LLVM 23.0.0git
InstCombineCalls.cpp
Go to the documentation of this file.
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitCall, visitInvoke, and visitCallBr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/Loads.h"
32#include "llvm/IR/Attributes.h"
33#include "llvm/IR/BasicBlock.h"
34#include "llvm/IR/Constant.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DebugInfo.h"
39#include "llvm/IR/Function.h"
41#include "llvm/IR/InlineAsm.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/IntrinsicsAArch64.h"
48#include "llvm/IR/IntrinsicsAMDGPU.h"
49#include "llvm/IR/IntrinsicsARM.h"
50#include "llvm/IR/IntrinsicsHexagon.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Statepoint.h"
55#include "llvm/IR/Type.h"
56#include "llvm/IR/User.h"
57#include "llvm/IR/Value.h"
58#include "llvm/IR/ValueHandle.h"
63#include "llvm/Support/Debug.h"
74#include <algorithm>
75#include <cassert>
76#include <cstdint>
77#include <optional>
78#include <utility>
79#include <vector>
80
81#define DEBUG_TYPE "instcombine"
83
84using namespace llvm;
85using namespace PatternMatch;
86
87STATISTIC(NumSimplified, "Number of library calls simplified");
88
90 "instcombine-guard-widening-window",
91 cl::init(3),
92 cl::desc("How wide an instruction window to bypass looking for "
93 "another guard"));
94
95/// Return the specified type promoted as it would be to pass though a va_arg
96/// area.
98 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
99 if (ITy->getBitWidth() < 32)
100 return Type::getInt32Ty(Ty->getContext());
101 }
102 return Ty;
103}
104
105/// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
106/// TODO: This should probably be integrated with visitAllocSites, but that
107/// requires a deeper change to allow either unread or unwritten objects.
109 auto *Src = MI->getRawSource();
110 while (isa<GetElementPtrInst>(Src)) {
111 if (!Src->hasOneUse())
112 return false;
113 Src = cast<Instruction>(Src)->getOperand(0);
114 }
115 return isa<AllocaInst>(Src) && Src->hasOneUse();
116}
117
119 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
120 MaybeAlign CopyDstAlign = MI->getDestAlign();
121 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
122 MI->setDestAlignment(DstAlign);
123 return MI;
124 }
125
126 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
127 MaybeAlign CopySrcAlign = MI->getSourceAlign();
128 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
129 MI->setSourceAlignment(SrcAlign);
130 return MI;
131 }
132
133 // If we have a store to a location which is known constant, we can conclude
134 // that the store must be storing the constant value (else the memory
135 // wouldn't be constant), and this must be a noop.
136 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
137 // Set the size of the copy to 0, it will be deleted on the next iteration.
138 MI->setLength((uint64_t)0);
139 return MI;
140 }
141
142 // If the source is provably undef, the memcpy/memmove doesn't do anything
143 // (unless the transfer is volatile).
144 if (hasUndefSource(MI) && !MI->isVolatile()) {
145 // Set the size of the copy to 0, it will be deleted on the next iteration.
146 MI->setLength((uint64_t)0);
147 return MI;
148 }
149
150 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
151 // load/store.
152 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
153 if (!MemOpLength) return nullptr;
154
155 // Source and destination pointer types are always "i8*" for intrinsic. See
156 // if the size is something we can handle with a single primitive load/store.
157 // A single load+store correctly handles overlapping memory in the memmove
158 // case.
159 uint64_t Size = MemOpLength->getLimitedValue();
160 assert(Size && "0-sized memory transferring should be removed already.");
161
162 if (Size > 8 || (Size&(Size-1)))
163 return nullptr; // If not 1/2/4/8 bytes, exit.
164
165 // If it is an atomic and alignment is less than the size then we will
166 // introduce the unaligned memory access which will be later transformed
167 // into libcall in CodeGen. This is not evident performance gain so disable
168 // it now.
169 if (MI->isAtomic())
170 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
171 return nullptr;
172
173 // Use an integer load+store unless we can find something better.
174 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
175
176 // If the memcpy has metadata describing the members, see if we can get the
177 // TBAA, scope and noalias tags describing our copy.
178 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size);
179
180 Value *Src = MI->getArgOperand(1);
181 Value *Dest = MI->getArgOperand(0);
182 LoadInst *L = Builder.CreateLoad(IntType, Src);
183 // Alignment from the mem intrinsic will be better, so use it.
184 L->setAlignment(*CopySrcAlign);
185 L->setAAMetadata(AACopyMD);
186 MDNode *LoopMemParallelMD =
187 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
188 if (LoopMemParallelMD)
189 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
190 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
191 if (AccessGroupMD)
192 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
193
194 StoreInst *S = Builder.CreateStore(L, Dest);
195 // Alignment from the mem intrinsic will be better, so use it.
196 S->setAlignment(*CopyDstAlign);
197 S->setAAMetadata(AACopyMD);
198 if (LoopMemParallelMD)
199 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
200 if (AccessGroupMD)
201 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
202 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
203
204 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
205 // non-atomics can be volatile
206 L->setVolatile(MT->isVolatile());
207 S->setVolatile(MT->isVolatile());
208 }
209 if (MI->isAtomic()) {
210 // atomics have to be unordered
211 L->setOrdering(AtomicOrdering::Unordered);
213 }
214
215 // Set the size of the copy to 0, it will be deleted on the next iteration.
216 MI->setLength((uint64_t)0);
217 return MI;
218}
219
221 const Align KnownAlignment =
222 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
223 MaybeAlign MemSetAlign = MI->getDestAlign();
224 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
225 MI->setDestAlignment(KnownAlignment);
226 return MI;
227 }
228
229 // If we have a store to a location which is known constant, we can conclude
230 // that the store must be storing the constant value (else the memory
231 // wouldn't be constant), and this must be a noop.
232 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
233 // Set the size of the copy to 0, it will be deleted on the next iteration.
234 MI->setLength((uint64_t)0);
235 return MI;
236 }
237
238 // Remove memset with an undef value.
239 // FIXME: This is technically incorrect because it might overwrite a poison
240 // value. Change to PoisonValue once #52930 is resolved.
241 if (isa<UndefValue>(MI->getValue())) {
242 // Set the size of the copy to 0, it will be deleted on the next iteration.
243 MI->setLength((uint64_t)0);
244 return MI;
245 }
246
247 // Extract the length and alignment and fill if they are constant.
248 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
249 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
250 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
251 return nullptr;
252 const uint64_t Len = LenC->getLimitedValue();
253 assert(Len && "0-sized memory setting should be removed already.");
254 const Align Alignment = MI->getDestAlign().valueOrOne();
255
256 // If it is an atomic and alignment is less than the size then we will
257 // introduce the unaligned memory access which will be later transformed
258 // into libcall in CodeGen. This is not evident performance gain so disable
259 // it now.
260 if (MI->isAtomic() && Alignment < Len)
261 return nullptr;
262
263 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
264 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
265 Value *Dest = MI->getDest();
266
267 // Extract the fill value and store.
268 Constant *FillVal = ConstantInt::get(
269 MI->getContext(), APInt::getSplat(Len * 8, FillC->getValue()));
270 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
271 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
272 for (DbgVariableRecord *DbgAssign : at::getDVRAssignmentMarkers(S)) {
273 if (llvm::is_contained(DbgAssign->location_ops(), FillC))
274 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
275 }
276
277 S->setAlignment(Alignment);
278 if (MI->isAtomic())
280
281 // Set the size of the copy to 0, it will be deleted on the next iteration.
282 MI->setLength((uint64_t)0);
283 return MI;
284 }
285
286 return nullptr;
287}
288
289// TODO, Obvious Missing Transforms:
290// * Narrow width by halfs excluding zero/undef lanes
291Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
292 Value *LoadPtr = II.getArgOperand(0);
293 const Align Alignment = II.getParamAlign(0).valueOrOne();
294
295 // If the mask is all ones or undefs, this is a plain vector load of the 1st
296 // argument.
297 if (maskIsAllOneOrUndef(II.getArgOperand(1))) {
298 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
299 "unmaskedload");
300 L->copyMetadata(II);
301 return L;
302 }
303
304 // If we can unconditionally load from this address, replace with a
305 // load/select idiom. TODO: use DT for context sensitive query
306 if (isDereferenceablePointer(LoadPtr, II.getType(),
307 II.getDataLayout(), &II, &AC)) {
308 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
309 "unmaskedload");
310 LI->copyMetadata(II);
311 return Builder.CreateSelect(II.getArgOperand(1), LI, II.getArgOperand(2));
312 }
313
314 return nullptr;
315}
316
317// TODO, Obvious Missing Transforms:
318// * Single constant active lane -> store
319// * Narrow width by halfs excluding zero/undef lanes
320Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
321 Value *StorePtr = II.getArgOperand(1);
322 Align Alignment = II.getParamAlign(1).valueOrOne();
323 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
324 if (!ConstMask)
325 return nullptr;
326
327 // If the mask is all zeros, this instruction does nothing.
328 if (maskIsAllZeroOrUndef(ConstMask))
330
331 // If the mask is all ones, this is a plain vector store of the 1st argument.
332 if (maskIsAllOneOrUndef(ConstMask)) {
333 StoreInst *S =
334 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
335 S->copyMetadata(II);
336 return S;
337 }
338
339 if (isa<ScalableVectorType>(ConstMask->getType()))
340 return nullptr;
341
342 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
343 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
344 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
345 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
346 PoisonElts))
347 return replaceOperand(II, 0, V);
348
349 return nullptr;
350}
351
352// TODO, Obvious Missing Transforms:
353// * Single constant active lane load -> load
354// * Dereferenceable address & few lanes -> scalarize speculative load/selects
355// * Adjacent vector addresses -> masked.load
356// * Narrow width by halfs excluding zero/undef lanes
357// * Vector incrementing address -> vector masked load
358Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
359 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(1));
360 if (!ConstMask)
361 return nullptr;
362
363 // Vector splat address w/known mask -> scalar load
364 // Fold the gather to load the source vector first lane
365 // because it is reloading the same value each time
366 if (ConstMask->isAllOnesValue())
367 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
368 auto *VecTy = cast<VectorType>(II.getType());
369 const Align Alignment = II.getParamAlign(0).valueOrOne();
370 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
371 Alignment, "load.scalar");
372 Value *Shuf =
373 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
375 }
376
377 return nullptr;
378}
379
380// TODO, Obvious Missing Transforms:
381// * Single constant active lane -> store
382// * Adjacent vector addresses -> masked.store
383// * Narrow store width by halfs excluding zero/undef lanes
384// * Vector incrementing address -> vector masked store
385Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
386 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
387 if (!ConstMask)
388 return nullptr;
389
390 // If the mask is all zeros, a scatter does nothing.
391 if (maskIsAllZeroOrUndef(ConstMask))
393
394 // Vector splat address -> scalar store
395 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
396 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
397 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
398 if (maskContainsAllOneOrUndef(ConstMask)) {
399 Align Alignment = II.getParamAlign(1).valueOrOne();
400 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
401 Alignment);
402 S->copyMetadata(II);
403 return S;
404 }
405 }
406 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
407 // lastlane), ptr
408 if (ConstMask->isAllOnesValue()) {
409 Align Alignment = II.getParamAlign(1).valueOrOne();
410 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
411 ElementCount VF = WideLoadTy->getElementCount();
412 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
413 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
414 Value *Extract =
415 Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
416 StoreInst *S =
417 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
418 S->copyMetadata(II);
419 return S;
420 }
421 }
422 if (isa<ScalableVectorType>(ConstMask->getType()))
423 return nullptr;
424
425 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
426 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
427 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
428 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
429 PoisonElts))
430 return replaceOperand(II, 0, V);
431 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts,
432 PoisonElts))
433 return replaceOperand(II, 1, V);
434
435 return nullptr;
436}
437
438/// This function transforms launder.invariant.group and strip.invariant.group
439/// like:
440/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
441/// launder(strip(%x)) -> launder(%x)
442/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
443/// strip(launder(%x)) -> strip(%x)
444/// This is legal because it preserves the most recent information about
445/// the presence or absence of invariant.group.
447 InstCombinerImpl &IC) {
448 auto *Arg = II.getArgOperand(0);
449 auto *StrippedArg = Arg->stripPointerCasts();
450 auto *StrippedInvariantGroupsArg = StrippedArg;
451 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
452 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
453 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
454 break;
455 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
456 }
457 if (StrippedArg == StrippedInvariantGroupsArg)
458 return nullptr; // No launders/strips to remove.
459
460 Value *Result = nullptr;
461
462 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
463 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
464 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
465 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
466 else
468 "simplifyInvariantGroupIntrinsic only handles launder and strip");
469 if (Result->getType()->getPointerAddressSpace() !=
470 II.getType()->getPointerAddressSpace())
471 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
472
473 return cast<Instruction>(Result);
474}
475
477 assert((II.getIntrinsicID() == Intrinsic::cttz ||
478 II.getIntrinsicID() == Intrinsic::ctlz) &&
479 "Expected cttz or ctlz intrinsic");
480 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
481 Value *Op0 = II.getArgOperand(0);
482 Value *Op1 = II.getArgOperand(1);
483 Value *X;
484 // ctlz(bitreverse(x)) -> cttz(x)
485 // cttz(bitreverse(x)) -> ctlz(x)
486 if (match(Op0, m_BitReverse(m_Value(X)))) {
487 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
488 Function *F =
489 Intrinsic::getOrInsertDeclaration(II.getModule(), ID, II.getType());
490 return CallInst::Create(F, {X, II.getArgOperand(1)});
491 }
492
493 if (II.getType()->isIntOrIntVectorTy(1)) {
494 // ctlz/cttz i1 Op0 --> not Op0
495 if (match(Op1, m_Zero()))
496 return BinaryOperator::CreateNot(Op0);
497 // If zero is poison, then the input can be assumed to be "true", so the
498 // instruction simplifies to "false".
499 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
500 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
501 }
502
503 // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true.
504 if (II.hasOneUse() && match(Op1, m_Zero()) &&
505 match(II.user_back(), m_Shift(m_Value(), m_Specific(&II)))) {
506 II.dropUBImplyingAttrsAndMetadata();
507 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
508 }
509
510 Constant *C;
511
512 if (IsTZ) {
513 // cttz(-x) -> cttz(x)
514 if (match(Op0, m_Neg(m_Value(X))))
515 return IC.replaceOperand(II, 0, X);
516
517 // cttz(-x & x) -> cttz(x)
518 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
519 return IC.replaceOperand(II, 0, X);
520
521 // cttz(sext(x)) -> cttz(zext(x))
522 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
523 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
524 auto *CttzZext =
525 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
526 return IC.replaceInstUsesWith(II, CttzZext);
527 }
528
529 // Zext doesn't change the number of trailing zeros, so narrow:
530 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
531 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
532 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
533 IC.Builder.getTrue());
534 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
535 return IC.replaceInstUsesWith(II, ZextCttz);
536 }
537
538 // cttz(abs(x)) -> cttz(x)
539 // cttz(nabs(x)) -> cttz(x)
540 Value *Y;
542 if (SPF == SPF_ABS || SPF == SPF_NABS)
543 return IC.replaceOperand(II, 0, X);
544
546 return IC.replaceOperand(II, 0, X);
547
548 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
549 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) &&
550 match(Op1, m_One())) {
551 Value *ConstCttz =
552 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
553 return BinaryOperator::CreateAdd(ConstCttz, X);
554 }
555
556 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
557 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) &&
558 match(Op1, m_One())) {
559 Value *ConstCttz =
560 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
561 return BinaryOperator::CreateSub(ConstCttz, X);
562 }
563
564 // cttz(add(lshr(UINT_MAX, %val), 1)) --> sub(width, %val)
565 if (match(Op0, m_Add(m_LShr(m_AllOnes(), m_Value(X)), m_One()))) {
566 Value *Width =
567 ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits());
568 return BinaryOperator::CreateSub(Width, X);
569 }
570 } else {
571 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
572 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) &&
573 match(Op1, m_One())) {
574 Value *ConstCtlz =
575 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
576 return BinaryOperator::CreateAdd(ConstCtlz, X);
577 }
578
579 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
580 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) &&
581 match(Op1, m_One())) {
582 Value *ConstCtlz =
583 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
584 return BinaryOperator::CreateSub(ConstCtlz, X);
585 }
586
587 // ctlz(~x & (x - 1)) -> bitwidth - cttz(x, false)
588 if (Op0->hasOneUse() &&
589 match(Op0,
591 Type *Ty = II.getType();
592 unsigned BitWidth = Ty->getScalarSizeInBits();
593 auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty,
594 {X, IC.Builder.getFalse()});
595 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
596 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
597 }
598 }
599
600 // cttz(Pow2) -> Log2(Pow2)
601 // ctlz(Pow2) -> BitWidth - 1 - Log2(Pow2)
602 if (auto *R = IC.tryGetLog2(Op0, match(Op1, m_One()))) {
603 if (IsTZ)
604 return IC.replaceInstUsesWith(II, R);
605 BinaryOperator *BO = BinaryOperator::CreateSub(
606 ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1),
607 R);
608 BO->setHasNoSignedWrap();
610 return BO;
611 }
612
613 KnownBits Known = IC.computeKnownBits(Op0, &II);
614
615 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
616 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
617 : Known.countMaxLeadingZeros();
618 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
619 : Known.countMinLeadingZeros();
620
621 // If all bits above (ctlz) or below (cttz) the first known one are known
622 // zero, this value is constant.
623 // FIXME: This should be in InstSimplify because we're replacing an
624 // instruction with a constant.
625 if (PossibleZeros == DefiniteZeros) {
626 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
627 return IC.replaceInstUsesWith(II, C);
628 }
629
630 // If the input to cttz/ctlz is known to be non-zero,
631 // then change the 'ZeroIsPoison' parameter to 'true'
632 // because we know the zero behavior can't affect the result.
633 if (!Known.One.isZero() ||
635 if (!match(II.getArgOperand(1), m_One()))
636 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
637 }
638
639 // Add range attribute since known bits can't completely reflect what we know.
640 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
641 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
642 !II.getMetadata(LLVMContext::MD_range)) {
643 ConstantRange Range(APInt(BitWidth, DefiniteZeros),
644 APInt(BitWidth, PossibleZeros + 1));
645 II.addRangeRetAttr(Range);
646 return &II;
647 }
648
649 return nullptr;
650}
651
653 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
654 "Expected ctpop intrinsic");
655 Type *Ty = II.getType();
656 unsigned BitWidth = Ty->getScalarSizeInBits();
657 Value *Op0 = II.getArgOperand(0);
658 Value *X, *Y;
659
660 // ctpop(bitreverse(x)) -> ctpop(x)
661 // ctpop(bswap(x)) -> ctpop(x)
662 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
663 return IC.replaceOperand(II, 0, X);
664
665 // ctpop(rot(x)) -> ctpop(x)
666 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
667 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
668 X == Y)
669 return IC.replaceOperand(II, 0, X);
670
671 // ctpop(x | -x) -> bitwidth - cttz(x, false)
672 if (Op0->hasOneUse() &&
673 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
674 auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty,
675 {X, IC.Builder.getFalse()});
676 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
677 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
678 }
679
680 // ctpop(~x & (x - 1)) -> cttz(x, false)
681 if (match(Op0,
683 Function *F =
684 Intrinsic::getOrInsertDeclaration(II.getModule(), Intrinsic::cttz, Ty);
685 return CallInst::Create(F, {X, IC.Builder.getFalse()});
686 }
687
688 // Zext doesn't change the number of set bits, so narrow:
689 // ctpop (zext X) --> zext (ctpop X)
690 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
691 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
692 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
693 }
694
695 KnownBits Known(BitWidth);
696 IC.computeKnownBits(Op0, Known, &II);
697
698 // If all bits are zero except for exactly one fixed bit, then the result
699 // must be 0 or 1, and we can get that answer by shifting to LSB:
700 // ctpop (X & 32) --> (X & 32) >> 5
701 // TODO: Investigate removing this as its likely unnecessary given the below
702 // `isKnownToBeAPowerOfTwo` check.
703 if ((~Known.Zero).isPowerOf2())
704 return BinaryOperator::CreateLShr(
705 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
706
707 // More generally we can also handle non-constant power of 2 patterns such as
708 // shl/shr(Pow2, X), (X & -X), etc... by transforming:
709 // ctpop(Pow2OrZero) --> icmp ne X, 0
710 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
711 return CastInst::Create(Instruction::ZExt,
714 Ty);
715
716 // Add range attribute since known bits can't completely reflect what we know.
717 if (BitWidth != 1) {
718 ConstantRange OldRange =
719 II.getRange().value_or(ConstantRange::getFull(BitWidth));
720
721 unsigned Lower = Known.countMinPopulation();
722 unsigned Upper = Known.countMaxPopulation() + 1;
723
724 if (Lower == 0 && OldRange.contains(APInt::getZero(BitWidth)) &&
726 Lower = 1;
727
729 Range = Range.intersectWith(OldRange, ConstantRange::Unsigned);
730
731 if (Range != OldRange) {
732 II.addRangeRetAttr(Range);
733 return &II;
734 }
735 }
736
737 return nullptr;
738}
739
740/// Convert `tbl`/`tbx` intrinsics to shufflevector if the mask is constant, and
741/// at most two source operands are actually referenced.
743 bool IsExtension) {
744 // Bail out if the mask is not a constant.
745 auto *C = dyn_cast<Constant>(II.getArgOperand(II.arg_size() - 1));
746 if (!C)
747 return nullptr;
748
749 auto *RetTy = cast<FixedVectorType>(II.getType());
750 unsigned NumIndexes = RetTy->getNumElements();
751
752 // Only perform this transformation for <8 x i8> and <16 x i8> vector types.
753 if (!RetTy->getElementType()->isIntegerTy(8) ||
754 (NumIndexes != 8 && NumIndexes != 16))
755 return nullptr;
756
757 // For tbx instructions, the first argument is the "fallback" vector, which
758 // has the same length as the mask and return type.
759 unsigned int StartIndex = (unsigned)IsExtension;
760 auto *SourceTy =
761 cast<FixedVectorType>(II.getArgOperand(StartIndex)->getType());
762 // Note that the element count of each source vector does *not* need to be the
763 // same as the element count of the return type and mask! All source vectors
764 // must have the same element count as each other, though.
765 unsigned NumElementsPerSource = SourceTy->getNumElements();
766
767 // There are no tbl/tbx intrinsics for which the destination size exceeds the
768 // source size. However, our definitions of the intrinsics, at least in
769 // IntrinsicsAArch64.td, allow for arbitrary destination vector sizes, so it
770 // *could* technically happen.
771 if (NumIndexes > NumElementsPerSource)
772 return nullptr;
773
774 // The tbl/tbx intrinsics take several source operands followed by a mask
775 // operand.
776 unsigned int NumSourceOperands = II.arg_size() - 1 - (unsigned)IsExtension;
777
778 // Map input operands to shuffle indices. This also helpfully deduplicates the
779 // input arguments, in case the same value is passed as an argument multiple
780 // times.
781 SmallDenseMap<Value *, unsigned, 2> ValueToShuffleSlot;
782 Value *ShuffleOperands[2] = {PoisonValue::get(SourceTy),
783 PoisonValue::get(SourceTy)};
784
785 int Indexes[16];
786 for (unsigned I = 0; I < NumIndexes; ++I) {
787 Constant *COp = C->getAggregateElement(I);
788
789 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
790 return nullptr;
791
792 if (isa<UndefValue>(COp)) {
793 Indexes[I] = -1;
794 continue;
795 }
796
797 uint64_t Index = cast<ConstantInt>(COp)->getZExtValue();
798 // The index of the input argument that this index references (0 = first
799 // source argument, etc).
800 unsigned SourceOperandIndex = Index / NumElementsPerSource;
801 // The index of the element at that source operand.
