LLVM 22.0.0git
CodeGenPrepare.cpp
Go to the documentation of this file.
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass munges the code in the input function to better prepare it for
10// SelectionDAG-based code generation. This works around limitations in it's
11// basic-block-at-a-time approach. It should eventually be removed.
12//
13//===----------------------------------------------------------------------===//
14
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/Statistic.h"
45#include "llvm/Config/llvm-config.h"
46#include "llvm/IR/Argument.h"
47#include "llvm/IR/Attributes.h"
48#include "llvm/IR/BasicBlock.h"
49#include "llvm/IR/Constant.h"
50#include "llvm/IR/Constants.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/DebugInfo.h"
54#include "llvm/IR/Dominators.h"
55#include "llvm/IR/Function.h"
57#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/IRBuilder.h"
60#include "llvm/IR/InlineAsm.h"
61#include "llvm/IR/InstrTypes.h"
62#include "llvm/IR/Instruction.h"
65#include "llvm/IR/Intrinsics.h"
66#include "llvm/IR/IntrinsicsAArch64.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/MDBuilder.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/Operator.h"
73#include "llvm/IR/Statepoint.h"
74#include "llvm/IR/Type.h"
75#include "llvm/IR/Use.h"
76#include "llvm/IR/User.h"
77#include "llvm/IR/Value.h"
78#include "llvm/IR/ValueHandle.h"
79#include "llvm/IR/ValueMap.h"
81#include "llvm/Pass.h"
87#include "llvm/Support/Debug.h"
97#include <algorithm>
98#include <cassert>
99#include <cstdint>
100#include <iterator>
101#include <limits>
102#include <memory>
103#include <optional>
104#include <utility>
105#include <vector>
106
107using namespace llvm;
108using namespace llvm::PatternMatch;
109
110#define DEBUG_TYPE "codegenprepare"
111
112STATISTIC(NumBlocksElim, "Number of blocks eliminated");
113STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
114STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
115STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
116 "sunken Cmps");
117STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
118 "of sunken Casts");
119STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
120 "computations were sunk");
121STATISTIC(NumMemoryInstsPhiCreated,
122 "Number of phis created when address "
123 "computations were sunk to memory instructions");
124STATISTIC(NumMemoryInstsSelectCreated,
125 "Number of select created when address "
126 "computations were sunk to memory instructions");
127STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
128STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
129STATISTIC(NumAndsAdded,
130 "Number of and mask instructions added to form ext loads");
131STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
132STATISTIC(NumRetsDup, "Number of return instructions duplicated");
133STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
134STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
135STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
136
138 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
139 cl::desc("Disable branch optimizations in CodeGenPrepare"));
140
141static cl::opt<bool>
142 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
143 cl::desc("Disable GC optimizations in CodeGenPrepare"));
144
145static cl::opt<bool>
146 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
147 cl::init(false),
148 cl::desc("Disable select to branch conversion."));
149
150static cl::opt<bool>
151 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
152 cl::desc("Address sinking in CGP using GEPs."));
153
154static cl::opt<bool>
155 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
156 cl::desc("Enable sinking and/cmp into branches."));
157
159 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
160 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
161
163 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
164 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
165
167 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
168 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
169 "CodeGenPrepare"));
170
172 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
173 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
174 "optimization in CodeGenPrepare"));
175
177 "disable-preheader-prot", cl::Hidden, cl::init(false),
178 cl::desc("Disable protection against removing loop preheaders"));
179
181 "profile-guided-section-prefix", cl::Hidden, cl::init(true),
182 cl::desc("Use profile info to add section prefix for hot/cold functions"));
183
185 "profile-unknown-in-special-section", cl::Hidden,
186 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
187 "profile, we cannot tell the function is cold for sure because "
188 "it may be a function newly added without ever being sampled. "
189 "With the flag enabled, compiler can put such profile unknown "
190 "functions into a special section, so runtime system can choose "
191 "to handle it in a different way than .text section, to save "
192 "RAM for example. "));
193
195 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
196 cl::desc("Use the basic-block-sections profile to determine the text "
197 "section prefix for hot functions. Functions with "
198 "basic-block-sections profile will be placed in `.text.hot` "
199 "regardless of their FDO profile info. Other functions won't be "
200 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
201 "profiles."));
202
204 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
205 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
206 "(frequency of destination block) is greater than this ratio"));
207
209 "force-split-store", cl::Hidden, cl::init(false),
210 cl::desc("Force store splitting no matter what the target query says."));
211
213 "cgp-type-promotion-merge", cl::Hidden,
214 cl::desc("Enable merging of redundant sexts when one is dominating"
215 " the other."),
216 cl::init(true));
217
219 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
220 cl::desc("Disables combining addressing modes with different parts "
221 "in optimizeMemoryInst."));
222
223static cl::opt<bool>
224 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
225 cl::desc("Allow creation of Phis in Address sinking."));
226
228 "addr-sink-new-select", cl::Hidden, cl::init(true),
229 cl::desc("Allow creation of selects in Address sinking."));
230
232 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
233 cl::desc("Allow combining of BaseReg field in Address sinking."));
234
236 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
237 cl::desc("Allow combining of BaseGV field in Address sinking."));
238
240 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
241 cl::desc("Allow combining of BaseOffs field in Address sinking."));
242
244 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
245 cl::desc("Allow combining of ScaledReg field in Address sinking."));
246
247static cl::opt<bool>
248 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
249 cl::init(true),
250 cl::desc("Enable splitting large offset of GEP."));
251
253 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
254 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
255
256static cl::opt<bool>
257 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
258 cl::desc("Enable BFI update verification for "
259 "CodeGenPrepare."));
260
261static cl::opt<bool>
262 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
263 cl::desc("Enable converting phi types in CodeGenPrepare"));
264
266 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
267 cl::desc("Least BB number of huge function."));
268
270 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
272 cl::desc("Max number of address users to look at"));
273
274static cl::opt<bool>
275 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false),
276 cl::desc("Disable elimination of dead PHI nodes."));
277
278namespace {
279
280enum ExtType {
281 ZeroExtension, // Zero extension has been seen.
282 SignExtension, // Sign extension has been seen.
283 BothExtension // This extension type is used if we saw sext after
284 // ZeroExtension had been set, or if we saw zext after
285 // SignExtension had been set. It makes the type
286 // information of a promoted instruction invalid.
287};
288
289enum ModifyDT {
290 NotModifyDT, // Not Modify any DT.
291 ModifyBBDT, // Modify the Basic Block Dominator Tree.
292 ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
293 // This usually means we move/delete/insert instruction
294 // in a Basic Block. So we should re-iterate instructions
295 // in such Basic Block.
296};
297
298using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
299using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
300using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
302using ValueToSExts = MapVector<Value *, SExts>;
303
304class TypePromotionTransaction;
305
306class CodeGenPrepare {
307 friend class CodeGenPrepareLegacyPass;
308 const TargetMachine *TM = nullptr;
309 const TargetSubtargetInfo *SubtargetInfo = nullptr;
310 const TargetLowering *TLI = nullptr;
311 const TargetRegisterInfo *TRI = nullptr;
312 const TargetTransformInfo *TTI = nullptr;
313 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
314 const TargetLibraryInfo *TLInfo = nullptr;
315 LoopInfo *LI = nullptr;
316 std::unique_ptr<BlockFrequencyInfo> BFI;
317 std::unique_ptr<BranchProbabilityInfo> BPI;
318 ProfileSummaryInfo *PSI = nullptr;
319
320 /// As we scan instructions optimizing them, this is the next instruction
321 /// to optimize. Transforms that can invalidate this should update it.
322 BasicBlock::iterator CurInstIterator;
323
324 /// Keeps track of non-local addresses that have been sunk into a block.
325 /// This allows us to avoid inserting duplicate code for blocks with
326 /// multiple load/stores of the same address. The usage of WeakTrackingVH
327 /// enables SunkAddrs to be treated as a cache whose entries can be
328 /// invalidated if a sunken address computation has been erased.
329 ValueMap<Value *, WeakTrackingVH> SunkAddrs;
330
331 /// Keeps track of all instructions inserted for the current function.
332 SetOfInstrs InsertedInsts;
333
334 /// Keeps track of the type of the related instruction before their
335 /// promotion for the current function.
336 InstrToOrigTy PromotedInsts;
337
338 /// Keep track of instructions removed during promotion.
339 SetOfInstrs RemovedInsts;
340
341 /// Keep track of sext chains based on their initial value.
342 DenseMap<Value *, Instruction *> SeenChainsForSExt;
343
344 /// Keep track of GEPs accessing the same data structures such as structs or
345 /// arrays that are candidates to be split later because of their large
346 /// size.
347 MapVector<AssertingVH<Value>,
349 LargeOffsetGEPMap;
350
351 /// Keep track of new GEP base after splitting the GEPs having large offset.
352 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
353
354 /// Map serial numbers to Large offset GEPs.
355 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
356
357 /// Keep track of SExt promoted.
358 ValueToSExts ValToSExtendedUses;
359
360 /// True if the function has the OptSize attribute.
361 bool OptSize;
362
363 /// DataLayout for the Function being processed.
364 const DataLayout *DL = nullptr;
365
366 /// Building the dominator tree can be expensive, so we only build it
367 /// lazily and update it when required.
368 std::unique_ptr<DominatorTree> DT;
369
370public:
371 CodeGenPrepare() = default;
372 CodeGenPrepare(const TargetMachine *TM) : TM(TM){};
373 /// If encounter huge function, we need to limit the build time.
374 bool IsHugeFunc = false;
375
376 /// FreshBBs is like worklist, it collected the updated BBs which need
377 /// to be optimized again.
378 /// Note: Consider building time in this pass, when a BB updated, we need
379 /// to insert such BB into FreshBBs for huge function.
380 SmallPtrSet<BasicBlock *, 32> FreshBBs;
381
382 void releaseMemory() {
383 // Clear per function information.
384 InsertedInsts.clear();
385 PromotedInsts.clear();
386 FreshBBs.clear();
387 BPI.reset();
388 BFI.reset();
389 }
390
391 bool run(Function &F, FunctionAnalysisManager &AM);
392
393private:
394 template <typename F>
395 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
396 // Substituting can cause recursive simplifications, which can invalidate
397 // our iterator. Use a WeakTrackingVH to hold onto it in case this
398 // happens.
399 Value *CurValue = &*CurInstIterator;
400 WeakTrackingVH IterHandle(CurValue);
401
402 f();
403
404 // If the iterator instruction was recursively deleted, start over at the
405 // start of the block.
406 if (IterHandle != CurValue) {
407 CurInstIterator = BB->begin();
408 SunkAddrs.clear();
409 }
410 }
411
412 // Get the DominatorTree, building if necessary.
413 DominatorTree &getDT(Function &F) {
414 if (!DT)
415 DT = std::make_unique<DominatorTree>(F);
416 return *DT;
417 }
418
419 void removeAllAssertingVHReferences(Value *V);
420 bool eliminateAssumptions(Function &F);
421 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
422 bool eliminateMostlyEmptyBlocks(Function &F);
423 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
424 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
425 void eliminateMostlyEmptyBlock(BasicBlock *BB);
426 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
427 bool isPreheader);
428 bool makeBitReverse(Instruction &I);
429 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
430 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
431 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
432 unsigned AddrSpace);
433 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
434 bool optimizeMulWithOverflow(Instruction *I, bool IsSigned,
435 ModifyDT &ModifiedDT);
436 bool optimizeInlineAsmInst(CallInst *CS);
437 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
438 bool optimizeExt(Instruction *&I);
439 bool optimizeExtUses(Instruction *I);
440 bool optimizeLoadExt(LoadInst *Load);
441 bool optimizeShiftInst(BinaryOperator *BO);
442 bool optimizeFunnelShift(IntrinsicInst *Fsh);
443 bool optimizeSelectInst(SelectInst *SI);
444 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
445 bool optimizeSwitchType(SwitchInst *SI);
446 bool optimizeSwitchPhiConstants(SwitchInst *SI);
447 bool optimizeSwitchInst(SwitchInst *SI);
448 bool optimizeExtractElementInst(Instruction *Inst);
449 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
450 bool fixupDbgVariableRecord(DbgVariableRecord &I);
451 bool fixupDbgVariableRecordsOnInst(Instruction &I);
452 bool placeDbgValues(Function &F);
453 bool placePseudoProbes(Function &F);
454 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
455 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
456 bool tryToPromoteExts(TypePromotionTransaction &TPT,
457 const SmallVectorImpl<Instruction *> &Exts,
458 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
459 unsigned CreatedInstsCost = 0);
460 bool mergeSExts(Function &F);
461 bool splitLargeGEPOffsets();
462 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
463 SmallPtrSetImpl<Instruction *> &DeletedInstrs);
464 bool optimizePhiTypes(Function &F);
465 bool performAddressTypePromotion(
466 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
467 bool HasPromoted, TypePromotionTransaction &TPT,
468 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
469 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
470 bool simplifyOffsetableRelocate(GCStatepointInst &I);
471
472 bool tryToSinkFreeOperands(Instruction *I);
473 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
474 CmpInst *Cmp, Intrinsic::ID IID);
475 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
476 bool optimizeURem(Instruction *Rem);
477 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
478 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
479 bool unfoldPowerOf2Test(CmpInst *Cmp);
480 void verifyBFIUpdates(Function &F);
481 bool _run(Function &F);
482};
483
484class CodeGenPrepareLegacyPass : public FunctionPass {
485public:
486 static char ID; // Pass identification, replacement for typeid
487
488 CodeGenPrepareLegacyPass() : FunctionPass(ID) {
490 }
491
492 bool runOnFunction(Function &F) override;
493
494 StringRef getPassName() const override { return "CodeGen Prepare"; }
495
496 void getAnalysisUsage(AnalysisUsage &AU) const override {
497 // FIXME: When we can selectively preserve passes, preserve the domtree.
