LLVM 20.0.0git
InstCombineInternal.h
Go to the documentation of this file.
1//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10///
11/// This file provides internal interfaces used to implement the InstCombine.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17
18#include "llvm/ADT/Statistic.h"
23#include "llvm/IR/IRBuilder.h"
24#include "llvm/IR/InstVisitor.h"
26#include "llvm/IR/Value.h"
27#include "llvm/Support/Debug.h"
31#include <cassert>
32
33#define DEBUG_TYPE "instcombine"
35
36// As a default, let's assume that we want to be aggressive,
37// and attempt to traverse with no limits in attempt to sink negation.
38static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
39
40// Let's guesstimate that most often we will end up visiting/producing
41// fairly small number of new instructions.
42static constexpr unsigned NegatorMaxNodesSSO = 16;
43
44namespace llvm {
45
46class AAResults;
47class APInt;
48class AssumptionCache;
49class BlockFrequencyInfo;
50class DataLayout;
51class DominatorTree;
52class GEPOperator;
53class GlobalVariable;
54class OptimizationRemarkEmitter;
55class ProfileSummaryInfo;
56class TargetLibraryInfo;
57class User;
58
60 : public InstCombiner,
61 public InstVisitor<InstCombinerImpl, Instruction *> {
62public:
64 bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
68 ProfileSummaryInfo *PSI, const DataLayout &DL,
70 : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
71 BFI, BPI, PSI, DL, RPOT) {}
72
73 virtual ~InstCombinerImpl() = default;
74
75 /// Perform early cleanup and prepare the InstCombine worklist.
76 bool prepareWorklist(Function &F);
77
78 /// Run the combiner over the entire worklist until it is empty.
79 ///
80 /// \returns true if the IR is changed.
81 bool run();
82
83 // Visitation implementation - Implement instruction combining for different
84 // instruction types. The semantics are as follows:
85 // Return Value:
86 // null - No change was made
87 // I - Change was made, I is still valid, I may be dead though
88 // otherwise - Change was made, replace I with returned instruction
89 //
90 Instruction *visitFNeg(UnaryOperator &I);
91 Instruction *visitAdd(BinaryOperator &I);
92 Instruction *visitFAdd(BinaryOperator &I);
93 Value *OptimizePointerDifference(
94 Value *LHS, Value *RHS, Type *Ty, bool isNUW);
95 Instruction *visitSub(BinaryOperator &I);
96 Instruction *visitFSub(BinaryOperator &I);
97 Instruction *visitMul(BinaryOperator &I);
98 Instruction *foldPowiReassoc(BinaryOperator &I);
99 Instruction *foldFMulReassoc(BinaryOperator &I);
100 Instruction *visitFMul(BinaryOperator &I);
101 Instruction *visitURem(BinaryOperator &I);
102 Instruction *visitSRem(BinaryOperator &I);
103 Instruction *visitFRem(BinaryOperator &I);
104 bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
105 Instruction *commonIDivRemTransforms(BinaryOperator &I);
106 Instruction *commonIRemTransforms(BinaryOperator &I);
107 Instruction *commonIDivTransforms(BinaryOperator &I);
108 Instruction *visitUDiv(BinaryOperator &I);
109 Instruction *visitSDiv(BinaryOperator &I);
110 Instruction *visitFDiv(BinaryOperator &I);
111 Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
112 Instruction *visitAnd(BinaryOperator &I);
113 Instruction *visitOr(BinaryOperator &I);
114 bool sinkNotIntoLogicalOp(Instruction &I);
115 bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I);
116 Instruction *visitXor(BinaryOperator &I);
117 Instruction *visitShl(BinaryOperator &I);
118 Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
119 BinaryOperator *Sh0, const SimplifyQuery &SQ,
120 bool AnalyzeForSignBitExtraction = false);
121 Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
123 Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
124 BinaryOperator &OldAShr);
125 Instruction *visitAShr(BinaryOperator &I);
