108#define DEBUG_TYPE "instcombine"
116 "Number of instruction combining iterations performed");
117STATISTIC(NumOneIteration,
"Number of functions with one iteration");
118STATISTIC(NumTwoIterations,
"Number of functions with two iterations");
119STATISTIC(NumThreeIterations,
"Number of functions with three iterations");
121 "Number of functions with four or more iterations");
125STATISTIC(NumDeadInst ,
"Number of dead inst eliminated");
131 "Controls which instructions are visited");
138 "instcombine-max-sink-users",
cl::init(32),
139 cl::desc(
"Maximum number of undroppable users for instruction sinking"));
143 cl::desc(
"Maximum array size considered when doing a combine"));
155std::optional<Instruction *>
158 if (
II.getCalledFunction()->isTargetIntrinsic()) {
166 bool &KnownBitsComputed) {
168 if (
II.getCalledFunction()->isTargetIntrinsic()) {
170 *
this,
II, DemandedMask, Known, KnownBitsComputed);
181 if (
II.getCalledFunction()->isTargetIntrinsic()) {
183 *
this,
II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
201 auto *Inst = dyn_cast<Instruction>(
GEP);
208 if (Inst && !
GEP->hasOneUse() && !
GEP->hasAllConstantIndices() &&
209 !
GEP->getSourceElementType()->isIntegerTy(8)) {
223bool InstCombinerImpl::isDesirableIntType(
unsigned BitWidth)
const {
242bool InstCombinerImpl::shouldChangeType(
unsigned FromWidth,
243 unsigned ToWidth)
const {
249 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
254 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
259 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
270bool InstCombinerImpl::shouldChangeType(
Type *
From,
Type *To)
const {
276 unsigned FromWidth =
From->getPrimitiveSizeInBits();
278 return shouldChangeType(FromWidth, ToWidth);
287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&
I);
288 if (!OBO || !OBO->hasNoSignedWrap())
293 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
296 const APInt *BVal, *CVal;
300 bool Overflow =
false;
301 if (Opcode == Instruction::Add)
302 (void)BVal->
sadd_ov(*CVal, Overflow);
304 (
void)BVal->
ssub_ov(*CVal, Overflow);
310 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&
I);
311 return OBO && OBO->hasNoUnsignedWrap();
315 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&
I);
316 return OBO && OBO->hasNoSignedWrap();
325 I.clearSubclassOptionalData();
330 I.clearSubclassOptionalData();
331 I.setFastMathFlags(FMF);
340 auto *Cast = dyn_cast<CastInst>(BinOp1->
getOperand(0));
341 if (!Cast || !Cast->hasOneUse())
345 auto CastOpcode = Cast->getOpcode();
346 if (CastOpcode != Instruction::ZExt)
354 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
355 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
381 Cast->dropPoisonGeneratingFlags();
387Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(
Value *Val) {
388 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
391 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
392 Type *CastTy = IntToPtr->getDestTy();
395 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
398 return PtrToInt->getOperand(0);
425 bool Changed =
false;
433 Changed = !
I.swapOperands();
435 if (
I.isCommutative()) {
436 if (
auto Pair = matchSymmetricPair(
I.getOperand(0),
I.getOperand(1))) {
446 if (
I.isAssociative()) {
469 I.setHasNoUnsignedWrap(
true);
472 I.setHasNoSignedWrap(
true);
501 if (
I.isAssociative() &&
I.isCommutative()) {
564 if (isa<FPMathOperator>(NewBO)) {
578 I.setHasNoUnsignedWrap(
true);
596 if (LOp == Instruction::And)
597 return ROp == Instruction::Or || ROp == Instruction::Xor;
600 if (LOp == Instruction::Or)
601 return ROp == Instruction::And;
605 if (LOp == Instruction::Mul)
606 return ROp == Instruction::Add || ROp == Instruction::Sub;
629 if (isa<Constant>(V))
643 assert(
Op &&
"Expected a binary operator");
644 LHS =
Op->getOperand(0);
645 RHS =
Op->getOperand(1);
646 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
651 Instruction::Shl, ConstantInt::get(
Op->getType(), 1),
C);
652 assert(
RHS &&
"Constant folding of immediate constants failed");
653 return Instruction::Mul;
658 if (OtherOp && OtherOp->
getOpcode() == Instruction::AShr &&
661 return Instruction::AShr;
664 return Op->getOpcode();
673 assert(
A &&
B &&
C &&
D &&
"All values must be provided");
676 Value *RetVal =
nullptr;
687 if (
A ==
C || (InnerCommutative &&
A ==
D)) {
707 if (
B ==
D || (InnerCommutative &&
B ==
C)) {
730 if (isa<OverflowingBinaryOperator>(RetVal)) {
733 if (isa<OverflowingBinaryOperator>(&
I)) {
734 HasNSW =
I.hasNoSignedWrap();
735 HasNUW =
I.hasNoUnsignedWrap();
737 if (
auto *LOBO = dyn_cast<OverflowingBinaryOperator>(
LHS)) {
738 HasNSW &= LOBO->hasNoSignedWrap();
739 HasNUW &= LOBO->hasNoUnsignedWrap();
742 if (
auto *ROBO = dyn_cast<OverflowingBinaryOperator>(
RHS)) {
743 HasNSW &= ROBO->hasNoSignedWrap();
744 HasNUW &= ROBO->hasNoUnsignedWrap();
747 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
757 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
760 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
775 unsigned Opc =
I->getOpcode();
776 unsigned ConstIdx = 1;
783 case Instruction::Sub:
786 case Instruction::ICmp:
793 case Instruction::Or:
797 case Instruction::Add:
803 if (!
match(
I->getOperand(1 - ConstIdx),
816 if (Opc == Instruction::ICmp && !cast<ICmpInst>(
I)->isEquality()) {
819 if (!Cmp || !Cmp->isZeroValue())
824 bool Consumes =
false;
828 assert(NotOp !=
nullptr &&
829 "Desync between isFreeToInvert and getFreelyInverted");
838 case Instruction::Sub:
841 case Instruction::Or:
842 case Instruction::Add:
845 case Instruction::ICmp:
881 auto IsValidBinOpc = [](
unsigned Opc) {
885 case Instruction::And:
886 case Instruction::Or:
887 case Instruction::Xor:
888 case Instruction::Add:
897 auto IsCompletelyDistributable = [](
unsigned BinOpc1,
unsigned BinOpc2,
899 assert(ShOpc != Instruction::AShr);
900 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
901 ShOpc == Instruction::Shl;
904 auto GetInvShift = [](
unsigned ShOpc) {
905 assert(ShOpc != Instruction::AShr);
906 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
909 auto CanDistributeBinops = [&](
unsigned BinOpc1,
unsigned BinOpc2,
913 if (BinOpc1 == Instruction::And)
918 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
924 if (BinOpc2 == Instruction::And)
935 auto MatchBinOp = [&](
unsigned ShOpnum) ->
Instruction * {
937 Value *
X, *
Y, *ShiftedX, *Mask, *Shift;
938 if (!
match(
I.getOperand(ShOpnum),
941 if (!
