Op1FpC ==
nullptr) {
1542 if (!IsValidPromotion(1))
1545 if (!IsValidPromotion(0))
1551 bool NeedsOverflowCheck =
true;
1554 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1555 unsigned OverflowMaxCurBits =
1556 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1557 bool OutputSigned = OpsFromSigned;
1559 case Instruction::FAdd:
1560 IntOpc = Instruction::Add;
1561 OverflowMaxOutputBits += OverflowMaxCurBits;
1563 case Instruction::FSub:
1564 IntOpc = Instruction::Sub;
1565 OverflowMaxOutputBits += OverflowMaxCurBits;
1567 case Instruction::FMul:
1568 IntOpc = Instruction::Mul;
1569 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1575 if (OverflowMaxOutputBits < IntSz) {
1576 NeedsOverflowCheck =
false;
1579 if (IntOpc == Instruction::Sub)
1580 OutputSigned =
true;
1586 if (NeedsOverflowCheck &&
1587 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1591 if (
auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1592 IntBO->setHasNoSignedWrap(OutputSigned);
1593 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1606 std::array<Value *, 2> IntOps = {
nullptr,
nullptr};
1626 if (
Instruction *R = foldFBinOpOfIntCastsFromSign(BO,
false,
1627 IntOps, Op1FpC, OpsKnown))
1629 return foldFBinOpOfIntCastsFromSign(BO,
true, IntOps,
1645 !
X->getType()->isIntOrIntVectorTy(1))
1662 V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue();
1663 }
else if (
match(SI->getCondition(),
1688 bool FoldWithMultiUse) {
1690 if (!SI->hasOneUse() && !FoldWithMultiUse)
1693 Value *TV = SI->getTrueValue();
1694 Value *FV = SI->getFalseValue();
1697 if (SI->getType()->isIntOrIntVectorTy(1))
1707 if (
auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1708 if (CI->hasOneUse()) {
1709 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1710 if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1719 if (!NewTV && !NewFV)
1756 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&
I);
1771 bool AllowMultipleUses) {
1773 if (NumPHIValues == 0)
1780 bool IdenticalUsers =
false;
1781 if (!AllowMultipleUses && !OneUse) {
1785 if (UI != &
I && !
I.isIdenticalTo(UI))
1789 IdenticalUsers =
true;
1798 auto *
I = dyn_cast<Instruction>(
Op);
1803 if (isa<PHINode>(
I))
1819 bool SeenNonSimplifiedInVal =
false;
1820 for (
unsigned i = 0; i != NumPHIValues; ++i) {
1831 auto WillFold = [&]() {
1836 const APInt *Ignored;
1837 if (isa<CmpIntrinsic>(InVal) &&
1842 if (isa<ZExtInst>(InVal) &&
1843 cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) &&
1857 if (!OneUse && !IdenticalUsers)
1860 if (SeenNonSimplifiedInVal)
1862 SeenNonSimplifiedInVal =
true;
1878 if (isa<InvokeInst>(InVal))
1879 if (cast<Instruction>(InVal)->
getParent() == InBB)
1892 for (
auto OpIndex : OpsToMoveUseToIncomingBB) {
1903 U = U->DoPHITranslation(PN->
getParent(), OpBB);
1906 Clones.
insert({OpBB, Clone});
1909 NewPhiValues[
OpIndex] = Clone;
1918 for (
unsigned i = 0; i != NumPHIValues; ++i)
1921 if (IdenticalUsers) {
1934 const_cast<PHINode &
>(*NewPN),
1944 auto *Phi0 = dyn_cast<PHINode>(BO.
getOperand(0));
1945 auto *Phi1 = dyn_cast<PHINode>(BO.
getOperand(1));
1946 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1947 Phi0->getNumOperands() != Phi1->getNumOperands())
1951 if (BO.
getParent() != Phi0->getParent() ||
1968 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &>
T) {
1969 auto &Phi0Use = std::get<0>(
T);
1970 auto &Phi1Use = std::get<1>(
T);
1971 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1973 Value *Phi0UseV = Phi0Use.get();
1974 Value *Phi1UseV = Phi1Use.get();
1977 else if (Phi1UseV ==
C)
1984 if (
all_of(
zip(Phi0->operands(), Phi1->operands()),
1985 CanFoldIncomingValuePair)) {
1988 assert(NewIncomingValues.
size() == Phi0->getNumOperands() &&
1989 "The number of collected incoming values should equal the number "
1990 "of the original PHINode operands!");
1991 for (
unsigned I = 0;
I < Phi0->getNumOperands();
I++)
1992 NewPhi->
addIncoming(NewIncomingValues[
I], Phi0->getIncomingBlock(
I));
1997 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2004 ConstBB = Phi0->getIncomingBlock(0);
2005 OtherBB = Phi0->getIncomingBlock(1);
2007 ConstBB = Phi0->getIncomingBlock(1);
2008 OtherBB = Phi0->getIncomingBlock(0);
2018 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->
getTerminator());
2019 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2026 for (
auto BBIter = BO.
getParent()->begin(); &*BBIter != &BO; ++BBIter)
2039 Phi0->getIncomingValueForBlock(OtherBB),
2040 Phi1->getIncomingValueForBlock(OtherBB));
2041 if (
auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
2042 NotFoldedNewBO->copyIRFlags(&BO);
2052 if (!isa<Constant>(
I.getOperand(1)))
2055 if (
auto *Sel = dyn_cast<SelectInst>(
I.getOperand(0))) {
2058 }
else if (
auto *PN = dyn_cast<PHINode>(
I.getOperand(0))) {
2069 if (
GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2076 if (!isa<VectorType>(Inst.
getType()))
2082 cast<VectorType>(Inst.
getType())->getElementCount());
2084 cast<VectorType>(Inst.