802 unsigned SourceOperandElementIndex = Index % NumElementsPerSource;
803
804 Value *SourceOperand;
805 if (SourceOperandIndex >= NumSourceOperands) {
806 // This index is out of bounds. Map it to index into either the fallback
807 // vector (tbx) or vector of zeroes (tbl).
808 SourceOperandIndex = NumSourceOperands;
809 if (IsExtension) {
810 // For out-of-bounds indices in tbx, choose the `I`th element of the
811 // fallback.
812 SourceOperand = II.getArgOperand(0);
813 SourceOperandElementIndex = I;
814 } else {
815 // Otherwise, choose some element from the dummy vector of zeroes (we'll
816 // always choose the first).
817 SourceOperand = Constant::getNullValue(SourceTy);
818 SourceOperandElementIndex = 0;
819 }
820 } else {
821 SourceOperand = II.getArgOperand(SourceOperandIndex + StartIndex);
822 }
823
824 // The source operand may be the fallback vector, which may not have the
825 // same number of elements as the source vector. In that case, we *could*
826 // choose to extend its length with another shufflevector, but it's simpler
827 // to just bail instead.
828 if (cast<FixedVectorType>(SourceOperand->getType())->getNumElements() !=
829 NumElementsPerSource)
830 return nullptr;
831
832 // We now know the source operand referenced by this index. Make it a
833 // shufflevector operand, if it isn't already.
834 unsigned NumSlots = ValueToShuffleSlot.size();
835 // This shuffle references more than two sources, and hence cannot be
836 // represented as a shufflevector.
837 if (NumSlots == 2 && !ValueToShuffleSlot.contains(SourceOperand))
838 return nullptr;
839
840 auto [It, Inserted] =
841 ValueToShuffleSlot.try_emplace(SourceOperand, NumSlots);
842 if (Inserted)
843 ShuffleOperands[It->getSecond()] = SourceOperand;
844
845 unsigned RemappedIndex =
846 (It->getSecond() * NumElementsPerSource) + SourceOperandElementIndex;
847 Indexes[I] = RemappedIndex;
848 }
849
851 ShuffleOperands[0], ShuffleOperands[1], ArrayRef(Indexes, NumIndexes));
852 return IC.replaceInstUsesWith(II, Shuf);
853}
854
855// Returns true iff the 2 intrinsics have the same operands, limiting the
856// comparison to the first NumOperands.
857static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
858 unsigned NumOperands) {
859 assert(I.arg_size() >= NumOperands && "Not enough operands");
860 assert(E.arg_size() >= NumOperands && "Not enough operands");
861 for (unsigned i = 0; i < NumOperands; i++)
862 if (I.getArgOperand(i) != E.getArgOperand(i))
863 return false;
864 return true;
865}
866
867// Remove trivially empty start/end intrinsic ranges, i.e. a start
868// immediately followed by an end (ignoring debuginfo or other
869// start/end intrinsics in between). As this handles only the most trivial
870// cases, tracking the nesting level is not needed:
871//
872// call @llvm.foo.start(i1 0)
873// call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
874// call @llvm.foo.end(i1 0)
875// call @llvm.foo.end(i1 0) ; &I
876static bool
878 std::function<bool(const IntrinsicInst &)> IsStart) {
879 // We start from the end intrinsic and scan backwards, so that InstCombine
880 // has already processed (and potentially removed) all the instructions
881 // before the end intrinsic.
882 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
883 for (; BI != BE; ++BI) {
884 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
885 if (I->isDebugOrPseudoInst() ||
886 I->getIntrinsicID() == EndI.getIntrinsicID())
887 continue;
888 if (IsStart(*I)) {
889 if (haveSameOperands(EndI, *I, EndI.arg_size())) {
891 IC.eraseInstFromFunction(EndI);
892 return true;
893 }
894 // Skip start intrinsics that don't pair with this end intrinsic.
895 continue;
896 }
897 }
898 break;
899 }
900
901 return false;
902}
903
905 removeTriviallyEmptyRange(I, *this, [&I](const IntrinsicInst &II) {
906 // Bail out on the case where the source va_list of a va_copy is destroyed
907 // immediately by a follow-up va_end.
908 return II.getIntrinsicID() == Intrinsic::vastart ||
909 (II.getIntrinsicID() == Intrinsic::vacopy &&
910 I.getArgOperand(0) != II.getArgOperand(1));
911 });
912 return nullptr;
913}
914
916 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
917 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
918 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
919 Call.setArgOperand(0, Arg1);
920 Call.setArgOperand(1, Arg0);
921 return &Call;
922 }
923 return nullptr;
924}
925
926/// Creates a result tuple for an overflow intrinsic \p II with a given
927/// \p Result and a constant \p Overflow value.
929 Constant *Overflow) {
930 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
931 StructType *ST = cast<StructType>(II->getType());
932 Constant *Struct = ConstantStruct::get(ST, V);
933 return InsertValueInst::Create(Struct, Result, 0);
934}
935
937InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
938 WithOverflowInst *WO = cast<WithOverflowInst>(II);
939 Value *OperationResult = nullptr;
940 Constant *OverflowResult = nullptr;
941 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
942 WO->getRHS(), *WO, OperationResult, OverflowResult))
943 return createOverflowTuple(WO, OperationResult, OverflowResult);
944
945 // See whether we can optimize the overflow check with assumption information.
946 for (User *U : WO->users()) {
947 if (!match(U, m_ExtractValue<1>(m_Value())))
948 continue;
949
950 for (auto &AssumeVH : AC.assumptionsFor(U)) {
951 if (!AssumeVH)
952 continue;
953 CallInst *I = cast<CallInst>(AssumeVH);
954 if (!match(I->getArgOperand(0), m_Not(m_Specific(U))))
955 continue;
956 if (!isValidAssumeForContext(I, II, /*DT=*/nullptr,
957 /*AllowEphemerals=*/true))
958 continue;
959 Value *Result =
960 Builder.CreateBinOp(WO->getBinaryOp(), WO->getLHS(), WO->getRHS());
961 Result->takeName(WO);
962 if (auto *Inst = dyn_cast<Instruction>(Result)) {
963 if (WO->isSigned())
964 Inst->setHasNoSignedWrap();
965 else
966 Inst->setHasNoUnsignedWrap();
967 }
968 return createOverflowTuple(WO, Result,
969 ConstantInt::getFalse(U->getType()));
970 }
971 }
972
973 return nullptr;
974}
975
976static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
977 Ty = Ty->getScalarType();
978 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
979}
980
981static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
982 Ty = Ty->getScalarType();
983 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
984}
985
986/// \returns the compare predicate type if the test performed by
987/// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
988/// floating-point environment assumed for \p F for type \p Ty
990 const Function &F, Type *Ty) {
991 switch (static_cast<unsigned>(Mask)) {
992 case fcZero:
993 if (inputDenormalIsIEEE(F, Ty))
994 return FCmpInst::FCMP_OEQ;
995 break;
996 case fcZero | fcSubnormal:
997 if (inputDenormalIsDAZ(F, Ty))
998 return FCmpInst::FCMP_OEQ;
999 break;
1000 case fcPositive | fcNegZero:
1001 if (inputDenormalIsIEEE(F, Ty))
1002 return FCmpInst::FCMP_OGE;
1003 break;
1005 if (inputDenormalIsDAZ(F, Ty))
1006 return FCmpInst::FCMP_OGE;
1007 break;
1009 if (inputDenormalIsIEEE(F, Ty))
1010 return FCmpInst::FCMP_OGT;
1011 break;
1012 case fcNegative | fcPosZero:
1013 if (inputDenormalIsIEEE(F, Ty))
1014 return FCmpInst::FCMP_OLE;
1015 break;
1017 if (inputDenormalIsDAZ(F, Ty))
1018 return FCmpInst::FCMP_OLE;
1019 break;
1021 if (inputDenormalIsIEEE(F, Ty))
1022 return FCmpInst::FCMP_OLT;
1023 break;
1024 case fcPosNormal | fcPosInf:
1025 if (inputDenormalIsDAZ(F, Ty))
1026 return FCmpInst::FCMP_OGT;
1027 break;
1028 case fcNegNormal | fcNegInf:
1029 if (inputDenormalIsDAZ(F, Ty))
1030 return FCmpInst::FCMP_OLT;
1031 break;
1032 case ~fcZero & ~fcNan:
1033 if (inputDenormalIsIEEE(F, Ty))
1034 return FCmpInst::FCMP_ONE;
1035 break;
1036 case ~(fcZero | fcSubnormal) & ~fcNan:
1037 if (inputDenormalIsDAZ(F, Ty))
1038 return FCmpInst::FCMP_ONE;
1039 break;
1040 default:
1041 break;
1042 }
1043
1045}
1046
1047Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
1048 Value *Src0 = II.getArgOperand(0);
1049 Value *Src1 = II.getArgOperand(1);
1050 const ConstantInt *CMask = cast<ConstantInt>(Src1);
1051 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
1052 const bool IsUnordered = (Mask & fcNan) == fcNan;
1053 const bool IsOrdered = (Mask & fcNan) == fcNone;
1054 const FPClassTest OrderedMask = Mask & ~fcNan;
1055 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
1056
1057 const bool IsStrict =
1058 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
1059
1060 Value *FNegSrc;
1061 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
1062 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
1063
1064 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
1065 return replaceOperand(II, 0, FNegSrc);
1066 }
1067
1068 Value *FAbsSrc;
1069 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
1070 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
1071 return replaceOperand(II, 0, FAbsSrc);
1072 }
1073
1074 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
1075 (IsOrdered || IsUnordered) && !IsStrict) {
1076 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
1077 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
1078 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
1079 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
1081 FCmpInst::Predicate Pred =
1082 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
1083 if (OrderedInvertedMask == fcInf)
1084 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
1085
1086 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
1087 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
1088 CmpInf->takeName(&II);
1089 return replaceInstUsesWith(II, CmpInf);
1090 }
1091
1092 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
1093 (IsOrdered || IsUnordered) && !IsStrict) {
1094 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
1095 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
1096 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
1097 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
1098 Constant *Inf =
1099 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
1100 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
1101 : Builder.CreateFCmpOEQ(Src0, Inf);
1102
1103 EqInf->takeName(&II);
1104 return replaceInstUsesWith(II, EqInf);
1105 }
1106
1107 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
1108 (IsOrdered || IsUnordered) && !IsStrict) {
1109 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
1110 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
1111 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
1112 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
1114 OrderedInvertedMask == fcNegInf);
1115 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
1116 : Builder.CreateFCmpONE(Src0, Inf);
1117 NeInf->takeName(&II);
1118 return replaceInstUsesWith(II, NeInf);
1119 }
1120
1121 if (Mask == fcNan && !IsStrict) {
1122 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
1123 // exceptions.
1124 Value *IsNan =
1125 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
1126 IsNan->takeName(&II);
1127 return replaceInstUsesWith(II, IsNan);
1128 }
1129
1130 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
1131 // Equivalent of !isnan. Replace with standard fcmp.
1132 Value *FCmp =
1133 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
1134 FCmp->takeName(&II);
1135 return replaceInstUsesWith(II, FCmp);
1136 }
1137
1139
1140 // Try to replace with an fcmp with 0
1141 //
1142 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
1143 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
1144 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
1145 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
1146 //
1147 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
1148 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
1149 //
1150 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1151 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1152 //
1153 if (!IsStrict && (IsOrdered || IsUnordered) &&
1154 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
1155 Src0->getType())) !=
1158 // Equivalent of == 0.
1159 Value *FCmp = Builder.CreateFCmp(
1160 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
1161 Src0, Zero);
1162
1163 FCmp->takeName(&II);
1164 return replaceInstUsesWith(II, FCmp);
1165 }
1166
1167 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1168
1169 // Clear test bits we know must be false from the source value.
1170 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1171 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1172 if ((Mask & Known.KnownFPClasses) != Mask) {
1173 II.setArgOperand(
1174 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1175 return &II;
1176 }
1177
1178 // If none of the tests which can return false are possible, fold to true.
1179 // fp_class (nnan x), ~(qnan|snan) -> true
1180 // fp_class (ninf x), ~(ninf|pinf) -> true
1181 if (Mask == Known.KnownFPClasses)
1182 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1183
1184 return nullptr;
1185}
1186
1187static std::optional<bool> getKnownSign(Value *Op, const SimplifyQuery &SQ) {
1188 KnownBits Known = computeKnownBits(Op, SQ);
1189 if (Known.isNonNegative())
1190 return false;
1191 if (Known.isNegative())
1192 return true;
1193
1194 Value *X, *Y;
1195 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1197
1198 return std::nullopt;
1199}
1200
1201static std::optional<bool> getKnownSignOrZero(Value *Op,
1202 const SimplifyQuery &SQ) {
1203 if (std::optional<bool> Sign = getKnownSign(Op, SQ))
1204 return Sign;
1205
1206 Value *X, *Y;
1207 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1209
1210 return std::nullopt;
1211}
1212
1213/// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1214static bool signBitMustBeTheSame(Value *Op0, Value *Op1,
1215 const SimplifyQuery &SQ) {
1216 std::optional<bool> Known1 = getKnownSign(Op1, SQ);
1217 if (!Known1)
1218 return false;
1219 std::optional<bool> Known0 = getKnownSign(Op0, SQ);
1220 if (!Known0)
1221 return false;
1222 return *Known0 == *Known1;
1223}
1224
1225/// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1226/// can trigger other combines.
1228 InstCombiner::BuilderTy &Builder) {
1229 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1230 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1231 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1232 "Expected a min or max intrinsic");
1233
1234 // TODO: Match vectors with undef elements, but undef may not propagate.
1235 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1236 Value *X;
1237 const APInt *C0, *C1;
1238 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1239 !match(Op1, m_APInt(C1)))
1240 return nullptr;
1241
1242 // Check for necessary no-wrap and overflow constraints.
1243 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1244 auto *Add = cast<BinaryOperator>(Op0);
1245 if ((IsSigned && !Add->hasNoSignedWrap()) ||
1246 (!IsSigned && !Add->hasNoUnsignedWrap()))
1247 return nullptr;
1248
1249 // If the constant difference overflows, then instsimplify should reduce the
1250 // min/max to the add or C1.
1251 bool Overflow;
1252 APInt CDiff =
1253 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1254 assert(!Overflow && "Expected simplify of min/max");
1255
1256 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1257 // Note: the "mismatched" no-overflow setting does not propagate.
1258 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1259 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1260 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1261 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1262}
1263/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1264Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1265 Type *Ty = MinMax1.getType();
1266
1267 // We are looking for a tree of:
1268 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1269 // Where the min and max could be reversed
1270 Instruction *MinMax2;
1271 BinaryOperator *AddSub;
1272 const APInt *MinValue, *MaxValue;
1273 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1274 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1275 return nullptr;
1276 } else if (match(&MinMax1,
1277 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1278 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1279 return nullptr;
1280 } else
1281 return nullptr;
1282
1283 // Check that the constants clamp a saturate, and that the new type would be
1284 // sensible to convert to.
1285 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1286 return nullptr;
1287 // In what bitwidth can this be treated as saturating arithmetics?
1288 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1289 // FIXME: This isn't quite right for vectors, but using the scalar type is a
1290 // good first approximation for what should be done there.
1291 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1292 return nullptr;
1293
1294 // Also make sure that the inner min/max and the add/sub have one use.
1295 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1296 return nullptr;
1297
1298 // Create the new type (which can be a vector type)
1299 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1300
1301 Intrinsic::ID IntrinsicID;
1302 if (AddSub->getOpcode() == Instruction::Add)
1303 IntrinsicID = Intrinsic::sadd_sat;
1304 else if (AddSub->getOpcode() == Instruction::Sub)
1305 IntrinsicID = Intrinsic::ssub_sat;
1306 else
1307 return nullptr;
1308
1309 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1310 // is usually achieved via a sext from a smaller type.
1311 if (ComputeMaxSignificantBits(AddSub->getOperand(0), AddSub) > NewBitWidth ||
1312 ComputeMaxSignificantBits(AddSub->getOperand(1), AddSub) > NewBitWidth)
1313 return nullptr;
1314
1315 // Finally create and return the sat intrinsic, truncated to the new type
1316 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1317 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1318 Value *Sat = Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT, BT});
1319 return CastInst::Create(Instruction::SExt, Sat, Ty);
1320}
1321
1322
1323/// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1324/// can only be one of two possible constant values -- turn that into a select
1325/// of constants.
1327 InstCombiner::BuilderTy &Builder) {
1328 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1329 Value *X;
1330 const APInt *C0, *C1;
1331 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1332 return nullptr;
1333
1335 switch (II->getIntrinsicID()) {
1336 case Intrinsic::smax:
1337 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1338 Pred = ICmpInst::ICMP_SGT;
1339 break;
1340 case Intrinsic::smin:
1341 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1342 Pred = ICmpInst::ICMP_SLT;
1343 break;
1344 case Intrinsic::umax:
1345 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1346 Pred = ICmpInst::ICMP_UGT;
1347 break;
1348 case Intrinsic::umin:
1349 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1350 Pred = ICmpInst::ICMP_ULT;
1351 break;
1352 default:
1353 llvm_unreachable("Expected min/max intrinsic");
1354 }
1355 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1356 return nullptr;
1357
1358 // max (min X, 42), 41 --> X > 41 ? 42 : 41
1359 // min (max X, 42), 43 --> X < 43 ? 42 : 43
1360 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1361 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1362}
1363
1364/// If this min/max has a constant operand and an operand that is a matching
1365/// min/max with a constant operand, constant-fold the 2 constant operands.
1367 IRBuilderBase &Builder,
1368 const SimplifyQuery &SQ) {
1369 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1370 auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0));
1371 if (!LHS)
1372 return nullptr;
1373
1374 Constant *C0, *C1;
1375 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1376 !match(II->getArgOperand(1), m_ImmConstant(C1)))
1377 return nullptr;
1378
1379 // max (max X, C0), C1 --> max X, (max C0, C1)
1380 // min (min X, C0), C1 --> min X, (min C0, C1)
1381 // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1)
1382 // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1)
1383 Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID();
1384 if (InnerMinMaxID != MinMaxID &&
1385 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1386 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1387 isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ)))
1388 return nullptr;
1389
1391 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1392 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1393 return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(),
1394 {LHS->getArgOperand(0), NewC});
1395}
1396
1397/// If this min/max has a matching min/max operand with a constant, try to push
1398/// the constant operand into this instruction. This can enable more folds.
1399static Instruction *
1401 InstCombiner::BuilderTy &Builder) {
1402 // Match and capture a min/max operand candidate.
1403 Value *X, *Y;
1404 Constant *C;
1405 Instruction *Inner;
1407 m_Instruction(Inner),
1409 m_Value(Y))))
1410 return nullptr;
1411
1412 // The inner op must match. Check for constants to avoid infinite loops.
1413 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1414 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1415 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1417 return nullptr;
1418
1419 // max (max X, C), Y --> max (max X, Y), C
1421 MinMaxID, II->getType());
1422 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1423 NewInner->takeName(Inner);
1424 return CallInst::Create(MinMax, {NewInner, C});
1425}
1426
1427/// Reduce a sequence of min/max intrinsics with a common operand.
1429 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1430 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1431 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1432 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1433 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1434 RHS->getIntrinsicID() != MinMaxID ||
1435 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1436 return nullptr;
1437
1438 Value *A = LHS->getArgOperand(0);
1439 Value *B = LHS->getArgOperand(1);
1440 Value *C = RHS->getArgOperand(0);
1441 Value *D = RHS->getArgOperand(1);
1442
1443 // Look for a common operand.
1444 Value *MinMaxOp = nullptr;
1445 Value *ThirdOp = nullptr;
1446 if (LHS->hasOneUse()) {
1447 // If the LHS is only used in this chain and the RHS is used outside of it,
1448 // reuse the RHS min/max because that will eliminate the LHS.
1449 if (D == A || C == A) {
1450 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1451 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1452 MinMaxOp = RHS;
1453 ThirdOp = B;
1454 } else if (D == B || C == B) {
1455 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1456 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1457 MinMaxOp = RHS;
1458 ThirdOp = A;
1459 }
1460 } else {
1461 assert(RHS->hasOneUse() && "Expected one-use operand");
1462 // Reuse the LHS. This will eliminate the RHS.
1463 if (D == A || D == B) {
1464 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1465 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1466 MinMaxOp = LHS;
1467 ThirdOp = C;
1468 } else if (C == A || C == B) {
1469 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1470 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1471 MinMaxOp = LHS;
1472 ThirdOp = D;
1473 }
1474 }
1475
1476 if (!MinMaxOp || !ThirdOp)
1477 return nullptr;
1478
1479 Module *Mod = II->getModule();
1480 Function *MinMax =
1481 Intrinsic::getOrInsertDeclaration(Mod, MinMaxID, II->getType());
1482 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1483}
1484
1485/// If all arguments of the intrinsic are unary shuffles with the same mask,
1486/// try to shuffle after the intrinsic.
1489 if (!II->getType()->isVectorTy() ||
1490 !isTriviallyVectorizable(II->getIntrinsicID()) ||
1491 !II->getCalledFunction()->isSpeculatable())
1492 return nullptr;
1493
1494 Value *X;
1495 Constant *C;
1496 ArrayRef<int> Mask;
1497 auto *NonConstArg = find_if_not(II->args(), [&II](Use &Arg) {
1498 return isa<Constant>(Arg.get()) ||
1499 isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1500 Arg.getOperandNo(), nullptr);
1501 });
1502 if (!NonConstArg ||
1503 !match(NonConstArg, m_Shuffle(m_Value(X), m_Poison(), m_Mask(Mask))))
1504 return nullptr;
1505
1506 // At least 1 operand must be a shuffle with 1 use because we are creating 2
1507 // instructions.
1508 if (none_of(II->args(), match_fn(m_OneUse(m_Shuffle(m_Value(), m_Value())))))
1509 return nullptr;
1510
1511 // See if all arguments are shuffled with the same mask.
1513 Type *SrcTy = X->getType();
1514 for (Use &Arg : II->args()) {
1515 if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1516 Arg.getOperandNo(), nullptr))
1517 NewArgs.push_back(Arg);
1518 else if (match(&Arg,
1519 m_Shuffle(m_Value(X), m_Poison(), m_SpecificMask(Mask))) &&
1520 X->getType() == SrcTy)
1521 NewArgs.push_back(X);
1522 else if (match(&Arg, m_ImmConstant(C))) {
1523 // If it's a constant, try find the constant that would be shuffled to C.
1524 if (Constant *ShuffledC =
1525 unshuffleConstant(Mask, C, cast<VectorType>(SrcTy)))
1526 NewArgs.push_back(ShuffledC);
1527 else
1528 return nullptr;
1529 } else
1530 return nullptr;
1531 }
1532
1533 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1534 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1535 // Result type might be a different vector width.
1536 // TODO: Check that the result type isn't widened?
1537 VectorType *ResTy =
1538 VectorType::get(II->getType()->getScalarType(), cast<VectorType>(SrcTy));
1539 Value *NewIntrinsic =
1540 Builder.CreateIntrinsic(ResTy, II->getIntrinsicID(), NewArgs, FPI);
1541 return new ShuffleVectorInst(NewIntrinsic, Mask);
1542}
1543
1544/// If all arguments of the intrinsic are reverses, try to pull the reverse
1545/// after the intrinsic.
1547 if (!isTriviallyVectorizable(II->getIntrinsicID()))
1548 return nullptr;
1549
1550 // At least 1 operand must be a reverse with 1 use because we are creating 2
1551 // instructions.