match(
I.getOperand(1 - ShOpnum),
949 auto *IY = dyn_cast<Instruction>(
I.getOperand(ShOpnum));
950 auto *IX = dyn_cast<Instruction>(ShiftedX);
955 unsigned ShOpc = IY->getOpcode();
956 if (ShOpc != IX->getOpcode())
960 auto *BO2 = dyn_cast<Instruction>(
I.getOperand(1 - ShOpnum));
964 unsigned BinOpc = BO2->getOpcode();
966 if (!IsValidBinOpc(
I.getOpcode()) || !IsValidBinOpc(BinOpc))
969 if (ShOpc == Instruction::AShr) {
983 if (BinOpc ==
I.getOpcode() &&
984 IsCompletelyDistributable(
I.getOpcode(), BinOpc, ShOpc)) {
999 if (!CanDistributeBinops(
I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1013 return MatchBinOp(1);
1031 Value *
A, *CondVal, *TrueVal, *FalseVal;
1034 auto MatchSelectAndCast = [&](
Value *CastOp,
Value *SelectOp) {
1036 A->getType()->getScalarSizeInBits() == 1 &&
1043 if (MatchSelectAndCast(
LHS,
RHS))
1045 else if (MatchSelectAndCast(
RHS,
LHS))
1050 auto NewFoldedConst = [&](
bool IsTrueArm,
Value *V) {
1051 bool IsCastOpRHS = (CastOp ==
RHS);
1052 bool IsZExt = isa<ZExtInst>(CastOp);
1057 }
else if (IsZExt) {
1058 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1071 Value *NewTrueVal = NewFoldedConst(
false, TrueVal);
1073 NewFoldedConst(
true, FalseVal));
1077 Value *NewTrueVal = NewFoldedConst(
true, TrueVal);
1079 NewFoldedConst(
false, FalseVal));
1100 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1220static std::optional<std::pair<Value *, Value *>>
1222 if (
LHS->getParent() !=
RHS->getParent())
1223 return std::nullopt;
1225 if (
LHS->getNumIncomingValues() < 2)
1226 return std::nullopt;
1229 return std::nullopt;
1231 Value *L0 =
LHS->getIncomingValue(0);
1232 Value *R0 =
RHS->getIncomingValue(0);
1234 for (
unsigned I = 1, E =
LHS->getNumIncomingValues();
I != E; ++
I) {
1238 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1241 return std::nullopt;
1244 return std::optional(std::pair(L0, R0));
1247std::optional<std::pair<Value *, Value *>>
1248InstCombinerImpl::matchSymmetricPair(
Value *LHS,
Value *RHS) {
1249 Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1250 Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1252 return std::nullopt;
1254 case Instruction::PHI:
1256 case Instruction::Select: {
1262 return std::pair(TrueVal, FalseVal);
1263 return std::nullopt;
1265 case Instruction::Call: {
1269 if (LHSMinMax && RHSMinMax &&
1276 return std::pair(LHSMinMax->
getLHS(), LHSMinMax->
getRHS());
1277 return std::nullopt;
1280 return std::nullopt;
1290 if (!LHSIsSelect && !RHSIsSelect)
1295 if (isa<FPMathOperator>(&
I)) {
1296 FMF =
I.getFastMathFlags();
1303 Value *
Cond, *True =
nullptr, *False =
nullptr;
1311 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1326 if (LHSIsSelect && RHSIsSelect &&
A ==
D) {
1335 else if (True && !False)
1343 if (
Value *NewSel = foldAddNegate(
B,
C,
RHS))
1350 if (
Value *NewSel = foldAddNegate(E,
F,
LHS))
1354 if (!True || !False)
1365 assert(!isa<Constant>(
I) &&
"Shouldn't invert users of constant");
1367 if (U == IgnoredUser)
1369 switch (cast<Instruction>(U)->
getOpcode()) {
1370 case Instruction::Select: {
1371 auto *SI = cast<SelectInst>(U);
1373 SI->swapProfMetadata();
1376 case Instruction::Br: {
1383 case Instruction::Xor:
1390 "canFreelyInvertAllUsersOf() ?");
1397Value *InstCombinerImpl::dyn_castNegVal(
Value *V)
const {
1407 if (
C->getType()->getElementType()->isIntegerTy())
1411 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1416 if (isa<UndefValue>(Elt))
1419 if (!isa<ConstantInt>(Elt))
1426 if (
auto *CV = dyn_cast<Constant>(V))
1427 if (CV->getType()->isVectorTy() &&
1428 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1441Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1442 BinaryOperator &BO,
bool OpsFromSigned, std::array<Value *, 2> IntOps,
1446 Type *IntTy = IntOps[0]->getType();
1451 unsigned MaxRepresentableBits =
1456 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1460 auto IsNonZero = [&](
unsigned OpNo) ->
bool {
1461 if (OpsKnown[OpNo].hasKnownBits() &&
1462 OpsKnown[OpNo].getKnownBits(
SQ).isNonZero())
1467 auto IsNonNeg = [&](
unsigned OpNo) ->
bool {
1471 return OpsKnown[OpNo].getKnownBits(
SQ).isNonNegative();
1475 auto IsValidPromotion = [&](
unsigned OpNo) ->
bool {
1477 if (OpsFromSigned != isa<SIToFPInst>(BO.
getOperand(OpNo)) &&
1486 if (MaxRepresentableBits < IntSz) {
1496 NumUsedLeadingBits[OpNo] =
1497 IntSz - OpsKnown[OpNo].getKnownBits(
SQ).countMinLeadingZeros();
1505 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1508 return !OpsFromSigned || BO.
getOpcode() != Instruction::FMul ||
1513 if (Op1FpC !=
nullptr) {
1515 if (OpsFromSigned && BO.
getOpcode() == Instruction::FMul &&
1520 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1522 if (Op1IntC ==
nullptr)
1525 : Instruction::UIToFP,
1526 Op1IntC, FPTy,
DL) != Op1FpC)
1530 IntOps[1] = Op1IntC;
1534 if (IntTy != IntOps[1]->
getType())
1537 if (Op1FpC ==
nullptr) {
1538 if (!IsValidPromotion(1))
1541 if (!IsValidPromotion(0))
1547 bool NeedsOverflowCheck =
true;
1550 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1551 unsigned OverflowMaxCurBits =
1552 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1553 bool OutputSigned = OpsFromSigned;
1555 case Instruction::FAdd:
1556 IntOpc = Instruction::Add;
1557 OverflowMaxOutputBits += OverflowMaxCurBits;
1559 case Instruction::FSub:
1560 IntOpc = Instruction::Sub;
1561 OverflowMaxOutputBits += OverflowMaxCurBits;
1563 case Instruction::FMul:
1564 IntOpc = Instruction::Mul;
1565 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1571 if (OverflowMaxOutputBits < IntSz) {
1572 NeedsOverflowCheck =
false;
1575 if (IntOpc == Instruction::Sub)
1576 OutputSigned =
true;
1582 if (NeedsOverflowCheck &&
1583 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1587 if (
auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1588 IntBO->setHasNoSignedWrap(OutputSigned);
1589 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1602 std::array<Value *, 2> IntOps = {
nullptr,
nullptr};
1622 if (
Instruction *R = foldFBinOpOfIntCastsFromSign(BO,
false,
1623 IntOps, Op1FpC, OpsKnown))
1625 return foldFBinOpOfIntCastsFromSign(BO,
true, IntOps,
1641 !