498 AU.addRequired<ProfileSummaryInfoWrapperPass>();
499 AU.addRequired<TargetLibraryInfoWrapperPass>();
500 AU.addRequired<TargetPassConfig>();
501 AU.addRequired<TargetTransformInfoWrapperPass>();
502 AU.addRequired<LoopInfoWrapperPass>();
503 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
504 }
505};
506
507} // end anonymous namespace
508
509char CodeGenPrepareLegacyPass::ID = 0;
510
511bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) {
512 if (skipFunction(F))
513 return false;
514 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
515 CodeGenPrepare CGP(TM);
516 CGP.DL = &F.getDataLayout();
517 CGP.SubtargetInfo = TM->getSubtargetImpl(F);
518 CGP.TLI = CGP.SubtargetInfo->getTargetLowering();
519 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo();
520 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
521 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
522 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
523 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI));
524 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI));
525 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
526 auto BBSPRWP =
527 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
528 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr;
529
530 return CGP._run(F);
531}
532
533INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE,
534 "Optimize for code generation", false, false)
541INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE,
542 "Optimize for code generation", false, false)
543
545 return new CodeGenPrepareLegacyPass();
546}
547
550 CodeGenPrepare CGP(TM);
551
552 bool Changed = CGP.run(F, AM);
553 if (!Changed)
554 return PreservedAnalyses::all();
555
560 return PA;
561}
562
563bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) {
564 DL = &F.getDataLayout();
565 SubtargetInfo = TM->getSubtargetImpl(F);
566 TLI = SubtargetInfo->getTargetLowering();
567 TRI = SubtargetInfo->getRegisterInfo();
568 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F);
570 LI = &AM.getResult<LoopAnalysis>(F);
571 BPI.reset(new BranchProbabilityInfo(F, *LI));
572 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
573 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
574 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
575 BBSectionsProfileReader =
577 return _run(F);
578}
579
580bool CodeGenPrepare::_run(Function &F) {
581 bool EverMadeChange = false;
582
583 OptSize = F.hasOptSize();
584 // Use the basic-block-sections profile to promote hot functions to .text.hot
585 // if requested.
586 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
587 BBSectionsProfileReader->isFunctionHot(F.getName())) {
588 (void)F.setSectionPrefix("hot");
589 } else if (ProfileGuidedSectionPrefix) {
590 // The hot attribute overwrites profile count based hotness while profile
591 // counts based hotness overwrite the cold attribute.
592 // This is a conservative behabvior.
593 if (F.hasFnAttribute(Attribute::Hot) ||
594 PSI->isFunctionHotInCallGraph(&F, *BFI))
595 (void)F.setSectionPrefix("hot");
596 // If PSI shows this function is not hot, we will placed the function
597 // into unlikely section if (1) PSI shows this is a cold function, or
598 // (2) the function has a attribute of cold.
599 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
600 F.hasFnAttribute(Attribute::Cold))
601 (void)F.setSectionPrefix("unlikely");
604 (void)F.setSectionPrefix("unknown");
605 }
606
607 /// This optimization identifies DIV instructions that can be
608 /// profitably bypassed and carried out with a shorter, faster divide.
609 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
610 const DenseMap<unsigned int, unsigned int> &BypassWidths =
612 BasicBlock *BB = &*F.begin();
613 while (BB != nullptr) {
614 // bypassSlowDivision may create new BBs, but we don't want to reapply the
615 // optimization to those blocks.
616 BasicBlock *Next = BB->getNextNode();
617 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
618 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
619 BB = Next;
620 }
621 }
622
623 // Get rid of @llvm.assume builtins before attempting to eliminate empty
624 // blocks, since there might be blocks that only contain @llvm.assume calls
625 // (plus arguments that we can get rid of).
626 EverMadeChange |= eliminateAssumptions(F);
627
628 // Eliminate blocks that contain only PHI nodes and an
629 // unconditional branch.
630 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
631
632 ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
634 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
635
636 // Split some critical edges where one of the sources is an indirect branch,
637 // to help generate sane code for PHIs involving such edges.
638 EverMadeChange |=
639 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
640
641 // If we are optimzing huge function, we need to consider the build time.
642 // Because the basic algorithm's complex is near O(N!).
643 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
644
645 // Transformations above may invalidate dominator tree and/or loop info.
646 DT.reset();
647 LI->releaseMemory();
648 LI->analyze(getDT(F));
649
650 bool MadeChange = true;
651 bool FuncIterated = false;
652 while (MadeChange) {
653 MadeChange = false;
654
655 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
656 if (FuncIterated && !FreshBBs.contains(&BB))
657 continue;
658
659 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
660 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
661
662 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
663 DT.reset();
664
665 MadeChange |= Changed;
666 if (IsHugeFunc) {
667 // If the BB is updated, it may still has chance to be optimized.
668 // This usually happen at sink optimization.
669 // For example:
670 //
671 // bb0:
672 // %and = and i32 %a, 4
673 // %cmp = icmp eq i32 %and, 0
674 //
675 // If the %cmp sink to other BB, the %and will has chance to sink.
676 if (Changed)
677 FreshBBs.insert(&BB);
678 else if (FuncIterated)
679 FreshBBs.erase(&BB);
680 } else {
681 // For small/normal functions, we restart BB iteration if the dominator
682 // tree of the Function was changed.
683 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
684 break;
685 }
686 }
687 // We have iterated all the BB in the (only work for huge) function.
688 FuncIterated = IsHugeFunc;
689
690 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
691 MadeChange |= mergeSExts(F);
692 if (!LargeOffsetGEPMap.empty())
693 MadeChange |= splitLargeGEPOffsets();
694 MadeChange |= optimizePhiTypes(F);
695
696 if (MadeChange)
697 eliminateFallThrough(F, DT.get());
698
699#ifndef NDEBUG
700 if (MadeChange && VerifyLoopInfo)
701 LI->verify(getDT(F));
702#endif
703
704 // Really free removed instructions during promotion.
705 for (Instruction *I : RemovedInsts)
706 I->deleteValue();
707
708 EverMadeChange |= MadeChange;
709 SeenChainsForSExt.clear();
710 ValToSExtendedUses.clear();
711 RemovedInsts.clear();
712 LargeOffsetGEPMap.clear();
713 LargeOffsetGEPID.clear();
714 }
715
716 NewGEPBases.clear();
717 SunkAddrs.clear();
718
719 if (!DisableBranchOpts) {
720 MadeChange = false;
721 // Use a set vector to get deterministic iteration order. The order the
722 // blocks are removed may affect whether or not PHI nodes in successors
723 // are removed.
724 SmallSetVector<BasicBlock *, 8> WorkList;
725 for (BasicBlock &BB : F) {
727 MadeChange |= ConstantFoldTerminator(&BB, true);
728 if (!MadeChange)
729 continue;
730
731 for (BasicBlock *Succ : Successors)
732 if (pred_empty(Succ))
733 WorkList.insert(Succ);
734 }
735
736 // Delete the dead blocks and any of their dead successors.
737 MadeChange |= !WorkList.empty();
738 while (!WorkList.empty()) {
739 BasicBlock *BB = WorkList.pop_back_val();
741
742 DeleteDeadBlock(BB);
743
744 for (BasicBlock *Succ : Successors)
745 if (pred_empty(Succ))
746 WorkList.insert(Succ);
747 }
748
749 // Merge pairs of basic blocks with unconditional branches, connected by
750 // a single edge.
751 if (EverMadeChange || MadeChange)
752 MadeChange |= eliminateFallThrough(F);
753
754 EverMadeChange |= MadeChange;
755 }
756
757 if (!DisableGCOpts) {
759 for (BasicBlock &BB : F)
760 for (Instruction &I : BB)
761 if (auto *SP = dyn_cast<GCStatepointInst>(&I))
762 Statepoints.push_back(SP);
763 for (auto &I : Statepoints)
764 EverMadeChange |= simplifyOffsetableRelocate(*I);
765 }
766
767 // Do this last to clean up use-before-def scenarios introduced by other
768 // preparatory transforms.
769 EverMadeChange |= placeDbgValues(F);
770 EverMadeChange |= placePseudoProbes(F);
771
772#ifndef NDEBUG
774 verifyBFIUpdates(F);
775#endif
776
777 return EverMadeChange;
778}
779
780bool CodeGenPrepare::eliminateAssumptions(Function &F) {
781 bool MadeChange = false;
782 for (BasicBlock &BB : F) {
783 CurInstIterator = BB.begin();
784 while (CurInstIterator != BB.end()) {
785 Instruction *I = &*(CurInstIterator++);
786 if (auto *Assume = dyn_cast<AssumeInst>(I)) {
787 MadeChange = true;
788 Value *Operand = Assume->getOperand(0);
789 Assume->eraseFromParent();
790
791 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
792 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
793 });
794 }
795 }
796 }
797 return MadeChange;
798}
799
800/// An instruction is about to be deleted, so remove all references to it in our
801/// GEP-tracking data strcutures.
802void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
803 LargeOffsetGEPMap.erase(V);
804 NewGEPBases.erase(V);
805
807 if (!GEP)
808 return;
809
810 LargeOffsetGEPID.erase(GEP);
811
812 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
813 if (VecI == LargeOffsetGEPMap.end())
814 return;
815
816 auto &GEPVector = VecI->second;
817 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
818
819 if (GEPVector.empty())
820 LargeOffsetGEPMap.erase(VecI);
821}
822
823// Verify BFI has been updated correctly by recomputing BFI and comparing them.
824[[maybe_unused]] void CodeGenPrepare::verifyBFIUpdates(Function &F) {
825 DominatorTree NewDT(F);
826 LoopInfo NewLI(NewDT);
827 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
828 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
829 NewBFI.verifyMatch(*BFI);
830}
831
832/// Merge basic blocks which are connected by a single edge, where one of the
833/// basic blocks has a single successor pointing to the other basic block,
834/// which has a single predecessor.
835bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
836 bool Changed = false;
837 // Scan all of the blocks in the function, except for the entry block.
838 // Use a temporary array to avoid iterator being invalidated when
839 // deleting blocks.
842
843 SmallSet<WeakTrackingVH, 16> Preds;
844 for (auto &Block : Blocks) {
846 if (!BB)
847 continue;
848 // If the destination block has a single pred, then this is a trivial
849 // edge, just collapse it.
850 BasicBlock *SinglePred = BB->getSinglePredecessor();
851
852 // Don't merge if BB's address is taken.
853 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
854 continue;
855
856 // Make an effort to skip unreachable blocks.
857 if (DT && !DT->isReachableFromEntry(BB))
858 continue;
859
860 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
861 if (Term && !Term->isConditional()) {
862 Changed = true;
863 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
864
865 // Merge BB into SinglePred and delete it.
866 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
867 /* MemDep */ nullptr,
868 /* PredecessorWithTwoSuccessors */ false, DT);
869 Preds.insert(SinglePred);
870
871 if (IsHugeFunc) {
872 // Update FreshBBs to optimize the merged BB.
873 FreshBBs.insert(SinglePred);
874 FreshBBs.erase(BB);
875 }
876 }
877 }
878
879 // (Repeatedly) merging blocks into their predecessors can create redundant
880 // debug intrinsics.
881 for (const auto &Pred : Preds)
882 if (auto *BB = cast_or_null<BasicBlock>(Pred))
884
885 return Changed;
886}
887
888/// Find a destination block from BB if BB is mergeable empty block.
889BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
890 // If this block doesn't end with an uncond branch, ignore it.
891 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
892 if (!BI || !BI->isUnconditional())
893 return nullptr;
894
895 // If the instruction before the branch (skipping debug info) isn't a phi
896 // node, then other stuff is happening here.
898 if (BBI != BB->begin()) {
899 --BBI;
900 if (!isa<PHINode>(BBI))
901 return nullptr;
902 }
903
904 // Do not break infinite loops.
905 BasicBlock *DestBB = BI->getSuccessor(0);
906 if (DestBB == BB)
907 return nullptr;
908
909 if (!canMergeBlocks(BB, DestBB))
910 DestBB = nullptr;
911
912 return DestBB;
913}
914
915/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
916/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
917/// edges in ways that are non-optimal for isel. Start by eliminating these
918/// blocks so we can split them the way we want them.
919bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
920 SmallPtrSet<BasicBlock *, 16> Preheaders;
921 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
922 while (!LoopList.empty()) {
923 Loop *L = LoopList.pop_back_val();
924 llvm::append_range(LoopList, *L);
925 if (BasicBlock *Preheader = L->getLoopPreheader())
926 Preheaders.insert(Preheader);
927 }
928
929 bool MadeChange = false;
930 // Copy blocks into a temporary array to avoid iterator invalidation issues
931 // as we remove them.
932 // Note that this intentionally skips the entry block.
934 for (auto &Block : llvm::drop_begin(F)) {
935 // Delete phi nodes that could block deleting other empty blocks.
937 MadeChange |= DeleteDeadPHIs(&Block, TLInfo);
938 Blocks.push_back(&Block);
939 }
940
941 for (auto &Block : Blocks) {
943 if (!BB)
944 continue;
945 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
946 if (!DestBB ||
947 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
948 continue;
949
950 eliminateMostlyEmptyBlock(BB);
951 MadeChange = true;
952 }
953 return MadeChange;
954}
955
956bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
957 BasicBlock *DestBB,
958 bool isPreheader) {
959 // Do not delete loop preheaders if doing so would create a critical edge.
960 // Loop preheaders can be good locations to spill registers. If the
961 // preheader is deleted and we create a critical edge, registers may be
962 // spilled in the loop body instead.
963 if (!DisablePreheaderProtect && isPreheader &&
964 !(BB->getSinglePredecessor() &&
966 return false;
967
968 // Skip merging if the block's successor is also a successor to any callbr
969 // that leads to this block.
970 // FIXME: Is this really needed? Is this a correctness issue?
971 for (BasicBlock *Pred : predecessors(BB)) {
972 if (isa<CallBrInst>(Pred->getTerminator()) &&
973 llvm::is_contained(successors(Pred), DestBB))
974 return false;
975 }
976
977 // Try to skip merging if the unique predecessor of BB is terminated by a
978 // switch or indirect branch instruction, and BB is used as an incoming block
979 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
980 // add COPY instructions in the predecessor of BB instead of BB (if it is not
981 // merged). Note that the critical edge created by merging such blocks wont be
982 // split in MachineSink because the jump table is not analyzable. By keeping
983 // such empty block (BB), ISel will place COPY instructions in BB, not in the
984 // predecessor of BB.
985 BasicBlock *Pred = BB->getUniquePredecessor();
986 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
988 return true;
989
990 if (BB->getTerminator() != &*BB->getFirstNonPHIOrDbg())
991 return true;
992
993 // We use a simple cost heuristic which determine skipping merging is
994 // profitable if the cost of skipping merging is less than the cost of
995 // merging : Cost(skipping merging) < Cost(merging BB), where the
996 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
997 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
998 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
999 // Freq(Pred) / Freq(BB) > 2.
1000 // Note that if there are multiple empty blocks sharing the same incoming
1001 // value for the PHIs in the DestBB, we consider them together. In such
1002 // case, Cost(merging BB) will be the sum of their frequencies.
1003
1004 if (!isa<PHINode>(DestBB->begin()))
1005 return true;
1006
1007 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
1008
1009 // Find all other incoming blocks from which incoming values of all PHIs in
1010 // DestBB are the same as the ones from BB.
1011 for (BasicBlock *DestBBPred : predecessors(DestBB)) {
1012 if (DestBBPred == BB)
1013 continue;
1014
1015 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
1016 return DestPN.getIncomingValueForBlock(BB) ==
1017 DestPN.getIncomingValueForBlock(DestBBPred);
1018 }))
1019 SameIncomingValueBBs.insert(DestBBPred);
1020 }
1021
1022 // See if all BB's incoming values are same as the value from Pred. In this
1023 // case, no reason to skip merging because COPYs are expected to be place in
1024 // Pred already.
1025 if (SameIncomingValueBBs.count(Pred))
1026 return true;
1027
1028 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
1029 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
1030
1031 for (auto *SameValueBB : SameIncomingValueBBs)
1032 if (SameValueBB->getUniquePredecessor() == Pred &&
1033 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
1034 BBFreq += BFI->getBlockFreq(SameValueBB);
1035
1036 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge);
1037 return !Limit || PredFreq <= *Limit;
1038}
1039
1040/// Return true if we can merge BB into DestBB if there is a single
1041/// unconditional branch between them, and BB contains no other non-phi
1042/// instructions.
1043bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1044 const BasicBlock *DestBB) const {
1045 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1046 // the successor. If there are more complex condition (e.g. preheaders),
1047 // don't mess around with them.
1048 for (const PHINode &PN : BB->phis()) {
1049 for (const User *U : PN.users()) {
1050 const Instruction *UI = cast<Instruction>(U);
1051 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1052 return false;
1053 // If User is inside DestBB block and it is a PHINode then check
1054 // incoming value. If incoming value is not from BB then this is
1055 // a complex condition (e.g. preheaders) we want to avoid here.
1056 if (UI->getParent() == DestBB) {
1057 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1058 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1059 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1060 if (Insn && Insn->getParent() == BB &&
1061 Insn->getParent() != UPN->getIncomingBlock(I))
1062 return false;
1063 }
1064 }
1065 }
1066 }
1067
1068 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1069 // and DestBB may have conflicting incoming values for the block. If so, we
1070 // can't merge the block.
1071 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1072 if (!DestBBPN)
1073 return true; // no conflict.
1074
1075 // Collect the preds of BB.
1076 SmallPtrSet<const BasicBlock *, 16> BBPreds;
1077 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1078 // It is faster to get preds from a PHI than with pred_iterator.
1079 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1080 BBPreds.insert(BBPN->getIncomingBlock(i));
1081 } else {
1082 BBPreds.insert_range(predecessors(BB));
1083 }
1084
1085 // Walk the preds of DestBB.
1086 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1087 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1088 if (BBPreds.count(Pred)) { // Common predecessor?
1089 for (const PHINode &PN : DestBB->phis()) {
1090 const Value *V1 = PN.getIncomingValueForBlock(Pred);
1091 const Value *V2 = PN.getIncomingValueForBlock(BB);
1092
1093 // If V2 is a phi node in BB, look up what the mapped value will be.
1094 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1095 if (V2PN->getParent() == BB)
1096 V2 = V2PN->getIncomingValueForBlock(Pred);
1097
1098 // If there is a conflict, bail out.
1099 if (V1 != V2)
1100 return false;
1101 }
1102 }
1103 }
1104
1105 return true;
1106}
1107
1108/// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1109static void replaceAllUsesWith(Value *Old, Value *New,
1111 bool IsHuge) {
1112 auto *OldI = dyn_cast<Instruction>(Old);
1113 if (OldI) {
1114 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1115 UI != E; ++UI) {
1117 if (IsHuge)
1118 FreshBBs.insert(User->getParent());
1119 }
1120 }
1121 Old->replaceAllUsesWith(New);
1122}
1123
1124/// Eliminate a basic block that has only phi's and an unconditional branch in
1125/// it.
1126void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1127 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1128 BasicBlock *DestBB = BI->getSuccessor(0);
1129
1130 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1131 << *BB << *DestBB);
1132
1133 // If the destination block has a single pred, then this is a trivial edge,
1134 // just collapse it.
1135 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1136 if (SinglePred != DestBB) {
1137 assert(SinglePred == BB &&
1138 "Single predecessor not the same as predecessor");
1139 // Merge DestBB into SinglePred/BB and delete it.
1141 // Note: BB(=SinglePred) will not be deleted on this path.
1142 // DestBB(=its single successor) is the one that was deleted.
1143 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1144
1145 if (IsHugeFunc) {
1146 // Update FreshBBs to optimize the merged BB.
1147 FreshBBs.insert(SinglePred);
1148 FreshBBs.erase(DestBB);
1149 }
1150 return;
1151 }
1152 }
1153
1154 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1155 // to handle the new incoming edges it is about to have.
1156 for (PHINode &PN : DestBB->phis()) {
1157 // Remove the incoming value for BB, and remember it.
1158 Value *InVal = PN.removeIncomingValue(BB, false);
1159
1160 // Two options: either the InVal is a phi node defined in BB or it is some
1161 // value that dominates BB.
1162 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1163 if (InValPhi && InValPhi->getParent() == BB) {
1164 // Add all of the input values of the input PHI as inputs of this phi.
1165 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1166 PN.addIncoming(InValPhi->getIncomingValue(i),
1167 InValPhi->getIncomingBlock(i));
1168 } else {
1169 // Otherwise, add one instance of the dominating value for each edge that
1170 // we will be adding.
1171 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1172 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1173 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1174 } else {
1175 for (BasicBlock *Pred : predecessors(BB))
1176 PN.addIncoming(InVal, Pred);
1177 }
1178 }
1179 }
1180
1181 // Preserve loop Metadata.
1182 if (BI->hasMetadata(LLVMContext::MD_loop)) {
1183 for (auto *Pred : predecessors(BB))
1184 Pred->getTerminator()->copyMetadata(*BI, LLVMContext::MD_loop);
1185 }
1186
1187 // The PHIs are now updated, change everything that refers to BB to use
1188 // DestBB and remove BB.
1189 BB->replaceAllUsesWith(DestBB);
1190 BB->eraseFromParent();
1191 ++NumBlocksElim;
1192
1193 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1194}
1195
1196// Computes a map of base pointer relocation instructions to corresponding
1197// derived pointer relocation instructions given a vector of all relocate calls
1199 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1201 &RelocateInstMap) {
1202 // Collect information in two maps: one primarily for locating the base object
1203 // while filling the second map; the second map is the final structure holding
1204 // a mapping between Base and corresponding Derived relocate calls
1206 for (auto *ThisRelocate : AllRelocateCalls) {
1207 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1208 ThisRelocate->getDerivedPtrIndex());
1209 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1210 }
1211 for (auto &Item : RelocateIdxMap) {
1212 std::pair<unsigned, unsigned> Key = Item.first;
1213 if (Key.first == Key.second)
1214 // Base relocation: nothing to insert
1215 continue;
1216
1217 GCRelocateInst *I = Item.second;
1218 auto BaseKey = std::make_pair(Key.first, Key.first);
1219
1220 // We're iterating over RelocateIdxMap so we cannot modify it.
1221 auto MaybeBase = RelocateIdxMap.find(BaseKey);
1222 if (MaybeBase == RelocateIdxMap.end())
1223 // TODO: We might want to insert a new base object relocate and gep off
1224 // that, if there are enough derived object relocates.
1225 continue;
1226
1227 RelocateInstMap[MaybeBase->second].push_back(I);
1228 }
1229}
1230
1231// Accepts a GEP and extracts the operands into a vector provided they're all
1232// small integer constants
1234 SmallVectorImpl<Value *> &OffsetV) {
1235 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1236 // Only accept small constant integer operands
1237 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1238 if (!Op || Op->getZExtValue() > 20)
1239 return false;
1240 }
1241
1242 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1243 OffsetV.push_back(GEP->getOperand(i));
1244 return true;
1245}
1246
1247// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1248// replace, computes a replacement, and affects it.
1249static bool
1251 const SmallVectorImpl<GCRelocateInst *> &Targets) {
1252 bool MadeChange = false;
1253 // We must ensure the relocation of derived pointer is defined after
1254 // relocation of base pointer. If we find a relocation corresponding to base
1255 // defined earlier than relocation of base then we move relocation of base
1256 // right before found relocation. We consider only relocation in the same
1257 // basic block as relocation of base. Relocations from other basic block will
1258 // be skipped by optimization and we do not care about them.
1259 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1260 &*R != RelocatedBase; ++R)
1261 if (auto *RI = dyn_cast<GCRelocateInst>(R))
1262 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1263 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1264 RelocatedBase->moveBefore(RI->getIterator());
1265 MadeChange = true;
1266 break;
1267 }
1268
1269 for (GCRelocateInst *ToReplace : Targets) {
1270 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1271 "Not relocating a derived object of the original base object");
1272 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1273 // A duplicate relocate call. TODO: coalesce duplicates.
1274 continue;
1275 }
1276
1277 if (RelocatedBase->getParent() != ToReplace->getParent()) {
1278 // Base and derived relocates are in different basic blocks.
1279 // In this case transform is only valid when base dominates derived
1280 // relocate. However it would be too expensive to check dominance
1281 // for each such relocate, so we skip the whole transformation.
1282 continue;
1283 }
1284
1285 Value *Base = ToReplace->getBasePtr();
1286 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1287 if (!Derived || Derived->getPointerOperand() != Base)
1288 continue;
1289
1291 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1292 continue;
1293
1294 // Create a Builder and replace the target callsite with a gep
1295 assert(RelocatedBase->getNextNode() &&
1296 "Should always have one since it's not a terminator");
1297
1298 // Insert after RelocatedBase
1299 IRBuilder<> Builder(RelocatedBase->getNextNode());
1300 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1301
1302 // If gc_relocate does not match the actual type, cast it to the right type.