getType())->getElementCount());
2089 Value *L0, *L1, *R0, *R1;
2094 cast<ShuffleVectorInst>(
LHS)->isConcat() &&
2095 cast<ShuffleVectorInst>(
RHS)->isConcat()) {
2102 if (
auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2105 if (
auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2112 if (
auto *BO = dyn_cast<BinaryOperator>(V))
2116 M, Intrinsic::vector_reverse, V->getType());
2129 return createBinOpReverse(V1, V2);
2133 return createBinOpReverse(V1,
RHS);
2137 return createBinOpReverse(
LHS, V2);
2147 if (
auto *BO = dyn_cast<BinaryOperator>(XY))
2156 V1->
getType() == V2->getType() &&
2159 return createBinOpShuffle(V1, V2, Mask);
2168 auto *LShuf = cast<ShuffleVectorInst>(
LHS);
2169 auto *RShuf = cast<ShuffleVectorInst>(
RHS);
2174 if (LShuf->isSelect() &&
2176 RShuf->isSelect() &&
2194 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.
getType());
2199 cast<FixedVectorType>(V1->
getType())->getNumElements() <=
2200 InstVTy->getNumElements()) {
2202 "Shuffle should not change scalar type");
2209 bool ConstOp1 = isa<Constant>(
RHS);
2211 unsigned SrcVecNumElts =
2212 cast<FixedVectorType>(V1->
getType())->getNumElements();
2215 bool MayChange =
true;
2216 unsigned NumElts = InstVTy->getNumElements();
2217 for (
unsigned I = 0;
I < NumElts; ++
I) {
2219 if (ShMask[
I] >= 0) {
2220 assert(ShMask[
I] < (
int)NumElts &&
"Not expecting narrowing shuffle");
2228 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2229 I >= SrcVecNumElts) {
2233 NewVecC[ShMask[
I]] = CElt;
2244 if (
I >= SrcVecNumElts || ShMask[
I] < 0) {
2249 if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
2266 Value *NewLHS = ConstOp1 ? V1 : NewC;
2267 Value *NewRHS = ConstOp1 ? NewC : V1;
2268 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2275 if (isa<ShuffleVectorInst>(
RHS))
2308 if (isa<FPMathOperator>(R)) {
2309 R->copyFastMathFlags(&Inst);
2312 if (
auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2313 NewInstBO->copyIRFlags(R);
2342 cast<Operator>(Op1)->getOpcode() == CastOpc &&
2343 (Op0->
hasOneUse() || Op1->hasOneUse()))) {
2361 if (!willNotOverflow(BO.
getOpcode(),
X,
Y, BO, IsSext))
2367 if (
auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2369 NewBinOp->setHasNoSignedWrap();
2371 NewBinOp->setHasNoUnsignedWrap();
2387 if (!
GEP.hasAllConstantIndices())
2403 Type *Ty =
GEP.getSourceElementType();
2405 Value *NewFalseC = Builder.
CreateGEP(Ty, FalseC, IndexC,
"", NW);
2415 if (
GEP.getNumIndices() != 1)
2424 Type *PtrTy = Src->getType()->getScalarType();
2425 unsigned IndexSizeInBits =
DL.getIndexTypeSizeInBits(PtrTy);
2432 if (isa<ScalableVectorType>(
BaseType))
2436 if (NewOffset.
isZero() ||
2437 (Src->hasOneUse() &&
GEP.getOperand(1)->hasOneUse())) {
2458 Type *PtrTy = Src->getType()->getScalarType();
2459 if (
GEP.hasAllConstantIndices() &&
2460 (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2464 bool IsFirstType =
true;
2465 unsigned NumVarIndices = 0;
2466 for (
auto Pair :
enumerate(Src->indices())) {
2467 if (!isa<ConstantInt>(Pair.value())) {
2469 IsFirstType =
false;
2470 NumVarIndices = Pair.index() + 1;
2477 if (NumVarIndices != Src->getNumIndices()) {
2497 if (!
Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero()))
2503 Src->getNumIndices() - NumVarIndices));
2510 if (
Idx.isNonNegative() != ConstIndices[0].isNonNegative())
2512 if (!
Idx.isNonNegative())
2521 if (Src->getResultElementType() !=
GEP.getSourceElementType())
2527 bool EndsWithSequential =
false;
2530 EndsWithSequential =
I.isSequential();
2533 if (EndsWithSequential) {
2536 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2553 Indices.
append(Src->op_begin()+1, Src->op_end()-1);
2556 }
else if (isa<Constant>(*
GEP.idx_begin()) &&
2557 cast<Constant>(*
GEP.idx_begin())->isNullValue() &&
2558 Src->getNumOperands() != 1) {
2560 Indices.
append(Src->op_begin()+1, Src->op_end());
2564 if (!Indices.
empty())
2567 Src->getSourceElementType(), Src->getOperand(0), Indices,
"",
2575 bool &DoesConsume,
unsigned Depth) {
2576 static Value *
const NonNull =
reinterpret_cast<Value *
>(uintptr_t(1));
2594 if (!WillInvertAllUses)
2599 if (
auto *
I = dyn_cast<CmpInst>(V)) {
2610 DoesConsume,
Depth))
2613 DoesConsume,
Depth))
2622 DoesConsume,
Depth))
2625 DoesConsume,
Depth))
2634 DoesConsume,
Depth))
2643 DoesConsume,
Depth))
2655 bool LocalDoesConsume = DoesConsume;
2657 LocalDoesConsume,
Depth))
2660 LocalDoesConsume,
Depth)) {
2661 DoesConsume = LocalDoesConsume;
2664 DoesConsume,
Depth);
2665 assert(NotB !=
nullptr &&
2666 "Unable to build inverted value for known freely invertable op");
2667 if (
auto *
II = dyn_cast<IntrinsicInst>(V))
2676 if (
PHINode *PN = dyn_cast<PHINode>(V)) {
2677 bool LocalDoesConsume = DoesConsume;
2679 for (
Use &U : PN->operands()) {
2680 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2684 if (NewIncomingVal ==
nullptr)
2687 if (NewIncomingVal == V)