X->getType()->isIntOrIntVectorTy(1))
1658 V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue();
1659 }
else if (
match(SI->getCondition(),
1684 bool FoldWithMultiUse) {
1686 if (!SI->hasOneUse() && !FoldWithMultiUse)
1689 Value *TV = SI->getTrueValue();
1690 Value *FV = SI->getFalseValue();
1693 if (SI->getType()->isIntOrIntVectorTy(1))
1703 if (
auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1704 if (CI->hasOneUse()) {
1705 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1706 if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1715 if (!NewTV && !NewFV)
1752 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&
I);
1767 bool AllowMultipleUses) {
1769 if (NumPHIValues == 0)
1776 bool IdenticalUsers =
false;
1777 if (!AllowMultipleUses && !OneUse) {
1781 if (UI != &
I && !
I.isIdenticalTo(UI))
1785 IdenticalUsers =
true;
1794 auto *
I = dyn_cast<Instruction>(
Op);
1799 if (isa<PHINode>(
I))
1815 bool SeenNonSimplifiedInVal =
false;
1816 for (
unsigned i = 0; i != NumPHIValues; ++i) {
1827 auto WillFold = [&]() {
1832 const APInt *Ignored;
1833 if (isa<CmpIntrinsic>(InVal) &&
1838 if (isa<ZExtInst>(InVal) &&
1839 cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) &&
1853 if (!OneUse && !IdenticalUsers)
1856 if (SeenNonSimplifiedInVal)
1858 SeenNonSimplifiedInVal =
true;
1874 if (isa<InvokeInst>(InVal))
1875 if (cast<Instruction>(InVal)->
getParent() == InBB)
1888 for (
auto OpIndex : OpsToMoveUseToIncomingBB) {
1899 U = U->DoPHITranslation(PN->
getParent(), OpBB);
1902 Clones.
insert({OpBB, Clone});
1905 NewPhiValues[
OpIndex] = Clone;
1914 for (
unsigned i = 0; i != NumPHIValues; ++i)
1917 if (IdenticalUsers) {
1930 const_cast<PHINode &
>(*NewPN),
1940 auto *Phi0 = dyn_cast<PHINode>(BO.
getOperand(0));
1941 auto *Phi1 = dyn_cast<PHINode>(BO.
getOperand(1));
1942 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1943 Phi0->getNumOperands() != Phi1->getNumOperands())
1947 if (BO.
getParent() != Phi0->getParent() ||
1964 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &>
T) {
1965 auto &Phi0Use = std::get<0>(
T);
1966 auto &Phi1Use = std::get<1>(
T);
1967 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1969 Value *Phi0UseV = Phi0Use.get();
1970 Value *Phi1UseV = Phi1Use.get();
1973 else if (Phi1UseV ==
C)
1980 if (
all_of(
zip(Phi0->operands(), Phi1->operands()),
1981 CanFoldIncomingValuePair)) {
1984 assert(NewIncomingValues.
size() == Phi0->getNumOperands() &&
1985 "The number of collected incoming values should equal the number "
1986 "of the original PHINode operands!");
1987 for (
unsigned I = 0;
I < Phi0->getNumOperands();
I++)
1988 NewPhi->
addIncoming(NewIncomingValues[
I], Phi0->getIncomingBlock(
I));
1993 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2000 ConstBB = Phi0->getIncomingBlock(0);
2001 OtherBB = Phi0->getIncomingBlock(1);
2003 ConstBB = Phi0->getIncomingBlock(1);
2004 OtherBB = Phi0->getIncomingBlock(0);
2014 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->
getTerminator());
2015 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2022 for (
auto BBIter = BO.
getParent()->begin(); &*BBIter != &BO; ++BBIter)
2035 Phi0->getIncomingValueForBlock(OtherBB),
2036 Phi1->getIncomingValueForBlock(OtherBB));
2037 if (
auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
2038 NotFoldedNewBO->copyIRFlags(&BO);
2048 if (!isa<Constant>(
I.getOperand(1)))
2051 if (
auto *Sel = dyn_cast<SelectInst>(
I.getOperand(0))) {
2054 }
else if (
auto *PN = dyn_cast<PHINode>(
I.getOperand(0))) {
2065 if (
GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2072 if (!isa<VectorType>(Inst.
getType()))
2078 cast<VectorType>(Inst.
getType())->getElementCount());
2080 cast<VectorType>(Inst.
getType())->getElementCount());
2085 Value *L0, *L1, *R0, *R1;
2090 cast<ShuffleVectorInst>(
LHS)->isConcat() &&
2091 cast<ShuffleVectorInst>(
RHS)->isConcat()) {
2098 if (
auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2101 if (
auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2108 if (
auto *BO = dyn_cast<BinaryOperator>(V))
2112 M, Intrinsic::vector_reverse, V->getType());
2125 return createBinOpReverse(V1, V2);
2129 return createBinOpReverse(V1,
RHS);
2133 return createBinOpReverse(
LHS, V2);
2143 if (
auto *BO = dyn_cast<BinaryOperator>(XY))
2152 V1->
getType() == V2->getType() &&
2155 return createBinOpShuffle(V1, V2, Mask);
2164 auto *LShuf = cast<ShuffleVectorInst>(
LHS);
2165 auto *RShuf = cast<ShuffleVectorInst>(
RHS);
2170 if (LShuf->isSelect() &&
2172 RShuf->isSelect() &&
2190 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.
getType());
2195 cast<FixedVectorType>(V1->
getType())->getNumElements() <=
2196 InstVTy->getNumElements()) {
2198 "Shuffle should not change scalar type");
2205 bool ConstOp1 = isa<Constant>(
RHS);
2207 unsigned SrcVecNumElts =
2208 cast<FixedVectorType>(V1->
getType())->getNumElements();
2211 bool MayChange =
true;
2212 unsigned NumElts = InstVTy->getNumElements();
2213 for (
unsigned I = 0;
I < NumElts; ++
I) {
2215 if (ShMask[
I] >= 0) {
2216 assert(ShMask[
I] < (
int)NumElts &&
"Not expecting narrowing shuffle");
2224 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2225 I >= SrcVecNumElts) {
2229 NewVecC[ShMask[
I]] = CElt;
2240 if (
I >= SrcVecNumElts || ShMask[
I] < 0) {
2245 if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
2262 Value *NewLHS = ConstOp1 ? V1 : NewC;
2263 Value *NewRHS = ConstOp1 ? NewC : V1;
2264 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2271 if (isa<ShuffleVectorInst>(
RHS))
2304 if (isa<FPMathOperator>(R)) {
2305 R->copyFastMathFlags(&Inst);
2308 if (
auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2309 NewInstBO->copyIRFlags(R);
2338 cast<Operator>(Op1)->getOpcode() == CastOpc &&
2339 (Op0->
hasOneUse() || Op1->hasOneUse()))) {
2357 if (!willNotOverflow(BO.
getOpcode(),
X,
Y, BO, IsSext))
2363 if (
auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2365 NewBinOp->setHasNoSignedWrap();
2367 NewBinOp->setHasNoUnsignedWrap();
2383 if (!