1303 // In theory, there must be a bitcast after gc_relocate if the type does not
1304 // match, and we should reuse it to get the derived pointer. But it could be
1305 // cases like this:
1306 // bb1:
1307 // ...
1308 // %g1 = call coldcc i8 addrspace(1)*
1309 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1310 //
1311 // bb2:
1312 // ...
1313 // %g2 = call coldcc i8 addrspace(1)*
1314 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1315 //
1316 // merge:
1317 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1318 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1319 //
1320 // In this case, we can not find the bitcast any more. So we insert a new
1321 // bitcast no matter there is already one or not. In this way, we can handle
1322 // all cases, and the extra bitcast should be optimized away in later
1323 // passes.
1324 Value *ActualRelocatedBase = RelocatedBase;
1325 if (RelocatedBase->getType() != Base->getType()) {
1326 ActualRelocatedBase =
1327 Builder.CreateBitCast(RelocatedBase, Base->getType());
1328 }
1329 Value *Replacement =
1330 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1331 ArrayRef(OffsetV));
1332 Replacement->takeName(ToReplace);
1333 // If the newly generated derived pointer's type does not match the original
1334 // derived pointer's type, cast the new derived pointer to match it. Same
1335 // reasoning as above.
1336 Value *ActualReplacement = Replacement;
1337 if (Replacement->getType() != ToReplace->getType()) {
1338 ActualReplacement =
1339 Builder.CreateBitCast(Replacement, ToReplace->getType());
1340 }
1341 ToReplace->replaceAllUsesWith(ActualReplacement);
1342 ToReplace->eraseFromParent();
1343
1344 MadeChange = true;
1345 }
1346 return MadeChange;
1347}
1348
1349// Turns this:
1350//
1351// %base = ...
1352// %ptr = gep %base + 15
1353// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1354// %base' = relocate(%tok, i32 4, i32 4)
1355// %ptr' = relocate(%tok, i32 4, i32 5)
1356// %val = load %ptr'
1357//
1358// into this:
1359//
1360// %base = ...
1361// %ptr = gep %base + 15
1362// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1363// %base' = gc.relocate(%tok, i32 4, i32 4)
1364// %ptr' = gep %base' + 15
1365// %val = load %ptr'
1366bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1367 bool MadeChange = false;
1368 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1369 for (auto *U : I.users())
1370 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1371 // Collect all the relocate calls associated with a statepoint
1372 AllRelocateCalls.push_back(Relocate);
1373
1374 // We need at least one base pointer relocation + one derived pointer
1375 // relocation to mangle
1376 if (AllRelocateCalls.size() < 2)
1377 return false;
1378
1379 // RelocateInstMap is a mapping from the base relocate instruction to the
1380 // corresponding derived relocate instructions
1381 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap;
1382 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1383 if (RelocateInstMap.empty())
1384 return false;
1385
1386 for (auto &Item : RelocateInstMap)
1387 // Item.first is the RelocatedBase to offset against
1388 // Item.second is the vector of Targets to replace
1389 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1390 return MadeChange;
1391}
1392
1393/// Sink the specified cast instruction into its user blocks.
1394static bool SinkCast(CastInst *CI) {
1395 BasicBlock *DefBB = CI->getParent();
1396
1397 /// InsertedCasts - Only insert a cast in each block once.
1399
1400 bool MadeChange = false;
1401 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1402 UI != E;) {
1403 Use &TheUse = UI.getUse();
1405
1406 // Figure out which BB this cast is used in. For PHI's this is the
1407 // appropriate predecessor block.
1408 BasicBlock *UserBB = User->getParent();
1409 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1410 UserBB = PN->getIncomingBlock(TheUse);
1411 }
1412
1413 // Preincrement use iterator so we don't invalidate it.
1414 ++UI;
1415
1416 // The first insertion point of a block containing an EH pad is after the
1417 // pad. If the pad is the user, we cannot sink the cast past the pad.
1418 if (User->isEHPad())
1419 continue;
1420
1421 // If the block selected to receive the cast is an EH pad that does not
1422 // allow non-PHI instructions before the terminator, we can't sink the
1423 // cast.
1424 if (UserBB->getTerminator()->isEHPad())
1425 continue;
1426
1427 // If this user is in the same block as the cast, don't change the cast.
1428 if (UserBB == DefBB)
1429 continue;
1430
1431 // If we have already inserted a cast into this block, use it.
1432 CastInst *&InsertedCast = InsertedCasts[UserBB];
1433
1434 if (!InsertedCast) {
1435 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1436 assert(InsertPt != UserBB->end());
1437 InsertedCast = cast<CastInst>(CI->clone());
1438 InsertedCast->insertBefore(*UserBB, InsertPt);
1439 }
1440
1441 // Replace a use of the cast with a use of the new cast.
1442 TheUse = InsertedCast;
1443 MadeChange = true;
1444 ++NumCastUses;
1445 }
1446
1447 // If we removed all uses, nuke the cast.
1448 if (CI->use_empty()) {
1449 salvageDebugInfo(*CI);
1450 CI->eraseFromParent();
1451 MadeChange = true;
1452 }
1453
1454 return MadeChange;
1455}
1456
1457/// If the specified cast instruction is a noop copy (e.g. it's casting from
1458/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1459/// reduce the number of virtual registers that must be created and coalesced.
1460///
1461/// Return true if any changes are made.
1463 const DataLayout &DL) {
1464 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1465 // than sinking only nop casts, but is helpful on some platforms.
1466 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1467 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1468 ASC->getDestAddressSpace()))
1469 return false;
1470 }
1471
1472 // If this is a noop copy,
1473 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1474 EVT DstVT = TLI.getValueType(DL, CI->getType());
1475
1476 // This is an fp<->int conversion?
1477 if (SrcVT.isInteger() != DstVT.isInteger())
1478 return false;
1479
1480 // If this is an extension, it will be a zero or sign extension, which
1481 // isn't a noop.
1482 if (SrcVT.bitsLT(DstVT))
1483 return false;
1484
1485 // If these values will be promoted, find out what they will be promoted
1486 // to. This helps us consider truncates on PPC as noop copies when they
1487 // are.
1488 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1490 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1491 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1493 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1494
1495 // If, after promotion, these are the same types, this is a noop copy.
1496 if (SrcVT != DstVT)
1497 return false;
1498
1499 return SinkCast(CI);
1500}
1501
1502// Match a simple increment by constant operation. Note that if a sub is
1503// matched, the step is negated (as if the step had been canonicalized to
1504// an add, even though we leave the instruction alone.)
1505static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1506 Constant *&Step) {
1507 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1509 m_Instruction(LHS), m_Constant(Step)))))
1510 return true;
1511 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1513 m_Instruction(LHS), m_Constant(Step))))) {
1514 Step = ConstantExpr::getNeg(Step);
1515 return true;
1516 }
1517 return false;
1518}
1519
1520/// If given \p PN is an inductive variable with value IVInc coming from the
1521/// backedge, and on each iteration it gets increased by Step, return pair
1522/// <IVInc, Step>. Otherwise, return std::nullopt.
1523static std::optional<std::pair<Instruction *, Constant *>>
1524getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1525 const Loop *L = LI->getLoopFor(PN->getParent());
1526 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1527 return std::nullopt;
1528 auto *IVInc =
1529 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1530 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1531 return std::nullopt;
1532 Instruction *LHS = nullptr;
1533 Constant *Step = nullptr;
1534 if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1535 return std::make_pair(IVInc, Step);
1536 return std::nullopt;
1537}
1538
1539static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1540 auto *I = dyn_cast<Instruction>(V);
1541 if (!I)
1542 return false;
1543 Instruction *LHS = nullptr;
1544 Constant *Step = nullptr;
1545 if (!matchIncrement(I, LHS, Step))
1546 return false;
1547 if (auto *PN = dyn_cast<PHINode>(LHS))
1548 if (auto IVInc = getIVIncrement(PN, LI))
1549 return IVInc->first == I;
1550 return false;
1551}
1552
1553bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1554 Value *Arg0, Value *Arg1,
1555 CmpInst *Cmp,
1556 Intrinsic::ID IID) {
1557 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1558 if (!isIVIncrement(BO, LI))
1559 return false;
1560 const Loop *L = LI->getLoopFor(BO->getParent());
1561 assert(L && "L should not be null after isIVIncrement()");
1562 // Do not risk on moving increment into a child loop.
1563 if (LI->getLoopFor(Cmp->getParent()) != L)
1564 return false;
1565
1566 // Finally, we need to ensure that the insert point will dominate all
1567 // existing uses of the increment.
1568
1569 auto &DT = getDT(*BO->getParent()->getParent());
1570 if (DT.dominates(Cmp->getParent(), BO->getParent()))
1571 // If we're moving up the dom tree, all uses are trivially dominated.
1572 // (This is the common case for code produced by LSR.)
1573 return true;
1574
1575 // Otherwise, special case the single use in the phi recurrence.
1576 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1577 };
1578 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1579 // We used to use a dominator tree here to allow multi-block optimization.
1580 // But that was problematic because:
1581 // 1. It could cause a perf regression by hoisting the math op into the
1582 // critical path.
1583 // 2. It could cause a perf regression by creating a value that was live
1584 // across multiple blocks and increasing register pressure.
1585 // 3. Use of a dominator tree could cause large compile-time regression.
1586 // This is because we recompute the DT on every change in the main CGP
1587 // run-loop. The recomputing is probably unnecessary in many cases, so if
1588 // that was fixed, using a DT here would be ok.
1589 //
1590 // There is one important particular case we still want to handle: if BO is
1591 // the IV increment. Important properties that make it profitable:
1592 // - We can speculate IV increment anywhere in the loop (as long as the
1593 // indvar Phi is its only user);
1594 // - Upon computing Cmp, we effectively compute something equivalent to the
1595 // IV increment (despite it loops differently in the IR). So moving it up
1596 // to the cmp point does not really increase register pressure.
1597 return false;
1598 }
1599
1600 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1601 if (BO->getOpcode() == Instruction::Add &&
1602 IID == Intrinsic::usub_with_overflow) {
1603 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1605 }
1606
1607 // Insert at the first instruction of the pair.
1608 Instruction *InsertPt = nullptr;
1609 for (Instruction &Iter : *Cmp->getParent()) {
1610 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1611 // the overflow intrinsic are defined.
1612 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1613 InsertPt = &Iter;
1614 break;
1615 }
1616 }
1617 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1618
1619 IRBuilder<> Builder(InsertPt);
1620 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1621 if (BO->getOpcode() != Instruction::Xor) {
1622 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1623 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1624 } else
1625 assert(BO->hasOneUse() &&
1626 "Patterns with XOr should use the BO only in the compare");
1627 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1628 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1629 Cmp->eraseFromParent();
1630 BO->eraseFromParent();
1631 return true;
1632}
1633
1634/// Match special-case patterns that check for unsigned add overflow.
1636 BinaryOperator *&Add) {
1637 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1638 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1639 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1640
1641 // We are not expecting non-canonical/degenerate code. Just bail out.
1642 if (isa<Constant>(A))
1643 return false;
1644
1645 ICmpInst::Predicate Pred = Cmp->getPredicate();
1646 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1647 B = ConstantInt::get(B->getType(), 1);
1648 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1649 B = Constant::getAllOnesValue(B->getType());
1650 else
1651 return false;
1652
1653 // Check the users of the variable operand of the compare looking for an add
1654 // with the adjusted constant.
1655 for (User *U : A->users()) {
1656 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1658 return true;
1659 }
1660 }
1661 return false;
1662}
1663
1664/// Try to combine the compare into a call to the llvm.uadd.with.overflow
1665/// intrinsic. Return true if any changes were made.
1666bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1667 ModifyDT &ModifiedDT) {
1668 bool EdgeCase = false;
1669 Value *A, *B;
1670 BinaryOperator *Add;
1671 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1673 return false;
1674 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1675 A = Add->getOperand(0);
1676 B = Add->getOperand(1);
1677 EdgeCase = true;
1678 }
1679
1681 TLI->getValueType(*DL, Add->getType()),
1682 Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1683 return false;
1684
1685 // We don't want to move around uses of condition values this late, so we
1686 // check if it is legal to create the call to the intrinsic in the basic
1687 // block containing the icmp.
1688 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1689 return false;
1690
1691 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1692 Intrinsic::uadd_with_overflow))
1693 return false;
1694
1695 // Reset callers - do not crash by iterating over a dead instruction.
1696 ModifiedDT = ModifyDT::ModifyInstDT;
1697 return true;
1698}
1699
1700bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1701 ModifyDT &ModifiedDT) {
1702 // We are not expecting non-canonical/degenerate code. Just bail out.