126 Instruction *visitLShr(BinaryOperator &I);
127 Instruction *commonShiftTransforms(BinaryOperator &I);
128 Instruction *visitFCmpInst(FCmpInst &I);
129 CmpInst *canonicalizeICmpPredicate(CmpInst &I);
130 Instruction *visitICmpInst(ICmpInst &I);
131 Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
133 Instruction *commonCastTransforms(CastInst &CI);
134 Instruction *visitTrunc(TruncInst &CI);
135 Instruction *visitZExt(ZExtInst &Zext);
136 Instruction *visitSExt(SExtInst &Sext);
137 Instruction *visitFPTrunc(FPTruncInst &CI);
138 Instruction *visitFPExt(CastInst &CI);
139 Instruction *visitFPToUI(FPToUIInst &FI);
140 Instruction *visitFPToSI(FPToSIInst &FI);
141 Instruction *visitUIToFP(CastInst &CI);
142 Instruction *visitSIToFP(CastInst &CI);
143 Instruction *visitPtrToInt(PtrToIntInst &CI);
144 Instruction *visitIntToPtr(IntToPtrInst &CI);
145 Instruction *visitBitCast(BitCastInst &CI);
146 Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
147 Instruction *foldItoFPtoI(CastInst &FI);
149 Instruction *visitCallInst(CallInst &CI);
150 Instruction *visitInvokeInst(InvokeInst &II);
151 Instruction *visitCallBrInst(CallBrInst &CBI);
152
153 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
154 Instruction *visitPHINode(PHINode &PN);
155 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
156 Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
157 Instruction *visitAllocaInst(AllocaInst &AI);
158 Instruction *visitAllocSite(Instruction &FI);
159 Instruction *visitFree(CallInst &FI, Value *FreedOp);
160 Instruction *visitLoadInst(LoadInst &LI);
161 Instruction *visitStoreInst(StoreInst &SI);
162 Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
163 Instruction *visitUnconditionalBranchInst(BranchInst &BI);
164 Instruction *visitBranchInst(BranchInst &BI);
165 Instruction *visitFenceInst(FenceInst &FI);
166 Instruction *visitSwitchInst(SwitchInst &SI);
167 Instruction *visitReturnInst(ReturnInst &RI);
168 Instruction *visitUnreachableInst(UnreachableInst &I);
170 foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
171 Instruction *visitInsertValueInst(InsertValueInst &IV);
172 Instruction *visitInsertElementInst(InsertElementInst &IE);
173 Instruction *visitExtractElementInst(ExtractElementInst &EI);
174 Instruction *simplifyBinOpSplats(ShuffleVectorInst &SVI);
175 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
176 Instruction *visitExtractValueInst(ExtractValueInst &EV);
177 Instruction *visitLandingPadInst(LandingPadInst &LI);
178 Instruction *visitVAEndInst(VAEndInst &I);
179 Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
180 bool freezeOtherUses(FreezeInst &FI);
181 Instruction *foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN);
182 Instruction *visitFreeze(FreezeInst &I);
183
184 /// Specify what to return for unhandled instructions.
186
187 /// True when DB dominates all uses of DI except UI.
188 /// UI must be in the same block as DI.
189 /// The routine checks that the DI parent and DB are different.
190 bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
191 const BasicBlock *DB) const;
192
193 /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
194 bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
195 const unsigned SIOpd);
196
197 LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
198 const Twine &Suffix = "");
199
201 FPClassTest Interested = fcAllFlags,
202 const Instruction *CtxI = nullptr,
203 unsigned Depth = 0) const {
205 Val, FMF, Interested, Depth,
206 getSimplifyQuery().getWithInstruction(CtxI));
207 }
208
210 FPClassTest Interested = fcAllFlags,
211 const Instruction *CtxI = nullptr,
212 unsigned Depth = 0) const {
214 Val, Interested, Depth, getSimplifyQuery().getWithInstruction(CtxI));
215 }
216
217 /// Check if fmul \p MulVal, +0.0 will yield +0.0 (or signed zero is
218 /// ignorable).