1552 if (none_of(II->args(), [](Value *V) {
1553 return match(V, m_OneUse(m_VecReverse(m_Value())));
1554 }))
1555 return nullptr;
1556
1557 Value *X;
1558 Constant *C;
1559 SmallVector<Value *> NewArgs;
1560 for (Use &Arg : II->args()) {
1561 if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1562 Arg.getOperandNo(), nullptr))
1563 NewArgs.push_back(Arg);
1564 else if (match(&Arg, m_VecReverse(m_Value(X))))
1565 NewArgs.push_back(X);
1566 else if (isSplatValue(Arg))
1567 NewArgs.push_back(Arg);
1568 else if (match(&Arg, m_ImmConstant(C)))
1569 NewArgs.push_back(Builder.CreateVectorReverse(C));
1570 else
1571 return nullptr;
1572 }
1573
1574 // intrinsic (reverse X), (reverse Y), ... --> reverse (intrinsic X, Y, ...)
1575 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1576 Instruction *NewIntrinsic = Builder.CreateIntrinsic(
1577 II->getType(), II->getIntrinsicID(), NewArgs, FPI);
1578 return Builder.CreateVectorReverse(NewIntrinsic);
1579}
1580
1581/// Fold the following cases and accepts bswap and bitreverse intrinsics:
1582/// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1583/// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1584template <Intrinsic::ID IntrID>
1586 InstCombiner::BuilderTy &Builder) {
1587 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1588 "This helper only supports BSWAP and BITREVERSE intrinsics");
1589
1590 Value *X, *Y;
1591 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1592 // don't match ConstantExpr that aren't meaningful for this transform.
1595 Value *OldReorderX, *OldReorderY;
1597
1598 // If both X and Y are bswap/bitreverse, the transform reduces the number
1599 // of instructions even if there's multiuse.
1600 // If only one operand is bswap/bitreverse, we need to ensure the operand
1601 // have only one use.
1602 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1603 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1604 return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1605 }
1606
1607 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1608 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1609 return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1610 }
1611
1612 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1613 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1614 return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1615 }
1616 }
1617 return nullptr;
1618}
1619
1620/// Helper to match idempotent binary intrinsics, namely, intrinsics where
1621/// `f(f(x, y), y) == f(x, y)` holds.
1623 switch (IID) {
1624 case Intrinsic::smax:
1625 case Intrinsic::smin:
1626 case Intrinsic::umax:
1627 case Intrinsic::umin:
1628 case Intrinsic::maximum:
1629 case Intrinsic::minimum:
1630 case Intrinsic::maximumnum:
1631 case Intrinsic::minimumnum:
1632 case Intrinsic::maxnum:
1633 case Intrinsic::minnum:
1634 return true;
1635 default:
1636 return false;
1637 }
1638}
1639
1640/// Attempt to simplify value-accumulating recurrences of kind:
1641/// %umax.acc = phi i8 [ %umax, %backedge ], [ %a, %entry ]
1642/// %umax = call i8 @llvm.umax.i8(i8 %umax.acc, i8 %b)
1643/// And let the idempotent binary intrinsic be hoisted, when the operands are
1644/// known to be loop-invariant.
1646 IntrinsicInst *II) {
1647 PHINode *PN;
1648 Value *Init, *OtherOp;
1649
1650 // A binary intrinsic recurrence with loop-invariant operands is equivalent to
1651 // `call @llvm.binary.intrinsic(Init, OtherOp)`.
1652 auto IID = II->getIntrinsicID();
1653 if (!isIdempotentBinaryIntrinsic(IID) ||
1655 !IC.getDominatorTree().dominates(OtherOp, PN))
1656 return nullptr;
1657
1658 auto *InvariantBinaryInst =
1659 IC.Builder.CreateBinaryIntrinsic(IID, Init, OtherOp);
1660 if (isa<FPMathOperator>(InvariantBinaryInst))
1661 cast<Instruction>(InvariantBinaryInst)->copyFastMathFlags(II);
1662 return InvariantBinaryInst;
1663}
1664
1665static Value *simplifyReductionOperand(Value *Arg, bool CanReorderLanes) {
1666 if (!CanReorderLanes)
1667 return nullptr;
1668
1669 Value *V;
1670 if (match(Arg, m_VecReverse(m_Value(V))))
1671 return V;
1672
1673 ArrayRef<int> Mask;
1674 if (!isa<FixedVectorType>(Arg->getType()) ||
1675 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
1676 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
1677 return nullptr;
1678
1679 int Sz = Mask.size();
1680 SmallBitVector UsedIndices(Sz);
1681 for (int Idx : Mask) {
1682 if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
1683 return nullptr;
1684 UsedIndices.set(Idx);
1685 }
1686
1687 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
1688 // other changes.
1689 return UsedIndices.all() ? V : nullptr;
1690}
1691
1692/// Fold an unsigned minimum of trailing or leading zero bits counts:
1693/// umin(cttz(CtOp1, ZeroUndef), ConstOp) --> cttz(CtOp1 | (1 << ConstOp))
1694/// umin(ctlz(CtOp1, ZeroUndef), ConstOp) --> ctlz(CtOp1 | (SignedMin
1695/// >> ConstOp))
1696/// umin(cttz(CtOp1), cttz(CtOp2)) --> cttz(CtOp1 | CtOp2)
1697/// umin(ctlz(CtOp1), ctlz(CtOp2)) --> ctlz(CtOp1 | CtOp2)
1698template <Intrinsic::ID IntrID>
1699static Value *
1701 const DataLayout &DL,
1702 InstCombiner::BuilderTy &Builder) {
1703 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1704 "This helper only supports cttz and ctlz intrinsics");
1705
1706 Value *CtOp1, *CtOp2;
1707 Value *ZeroUndef1, *ZeroUndef2;
1708 if (!match(I0, m_OneUse(
1709 m_Intrinsic<IntrID>(m_Value(CtOp1), m_Value(ZeroUndef1)))))
1710 return nullptr;
1711
1712 if (match(I1,
1713 m_OneUse(m_Intrinsic<IntrID>(m_Value(CtOp2), m_Value(ZeroUndef2)))))
1714 return Builder.CreateBinaryIntrinsic(
1715 IntrID, Builder.CreateOr(CtOp1, CtOp2),
1716 Builder.CreateOr(ZeroUndef1, ZeroUndef2));
1717
1718 unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1719 auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); };
1720 if (!match(I1, m_CheckedInt(LessBitWidth)))
1721 // We have a constant >= BitWidth (which can be handled by CVP)
1722 // or a non-splat vector with elements < and >= BitWidth
1723 return nullptr;
1724
1725 Type *Ty = I1->getType();
1727 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1728 IntrID == Intrinsic::cttz
1729 ? ConstantInt::get(Ty, 1)
1730 : ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)),
1731 cast<Constant>(I1), DL);
1732 return Builder.CreateBinaryIntrinsic(
1733 IntrID, Builder.CreateOr(CtOp1, NewConst),
1734 ConstantInt::getTrue(ZeroUndef1->getType()));
1735}
1736
1737/// Return whether "X LOp (Y ROp Z)" is always equal to
1738/// "(X LOp Y) ROp (X LOp Z)".
1740 bool HasNSW, Intrinsic::ID ROp) {
1741 switch (ROp) {
1742 case Intrinsic::umax:
1743 case Intrinsic::umin:
1744 if (HasNUW && LOp == Instruction::Add)
1745 return true;
1746 if (HasNUW && LOp == Instruction::Shl)
1747 return true;
1748 return false;
1749 case Intrinsic::smax:
1750 case Intrinsic::smin:
1751 return HasNSW && LOp == Instruction::Add;
1752 default:
1753 return false;
1754 }
1755}
1756
1757// Attempts to factorise a common term
1758// in an instruction that has the form "(A op' B) op (C op' D)
1759// where op is an intrinsic and op' is a binop
1760static Value *
1762 InstCombiner::BuilderTy &Builder) {
1763 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1764 Intrinsic::ID TopLevelOpcode = II->getIntrinsicID();
1765
1768
1769 if (!Op0 || !Op1)
1770 return nullptr;
1771
1772 if (Op0->getOpcode() != Op1->getOpcode())
1773 return nullptr;
1774
1775 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1776 return nullptr;
1777
1778 Instruction::BinaryOps InnerOpcode =
1779 static_cast<Instruction::BinaryOps>(Op0->getOpcode());
1780 bool HasNUW = Op0->hasNoUnsignedWrap() && Op1->hasNoUnsignedWrap();
1781 bool HasNSW = Op0->hasNoSignedWrap() && Op1->hasNoSignedWrap();
1782
1783 if (!leftDistributesOverRight(InnerOpcode, HasNUW, HasNSW, TopLevelOpcode))
1784 return nullptr;
1785
1786 Value *A = Op0->getOperand(0);
1787 Value *B = Op0->getOperand(1);
1788 Value *C = Op1->getOperand(0);
1789 Value *D = Op1->getOperand(1);
1790
1791 // Attempts to swap variables such that A equals C or B equals D,
1792 // if the inner operation is commutative.
1793 if (Op0->isCommutative() && A != C && B != D) {
1794 if (A == D || B == C)
1795 std::swap(C, D);
1796 else
1797 return nullptr;
1798 }
1799
1800 BinaryOperator *NewBinop;
1801 if (A == C) {
1802 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, B, D);
1803 NewBinop =
1804 cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, A, NewIntrinsic));
1805 } else if (B == D) {
1806 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, A, C);
1807 NewBinop =
1808 cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, NewIntrinsic, B));
1809 } else {
1810 return nullptr;
1811 }
1812
1813 NewBinop->setHasNoUnsignedWrap(HasNUW);
1814 NewBinop->setHasNoSignedWrap(HasNSW);
1815
1816 return NewBinop;
1817}
1818
1820 Value *Arg0 = II->getArgOperand(0);
1821 auto *ShiftConst = dyn_cast<Constant>(II->getArgOperand(1));
1822 if (!ShiftConst)
1823 return nullptr;
1824
1825 int ElemBits = Arg0->getType()->getScalarSizeInBits();
1826 bool AllPositive = true;
1827 bool AllNegative = true;
1828
1829 auto Check = [&](Constant *C) -> bool {
1830 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
1831 const APInt &V = CI->getValue();
1832 if (V.isNonNegative()) {
1833 AllNegative = false;
1834 return AllPositive && V.ult(ElemBits);
1835 }
1836 AllPositive = false;
1837 return AllNegative && V.sgt(-ElemBits);
1838 }
1839 return false;
1840 };
1841
1842 if (auto *VTy = dyn_cast<FixedVectorType>(Arg0->getType())) {
1843 for (unsigned I = 0, E = VTy->getNumElements(); I < E; ++I) {
1844 if (!Check(ShiftConst->getAggregateElement(I)))
1845 return nullptr;
1846 }
1847
1848 } else if (!Check(ShiftConst))
1849 return nullptr;
1850
1851 IRBuilderBase &B = IC.Builder;
1852 if (AllPositive)
1853 return IC.replaceInstUsesWith(*II, B.CreateShl(Arg0, ShiftConst));
1854
1855 Value *NegAmt = B.CreateNeg(ShiftConst);
1856 Intrinsic::ID IID = II->getIntrinsicID();
1857 const bool IsSigned =
1858 IID == Intrinsic::arm_neon_vshifts || IID == Intrinsic::aarch64_neon_sshl;
1859 Value *Result =
1860 IsSigned ? B.CreateAShr(Arg0, NegAmt) : B.CreateLShr(Arg0, NegAmt);
1861 return IC.replaceInstUsesWith(*II, Result);
1862}
1863
1864/// CallInst simplification. This mostly only handles folding of intrinsic
1865/// instructions. For normal calls, it allows visitCallBase to do the heavy
1866/// lifting.
1868 // Don't try to simplify calls without uses. It will not do anything useful,
1869 // but will result in the following folds being skipped.
1870 if (!CI.use_empty()) {
1871 SmallVector<Value *, 8> Args(CI.args());
1872 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1873 SQ.getWithInstruction(&CI)))
1874 return replaceInstUsesWith(CI, V);
1875 }
1876
1877 if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1878 return visitFree(CI, FreedOp);
1879
1880 // If the caller function (i.e. us, the function that contains this CallInst)
1881 // is nounwind, mark the call as nounwind, even if the callee isn't.
1882 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1883 CI.setDoesNotThrow();
1884 return &CI;
1885 }
1886
1888 if (!II)
1889 return visitCallBase(CI);
1890
1891 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1892 // instead of in visitCallBase.
1893 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1894 if (auto NumBytes = MI->getLengthInBytes()) {
1895 // memmove/cpy/set of zero bytes is a noop.
1896 if (NumBytes->isZero())
1897 return eraseInstFromFunction(CI);
1898
1899 // For atomic unordered mem intrinsics if len is not a positive or
1900 // not a multiple of element size then behavior is undefined.
1901 if (MI->isAtomic() &&
1902 (NumBytes->isNegative() ||
1903 (NumBytes->getZExtValue() % MI->getElementSizeInBytes() != 0))) {
1905 assert(MI->getType()->isVoidTy() &&
1906 "non void atomic unordered mem intrinsic");
1907 return eraseInstFromFunction(*MI);
1908 }
1909 }
1910
1911 // No other transformations apply to volatile transfers.
1912 if (MI->isVolatile())
1913 return nullptr;
1914
1916 // memmove(x,x,size) -> noop.
1917 if (MTI->getSource() == MTI->getDest())
1918 return eraseInstFromFunction(CI);
1919 }
1920
1921 auto IsPointerUndefined = [MI](Value *Ptr) {
1922 return isa<ConstantPointerNull>(Ptr) &&
1924 MI->getFunction(),
1925 cast<PointerType>(Ptr->getType())->getAddressSpace());
1926 };
1927 bool SrcIsUndefined = false;
1928 // If we can determine a pointer alignment that is bigger than currently
1929 // set, update the alignment.
1930 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1932 return I;
1933 SrcIsUndefined = IsPointerUndefined(MTI->getRawSource());
1934 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1935 if (Instruction *I = SimplifyAnyMemSet(MSI))
1936 return I;
1937 }
1938
1939 // If src/dest is null, this memory intrinsic must be a noop.
1940 if (SrcIsUndefined || IsPointerUndefined(MI->getRawDest())) {
1941 Builder.CreateAssumption(Builder.CreateIsNull(MI->getLength()));
1942 return eraseInstFromFunction(CI);
1943 }
1944
1945 // If we have a memmove and the source operation is a constant global,
1946 // then the source and dest pointers can't alias, so we can change this
1947 // into a call to memcpy.
1948 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1949 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1950 if (GVSrc->isConstant()) {
1951 Module *M = CI.getModule();
1952 Intrinsic::ID MemCpyID =
1953 MMI->isAtomic()
1954 ? Intrinsic::memcpy_element_unordered_atomic
1955 : Intrinsic::memcpy;
1956 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1957 CI.getArgOperand(1)->getType(),
1958 CI.getArgOperand(2)->getType() };
1960 Intrinsic::getOrInsertDeclaration(M, MemCpyID, Tys));
1961 return II;
1962 }
1963 }
1964 }
1965
1966 // For fixed width vector result intrinsics, use the generic demanded vector
1967 // support.
1968 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1969 auto VWidth = IIFVTy->getNumElements();
1970 APInt PoisonElts(VWidth, 0);
1971 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1972 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) {
1973 if (V != II)
1974 return replaceInstUsesWith(*II, V);
1975 return II;
1976 }
1977 }
1978
1979 if (II->isCommutative()) {
1980 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1981 replaceOperand(*II, 0, Pair->first);
1982 replaceOperand(*II, 1, Pair->second);
1983 return II;
1984 }
1985
1986 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1987 return NewCall;
1988 }
1989
1990 // Unused constrained FP intrinsic calls may have declared side effect, which
1991 // prevents it from being removed. In some cases however the side effect is
1992 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1993 // returns a replacement, the call may be removed.
1994 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1995 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1996 return eraseInstFromFunction(CI);
1997 }
1998
1999 Intrinsic::ID IID = II->getIntrinsicID();
2000 switch (IID) {
2001 case Intrinsic::objectsize: {
2002 SmallVector<Instruction *> InsertedInstructions;
2003 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
2004 &InsertedInstructions)) {
2005 for (Instruction *Inserted : InsertedInstructions)
2006 Worklist.add(Inserted);
2007 return replaceInstUsesWith(CI, V);
2008 }
2009 return nullptr;
2010 }
2011 case Intrinsic::abs: {
2012 Value *IIOperand = II->getArgOperand(0);
2013 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
2014
2015 // abs(-x) -> abs(x)
2016 Value *X;
2017 if (match(IIOperand, m_Neg(m_Value(X)))) {
2018 if (cast<Instruction>(IIOperand)->hasNoSignedWrap() || IntMinIsPoison)
2019 replaceOperand(*II, 1, Builder.getTrue());
2020 return replaceOperand(*II, 0, X);
2021 }
2022 if (match(IIOperand, m_c_Select(m_Neg(m_Value(X)), m_Deferred(X))))
2023 return replaceOperand(*II, 0, X);
2024
2025 Value *Y;
2026 // abs(a * abs(b)) -> abs(a * b)
2027 if (match(IIOperand,
2030 bool NSW =
2031 cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
2032 auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y);
2033 return replaceOperand(*II, 0, XY);
2034 }
2035
2036 if (std::optional<bool> Known =
2037 getKnownSignOrZero(IIOperand, SQ.getWithInstruction(II))) {
2038 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
2039 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
2040 if (!*Known)
2041 return replaceInstUsesWith(*II, IIOperand);
2042
2043 // abs(x) -> -x if x < 0
2044 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
2045 if (IntMinIsPoison)
2046 return BinaryOperator::CreateNSWNeg(IIOperand);
2047 return BinaryOperator::CreateNeg(IIOperand);
2048 }
2049
2050 // abs (sext X) --> zext (abs X*)
2051 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
2052 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
2053 Value *NarrowAbs =
2054 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
2055 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
2056 }
2057
2058 // Match a complicated way to check if a number is odd/even:
2059 // abs (srem X, 2) --> and X, 1
2060 const APInt *C;
2061 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
2062 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
2063
2064 break;
2065 }
2066 case Intrinsic::umin: {
2067 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2068 // umin(x, 1) == zext(x != 0)
2069 if (match(I1, m_One())) {
2070 assert(II->getType()->getScalarSizeInBits() != 1 &&
2071 "Expected simplify of umin with max constant");
2072 Value *Zero = Constant::getNullValue(I0->getType());
2073 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
2074 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
2075 }
2076 // umin(cttz(x), const) --> cttz(x | (1 << const))
2077 if (Value *FoldedCttz =
2079 I0, I1, DL, Builder))
2080 return replaceInstUsesWith(*II, FoldedCttz);
2081 // umin(ctlz(x), const) --> ctlz(x | (SignedMin >> const))
2082 if (Value *FoldedCtlz =
2084 I0, I1, DL, Builder))
2085 return replaceInstUsesWith(*II, FoldedCtlz);
2086 [[fallthrough]];
2087 }
2088 case Intrinsic::umax: {
2089 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2090 Value *X, *Y;
2091 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
2092 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
2093 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
2094 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
2095 }
2096 Constant *C;
2097 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
2098 I0->hasOneUse()) {
2099 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType(), DL)) {
2100 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
2101 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
2102 }
2103 }
2104 // If C is not 0:
2105 // umax(nuw_shl(x, C), x + 1) -> x == 0 ? 1 : nuw_shl(x, C)
2106 // If C is not 0 or 1:
2107 // umax(nuw_mul(x, C), x + 1) -> x == 0 ? 1 : nuw_mul(x, C)
2108 auto foldMaxMulShift = [&](Value *A, Value *B) -> Instruction * {
2109 const APInt *C;
2110 Value *X;
2111 if (!match(A, m_NUWShl(m_Value(X), m_APInt(C))) &&
2112 !(match(A, m_NUWMul(m_Value(X), m_APInt(C))) && !C->isOne()))
2113 return nullptr;
2114 if (C->isZero())
2115 return nullptr;
2116 if (!match(B, m_OneUse(m_Add(m_Specific(X), m_One()))))
2117 return nullptr;
2118
2119 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(X->getType(), 0));
2120 Value *NewSelect =
2121 Builder.CreateSelect(Cmp, ConstantInt::get(X->getType(), 1), A);
2122 return replaceInstUsesWith(*II, NewSelect);
2123 };
2124
2125 if (IID == Intrinsic::umax) {
2126 if (Instruction *I = foldMaxMulShift(I0, I1))
2127 return I;
2128 if (Instruction *I = foldMaxMulShift(I1, I0))
2129 return I;
2130 }
2131
2132 // If both operands of unsigned min/max are sign-extended, it is still ok
2133 // to narrow the operation.
2134 [[fallthrough]];
2135 }
2136 case Intrinsic::smax:
2137 case Intrinsic::smin: {
2138 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2139 Value *X, *Y;
2140 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
2141 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
2142 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
2143 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2144 }
2145
2146 Constant *C;
2147 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
2148 I0->hasOneUse()) {
2149 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType(), DL)) {
2150 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
2151 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2152 }
2153 }
2154
2155 // smax(smin(X, MinC), MaxC) -> smin(smax(X, MaxC), MinC) if MinC s>= MaxC
2156 // umax(umin(X, MinC), MaxC) -> umin(umax(X, MaxC), MinC) if MinC u>= MaxC
2157 const APInt *MinC, *MaxC;
2158 auto CreateCanonicalClampForm = [&](bool IsSigned) {
2159 auto MaxIID = IsSigned ? Intrinsic::smax : Intrinsic::umax;
2160 auto MinIID = IsSigned ? Intrinsic::smin : Intrinsic::umin;
2161 Value *NewMax = Builder.CreateBinaryIntrinsic(
2162 MaxIID, X, ConstantInt::get(X->getType(), *MaxC));
2163 return replaceInstUsesWith(
2164 *II, Builder.CreateBinaryIntrinsic(
2165 MinIID, NewMax, ConstantInt::get(X->getType(), *MinC)));
2166 };
2167 if (IID == Intrinsic::smax &&
2169 m_APInt(MinC)))) &&
2170 match(I1, m_APInt(MaxC)) && MinC->sgt(*MaxC))
2171 return CreateCanonicalClampForm(true);
2172 if (IID == Intrinsic::umax &&
2174 m_APInt(MinC)))) &&
2175 match(I1, m_APInt(MaxC)) && MinC->ugt(*MaxC))
2176 return CreateCanonicalClampForm(false);
2177
2178 // umin(i1 X, i1 Y) -> and i1 X, Y
2179 // smax(i1 X, i1 Y) -> and i1 X, Y
2180 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
2181 II->getType()->isIntOrIntVectorTy(1)) {
2182 return BinaryOperator::CreateAnd(I0, I1);
2183 }
2184
2185 // umax(i1 X, i1 Y) -> or i1 X, Y
2186 // smin(i1 X, i1 Y) -> or i1 X, Y
2187 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
2188 II->getType()->isIntOrIntVectorTy(1)) {
2189 return BinaryOperator::CreateOr(I0, I1);
2190 }
2191
2192 // smin(smax(X, -1), 1) -> scmp(X, 0)
2193 // smax(smin(X, 1), -1) -> scmp(X, 0)
2194 // At this point, smax(smin(X, 1), -1) is changed to smin(smax(X, -1)
2195 // And i1's have been changed to and/ors
2196 // So we only need to check for smin
2197 if (IID == Intrinsic::smin) {
2198 if (match(I0, m_OneUse(m_SMax(m_Value(X), m_AllOnes()))) &&
2199 match(I1, m_One())) {
2200 Value *Zero = ConstantInt::get(X->getType(), 0);
2201 return replaceInstUsesWith(
2202 CI,
2203 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {X, Zero}));
2204 }
2205 }
2206
2207 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2208 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
2209 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
2210 // TODO: Canonicalize neg after min/max if I1 is constant.