1703 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1704 if (isa<Constant>(A) && isa<Constant>(B))
1705 return false;
1706
1707 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1708 ICmpInst::Predicate Pred = Cmp->getPredicate();
1709 if (Pred == ICmpInst::ICMP_UGT) {
1710 std::swap(A, B);
1711 Pred = ICmpInst::ICMP_ULT;
1712 }
1713 // Convert special-case: (A == 0) is the same as (A u< 1).
1714 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1715 B = ConstantInt::get(B->getType(), 1);
1716 Pred = ICmpInst::ICMP_ULT;
1717 }
1718 // Convert special-case: (A != 0) is the same as (0 u< A).
1719 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1720 std::swap(A, B);
1721 Pred = ICmpInst::ICMP_ULT;
1722 }
1723 if (Pred != ICmpInst::ICMP_ULT)
1724 return false;
1725
1726 // Walk the users of a variable operand of a compare looking for a subtract or
1727 // add with that same operand. Also match the 2nd operand of the compare to
1728 // the add/sub, but that may be a negated constant operand of an add.
1729 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1730 BinaryOperator *Sub = nullptr;
1731 for (User *U : CmpVariableOperand->users()) {
1732 // A - B, A u< B --> usubo(A, B)
1733 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1735 break;
1736 }
1737
1738 // A + (-C), A u< C (canonicalized form of (sub A, C))
1739 const APInt *CmpC, *AddC;
1740 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1741 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1743 break;
1744 }
1745 }
1746 if (!Sub)
1747 return false;
1748
1750 TLI->getValueType(*DL, Sub->getType()),
1751 Sub->hasNUsesOrMore(1)))
1752 return false;
1753
1754 // We don't want to move around uses of condition values this late, so we
1755 // check if it is legal to create the call to the intrinsic in the basic
1756 // block containing the icmp.
1757 if (Sub->getParent() != Cmp->getParent() && !Sub->hasOneUse())
1758 return false;
1759
1760 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1761 Cmp, Intrinsic::usub_with_overflow))
1762 return false;
1763
1764 // Reset callers - do not crash by iterating over a dead instruction.
1765 ModifiedDT = ModifyDT::ModifyInstDT;
1766 return true;
1767}
1768
1769// Decanonicalizes icmp+ctpop power-of-two test if ctpop is slow.
1770// The same transformation exists in DAG combiner, but we repeat it here because
1771// DAG builder can break the pattern by moving icmp into a successor block.
1772bool CodeGenPrepare::unfoldPowerOf2Test(CmpInst *Cmp) {
1773 CmpPredicate Pred;
1774 Value *X;
1775 const APInt *C;
1776
1777 // (icmp (ctpop x), c)
1780 return false;
1781
1782 // We're only interested in "is power of 2 [or zero]" patterns.
1783 bool IsStrictlyPowerOf2Test = ICmpInst::isEquality(Pred) && *C == 1;
1784 bool IsPowerOf2OrZeroTest = (Pred == CmpInst::ICMP_ULT && *C == 2) ||
1785 (Pred == CmpInst::ICMP_UGT && *C == 1);
1786 if (!IsStrictlyPowerOf2Test && !IsPowerOf2OrZeroTest)
1787 return false;
1788
1789 // Some targets have better codegen for `ctpop(x) u</u>= 2/1`than for
1790 // `ctpop(x) ==/!= 1`. If ctpop is fast, only try changing the comparison,
1791 // and otherwise expand ctpop into a few simple instructions.
1792 Type *OpTy = X->getType();
1793 if (TLI->isCtpopFast(TLI->getValueType(*DL, OpTy))) {
1794 // Look for `ctpop(x) ==/!= 1`, where `ctpop(x)` is known to be non-zero.
1795 if (!IsStrictlyPowerOf2Test || !isKnownNonZero(Cmp->getOperand(0), *DL))
1796 return false;
1797
1798 // ctpop(x) == 1 -> ctpop(x) u< 2
1799 // ctpop(x) != 1 -> ctpop(x) u> 1
1800 if (Pred == ICmpInst::ICMP_EQ) {
1801 Cmp->setOperand(1, ConstantInt::get(OpTy, 2));
1802 Cmp->setPredicate(ICmpInst::ICMP_ULT);
1803 } else {
1804 Cmp->setPredicate(ICmpInst::ICMP_UGT);
1805 }
1806 return true;
1807 }
1808
1809 Value *NewCmp;
1810 if (IsPowerOf2OrZeroTest ||
1811 (IsStrictlyPowerOf2Test && isKnownNonZero(Cmp->getOperand(0), *DL))) {
1812 // ctpop(x) u< 2 -> (x & (x - 1)) == 0
1813 // ctpop(x) u> 1 -> (x & (x - 1)) != 0
1814 IRBuilder<> Builder(Cmp);
1815 Value *Sub = Builder.CreateAdd(X, Constant::getAllOnesValue(OpTy));
1816 Value *And = Builder.CreateAnd(X, Sub);
1817 CmpInst::Predicate NewPred =
1818 (Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_EQ)
1820 : CmpInst::ICMP_NE;
1821 NewCmp = Builder.CreateICmp(NewPred, And, ConstantInt::getNullValue(OpTy));
1822 } else {
1823 // ctpop(x) == 1 -> (x ^ (x - 1)) u> (x - 1)
1824 // ctpop(x) != 1 -> (x ^ (x - 1)) u<= (x - 1)
1825 IRBuilder<> Builder(Cmp);
1826 Value *Sub = Builder.CreateAdd(X, Constant::getAllOnesValue(OpTy));
1827 Value *Xor = Builder.CreateXor(X, Sub);
1828 CmpInst::Predicate NewPred =
1830 NewCmp = Builder.CreateICmp(NewPred, Xor, Sub);
1831 }
1832
1833 Cmp->replaceAllUsesWith(NewCmp);
1835 return true;
1836}
1837
1838/// Sink the given CmpInst into user blocks to reduce the number of virtual
1839/// registers that must be created and coalesced. This is a clear win except on
1840/// targets with multiple condition code registers (PowerPC), where it might
1841/// lose; some adjustment may be wanted there.
1842///
1843/// Return true if any changes are made.
1844static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI,
1845 const DataLayout &DL) {
1846 if (TLI.hasMultipleConditionRegisters(EVT::getEVT(Cmp->getType())))
1847 return false;
1848
1849 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1850 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1851 return false;
1852
1853 bool UsedInPhiOrCurrentBlock = any_of(Cmp->users(), [Cmp](User *U) {
1854 return isa<PHINode>(U) ||
1855 cast<Instruction>(U)->getParent() == Cmp->getParent();
1856 });
1857
1858 // Avoid sinking larger than legal integer comparisons unless its ONLY used in
1859 // another BB.
1860 if (UsedInPhiOrCurrentBlock && Cmp->getOperand(0)->getType()->isIntegerTy() &&
1861 Cmp->getOperand(0)->getType()->getScalarSizeInBits() >
1862 DL.getLargestLegalIntTypeSizeInBits())
1863 return false;
1864
1865 // Only insert a cmp in each block once.
1867
1868 bool MadeChange = false;
1869 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1870 UI != E;) {
1871 Use &TheUse = UI.getUse();
1873
1874 // Preincrement use iterator so we don't invalidate it.
1875 ++UI;
1876
1877 // Don't bother for PHI nodes.
1878 if (isa<PHINode>(User))
1879 continue;
1880
1881 // Figure out which BB this cmp is used in.
1882 BasicBlock *UserBB = User->getParent();
1883 BasicBlock *DefBB = Cmp->getParent();
1884
1885 // If this user is in the same block as the cmp, don't change the cmp.
1886 if (UserBB == DefBB)
1887 continue;
1888
1889 // If we have already inserted a cmp into this block, use it.
1890 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1891
1892 if (!InsertedCmp) {
1893 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1894 assert(InsertPt != UserBB->end());
1895 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1896 Cmp->getOperand(0), Cmp->getOperand(1), "");
1897 InsertedCmp->insertBefore(*UserBB, InsertPt);
1898 // Propagate the debug info.
1899 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1900 }
1901
1902 // Replace a use of the cmp with a use of the new cmp.
1903 TheUse = InsertedCmp;
1904 MadeChange = true;
1905 ++NumCmpUses;
1906 }
1907
1908 // If we removed all uses, nuke the cmp.
1909 if (Cmp->use_empty()) {
1910 Cmp->eraseFromParent();
1911 MadeChange = true;
1912 }
1913
1914 return MadeChange;
1915}
1916
1917/// For pattern like:
1918///
1919/// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1920/// ...
1921/// DomBB:
1922/// ...
1923/// br DomCond, TrueBB, CmpBB
1924/// CmpBB: (with DomBB being the single predecessor)
1925/// ...
1926/// Cmp = icmp eq CmpOp0, CmpOp1
1927/// ...
1928///
1929/// It would use two comparison on targets that lowering of icmp sgt/slt is
1930/// different from lowering of icmp eq (PowerPC). This function try to convert
1931/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1932/// After that, DomCond and Cmp can use the same comparison so reduce one
1933/// comparison.
1934///
1935/// Return true if any changes are made.
1937 const TargetLowering &TLI) {
1939 return false;
1940
1941 ICmpInst::Predicate Pred = Cmp->getPredicate();
1942 if (Pred != ICmpInst::ICMP_EQ)
1943 return false;
1944
1945 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1946 // icmp slt/sgt would introduce more redundant LLVM IR.
1947 for (User *U : Cmp->users()) {
1948 if (isa<BranchInst>(U))
1949 continue;
1950 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1951 continue;
1952 return false;
1953 }
1954
1955 // This is a cheap/incomplete check for dominance - just match a single
1956 // predecessor with a conditional branch.
1957 BasicBlock *CmpBB = Cmp->getParent();
1958 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1959 if (!DomBB)
1960 return false;
1961
1962 // We want to ensure that the only way control gets to the comparison of
1963 // interest is that a less/greater than comparison on the same operands is
1964 // false.
1965 Value *DomCond;
1966 BasicBlock *TrueBB, *FalseBB;
1967 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1968 return false;
1969 if (CmpBB != FalseBB)
1970 return false;
1971
1972 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1973 CmpPredicate DomPred;
1974 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1975 return false;
1976 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1977 return false;
1978
1979 // Convert the equality comparison to the opposite of the dominating
1980 // comparison and swap the direction for all branch/select users.
1981 // We have conceptually converted:
1982 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1983 // to
1984 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1985 // And similarly for branches.
1986 for (User *U : Cmp->users()) {
1987 if (auto *BI = dyn_cast<BranchInst>(U)) {
1988 assert(BI->isConditional() && "Must be conditional");
1989 BI->swapSuccessors();
1990 continue;
1991 }
1992 if (auto *SI = dyn_cast<SelectInst>(U)) {
1993 // Swap operands
1994 SI->swapValues();
1995 SI->swapProfMetadata();
1996 continue;
1997 }
1998 llvm_unreachable("Must be a branch or a select");
1999 }
2000 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
2001 return true;
2002}
2003
2004/// Many architectures use the same instruction for both subtract and cmp. Try
2005/// to swap cmp operands to match subtract operations to allow for CSE.
2007 Value *Op0 = Cmp->getOperand(0);
2008 Value *Op1 = Cmp->getOperand(1);
2009 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
2010 isa<Constant>(Op1) || Op0 == Op1)
2011 return false;
2012
2013 // If a subtract already has the same operands as a compare, swapping would be
2014 // bad. If a subtract has the same operands as a compare but in reverse order,
2015 // then swapping is good.
2016 int GoodToSwap = 0;
2017 unsigned NumInspected = 0;
2018 for (const User *U : Op0->users()) {
2019 // Avoid walking many users.
2020 if (++NumInspected > 128)
2021 return false;
2022 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
2023 GoodToSwap++;
2024 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
2025 GoodToSwap--;
2026 }
2027
2028 if (GoodToSwap > 0) {
2029 Cmp->swapOperands();
2030 return true;
2031 }
2032 return false;
2033}
2034
2035static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI,
2036 const DataLayout &DL) {
2037 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp);
2038 if (!FCmp)
2039 return false;
2040
2041 // Don't fold if the target offers free fabs and the predicate is legal.
2042 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType());
2043 if (TLI.isFAbsFree(VT) &&
2045 VT.getSimpleVT()))
2046 return false;
2047
2048 // Reverse the canonicalization if it is a FP class test
2049 auto ShouldReverseTransform = [](FPClassTest ClassTest) {
2050 return ClassTest == fcInf || ClassTest == (fcInf | fcNan);
2051 };
2052 auto [ClassVal, ClassTest] =
2053 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
2054 FCmp->getOperand(0), FCmp->getOperand(1));
2055 if (!ClassVal)
2056 return false;
2057
2058 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest))
2059 return false;
2060
2061 IRBuilder<> Builder(Cmp);
2062 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest);
2063 Cmp->replaceAllUsesWith(IsFPClass);
2065 return true;
2066}
2067
2069 Instruction *Rem, const LoopInfo *LI, Value *&RemAmtOut, Value *&AddInstOut,
2070 Value *&AddOffsetOut, PHINode *&LoopIncrPNOut) {
2071 Value *Incr, *RemAmt;
2072 // NB: If RemAmt is a power of 2 it *should* have been transformed by now.