2690 IncomingValues.
emplace_back(NewIncomingVal, IncomingBlock);
2693 DoesConsume = LocalDoesConsume;
2699 for (
auto [Val, Pred] : IncomingValues)
2708 DoesConsume,
Depth))
2715 DoesConsume,
Depth))
2724 bool IsLogical,
Value *
A,
2726 bool LocalDoesConsume = DoesConsume;
2728 LocalDoesConsume,
Depth))
2731 LocalDoesConsume,
Depth)) {
2733 LocalDoesConsume,
Depth);
2734 DoesConsume = LocalDoesConsume;
2744 return TryInvertAndOrUsingDeMorgan(Instruction::And,
false,
A,
2748 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
false,
A,
2752 return TryInvertAndOrUsingDeMorgan(Instruction::And,
true,
A,
2756 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
true,
A,
2765 Type *GEPEltType =
GEP.getSourceElementType();
2776 if (
GEP.getNumIndices() == 1 &&
2784 auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp);
2785 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
2788 return match(V, m_APInt(C)) && !C->isZero();
2794 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->
getOperand(0));
2811 auto *Op2 = dyn_cast<GetElementPtrInst>(*
I);
2812 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2813 Op1->getSourceElementType() != Op2->getSourceElementType())
2821 Type *CurTy =
nullptr;
2823 for (
unsigned J = 0,
F = Op1->getNumOperands(); J !=
F; ++J) {
2824 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2827 if (Op1->getOperand(J) != Op2->getOperand(J)) {
2836 assert(CurTy &&
"No current type?");
2856 CurTy = Op1->getSourceElementType();
2864 NW &= Op2->getNoWrapFlags();
2873 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2874 NewGEP->setNoWrapFlags(NW);
2887 NewPN = Builder.
CreatePHI(Op1->getOperand(DI)->getType(),
2892 NewPN->
addIncoming(cast<GEPOperator>(
I)->getOperand(DI),
2895 NewGEP->setOperand(DI, NewPN);
2898 NewGEP->insertBefore(*
GEP.getParent(),
GEP.getParent()->getFirstInsertionPt());
2905 Type *GEPType =
GEP.getType();
2906 Type *GEPEltType =
GEP.getSourceElementType();
2915 if (
auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2916 auto VWidth = GEPFVTy->getNumElements();
2917 APInt PoisonElts(VWidth, 0);
2933 bool MadeChange =
false;
2937 Type *NewScalarIndexTy =
2947 Type *IndexTy = (*I)->getType();
2948 Type *NewIndexType =
2951 cast<VectorType>(IndexTy)->getElementCount())
2963 if (IndexTy != NewIndexType) {
2975 if (!GEPEltType->
isIntegerTy(8) &&
GEP.hasAllConstantIndices()) {
2980 GEP.getNoWrapFlags()));
2991 if (
auto *PN = dyn_cast<PHINode>(PtrOp)) {
2996 if (
auto *Src = dyn_cast<GEPOperator>(PtrOp))
3000 if (
GEP.getNumIndices() == 1) {
3001 unsigned AS =
GEP.getPointerAddressSpace();
3002 if (
GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3006 if (TyAllocSize == 1) {
3015 GEPType ==
Y->getType()) {
3016 bool HasSameUnderlyingObject =
3018 bool Changed =
false;
3019 GEP.replaceUsesWithIf(
Y, [&](
Use &U) {
3020 bool ShouldReplace = HasSameUnderlyingObject ||
3021 isa<ICmpInst>(U.getUser()) ||
3022 isa<PtrToIntInst>(U.getUser());
3023 Changed |= ShouldReplace;
3024 return ShouldReplace;
3026 return Changed ? &
GEP :
nullptr;
3028 }
else if (
auto *ExactIns =
3029 dyn_cast<PossiblyExactOperator>(
GEP.getOperand(1))) {
3032 if (ExactIns->isExact()) {
3040 GEP.getPointerOperand(), V,
3041 GEP.getNoWrapFlags());
3044 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3050 std::optional<APInt> NewC;
3070 if (NewC.has_value()) {
3073 ConstantInt::get(V->getType(), *NewC));
3074 cast<BinaryOperator>(NewOp)->setIsExact();
3076 GEP.getPointerOperand(), NewOp,
3077 GEP.getNoWrapFlags());
3087 if (
GEP.getNumIndices() == 1) {
3090 auto CanPreserveInBounds = [&](
bool AddIsNSW,
Value *Idx1,
Value *Idx2) {
3105 bool IsInBounds = CanPreserveInBounds(
3106 cast<OverflowingBinaryOperator>(
GEP.getOperand(1))->hasNoSignedWrap(),
3110 Idx1,
"", IsInBounds);
3124 bool IsInBounds = CanPreserveInBounds(
3127 GEP.getSourceElementType(),
GEP.getPointerOperand(),
3138 if (!
GEP.isInBounds()) {
3141 APInt BasePtrOffset(IdxWidth, 0);
3142 Value *UnderlyingPtrOp =
3145 bool CanBeNull, CanBeFreed;
3147 DL, CanBeNull, CanBeFreed);
3148 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3149 if (
GEP.accumulateConstantOffset(
DL, BasePtrOffset) &&
3151 APInt AllocSize(IdxWidth, DerefBytes);
3152 if (BasePtrOffset.
ule(AllocSize)) {
3154 GEP.getSourceElementType(), PtrOp, Indices,
GEP.getName());
3161 if (
GEP.hasNoUnsignedSignedWrap() && !