220 const Instruction *CtxI) const;
221
222 Constant *getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp) {
223 Constant *TruncC = ConstantExpr::getTrunc(C, TruncTy);
224 Constant *ExtTruncC =
225 ConstantFoldCastOperand(ExtOp, TruncC, C->getType(), DL);
226 if (ExtTruncC && ExtTruncC == C)
227 return TruncC;
228 return nullptr;
229 }
230
232 return getLosslessTrunc(C, TruncTy, Instruction::ZExt);
233 }
234
236 return getLosslessTrunc(C, TruncTy, Instruction::SExt);
237 }
238
239 std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
240 convertOrOfShiftsToFunnelShift(Instruction &Or);
241
242private:
243 bool annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
244 bool isDesirableIntType(unsigned BitWidth) const;
245 bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
246 bool shouldChangeType(Type *From, Type *To) const;
247 Value *dyn_castNegVal(Value *V) const;
248
249 /// Classify whether a cast is worth optimizing.
250 ///
251 /// This is a helper to decide whether the simplification of
252 /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
253 ///
254 /// \param CI The cast we are interested in.
255 ///
256 /// \return true if this cast actually results in any code being generated and
257 /// if it cannot already be eliminated by some other transformation.
258 bool shouldOptimizeCast(CastInst *CI);
259
260 /// Try to optimize a sequence of instructions checking if an operation
261 /// on LHS and RHS overflows.
262 ///
263 /// If this overflow check is done via one of the overflow check intrinsics,
264 /// then CtxI has to be the call instruction calling that intrinsic. If this
265 /// overflow check is done by arithmetic followed by a compare, then CtxI has
266 /// to be the arithmetic instruction.
267 ///
268 /// If a simplification is possible, stores the simplified result of the
269 /// operation in OperationResult and result of the overflow check in
270 /// OverflowResult, and return true. If no simplification is possible,
271 /// returns false.
272 bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
273 Value *LHS, Value *RHS,
274 Instruction &CtxI, Value *&OperationResult,
276
277 Instruction *visitCallBase(CallBase &Call);
278 Instruction *tryOptimizeCall(CallInst *CI);
279 bool transformConstExprCastCall(CallBase &Call);
280 Instruction *transformCallThroughTrampoline(CallBase &Call,
281 IntrinsicInst &Tramp);
282
283 // Return (a, b) if (LHS, RHS) is known to be (a, b) or (b, a).
284 // Otherwise, return std::nullopt
285 // Currently it matches:
286 // - LHS = (select c, a, b), RHS = (select c, b, a)
287 // - LHS = (phi [a, BB0], [b, BB1]), RHS = (phi [b, BB0], [a, BB1])
288 // - LHS = min(a, b), RHS = max(a, b)
289 std::optional<std::pair<Value *, Value *>> matchSymmetricPair(Value *LHS,
290 Value *RHS);
291
292 Value *simplifyMaskedLoad(IntrinsicInst &II);
293 Instruction *simplifyMaskedStore(IntrinsicInst &II);
294 Instruction *simplifyMaskedGather(IntrinsicInst &II);
295 Instruction *simplifyMaskedScatter(IntrinsicInst &II);
296
297 /// Transform (zext icmp) to bitwise / integer operations in order to
298 /// eliminate it.
299 ///
300 /// \param ICI The icmp of the (zext icmp) pair we are interested in.
301 /// \parem CI The zext of the (zext icmp) pair we are interested in.
302 ///
303 /// \return null if the transformation cannot be performed. If the
304 /// transformation can be performed the new instruction that replaces the
305 /// (zext icmp) pair will be returned.