2211 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
2212 (I0->hasOneUse() || I1->hasOneUse())) {
2214 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
2215 return BinaryOperator::CreateNSWNeg(InvMaxMin);
2216 }
2217 }
2218
2219 // (umax X, (xor X, Pow2))
2220 // -> (or X, Pow2)
2221 // (umin X, (xor X, Pow2))
2222 // -> (and X, ~Pow2)
2223 // (smax X, (xor X, Pos_Pow2))
2224 // -> (or X, Pos_Pow2)
2225 // (smin X, (xor X, Pos_Pow2))
2226 // -> (and X, ~Pos_Pow2)
2227 // (smax X, (xor X, Neg_Pow2))
2228 // -> (and X, ~Neg_Pow2)
2229 // (smin X, (xor X, Neg_Pow2))
2230 // -> (or X, Neg_Pow2)
2231 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
2232 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
2233 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
2234 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
2235 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
2236
2237 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2238 auto KnownSign = getKnownSign(X, SQ.getWithInstruction(II));
2239 if (KnownSign == std::nullopt) {
2240 UseOr = false;
2241 UseAndN = false;
2242 } else if (*KnownSign /* true is Signed. */) {
2243 UseOr ^= true;
2244 UseAndN ^= true;
2245 Type *Ty = I0->getType();
2246 // Negative power of 2 must be IntMin. It's possible to be able to
2247 // prove negative / power of 2 without actually having known bits, so
2248 // just get the value by hand.
2250 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
2251 }
2252 }
2253 if (UseOr)
2254 return BinaryOperator::CreateOr(I0, X);
2255 else if (UseAndN)
2256 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
2257 }
2258
2259 // If we can eliminate ~A and Y is free to invert:
2260 // max ~A, Y --> ~(min A, ~Y)
2261 //
2262 // Examples:
2263 // max ~A, ~Y --> ~(min A, Y)
2264 // max ~A, C --> ~(min A, ~C)
2265 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
2266 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2267 Value *A;
2268 if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
2269 !isFreeToInvert(A, A->hasOneUse())) {
2270 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) {
2272 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
2273 return BinaryOperator::CreateNot(InvMaxMin);
2274 }
2275 }
2276 return nullptr;
2277 };
2278
2279 if (Instruction *I = moveNotAfterMinMax(I0, I1))
2280 return I;
2281 if (Instruction *I = moveNotAfterMinMax(I1, I0))
2282 return I;
2283
2285 return I;
2286
2287 // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C
2288 const APInt *RHSC;
2289 if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) &&
2290 match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC)))))
2291 return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y),
2292 ConstantInt::get(II->getType(), *RHSC));
2293
2294 // smax(X, -X) --> abs(X)
2295 // smin(X, -X) --> -abs(X)
2296 // umax(X, -X) --> -abs(X)
2297 // umin(X, -X) --> abs(X)
2298 if (isKnownNegation(I0, I1)) {
2299 // We can choose either operand as the input to abs(), but if we can
2300 // eliminate the only use of a value, that's better for subsequent
2301 // transforms/analysis.
2302 if (I0->hasOneUse() && !I1->hasOneUse())
2303 std::swap(I0, I1);
2304
2305 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
2306 // operation and potentially its negation.
2307 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
2308 Value *Abs = Builder.CreateBinaryIntrinsic(
2309 Intrinsic::abs, I0,
2310 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
2311
2312 // We don't have a "nabs" intrinsic, so negate if needed based on the
2313 // max/min operation.
2314 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
2315 Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison);
2316 return replaceInstUsesWith(CI, Abs);
2317 }
2318
2320 return Sel;
2321
2322 if (Instruction *SAdd = matchSAddSubSat(*II))
2323 return SAdd;
2324
2325 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ))
2326 return replaceInstUsesWith(*II, NewMinMax);
2327
2329 return R;
2330
2331 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
2332 return NewMinMax;
2333
2334 // Try to fold minmax with constant RHS based on range information
2335 if (match(I1, m_APIntAllowPoison(RHSC))) {
2336 ICmpInst::Predicate Pred =
2338 bool IsSigned = MinMaxIntrinsic::isSigned(IID);
2340 I0, IsSigned, SQ.getWithInstruction(II));
2341 if (!LHS_CR.isFullSet()) {
2342 if (LHS_CR.icmp(Pred, *RHSC))
2343 return replaceInstUsesWith(*II, I0);
2344 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC))
2345 return replaceInstUsesWith(*II,
2346 ConstantInt::get(II->getType(), *RHSC));
2347 }
2348 }
2349
2351 return replaceInstUsesWith(*II, V);
2352
2353 break;
2354 }
2355 case Intrinsic::scmp: {
2356 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2357 Value *LHS, *RHS;
2358 if (match(I0, m_NSWSub(m_Value(LHS), m_Value(RHS))) && match(I1, m_Zero()))
2359 return replaceInstUsesWith(
2360 CI,
2361 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {LHS, RHS}));
2362 break;
2363 }
2364 case Intrinsic::bitreverse: {
2365 Value *IIOperand = II->getArgOperand(0);
2366 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
2367 Value *X;
2368 if (match(IIOperand, m_ZExt(m_Value(X))) &&
2369 X->getType()->isIntOrIntVectorTy(1)) {
2370 Type *Ty = II->getType();
2371 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
2372 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
2374 }
2375
2376 if (Instruction *crossLogicOpFold =
2378 return crossLogicOpFold;
2379
2380 break;
2381 }
2382 case Intrinsic::bswap: {
2383 Value *IIOperand = II->getArgOperand(0);
2384
2385 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
2386 // inverse-shift-of-bswap:
2387 // bswap (shl X, Y) --> lshr (bswap X), Y
2388 // bswap (lshr X, Y) --> shl (bswap X), Y
2389 Value *X, *Y;
2390 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
2391 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
2393 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
2394 BinaryOperator::BinaryOps InverseShift =
2395 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
2396 ? Instruction::LShr
2397 : Instruction::Shl;
2398 return BinaryOperator::Create(InverseShift, NewSwap, Y);
2399 }
2400 }
2401
2402 KnownBits Known = computeKnownBits(IIOperand, II);
2403 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
2404 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
2405 unsigned BW = Known.getBitWidth();
2406
2407 // bswap(x) -> shift(x) if x has exactly one "active byte"
2408 if (BW - LZ - TZ == 8) {
2409 assert(LZ != TZ && "active byte cannot be in the middle");
2410 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
2411 return BinaryOperator::CreateNUWShl(
2412 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
2413 // -> lshr(x) if the "active byte" is in the high part of x
2414 return BinaryOperator::CreateExactLShr(
2415 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
2416 }
2417
2418 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
2419 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
2420 unsigned C = X->getType()->getScalarSizeInBits() - BW;
2421 Value *CV = ConstantInt::get(X->getType(), C);
2422 Value *V = Builder.CreateLShr(X, CV);
2423 return new TruncInst(V, IIOperand->getType());
2424 }
2425
2426 if (Instruction *crossLogicOpFold =
2428 return crossLogicOpFold;
2429 }
2430
2431 // Try to fold into bitreverse if bswap is the root of the expression tree.
2432 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false,
2433 /*MatchBitReversals*/ true))
2434 return BitOp;
2435 break;
2436 }
2437 case Intrinsic::masked_load:
2438 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
2439 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
2440 break;
2441 case Intrinsic::masked_store:
2442 return simplifyMaskedStore(*II);
2443 case Intrinsic::masked_gather:
2444 return simplifyMaskedGather(*II);
2445 case Intrinsic::masked_scatter:
2446 return simplifyMaskedScatter(*II);
2447 case Intrinsic::launder_invariant_group:
2448 case Intrinsic::strip_invariant_group:
2449 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
2450 return replaceInstUsesWith(*II, SkippedBarrier);
2451 break;
2452 case Intrinsic::powi:
2453 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2454 // 0 and 1 are handled in instsimplify
2455 // powi(x, -1) -> 1/x
2456 if (Power->isMinusOne())
2457 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
2458 II->getArgOperand(0), II);
2459 // powi(x, 2) -> x*x
2460 if (Power->equalsInt(2))
2461 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
2462 II->getArgOperand(0), II);
2463
2464 if (!Power->getValue()[0]) {
2465 Value *X;
2466 // If power is even:
2467 // powi(-x, p) -> powi(x, p)
2468 // powi(fabs(x), p) -> powi(x, p)
2469 // powi(copysign(x, y), p) -> powi(x, p)
2470 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
2471 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
2472 match(II->getArgOperand(0),
2474 return replaceOperand(*II, 0, X);
2475 }
2476 }
2477 break;
2478
2479 case Intrinsic::cttz:
2480 case Intrinsic::ctlz:
2481 if (auto *I = foldCttzCtlz(*II, *this))
2482 return I;
2483 break;
2484
2485 case Intrinsic::ctpop:
2486 if (auto *I = foldCtpop(*II, *this))
2487 return I;
2488 break;
2489
2490 case Intrinsic::fshl:
2491 case Intrinsic::fshr: {
2492 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
2493 Type *Ty = II->getType();
2494 unsigned BitWidth = Ty->getScalarSizeInBits();
2495 Constant *ShAmtC;
2496 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
2497 // Canonicalize a shift amount constant operand to modulo the bit-width.
2498 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
2499 Constant *ModuloC =
2500 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
2501 if (!ModuloC)
2502 return nullptr;
2503 if (ModuloC != ShAmtC)
2504 return replaceOperand(*II, 2, ModuloC);
2505
2507 ShAmtC, DL),
2508 m_One()) &&
2509 "Shift amount expected to be modulo bitwidth");
2510
2511 // Canonicalize funnel shift right by constant to funnel shift left. This
2512 // is not entirely arbitrary. For historical reasons, the backend may
2513 // recognize rotate left patterns but miss rotate right patterns.
2514 if (IID == Intrinsic::fshr) {
2515 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero.
2516 if (!isKnownNonZero(ShAmtC, SQ.getWithInstruction(II)))
2517 return nullptr;
2518
2519 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
2520 Module *Mod = II->getModule();
2521 Function *Fshl =
2522 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::fshl, Ty);
2523 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
2524 }
2525 assert(IID == Intrinsic::fshl &&
2526 "All funnel shifts by simple constants should go left");
2527
2528 // fshl(X, 0, C) --> shl X, C
2529 // fshl(X, undef, C) --> shl X, C
2530 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
2531 return BinaryOperator::CreateShl(Op0, ShAmtC);
2532
2533 // fshl(0, X, C) --> lshr X, (BW-C)
2534 // fshl(undef, X, C) --> lshr X, (BW-C)
2535 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
2536 return BinaryOperator::CreateLShr(Op1,
2537 ConstantExpr::getSub(WidthC, ShAmtC));
2538
2539 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2540 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
2541 Module *Mod = II->getModule();
2542 Function *Bswap =
2543 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::bswap, Ty);
2544 return CallInst::Create(Bswap, { Op0 });
2545 }
2546 if (Instruction *BitOp =
2547 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
2548 /*MatchBitReversals*/ true))
2549 return BitOp;
2550
2551 // R = fshl(X, X, C2)
2552 // fshl(R, R, C1) --> fshl(X, X, (C1 + C2) % bitsize)
2553 Value *InnerOp;
2554 const APInt *ShAmtInnerC, *ShAmtOuterC;
2555 if (match(Op0, m_FShl(m_Value(InnerOp), m_Deferred(InnerOp),
2556 m_APInt(ShAmtInnerC))) &&
2557 match(ShAmtC, m_APInt(ShAmtOuterC)) && Op0 == Op1) {
2558 APInt Sum = *ShAmtOuterC + *ShAmtInnerC;
2559 APInt Modulo = Sum.urem(APInt(Sum.getBitWidth(), BitWidth));
2560 if (Modulo.isZero())
2561 return replaceInstUsesWith(*II, InnerOp);
2562 Constant *ModuloC = ConstantInt::get(Ty, Modulo);
2564 {InnerOp, InnerOp, ModuloC});
2565 }
2566 }
2567
2568 // fshl(X, X, Neg(Y)) --> fshr(X, X, Y)
2569 // fshr(X, X, Neg(Y)) --> fshl(X, X, Y)
2570 // if BitWidth is a power-of-2
2571 Value *Y;
2572 if (Op0 == Op1 && isPowerOf2_32(BitWidth) &&
2573 match(II->getArgOperand(2), m_Neg(m_Value(Y)))) {
2574 Module *Mod = II->getModule();
2576 Mod, IID == Intrinsic::fshl ? Intrinsic::fshr : Intrinsic::fshl, Ty);
2577 return CallInst::Create(OppositeShift, {Op0, Op1, Y});
2578 }
2579
2580 // fshl(X, 0, Y) --> shl(X, and(Y, BitWidth - 1)) if bitwidth is a
2581 // power-of-2
2582 if (IID == Intrinsic::fshl && isPowerOf2_32(BitWidth) &&
2583 match(Op1, m_ZeroInt())) {
2584 Value *Op2 = II->getArgOperand(2);
2585 Value *And = Builder.CreateAnd(Op2, ConstantInt::get(Ty, BitWidth - 1));
2586 return BinaryOperator::CreateShl(Op0, And);
2587 }
2588
2589 // Left or right might be masked.
2591 return &CI;
2592
2593 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2594 // so only the low bits of the shift amount are demanded if the bitwidth is
2595 // a power-of-2.
2596 if (!isPowerOf2_32(BitWidth))
2597 break;
2599 KnownBits Op2Known(BitWidth);
2600 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2601 return &CI;
2602 break;
2603 }
2604 case Intrinsic::ptrmask: {
2605 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2606 KnownBits Known(BitWidth);
2608 return II;
2609
2610 Value *InnerPtr, *InnerMask;
2611 bool Changed = false;
2612 // Combine:
2613 // (ptrmask (ptrmask p, A), B)
2614 // -> (ptrmask p, (and A, B))
2615 if (match(II->getArgOperand(0),
2617 m_Value(InnerMask))))) {
2618 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2619 "Mask types must match");
2620 // TODO: If InnerMask == Op1, we could copy attributes from inner
2621 // callsite -> outer callsite.
2622 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2623 replaceOperand(CI, 0, InnerPtr);
2624 replaceOperand(CI, 1, NewMask);
2625 Changed = true;
2626 }
2627
2628 // See if we can deduce non-null.
2629 if (!CI.hasRetAttr(Attribute::NonNull) &&
2630 (Known.isNonZero() ||
2631 isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) {
2632 CI.addRetAttr(Attribute::NonNull);
2633 Changed = true;
2634 }
2635
2636 unsigned NewAlignmentLog =
2638 std::min(BitWidth - 1, Known.countMinTrailingZeros()));
2639 // Known bits will capture if we had alignment information associated with
2640 // the pointer argument.
2641 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) {
2643 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog)));
2644 Changed = true;
2645 }
2646 if (Changed)
2647 return &CI;
2648 break;
2649 }
2650 case Intrinsic::uadd_with_overflow:
2651 case Intrinsic::sadd_with_overflow: {
2652 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2653 return I;
2654
2655 // Given 2 constant operands whose sum does not overflow:
2656 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2657 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2658 Value *X;
2659 const APInt *C0, *C1;
2660 Value *Arg0 = II->getArgOperand(0);
2661 Value *Arg1 = II->getArgOperand(1);
2662 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2663 bool HasNWAdd = IsSigned
2664 ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0)))
2665 : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0)));
2666 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2667 bool Overflow;
2668 APInt NewC =
2669 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2670 if (!Overflow)
2671 return replaceInstUsesWith(
2672 *II, Builder.CreateBinaryIntrinsic(
2673 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2674 }
2675 break;
2676 }
2677
2678 case Intrinsic::umul_with_overflow:
2679 case Intrinsic::smul_with_overflow:
2680 case Intrinsic::usub_with_overflow:
2681 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2682 return I;
2683 break;
2684
2685 case Intrinsic::ssub_with_overflow: {
2686 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2687 return I;
2688
2689 Constant *C;
2690 Value *Arg0 = II->getArgOperand(0);
2691 Value *Arg1 = II->getArgOperand(1);
2692 // Given a constant C that is not the minimum signed value
2693 // for an integer of a given bit width:
2694 //
2695 // ssubo X, C -> saddo X, -C
2696 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2697 Value *NegVal = ConstantExpr::getNeg(C);
2698 // Build a saddo call that is equivalent to the discovered
2699 // ssubo call.
2700 return replaceInstUsesWith(
2701 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2702 Arg0, NegVal));
2703 }
2704
2705 break;
2706 }
2707
2708 case Intrinsic::uadd_sat:
2709 case Intrinsic::sadd_sat:
2710 case Intrinsic::usub_sat:
2711 case Intrinsic::ssub_sat: {
2713 Type *Ty = SI->getType();
2714 Value *Arg0 = SI->getLHS();
2715 Value *Arg1 = SI->getRHS();
2716
2717 // Make use of known overflow information.
2718 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2719 Arg0, Arg1, SI);
2720 switch (OR) {
2722 break;
2724 if (SI->isSigned())
2725 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2726 else
2727 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2729 unsigned BitWidth = Ty->getScalarSizeInBits();
2730 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2731 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2732 }
2734 unsigned BitWidth = Ty->getScalarSizeInBits();
2735 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2736 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2737 }
2738 }
2739
2740 // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A)
2741 // which after that:
2742 // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C
2743 // usub_sat((sub nuw C, A), C1) -> 0 otherwise
2744 Constant *C, *C1;
2745 Value *A;
2746 if (IID == Intrinsic::usub_sat &&
2747 match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) &&
2748 match(Arg1, m_ImmConstant(C1))) {
2749 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2750 auto *NewSub =
2751 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2752 return replaceInstUsesWith(*SI, NewSub);
2753 }
2754
2755 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2756 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2757 C->isNotMinSignedValue()) {
2758 Value *NegVal = ConstantExpr::getNeg(C);
2759 return replaceInstUsesWith(
2760 *II, Builder.CreateBinaryIntrinsic(
2761 Intrinsic::sadd_sat, Arg0, NegVal));
2762 }
2763
2764 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2765 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2766 // if Val and Val2 have the same sign
2767 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2768 Value *X;
2769 const APInt *Val, *Val2;
2770 APInt NewVal;
2771 bool IsUnsigned =
2772 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2773 if (Other->getIntrinsicID() == IID &&
2774 match(Arg1, m_APInt(Val)) &&
2775 match(Other->getArgOperand(0), m_Value(X)) &&
2776 match(Other->getArgOperand(1), m_APInt(Val2))) {
2777 if (IsUnsigned)
2778 NewVal = Val->uadd_sat(*Val2);
2779 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2780 bool Overflow;
2781 NewVal = Val->sadd_ov(*Val2, Overflow);
2782 if (Overflow) {
2783 // Both adds together may add more than SignedMaxValue
2784 // without saturating the final result.
2785 break;
2786 }
2787 } else {
2788 // Cannot fold saturated addition with different signs.
2789 break;
2790 }
2791
2792 return replaceInstUsesWith(
2793 *II, Builder.CreateBinaryIntrinsic(
2794 IID, X, ConstantInt::get(II->getType(), NewVal)));
2795 }
2796 }
2797 break;
2798 }
2799
2800 case Intrinsic::minnum:
2801 case Intrinsic::maxnum:
2802 case Intrinsic::minimum:
2803 case Intrinsic::maximum: {
2804 Value *Arg0 = II->getArgOperand(0);
2805 Value *Arg1 = II->getArgOperand(1);
2806 Value *X, *Y;
2807 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2808 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2809 // If both operands are negated, invert the call and negate the result:
2810 // min(-X, -Y) --> -(max(X, Y))
2811 // max(-X, -Y) --> -(min(X, Y))
2812 Intrinsic::ID NewIID;
2813 switch (IID) {
2814 case Intrinsic::maxnum:
2815 NewIID = Intrinsic::minnum;
2816 break;
2817 case Intrinsic::minnum:
2818 NewIID = Intrinsic::maxnum;
2819 break;
2820 case Intrinsic::maximum:
2821 NewIID = Intrinsic::minimum;
2822 break;
2823 case Intrinsic::minimum:
2824 NewIID = Intrinsic::maximum;
2825 break;
2826 default:
2827 llvm_unreachable("unexpected intrinsic ID");
2828 }
2829 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2830 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2831 FNeg->copyIRFlags(II);
2832 return FNeg;
2833 }
2834
2835 // m(m(X, C2), C1) -> m(X, C)
2836 const APFloat *C1, *C2;
2837 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2838 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2839 ((match(M->getArgOperand(0), m_Value(X)) &&
2840 match(M->getArgOperand(1), m_APFloat(C2))) ||
2841 (match(M->getArgOperand(1), m_Value(X)) &&
2842 match(M->getArgOperand(0), m_APFloat(C2))))) {
2843 APFloat Res(0.0);
2844 switch (IID) {
2845 case Intrinsic::maxnum:
2846 Res = maxnum(*C1, *C2);
2847 break;
2848 case Intrinsic::minnum:
2849 Res = minnum(*C1, *C2);
2850 break;
2851 case Intrinsic::maximum:
2852 Res = maximum(*C1, *C2);
2853 break;
2854 case Intrinsic::minimum:
2855 Res = minimum(*C1, *C2);
2856 break;
2857 default:
2858 llvm_unreachable("unexpected intrinsic ID");
2859 }
2860 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2861 // was a simplification (so Arg0 and its original flags could
2862 // propagate?)
2863 Value *V = Builder.CreateBinaryIntrinsic(
2864 IID, X, ConstantFP::get(Arg0->getType(), Res),
2866 return replaceInstUsesWith(*II, V);
2867 }
2868 }
2869
2870 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2871 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2872 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2873 X->getType() == Y->getType()) {
2874 Value *NewCall =
2875 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2876 return new FPExtInst(NewCall, II->getType());
2877 }
2878
2879 // max X, -X --> fabs X
2880 // min X, -X --> -(fabs X)
2881 // TODO: Remove one-use limitation? That is obviously better for max,
2882 // hence why we don't check for one-use for that. However,
2883 // it would be an extra instruction for min (fnabs), but
2884 // that is still likely better for analysis and codegen.
2885 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2886 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X)))
2887 return Op0->hasOneUse() ||
2888 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2889 return false;
2890 };
2891
2892 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2893 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2894 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2895 R = Builder.CreateFNegFMF(R, II);
2896 return replaceInstUsesWith(*II, R);
2897 }
2898
2899 break;
2900 }
2901 case Intrinsic::matrix_multiply: {
2902 // Optimize negation in matrix multiplication.
2903
2904 // -A * -B -> A * B
2905 Value *A, *B;
2906 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2907 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2908 replaceOperand(*II, 0, A);
2909 replaceOperand(*II, 1, B);
2910 return II;
2911 }
2912
2913 Value *Op0 = II->getOperand(0);
2914 Value *Op1 = II->getOperand(1);
2915 Value *OpNotNeg, *NegatedOp;
2916 unsigned NegatedOpArg, OtherOpArg;
2917 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2918 NegatedOp = Op0;
2919 NegatedOpArg = 0;
2920 OtherOpArg = 1;
2921 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2922 NegatedOp = Op1;
2923 NegatedOpArg = 1;
2924 OtherOpArg = 0;
2925 } else
2926 // Multiplication doesn't have a negated operand.
2927 break;
2928
2929 // Only optimize if the negated operand has only one use.
2930 if (!NegatedOp->hasOneUse())
2931 break;
2932
2933 Value *OtherOp = II->getOperand(OtherOpArg);
2934 VectorType *RetTy = cast<VectorType>(II->getType());
2935 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2936 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2937 ElementCount NegatedCount = NegatedOpTy->getElementCount();
2938 ElementCount OtherCount = OtherOpTy->getElementCount();
2939 ElementCount RetCount = RetTy->getElementCount();
2940 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2941 if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2942 ElementCount::isKnownLT(OtherCount, RetCount)) {
2943 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2944 replaceOperand(*II, NegatedOpArg, OpNotNeg);
2945 replaceOperand(*II, OtherOpArg, InverseOtherOp);
2946 return II;
2947 }
2948 // (-A) * B -> -(A * B), if it is cheaper to negate the result
2949 if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2950 SmallVector<Value *, 5> NewArgs(II->args());
2951 NewArgs[NegatedOpArg] = OpNotNeg;
2952 Instruction *NewMul =
2953 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2954 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2955 }
2956 break;
2957 }
2958 case Intrinsic::fmuladd: {
2959 // Try to simplify the underlying FMul.