GEP.hasNoUnsignedWrap() &&
3163 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3177 if (isa<ConstantPointerNull>(V))
3179 if (
auto *LI = dyn_cast<LoadInst>(V))
3180 return isa<GlobalVariable>(LI->getPointerOperand());
3204 return Dest && Dest->Ptr == UsedV;
3218 switch (
I->getOpcode()) {
3223 case Instruction::AddrSpaceCast:
3224 case Instruction::BitCast:
3225 case Instruction::GetElementPtr:
3230 case Instruction::ICmp: {
3237 unsigned OtherIndex = (ICI->
getOperand(0) == PI) ? 1 : 0;
3244 auto AlignmentAndSizeKnownValid = [](
CallBase *CB) {
3248 const APInt *Alignment;
3250 return match(CB->getArgOperand(0),
m_APInt(Alignment)) &&
3254 auto *CB = dyn_cast<CallBase>(AI);
3256 if (CB && TLI.
getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3257 TLI.
has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3258 !AlignmentAndSizeKnownValid(CB))
3264 case Instruction::Call:
3267 switch (
II->getIntrinsicID()) {
3271 case Intrinsic::memmove:
3272 case Intrinsic::memcpy:
3273 case Intrinsic::memset: {
3275 if (
MI->isVolatile() ||
MI->getRawDest() != PI)
3279 case Intrinsic::assume:
3280 case Intrinsic::invariant_start:
3281 case Intrinsic::invariant_end:
3282 case Intrinsic::lifetime_start:
3283 case Intrinsic::lifetime_end:
3284 case Intrinsic::objectsize:
3287 case Intrinsic::launder_invariant_group:
3288 case Intrinsic::strip_invariant_group:
3317 case Instruction::Store: {
3319 if (SI->isVolatile() || SI->getPointerOperand() != PI)
3327 }
while (!Worklist.
empty());
3350 std::unique_ptr<DIBuilder> DIB;
3351 if (isa<AllocaInst>(
MI)) {
3357 for (
unsigned i = 0, e =
Users.size(); i != e; ++i) {
3366 if (
II->getIntrinsicID() == Intrinsic::objectsize) {
3369 II,
DL, &
TLI,
AA,
true, &InsertedInstructions);
3370 for (
Instruction *Inserted : InsertedInstructions)
3378 for (
unsigned i = 0, e =
Users.size(); i != e; ++i) {
3387 C->isFalseWhenEqual()));
3388 }
else if (
auto *SI = dyn_cast<StoreInst>(
I)) {
3389 for (
auto *DVI : DVIs)
3390 if (DVI->isAddressOfVariable())
3392 for (
auto *DVR : DVRs)
3393 if (DVR->isAddressOfVariable())
3436 for (
auto *DVI : DVIs)
3437 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
3438 DVI->eraseFromParent();
3439 for (
auto *DVR : DVRs)
3440 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3441 DVR->eraseFromParent();
3487 if (FreeInstrBB->
size() != 2) {
3489 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3491 auto *Cast = dyn_cast<CastInst>(&Inst);
3492 if (!Cast || !Cast->isNoopCast(
DL))
3513 "Broken CFG: missing edge from predecessor to successor");
3518 if (&Instr == FreeInstrBBTerminator)
3520 Instr.moveBeforePreserving(TI);
3523 "Only the branch instruction should remain");
3534 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0, Attribute::NonNull);
3535 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3536 if (Dereferenceable.
isValid()) {
3538 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0,
3539 Attribute::Dereferenceable);
3540 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.
getContext(), 0, Bytes);
3549 if (isa<UndefValue>(
Op)) {
3557 if (isa<ConstantPointerNull>(
Op))
3593 FPClassTest ReturnClass =
F->getAttributes().getRetNoFPClass();
3594 if (ReturnClass ==
fcNone)
3611 bool Changed =
false;
3612 while (
Instruction *Prev =
I.getPrevNonDebugInstruction()) {
3617 if (Prev->isEHPad())
3648 return BBI->isDebugOrPseudoInst() ||
3649 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3654 if (BBI != FirstInstr)
3656 }
while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3658 return dyn_cast<StoreInst>(BBI);
3670 if (!
DeadEdges.insert({From, To}).second)
3675 for (
Use &U : PN.incoming_values())
3676 if (PN.getIncomingBlock(U) ==
From && !isa<PoisonValue>(U)) {
3692 std::next(
I->getReverseIterator())))) {
3693 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3697 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3700 Inst.dropDbgRecords();
3708 for (
Value *V : Changed)
3735 if (Succ == LiveSucc)
3763 if (isa<SelectInst>(
Cond) &&
3784 auto *Cmp = cast<CmpInst>(
Cond);
3793 if (isa<UndefValue>(
Cond)) {
3797 if (
auto *CI = dyn_cast<ConstantInt>(
Cond)) {
3832 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
3833 auto *
C = dyn_cast<ConstantInt>(
Select->getOperand(CstOpIdx));
3837 BasicBlock *CstBB = SI.findCaseValue(
C)->getCaseSuccessor();
3838 if (CstBB != SI.getDefaultDest())
3851 for (
auto Case : SI.cases())
3852 if (!CR.
contains(Case.getCaseValue()->getValue()))
3864 for (
auto Case : SI.cases()) {
3866 assert(isa<ConstantInt>(NewCase) &&
3867 "Result of expression should be constant");
3868 Case.setValue(cast<ConstantInt>(NewCase));
3876 for (
auto Case : SI.cases()) {
3878 assert(isa<ConstantInt>(NewCase) &&
3879 "Result of expression should be constant");
3880 Case.setValue(cast<ConstantInt>(NewCase));
3888 all_of(SI.cases(), [&](
const auto &Case) {
3889 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3895 Value *NewCond = Op0;
3902 for (
auto Case : SI.cases()) {
3903 const APInt &CaseVal = Case.getCaseValue()->getValue();
3905 : CaseVal.