306 Instruction *transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext);
307
308 Instruction *transformSExtICmp(ICmpInst *Cmp, SExtInst &Sext);
309
310 bool willNotOverflowSignedAdd(const WithCache<const Value *> &LHS,
312 const Instruction &CxtI) const {
313 return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
314 OverflowResult::NeverOverflows;
315 }
316
317 bool willNotOverflowUnsignedAdd(const WithCache<const Value *> &LHS,
318 const WithCache<const Value *> &RHS,
319 const Instruction &CxtI) const {
320 return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
321 OverflowResult::NeverOverflows;
322 }
323
324 bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
325 const Instruction &CxtI, bool IsSigned) const {
326 return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
327 : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
328 }
329
330 bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
331 const Instruction &CxtI) const {
332 return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
333 OverflowResult::NeverOverflows;
334 }
335
336 bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
337 const Instruction &CxtI) const {
338 return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
339 OverflowResult::NeverOverflows;
340 }
341
342 bool willNotOverflowSub(const Value *LHS, const Value *RHS,
343 const Instruction &CxtI, bool IsSigned) const {
344 return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
345 : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
346 }
347
348 bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
349 const Instruction &CxtI) const {
350 return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
351 OverflowResult::NeverOverflows;
352 }
353
354 bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
355 const Instruction &CxtI,
356 bool IsNSW = false) const {
357 return computeOverflowForUnsignedMul(LHS, RHS, &CxtI, IsNSW) ==
358 OverflowResult::NeverOverflows;
359 }
360
361 bool willNotOverflowMul(const Value *LHS, const Value *RHS,
362 const Instruction &CxtI, bool IsSigned) const {
363 return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
364 : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
365 }
366
367 bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
368 const Value *RHS, const Instruction &CxtI,
369 bool IsSigned) const {
370 switch (Opcode) {
371 case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
372 case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
373 case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
374 default: llvm_unreachable("Unexpected opcode for overflow query");
375 }
376 }
377
378 Value *EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP = false);
379 Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
380 Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
381 Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
382 Instruction *foldFBinOpOfIntCasts(BinaryOperator &I);
383 // Should only be called by `foldFBinOpOfIntCasts`.
384 Instruction *foldFBinOpOfIntCastsFromSign(
385 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
386 Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown);
387 Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
388 Instruction *narrowBinOp(TruncInst &Trunc);
389 Instruction *narrowMaskedBinOp(BinaryOperator &And);
390 Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
391 Instruction *narrowFunnelShift(TruncInst &Trunc);
392 Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
393 Instruction *matchSAddSubSat(IntrinsicInst &MinMax1);
394 Instruction *foldNot(BinaryOperator &I);
395 Instruction *foldBinOpOfDisplacedShifts(BinaryOperator &I);
396
397 /// Determine if a pair of casts can be replaced by a single cast.
398 ///
399 /// \param CI1 The first of a pair of casts.
400 /// \param CI2 The second of a pair of casts.
401 ///
402 /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
403 /// Instruction::CastOps value for a cast that can replace the pair, casting
404 /// CI1->getSrcTy() to CI2->getDstTy().
405 ///
406 /// \see CastInst::isEliminableCastPair
407 Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
408 const CastInst *CI2);
409 Value *simplifyIntToPtrRoundTripCast(Value *Val);
410
411 Value *foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &I,
412 bool IsAnd, bool IsLogical = false);
413 Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
414
415 Value *foldEqOfParts(Value *Cmp0, Value *Cmp1, bool IsAnd);
416
417 Value *foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, ICmpInst *ICmp2,
418 bool IsAnd);
419
420 /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
421 /// NOTE: Unlike most of instcombine, this returns a Value which should
422 /// already be inserted into the function.
423 Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd,
424 bool IsLogicalSelect = false);
425
426 Instruction *foldLogicOfIsFPClass(BinaryOperator &Operator, Value *LHS,
427 Value *RHS);
428
429 Value *foldBooleanAndOr(Value *LHS, Value *RHS, Instruction &I, bool IsAnd,
430 bool IsLogical);
431
432 Instruction *
433 canonicalizeConditionalNegationViaMathToSelect(BinaryOperator &i);
434
435 Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
436 Instruction *CxtI, bool IsAnd,
437 bool IsLogical = false);
438 Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D,
439 bool InvertFalseVal = false);
440 Value *getSelectCondition(Value *A, Value *B, bool ABIsTheSame);
441
442 Instruction *foldLShrOverflowBit(BinaryOperator &I);
443 Instruction *foldExtractOfOverflowIntrinsic(ExtractValueInst &EV);
444 Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
445 Instruction *foldIntrinsicIsFPClass(IntrinsicInst &II);
446 Instruction *foldFPSignBitOps(BinaryOperator &I);
447 Instruction *foldFDivConstantDivisor(BinaryOperator &I);
448
449 // Optimize one of these forms:
450 // and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
451 // or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
452 // into simplier select instruction using isImpliedCondition.