2960 if (Value *V =
2961 simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2962 II->getFastMathFlags(), SQ.getWithInstruction(II)))
2963 return BinaryOperator::CreateFAddFMF(V, II->getArgOperand(2),
2964 II->getFastMathFlags());
2965
2966 [[fallthrough]];
2967 }
2968 case Intrinsic::fma: {
2969 // fma fneg(x), fneg(y), z -> fma x, y, z
2970 Value *Src0 = II->getArgOperand(0);
2971 Value *Src1 = II->getArgOperand(1);
2972 Value *Src2 = II->getArgOperand(2);
2973 Value *X, *Y;
2974 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2975 replaceOperand(*II, 0, X);
2976 replaceOperand(*II, 1, Y);
2977 return II;
2978 }
2979
2980 // fma fabs(x), fabs(x), z -> fma x, x, z
2981 if (match(Src0, m_FAbs(m_Value(X))) &&
2982 match(Src1, m_FAbs(m_Specific(X)))) {
2983 replaceOperand(*II, 0, X);
2984 replaceOperand(*II, 1, X);
2985 return II;
2986 }
2987
2988 // Try to simplify the underlying FMul. We can only apply simplifications
2989 // that do not require rounding.
2990 if (Value *V = simplifyFMAFMul(Src0, Src1, II->getFastMathFlags(),
2991 SQ.getWithInstruction(II)))
2992 return BinaryOperator::CreateFAddFMF(V, Src2, II->getFastMathFlags());
2993
2994 // fma x, y, 0 -> fmul x, y
2995 // This is always valid for -0.0, but requires nsz for +0.0 as
2996 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2997 if (match(Src2, m_NegZeroFP()) ||
2998 (match(Src2, m_PosZeroFP()) && II->getFastMathFlags().noSignedZeros()))
2999 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
3000
3001 // fma x, -1.0, y -> fsub y, x
3002 if (match(Src1, m_SpecificFP(-1.0)))
3003 return BinaryOperator::CreateFSubFMF(Src2, Src0, II);
3004
3005 break;
3006 }
3007 case Intrinsic::copysign: {
3008 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
3009 if (std::optional<bool> KnownSignBit = computeKnownFPSignBit(
3010 Sign, getSimplifyQuery().getWithInstruction(II))) {
3011 if (*KnownSignBit) {
3012 // If we know that the sign argument is negative, reduce to FNABS:
3013 // copysign Mag, -Sign --> fneg (fabs Mag)
3014 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
3015 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
3016 }
3017
3018 // If we know that the sign argument is positive, reduce to FABS:
3019 // copysign Mag, +Sign --> fabs Mag
3020 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
3021 return replaceInstUsesWith(*II, Fabs);
3022 }
3023
3024 // Propagate sign argument through nested calls:
3025 // copysign Mag, (copysign ?, X) --> copysign Mag, X
3026 Value *X;
3028 Value *CopySign =
3029 Builder.CreateCopySign(Mag, X, FMFSource::intersect(II, Sign));
3030 return replaceInstUsesWith(*II, CopySign);
3031 }
3032
3033 // Clear sign-bit of constant magnitude:
3034 // copysign -MagC, X --> copysign MagC, X
3035 // TODO: Support constant folding for fabs
3036 const APFloat *MagC;
3037 if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) {
3038 APFloat PosMagC = *MagC;
3039 PosMagC.clearSign();
3040 return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC));
3041 }
3042
3043 // Peek through changes of magnitude's sign-bit. This call rewrites those:
3044 // copysign (fabs X), Sign --> copysign X, Sign
3045 // copysign (fneg X), Sign --> copysign X, Sign
3046 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
3047 return replaceOperand(*II, 0, X);
3048
3049 break;
3050 }
3051 case Intrinsic::fabs: {
3052 Value *Cond, *TVal, *FVal;
3053 Value *Arg = II->getArgOperand(0);
3054 Value *X;
3055 // fabs (-X) --> fabs (X)
3056 if (match(Arg, m_FNeg(m_Value(X)))) {
3057 CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
3058 return replaceInstUsesWith(CI, Fabs);
3059 }
3060
3061 if (match(Arg, m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
3062 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
3063 if (Arg->hasOneUse() ? (isa<Constant>(TVal) || isa<Constant>(FVal))
3064 : (isa<Constant>(TVal) && isa<Constant>(FVal))) {
3065 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
3066 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
3067 SelectInst *SI = SelectInst::Create(Cond, AbsT, AbsF);
3068 FastMathFlags FMF1 = II->getFastMathFlags();
3069 FastMathFlags FMF2 = cast<SelectInst>(Arg)->getFastMathFlags();
3070 FMF2.setNoSignedZeros(false);
3071 SI->setFastMathFlags(FMF1 | FMF2);
3072 return SI;
3073 }
3074 // fabs (select Cond, -FVal, FVal) --> fabs FVal
3075 if (match(TVal, m_FNeg(m_Specific(FVal))))
3076 return replaceOperand(*II, 0, FVal);
3077 // fabs (select Cond, TVal, -TVal) --> fabs TVal
3078 if (match(FVal, m_FNeg(m_Specific(TVal))))
3079 return replaceOperand(*II, 0, TVal);
3080 }
3081
3082 Value *Magnitude, *Sign;
3083 if (match(II->getArgOperand(0),
3084 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
3085 // fabs (copysign x, y) -> (fabs x)
3086 CallInst *AbsSign =
3087 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude, II);
3088 return replaceInstUsesWith(*II, AbsSign);
3089 }
3090
3091 [[fallthrough]];
3092 }
3093 case Intrinsic::ceil:
3094 case Intrinsic::floor:
3095 case Intrinsic::round:
3096 case Intrinsic::roundeven:
3097 case Intrinsic::nearbyint:
3098 case Intrinsic::rint:
3099 case Intrinsic::trunc: {
3100 Value *ExtSrc;
3101 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
3102 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
3103 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
3104 return new FPExtInst(NarrowII, II->getType());
3105 }
3106 break;
3107 }
3108 case Intrinsic::cos:
3109 case Intrinsic::amdgcn_cos:
3110 case Intrinsic::cosh: {
3111 Value *X, *Sign;
3112 Value *Src = II->getArgOperand(0);
3113 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) ||
3114 match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) {
3115 // f(-x) --> f(x)
3116 // f(fabs(x)) --> f(x)
3117 // f(copysign(x, y)) --> f(x)
3118 // for f in {cos, cosh}
3119 return replaceOperand(*II, 0, X);
3120 }
3121 break;
3122 }
3123 case Intrinsic::sin:
3124 case Intrinsic::amdgcn_sin:
3125 case Intrinsic::sinh:
3126 case Intrinsic::tan:
3127 case Intrinsic::tanh: {
3128 Value *X;
3129 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
3130 // f(-x) --> -f(x)
3131 // for f in {sin, sinh, tan, tanh}
3132 Value *NewFunc = Builder.CreateUnaryIntrinsic(IID, X, II);
3133 return UnaryOperator::CreateFNegFMF(NewFunc, II);
3134 }
3135 break;
3136 }
3137 case Intrinsic::ldexp: {
3138 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
3139 //
3140 // The danger is if the first ldexp would overflow to infinity or underflow
3141 // to zero, but the combined exponent avoids it. We ignore this with
3142 // reassoc.
3143 //
3144 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
3145 // it would just double down on the overflow/underflow which would occur
3146 // anyway.
3147 //
3148 // TODO: Could do better if we had range tracking for the input value
3149 // exponent. Also could broaden sign check to cover == 0 case.
3150 Value *Src = II->getArgOperand(0);
3151 Value *Exp = II->getArgOperand(1);
3152
3153 uint64_t ConstExp;
3154 if (match(Exp, m_ConstantInt(ConstExp))) {
3155 // ldexp(x, K) -> fmul x, 2^K
3156 const fltSemantics &FPTy =
3157 Src->getType()->getScalarType()->getFltSemantics();
3158
3159 APFloat Scaled = scalbn(APFloat::getOne(FPTy), static_cast<int>(ConstExp),
3161 if (!Scaled.isZero() && !Scaled.isInfinity()) {
3162 // Skip overflow and underflow cases.
3163 Constant *FPConst = ConstantFP::get(Src->getType(), Scaled);
3164 return BinaryOperator::CreateFMulFMF(Src, FPConst, II);
3165 }
3166 }
3167
3168 Value *InnerSrc;
3169 Value *InnerExp;
3171 m_Value(InnerSrc), m_Value(InnerExp)))) &&
3172 Exp->getType() == InnerExp->getType()) {
3173 FastMathFlags FMF = II->getFastMathFlags();
3174 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
3175
3176 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
3177 signBitMustBeTheSame(Exp, InnerExp, SQ.getWithInstruction(II))) {
3178 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
3179 // width.
3180 Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
3181 II->setArgOperand(1, NewExp);
3182 II->setFastMathFlags(InnerFlags); // Or the inner flags.
3183 return replaceOperand(*II, 0, InnerSrc);
3184 }
3185 }
3186
3187 // ldexp(x, zext(i1 y)) -> fmul x, (select y, 2.0, 1.0)
3188 // ldexp(x, sext(i1 y)) -> fmul x, (select y, 0.5, 1.0)
3189 Value *ExtSrc;
3190 if (match(Exp, m_ZExt(m_Value(ExtSrc))) &&
3191 ExtSrc->getType()->getScalarSizeInBits() == 1) {
3192 Value *Select =
3193 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0),
3194 ConstantFP::get(II->getType(), 1.0));
3196 }
3197 if (match(Exp, m_SExt(m_Value(ExtSrc))) &&
3198 ExtSrc->getType()->getScalarSizeInBits() == 1) {
3199 Value *Select =
3200 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5),
3201 ConstantFP::get(II->getType(), 1.0));
3203 }
3204
3205 // ldexp(x, c ? exp : 0) -> c ? ldexp(x, exp) : x
3206 // ldexp(x, c ? 0 : exp) -> c ? x : ldexp(x, exp)
3207 ///
3208 // TODO: If we cared, should insert a canonicalize for x
3209 Value *SelectCond, *SelectLHS, *SelectRHS;
3210 if (match(II->getArgOperand(1),
3211 m_OneUse(m_Select(m_Value(SelectCond), m_Value(SelectLHS),
3212 m_Value(SelectRHS))))) {
3213 Value *NewLdexp = nullptr;
3214 Value *Select = nullptr;
3215 if (match(SelectRHS, m_ZeroInt())) {
3216 NewLdexp = Builder.CreateLdexp(Src, SelectLHS, II);
3217 Select = Builder.CreateSelect(SelectCond, NewLdexp, Src);
3218 } else if (match(SelectLHS, m_ZeroInt())) {
3219 NewLdexp = Builder.CreateLdexp(Src, SelectRHS, II);
3220 Select = Builder.CreateSelect(SelectCond, Src, NewLdexp);
3221 }
3222
3223 if (NewLdexp) {
3224 Select->takeName(II);
3225 return replaceInstUsesWith(*II, Select);
3226 }
3227 }
3228
3229 break;
3230 }
3231 case Intrinsic::ptrauth_auth:
3232 case Intrinsic::ptrauth_resign: {
3233 // We don't support this optimization on intrinsic calls with deactivation
3234 // symbols, which are represented using operand bundles.
3235 if (II->hasOperandBundles())
3236 break;
3237
3238 // (sign|resign) + (auth|resign) can be folded by omitting the middle
3239 // sign+auth component if the key and discriminator match.
3240 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
3241 Value *Ptr = II->getArgOperand(0);
3242 Value *Key = II->getArgOperand(1);
3243 Value *Disc = II->getArgOperand(2);
3244
3245 // AuthKey will be the key we need to end up authenticating against in
3246 // whatever we replace this sequence with.
3247 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
3248 if (const auto *CI = dyn_cast<CallBase>(Ptr)) {
3249 // We don't support this optimization on intrinsic calls with deactivation
3250 // symbols, which are represented using operand bundles.
3251 if (CI->hasOperandBundles())
3252 break;
3253
3254 BasePtr = CI->getArgOperand(0);
3255 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
3256 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
3257 break;
3258 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
3259 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
3260 break;
3261 AuthKey = CI->getArgOperand(1);
3262 AuthDisc = CI->getArgOperand(2);
3263 } else
3264 break;
3265 } else if (const auto *PtrToInt = dyn_cast<PtrToIntOperator>(Ptr)) {
3266 // ptrauth constants are equivalent to a call to @llvm.ptrauth.sign for
3267 // our purposes, so check for that too.
3268 const auto *CPA = dyn_cast<ConstantPtrAuth>(PtrToInt->getOperand(0));
3269 if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL))
3270 break;
3271
3272 // resign(ptrauth(p,ks,ds),ks,ds,kr,dr) -> ptrauth(p,kr,dr)
3273 if (NeedSign && isa<ConstantInt>(II->getArgOperand(4))) {
3274 auto *SignKey = cast<ConstantInt>(II->getArgOperand(3));
3275 auto *SignDisc = cast<ConstantInt>(II->getArgOperand(4));
3276 auto *Null = ConstantPointerNull::get(Builder.getPtrTy());
3277 auto *NewCPA = ConstantPtrAuth::get(CPA->getPointer(), SignKey,
3278 SignDisc, /*AddrDisc=*/Null,
3279 /*DeactivationSymbol=*/Null);
3281 *II, ConstantExpr::getPointerCast(NewCPA, II->getType()));
3282 return eraseInstFromFunction(*II);
3283 }
3284
3285 // auth(ptrauth(p,k,d),k,d) -> p
3286 BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType());
3287 } else
3288 break;
3289
3290 unsigned NewIntrin;
3291 if (AuthKey && NeedSign) {
3292 // resign(0,1) + resign(1,2) = resign(0, 2)
3293 NewIntrin = Intrinsic::ptrauth_resign;
3294 } else if (AuthKey) {
3295 // resign(0,1) + auth(1) = auth(0)
3296 NewIntrin = Intrinsic::ptrauth_auth;
3297 } else if (NeedSign) {
3298 // sign(0) + resign(0, 1) = sign(1)
3299 NewIntrin = Intrinsic::ptrauth_sign;
3300 } else {
3301 // sign(0) + auth(0) = nop
3302 replaceInstUsesWith(*II, BasePtr);
3303 return eraseInstFromFunction(*II);
3304 }
3305
3306 SmallVector<Value *, 4> CallArgs;
3307 CallArgs.push_back(BasePtr);
3308 if (AuthKey) {
3309 CallArgs.push_back(AuthKey);
3310 CallArgs.push_back(AuthDisc);
3311 }
3312
3313 if (NeedSign) {
3314 CallArgs.push_back(II->getArgOperand(3));
3315 CallArgs.push_back(II->getArgOperand(4));
3316 }
3317
3318 Function *NewFn =
3319 Intrinsic::getOrInsertDeclaration(II->getModule(), NewIntrin);
3320 return CallInst::Create(NewFn, CallArgs);
3321 }
3322 case Intrinsic::arm_neon_vtbl1:
3323 case Intrinsic::arm_neon_vtbl2:
3324 case Intrinsic::arm_neon_vtbl3:
3325 case Intrinsic::arm_neon_vtbl4:
3326 case Intrinsic::aarch64_neon_tbl1:
3327 case Intrinsic::aarch64_neon_tbl2:
3328 case Intrinsic::aarch64_neon_tbl3:
3329 case Intrinsic::aarch64_neon_tbl4:
3330 return simplifyNeonTbl(*II, *this, /*IsExtension=*/false);
3331 case Intrinsic::arm_neon_vtbx1:
3332 case Intrinsic::arm_neon_vtbx2:
3333 case Intrinsic::arm_neon_vtbx3:
3334 case Intrinsic::arm_neon_vtbx4:
3335 case Intrinsic::aarch64_neon_tbx1:
3336 case Intrinsic::aarch64_neon_tbx2:
3337 case Intrinsic::aarch64_neon_tbx3:
3338 case Intrinsic::aarch64_neon_tbx4:
3339 return simplifyNeonTbl(*II, *this, /*IsExtension=*/true);
3340
3341 case Intrinsic::arm_neon_vmulls:
3342 case Intrinsic::arm_neon_vmullu:
3343 case Intrinsic::aarch64_neon_smull:
3344 case Intrinsic::aarch64_neon_umull: {
3345 Value *Arg0 = II->getArgOperand(0);
3346 Value *Arg1 = II->getArgOperand(1);
3347
3348 // Handle mul by zero first:
3350 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3351 }
3352
3353 // Check for constant LHS & RHS - in this case we just simplify.
3354 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3355 IID == Intrinsic::aarch64_neon_umull);
3356 VectorType *NewVT = cast<VectorType>(II->getType());
3357 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3358 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3359 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
3360 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
3361 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
3362 }
3363
3364 // Couldn't simplify - canonicalize constant to the RHS.
3365 std::swap(Arg0, Arg1);
3366 }
3367
3368 // Handle mul by one:
3369 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3370 if (ConstantInt *Splat =
3371 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3372 if (Splat->isOne())
3373 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3374 /*isSigned=*/!Zext);
3375
3376 break;
3377 }
3378 case Intrinsic::arm_neon_aesd:
3379 case Intrinsic::arm_neon_aese:
3380 case Intrinsic::aarch64_crypto_aesd:
3381 case Intrinsic::aarch64_crypto_aese:
3382 case Intrinsic::aarch64_sve_aesd:
3383 case Intrinsic::aarch64_sve_aese: {
3384 Value *DataArg = II->getArgOperand(0);
3385 Value *KeyArg = II->getArgOperand(1);
3386
3387 // Accept zero on either operand.
3388 if (!match(KeyArg, m_ZeroInt()))
3389 std::swap(KeyArg, DataArg);
3390
3391 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3392 Value *Data, *Key;
3393 if (match(KeyArg, m_ZeroInt()) &&
3394 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3395 replaceOperand(*II, 0, Data);
3396 replaceOperand(*II, 1, Key);
3397 return II;
3398 }
3399 break;
3400 }
3401 case Intrinsic::arm_neon_vshifts:
3402 case Intrinsic::arm_neon_vshiftu:
3403 case Intrinsic::aarch64_neon_sshl:
3404 case Intrinsic::aarch64_neon_ushl:
3405 return foldNeonShift(II, *this);
3406 case Intrinsic::hexagon_V6_vandvrt:
3407 case Intrinsic::hexagon_V6_vandvrt_128B: {
3408 // Simplify Q -> V -> Q conversion.
3409 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3410 Intrinsic::ID ID0 = Op0->getIntrinsicID();
3411 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
3412 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
3413 break;
3414 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
3415 uint64_t Bytes1 = computeKnownBits(Bytes, Op0).One.getZExtValue();
3416 uint64_t Mask1 = computeKnownBits(Mask, II).One.getZExtValue();
3417 // Check if every byte has common bits in Bytes and Mask.
3418 uint64_t C = Bytes1 & Mask1;
3419 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
3420 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
3421 }
3422 break;
3423 }
3424 case Intrinsic::stackrestore: {
3425 enum class ClassifyResult {
3426 None,
3427 Alloca,
3428 StackRestore,
3429 CallWithSideEffects,
3430 };
3431 auto Classify = [](const Instruction *I) {
3432 if (isa<AllocaInst>(I))
3433 return ClassifyResult::Alloca;
3434
3435 if (auto *CI = dyn_cast<CallInst>(I)) {
3436 if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
3437 if (II->getIntrinsicID() == Intrinsic::stackrestore)
3438 return ClassifyResult::StackRestore;
3439
3440 if (II->mayHaveSideEffects())
3441 return ClassifyResult::CallWithSideEffects;
3442 } else {
3443 // Consider all non-intrinsic calls to be side effects
3444 return ClassifyResult::CallWithSideEffects;
3445 }
3446 }
3447
3448 return ClassifyResult::None;
3449 };
3450
3451 // If the stacksave and the stackrestore are in the same BB, and there is
3452 // no intervening call, alloca, or stackrestore of a different stacksave,
3453 // remove the restore. This can happen when variable allocas are DCE'd.
3454 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3455 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
3456 SS->getParent() == II->getParent()) {
3457 BasicBlock::iterator BI(SS);
3458 bool CannotRemove = false;
3459 for (++BI; &*BI != II; ++BI) {
3460 switch (Classify(&*BI)) {
3461 case ClassifyResult::None:
3462 // So far so good, look at next instructions.
3463 break;
3464
3465 case ClassifyResult::StackRestore:
3466 // If we found an intervening stackrestore for a different
3467 // stacksave, we can't remove the stackrestore. Otherwise, continue.
3468 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
3469 CannotRemove = true;
3470 break;
3471
3472 case ClassifyResult::Alloca:
3473 case ClassifyResult::CallWithSideEffects:
3474 // If we found an alloca, a non-intrinsic call, or an intrinsic
3475 // call with side effects, we can't remove the stackrestore.
3476 CannotRemove = true;
3477 break;
3478 }
3479 if (CannotRemove)
3480 break;
3481 }
3482
3483 if (!CannotRemove)
3484 return eraseInstFromFunction(CI);
3485 }
3486 }
3487
3488 // Scan down this block to see if there is another stack restore in the
3489 // same block without an intervening call/alloca.
3491 Instruction *TI = II->getParent()->getTerminator();
3492 bool CannotRemove = false;
3493 for (++BI; &*BI != TI; ++BI) {
3494 switch (Classify(&*BI)) {
3495 case ClassifyResult::None:
3496 // So far so good, look at next instructions.
3497 break;
3498
3499 case ClassifyResult::StackRestore:
3500 // If there is a stackrestore below this one, remove this one.
3501 return eraseInstFromFunction(CI);
3502
3503 case ClassifyResult::Alloca:
3504 case ClassifyResult::CallWithSideEffects:
3505 // If we found an alloca, a non-intrinsic call, or an intrinsic call
3506 // with side effects (such as llvm.stacksave and llvm.read_register),
3507 // we can't remove the stack restore.
3508 CannotRemove = true;
3509 break;
3510 }
3511 if (CannotRemove)
3512 break;
3513 }
3514
3515 // If the stack restore is in a return, resume, or unwind block and if there
3516 // are no allocas or calls between the restore and the return, nuke the
3517 // restore.
3518 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3519 return eraseInstFromFunction(CI);
3520 break;
3521 }
3522 case Intrinsic::lifetime_end:
3523 // Asan needs to poison memory to detect invalid access which is possible
3524 // even for empty lifetime range.
3525 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3526 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3527 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3528 break;
3529
3530 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
3531 return I.getIntrinsicID() == Intrinsic::lifetime_start;
3532 }))
3533 return nullptr;
3534 break;
3535 case Intrinsic::assume: {
3536 Value *IIOperand = II->getArgOperand(0);
3538 II->getOperandBundlesAsDefs(OpBundles);
3539
3540 /// This will remove the boolean Condition from the assume given as
3541 /// argument and remove the assume if it becomes useless.
3542 /// always returns nullptr for use as a return values.
3543 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
3544 assert(isa<AssumeInst>(Assume));
3546 return eraseInstFromFunction(CI);
3547 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
3548 return nullptr;
3549 };
3550 // Remove an assume if it is followed by an identical assume.
3551 // TODO: Do we need this? Unless there are conflicting assumptions, the
3552 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3553 Instruction *Next = II->getNextNode();
3555 return RemoveConditionFromAssume(Next);
3556
3557 // Canonicalize assume(a && b) -> assume(a); assume(b);
3558 // Note: New assumption intrinsics created here are registered by
3559 // the InstCombineIRInserter object.