2073 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt))))
2074 return false;
2075
2076 Value *AddInst, *AddOffset;
2077 // Find out loop increment PHI.
2078 auto *PN = dyn_cast<PHINode>(Incr);
2079 if (PN != nullptr) {
2080 AddInst = nullptr;
2081 AddOffset = nullptr;
2082 } else {
2083 // Search through a NUW add on top of the loop increment.
2084 Value *V0, *V1;
2085 if (!match(Incr, m_NUWAdd(m_Value(V0), m_Value(V1))))
2086 return false;
2087
2088 AddInst = Incr;
2089 PN = dyn_cast<PHINode>(V0);
2090 if (PN != nullptr) {
2091 AddOffset = V1;
2092 } else {
2093 PN = dyn_cast<PHINode>(V1);
2094 AddOffset = V0;
2095 }
2096 }
2097
2098 if (!PN)
2099 return false;
2100
2101 // This isn't strictly necessary, what we really need is one increment and any
2102 // amount of initial values all being the same.
2103 if (PN->getNumIncomingValues() != 2)
2104 return false;
2105
2106 // Only trivially analyzable loops.
2107 Loop *L = LI->getLoopFor(PN->getParent());
2108 if (!L || !L->getLoopPreheader() || !L->getLoopLatch())
2109 return false;
2110
2111 // Req that the remainder is in the loop
2112 if (!L->contains(Rem))
2113 return false;
2114
2115 // Only works if the remainder amount is a loop invaraint
2116 if (!L->isLoopInvariant(RemAmt))
2117 return false;
2118
2119 // Only works if the AddOffset is a loop invaraint
2120 if (AddOffset && !L->isLoopInvariant(AddOffset))
2121 return false;
2122
2123 // Is the PHI a loop increment?
2124 auto LoopIncrInfo = getIVIncrement(PN, LI);
2125 if (!LoopIncrInfo)
2126 return false;
2127
2128 // We need remainder_amount % increment_amount to be zero. Increment of one
2129 // satisfies that without any special logic and is overwhelmingly the common
2130 // case.
2131 if (!match(LoopIncrInfo->second, m_One()))
2132 return false;
2133
2134 // Need the increment to not overflow.
2135 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value())))
2136 return false;
2137
2138 // Set output variables.
2139 RemAmtOut = RemAmt;
2140 LoopIncrPNOut = PN;
2141 AddInstOut = AddInst;
2142 AddOffsetOut = AddOffset;
2143
2144 return true;
2145}
2146
2147// Try to transform:
2148//
2149// for(i = Start; i < End; ++i)
2150// Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant;
2151//
2152// ->
2153//
2154// Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant;
2155// for(i = Start; i < End; ++i, ++rem)
2156// Rem = rem == RemAmtLoopInvariant ? 0 : Rem;
2158 const LoopInfo *LI,
2160 bool IsHuge) {
2161 Value *AddOffset, *RemAmt, *AddInst;
2162 PHINode *LoopIncrPN;
2163 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, AddInst,
2164 AddOffset, LoopIncrPN))
2165 return false;
2166
2167 // Only non-constant remainder as the extra IV is probably not profitable
2168 // in that case.
2169 //
2170 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If
2171 // we can rule out register pressure and ensure this `urem` is executed each
2172 // iteration, its probably profitable to handle the const case as well.
2173 //
2174 // Potential TODO(2): Should we have a check for how "nested" this remainder
2175 // operation is? The new code runs every iteration so if the remainder is
2176 // guarded behind unlikely conditions this might not be worth it.
2177 if (match(RemAmt, m_ImmConstant()))
2178 return false;
2179
2180 Loop *L = LI->getLoopFor(LoopIncrPN->getParent());
2181 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader());
2182 // If we have add create initial value for remainder.
2183 // The logic here is:
2184 // (urem (add nuw Start, IncrLoopInvariant), RemAmtLoopInvariant
2185 //
2186 // Only proceed if the expression simplifies (otherwise we can't fully
2187 // optimize out the urem).
2188 if (AddInst) {
2189 assert(AddOffset && "We found an add but missing values");
2190 // Without dom-condition/assumption cache we aren't likely to get much out
2191 // of a context instruction.
2192 Start = simplifyAddInst(Start, AddOffset,
2193 match(AddInst, m_NSWAdd(m_Value(), m_Value())),
2194 /*IsNUW=*/true, *DL);
2195 if (!Start)
2196 return false;
2197 }
2198
2199 // If we can't fully optimize out the `rem`, skip this transform.
2200 Start = simplifyURemInst(Start, RemAmt, *DL);
2201 if (!Start)
2202 return false;
2203
2204 // Create new remainder with induction variable.
2205 Type *Ty = Rem->getType();
2206 IRBuilder<> Builder(Rem->getContext());
2207
2208 Builder.SetInsertPoint(LoopIncrPN);
2209 PHINode *NewRem = Builder.CreatePHI(Ty, 2);
2210
2211 Builder.SetInsertPoint(cast<Instruction>(
2212 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch())));
2213 // `(add (urem x, y), 1)` is always nuw.
2214 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1));
2215 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt);
2216 Value *RemSel =
2217 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd);
2218
2219 NewRem->addIncoming(Start, L->getLoopPreheader());
2220 NewRem->addIncoming(RemSel, L->getLoopLatch());
2221
2222 // Insert all touched BBs.
2223 FreshBBs.insert(LoopIncrPN->getParent());
2224 FreshBBs.insert(L->getLoopLatch());
2225 FreshBBs.insert(Rem->getParent());
2226 if (AddInst)
2227 FreshBBs.insert(cast<Instruction>(AddInst)->getParent());
2228 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge);
2229 Rem->eraseFromParent();
2230 if (AddInst && AddInst->use_empty())
2231 cast<Instruction>(AddInst)->eraseFromParent();
2232 return true;
2233}
2234
2235bool CodeGenPrepare::optimizeURem(Instruction *Rem) {
2236 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc))
2237 return true;
2238 return false;
2239}
2240
2241bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
2242 if (sinkCmpExpression(Cmp, *TLI, *DL))
2243 return true;
2244
2245 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
2246 return true;
2247
2248 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
2249 return true;
2250
2251 if (unfoldPowerOf2Test(Cmp))
2252 return true;
2253
2254 if (foldICmpWithDominatingICmp(Cmp, *TLI))
2255 return true;
2256
2258 return true;
2259
2260 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL))
2261 return true;
2262
2263 return false;
2264}
2265
2266/// Duplicate and sink the given 'and' instruction into user blocks where it is
2267/// used in a compare to allow isel to generate better code for targets where
2268/// this operation can be combined.
2269///
2270/// Return true if any changes are made.
2272 SetOfInstrs &InsertedInsts) {
2273 // Double-check that we're not trying to optimize an instruction that was
2274 // already optimized by some other part of this pass.
2275 assert(!InsertedInsts.count(AndI) &&
2276 "Attempting to optimize already optimized and instruction");
2277 (void)InsertedInsts;
2278
2279 // Nothing to do for single use in same basic block.
2280 if (AndI->hasOneUse() &&
2281 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
2282 return false;
2283
2284 // Try to avoid cases where sinking/duplicating is likely to increase register
2285 // pressure.
2286 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
2287 !isa<ConstantInt>(AndI->getOperand(1)) &&
2288 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
2289 return false;
2290
2291 for (auto *U : AndI->users()) {
2293
2294 // Only sink 'and' feeding icmp with 0.
2295 if (!isa<ICmpInst>(User))
2296 return false;
2297
2298 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
2299 if (!CmpC || !CmpC->isZero())
2300 return false;
2301 }
2302
2303 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
2304 return false;
2305
2306 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2307 LLVM_DEBUG(AndI->getParent()->dump());
2308
2309 // Push the 'and' into the same block as the icmp 0. There should only be
2310 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2311 // others, so we don't need to keep track of which BBs we insert into.
2312 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
2313 UI != E;) {
2314 Use &TheUse = UI.getUse();
2316
2317 // Preincrement use iterator so we don't invalidate it.
2318 ++UI;
2319
2320 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
2321
2322 // Keep the 'and' in the same place if the use is already in the same block.
2323 Instruction *InsertPt =
2324 User->getParent() == AndI->getParent() ? AndI : User;
2325 Instruction *InsertedAnd = BinaryOperator::Create(
2326 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "",
2327 InsertPt->getIterator());
2328 // Propagate the debug info.
2329 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
2330
2331 // Replace a use of the 'and' with a use of the new 'and'.
2332 TheUse = InsertedAnd;
2333 ++NumAndUses;
2334 LLVM_DEBUG(User->getParent()->dump());
2335 }
2336
2337 // We removed all uses, nuke the and.
2338 AndI->eraseFromParent();
2339 return true;
2340}
2341
2342/// Check if the candidates could be combined with a shift instruction, which
2343/// includes:
2344/// 1. Truncate instruction
2345/// 2. And instruction and the imm is a mask of the low bits:
2346/// imm & (imm+1) == 0
2348 if (!isa<TruncInst>(User)) {
2349 if (User->getOpcode() != Instruction::And ||
2351 return false;
2352
2353 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
2354
2355 if ((Cimm & (Cimm + 1)).getBoolValue())
2356 return false;
2357 }
2358 return true;
2359}
2360
2361/// Sink both shift and truncate instruction to the use of truncate's BB.
2362static bool
2365 const TargetLowering &TLI, const DataLayout &DL) {
2366 BasicBlock *UserBB = User->getParent();
2368 auto *TruncI = cast<TruncInst>(User);
2369 bool MadeChange = false;
2370
2371 for (Value::user_iterator TruncUI = TruncI->user_begin(),
2372 TruncE = TruncI->user_end();
2373 TruncUI != TruncE;) {
2374
2375 Use &TruncTheUse = TruncUI.getUse();
2376 Instruction *TruncUser = cast<Instruction>(*TruncUI);
2377 // Preincrement use iterator so we don't invalidate it.
2378
2379 ++TruncUI;
2380
2381 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2382 if (!ISDOpcode)
2383 continue;
2384
2385 // If the use is actually a legal node, there will not be an
2386 // implicit truncate.
2387 // FIXME: always querying the result type is just an
2388 // approximation; some nodes' legality is determined by the
2389 // operand or other means. There's no good way to find out though.
2391 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2392 continue;
2393
2394 // Don't bother for PHI nodes.
2395 if (isa<PHINode>(TruncUser))
2396 continue;
2397
2398 BasicBlock *TruncUserBB = TruncUser->getParent();
2399
2400 if (UserBB == TruncUserBB)
2401 continue;
2402
2403 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2404 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2405
2406 if (!InsertedShift && !InsertedTrunc) {
2407 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2408 assert(InsertPt != TruncUserBB->end());
2409 // Sink the shift
2410 if (ShiftI->getOpcode() == Instruction::AShr)
2411 InsertedShift =
2412 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2413 else
2414 InsertedShift =
2415 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2416 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2417 InsertedShift->insertBefore(*TruncUserBB, InsertPt);
2418
2419 // Sink the trunc
2420 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2421 TruncInsertPt++;
2422 // It will go ahead of any debug-info.
2423 TruncInsertPt.setHeadBit(true);
2424 assert(TruncInsertPt != TruncUserBB->end());
2425
2426 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2427 TruncI->getType(), "");
2428 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt);
2429 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2430
2431 MadeChange = true;
2432
2433 TruncTheUse = InsertedTrunc;
2434 }
2435 }
2436 return MadeChange;
2437}
2438
2439/// Sink the shift *right* instruction into user blocks if the uses could
2440/// potentially be combined with this shift instruction and generate BitExtract
2441/// instruction. It will only be applied if the architecture supports BitExtract
2442/// instruction. Here is an example:
2443/// BB1:
2444/// %x.extract.shift = lshr i64 %arg1, 32
2445/// BB2:
2446/// %x.extract.trunc = trunc i64 %x.extract.shift to i16
2447/// ==>
2448///
2449/// BB2:
2450/// %x.extract.shift.1 = lshr i64 %arg1, 32
2451/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2452///
2453/// CodeGen will recognize the pattern in BB2 and generate BitExtract
2454/// instruction.
2455/// Return true if any changes are made.
2457 const TargetLowering &TLI,
2458 const DataLayout &DL) {
2459 BasicBlock *DefBB = ShiftI->getParent();
2460
2461 /// Only insert instructions in each block once.
2463
2464 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2465
2466 bool MadeChange = false;
2467 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2468 UI != E;) {
2469 Use &TheUse = UI.getUse();
2471 // Preincrement use iterator so we don't invalidate it.
2472 ++UI;
2473
2474 // Don't bother for PHI nodes.
2475 if (isa<PHINode>(User))
2476 continue;
2477
2479 continue;
2480
2481 BasicBlock *UserBB = User->getParent();
2482
2483 if (UserBB == DefBB) {
2484 // If the shift and truncate instruction are in the same BB. The use of
2485 // the truncate(TruncUse) may still introduce another truncate if not
2486 // legal. In this case, we would like to sink both shift and truncate
2487 // instruction to the BB of TruncUse.