453 Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
454 bool IsAnd);
455
456 Instruction *hoistFNegAboveFMulFDiv(Value *FNegOp, Instruction &FMFSource);
457
458public:
459 /// Create and insert the idiom we use to indicate a block is unreachable
460 /// without having to rewrite the CFG from within InstCombine.
462 auto &Ctx = InsertAt->getContext();
463 auto *SI = new StoreInst(ConstantInt::getTrue(Ctx),
464 PoisonValue::get(PointerType::getUnqual(Ctx)),
465 /*isVolatile*/ false, Align(1));
466 InsertNewInstWith(SI, InsertAt->getIterator());
467 }
468
469 /// Combiner aware instruction erasure.
470 ///
471 /// When dealing with an instruction that has side effects or produces a void
472 /// value, we can't rely on DCE to delete the instruction. Instead, visit
473 /// methods should return the value returned by this function.
475 LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
476 assert(I.use_empty() && "Cannot erase instruction that is used!");
478
479 // Make sure that we reprocess all operands now that we reduced their
480 // use counts.
481 SmallVector<Value *> Ops(I.operands());
482 Worklist.remove(&I);
483 DC.removeValue(&I);
484 I.eraseFromParent();
485 for (Value *Op : Ops)
486 Worklist.handleUseCountDecrement(Op);
487 MadeIRChange = true;
488 return nullptr; // Don't do anything with FI
489 }
490
491 OverflowResult computeOverflow(
492 Instruction::BinaryOps BinaryOp, bool IsSigned,
493 Value *LHS, Value *RHS, Instruction *CxtI) const;
494
495 /// Performs a few simplifications for operators which are associative
496 /// or commutative.
497 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
498
499 /// Tries to simplify binary operations which some other binary
500 /// operation distributes over.
501 ///
502 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
503 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
504 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
505 /// value, or null if it didn't simplify.
506 Value *foldUsingDistributiveLaws(BinaryOperator &I);
507
508 /// Tries to simplify add operations using the definition of remainder.
509 ///
510 /// The definition of remainder is X % C = X - (X / C ) * C. The add
511 /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
512 /// X % (C0 * C1)
513 Value *SimplifyAddWithRemainder(BinaryOperator &I);
514
515 // Binary Op helper for select operations where the expression can be
516 // efficiently reorganized.
517 Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
518 Value *RHS);
519
520 // If `I` has operand `(ctpop (not x))`, fold `I` with `(sub nuw nsw
521 // BitWidth(x), (ctpop x))`.
522 Instruction *tryFoldInstWithCtpopWithNot(Instruction *I);
523
524 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
525 // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
526 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
527 // -> (BinOp (logic_shift (BinOp X, Y)), Mask)
528 Instruction *foldBinOpShiftWithShift(BinaryOperator &I);
529
530 /// Tries to simplify binops of select and cast of the select condition.
531 ///
532 /// (Binop (cast C), (select C, T, F))
533 /// -> (select C, C0, C1)
534 Instruction *foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I);
535
536 /// This tries to simplify binary operations by factorizing out common terms
537 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
538 Value *tryFactorizationFolds(BinaryOperator &I);
539
540 /// Match a select chain which produces one of three values based on whether
541 /// the LHS is less than, equal to, or greater than RHS respectively.
542 /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
543 /// Equal and Greater values are saved in the matching process and returned to
544 /// the caller.
545 bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
546 ConstantInt *&Less, ConstantInt *&Equal,
547 ConstantInt *&Greater);
548
549 /// Attempts to replace I with a simpler value based on the demanded
550 /// bits.
551 Value *SimplifyDemandedUseBits(Instruction *I, const APInt &DemandedMask,
552 KnownBits &Known, unsigned Depth,
553 const SimplifyQuery &Q);
554 using InstCombiner::SimplifyDemandedBits;
555 bool SimplifyDemandedBits(Instruction *I, unsigned Op,
556 const APInt &DemandedMask, KnownBits &Known,
557 unsigned Depth, const SimplifyQuery &Q) override;
558
559 /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
560 /// bits. It also tries to handle simplifications that can be done based on
561 /// DemandedMask, but without modifying the Instruction.