3560 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3561 Value *AssumeIntrinsic = II->getCalledOperand();
3562 Value *A, *B;
3563 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3564 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
3565 II->getName());
3566 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3567 return eraseInstFromFunction(*II);
3568 }
3569 // assume(!(a || b)) -> assume(!a); assume(!b);
3570 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
3571 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3572 Builder.CreateNot(A), OpBundles, II->getName());
3573 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3574 Builder.CreateNot(B), II->getName());
3575 return eraseInstFromFunction(*II);
3576 }
3577
3578 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3579 // (if assume is valid at the load)
3580 Instruction *LHS;
3582 m_Zero())) &&
3583 LHS->getOpcode() == Instruction::Load &&
3584 LHS->getType()->isPointerTy() &&
3585 isValidAssumeForContext(II, LHS, &DT)) {
3586 MDNode *MD = MDNode::get(II->getContext(), {});
3587 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3588 LHS->setMetadata(LLVMContext::MD_noundef, MD);
3589 return RemoveConditionFromAssume(II);
3590
3591 // TODO: apply nonnull return attributes to calls and invokes
3592 // TODO: apply range metadata for range check patterns?
3593 }
3594
3595 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3596 OperandBundleUse OBU = II->getOperandBundleAt(Idx);
3597
3598 // Separate storage assumptions apply to the underlying allocations, not
3599 // any particular pointer within them. When evaluating the hints for AA
3600 // purposes we getUnderlyingObject them; by precomputing the answers here
3601 // we can avoid having to do so repeatedly there.
3602 if (OBU.getTagName() == "separate_storage") {
3603 assert(OBU.Inputs.size() == 2);
3604 auto MaybeSimplifyHint = [&](const Use &U) {
3605 Value *Hint = U.get();
3606 // Not having a limit is safe because InstCombine removes unreachable
3607 // code.
3608 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
3609 if (Hint != UnderlyingObject)
3610 replaceUse(const_cast<Use &>(U), UnderlyingObject);
3611 };
3612 MaybeSimplifyHint(OBU.Inputs[0]);
3613 MaybeSimplifyHint(OBU.Inputs[1]);
3614 }
3615
3616 // Try to remove redundant alignment assumptions.
3617 if (OBU.getTagName() == "align" && OBU.Inputs.size() == 2) {
3619 *cast<AssumeInst>(II), II->arg_size() + Idx);
3620 if (!RK || RK.AttrKind != Attribute::Alignment ||
3622 continue;
3623
3624 // Remove align 1 bundles; they don't add any useful information.
3625 if (RK.ArgValue == 1)
3627
3628 // Don't try to remove align assumptions for pointers derived from
3629 // arguments. We might lose information if the function gets inline and
3630 // the align argument attribute disappears.
3632 if (!UO || isa<Argument>(UO))
3633 continue;
3634
3635 // Compute known bits for the pointer, passing nullptr as context to
3636 // avoid computeKnownBits using the assumption we are about to remove
3637 // for reasoning.
3638 KnownBits Known = computeKnownBits(RK.WasOn, /*CtxI=*/nullptr);
3639 unsigned TZ = std::min(Known.countMinTrailingZeros(),
3641 if ((1ULL << TZ) < RK.ArgValue)
3642 continue;
3644 }
3645 }
3646
3647 // Convert nonnull assume like:
3648 // %A = icmp ne i32* %PTR, null
3649 // call void @llvm.assume(i1 %A)
3650 // into
3651 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
3653 match(IIOperand,
3655 A->getType()->isPointerTy()) {
3656 if (auto *Replacement = buildAssumeFromKnowledge(
3657 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
3658
3659 Replacement->insertBefore(Next->getIterator());
3660 AC.registerAssumption(Replacement);
3661 return RemoveConditionFromAssume(II);
3662 }
3663 }
3664
3665 // Convert alignment assume like:
3666 // %B = ptrtoint i32* %A to i64
3667 // %C = and i64 %B, Constant
3668 // %D = icmp eq i64 %C, 0
3669 // call void @llvm.assume(i1 %D)
3670 // into
3671 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
3672 uint64_t AlignMask = 1;
3674 (match(IIOperand, m_Not(m_Trunc(m_Value(A)))) ||
3675 match(IIOperand,
3677 m_And(m_Value(A), m_ConstantInt(AlignMask)),
3678 m_Zero())))) {
3679 if (isPowerOf2_64(AlignMask + 1)) {
3680 uint64_t Offset = 0;
3682 if (match(A, m_PtrToIntOrAddr(m_Value(A)))) {
3683 /// Note: this doesn't preserve the offset information but merges
3684 /// offset and alignment.
3685 /// TODO: we can generate a GEP instead of merging the alignment with
3686 /// the offset.
3687 RetainedKnowledge RK{Attribute::Alignment,
3688 (unsigned)MinAlign(Offset, AlignMask + 1), A};
3689 if (auto *Replacement =
3691
3692 Replacement->insertAfter(II->getIterator());
3693 AC.registerAssumption(Replacement);
3694 }
3695 return RemoveConditionFromAssume(II);
3696 }
3697 }
3698 }
3699
3700 /// Canonicalize Knowledge in operand bundles.
3701 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
3702 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3703 auto &BOI = II->bundle_op_info_begin()[Idx];
3706 if (BOI.End - BOI.Begin > 2)
3707 continue; // Prevent reducing knowledge in an align with offset since
3708 // extracting a RetainedKnowledge from them looses offset
3709 // information
3710 RetainedKnowledge CanonRK =
3713 &getDominatorTree());
3714 if (CanonRK == RK)
3715 continue;
3716 if (!CanonRK) {
3717 if (BOI.End - BOI.Begin > 0) {
3718 Worklist.pushValue(II->op_begin()[BOI.Begin]);
3719 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
3720 }
3721 continue;
3722 }
3723 assert(RK.AttrKind == CanonRK.AttrKind);
3724 if (BOI.End - BOI.Begin > 0)
3725 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3726 if (BOI.End - BOI.Begin > 1)
3727 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3728 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
3729 if (RK.WasOn)
3730 Worklist.pushValue(RK.WasOn);
3731 return II;
3732 }
3733 }
3734
3735 // If there is a dominating assume with the same condition as this one,
3736 // then this one is redundant, and should be removed.
3737 KnownBits Known(1);
3738 computeKnownBits(IIOperand, Known, II);
3740 return eraseInstFromFunction(*II);
3741
3742 // assume(false) is unreachable.
3743 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
3745 return eraseInstFromFunction(*II);
3746 }
3747
3748 // Update the cache of affected values for this assumption (we might be
3749 // here because we just simplified the condition).
3750 AC.updateAffectedValues(cast<AssumeInst>(II));
3751 break;
3752 }
3753 case Intrinsic::experimental_guard: {
3754 // Is this guard followed by another guard? We scan forward over a small
3755 // fixed window of instructions to handle common cases with conditions
3756 // computed between guards.
3757 Instruction *NextInst = II->getNextNode();
3758 for (unsigned i = 0; i < GuardWideningWindow; i++) {
3759 // Note: Using context-free form to avoid compile time blow up
3760 if (!isSafeToSpeculativelyExecute(NextInst))
3761 break;
3762 NextInst = NextInst->getNextNode();
3763 }
3764 Value *NextCond = nullptr;
3765 if (match(NextInst,
3767 Value *CurrCond = II->getArgOperand(0);
3768
3769 // Remove a guard that it is immediately preceded by an identical guard.
3770 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3771 if (CurrCond != NextCond) {
3772 Instruction *MoveI = II->getNextNode();
3773 while (MoveI != NextInst) {
3774 auto *Temp = MoveI;
3775 MoveI = MoveI->getNextNode();
3776 Temp->moveBefore(II->getIterator());
3777 }
3778 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
3779 }
3780 eraseInstFromFunction(*NextInst);
3781 return II;
3782 }
3783 break;
3784 }
3785 case Intrinsic::vector_insert: {
3786 Value *Vec = II->getArgOperand(0);
3787 Value *SubVec = II->getArgOperand(1);
3788 Value *Idx = II->getArgOperand(2);
3789 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
3790 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3791 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
3792
3793 // Only canonicalize if the destination vector, Vec, and SubVec are all
3794 // fixed vectors.
3795 if (DstTy && VecTy && SubVecTy) {
3796 unsigned DstNumElts = DstTy->getNumElements();
3797 unsigned VecNumElts = VecTy->getNumElements();
3798 unsigned SubVecNumElts = SubVecTy->getNumElements();
3799 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3800
3801 // An insert that entirely overwrites Vec with SubVec is a nop.
3802 if (VecNumElts == SubVecNumElts)
3803 return replaceInstUsesWith(CI, SubVec);
3804
3805 // Widen SubVec into a vector of the same width as Vec, since
3806 // shufflevector requires the two input vectors to be the same width.
3807 // Elements beyond the bounds of SubVec within the widened vector are
3808 // undefined.
3809 SmallVector<int, 8> WidenMask;
3810 unsigned i;
3811 for (i = 0; i != SubVecNumElts; ++i)
3812 WidenMask.push_back(i);
3813 for (; i != VecNumElts; ++i)
3814 WidenMask.push_back(PoisonMaskElem);
3815
3816 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3817
3819 for (unsigned i = 0; i != IdxN; ++i)
3820 Mask.push_back(i);
3821 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3822 Mask.push_back(i);
3823 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3824 Mask.push_back(i);
3825
3826 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3827 return replaceInstUsesWith(CI, Shuffle);
3828 }
3829 break;
3830 }
3831 case Intrinsic::vector_extract: {
3832 Value *Vec = II->getArgOperand(0);
3833 Value *Idx = II->getArgOperand(1);
3834
3835 Type *ReturnType = II->getType();
3836 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3837 // ExtractIdx)
3838 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
3839 Value *InsertTuple, *InsertIdx, *InsertValue;
3841 m_Value(InsertValue),
3842 m_Value(InsertIdx))) &&
3843 InsertValue->getType() == ReturnType) {
3844 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
3845 // Case where we get the same index right after setting it.
3846 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3847 // InsertValue
3848 if (ExtractIdx == Index)
3849 return replaceInstUsesWith(CI, InsertValue);
3850 // If we are getting a different index than what was set in the
3851 // insert.vector intrinsic. We can just set the input tuple to the one up
3852 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3853 // InsertIndex), ExtractIndex)
3854 // --> extract.vector(InsertTuple, ExtractIndex)
3855 else
3856 return replaceOperand(CI, 0, InsertTuple);
3857 }
3858
3859 auto *DstTy = dyn_cast<VectorType>(ReturnType);
3860 auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3861
3862 if (DstTy && VecTy) {
3863 auto DstEltCnt = DstTy->getElementCount();
3864 auto VecEltCnt = VecTy->getElementCount();
3865 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3866
3867 // Extracting the entirety of Vec is a nop.
3868 if (DstEltCnt == VecTy->getElementCount()) {
3869 replaceInstUsesWith(CI, Vec);
3870 return eraseInstFromFunction(CI);
3871 }
3872
3873 // Only canonicalize to shufflevector if the destination vector and
3874 // Vec are fixed vectors.
3875 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3876 break;
3877
3879 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3880 Mask.push_back(IdxN + i);
3881
3882 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3883 return replaceInstUsesWith(CI, Shuffle);
3884 }
3885 break;
3886 }
3887 case Intrinsic::experimental_vp_reverse: {
3888 Value *X;
3889 Value *Vec = II->getArgOperand(0);
3890 Value *Mask = II->getArgOperand(1);
3891 if (!match(Mask, m_AllOnes()))
3892 break;
3893 Value *EVL = II->getArgOperand(2);
3894 // TODO: Canonicalize experimental.vp.reverse after unop/binops?
3895 // rev(unop rev(X)) --> unop X
3896 if (match(Vec,
3898 m_Value(X), m_AllOnes(), m_Specific(EVL)))))) {
3899 auto *OldUnOp = cast<UnaryOperator>(Vec);
3901 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(),
3902 II->getIterator());
3903 return replaceInstUsesWith(CI, NewUnOp);
3904 }
3905 break;
3906 }
3907 case Intrinsic::vector_reduce_or:
3908 case Intrinsic::vector_reduce_and: {
3909 // Canonicalize logical or/and reductions:
3910 // Or reduction for i1 is represented as:
3911 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3912 // %res = cmp ne iReduxWidth %val, 0
3913 // And reduction for i1 is represented as:
3914 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3915 // %res = cmp eq iReduxWidth %val, 11111
3916 Value *Arg = II->getArgOperand(0);
3917 Value *Vect;
3918
3919 if (Value *NewOp =
3920 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3921 replaceUse(II->getOperandUse(0), NewOp);
3922 return II;
3923 }
3924
3925 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3926 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3927 if (FTy->getElementType() == Builder.getInt1Ty()) {
3928 Value *Res = Builder.CreateBitCast(
3929 Vect, Builder.getIntNTy(FTy->getNumElements()));
3930 if (IID == Intrinsic::vector_reduce_and) {
3931 Res = Builder.CreateICmpEQ(
3933 } else {
3934 assert(IID == Intrinsic::vector_reduce_or &&
3935 "Expected or reduction.");
3936 Res = Builder.CreateIsNotNull(Res);
3937 }
3938 if (Arg != Vect)
3939 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3940 II->getType());
3941 return replaceInstUsesWith(CI, Res);
3942 }
3943 }
3944 [[fallthrough]];
3945 }
3946 case Intrinsic::vector_reduce_add: {
3947 if (IID == Intrinsic::vector_reduce_add) {
3948 // Convert vector_reduce_add(ZExt(<n x i1>)) to
3949 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3950 // Convert vector_reduce_add(SExt(<n x i1>)) to
3951 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3952 // Convert vector_reduce_add(<n x i1>) to
3953 // Trunc(ctpop(bitcast <n x i1> to in)).
3954 Value *Arg = II->getArgOperand(0);
3955 Value *Vect;
3956
3957 if (Value *NewOp =
3958 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3959 replaceUse(II->getOperandUse(0), NewOp);
3960 return II;
3961 }
3962
3963 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3964 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3965 if (FTy->getElementType() == Builder.getInt1Ty()) {
3966 Value *V = Builder.CreateBitCast(
3967 Vect, Builder.getIntNTy(FTy->getNumElements()));
3968 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3969 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3970 if (Arg != Vect &&
3971 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3972 Res = Builder.CreateNeg(Res);
3973 return replaceInstUsesWith(CI, Res);
3974 }
3975 }
3976
3977 // vector.reduce.add.vNiM(splat(%x)) -> mul(%x, N)
3978 if (Value *Splat = getSplatValue(Arg)) {
3979 ElementCount VecToReduceCount =
3980 cast<VectorType>(Arg->getType())->getElementCount();
3981 if (VecToReduceCount.isFixed()) {
3982 unsigned VectorSize = VecToReduceCount.getFixedValue();
3983 return BinaryOperator::CreateMul(
3984 Splat,
3985 ConstantInt::get(Splat->getType(), VectorSize, /*IsSigned=*/false,
3986 /*ImplicitTrunc=*/true));
3987 }
3988 }
3989 }
3990 [[fallthrough]];
3991 }
3992 case Intrinsic::vector_reduce_xor: {
3993 if (IID == Intrinsic::vector_reduce_xor) {
3994 // Exclusive disjunction reduction over the vector with
3995 // (potentially-extended) i1 element type is actually a
3996 // (potentially-extended) arithmetic `add` reduction over the original
3997 // non-extended value:
3998 // vector_reduce_xor(?ext(<n x i1>))
3999 // -->
4000 // ?ext(vector_reduce_add(<n x i1>))
4001 Value *Arg = II->getArgOperand(0);
4002 Value *Vect;
4003
4004 if (Value *NewOp =
4005 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4006 replaceUse(II->getOperandUse(0), NewOp);
4007 return II;
4008 }
4009
4010 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4011 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4012 if (VTy->getElementType() == Builder.getInt1Ty()) {
4013 Value *Res = Builder.CreateAddReduce(Vect);
4014 if (Arg != Vect)
4015 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
4016 II->getType());
4017 return replaceInstUsesWith(CI, Res);
4018 }
4019 }
4020 }
4021 [[fallthrough]];
4022 }
4023 case Intrinsic::vector_reduce_mul: {
4024 if (IID == Intrinsic::vector_reduce_mul) {
4025 // Multiplicative reduction over the vector with (potentially-extended)
4026 // i1 element type is actually a (potentially zero-extended)
4027 // logical `and` reduction over the original non-extended value:
4028 // vector_reduce_mul(?ext(<n x i1>))
4029 // -->
4030 // zext(vector_reduce_and(<n x i1>))
4031 Value *Arg = II->getArgOperand(0);
4032 Value *Vect;
4033
4034 if (Value *NewOp =
4035 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4036 replaceUse(II->getOperandUse(0), NewOp);
4037 return II;
4038 }
4039
4040 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4041 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4042 if (VTy->getElementType() == Builder.getInt1Ty()) {
4043 Value *Res = Builder.CreateAndReduce(Vect);
4044 Res = Builder.CreateZExt(Res, II->getType());
4045 return replaceInstUsesWith(CI, Res);
4046 }
4047 }
4048 }
4049 [[fallthrough]];
4050 }
4051 case Intrinsic::vector_reduce_umin:
4052 case Intrinsic::vector_reduce_umax: {
4053 if (IID == Intrinsic::vector_reduce_umin ||
4054 IID == Intrinsic::vector_reduce_umax) {
4055 // UMin/UMax reduction over the vector with (potentially-extended)
4056 // i1 element type is actually a (potentially-extended)
4057 // logical `and`/`or` reduction over the original non-extended value:
4058 // vector_reduce_u{min,max}(?ext(<n x i1>))
4059 // -->
4060 // ?ext(vector_reduce_{and,or}(<n x i1>))
4061 Value *Arg = II->getArgOperand(0);
4062 Value *Vect;
4063
4064 if (Value *NewOp =
4065 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4066 replaceUse(II->getOperandUse(0), NewOp);
4067 return II;
4068 }
4069
4070 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4071 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4072 if (VTy->getElementType() == Builder.getInt1Ty()) {
4073 Value *Res = IID == Intrinsic::vector_reduce_umin
4074 ? Builder.CreateAndReduce(Vect)
4075 : Builder.CreateOrReduce(Vect);
4076 if (Arg != Vect)
4077 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
4078 II->getType());
4079 return replaceInstUsesWith(CI, Res);
4080 }
4081 }
4082 }
4083 [[fallthrough]];
4084 }
4085 case Intrinsic::vector_reduce_smin:
4086 case Intrinsic::vector_reduce_smax: {
4087 if (IID == Intrinsic::vector_reduce_smin ||
4088 IID == Intrinsic::vector_reduce_smax) {
4089 // SMin/SMax reduction over the vector with (potentially-extended)
4090 // i1 element type is actually a (potentially-extended)
4091 // logical `and`/`or` reduction over the original non-extended value:
4092 // vector_reduce_s{min,max}(<n x i1>)
4093 // -->
4094 // vector_reduce_{or,and}(<n x i1>)
4095 // and
4096 // vector_reduce_s{min,max}(sext(<n x i1>))
4097 // -->
4098 // sext(vector_reduce_{or,and}(<n x i1>))
4099 // and
4100 // vector_reduce_s{min,max}(zext(<n x i1>))
4101 // -->
4102 // zext(vector_reduce_{and,or}(<n x i1>))
4103 Value *Arg = II->getArgOperand(0);
4104 Value *Vect;
4105
4106 if (Value *NewOp =
4107 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4108 replaceUse(II->getOperandUse(0), NewOp);
4109 return II;
4110 }
4111
4112 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4113 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4114 if (VTy->getElementType() == Builder.getInt1Ty()) {
4115 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
4116 if (Arg != Vect)
4117 ExtOpc = cast<CastInst>(Arg)->getOpcode();
4118 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
4119 (ExtOpc == Instruction::CastOps::ZExt))
4120 ? Builder.CreateAndReduce(Vect)
4121 : Builder.CreateOrReduce(Vect);
4122 if (Arg != Vect)
4123 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
4124 return replaceInstUsesWith(CI, Res);
4125 }
4126 }
4127 }
4128 [[fallthrough]];
4129 }
4130 case Intrinsic::vector_reduce_fmax:
4131 case Intrinsic::vector_reduce_fmin:
4132 case Intrinsic::vector_reduce_fadd:
4133 case Intrinsic::vector_reduce_fmul: {
4134 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
4135 IID != Intrinsic::vector_reduce_fmul) ||
4136 II->hasAllowReassoc();
4137 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
4138 IID == Intrinsic::vector_reduce_fmul)
4139 ? 1
4140 : 0;
4141 Value *Arg = II->getArgOperand(ArgIdx);
4142 if (Value *NewOp = simplifyReductionOperand(Arg, CanReorderLanes)) {
4143 replaceUse(II->getOperandUse(ArgIdx), NewOp);
4144 return nullptr;
4145 }
4146 break;
4147 }
4148 case Intrinsic::is_fpclass: {
4149 if (Instruction *I = foldIntrinsicIsFPClass(*II))
4150 return I;
4151 break;
4152 }
4153 case Intrinsic::threadlocal_address: {
4154 Align MinAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
4155 MaybeAlign Align = II->getRetAlign();
4156 if (MinAlign > Align.valueOrOne()) {
4157 II->addRetAttr(Attribute::getWithAlignment(II->getContext(), MinAlign));
4158 return II;
4159 }
4160 break;
4161 }
4162 case Intrinsic::frexp: {
4163 Value *X;
4164 // The first result is idempotent with the added complication of the struct
4165 // return, and the second result is zero because the value is already
4166 // normalized.
4167 if (match(II->getArgOperand(0), m_ExtractValue<0>(m_Value(X)))) {
4169 X = Builder.CreateInsertValue(
4170 X, Constant::getNullValue(II->getType()->getStructElementType(1)),
4171 1);
4172 return replaceInstUsesWith(*II, X);
4173 }
4174 }
4175 break;
4176 }
4177 case Intrinsic::get_active_lane_mask: {
4178 const APInt *Op0, *Op1;
4179 if (match(II->getOperand(0), m_StrictlyPositive(Op0)) &&
4180 match(II->getOperand(1), m_APInt(Op1))) {
4181 Type *OpTy = II->getOperand(0)->getType();
4182 return replaceInstUsesWith(
4183 *II, Builder.CreateIntrinsic(
4184 II->getType(), Intrinsic::get_active_lane_mask,
4185 {Constant::getNullValue(OpTy),
4186 ConstantInt::get(OpTy, Op1->usub_sat(*Op0))}));
4187 }
4188 break;
4189 }
4190 case Intrinsic::experimental_get_vector_length: {
4191 // get.vector.length(Cnt, MaxLanes) --> Cnt when Cnt <= MaxLanes
4192 unsigned BitWidth =
4193 std::max(II->getArgOperand(0)->getType()->getScalarSizeInBits(),
4194 II->getType()->getScalarSizeInBits());
4195 ConstantRange Cnt =
4196 computeConstantRangeIncludingKnownBits(II->getArgOperand(0), false,
4197 SQ.getWithInstruction(II))
4199 ConstantRange MaxLanes = cast<ConstantInt>(II->getArgOperand(1))
4200 ->getValue()
4201 .zextOrTrunc(Cnt.getBitWidth());
4202 if (cast<ConstantInt>(II->getArgOperand(2))->isOne())
4203 MaxLanes = MaxLanes.multiply(
4204 getVScaleRange(II->getFunction(), Cnt.getBitWidth()));
4205
4206 if (Cnt.icmp(CmpInst::ICMP_ULE, MaxLanes))
4207 return replaceInstUsesWith(
4208 *II, Builder.CreateZExtOrTrunc(II->getArgOperand(0), II->getType()));
4209 return nullptr;
4210 }
4211 default: {
4212 // Handle target specific intrinsics
4213 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
4214 if (V)
4215 return *V;
4216 break;
4217 }
4218 }
4219
4220 // Try to fold intrinsic into select/phi operands. This is legal if:
4221 // * The intrinsic is speculatable.