lshr(ShiftAmt);
3906 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3914 bool IsZExt = isa<ZExtInst>(
Cond);
3918 if (
all_of(SI.cases(), [&](
const auto &Case) {
3919 const APInt &CaseVal = Case.getCaseValue()->getValue();
3920 return IsZExt ? CaseVal.isIntN(NewWidth)
3921 : CaseVal.isSignedIntN(NewWidth);
3923 for (
auto &Case : SI.cases()) {
3924 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
3925 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3932 if (
auto *
Select = dyn_cast<SelectInst>(
Cond)) {
3947 for (
const auto &
C : SI.cases()) {
3949 std::min(LeadingKnownZeros,
C.getCaseValue()->getValue().countl_zero());
3951 std::min(LeadingKnownOnes,
C.getCaseValue()->getValue().countl_one());
3954 unsigned NewWidth = Known.
getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3960 if (NewWidth > 0 && NewWidth < Known.
getBitWidth() &&
3961 shouldChangeType(Known.
getBitWidth(), NewWidth)) {
3966 for (
auto Case : SI.cases()) {
3967 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
3968 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3973 if (isa<UndefValue>(
Cond)) {
3977 if (
auto *CI = dyn_cast<ConstantInt>(
Cond)) {
3979 SI.findCaseValue(CI)->getCaseSuccessor());
3993 const APInt *
C =
nullptr;
3995 if (*EV.
idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3996 OvID == Intrinsic::umul_with_overflow)) {
4001 if (
C->isPowerOf2()) {
4002 return BinaryOperator::CreateShl(
4004 ConstantInt::get(WO->getLHS()->getType(),
C->logBase2()));
4012 if (!WO->hasOneUse())
4026 assert(*EV.
idx_begin() == 1 &&
"Unexpected extract index for overflow inst");
4029 if (OvID == Intrinsic::usub_with_overflow)
4034 if (OvID == Intrinsic::smul_with_overflow &&
4035 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4036 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4039 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4040 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4045 ConstantInt::get(WO->getLHS()->getType(),
4056 WO->getBinaryOp(), *
C, WO->getNoWrapKind());
4061 auto *OpTy = WO->getRHS()->getType();
4062 auto *NewLHS = WO->getLHS();
4066 ConstantInt::get(OpTy, NewRHSC));
4084 const unsigned *exti, *exte, *insi, *inse;
4085 for (exti = EV.
idx_begin(), insi =
IV->idx_begin(),
4086 exte = EV.
idx_end(), inse =
IV->idx_end();
4087 exti != exte && insi != inse;
4101 if (exti == exte && insi == inse)
4134 if (
Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4137 if (
LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4139 if (
auto *STy = dyn_cast<StructType>(Agg->
getType());
4140 STy && STy->isScalableTy())
4148 if (L->isSimple() && L->hasOneUse()) {
4160 L->getPointerOperand(), Indices);
4171 if (
auto *PN = dyn_cast<PHINode>(Agg))
4177 if (
auto *SI = dyn_cast<SelectInst>(Agg))
4194 switch (Personality) {
4224 cast<ArrayType>(
LHS->
getType())->getNumElements()
4226 cast<ArrayType>(
RHS->
getType())->getNumElements();
4238 bool MakeNewInstruction =
false;
4244 bool isLastClause = i + 1 == e;
4252 if (AlreadyCaught.
insert(TypeInfo).second) {
4257 MakeNewInstruction =
true;
4264 MakeNewInstruction =
true;
4265 CleanupFlag =
false;
4284 if (!NumTypeInfos) {
4287 MakeNewInstruction =
true;
4288 CleanupFlag =
false;
4292 bool MakeNewFilter =
false;
4294 if (isa<ConstantAggregateZero>(FilterClause)) {
4296 assert(NumTypeInfos > 0 &&
"Should have handled empty filter already!");
4302 MakeNewInstruction =
true;
4309 if (NumTypeInfos > 1)
4310 MakeNewFilter =
true;
4314 NewFilterElts.
reserve(NumTypeInfos);
4319 bool SawCatchAll =
false;
4320 for (
unsigned j = 0; j != NumTypeInfos; ++j) {
4348 if (SeenInFilter.
insert(TypeInfo).second)
4349 NewFilterElts.
push_back(cast<Constant>(Elt));
4354 MakeNewInstruction =
true;
4359 if (NewFilterElts.
size() < NumTypeInfos)
4360 MakeNewFilter =
true;
4362 if (MakeNewFilter) {
4364 NewFilterElts.
size());
4366 MakeNewInstruction =
true;
4375 if (MakeNewFilter && !NewFilterElts.
size()) {
4376 assert(MakeNewInstruction &&
"New filter but not a new instruction!");
4377 CleanupFlag =
false;
4388 for (
unsigned i = 0, e = NewClauses.
size(); i + 1 < e; ) {
4391 for (j = i; j != e; ++j)
4392 if (!isa<ArrayType>(NewClauses[j]->
getType()))
4398 for (
unsigned k = i; k + 1 < j; ++k)
4402 std::stable_sort(NewClauses.
begin() + i, NewClauses.
begin() + j,
4404 MakeNewInstruction =
true;
4423 for (
unsigned i = 0; i + 1 < NewClauses.
size(); ++i) {
4433 for (
unsigned j = NewClauses.