562 Value *SimplifyMultipleUseDemandedBits(Instruction *I,
563 const APInt &DemandedMask,
564 KnownBits &Known, unsigned Depth,
565 const SimplifyQuery &Q);
566
567 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
568 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
569 Value *simplifyShrShlDemandedBits(
570 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
571 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
572
573 /// Tries to simplify operands to an integer instruction based on its
574 /// demanded bits.
575 bool SimplifyDemandedInstructionBits(Instruction &Inst);
576 bool SimplifyDemandedInstructionBits(Instruction &Inst, KnownBits &Known);
577
578 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
579 APInt &PoisonElts, unsigned Depth = 0,
580 bool AllowMultipleUsers = false) override;
581
582 /// Attempts to replace V with a simpler value based on the demanded
583 /// floating-point classes
584 Value *SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask,
585 KnownFPClass &Known, unsigned Depth,
586 Instruction *CxtI);
587 bool SimplifyDemandedFPClass(Instruction *I, unsigned Op,
588 FPClassTest DemandedMask, KnownFPClass &Known,
589 unsigned Depth = 0);
590
591 /// Common transforms for add / disjoint or
592 Instruction *foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW,
593 bool NUW);
594
595 /// Canonicalize the position of binops relative to shufflevector.
596 Instruction *foldVectorBinop(BinaryOperator &Inst);
598 Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
599
600 /// Given a binary operator, cast instruction, or select which has a PHI node
601 /// as operand #0, see if we can fold the instruction into the PHI (which is
602 /// only possible if all operands to the PHI are constants).
603 Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN,
604 bool AllowMultipleUses = false);
605
606 /// For a binary operator with 2 phi operands, try to hoist the binary
607 /// operation before the phi. This can result in fewer instructions in
608 /// patterns where at least one set of phi operands simplifies.
609 /// Example:
610 /// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
611 /// -->
612 /// BB1: BO = binop X, Y
613 /// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
614 Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
615
616 /// Given an instruction with a select as one operand and a constant as the
617 /// other operand, try to fold the binary operator into the select arguments.
618 /// This also works for Cast instructions, which obviously do not have a
619 /// second operand.
620 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
621 bool FoldWithMultiUse = false);
622
623 /// This is a convenience wrapper function for the above two functions.
624 Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
625
626 Instruction *foldAddWithConstant(BinaryOperator &Add);
627
628 Instruction *foldSquareSumInt(BinaryOperator &I);
629 Instruction *foldSquareSumFP(BinaryOperator &I);
630
631 /// Try to rotate an operation below a PHI node, using PHI nodes for
632 /// its operands.
633 Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
634 Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
635 Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
636 Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
637 Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
638 Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
639 Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
640 Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
641
642 /// If the phi is within a phi web, which is formed by the def-use chain
643 /// of phis and all the phis in the web are only used in the other phis.
644 /// In this case, these phis are dead and we will remove all of them.
645 bool foldDeadPhiWeb(PHINode &PN);
646
647 /// If an integer typed PHI has only one use which is an IntToPtr operation,
648 /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
649 /// insert a new pointer typed PHI and replace the original one.
650 bool foldIntegerTypedPHI(PHINode &PN);
651
652 /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
653 /// folded operation.