4222 // * The operand is one of the following:
4223 // - a phi.
4224 // - a select with a scalar condition.
4225 // - a select with a vector condition and II is not a cross lane operation.
4227 for (Value *Op : II->args()) {
4228 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
4229 bool IsVectorCond = Sel->getCondition()->getType()->isVectorTy();
4230 if (IsVectorCond &&
4231 (!isNotCrossLaneOperation(II) || !II->getType()->isVectorTy()))
4232 continue;
4233 // Don't replace a scalar select with a more expensive vector select if
4234 // we can't simplify both arms of the select.
4235 bool SimplifyBothArms =
4236 !Op->getType()->isVectorTy() && II->getType()->isVectorTy();
4238 *II, Sel, /*FoldWithMultiUse=*/false, SimplifyBothArms))
4239 return R;
4240 }
4241 if (auto *Phi = dyn_cast<PHINode>(Op))
4242 if (Instruction *R = foldOpIntoPhi(*II, Phi))
4243 return R;
4244 }
4245 }
4246
4248 return Shuf;
4249
4251 return replaceInstUsesWith(*II, Reverse);
4252
4254 return replaceInstUsesWith(*II, Res);
4255
4256 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
4257 // context, so it is handled in visitCallBase and we should trigger it.
4258 return visitCallBase(*II);
4259}
4260
4261// Fence instruction simplification
4263 auto *NFI = dyn_cast<FenceInst>(FI.getNextNode());
4264 // This check is solely here to handle arbitrary target-dependent syncscopes.
4265 // TODO: Can remove if does not matter in practice.
4266 if (NFI && FI.isIdenticalTo(NFI))
4267 return eraseInstFromFunction(FI);
4268
4269 // Returns true if FI1 is identical or stronger fence than FI2.
4270 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
4271 auto FI1SyncScope = FI1->getSyncScopeID();
4272 // Consider same scope, where scope is global or single-thread.
4273 if (FI1SyncScope != FI2->getSyncScopeID() ||
4274 (FI1SyncScope != SyncScope::System &&
4275 FI1SyncScope != SyncScope::SingleThread))
4276 return false;
4277
4278 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
4279 };
4280 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
4281 return eraseInstFromFunction(FI);
4282
4283 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNode()))
4284 if (isIdenticalOrStrongerFence(PFI, &FI))
4285 return eraseInstFromFunction(FI);
4286 return nullptr;
4287}
4288
4289// InvokeInst simplification
4291 return visitCallBase(II);
4292}
4293
4294// CallBrInst simplification
4296 return visitCallBase(CBI);
4297}
4298
4300 if (!CI->hasFnAttr("modular-format"))
4301 return nullptr;
4302
4304 llvm::split(CI->getFnAttr("modular-format").getValueAsString(), ','));
4305 // TODO: Make use of the first two arguments
4306 unsigned FirstArgIdx;
4307 [[maybe_unused]] bool Error;
4308 Error = Args[2].getAsInteger(10, FirstArgIdx);
4309 assert(!Error && "invalid first arg index");
4310 --FirstArgIdx;
4311 StringRef FnName = Args[3];
4312 StringRef ImplName = Args[4];
4314
4315 if (AllAspects.empty())
4316 return nullptr;
4317
4318 SmallVector<StringRef> NeededAspects;
4319 for (StringRef Aspect : AllAspects) {
4320 if (Aspect == "float") {
4321 if (llvm::any_of(
4322 llvm::make_range(std::next(CI->arg_begin(), FirstArgIdx),
4323 CI->arg_end()),
4324 [](Value *V) { return V->getType()->isFloatingPointTy(); }))
4325 NeededAspects.push_back("float");
4326 } else {
4327 // Unknown aspects are always considered to be needed.
4328 NeededAspects.push_back(Aspect);
4329 }
4330 }
4331
4332 if (NeededAspects.size() == AllAspects.size())
4333 return nullptr;
4334
4335 Module *M = CI->getModule();
4336 LLVMContext &Ctx = M->getContext();
4337 Function *Callee = CI->getCalledFunction();
4338 FunctionCallee ModularFn = M->getOrInsertFunction(
4339 FnName, Callee->getFunctionType(),
4340 Callee->getAttributes().removeFnAttribute(Ctx, "modular-format"));
4341 CallInst *New = cast<CallInst>(CI->clone());
4342 New->setCalledFunction(ModularFn);
4343 New->removeFnAttr("modular-format");
4344 B.Insert(New);
4345
4346 const auto ReferenceAspect = [&](StringRef Aspect) {
4347 SmallString<20> Name = ImplName;
4348 Name += '_';
4349 Name += Aspect;
4350 Function *RelocNoneFn =
4351 Intrinsic::getOrInsertDeclaration(M, Intrinsic::reloc_none);
4352 B.CreateCall(RelocNoneFn,
4353 {MetadataAsValue::get(Ctx, MDString::get(Ctx, Name))});
4354 };
4355
4356 llvm::sort(NeededAspects);
4357 for (StringRef Request : NeededAspects)
4358 ReferenceAspect(Request);
4359
4360 return New;
4361}
4362
4363Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
4364 if (!CI->getCalledFunction()) return nullptr;
4365
4366 // Skip optimizing notail and musttail calls so
4367 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
4368 // LibCallSimplifier::optimizeCall should try to preserve tail calls though.
4369 if (CI->isMustTailCall() || CI->isNoTailCall())
4370 return nullptr;
4371
4372 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4373 replaceInstUsesWith(*From, With);
4374 };
4375 auto InstCombineErase = [this](Instruction *I) {
4377 };
4378 LibCallSimplifier Simplifier(DL, &TLI, &DT, &DC, &AC, ORE, BFI, PSI,
4379 InstCombineRAUW, InstCombineErase);
4380 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
4381 ++NumSimplified;
4382 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4383 }
4384 if (Value *With = optimizeModularFormat(CI, Builder)) {
4385 ++NumSimplified;
4386 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4387 }
4388
4389 return nullptr;
4390}
4391
4393 // Strip off at most one level of pointer casts, looking for an alloca. This
4394 // is good enough in practice and simpler than handling any number of casts.
4395 Value *Underlying = TrampMem->stripPointerCasts();
4396 if (Underlying != TrampMem &&
4397 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4398 return nullptr;
4399 if (!isa<AllocaInst>(Underlying))
4400 return nullptr;
4401
4402 IntrinsicInst *InitTrampoline = nullptr;
4403 for (User *U : TrampMem->users()) {
4405 if (!II)
4406 return nullptr;
4407 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4408 if (InitTrampoline)
4409 // More than one init_trampoline writes to this value. Give up.
4410 return nullptr;
4411 InitTrampoline = II;
4412 continue;
4413 }
4414 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4415 // Allow any number of calls to adjust.trampoline.
4416 continue;
4417 return nullptr;
4418 }
4419
4420 // No call to init.trampoline found.
4421 if (!InitTrampoline)
4422 return nullptr;
4423
4424 // Check that the alloca is being used in the expected way.
4425 if (InitTrampoline->getOperand(0) != TrampMem)
4426 return nullptr;
4427
4428 return InitTrampoline;
4429}
4430
4432 Value *TrampMem) {
4433 // Visit all the previous instructions in the basic block, and try to find a
4434 // init.trampoline which has a direct path to the adjust.trampoline.
4435 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
4436 E = AdjustTramp->getParent()->begin();
4437 I != E;) {
4438 Instruction *Inst = &*--I;
4440 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4441 II->getOperand(0) == TrampMem)
4442 return II;
4443 if (Inst->mayWriteToMemory())
4444 return nullptr;
4445 }
4446 return nullptr;
4447}
4448
4449// Given a call to llvm.adjust.trampoline, find and return the corresponding
4450// call to llvm.init.trampoline if the call to the trampoline can be optimized
4451// to a direct call to a function. Otherwise return NULL.
4453 Callee = Callee->stripPointerCasts();
4454 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
4455 if (!AdjustTramp ||
4456 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4457 return nullptr;
4458
4459 Value *TrampMem = AdjustTramp->getOperand(0);
4460
4462 return IT;
4463 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
4464 return IT;
4465 return nullptr;
4466}
4467
4468Instruction *InstCombinerImpl::foldPtrAuthIntrinsicCallee(CallBase &Call) {
4469 const Value *Callee = Call.getCalledOperand();
4470 const auto *IPC = dyn_cast<IntToPtrInst>(Callee);
4471 if (!IPC || !IPC->isNoopCast(DL))
4472 return nullptr;
4473
4474 const auto *II = dyn_cast<IntrinsicInst>(IPC->getOperand(0));
4475 if (!II)
4476 return nullptr;
4477
4478 Intrinsic::ID IIID = II->getIntrinsicID();
4479 if (IIID != Intrinsic::ptrauth_resign && IIID != Intrinsic::ptrauth_sign)
4480 return nullptr;
4481
4482 // Isolate the ptrauth bundle from the others.
4483 std::optional<OperandBundleUse> PtrAuthBundleOrNone;
4485 for (unsigned BI = 0, BE = Call.getNumOperandBundles(); BI != BE; ++BI) {
4486 OperandBundleUse Bundle = Call.getOperandBundleAt(BI);
4487 if (Bundle.getTagID() == LLVMContext::OB_ptrauth)
4488 PtrAuthBundleOrNone = Bundle;
4489 else
4490 NewBundles.emplace_back(Bundle);
4491 }
4492
4493 if (!PtrAuthBundleOrNone)
4494 return nullptr;
4495
4496 Value *NewCallee = nullptr;
4497 switch (IIID) {
4498 // call(ptrauth.resign(p)), ["ptrauth"()] -> call p, ["ptrauth"()]
4499 // assuming the call bundle and the sign operands match.
4500 case Intrinsic::ptrauth_resign: {
4501 // Resign result key should match bundle.
4502 if (II->getOperand(3) != PtrAuthBundleOrNone->Inputs[0])
4503 return nullptr;
4504 // Resign result discriminator should match bundle.
4505 if (II->getOperand(4) != PtrAuthBundleOrNone->Inputs[1])
4506 return nullptr;
4507
4508 // Resign input (auth) key should also match: we can't change the key on
4509 // the new call we're generating, because we don't know what keys are valid.
4510 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4511 return nullptr;
4512
4513 Value *NewBundleOps[] = {II->getOperand(1), II->getOperand(2)};
4514 NewBundles.emplace_back("ptrauth", NewBundleOps);
4515 NewCallee = II->getOperand(0);
4516 break;
4517 }
4518
4519 // call(ptrauth.sign(p)), ["ptrauth"()] -> call p
4520 // assuming the call bundle and the sign operands match.
4521 // Non-ptrauth indirect calls are undesirable, but so is ptrauth.sign.
4522 case Intrinsic::ptrauth_sign: {
4523 // Sign key should match bundle.
4524 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4525 return nullptr;
4526 // Sign discriminator should match bundle.
4527 if (II->getOperand(2) != PtrAuthBundleOrNone->Inputs[1])
4528 return nullptr;
4529 NewCallee = II->getOperand(0);
4530 break;
4531 }
4532 default:
4533 llvm_unreachable("unexpected intrinsic ID");
4534 }
4535
4536 if (!NewCallee)
4537 return nullptr;
4538
4539 NewCallee = Builder.CreateBitOrPointerCast(NewCallee, Callee->getType());
4540 CallBase *NewCall = CallBase::Create(&Call, NewBundles);
4541 NewCall->setCalledOperand(NewCallee);
4542 return NewCall;
4543}
4544
4545Instruction *InstCombinerImpl::foldPtrAuthConstantCallee(CallBase &Call) {
4547 if (!CPA)
4548 return nullptr;
4549
4550 auto *CalleeF = dyn_cast<Function>(CPA->getPointer());
4551 // If the ptrauth constant isn't based on a function pointer, bail out.
4552 if (!CalleeF)
4553 return nullptr;
4554
4555 // Inspect the call ptrauth bundle to check it matches the ptrauth constant.
4557 if (!PAB)
4558 return nullptr;
4559
4560 auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
4561 Value *Discriminator = PAB->Inputs[1];
4562
4563 // If the bundle doesn't match, this is probably going to fail to auth.
4564 if (!CPA->isKnownCompatibleWith(Key, Discriminator, DL))
4565 return nullptr;
4566
4567 // If the bundle matches the constant, proceed in making this a direct call.
4569 NewCall->setCalledOperand(CalleeF);
4570 return NewCall;
4571}
4572
4573bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
4574 const TargetLibraryInfo *TLI) {
4575 // Note: We only handle cases which can't be driven from generic attributes
4576 // here. So, for example, nonnull and noalias (which are common properties
4577 // of some allocation functions) are expected to be handled via annotation
4578 // of the respective allocator declaration with generic attributes.
4579 bool Changed = false;
4580
4581 if (!Call.getType()->isPointerTy())
4582 return Changed;
4583
4584 std::optional<APInt> Size = getAllocSize(&Call, TLI);
4585 if (Size && *Size != 0) {
4586 // TODO: We really should just emit deref_or_null here and then
4587 // let the generic inference code combine that with nonnull.
4588 if (Call.hasRetAttr(Attribute::NonNull)) {
4589 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
4591 Call.getContext(), Size->getLimitedValue()));
4592 } else {
4593 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
4595 Call.getContext(), Size->getLimitedValue()));
4596 }
4597 }
4598
4599 // Add alignment attribute if alignment is a power of two constant.
4600 Value *Alignment = getAllocAlignment(&Call, TLI);
4601 if (!Alignment)
4602 return Changed;
4603
4604 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
4605 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
4606 uint64_t AlignmentVal = AlignOpC->getZExtValue();
4607 if (llvm::isPowerOf2_64(AlignmentVal)) {
4608 Align ExistingAlign = Call.getRetAlign().valueOrOne();
4609 Align NewAlign = Align(AlignmentVal);
4610 if (NewAlign > ExistingAlign) {
4613 Changed = true;
4614 }
4615 }
4616 }
4617 return Changed;
4618}
4619
4620/// Improvements for call, callbr and invoke instructions.
4621Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
4622 bool Changed = annotateAnyAllocSite(Call, &TLI);
4623
4624 // Mark any parameters that are known to be non-null with the nonnull
4625 // attribute. This is helpful for inlining calls to functions with null
4626 // checks on their arguments.
4627 SmallVector<unsigned, 4> ArgNos;
4628 unsigned ArgNo = 0;
4629
4630 for (Value *V : Call.args()) {
4631 if (V->getType()->isPointerTy()) {
4632 // Simplify the nonnull operand if the parameter is known to be nonnull.
4633 // Otherwise, try to infer nonnull for it.
4634 bool HasDereferenceable = Call.getParamDereferenceableBytes(ArgNo) > 0;
4635 if (Call.paramHasAttr(ArgNo, Attribute::NonNull) ||
4636 (HasDereferenceable &&
4638 V->getType()->getPointerAddressSpace()))) {
4639 if (Value *Res = simplifyNonNullOperand(V, HasDereferenceable)) {
4640 replaceOperand(Call, ArgNo, Res);
4641 Changed = true;
4642 }
4643 } else if (isKnownNonZero(V,
4644 getSimplifyQuery().getWithInstruction(&Call))) {
4645 ArgNos.push_back(ArgNo);
4646 }
4647 }
4648 ArgNo++;
4649 }
4650
4651 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
4652
4653 if (!ArgNos.empty()) {
4654 AttributeList AS = Call.getAttributes();
4655 LLVMContext &Ctx = Call.getContext();
4656 AS = AS.addParamAttribute(Ctx, ArgNos,
4657 Attribute::get(Ctx, Attribute::NonNull));
4658 Call.setAttributes(AS);
4659 Changed = true;
4660 }
4661
4662 // If the callee is a pointer to a function, attempt to move any casts to the
4663 // arguments of the call/callbr/invoke.
4665 Function *CalleeF = dyn_cast<Function>(Callee);
4666 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
4667 transformConstExprCastCall(Call))
4668 return nullptr;
4669
4670 if (CalleeF) {
4671 // Remove the convergent attr on calls when the callee is not convergent.
4672 if (Call.isConvergent() && !CalleeF->isConvergent() &&
4673 !CalleeF->isIntrinsic()) {
4674 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4675 << "\n");
4677 return &Call;
4678 }
4679
4680 // If the call and callee calling conventions don't match, and neither one
4681 // of the calling conventions is compatible with C calling convention
4682 // this call must be unreachable, as the call is undefined.
4683 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
4684 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
4688 // Only do this for calls to a function with a body. A prototype may
4689 // not actually end up matching the implementation's calling conv for a
4690 // variety of reasons (e.g. it may be written in assembly).
4691 !CalleeF->isDeclaration()) {
4692 Instruction *OldCall = &Call;
4694 // If OldCall does not return void then replaceInstUsesWith poison.
4695 // This allows ValueHandlers and custom metadata to adjust itself.
4696 if (!OldCall->getType()->isVoidTy())
4697 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
4698 if (isa<CallInst>(OldCall))
4699 return eraseInstFromFunction(*OldCall);
4700
4701 // We cannot remove an invoke or a callbr, because it would change thexi
4702 // CFG, just change the callee to a null pointer.
4703 cast<CallBase>(OldCall)->setCalledFunction(
4704 CalleeF->getFunctionType(),
4705 Constant::getNullValue(CalleeF->getType()));
4706 return nullptr;
4707 }
4708 }
4709
4710 // Calling a null function pointer is undefined if a null address isn't
4711 // dereferenceable.
4712 if ((isa<ConstantPointerNull>(Callee) &&
4714 isa<UndefValue>(Callee)) {
4715 // If Call does not return void then replaceInstUsesWith poison.
4716 // This allows ValueHandlers and custom metadata to adjust itself.
4717 if (!Call.getType()->isVoidTy())
4719
4720 if (Call.isTerminator()) {
4721 // Can't remove an invoke or callbr because we cannot change the CFG.
4722 return nullptr;
4723 }
4724
4725 // This instruction is not reachable, just remove it.
4728 }
4729
4730 if (IntrinsicInst *II = findInitTrampoline(Callee))
4731 return transformCallThroughTrampoline(Call, *II);
4732
4733 // Combine calls involving pointer authentication intrinsics.
4734 if (Instruction *NewCall = foldPtrAuthIntrinsicCallee(Call))
4735 return NewCall;
4736
4737 // Combine calls to ptrauth constants.
4738 if (Instruction *NewCall = foldPtrAuthConstantCallee(Call))
4739 return NewCall;
4740
4741 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4742 InlineAsm *IA = cast<InlineAsm>(Callee);
4743 if (!IA->canThrow()) {
4744 // Normal inline asm calls cannot throw - mark them
4745 // 'nounwind'.
4747 Changed = true;
4748 }
4749 }
4750
4751 // Try to optimize the call if possible, we require DataLayout for most of
4752 // this. None of these calls are seen as possibly dead so go ahead and
4753 // delete the instruction now.
4754 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4755 Instruction *I = tryOptimizeCall(CI);
4756 // If we changed something return the result, etc. Otherwise let
4757 // the fallthrough check.
4758 if (I) return eraseInstFromFunction(*I);
4759 }
4760
4761 if (!Call.use_empty() && !Call.isMustTailCall())
4762 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
4763 Type *CallTy = Call.getType();
4764 Type *RetArgTy = ReturnedArg->getType();
4765 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
4766 return replaceInstUsesWith(
4767 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4768 }
4769
4770 // Drop unnecessary callee_type metadata from calls that were converted
4771 // into direct calls.
4772 if (Call.getMetadata(LLVMContext::MD_callee_type) && !Call.isIndirectCall()) {
4773 Call.setMetadata(LLVMContext::MD_callee_type, nullptr);
4774 Changed = true;
4775 }
4776
4777 // Drop unnecessary kcfi operand bundles from calls that were converted
4778 // into direct calls.
4780 if (Bundle && !Call.isIndirectCall()) {
4781 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
4782 if (CalleeF) {
4783 ConstantInt *FunctionType = nullptr;
4784 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
4785
4786 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
4787 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
4788
4789 if (FunctionType &&
4790 FunctionType->getZExtValue() != ExpectedType->getZExtValue())
4791 dbgs() << Call.getModule()->getName()
4792 << ": warning: kcfi: " << Call.getCaller()->getName()
4793 << ": call to " << CalleeF->getName()
4794 << " using a mismatching function pointer type\n";
4795 }
4796 });
4797
4799 }
4800
4801 if (isRemovableAlloc(&Call, &TLI))
4802 return visitAllocSite(Call);
4803
4804 // Handle intrinsics which can be used in both call and invoke context.
4805 switch (Call.getIntrinsicID()) {
4806 case Intrinsic::experimental_gc_statepoint: {
4807 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
4808 SmallPtrSet<Value *, 32> LiveGcValues;
4809 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4810 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4811
4812 // Remove the relocation if unused.
4813 if (GCR.use_empty()) {
4815 continue;
4816 }
4817
4818 Value *DerivedPtr = GCR.getDerivedPtr();
4819 Value *BasePtr = GCR.getBasePtr();
4820
4821 // Undef is undef, even after relocation.
4822 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
4825 continue;
4826 }
4827
4828 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
4829 // The relocation of null will be null for most any collector.
4830 // TODO: provide a hook for this in GCStrategy. There might be some
4831 // weird collector this property does not hold for.
4832 if (isa<ConstantPointerNull>(DerivedPtr)) {
4833 // Use null-pointer of gc_relocate's type to replace it.
4836 continue;
4837 }
4838
4839 // isKnownNonNull -> nonnull attribute
4840 if (!GCR.hasRetAttr(Attribute::NonNull) &&
4841 isKnownNonZero(DerivedPtr,
4842 getSimplifyQuery().getWithInstruction(&Call))) {
4843 GCR.addRetAttr(Attribute::NonNull);
4844 // We discovered new fact, re-check users.
4845 Worklist.pushUsersToWorkList(GCR);
4846 }
4847 }
4848
4849 // If we have two copies of the same pointer in the statepoint argument
4850 // list, canonicalize to one. This may let us common gc.relocates.
4851 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
4852 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
4853 auto *OpIntTy = GCR.getOperand(2)->getType();
4854 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
4855 }
4856
4857 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4858 // Canonicalize on the type from the uses to the defs
4859
4860 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4861 LiveGcValues.insert(BasePtr);
4862 LiveGcValues.insert(DerivedPtr);
4863 }
4864 std::optional<OperandBundleUse> Bundle =
4866 unsigned NumOfGCLives = LiveGcValues.size();
4867 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4868 break;
4869 // We can reduce the size of gc live bundle.
4870 DenseMap<Value *, unsigned> Val2Idx;
4871 std::vector<Value *> NewLiveGc;
4872 for (Value *V : Bundle->Inputs) {
4873 auto [It, Inserted] = Val2Idx.try_emplace(V);
4874 if (!Inserted)
4875 continue;
4876 if (LiveGcValues.count(V)) {
4877 It->second = NewLiveGc.size();
4878 NewLiveGc.push_back(V);
4879 } else
4880 It->second = NumOfGCLives;
4881 }
4882 // Update all gc.relocates
4883 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4884 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4885 Value *BasePtr = GCR.getBasePtr();
4886 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4887 "Missed live gc for base pointer");
4888 auto *OpIntTy1 = GCR.getOperand(1)->getType();
4889 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4890 Value *DerivedPtr = GCR.getDerivedPtr();
4891 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4892 "Missed live gc for derived pointer");
4893 auto *OpIntTy2 = GCR.getOperand(2)->getType();
4894 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4895 }
4896 // Create new statepoint instruction.
4897 OperandBundleDef NewBundle("gc-live", std::move(NewLiveGc));
4898 return CallBase::Create(&Call, NewBundle);
4899 }
4900 default: { break; }
4901 }
4902
4903 return Changed ? &Call : nullptr;
4904}
4905
4906/// If the callee is a constexpr cast of a function, attempt to move the cast to
4907/// the arguments of the call/invoke.