GEP.hasAllConstantIndices())
2399 Type *Ty =
GEP.getSourceElementType();
2401 Value *NewFalseC = Builder.
CreateGEP(Ty, FalseC, IndexC,
"", NW);
2411 if (
GEP.getNumIndices() != 1)
2420 Type *PtrTy = Src->getType()->getScalarType();
2421 unsigned IndexSizeInBits =
DL.getIndexTypeSizeInBits(PtrTy);
2428 if (isa<ScalableVectorType>(
BaseType))
2432 if (NewOffset.
isZero() ||
2433 (Src->hasOneUse() &&
GEP.getOperand(1)->hasOneUse())) {
2454 Type *PtrTy = Src->getType()->getScalarType();
2455 if (
GEP.hasAllConstantIndices() &&
2456 (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2460 bool IsFirstType =
true;
2461 unsigned NumVarIndices = 0;
2462 for (
auto Pair :
enumerate(Src->indices())) {
2463 if (!isa<ConstantInt>(Pair.value())) {
2465 IsFirstType =
false;
2466 NumVarIndices = Pair.index() + 1;
2473 if (NumVarIndices != Src->getNumIndices()) {
2493 if (!
Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero()))
2499 Src->getNumIndices() - NumVarIndices));
2506 if (
Idx.isNonNegative() != ConstIndices[0].isNonNegative())
2508 if (!
Idx.isNonNegative())
2517 if (Src->getResultElementType() !=
GEP.getSourceElementType())
2523 bool EndsWithSequential =
false;
2526 EndsWithSequential =
I.isSequential();
2529 if (EndsWithSequential) {
2532 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2549 Indices.
append(Src->op_begin()+1, Src->op_end()-1);
2552 }
else if (isa<Constant>(*
GEP.idx_begin()) &&
2553 cast<Constant>(*
GEP.idx_begin())->isNullValue() &&
2554 Src->getNumOperands() != 1) {
2556 Indices.
append(Src->op_begin()+1, Src->op_end());
2560 if (!Indices.
empty())
2563 Src->getSourceElementType(), Src->getOperand(0), Indices,
"",
2571 bool &DoesConsume,
unsigned Depth) {
2572 static Value *
const NonNull =
reinterpret_cast<Value *
>(uintptr_t(1));
2590 if (!WillInvertAllUses)
2595 if (
auto *
I = dyn_cast<CmpInst>(V)) {
2606 DoesConsume,
Depth))
2609 DoesConsume,
Depth))
2618 DoesConsume,
Depth))
2621 DoesConsume,
Depth))
2630 DoesConsume,
Depth))
2639 DoesConsume,
Depth))
2651 bool LocalDoesConsume = DoesConsume;
2653 LocalDoesConsume,
Depth))
2656 LocalDoesConsume,
Depth)) {
2657 DoesConsume = LocalDoesConsume;
2660 DoesConsume,
Depth);
2661 assert(NotB !=
nullptr &&
2662 "Unable to build inverted value for known freely invertable op");
2663 if (
auto *
II = dyn_cast<IntrinsicInst>(V))
2672 if (
PHINode *PN = dyn_cast<PHINode>(V)) {
2673 bool LocalDoesConsume = DoesConsume;
2675 for (
Use &U : PN->operands()) {
2676 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2680 if (NewIncomingVal ==
nullptr)
2683 if (NewIncomingVal == V)
2686 IncomingValues.
emplace_back(NewIncomingVal, IncomingBlock);
2689 DoesConsume = LocalDoesConsume;
2695 for (
auto [Val, Pred] : IncomingValues)
2704 DoesConsume,
Depth))
2711 DoesConsume,
Depth))
2720 bool IsLogical,
Value *
A,
2722 bool LocalDoesConsume = DoesConsume;
2724 LocalDoesConsume,
Depth))
2727 LocalDoesConsume,
Depth)) {
2729 LocalDoesConsume,
Depth);
2730 DoesConsume = LocalDoesConsume;
2740 return TryInvertAndOrUsingDeMorgan(Instruction::And,
false,
A,
2744 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
false,
A,
2748 return TryInvertAndOrUsingDeMorgan(Instruction::And,
true,
A,
2752 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
true,
A,
2761 Type *GEPEltType =
GEP.getSourceElementType();
2772 if (
GEP.getNumIndices() == 1 &&
2780 auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp);
2781 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
2784 return match(V, m_APInt(C)) && !C->isZero();
2790 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->
getOperand(0));
2807 auto *Op2 = dyn_cast<GetElementPtrInst>(*
I);
2808 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2809 Op1->getSourceElementType() != Op2->getSourceElementType())
2817 Type *CurTy =
nullptr;
2819 for (
unsigned J = 0,
F = Op1->getNumOperands(); J !=
F; ++J) {
2820 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2823 if (Op1->getOperand(J) != Op2->getOperand(J)) {
2832 assert(CurTy &&
"No current type?");
2852 CurTy = Op1->getSourceElementType();
2860 NW &= Op2->getNoWrapFlags();
2869 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2870 NewGEP->setNoWrapFlags(NW);
2883 NewPN = Builder.
CreatePHI(Op1->getOperand(DI)->getType(),
2888 NewPN->
addIncoming(cast<GEPOperator>(
I)->getOperand(DI),
2891 NewGEP->setOperand(DI, NewPN);
2894 NewGEP->insertBefore(*
GEP.getParent(),
GEP.getParent()->getFirstInsertionPt());
2901 Type *GEPType =
GEP.getType();
2902 Type *GEPEltType =
GEP.getSourceElementType();
2911 if (
auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2912 auto VWidth = GEPFVTy->getNumElements();
2913 APInt PoisonElts(VWidth, 0);
2929 bool MadeChange =
false;
2933 Type *NewScalarIndexTy =
2943 Type *IndexTy = (*I)->getType();
2944 Type *NewIndexType =
2947 cast<VectorType>(IndexTy)->getElementCount())
2959 if (IndexTy != NewIndexType) {
2971 if (!GEPEltType->
isIntegerTy(8) &&
GEP.hasAllConstantIndices()) {
2976 GEP.getNoWrapFlags()));
2987 if (
auto *PN = dyn_cast<PHINode>(PtrOp)) {
2992 if (
auto *Src = dyn_cast<GEPOperator>(PtrOp))
2996 if (
GEP.getNumIndices() == 1) {
2997 unsigned AS =
GEP.getPointerAddressSpace();
2998 if (
GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3002 if (TyAllocSize == 1) {
3011 GEPType ==
Y->getType()) {
3012 bool HasSameUnderlyingObject =
3014 bool Changed =
false;
3015 GEP.replaceUsesWithIf(
Y, [&](
Use &U) {
3016 bool ShouldReplace = HasSameUnderlyingObject ||
3017 isa<ICmpInst>(U.getUser()) ||
3018 isa<PtrToIntInst>(U.getUser());
3019 Changed |= ShouldReplace;
3020 return ShouldReplace;
3022 return Changed ? &
GEP :
nullptr;
3024 }
else if (
auto *ExactIns =
3025 dyn_cast<PossiblyExactOperator>(
GEP.getOperand(1))) {
3028 if (ExactIns->isExact()) {
3036 GEP.getPointerOperand(), V,
3037 GEP.getNoWrapFlags());
3040 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3046 std::optional<APInt> NewC;
3066 if (NewC.has_value()) {
3069 ConstantInt::get(V->getType(), *NewC));
3070 cast<BinaryOperator>(NewOp)->setIsExact();
3072 GEP.getPointerOperand(), NewOp,
3073 GEP.getNoWrapFlags());
3083 if (
GEP.getNumIndices() == 1) {
3086 auto CanPreserveInBounds = [&](
bool AddIsNSW,
Value *Idx1,
Value *Idx2) {
3101 bool IsInBounds = CanPreserveInBounds(
3102 cast<OverflowingBinaryOperator>(
GEP.getOperand(1))->hasNoSignedWrap(),
3106 Idx1,
"", IsInBounds);
3120 bool IsInBounds = CanPreserveInBounds(
3123 GEP.getSourceElementType(),
GEP.getPointerOperand(),
3134 if (!