654 void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
655
656 Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, CmpPredicate Cond,
657 Instruction &I);
658 Instruction *foldSelectICmp(CmpPredicate Pred, SelectInst *SI, Value *RHS,
659 const ICmpInst &I);
660 bool foldAllocaCmp(AllocaInst *Alloca);
661 Instruction *foldCmpLoadFromIndexedGlobal(LoadInst *LI,
663 GlobalVariable *GV, CmpInst &ICI,
664 ConstantInt *AndCst = nullptr);
665 Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
666 Constant *RHSC);
667 Instruction *foldICmpAddOpConst(Value *X, const APInt &C, CmpPredicate Pred);
668 Instruction *foldICmpWithCastOp(ICmpInst &ICmp);
669 Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp);
670
671 Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
673 Instruction *foldICmpWithConstant(ICmpInst &Cmp);
674 Instruction *foldICmpUsingBoolRange(ICmpInst &I);
675 Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
676 Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
677 Instruction *foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp,
678 const APInt &C);
679 Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
680 Instruction *foldICmpWithMinMax(Instruction &I, MinMaxIntrinsic *MinMax,
681 Value *Z, CmpPredicate Pred);
682 Instruction *foldICmpEquality(ICmpInst &Cmp);
683 Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
684 Instruction *foldSignBitTest(ICmpInst &I);
685 Instruction *foldICmpWithZero(ICmpInst &Cmp);
686
687 Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
688
689 Instruction *foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO,
690 const APInt &C);
691 Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
692 ConstantInt *C);
693 Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
694 const APInt &C);
695 Instruction *foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
696 const SimplifyQuery &Q);
697 Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
698 const APInt &C);
699 Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
700 const APInt &C);
701 Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
702 const APInt &C);
703 Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
704 const APInt &C);
705 Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
706 const APInt &C);
707 Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
708 const APInt &C);
709 Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
710 const APInt &C);
711 Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
712 const APInt &C);
713 Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
714 const APInt &C);
715 Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
716 const APInt &C);
717 Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
718 const APInt &C);
719 Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
720 const APInt &C1);
721 Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
722 const APInt &C1, const APInt &C2);
723 Instruction *foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor,
724 const APInt &C);
725 Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
726 const APInt &C2);
727 Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
728 const APInt &C2);
729
730 Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
731 BinaryOperator *BO,
732 const APInt &C);
733 Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
734 const APInt &C);
735 Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
736 const APInt &C);
737 Instruction *foldICmpBitCast(ICmpInst &Cmp);
738 Instruction *foldICmpWithTrunc(ICmpInst &Cmp);
739 Instruction *foldICmpCommutative(CmpPredicate Pred, Value *Op0, Value *Op1,
740 ICmpInst &CxtI);
741
742 // Helpers of visitSelectInst().
747 Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
748 Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
750 Value *A, Value *B, Instruction &Outer,
755 unsigned Depth = 0);
756
757 Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
758 bool isSigned, bool Inside);
759 bool mergeStoreIntoSuccessor(StoreInst &SI);
760
761 /// Given an initial instruction, check to see if it is the root of a
762 /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
763 /// intrinsic.
764 Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
765 bool MatchBitReversals);
766
767 Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
768 Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
769
770 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
771
772 bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock);
773 void tryToSinkInstructionDbgValues(
774 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
776 void tryToSinkInstructionDbgVariableRecords(
777 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
779
780 bool removeInstructionsBeforeUnreachable(Instruction &I);
781 void addDeadEdge(BasicBlock *From, BasicBlock *To,
783 void handleUnreachableFrom(Instruction *I,
785 void handlePotentiallyDeadBlocks(SmallVectorImpl<BasicBlock *> &Worklist);
786 void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc);
787 void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser = nullptr);
788};
789
790class Negator final {
791 /// Top-to-bottom, def-to-use negated instruction tree we produced.
793
795 BuilderTy Builder;
796
797 const DominatorTree &DT;
798
799 const bool IsTrulyNegation;
800
801 SmallDenseMap<Value *, Value *> NegationsCache;
802
803 Negator(LLVMContext &C, const DataLayout &DL, const DominatorTree &DT,
804 bool IsTrulyNegation);
805
806#if LLVM_ENABLE_STATS
807 unsigned NumValuesVisitedInThisNegator = 0;
808 ~Negator();
809#endif
810
811 using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
812 Value * /*NegatedRoot*/>;
813
814 std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
815
816 [[nodiscard]] Value *visitImpl(Value *V, bool IsNSW, unsigned Depth);
817
818 [[nodiscard]] Value *negate(Value *V, bool IsNSW, unsigned Depth);
819
820 /// Recurse depth-first and attempt to sink the negation.
821 /// FIXME: use worklist?
822 [[nodiscard]] std::optional<Result> run(Value *Root, bool IsNSW);
823
824 Negator(const Negator &) = delete;
825 Negator(Negator &&) = delete;
826 Negator &operator=(const Negator &) = delete;
827 Negator &operator=(Negator &&) = delete;
828
829public:
830 /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
831 /// otherwise returns negated value.