size() - 1; j != i; --j) {
4434 Value *LFilter = NewClauses[j];
4445 NewClauses.
erase(J);
4446 MakeNewInstruction =
true;
4456 if (isa<ConstantAggregateZero>(LFilter)) {
4459 if (isa<ConstantAggregateZero>(
Filter)) {
4460 assert(FElts <= LElts &&
"Should have handled this case earlier!");
4462 NewClauses.
erase(J);
4463 MakeNewInstruction =
true;
4469 if (isa<ConstantAggregateZero>(
Filter)) {
4472 assert(FElts > 0 &&
"Should have eliminated the empty filter earlier!");
4473 for (
unsigned l = 0; l != LElts; ++l)
4476 NewClauses.
erase(J);
4477 MakeNewInstruction =
true;
4488 bool AllFound =
true;
4489 for (
unsigned f = 0; f != FElts; ++f) {
4492 for (
unsigned l = 0; l != LElts; ++l) {
4494 if (LTypeInfo == FTypeInfo) {
4504 NewClauses.
erase(J);
4505 MakeNewInstruction =
true;
4513 if (MakeNewInstruction) {
4521 if (NewClauses.empty())
4530 assert(!CleanupFlag &&
"Adding a cleanup, not removing one?!");
4555 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
4560 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
4574 Use *MaybePoisonOperand =
nullptr;
4575 for (
Use &U : OrigOpInst->operands()) {
4576 if (isa<MetadataAsValue>(U.get()) ||
4579 if (!MaybePoisonOperand)
4580 MaybePoisonOperand = &U;
4585 OrigOpInst->dropPoisonGeneratingAnnotations();
4588 if (!MaybePoisonOperand)
4593 MaybePoisonOperand->get(), MaybePoisonOperand->get()->
getName() +
".fr");
4595 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
4606 Use *StartU =
nullptr;
4624 Value *StartV = StartU->get();
4636 if (!Visited.
insert(V).second)
4639 if (Visited.
size() > 32)
4656 I->dropPoisonGeneratingAnnotations();
4658 if (StartNeedsFreeze) {
4670 if (isa<Constant>(
Op) ||
Op->hasOneUse())
4679 if (isa<Argument>(
Op)) {
4683 auto MoveBeforeOpt = cast<Instruction>(
Op)->getInsertionPointAfterDef();
4686 MoveBefore = *MoveBeforeOpt;
4690 if (isa<DbgInfoIntrinsic>(MoveBefore))
4691 MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4694 MoveBefore.setHeadBit(
false);
4696 bool Changed =
false;
4697 if (&FI != &*MoveBefore) {
4698 FI.
moveBefore(*MoveBefore->getParent(), MoveBefore);
4702 Op->replaceUsesWithIf(&FI, [&](
Use &U) ->
bool {
4704 Changed |= Dominates;
4713 for (
auto *U : V->users()) {
4714 if (isa<ShuffleVectorInst>(U))
4723 Value *Op0 =
I.getOperand(0);
4729 if (
auto *PN = dyn_cast<PHINode>(Op0)) {
4752 auto getUndefReplacement = [&
I](
Type *Ty) {
4755 for (
const auto *U :
I.users()) {
4764 else if (BestValue !=
C)
4765 BestValue = NullValue;
4767 assert(BestValue &&
"Must have at least one use");
4782 Constant *ReplaceC = getUndefReplacement(
I.getType()->getScalarType());
4797 auto *CB = dyn_cast<CallBase>(
I);
4816 for (
const User *U :
I.users()) {
4817 if (Visited.
insert(U).second)
4822 while (!AllocaUsers.
empty()) {
4823 auto *UserI = cast<Instruction>(AllocaUsers.
pop_back_val());
4824 if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) {
4845 if (isa<PHINode>(
I) ||
I->isEHPad() ||
I->mayThrow() || !
I->willReturn() ||
4853 if (isa<AllocaInst>(
I))
4861 if (
auto *CI = dyn_cast<CallInst>(
I)) {
4862 if (CI->isConvergent())
4868 if (
I->mayWriteToMemory()) {
4875 if (
I->mayReadFromMemory() &&
4876 !
I->hasMetadata(LLVMContext::MD_invariant_load)) {
4883 E =
I->getParent()->end();
4885 if (Scan->mayWriteToMemory())
4889 I->dropDroppableUses([&](
const Use *U) {
4890 auto *
I = dyn_cast<Instruction>(U->getUser());
4891 if (
I &&
I->getParent() != DestBlock) {
4901 I->moveBefore(*DestBlock, InsertPos);
4912 if (!DbgUsers.
empty())
4914 if (!DbgVariableRecords.
empty())
4916 DbgVariableRecords);
4936 for (
auto &DbgUser : DbgUsers)
4937 if (DbgUser->getParent() != DestBlock)
4944 if (DVI->getParent() == SrcBlock)
4947 [](
auto *
A,
auto *
B) {
return B->comesBefore(
A); });
4951 for (
auto *
User : DbgUsersToSink) {
4956 if (isa<DbgDeclareInst>(
User))
4961 User->getDebugLoc()->getInlinedAt());
4963 if (!SunkVariables.
insert(DbgUserVariable).second)
4968 if (isa<DbgAssignIntrinsic>(
User))
4971 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(
User->clone()));
4972 if (isa<DbgDeclareInst>(
User) && isa<CastInst>(
I))
4973 DIIClones.back()->replaceVariableLocationOp(
I,
I->getOperand(0));
4978 if (!DIIClones.empty()) {
4983 DIIClone->insertBefore(&*InsertPos);
4998 for (
auto &DVR : DbgVariableRecords)
4999 if (DVR->getParent() != DestBlock)
5000 DbgVariableRecordsToSalvage.
push_back(DVR);
5006 if (DVR->getParent() == SrcBlock)
5007 DbgVariableRecordsToSink.
push_back(DVR);
5014 return B->getInstruction()->comesBefore(
A->getInstruction());
5021 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5023 if (DbgVariableRecordsToSink.