GEP.isInBounds()) {
3137 APInt BasePtrOffset(IdxWidth, 0);
3138 Value *UnderlyingPtrOp =
3141 bool CanBeNull, CanBeFreed;
3143 DL, CanBeNull, CanBeFreed);
3144 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3145 if (
GEP.accumulateConstantOffset(
DL, BasePtrOffset) &&
3147 APInt AllocSize(IdxWidth, DerefBytes);
3148 if (BasePtrOffset.
ule(AllocSize)) {
3150 GEP.getSourceElementType(), PtrOp, Indices,
GEP.getName());
3157 if (
GEP.hasNoUnsignedSignedWrap() && !
GEP.hasNoUnsignedWrap() &&
3159 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3173 if (isa<ConstantPointerNull>(V))
3175 if (
auto *LI = dyn_cast<LoadInst>(V))
3176 return isa<GlobalVariable>(LI->getPointerOperand());
3200 return Dest && Dest->Ptr == UsedV;
3214 switch (
I->getOpcode()) {
3219 case Instruction::AddrSpaceCast:
3220 case Instruction::BitCast:
3221 case Instruction::GetElementPtr:
3226 case Instruction::ICmp: {
3233 unsigned OtherIndex = (ICI->
getOperand(0) == PI) ? 1 : 0;
3240 auto AlignmentAndSizeKnownValid = [](
CallBase *CB) {
3244 const APInt *Alignment;
3246 return match(CB->getArgOperand(0),
m_APInt(Alignment)) &&
3250 auto *CB = dyn_cast<CallBase>(AI);
3252 if (CB && TLI.
getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3253 TLI.
has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3254 !AlignmentAndSizeKnownValid(CB))
3260 case Instruction::Call:
3263 switch (
II->getIntrinsicID()) {
3267 case Intrinsic::memmove:
3268 case Intrinsic::memcpy:
3269 case Intrinsic::memset: {
3271 if (
MI->isVolatile() ||
MI->getRawDest() != PI)
3275 case Intrinsic::assume:
3276 case Intrinsic::invariant_start:
3277 case Intrinsic::invariant_end:
3278 case Intrinsic::lifetime_start:
3279 case Intrinsic::lifetime_end:
3280 case Intrinsic::objectsize:
3283 case Intrinsic::launder_invariant_group:
3284 case Intrinsic::strip_invariant_group:
3313 case Instruction::Store: {
3315 if (SI->isVolatile() || SI->getPointerOperand() != PI)
3323 }
while (!Worklist.
empty());
3346 std::unique_ptr<DIBuilder> DIB;
3347 if (isa<AllocaInst>(
MI)) {
3353 for (
unsigned i = 0, e =
Users.size(); i != e; ++i) {
3362 if (
II->getIntrinsicID() == Intrinsic::objectsize) {
3365 II,
DL, &
TLI,
AA,
true, &InsertedInstructions);
3366 for (
Instruction *Inserted : InsertedInstructions)
3374 for (
unsigned i = 0, e =
Users.size(); i != e; ++i) {
3383 C->isFalseWhenEqual()));
3384 }
else if (
auto *SI = dyn_cast<StoreInst>(
I)) {
3385 for (
auto *DVI : DVIs)
3386 if (DVI->isAddressOfVariable())
3388 for (
auto *DVR : DVRs)
3389 if (DVR->isAddressOfVariable())
3432 for (
auto *DVI : DVIs)
3433 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
3434 DVI->eraseFromParent();
3435 for (
auto *DVR : DVRs)
3436 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3437 DVR->eraseFromParent();
3483 if (FreeInstrBB->
size() != 2) {
3485 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3487 auto *Cast = dyn_cast<CastInst>(&Inst);
3488 if (!Cast || !Cast->isNoopCast(
DL))
3509 "Broken CFG: missing edge from predecessor to successor");
3514 if (&Instr == FreeInstrBBTerminator)
3516 Instr.moveBeforePreserving(TI);
3519 "Only the branch instruction should remain");
3530 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0, Attribute::NonNull);
3531 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3532 if (Dereferenceable.
isValid()) {
3534 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0,
3535 Attribute::Dereferenceable);
3536 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.
getContext(), 0, Bytes);
3545 if (isa<UndefValue>(
Op)) {
3553 if (isa<ConstantPointerNull>(
Op))
3589 FPClassTest ReturnClass =
F->getAttributes().getRetNoFPClass();
3590 if (ReturnClass ==
fcNone)
3607 bool Changed =
false;
3608 while (
Instruction *Prev =
I.getPrevNonDebugInstruction()) {
3613 if (Prev->isEHPad())
3644 return BBI->isDebugOrPseudoInst() ||
3645 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3650 if (BBI != FirstInstr)
3652 }
while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3654 return dyn_cast<StoreInst>(BBI);
3666 if (!
DeadEdges.insert({From, To}).second)
3671 for (
Use &U : PN.incoming_values())
3672 if (PN.getIncomingBlock(U) ==
From && !isa<PoisonValue>(U)) {
3688 std::next(
I->getReverseIterator())))) {
3689 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3693 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3696 Inst.dropDbgRecords();
3704 for (
Value *V : Changed)
3731 if (Succ == LiveSucc)
3759 if (isa<SelectInst>(
Cond) &&
3780 auto *Cmp = cast<CmpInst>(
Cond);
3789 if (isa<UndefValue>(
Cond)) {
3793 if (
auto *CI = dyn_cast<ConstantInt>(
Cond)) {
3828 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
3829 auto *
C = dyn_cast<ConstantInt>(
Select->getOperand(CstOpIdx));
3833 BasicBlock *CstBB = SI.findCaseValue(
C)->getCaseSuccessor();
3834 if (CstBB != SI.getDefaultDest())
3847 for (
auto Case : SI.cases())
3848 if (!CR.
contains(Case.getCaseValue()->getValue()))
3860 for (
auto Case : SI.cases()) {
3862 assert(isa<ConstantInt>(NewCase) &&
3863 "Result of expression should be constant");
3864 Case.setValue(cast<ConstantInt>(NewCase));
3872 for (
auto Case : SI.cases()) {
3874 assert(isa<ConstantInt>(NewCase) &&
3875 "Result of expression should be constant");
3876 Case.setValue(cast<ConstantInt>(NewCase));
3884 all_of(SI.cases(), [&](
const auto &Case) {
3885 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3891 Value *NewCond = Op0;
3898 for (
auto Case : SI.cases()) {
3899 const APInt &CaseVal = Case.getCaseValue()->getValue();
3901 : CaseVal.
lshr(ShiftAmt);
3902 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3910 bool IsZExt = isa<ZExtInst>(
Cond);
3914 if (
all_of(SI.cases(), [&](
const auto &Case) {
3915 const APInt &CaseVal = Case.getCaseValue()->getValue();
3916 return IsZExt ? CaseVal.isIntN(NewWidth)
3917 : CaseVal.isSignedIntN(NewWidth);
3919 for (
auto &Case : SI.cases()) {
3920 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
3921 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3928 if (
auto *
Select = dyn_cast<SelectInst>(
Cond)) {
3943 for (
const auto &
C : SI.cases()) {
3945 std::min(LeadingKnownZeros,
C.getCaseValue()->getValue().countl_zero());
3947 std::min(LeadingKnownOnes,
C.getCaseValue()->getValue().countl_one());
3950 unsigned NewWidth = Known.
getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3956 if (NewWidth > 0 && NewWidth < Known.
getBitWidth() &&
3957 shouldChangeType(Known.
getBitWidth(), NewWidth)) {
3962 for (
auto Case : SI.cases()) {
3963 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
3964 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3969 if (isa<UndefValue>(
Cond)) {
3973 if (
auto *CI = dyn_cast<ConstantInt>(
Cond)) {
3975 SI.findCaseValue(CI)->getCaseSuccessor());
3989 const APInt *
C =
nullptr;
3991 if (*EV.
idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3992 OvID == Intrinsic::umul_with_overflow)) {
3997 if (
C->isPowerOf2()) {
3998 return BinaryOperator::CreateShl(
4000 ConstantInt::get(WO->getLHS()->getType(),
C->logBase2()));
4008 if (!WO->hasOneUse())
4022 assert(*EV.
idx_begin() == 1 &&
"Unexpected extract index for overflow inst");
4025 if (OvID == Intrinsic::usub_with_overflow)
4030 if (OvID == Intrinsic::smul_with_overflow &&
4031 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4032 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4035 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4036 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4041 ConstantInt::get(WO->getLHS()->getType(),
4052 WO->getBinaryOp(), *
C, WO->getNoWrapKind());
4057 auto *OpTy = WO->getRHS()->getType();
4058 auto *NewLHS = WO->getLHS();
4062 ConstantInt::get(OpTy, NewRHSC));
4080 const unsigned *exti, *exte, *insi, *inse;
4081 for (exti = EV.
idx_begin(), insi =
IV->idx_begin(),
4082 exte = EV.
idx_end(), inse =
IV->idx_end();
4083 exti != exte && insi != inse;
4097 if (exti == exte && insi == inse)
4130 if (
Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4133 if (
LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4135 if (
auto *STy = dyn_cast<StructType>(Agg->
getType());
4136 STy && STy->isScalableTy())
4144 if (L->isSimple() && L->hasOneUse()) {
4156 L->getPointerOperand(), Indices);
4167 if (
auto *PN = dyn_cast<PHINode>(Agg))
4173 if (
auto *SI = dyn_cast<SelectInst>(Agg))
4190 switch (Personality) {
4220 cast<ArrayType>(
LHS->
getType())->getNumElements()
4222 cast<ArrayType>(
RHS->
getType())->getNumElements();
4234 bool MakeNewInstruction =
false;
4240 bool isLastClause = i + 1 == e;
4248 if (AlreadyCaught.
insert(TypeInfo).second) {
4253 MakeNewInstruction =
true;
4260 MakeNewInstruction =
true;
4261 CleanupFlag =
false;
4280 if (!NumTypeInfos) {
4283 MakeNewInstruction =
true;
4284 CleanupFlag =
false;
4288 bool MakeNewFilter =
false;
4290 if (isa<ConstantAggregateZero>(FilterClause)) {
4292 assert(NumTypeInfos > 0 &&
"Should have handled empty filter already!");
4298 MakeNewInstruction =
true;
4305 if (NumTypeInfos > 1)
4306 MakeNewFilter =
true;
4310 NewFilterElts.
reserve(NumTypeInfos);
4315 bool SawCatchAll =
false;
4316 for (
unsigned j = 0; j != NumTypeInfos; ++j) {
4344 if (SeenInFilter.
insert(TypeInfo).second)
4345 NewFilterElts.
push_back(cast<Constant>(Elt));
4350 MakeNewInstruction =
true;
4355 if (NewFilterElts.
size() < NumTypeInfos)
4356 MakeNewFilter =
true;
4358 if (MakeNewFilter) {
4360 NewFilterElts.
size());
4362 MakeNewInstruction =
true;
4371 if (MakeNewFilter && !NewFilterElts.
size()) {
4372 assert(MakeNewInstruction &&
"New filter but not a new instruction!");
4373 CleanupFlag =
false;
4384 for (
unsigned i = 0, e = NewClauses.
size(); i + 1 < e; ) {
4387 for (j = i; j != e; ++j)
4388 if (!isa<ArrayType>(NewClauses[j]->
getType()))
4394 for (
unsigned k = i; k + 1 < j; ++k)
4398 std::stable_sort(NewClauses.
begin() + i, NewClauses.
begin() + j,
4400 MakeNewInstruction =
true;
4419 for (
unsigned i = 0; i + 1 < NewClauses.
size(); ++i) {
4429 for (
unsigned j = NewClauses.
size() - 1; j != i; --j) {
4430 Value *LFilter = NewClauses[j];
4441 NewClauses.
erase(J);
4442 MakeNewInstruction =
true;
4452 if (isa<ConstantAggregateZero>(LFilter)) {
4455 if (isa<ConstantAggregateZero>(
Filter)) {
4456 assert(FElts <= LElts &&
"Should have handled this case earlier!");
4458 NewClauses.
erase(J);
4459 MakeNewInstruction =
true;
4465 if (isa<ConstantAggregateZero>(
Filter)) {
4468 assert(FElts > 0 &&
"Should have eliminated the empty filter earlier!");
4469 for (
unsigned l = 0; l != LElts; ++l)
4472 NewClauses.
erase(J);
4473 MakeNewInstruction =
true;
4484 bool AllFound =
true;
4485 for (
unsigned f = 0; f != FElts; ++f) {
4488 for (
unsigned l = 0; l != LElts; ++l) {
4490 if (LTypeInfo == FTypeInfo) {
4500 NewClauses.
erase(J);
4501 MakeNewInstruction =
true;
4509 if (MakeNewInstruction) {
4517 if (NewClauses.empty())
4526 assert(!CleanupFlag &&
"Adding a cleanup, not removing one?!");
4551 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
4556 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
4570 Use *MaybePoisonOperand =
nullptr;
4571 for (
Use &U : OrigOpInst->operands()) {
4572 if (isa<MetadataAsValue>(U.get()) ||
4575 if (!MaybePoisonOperand)
4576 MaybePoisonOperand = &U;
4581 OrigOpInst->dropPoisonGeneratingAnnotations();
4584 if (!MaybePoisonOperand)
4589 MaybePoisonOperand->get(), MaybePoisonOperand->get()->
getName() +
".fr");
4591 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
4602 Use *StartU =
nullptr;
4620 Value *StartV = StartU->get();
4632 if (!Visited.
insert(V).second)
4635 if (Visited.