2488 // for example:
2489 // BB1:
2490 // i64 shift.result = lshr i64 opnd, imm
2491 // trunc.result = trunc shift.result to i16
2492 //
2493 // BB2:
2494 // ----> We will have an implicit truncate here if the architecture does
2495 // not have i16 compare.
2496 // cmp i16 trunc.result, opnd2
2497 //
2498 if (isa<TruncInst>(User) &&
2499 shiftIsLegal
2500 // If the type of the truncate is legal, no truncate will be
2501 // introduced in other basic blocks.
2502 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2503 MadeChange =
2504 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2505
2506 continue;
2507 }
2508 // If we have already inserted a shift into this block, use it.
2509 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2510
2511 if (!InsertedShift) {
2512 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2513 assert(InsertPt != UserBB->end());
2514
2515 if (ShiftI->getOpcode() == Instruction::AShr)
2516 InsertedShift =
2517 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2518 else
2519 InsertedShift =
2520 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2521 InsertedShift->insertBefore(*UserBB, InsertPt);
2522 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2523
2524 MadeChange = true;
2525 }
2526
2527 // Replace a use of the shift with a use of the new shift.
2528 TheUse = InsertedShift;
2529 }
2530
2531 // If we removed all uses, or there are none, nuke the shift.
2532 if (ShiftI->use_empty()) {
2533 salvageDebugInfo(*ShiftI);
2534 ShiftI->eraseFromParent();
2535 MadeChange = true;
2536 }
2537
2538 return MadeChange;
2539}
2540
2541/// If counting leading or trailing zeros is an expensive operation and a zero
2542/// input is defined, add a check for zero to avoid calling the intrinsic.
2543///
2544/// We want to transform:
2545/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2546///
2547/// into:
2548/// entry:
2549/// %cmpz = icmp eq i64 %A, 0
2550/// br i1 %cmpz, label %cond.end, label %cond.false
2551/// cond.false:
2552/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2553/// br label %cond.end
2554/// cond.end:
2555/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2556///
2557/// If the transform is performed, return true and set ModifiedDT to true.
2558static bool despeculateCountZeros(IntrinsicInst *CountZeros, LoopInfo &LI,
2559 const TargetLowering *TLI,
2560 const DataLayout *DL, ModifyDT &ModifiedDT,
2562 bool IsHugeFunc) {
2563 // If a zero input is undefined, it doesn't make sense to despeculate that.
2564 if (match(CountZeros->getOperand(1), m_One()))
2565 return false;
2566
2567 // If it's cheap to speculate, there's nothing to do.
2568 Type *Ty = CountZeros->getType();
2569 auto IntrinsicID = CountZeros->getIntrinsicID();
2570 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2571 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2572 return false;
2573
2574 // Only handle scalar cases. Anything else requires too much work.
2575 unsigned SizeInBits = Ty->getScalarSizeInBits();
2576 if (Ty->isVectorTy())
2577 return false;
2578
2579 // Bail if the value is never zero.
2580 Use &Op = CountZeros->getOperandUse(0);
2581 if (isKnownNonZero(Op, *DL))
2582 return false;
2583
2584 // The intrinsic will be sunk behind a compare against zero and branch.
2585 BasicBlock *StartBlock = CountZeros->getParent();
2586 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2587 if (IsHugeFunc)
2588 FreshBBs.insert(CallBlock);
2589
2590 // Create another block after the count zero intrinsic. A PHI will be added
2591 // in this block to select the result of the intrinsic or the bit-width
2592 // constant if the input to the intrinsic is zero.
2593 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros));
2594 // Any debug-info after CountZeros should not be included.
2595 SplitPt.setHeadBit(true);
2596 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2597 if (IsHugeFunc)
2598 FreshBBs.insert(EndBlock);
2599
2600 // Update the LoopInfo. The new blocks are in the same loop as the start
2601 // block.
2602 if (Loop *L = LI.getLoopFor(StartBlock)) {
2603 L->addBasicBlockToLoop(CallBlock, LI);
2604 L->addBasicBlockToLoop(EndBlock, LI);
2605 }
2606
2607 // Set up a builder to create a compare, conditional branch, and PHI.
2608 IRBuilder<> Builder(CountZeros->getContext());
2609 Builder.SetInsertPoint(StartBlock->getTerminator());
2610 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2611
2612 // Replace the unconditional branch that was created by the first split with
2613 // a compare against zero and a conditional branch.
2614 Value *Zero = Constant::getNullValue(Ty);
2615 // Avoid introducing branch on poison. This also replaces the ctz operand.
2617 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2618 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2619 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2620 StartBlock->getTerminator()->eraseFromParent();
2621
2622 // Create a PHI in the end block to select either the output of the intrinsic
2623 // or the bit width of the operand.
2624 Builder.SetInsertPoint(EndBlock, EndBlock->begin());
2625 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2626 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2627 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2628 PN->addIncoming(BitWidth, StartBlock);
2629 PN->addIncoming(CountZeros, CallBlock);
2630
2631 // We are explicitly handling the zero case, so we can set the intrinsic's
2632 // undefined zero argument to 'true'. This will also prevent reprocessing the
2633 // intrinsic; we only despeculate when a zero input is defined.
2634 CountZeros->setArgOperand(1, Builder.getTrue());
2635 ModifiedDT = ModifyDT::ModifyBBDT;
2636 return true;
2637}
2638
2639bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2640 BasicBlock *BB = CI->getParent();
2641
2642 // Sink address computing for memory operands into the block.
2643 if (CI->isInlineAsm() && optimizeInlineAsmInst(CI))
2644 return true;
2645
2646 // Align the pointer arguments to this call if the target thinks it's a good
2647 // idea
2648 unsigned MinSize;
2649 Align PrefAlign;
2650 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2651 for (auto &Arg : CI->args()) {
2652 // We want to align both objects whose address is used directly and
2653 // objects whose address is used in casts and GEPs, though it only makes
2654 // sense for GEPs if the offset is a multiple of the desired alignment and
2655 // if size - offset meets the size threshold.
2656 if (!Arg->getType()->isPointerTy())
2657 continue;
2658 APInt Offset(DL->getIndexSizeInBits(
2659 cast<PointerType>(Arg->getType())->getAddressSpace()),
2660 0);
2661 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2662 uint64_t Offset2 = Offset.getLimitedValue();
2663 if (!isAligned(PrefAlign, Offset2))
2664 continue;
2665 AllocaInst *AI;
2666 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2667 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2668 AI->setAlignment(PrefAlign);
2669 // Global variables can only be aligned if they are defined in this
2670 // object (i.e. they are uniquely initialized in this object), and
2671 // over-aligning global variables that have an explicit section is
2672 // forbidden.
2673 GlobalVariable *GV;
2674 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2675 GV->getPointerAlignment(*DL) < PrefAlign &&
2676 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2677 GV->setAlignment(PrefAlign);
2678 }
2679 }
2680 // If this is a memcpy (or similar) then we may be able to improve the
2681 // alignment.
2682 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2683 Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2684 MaybeAlign MIDestAlign = MI->getDestAlign();
2685 if (!MIDestAlign || DestAlign > *MIDestAlign)
2686 MI->setDestAlignment(DestAlign);
2687 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2688 MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2689 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2690 if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2691 MTI->setSourceAlignment(SrcAlign);
2692 }
2693 }
2694
2695 // If we have a cold call site, try to sink addressing computation into the
2696 // cold block. This interacts with our handling for loads and stores to
2697 // ensure that we can fold all uses of a potential addressing computation
2698 // into their uses. TODO: generalize this to work over profiling data
2699 if (CI->hasFnAttr(Attribute::Cold) &&
2700 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2701 for (auto &Arg : CI->args()) {
2702 if (!Arg->getType()->isPointerTy())
2703 continue;
2704 unsigned AS = Arg->getType()->getPointerAddressSpace();
2705 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2706 return true;
2707 }
2708
2709 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2710 if (II) {
2711 switch (II->getIntrinsicID()) {
2712 default:
2713 break;
2714 case Intrinsic::assume:
2715 llvm_unreachable("llvm.assume should have been removed already");
2716 case Intrinsic::allow_runtime_check:
2717 case Intrinsic::allow_ubsan_check:
2718 case Intrinsic::experimental_widenable_condition: {
2719 // Give up on future widening opportunities so that we can fold away dead
2720 // paths and merge blocks before going into block-local instruction
2721 // selection.
2722 if (II->use_empty()) {
2723 II->eraseFromParent();
2724 return true;
2725 }
2726 Constant *RetVal = ConstantInt::getTrue(II->getContext());
2727 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2728 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2729 });
2730 return true;
2731 }
2732 case Intrinsic::objectsize:
2733 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2734 case Intrinsic::is_constant:
2735 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2736 case Intrinsic::aarch64_stlxr:
2737 case Intrinsic::aarch64_stxr: {
2738 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2739 if (!ExtVal || !ExtVal->hasOneUse() ||
2740 ExtVal->getParent() == CI->getParent())
2741 return false;
2742 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2743 ExtVal->moveBefore(CI->getIterator());
2744 // Mark this instruction as "inserted by CGP", so that other
2745 // optimizations don't touch it.
2746 InsertedInsts.insert(ExtVal);
2747 return true;
2748 }
2749
2750 case Intrinsic::launder_invariant_group:
2751 case Intrinsic::strip_invariant_group: {
2752 Value *ArgVal = II->getArgOperand(0);
2753 auto it = LargeOffsetGEPMap.find(II);
2754 if (it != LargeOffsetGEPMap.end()) {
2755 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2756 // Make sure not to have to deal with iterator invalidation
2757 // after possibly adding ArgVal to LargeOffsetGEPMap.
2758 auto GEPs = std::move(it->second);
2759 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2760 LargeOffsetGEPMap.erase(II);
2761 }
2762
2763 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2764 II->eraseFromParent();
2765 return true;
2766 }
2767 case Intrinsic::cttz:
2768 case Intrinsic::ctlz:
2769 // If counting zeros is expensive, try to avoid it.
2770 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2771 IsHugeFunc);
2772 case Intrinsic::fshl:
2773 case Intrinsic::fshr:
2774 return optimizeFunnelShift(II);
2775 case Intrinsic::masked_gather:
2776 return optimizeGatherScatterInst(II, II->getArgOperand(0));
2777 case Intrinsic::masked_scatter:
2778 return optimizeGatherScatterInst(II, II->getArgOperand(1));
2779 case Intrinsic::masked_load:
2780 // Treat v1X masked load as load X type.
2781 if (auto *VT = dyn_cast<FixedVectorType>(II->getType())) {
2782 if (VT->getNumElements() == 1) {
2783 Value *PtrVal = II->getArgOperand(0);
2784 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2785 if (optimizeMemoryInst(II, PtrVal, VT->getElementType(), AS))
2786 return true;
2787 }
2788 }
2789 return false;
2790 case Intrinsic::masked_store:
2791 // Treat v1X masked store as store X type.
2792 if (auto *VT =
2793 dyn_cast<FixedVectorType>(II->getArgOperand(0)->getType())) {
2794 if (VT->getNumElements() == 1) {
2795 Value *PtrVal = II->getArgOperand(1);
2796 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2797 if (optimizeMemoryInst(II, PtrVal, VT->getElementType(), AS))
2798 return true;
2799 }
2800 }
2801 return false;
2802 case Intrinsic::umul_with_overflow:
2803 return optimizeMulWithOverflow(II, /*IsSigned=*/false, ModifiedDT);
2804 case Intrinsic::smul_with_overflow:
2805 return optimizeMulWithOverflow(II, /*IsSigned=*/true, ModifiedDT);
2806 }
2807
2808 SmallVector<Value *, 2> PtrOps;
2809 Type *AccessTy;
2810 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2811 while (!PtrOps.empty()) {
2812 Value *PtrVal = PtrOps.pop_back_val();
2813 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2814 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2815 return true;
2816 }
2817 }
2818
2819 // From here on out we're working with named functions.
2820 auto *Callee = CI->getCalledFunction();
2821 if (!Callee)
2822 return false;
2823
2824 // Lower all default uses of _chk calls. This is very similar
2825 // to what InstCombineCalls does, but here we are only lowering calls
2826 // to fortified library functions (e.g. __memcpy_chk) that have the default
2827 // "don't know" as the objectsize. Anything else should be left alone.
2828 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2829 IRBuilder<> Builder(CI);
2830 if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2831 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2832 CI->eraseFromParent();
2833 return true;
2834 }
2835
2836 // SCCP may have propagated, among other things, C++ static variables across
2837 // calls. If this happens to be the case, we may want to undo it in order to
2838 // avoid redundant pointer computation of the constant, as the function method
2839 // returning the constant needs to be executed anyways.