832 [[nodiscard]] static Value *Negate(bool LHSIsZero, bool IsNSW, Value *Root,
833 InstCombinerImpl &IC);
834};
835
836} // end namespace llvm
837
838#undef DEBUG_TYPE
839
840#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< ShadowStackGC > C("shadow-stack", "Very portable GC for uncooperative code generators")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static bool foldICmpWithDominatingICmp(CmpInst *Cmp, const TargetLowering &TLI)
For pattern like:
#define LLVM_LIBRARY_VISIBILITY
Definition: Compiler.h:133
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI)
#define LLVM_DEBUG(...)
Definition: Debug.h:106
uint64_t Align
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
Hexagon Common GEP
IRTranslator LLVM IR MI
static constexpr unsigned NegatorMaxNodesSSO
static constexpr unsigned NegatorDefaultMaxDepth
This file provides the interface for the instcombine pass implementation.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
const uint64_t BitWidth
uint64_t IntrinsicInst * II
StandardInstrumentations SI(Mod->getContext(), Debug, VerifyEach)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
static OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const AddOperator *Add, const SimplifyQuery &SQ)
Value * RHS
Value * LHS
BinaryOperator * Mul
support::ulittle16_t & Lo
Definition: aarch32.cpp:204
support::ulittle16_t & Hi
Definition: aarch32.cpp:203
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:78
This class represents a conversion between pointers from one address space to another.
an instruction to allocate memory on the stack
Definition: Instructions.h:63
This class represents any memset intrinsic.
A cache of @llvm.assume calls within a function.
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:704
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
This class represents a no-op cast from one type to another.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1120
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:444
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:661
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:22
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
This instruction extracts a single (scalar) element from a VectorType value.
This instruction extracts a struct member or array element value from an aggregate value.
This instruction compares its operands according to the predicate given to the constructor.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
This class represents a truncation of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
An instruction for ordering other memory operations.
Definition: Instructions.h:424
This class represents a freeze function that returns random concrete value if an operand is either a ...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
This instruction compares its operands according to the predicate given to the constructor.
This instruction inserts a single (scalar) element into a VectorType value.
This instruction inserts a struct field of array element value into an aggregate value.
Instruction * foldSelectToCmp(SelectInst &SI)
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const
Check if fmul MulVal, +0.0 will yield +0.0 (or signed zero is ignorable).
virtual ~InstCombinerImpl()=default
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldSelectEqualityTest(SelectInst &SI)
Instruction * foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI)
InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder, bool MinimizeSize, AAResults *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const DataLayout &DL, ReversePostOrderTraversal< BasicBlock * > &RPOT)
Instruction * foldVectorSelect(SelectInst &Sel)
Instruction * foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
Constant * getLosslessUnsignedTrunc(Constant *C, Type *TruncTy)
bool replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth=0)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
Constant * getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp)
Instruction * visitInstruction(Instruction &I)
Specify what to return for unhandled instructions.
KnownFPClass computeKnownFPClass(Value *Val, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Constant * getLosslessSignedTrunc(Constant *C, Type *TruncTy)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitSelectInst(SelectInst &SI)
Instruction * foldSelectOfBools(SelectInst &SI)
Instruction * foldSelectExtConst(SelectInst &Sel)
The core instruction combiner logic.
Definition: InstCombiner.h:48
Base class for instruction visitors.
Definition: InstVisitor.h:78
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
This class represents a cast from an integer to a pointer.
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
The landingpad instruction holds all of the information necessary to generate correct exception handl...
An instruction for reading from memory.
Definition: Instructions.h:176
This class represents min/max intrinsics.
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
The optimization diagnostic interface.
Analysis providing profile information.
This class represents a cast from a pointer to an integer.
Return a value (possibly void), from a function.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
This instruction constructs a fixed permutation of two input vectors.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
Multiway switch.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This function has undefined behavior.
This represents the llvm.va_end intrinsic.
LLVM Value Representation.
Definition: Value.h:74
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
This class represents zero extension of integer types.
self_iterator getIterator()
Definition: ilist_node.h:132
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
OverflowResult
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition: Utils.cpp:1668
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, unsigned Depth, const SimplifyQuery &SQ)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.