4908/// CallBrInst is not supported.
4909bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
4910 auto *Callee =
4912 if (!Callee)
4913 return false;
4914
4916 "CallBr's don't have a single point after a def to insert at");
4917
4918 // Don't perform the transform for declarations, which may not be fully
4919 // accurate. For example, void @foo() is commonly used as a placeholder for
4920 // unknown prototypes.
4921 if (Callee->isDeclaration())
4922 return false;
4923
4924 // If this is a call to a thunk function, don't remove the cast. Thunks are
4925 // used to transparently forward all incoming parameters and outgoing return
4926 // values, so it's important to leave the cast in place.
4927 if (Callee->hasFnAttribute("thunk"))
4928 return false;
4929
4930 // If this is a call to a naked function, the assembly might be
4931 // using an argument, or otherwise rely on the frame layout,
4932 // the function prototype will mismatch.
4933 if (Callee->hasFnAttribute(Attribute::Naked))
4934 return false;
4935
4936 // If this is a musttail call, the callee's prototype must match the caller's
4937 // prototype with the exception of pointee types. The code below doesn't
4938 // implement that, so we can't do this transform.
4939 // TODO: Do the transform if it only requires adding pointer casts.
4940 if (Call.isMustTailCall())
4941 return false;
4942
4944 const AttributeList &CallerPAL = Call.getAttributes();
4945
4946 // Okay, this is a cast from a function to a different type. Unless doing so
4947 // would cause a type conversion of one of our arguments, change this call to
4948 // be a direct call with arguments casted to the appropriate types.
4949 FunctionType *FT = Callee->getFunctionType();
4950 Type *OldRetTy = Caller->getType();
4951 Type *NewRetTy = FT->getReturnType();
4952
4953 // Check to see if we are changing the return type...
4954 if (OldRetTy != NewRetTy) {
4955
4956 if (NewRetTy->isStructTy())
4957 return false; // TODO: Handle multiple return values.
4958
4959 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4960 if (!Caller->use_empty())
4961 return false; // Cannot transform this return value.
4962 }
4963
4964 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4965 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4966 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(
4967 NewRetTy, CallerPAL.getRetAttrs())))
4968 return false; // Attribute not compatible with transformed value.
4969 }
4970
4971 // If the callbase is an invoke instruction, and the return value is
4972 // used by a PHI node in a successor, we cannot change the return type of
4973 // the call because there is no place to put the cast instruction (without
4974 // breaking the critical edge). Bail out in this case.
4975 if (!Caller->use_empty()) {
4976 BasicBlock *PhisNotSupportedBlock = nullptr;
4977 if (auto *II = dyn_cast<InvokeInst>(Caller))
4978 PhisNotSupportedBlock = II->getNormalDest();
4979 if (PhisNotSupportedBlock)
4980 for (User *U : Caller->users())
4981 if (PHINode *PN = dyn_cast<PHINode>(U))
4982 if (PN->getParent() == PhisNotSupportedBlock)
4983 return false;
4984 }
4985 }
4986
4987 unsigned NumActualArgs = Call.arg_size();
4988 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4989
4990 // Prevent us turning:
4991 // declare void @takes_i32_inalloca(i32* inalloca)
4992 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4993 //
4994 // into:
4995 // call void @takes_i32_inalloca(i32* null)
4996 //
4997 // Similarly, avoid folding away bitcasts of byval calls.
4998 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4999 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
5000 return false;
5001
5002 auto AI = Call.arg_begin();
5003 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
5004 Type *ParamTy = FT->getParamType(i);
5005 Type *ActTy = (*AI)->getType();
5006
5007 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
5008 return false; // Cannot transform this parameter value.
5009
5010 // Check if there are any incompatible attributes we cannot drop safely.
5011 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
5012 .overlaps(AttributeFuncs::typeIncompatible(
5013 ParamTy, CallerPAL.getParamAttrs(i),
5014 AttributeFuncs::ASK_UNSAFE_TO_DROP)))
5015 return false; // Attribute not compatible with transformed value.
5016
5017 if (Call.isInAllocaArgument(i) ||
5018 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
5019 return false; // Cannot transform to and from inalloca/preallocated.
5020
5021 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
5022 return false;
5023
5024 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
5025 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
5026 return false; // Cannot transform to or from byval.
5027 }
5028
5029 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
5030 !CallerPAL.isEmpty()) {
5031 // In this case we have more arguments than the new function type, but we
5032 // won't be dropping them. Check that these extra arguments have attributes
5033 // that are compatible with being a vararg call argument.
5034 unsigned SRetIdx;
5035 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
5036 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
5037 return false;
5038 }
5039
5040 // Okay, we decided that this is a safe thing to do: go ahead and start
5041 // inserting cast instructions as necessary.
5042 SmallVector<Value *, 8> Args;
5044 Args.reserve(NumActualArgs);
5045 ArgAttrs.reserve(NumActualArgs);
5046
5047 // Get any return attributes.
5048 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
5049
5050 // If the return value is not being used, the type may not be compatible
5051 // with the existing attributes. Wipe out any problematic attributes.
5052 RAttrs.remove(
5053 AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs()));
5054
5055 LLVMContext &Ctx = Call.getContext();
5056 AI = Call.arg_begin();
5057 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
5058 Type *ParamTy = FT->getParamType(i);
5059
5060 Value *NewArg = *AI;
5061 if ((*AI)->getType() != ParamTy)
5062 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
5063 Args.push_back(NewArg);
5064
5065 // Add any parameter attributes except the ones incompatible with the new
5066 // type. Note that we made sure all incompatible ones are safe to drop.
5067 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
5068 ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP);
5069 ArgAttrs.push_back(
5070 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
5071 }
5072
5073 // If the function takes more arguments than the call was taking, add them
5074 // now.
5075 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
5076 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
5077 ArgAttrs.push_back(AttributeSet());
5078 }
5079
5080 // If we are removing arguments to the function, emit an obnoxious warning.
5081 if (FT->getNumParams() < NumActualArgs) {
5082 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
5083 if (FT->isVarArg()) {
5084 // Add all of the arguments in their promoted form to the arg list.
5085 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
5086 Type *PTy = getPromotedType((*AI)->getType());
5087 Value *NewArg = *AI;
5088 if (PTy != (*AI)->getType()) {
5089 // Must promote to pass through va_arg area!
5090 Instruction::CastOps opcode =
5091 CastInst::getCastOpcode(*AI, false, PTy, false);
5092 NewArg = Builder.CreateCast(opcode, *AI, PTy);
5093 }
5094 Args.push_back(NewArg);
5095
5096 // Add any parameter attributes.
5097 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
5098 }
5099 }
5100 }
5101
5102 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
5103
5104 if (NewRetTy->isVoidTy())
5105 Caller->setName(""); // Void type should not have a name.
5106
5107 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
5108 "missing argument attributes");
5109 AttributeList NewCallerPAL = AttributeList::get(
5110 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
5111
5113 Call.getOperandBundlesAsDefs(OpBundles);
5114
5115 CallBase *NewCall;
5116 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
5117 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
5118 II->getUnwindDest(), Args, OpBundles);
5119 } else {
5120 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
5121 cast<CallInst>(NewCall)->setTailCallKind(
5122 cast<CallInst>(Caller)->getTailCallKind());
5123 }
5124 NewCall->takeName(Caller);
5126 NewCall->setAttributes(NewCallerPAL);
5127
5128 // Preserve prof metadata if any.
5129 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
5130
5131 // Insert a cast of the return type as necessary.
5132 Instruction *NC = NewCall;
5133 Value *NV = NC;
5134 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
5135 assert(!NV->getType()->isVoidTy());
5137 NC->setDebugLoc(Caller->getDebugLoc());
5138
5139 auto OptInsertPt = NewCall->getInsertionPointAfterDef();
5140 assert(OptInsertPt && "No place to insert cast");
5141 InsertNewInstBefore(NC, *OptInsertPt);
5142 Worklist.pushUsersToWorkList(*Caller);
5143 }
5144
5145 if (!Caller->use_empty())
5146 replaceInstUsesWith(*Caller, NV);
5147 else if (Caller->hasValueHandle()) {
5148 if (OldRetTy == NV->getType())
5150 else
5151 // We cannot call ValueIsRAUWd with a different type, and the
5152 // actual tracked value will disappear.
5154 }
5155
5156 eraseInstFromFunction(*Caller);
5157 return true;
5158}
5159
5160/// Turn a call to a function created by init_trampoline / adjust_trampoline
5161/// intrinsic pair into a direct call to the underlying function.
5163InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
5164 IntrinsicInst &Tramp) {
5165 FunctionType *FTy = Call.getFunctionType();
5166 AttributeList Attrs = Call.getAttributes();
5167
5168 // If the call already has the 'nest' attribute somewhere then give up -
5169 // otherwise 'nest' would occur twice after splicing in the chain.
5170 if (Attrs.hasAttrSomewhere(Attribute::Nest))
5171 return nullptr;
5172
5174 FunctionType *NestFTy = NestF->getFunctionType();
5175
5176 AttributeList NestAttrs = NestF->getAttributes();
5177 if (!NestAttrs.isEmpty()) {
5178 unsigned NestArgNo = 0;
5179 Type *NestTy = nullptr;
5180 AttributeSet NestAttr;
5181
5182 // Look for a parameter marked with the 'nest' attribute.
5183 for (FunctionType::param_iterator I = NestFTy->param_begin(),
5184 E = NestFTy->param_end();
5185 I != E; ++NestArgNo, ++I) {
5186 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
5187 if (AS.hasAttribute(Attribute::Nest)) {
5188 // Record the parameter type and any other attributes.
5189 NestTy = *I;
5190 NestAttr = AS;
5191 break;
5192 }
5193 }
5194
5195 if (NestTy) {
5196 std::vector<Value*> NewArgs;
5197 std::vector<AttributeSet> NewArgAttrs;
5198 NewArgs.reserve(Call.arg_size() + 1);
5199 NewArgAttrs.reserve(Call.arg_size());
5200
5201 // Insert the nest argument into the call argument list, which may
5202 // mean appending it. Likewise for attributes.
5203
5204 {
5205 unsigned ArgNo = 0;
5206 auto I = Call.arg_begin(), E = Call.arg_end();
5207 do {
5208 if (ArgNo == NestArgNo) {
5209 // Add the chain argument and attributes.
5210 Value *NestVal = Tramp.getArgOperand(2);
5211 if (NestVal->getType() != NestTy)
5212 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
5213 NewArgs.push_back(NestVal);
5214 NewArgAttrs.push_back(NestAttr);
5215 }
5216
5217 if (I == E)
5218 break;
5219
5220 // Add the original argument and attributes.
5221 NewArgs.push_back(*I);
5222 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
5223
5224 ++ArgNo;
5225 ++I;
5226 } while (true);
5227 }
5228
5229 // The trampoline may have been bitcast to a bogus type (FTy).
5230 // Handle this by synthesizing a new function type, equal to FTy
5231 // with the chain parameter inserted.
5232
5233 std::vector<Type*> NewTypes;
5234 NewTypes.reserve(FTy->getNumParams()+1);
5235
5236 // Insert the chain's type into the list of parameter types, which may
5237 // mean appending it.
5238 {
5239 unsigned ArgNo = 0;
5240 FunctionType::param_iterator I = FTy->param_begin(),
5241 E = FTy->param_end();
5242
5243 do {
5244 if (ArgNo == NestArgNo)
5245 // Add the chain's type.
5246 NewTypes.push_back(NestTy);
5247
5248 if (I == E)
5249 break;
5250
5251 // Add the original type.
5252 NewTypes.push_back(*I);
5253
5254 ++ArgNo;
5255 ++I;
5256 } while (true);
5257 }
5258
5259 // Replace the trampoline call with a direct call. Let the generic
5260 // code sort out any function type mismatches.
5261 FunctionType *NewFTy =
5262 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
5263 AttributeList NewPAL =
5264 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
5265 Attrs.getRetAttrs(), NewArgAttrs);
5266
5268 Call.getOperandBundlesAsDefs(OpBundles);
5269
5270 Instruction *NewCaller;
5271 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
5272 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
5273 II->getUnwindDest(), NewArgs, OpBundles);
5274 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
5275 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
5276 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
5277 NewCaller =
5278 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
5279 CBI->getIndirectDests(), NewArgs, OpBundles);
5280 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
5281 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
5282 } else {
5283 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
5284 cast<CallInst>(NewCaller)->setTailCallKind(
5285 cast<CallInst>(Call).getTailCallKind());
5286 cast<CallInst>(NewCaller)->setCallingConv(
5287 cast<CallInst>(Call).getCallingConv());
5288 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
5289 }
5290 NewCaller->setDebugLoc(Call.getDebugLoc());
5291
5292 return NewCaller;
5293 }
5294 }
5295
5296 // Replace the trampoline call with a direct call. Since there is no 'nest'
5297 // parameter, there is no need to adjust the argument list. Let the generic
5298 // code sort out any function type mismatches.
5299 Call.setCalledFunction(FTy, NestF);
5300 return &Call;
5301}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
@ Scaled
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
BitTracker BT
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
#define Check(C,...)
#define DEBUG_TYPE
IRTranslator LLVM IR MI
static Type * getPromotedType(Type *Ty)
Return the specified type promoted as it would be to pass though a va_arg area.
static Instruction * createOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
static IntrinsicInst * findInitTrampolineFromAlloca(Value *TrampMem)
static bool removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, std::function< bool(const IntrinsicInst &)> IsStart)
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty)
static Instruction * reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If this min/max has a matching min/max operand with a constant, try to push the constant operand into...
static bool isIdempotentBinaryIntrinsic(Intrinsic::ID IID)
Helper to match idempotent binary intrinsics, namely, intrinsics where f(f(x, y), y) == f(x,...
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, const SimplifyQuery &SQ)
Return true if two values Op0 and Op1 are known to have the same sign.
static Value * optimizeModularFormat(CallInst *CI, IRBuilderBase &B)
static Instruction * moveAddAfterMinMax(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0.
static Instruction * simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombinerImpl &IC)
This function transforms launder.invariant.group and strip.invariant.group like: launder(launder(x)) ...
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands)
static std::optional< bool > getKnownSign(Value *Op, const SimplifyQuery &SQ)
static cl::opt< unsigned > GuardWideningWindow("instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard"))
static bool hasUndefSource(AnyMemTransferInst *MI)
Recognize a memcpy/memmove from a trivially otherwise unused alloca.
static Instruction * factorizeMinMaxTree(IntrinsicInst *II)
Reduce a sequence of min/max intrinsics with a common operand.
static Instruction * foldClampRangeOfTwo(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If we have a clamp pattern like max (min X, 42), 41 – where the output can only be one of two possibl...
static Value * simplifyReductionOperand(Value *Arg, bool CanReorderLanes)
static IntrinsicInst * findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem)
static Value * foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
static std::optional< bool > getKnownSignOrZero(Value *Op, const SimplifyQuery &SQ)
static Value * foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, const DataLayout &DL, InstCombiner::BuilderTy &Builder)
Fold an unsigned minimum of trailing or leading zero bits counts: umin(cttz(CtOp1,...
static Value * foldIdempotentBinaryIntrinsicRecurrence(InstCombinerImpl &IC, IntrinsicInst *II)
Attempt to simplify value-accumulating recurrences of kind: umax.acc = phi i8 [ umax,...
static Instruction * foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC)
static Instruction * simplifyNeonTbl(IntrinsicInst &II, InstCombiner &IC, bool IsExtension)
Convert tbl/tbx intrinsics to shufflevector if the mask is constant, and at most two source operands ...
static Instruction * foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC)
static IntrinsicInst * findInitTrampoline(Value *Callee)
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, const Function &F, Type *Ty)
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
static Value * reassociateMinMaxWithConstants(IntrinsicInst *II, IRBuilderBase &Builder, const SimplifyQuery &SQ)
If this min/max has a constant operand and an operand that is a matching min/max with a constant oper...
static CallInst * canonicalizeConstantArg0ToArg1(CallInst &Call)
static Instruction * foldNeonShift(IntrinsicInst *II, InstCombinerImpl &IC)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool inputDenormalIsIEEE(DenormalMode Mode)
Return true if it's possible to assume IEEE treatment of input denormals in F for Val.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static const Function * getCalledFunction(const Value *V)
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
bool isNegative() const
Definition APFloat.h:1512
void clearSign()
Definition APFloat.h:1361
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1151
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:230
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1959
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1677
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1497
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1939
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1946
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2047
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1952
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
Definition APSInt.h:312
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
Definition APSInt.h:304
This class represents any memset intrinsic.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:195
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
static LLVM_ABI AttributeSet get(LLVMContext &C, const AttrBuilder &B)
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes)
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
InstListType::reverse_iterator reverse_iterator
Definition BasicBlock.h:172
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:236
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:279
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:294
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:244
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:248
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:240
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setCallingConv(CallingConv::ID CC)
void setDoesNotThrow()
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isInAllocaArgument(unsigned ArgNo) const
Determine whether this argument is passed in an alloca.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
void setNotConvergent()
Value * getCalledOperand() const
void setAttributes(AttributeList A)
Set the attributes for this call.
Attribute getFnAttr(StringRef Kind) const
Get the attribute of a given kind for the function.
bool doesNotThrow() const
Determine if the call cannot unwind.
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
Value * getReturnedArgOperand() const
If one of the arguments has the 'returned' attribute, returns its operand value.
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
bool isMustTailCall() const
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:679
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:681
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:684
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:692
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition InstrTypes.h:871
Predicate getUnorderedPredicate() const
Definition InstrTypes.h:811
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition Constants.h:269
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc, Constant *DeactivationSymbol)
Return a pointer signed with the specified parameters.
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
LLVM_ABI ConstantRange zextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Record of a variable value-assignment, aka a non instruction representation of the dbg....
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
unsigned size() const
Definition DenseMap.h:110
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition DenseMap.h:174
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
Definition IRBuilder.h:107
This class represents an extension of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Type::subtype_iterator param_iterator
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool isConvergent() const
Determine if the call is convergent.
Definition Function.h:610
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
LLVM_ABI Value * getBasePtr() const
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
LLVM_ABI Value * getDerivedPtr() const
unsigned getDerivedPtrIndex() const
The index into the associate statepoint's argument list which contains the pointer whose relocation t...
std::vector< const GCRelocateInst * > getGCRelocates() const
Get list of all gc reloactes linked to this statepoint May contain several relocations for the same b...
Definition Statepoint.h:206
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition Value.h:576
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition Globals.cpp:328
PointerType * getType() const
Global values are always pointers.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
LLVM_ABI Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition IRBuilder.h:502
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2053
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition IRBuilder.h:2575
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2410
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2180
LLVM_ABI Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * SimplifyAnyMemSet(AnyMemSetInst *MI)
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitCallBrInst(CallBrInst &CBI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Value * foldReversedIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are reverses, try to pull the reverse after the intrinsic.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * visitFenceInst(FenceInst &FI)
Instruction * foldShuffledIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are unary shuffles with the same mask, try to shuffle after the int...
Instruction * visitInvokeInst(InvokeInst &II)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitVAEndInst(VAEndInst &I)
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * SimplifyAnyMemTransfer(AnyMemTransferInst *MI)
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * visitCallInst(CallInst &CI)
CallInst simplification.
The core instruction combiner logic.
SimplifyQuery SQ
unsigned ComputeMaxSignificantBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
DominatorTree & getDominatorTree() const
BlockFrequencyInfo * BFI
TargetLibraryInfo & TLI
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
const DataLayout & DL
DomConditionCache DC
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
DominatorTree & DT
ProfileSummaryInfo * PSI
BuilderTy & Builder
AssumptionCache & getAssumptionCache() const
OptimizationRemarkEmitter & ORE
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool isTerminator() const
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI std::optional< InstListType::iterator > getInsertionPointAfterDef()
Get the first insertion point at which the result of this instruction is defined.
LLVM_ABI bool isIdenticalTo(const Instruction *I) const LLVM_READONLY
Return true if the specified instruction is exactly identical to the current one.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Metadata node.
Definition Metadata.h:1078
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:614
static LLVM_ABI MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition Metadata.cpp:110
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
StringRef getName() const
Get a short "name" for the module.
Definition Module.h:269
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition Operator.h:43
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
bool isCommutative() const
Return true if the instruction is commutative.
Definition Operator.h:128
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
SmallBitVector & set()
bool test(unsigned Idx) const
bool all() const
Returns true if all bits are set.
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Class to represent struct types.
static LLVM_ABI bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
LLVM_ABI unsigned getIntegerBitWidth() const
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Definition Type.cpp:153
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:139
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:147
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Definition Use.cpp:35
void setOperand(unsigned i, Value *Val)
Definition User.h:212
Value * getOperand(unsigned i) const
Definition User.h:207
This represents the llvm.va_end intrinsic.
static LLVM_ABI void ValueIsDeleted(Value *V)
Definition Value.cpp:1233
static LLVM_ABI void ValueIsRAUWd(Value *Old, Value *New)
Definition Value.cpp:1286
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
static constexpr uint64_t MaximumAlignment
Definition Value.h:830
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
static LLVM_ABI void dropDroppableUse(Use &U)
Remove the droppable use U.
Definition Value.cpp:226
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1106
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
Definition Value.h:829
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:403
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
Definition LLVMContext.h:55
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
Definition DebugInfo.h:195
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
constexpr double e
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
LLVM_ABI cl::opt< bool > EnableKnowledgeRetention
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
LLVM_ABI RetainedKnowledge simplifyRetainedKnowledge(AssumeInst *Assume, RetainedKnowledge RK, AssumptionCache *AC, DominatorTree *DT)
canonicalize the RetainedKnowledge RK.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
LLVM_ABI Value * getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI)
Gets the alignment argument for an aligned_alloc-like function, using either built-in knowledge based...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI RetainedKnowledge getKnowledgeFromOperandInAssume(AssumeInst &Assume, unsigned Idx)
Retreive the information help by Assume on the operand at index Idx.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1706
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
LLVM_ABI bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
Definition MathExtras.h:357
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition Local.h:252
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1661
LLVM_ABI FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1606
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
auto find_if_not(R &&Range, UnaryPredicate P)
Definition STLExtras.h:1775
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
bool isAtLeastOrStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI AssumeInst * buildAssumeFromKnowledge(ArrayRef< RetainedKnowledge > Knowledge, Instruction *CtxI, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Build and return a new assume created from the provided knowledge if the knowledge in the assume is f...
LLVM_ABI FPClassTest inverse_fabs(FPClassTest Mask)
Return the test mask which returns true after fabs is applied to the value.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
iterator_range< SplittingIterator > split(StringRef Str, StringRef Separator)
Split the specified string over a separator and return a range-compatible iterable over its partition...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Mod
The access may modify the value stored in memory.
Definition ModRef.h:34
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
@ Other
Any other memory.
Definition ModRef.h:68
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1642
OperandBundleDefT< Value * > OperandBundleDef
Definition AutoUpgrade.h:34
@ Add
Sum of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
Definition Loads.cpp:249
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
LLVM_ABI std::optional< APInt > getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref< const Value *(const Value *)> Mapper=[](const Value *V) { return V;})
Return the size of the requested allocation.
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1679
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define NC
Definition regutils.h:42
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
@ IEEE
IEEE-754 denormal numbers preserved.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:245
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:277
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:292
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:251
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:283
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition KnownBits.h:289
bool isAllOnes() const
Returns true if value is all one bits.
Definition KnownBits.h:83
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
Matching combinators.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition Alignment.h:130
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
ArrayRef< Use > Inputs
Represent one information held inside an operand bundle of an llvm.assume.
Attribute::AttrKind AttrKind
SelectPatternFlavor Flavor
const DataLayout & DL
const Instruction * CxtI
SimplifyQuery getWithInstruction(const Instruction *I) const