size() > 1) {
5029 DVR->getDebugLoc()->getInlinedAt());
5030 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5036 for (
auto It : CountMap) {
5037 if (It.second > 1) {
5038 FilterOutMap[It.first] =
nullptr;
5039 DupSet.
insert(It.first.first);
5050 DVR.getDebugLoc()->getInlinedAt());
5052 FilterOutMap.
find(std::make_pair(Inst, DbgUserVariable));
5053 if (FilterIt == FilterOutMap.
end())
5055 if (FilterIt->second !=
nullptr)
5057 FilterIt->second = &DVR;
5072 DVR->getDebugLoc()->getInlinedAt());
5076 if (!FilterOutMap.
empty()) {
5077 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5078 auto It = FilterOutMap.
find(IVP);
5081 if (It != FilterOutMap.
end() && It->second != DVR)
5085 if (!SunkVariables.
insert(DbgUserVariable).second)
5088 if (DVR->isDbgAssign())
5096 if (DVRClones.
empty())
5110 assert(InsertPos.getHeadBit());
5112 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5136 if (
I ==
nullptr)
continue;
5151 auto getOptionalSinkBlockForInst =
5152 [
this](
Instruction *
I) -> std::optional<BasicBlock *> {
5154 return std::nullopt;
5158 unsigned NumUsers = 0;
5160 for (
Use &U :
I->uses()) {
5165 return std::nullopt;
5170 if (
PHINode *PN = dyn_cast<PHINode>(UserInst))
5171 UserBB = PN->getIncomingBlock(U);
5175 if (UserParent && UserParent != UserBB)
5176 return std::nullopt;
5177 UserParent = UserBB;
5181 if (NumUsers == 0) {
5185 return std::nullopt;
5197 return std::nullopt;
5207 return std::nullopt;
5212 auto OptBB = getOptionalSinkBlockForInst(
I);
5214 auto *UserParent = *OptBB;
5222 for (
Use &U :
I->operands())
5223 if (
Instruction *OpI = dyn_cast<Instruction>(U.get()))
5231 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5244 <<
" New = " << *Result <<
'\n');
5249 if (!Result->getDebugLoc())
5250 Result->setDebugLoc(
I->getDebugLoc());
5252 Result->copyMetadata(*
I, LLVMContext::MD_annotation);
5254 I->replaceAllUsesWith(Result);
5257 Result->takeName(
I);
5264 if (isa<PHINode>(Result) != isa<PHINode>(
I)) {
5266 if (isa<PHINode>(
I))
5272 Result->insertInto(InstParent, InsertPos);
5281 <<
" New = " << *
I <<
'\n');
5313 if (!
I->hasMetadataOtherThanDebugLoc())
5316 auto Track = [](
Metadata *ScopeList,
auto &Container) {
5317 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5318 if (!MDScopeList || !Container.insert(MDScopeList).second)
5320 for (
const auto &
MDOperand : MDScopeList->operands())
5321 if (
auto *MDScope = dyn_cast<MDNode>(
MDOperand))
5322 Container.insert(MDScope);
5325 Track(
I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5326 Track(
I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5335 "llvm.experimental.noalias.scope.decl in use ?");
5338 "llvm.experimental.noalias.scope should refer to a single scope");
5340 if (
auto *MD = dyn_cast<MDNode>(
MDOperand))
5341 return !UsedAliasScopesAndLists.
contains(MD) ||
5342 !UsedNoAliasScopesAndLists.
contains(MD);
5366 if (Succ != LiveSucc &&
DeadEdges.insert({BB, Succ}).second)
5367 for (
PHINode &PN : Succ->phis())
5368 for (
Use &U : PN.incoming_values())
5369 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5379 HandleOnlyLiveSuccessor(BB,
nullptr);
5386 if (!Inst.use_empty() &&
5387 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5391 Inst.replaceAllUsesWith(
C);
5394 Inst.eraseFromParent();
5400 for (
Use &U : Inst.operands()) {
5401 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
5404 auto *
C = cast<Constant>(U);
5405 Constant *&FoldRes = FoldedConstants[
C];
5411 <<
"\n Old = " << *
C
5412 <<
"\n New = " << *FoldRes <<
'\n');
5421 if (!Inst.isDebugOrPseudoInst()) {
5422 InstrsForInstructionWorklist.
push_back(&Inst);
5423 SeenAliasScopes.
analyse(&Inst);
5431 if (isa<UndefValue>(BI->getCondition())) {
5433 HandleOnlyLiveSuccessor(BB,
nullptr);
5436 if (
auto *
Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5437 bool CondVal =
Cond->getZExtValue();
5438 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5441 }
else if (
SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5442 if (isa<UndefValue>(SI->getCondition())) {
5444 HandleOnlyLiveSuccessor(BB,
nullptr);
5447 if (
auto *
Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5448 HandleOnlyLiveSuccessor(BB,
5449 SI->findCaseValue(
Cond)->getCaseSuccessor());
5459 if (LiveBlocks.
count(&BB))
5462 unsigned NumDeadInstInBB;
5463 unsigned NumDeadDbgInstInBB;
5464 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
5467 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
5468 NumDeadInst += NumDeadInstInBB;
5485 Inst->eraseFromParent();
5514 auto &
DL =
F.getDataLayout();
5516 !