size() > 32)
4652 I->dropPoisonGeneratingAnnotations();
4654 if (StartNeedsFreeze) {
4666 if (isa<Constant>(
Op) ||
Op->hasOneUse())
4675 if (isa<Argument>(
Op)) {
4679 auto MoveBeforeOpt = cast<Instruction>(
Op)->getInsertionPointAfterDef();
4682 MoveBefore = *MoveBeforeOpt;
4686 if (isa<DbgInfoIntrinsic>(MoveBefore))
4687 MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4690 MoveBefore.setHeadBit(
false);
4692 bool Changed =
false;
4693 if (&FI != &*MoveBefore) {
4694 FI.
moveBefore(*MoveBefore->getParent(), MoveBefore);
4698 Op->replaceUsesWithIf(&FI, [&](
Use &U) ->
bool {
4700 Changed |= Dominates;
4709 for (
auto *U : V->users()) {
4710 if (isa<ShuffleVectorInst>(U))
4719 Value *Op0 =
I.getOperand(0);
4725 if (
auto *PN = dyn_cast<PHINode>(Op0)) {
4748 auto getUndefReplacement = [&
I](
Type *Ty) {
4751 for (
const auto *U :
I.users()) {
4760 else if (BestValue !=
C)
4761 BestValue = NullValue;
4763 assert(BestValue &&
"Must have at least one use");
4778 Constant *ReplaceC = getUndefReplacement(
I.getType()->getScalarType());
4793 auto *CB = dyn_cast<CallBase>(
I);
4812 for (
const User *U :
I.users()) {
4813 if (Visited.
insert(U).second)
4818 while (!AllocaUsers.
empty()) {
4819 auto *UserI = cast<Instruction>(AllocaUsers.
pop_back_val());
4820 if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) {
4841 if (isa<PHINode>(
I) ||
I->isEHPad() ||
I->mayThrow() || !
I->willReturn() ||
4849 if (isa<AllocaInst>(
I))
4857 if (
auto *CI = dyn_cast<CallInst>(
I)) {
4858 if (CI->isConvergent())
4864 if (
I->mayWriteToMemory()) {
4871 if (
I->mayReadFromMemory() &&
4872 !
I->hasMetadata(LLVMContext::MD_invariant_load)) {
4879 E =
I->getParent()->end();
4881 if (Scan->mayWriteToMemory())
4885 I->dropDroppableUses([&](
const Use *U) {
4886 auto *
I = dyn_cast<Instruction>(U->getUser());
4887 if (
I &&
I->getParent() != DestBlock) {
4897 I->moveBefore(*DestBlock, InsertPos);
4908 if (!DbgUsers.
empty())
4910 if (!DbgVariableRecords.
empty())
4912 DbgVariableRecords);
4932 for (
auto &DbgUser : DbgUsers)
4933 if (DbgUser->getParent() != DestBlock)
4940 if (DVI->getParent() == SrcBlock)
4943 [](
auto *
A,
auto *
B) {
return B->comesBefore(
A); });
4947 for (
auto *
User : DbgUsersToSink) {
4952 if (isa<DbgDeclareInst>(
User))
4957 User->getDebugLoc()->getInlinedAt());
4959 if (!SunkVariables.
insert(DbgUserVariable).second)
4964 if (isa<DbgAssignIntrinsic>(
User))
4967 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(
User->clone()));
4968 if (isa<DbgDeclareInst>(
User) && isa<CastInst>(
I))
4969 DIIClones.back()->replaceVariableLocationOp(
I,
I->getOperand(0));
4974 if (!DIIClones.empty()) {
4979 DIIClone->insertBefore(&*InsertPos);
4994 for (
auto &DVR : DbgVariableRecords)
4995 if (DVR->getParent() != DestBlock)
4996 DbgVariableRecordsToSalvage.
push_back(DVR);
5002 if (DVR->getParent() == SrcBlock)
5003 DbgVariableRecordsToSink.
push_back(DVR);
5010 return B->getInstruction()->comesBefore(
A->getInstruction());
5017 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5019 if (DbgVariableRecordsToSink.
size() > 1) {
5025 DVR->getDebugLoc()->getInlinedAt());
5026 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5032 for (
auto It : CountMap) {
5033 if (It.second > 1) {
5034 FilterOutMap[It.first] =
nullptr;
5035 DupSet.
insert(It.first.first);
5046 DVR.getDebugLoc()->getInlinedAt());
5048 FilterOutMap.
find(std::make_pair(Inst, DbgUserVariable));
5049 if (FilterIt == FilterOutMap.
end())
5051 if (FilterIt->second !=
nullptr)
5053 FilterIt->second = &DVR;
5068 DVR->getDebugLoc()->getInlinedAt());
5072 if (!FilterOutMap.
empty()) {
5073 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5074 auto It = FilterOutMap.
find(IVP);
5077 if (It != FilterOutMap.
end() && It->second != DVR)
5081 if (!SunkVariables.
insert(DbgUserVariable).second)
5084 if (DVR->isDbgAssign())
5092 if (DVRClones.
empty())
5106 assert(InsertPos.getHeadBit());
5108 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5132 if (
I ==
nullptr)
continue;
5147 auto getOptionalSinkBlockForInst =
5148 [
this](
Instruction *
I) -> std::optional<BasicBlock *> {
5150 return std::nullopt;
5154 unsigned NumUsers = 0;
5156 for (
Use &U :
I->uses()) {
5161 return std::nullopt;
5166 if (
PHINode *PN = dyn_cast<PHINode>(UserInst))
5167 UserBB = PN->getIncomingBlock(U);
5171 if (UserParent && UserParent != UserBB)
5172 return std::nullopt;
5173 UserParent = UserBB;
5177 if (NumUsers == 0) {
5181 return std::nullopt;
5193 return std::nullopt;
5203 return std::nullopt;
5208 auto OptBB = getOptionalSinkBlockForInst(
I);
5210 auto *UserParent = *OptBB;
5218 for (
Use &U :
I->operands())
5219 if (
Instruction *OpI = dyn_cast<Instruction>(U.get()))
5227 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5240 <<
" New = " << *Result <<
'\n');
5245 if (!Result->getDebugLoc())
5246 Result->setDebugLoc(
I->getDebugLoc());
5248 Result->copyMetadata(*
I, LLVMContext::MD_annotation);
5250 I->replaceAllUsesWith(Result);
5253 Result->takeName(
I);
5260 if (isa<PHINode>(Result) != isa<PHINode>(
I)) {
5262 if (isa<PHINode>(
I))
5268 Result->insertInto(InstParent, InsertPos);
5277 <<
" New = " << *
I <<
'\n');
5309 if (!
I->hasMetadataOtherThanDebugLoc())
5312 auto Track = [](
Metadata *ScopeList,
auto &Container) {
5313 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5314 if (!MDScopeList || !Container.insert(MDScopeList).second)
5316 for (
const auto &
MDOperand : MDScopeList->operands())
5317 if (
auto *MDScope = dyn_cast<MDNode>(
MDOperand))
5318 Container.insert(MDScope);
5321 Track(
I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5322 Track(
I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5331 "llvm.experimental.noalias.scope.decl in use ?");
5334 "llvm.experimental.noalias.scope should refer to a single scope");
5336 if (
auto *MD = dyn_cast<MDNode>(
MDOperand))
5337 return !UsedAliasScopesAndLists.
contains(MD) ||
5338 !UsedNoAliasScopesAndLists.