F.hasFnAttribute(
"instcombine-no-verify-fixpoint");
5524 if (
auto *Assume = dyn_cast<AssumeInst>(
I))
5532 bool MadeIRChange =
false;
5537 unsigned Iteration = 0;
5543 <<
" on " <<
F.getName()
5544 <<
" reached; stopping without verifying fixpoint\n");
5548 ++NumWorklistIterations;
5549 LLVM_DEBUG(
dbgs() <<
"\n\nINSTCOMBINE ITERATION #" << Iteration <<
" on "
5550 <<
F.getName() <<
"\n");
5553 ORE, BFI, BPI, PSI,
DL, RPOT);
5556 MadeChangeInThisIteration |= IC.
run();
5557 if (!MadeChangeInThisIteration)
5560 MadeIRChange =
true;
5563 "Instruction Combining on " +
Twine(
F.getName()) +
5566 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
5567 "'instcombine-no-verify-fixpoint' to suppress this error.",
5574 else if (Iteration == 2)
5576 else if (Iteration == 3)
5577 ++NumThreeIterations;
5579 ++NumFourOrMoreIterations;
5581 return MadeIRChange;
5589 OS, MapClassName2PassName);
5596char InstCombinePass::ID = 0;
5602 if (LRT.shouldSkip(&
ID))
5615 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
5620 BFI, BPI, PSI, Options)) {
5622 LRT.update(&
ID,
false);
5628 LRT.update(&
ID,
true);
5655 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5656 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
F);
5657 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
F);
5658 auto &
TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
F);
5659 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5660 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5664 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
5667 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
5670 if (
auto *WrapperPass =
5671 getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>())
5672 BPI = &WrapperPass->getBPI();
5685 "Combine redundant instructions",
false,
false)
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static bool isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI)
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static const uint32_t IV[8]
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
APInt trunc(unsigned width) const
Truncate to new width.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
A container for analyses that lazily runs them and caches their results.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Class to represent array types.
uint64_t getNumElements() const
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
const Instruction & front() const
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
void swapSuccEdgesProbabilities(const BasicBlock *Src)
Swap outgoing edges probabilities for Src with branch terminator.
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getNot(Constant *C)
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
SmallVector< APInt > getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const
Get GEP indices to access Offset inside ElemTy.
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU.
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
unsigned getIndexSizeInBits(unsigned AS) const
Size in bits of index used for address calculation in getelementptr.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef< Value * > Indices) const
Returns the offset from the beginning of the type for the specified indices.
This is the common base class for debug info intrinsics for variables.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(unsigned CounterName)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void registerBranch(BranchInst *BI)
Add a branch condition to the cache.
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
const BasicBlock & getEntryBlock() const
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
GEPNoWrapFlags withoutNoUnsignedWrap() const
GEPNoWrapFlags getNoWrapFlags() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Value * CreateLogicalOp(Instruction::BinaryOps Opc, Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void CollectMetadataToCopy(Instruction *Src, ArrayRef< unsigned > MetadataKinds)
Collect metadata with IDs MetadataKinds from Src which should be added to all created instructions.
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name="")
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
InstCombinePass(InstCombineOptions Opts={})
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Constant * getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp)
Value * SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask, KnownFPClass &Known, unsigned Depth, Instruction *CxtI)
Attempts to replace V with a simpler value based on the demanded floating-point classes.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; } into a phi node...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
void tryToSinkInstructionDbgValues(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableIntrinsic * > &DbgUsers)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
const DataLayout & getDataLayout() const
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
The legacy pass manager's instcombine pass.
InstructionCombiningPass()
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
Instruction * removeOne()
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
void add(Instruction *I)
Add instruction to the worklist.
void push(Instruction *I)
Push the instruction onto the worklist stack.
Instruction * popDeferred()
void zap()
Check that the worklist is empty and nuke the backing store for the map.
void reserve(size_t Size)
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
void dropUBImplyingAttrsAndMetadata()
Drop any attributes or metadata that can cause immediate undefined behavior.
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
const MDOperand & getOperand(unsigned I) const
unsigned getNumOperands() const
Return number of MDNode operands.
Tracking metadata reference owned by Metadata.
This is the common base class for memset/memcpy/memmove.
static MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
This class represents min/max intrinsics.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
MDNode * getScopeList() const
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
This class represents a cast from signed integer to floating point.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This class represents a cast unsigned integer to floating point.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
bool hasOneUser() const
Return true if there is exactly one user of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVMContext & getContext() const
All values hold a context through their type.
uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
constexpr bool isZero() const
An efficient, type-erasing, non-owning reference to a callable.
Type * getIndexedType() const
const ParentTy * getParent() const
reverse_self_iterator getReverseIterator()
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isNoFPClassCompatibleType(Type *Ty)
Returns true if this is a type legal for the 'nofpclass' attribute.
@ C
The default llvm calling convention, compatible with C.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
bool succ_empty(const Instruction *I)
Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
FunctionPass * createInstructionCombiningPass()
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I)
Don't use information from its non-constant operands.
std::pair< unsigned, unsigned > removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableIntrinsic * > Insns, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
void findDbgUsers(SmallVectorImpl< DbgVariableIntrinsic * > &DbgInsts, Value *V, SmallVectorImpl< DbgVariableRecord * > *DbgVariableRecords=nullptr)
Finds the debug info intrinsics describing a value.
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
gep_type_iterator gep_type_end(const User *GEP)
Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool LowerDbgDeclare(Function &F)
Lowers llvm.dbg.declare intrinsics into appropriate set of llvm.dbg.value intrinsics.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, StoreInst *SI, DIBuilder &Builder)
Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value that has an associated llvm....
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Or
Bitwise or logical OR of integers.
DWARFExpression::Operation Op
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
void initializeInstructionCombiningPassPass(PassRegistry &)
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static unsigned int semanticsPrecision(const fltSemantics &)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
A CRTP mix-in to automatically provide informational APIs needed for passes.
SimplifyQuery getWithInstruction(const Instruction *I) const
SimplifyQuery getWithoutUndef() const