contains(MD);
5362 if (Succ != LiveSucc &&
DeadEdges.insert({BB, Succ}).second)
5363 for (
PHINode &PN : Succ->phis())
5364 for (
Use &U : PN.incoming_values())
5365 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5375 HandleOnlyLiveSuccessor(BB,
nullptr);
5382 if (!Inst.use_empty() &&
5383 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5387 Inst.replaceAllUsesWith(
C);
5390 Inst.eraseFromParent();
5396 for (
Use &U : Inst.operands()) {
5397 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
5400 auto *
C = cast<Constant>(U);
5401 Constant *&FoldRes = FoldedConstants[
C];
5407 <<
"\n Old = " << *
C
5408 <<
"\n New = " << *FoldRes <<
'\n');
5417 if (!Inst.isDebugOrPseudoInst()) {
5418 InstrsForInstructionWorklist.
push_back(&Inst);
5419 SeenAliasScopes.
analyse(&Inst);
5427 if (isa<UndefValue>(BI->getCondition())) {
5429 HandleOnlyLiveSuccessor(BB,
nullptr);
5432 if (
auto *
Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5433 bool CondVal =
Cond->getZExtValue();
5434 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5437 }
else if (
SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5438 if (isa<UndefValue>(SI->getCondition())) {
5440 HandleOnlyLiveSuccessor(BB,
nullptr);
5443 if (
auto *
Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5444 HandleOnlyLiveSuccessor(BB,
5445 SI->findCaseValue(
Cond)->getCaseSuccessor());
5455 if (LiveBlocks.
count(&BB))
5458 unsigned NumDeadInstInBB;
5459 unsigned NumDeadDbgInstInBB;
5460 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
5463 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
5464 NumDeadInst += NumDeadInstInBB;
5481 Inst->eraseFromParent();
5510 auto &
DL =
F.getDataLayout();
5512 !
F.hasFnAttribute(
"instcombine-no-verify-fixpoint");
5520 if (
auto *Assume = dyn_cast<AssumeInst>(
I))
5528 bool MadeIRChange =
false;
5533 unsigned Iteration = 0;
5539 <<
" on " <<
F.getName()
5540 <<
" reached; stopping without verifying fixpoint\n");
5544 ++NumWorklistIterations;
5545 LLVM_DEBUG(
dbgs() <<
"\n\nINSTCOMBINE ITERATION #" << Iteration <<
" on "
5546 <<
F.getName() <<
"\n");
5549 ORE, BFI, BPI, PSI,
DL, RPOT);
5552 MadeChangeInThisIteration |= IC.
run();
5553 if (!MadeChangeInThisIteration)
5556 MadeIRChange =
true;
5559 "Instruction Combining on " +
Twine(
F.getName()) +
5562 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
5563 "'instcombine-no-verify-fixpoint' to suppress this error.",
5570 else if (Iteration == 2)
5572 else if (Iteration == 3)
5573 ++NumThreeIterations;
5575 ++NumFourOrMoreIterations;
5577 return MadeIRChange;
5585 OS, MapClassName2PassName);
5592char InstCombinePass::ID = 0;
5598 if (LRT.shouldSkip(&
ID))
5611 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
5616 BFI, BPI, PSI, Options)) {
5618 LRT.update(&
ID,
false);
5624 LRT.update(&
ID,
true);
5651 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5652 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
F);
5653 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
F);
5654 auto &
TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
F);
5655 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5656 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5660 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
5663 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
5666 if (
auto *WrapperPass =
5667 getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>())
5668 BPI = &WrapperPass->getBPI();
5681 "Combine redundant instructions",
false,
false)
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static bool isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI)
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static const uint32_t IV[8]
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
APInt trunc(unsigned width) const
Truncate to new width.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
A container for analyses that lazily runs them and caches their results.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Class to represent array types.
uint64_t getNumElements() const
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
const Instruction & front() const
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
void swapSuccEdgesProbabilities(const BasicBlock *Src)
Swap outgoing edges probabilities for Src with branch terminator.
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getNot(Constant *C)
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
SmallVector< APInt > getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const
Get GEP indices to access Offset inside ElemTy.
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU.
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
unsigned getIndexSizeInBits(unsigned AS) const
Size in bits of index used for address calculation in getelementptr.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef< Value * > Indices) const
Returns the offset from the beginning of the type for the specified indices.
This is the common base class for debug info intrinsics for variables.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(unsigned CounterName)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void registerBranch(BranchInst *BI)
Add a branch condition to the cache.
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
const BasicBlock & getEntryBlock() const
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
GEPNoWrapFlags withoutNoUnsignedWrap() const
GEPNoWrapFlags getNoWrapFlags() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Value * CreateLogicalOp(Instruction::BinaryOps Opc, Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void CollectMetadataToCopy(Instruction *Src, ArrayRef< unsigned > MetadataKinds)
Collect metadata with IDs MetadataKinds from Src which should be added to all created instructions.
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name="")
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
InstCombinePass(InstCombineOptions Opts={})
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Constant * getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp)
Value * SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask, KnownFPClass &Known, unsigned Depth, Instruction *CxtI)
Attempts to replace V with a simpler value based on the demanded floating-point classes.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; } into a phi node...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
void tryToSinkInstructionDbgValues(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableIntrinsic * > &DbgUsers)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
const DataLayout & getDataLayout() const
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
The legacy pass manager's instcombine pass.
InstructionCombiningPass()
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
Instruction * removeOne()
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
void add(Instruction *I)
Add instruction to the worklist.
void push(Instruction *I)
Push the instruction onto the worklist stack.
Instruction * popDeferred()
void zap()
Check that the worklist is empty and nuke the backing store for the map.
void reserve(size_t Size)
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
void dropUBImplyingAttrsAndMetadata()
Drop any attributes or metadata that can cause immediate undefined behavior.
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
const MDOperand & getOperand(unsigned I) const
unsigned getNumOperands() const
Return number of MDNode operands.
Tracking metadata reference owned by Metadata.
This is the common base class for memset/memcpy/memmove.
static MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
This class represents min/max intrinsics.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
MDNode * getScopeList() const
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
This class represents a cast from signed integer to floating point.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This class represents a cast unsigned integer to floating point.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
bool hasOneUser() const
Return true if there is exactly one user of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVMContext & getContext() const
All values hold a context through their type.
uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
constexpr bool isZero() const
An efficient, type-erasing, non-owning reference to a callable.
Type * getIndexedType() const
const ParentTy * getParent() const
reverse_self_iterator getReverseIterator()
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isNoFPClassCompatibleType(Type *Ty)
Returns true if this is a type legal for the 'nofpclass' attribute.
@ C
The default llvm calling convention, compatible with C.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
bool succ_empty(const Instruction *I)
Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
FunctionPass * createInstructionCombiningPass()
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I)
Don't use information from its non-constant operands.
std::pair< unsigned, unsigned > removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableIntrinsic * > Insns, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
void findDbgUsers(SmallVectorImpl< DbgVariableIntrinsic * > &DbgInsts, Value *V, SmallVectorImpl< DbgVariableRecord * > *DbgVariableRecords=nullptr)
Finds the debug info intrinsics describing a value.
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
gep_type_iterator gep_type_end(const User *GEP)
Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool LowerDbgDeclare(Function &F)
Lowers llvm.dbg.declare intrinsics into appropriate set of llvm.dbg.value intrinsics.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, StoreInst *SI, DIBuilder &Builder)
Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value that has an associated llvm....
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Or
Bitwise or logical OR of integers.
DWARFExpression::Operation Op
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
void initializeInstructionCombiningPassPass(PassRegistry &)
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static unsigned int semanticsPrecision(const fltSemantics &)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
A CRTP mix-in to automatically provide informational APIs needed for passes.
SimplifyQuery getWithInstruction(const Instruction *I) const
SimplifyQuery getWithoutUndef() const