2840 auto GetUniformReturnValue = [](const Function *F) -> GlobalVariable * {
2841 if (!F->getReturnType()->isPointerTy())
2842 return nullptr;
2843
2844 GlobalVariable *UniformValue = nullptr;
2845 for (auto &BB : *F) {
2846 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
2847 if (auto *V = dyn_cast<GlobalVariable>(RI->getReturnValue())) {
2848 if (!UniformValue)
2849 UniformValue = V;
2850 else if (V != UniformValue)
2851 return nullptr;
2852 } else {
2853 return nullptr;
2854 }
2855 }
2856 }
2857
2858 return UniformValue;
2859 };
2860
2861 if (Callee->hasExactDefinition()) {
2862 if (GlobalVariable *RV = GetUniformReturnValue(Callee)) {
2863 bool MadeChange = false;
2864 for (Use &U : make_early_inc_range(RV->uses())) {
2865 auto *I = dyn_cast<Instruction>(U.getUser());
2866 if (!I || I->getParent() != CI->getParent()) {
2867 // Limit to the same basic block to avoid extending the call-site live
2868 // range, which otherwise could increase register pressure.
2869 continue;
2870 }
2871 if (CI->comesBefore(I)) {
2872 U.set(CI);
2873 MadeChange = true;
2874 }
2875 }
2876
2877 return MadeChange;
2878 }
2879 }
2880
2881 return false;
2882}
2883
2885 const CallInst *CI) {
2886 assert(CI && CI->use_empty());
2887
2888 if (const auto *II = dyn_cast<IntrinsicInst>(CI))
2889 switch (II->getIntrinsicID()) {
2890 case Intrinsic::memset:
2891 case Intrinsic::memcpy:
2892 case Intrinsic::memmove:
2893 return true;
2894 default:
2895 return false;
2896 }
2897
2898 LibFunc LF;
2899 Function *Callee = CI->getCalledFunction();
2900 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF))
2901 switch (LF) {
2902 case LibFunc_strcpy:
2903 case LibFunc_strncpy:
2904 case LibFunc_strcat:
2905 case LibFunc_strncat:
2906 return true;
2907 default:
2908 return false;
2909 }
2910
2911 return false;
2912}
2913
2914/// Look for opportunities to duplicate return instructions to the predecessor
2915/// to enable tail call optimizations. The case it is currently looking for is
2916/// the following one. Known intrinsics or library function that may be tail
2917/// called are taken into account as well.
2918/// @code
2919/// bb0:
2920/// %tmp0 = tail call i32 @f0()
2921/// br label %return
2922/// bb1:
2923/// %tmp1 = tail call i32 @f1()
2924/// br label %return
2925/// bb2:
2926/// %tmp2 = tail call i32 @f2()
2927/// br label %return
2928/// return:
2929/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2930/// ret i32 %retval
2931/// @endcode
2932///
2933/// =>
2934///
2935/// @code
2936/// bb0:
2937/// %tmp0 = tail call i32 @f0()
2938/// ret i32 %tmp0
2939/// bb1:
2940/// %tmp1 = tail call i32 @f1()
2941/// ret i32 %tmp1
2942/// bb2:
2943/// %tmp2 = tail call i32 @f2()
2944/// ret i32 %tmp2
2945/// @endcode
2946bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2947 ModifyDT &ModifiedDT) {
2948 if (!BB->getTerminator())
2949 return false;
2950
2951 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2952 if (!RetI)
2953 return false;
2954
2955 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2956
2957 PHINode *PN = nullptr;
2958 ExtractValueInst *EVI = nullptr;
2959 BitCastInst *BCI = nullptr;
2960 Value *V = RetI->getReturnValue();
2961 if (V) {
2962 BCI = dyn_cast<BitCastInst>(V);
2963 if (BCI)
2964 V = BCI->getOperand(0);
2965
2967 if (EVI) {
2968 V = EVI->getOperand(0);
2969 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2970 return false;
2971 }
2972
2973 PN = dyn_cast<PHINode>(V);
2974 }
2975
2976 if (PN && PN->getParent() != BB)
2977 return false;
2978
2979 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2980 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2981 if (BC && BC->hasOneUse())
2982 Inst = BC->user_back();
2983
2984 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2985 return II->getIntrinsicID() == Intrinsic::lifetime_end;
2986 return false;
2987 };
2988
2990
2991 auto isFakeUse = [&FakeUses](const Instruction *Inst) {
2992 if (auto *II = dyn_cast<IntrinsicInst>(Inst);
2993 II && II->getIntrinsicID() == Intrinsic::fake_use) {
2994 // Record the instruction so it can be preserved when the exit block is
2995 // removed. Do not preserve the fake use that uses the result of the
2996 // PHI instruction.
2997 // Do not copy fake uses that use the result of a PHI node.
2998 // FIXME: If we do want to copy the fake use into the return blocks, we
2999 // have to figure out which of the PHI node operands to use for each
3000 // copy.
3001 if (!isa<PHINode>(II->getOperand(0))) {
3002 FakeUses.push_back(II);
3003 }
3004 return true;
3005 }
3006
3007 return false;
3008 };
3009
3010 // Make sure there are no instructions between the first instruction
3011 // and return.
3013 // Skip over pseudo-probes and the bitcast.
3014 while (&*BI == BCI || &*BI == EVI || isa<PseudoProbeInst>(BI) ||
3015 isLifetimeEndOrBitCastFor(&*BI) || isFakeUse(&*BI))
3016 BI = std::next(BI);
3017 if (&*BI != RetI)
3018 return false;
3019
3020 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
3021 /// call.
3022 const Function *F = BB->getParent();
3023 SmallVector<BasicBlock *, 4> TailCallBBs;
3024 // Record the call instructions so we can insert any fake uses
3025 // that need to be preserved before them.
3027 if (PN) {
3028 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
3029 // Look through bitcasts.
3030 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
3031 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
3032 BasicBlock *PredBB = PN->getIncomingBlock(I);
3033 // Make sure the phi value is indeed produced by the tail call.
3034 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
3035 TLI->mayBeEmittedAsTailCall(CI) &&
3036 attributesPermitTailCall(F, CI, RetI, *TLI)) {
3037 TailCallBBs.push_back(PredBB);
3038 CallInsts.push_back(CI);
3039 } else {
3040 // Consider the cases in which the phi value is indirectly produced by
3041 // the tail call, for example when encountering memset(), memmove(),
3042 // strcpy(), whose return value may have been optimized out. In such
3043 // cases, the value needs to be the first function argument.
3044 //
3045 // bb0:
3046 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1)
3047 // br label %return
3048 // return:
3049 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ]
3050 if (PredBB && PredBB->getSingleSuccessor() == BB)
3052 PredBB->getTerminator()->getPrevNode());
3053
3054 if (CI && CI->use_empty() &&
3055 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
3056 IncomingVal == CI->getArgOperand(0) &&
3057 TLI->mayBeEmittedAsTailCall(CI) &&
3058 attributesPermitTailCall(F, CI, RetI, *TLI)) {
3059 TailCallBBs.push_back(PredBB);
3060 CallInsts.push_back(CI);
3061 }
3062 }
3063 }
3064 } else {
3065 SmallPtrSet<BasicBlock *, 4> VisitedBBs;
3066 for (BasicBlock *Pred : predecessors(BB)) {
3067 if (!VisitedBBs.insert(Pred).second)
3068 continue;
3069 if (Instruction *I = Pred->rbegin()->getPrevNode()) {
3070 CallInst *CI = dyn_cast<CallInst>(I);
3071 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
3072 attributesPermitTailCall(F, CI, RetI, *TLI)) {
3073 // Either we return void or the return value must be the first
3074 // argument of a known intrinsic or library function.
3075 if (!V || isa<UndefValue>(V) ||
3076 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
3077 V == CI->getArgOperand(0))) {
3078 TailCallBBs.push_back(Pred);
3079 CallInsts.push_back(CI);
3080 }
3081 }
3082 }
3083 }
3084 }
3085
3086 bool Changed = false;
3087 for (auto const &TailCallBB : TailCallBBs) {
3088 // Make sure the call instruction is followed by an unconditional branch to
3089 // the return block.
3090 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
3091 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
3092 continue;
3093
3094 // Duplicate the return into TailCallBB.
3095 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
3097 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
3098 BFI->setBlockFreq(BB,
3099 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)));
3100 ModifiedDT = ModifyDT::ModifyBBDT;
3101 Changed = true;
3102 ++NumRetsDup;
3103 }
3104
3105 // If we eliminated all predecessors of the block, delete the block now.
3106 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) {
3107 // Copy the fake uses found in the original return block to all blocks
3108 // that contain tail calls.
3109 for (auto *CI : CallInsts) {
3110 for (auto const *FakeUse : FakeUses) {
3111 auto *ClonedInst = FakeUse->clone();
3112 ClonedInst->insertBefore(CI->getIterator());
3113 }
3114 }
3115 BB->eraseFromParent();
3116 }
3117
3118 return Changed;
3119}
3120
3121//===----------------------------------------------------------------------===//
3122// Memory Optimization
3123//===----------------------------------------------------------------------===//
3124
3125namespace {
3126
3127/// This is an extended version of TargetLowering::AddrMode
3128/// which holds actual Value*'s for register values.
3129struct ExtAddrMode : public TargetLowering::AddrMode {
3130 Value *BaseReg = nullptr;
3131 Value *ScaledReg = nullptr;
3132 Value *OriginalValue = nullptr;
3133 bool InBounds = true;
3134
3135 enum FieldName {
3136 NoField = 0x00,
3137 BaseRegField = 0x01,
3138 BaseGVField = 0x02,
3139 BaseOffsField = 0x04,
3140 ScaledRegField = 0x08,
3141 ScaleField = 0x10,
3142 MultipleFields = 0xff
3143 };
3144
3145 ExtAddrMode() = default;
3146
3147 void print(raw_ostream &OS) const;
3148 void dump() const;
3149
3150 // Replace From in ExtAddrMode with To.
3151 // E.g., SExt insts may be promoted and deleted. We should replace them with
3152 // the promoted values.
3153 void replaceWith(Value *From, Value *To) {
3154 if (ScaledReg == From)
3155 ScaledReg = To;
3156 }
3157
3158 FieldName compare(const ExtAddrMode &other) {
3159 // First check that the types are the same on each field, as differing types
3160 // is something we can't cope with later on.
3161 if (BaseReg && other.BaseReg &&
3162 BaseReg->getType() != other.BaseReg->getType())
3163 return MultipleFields;
3164 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
3165 return MultipleFields;
3166 if (ScaledReg && other.ScaledReg &&
3167 ScaledReg->getType() != other.ScaledReg->getType())
3168 return MultipleFields;
3169
3170 // Conservatively reject 'inbounds' mismatches.
3171 if (InBounds != other.InBounds)
3172 return MultipleFields;
3173
3174 // Check each field to see if it differs.
3175 unsigned Result = NoField;
3176 if (BaseReg != other.BaseReg)
3177 Result |= BaseRegField;
3178 if (BaseGV != other.BaseGV)
3179 Result |= BaseGVField;
3180 if (BaseOffs != other.BaseOffs)
3181 Result |= BaseOffsField;
3182 if (ScaledReg != other.ScaledReg)
3183 Result |= ScaledRegField;
3184 // Don't count 0 as being a different scale, because that actually means
3185 // unscaled (which will already be counted by having no ScaledReg).
3186 if (Scale && other.Scale && Scale != other.Scale)
3187 Result |= ScaleField;
3188
3189 if (llvm::popcount(Result) > 1)
3190 return MultipleFields;
3191 else
3192 return static_cast<FieldName>(Result);
3193 }
3194
3195 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
3196 // with no offset.
3197 bool isTrivial() {
3198 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
3199 // trivial if at most one of these terms is nonzero, except that BaseGV and
3200 // BaseReg both being zero actually means a null pointer value, which we
3201 // consider to be 'non-zero' here.
3202 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
3203 }
3204
3205 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
3206 switch (Field) {
3207 default:
3208 return nullptr;
3209 case BaseRegField:
3210 return BaseReg;
3211 case BaseGVField:
3212 return BaseGV;
3213 case ScaledRegField:
3214 return ScaledReg;
3215 case BaseOffsField:
3216 return ConstantInt::getSigned(IntPtrTy, BaseOffs);
3217 }
3218 }
3219
3220 void SetCombinedField(FieldName Field, Value *V,
3221 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
3222 switch (Field) {
3223 default:
3224 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
3225 break;
3226 case ExtAddrMode::BaseRegField:
3227 BaseReg = V;
3228 break;
3229 case ExtAddrMode::BaseGVField:
3230 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
3231 // in the BaseReg field.
3232 assert(BaseReg == nullptr);
3233 BaseReg = V;
3234 BaseGV = nullptr;
3235 break;
3236 case ExtAddrMode::ScaledRegField:
3237 ScaledReg = V;
3238 // If we have a mix of scaled and unscaled addrmodes then we want scale
3239 // to be the scale and not zero.
3240 if (!Scale)
3241 for (const ExtAddrMode &AM : AddrModes)
3242 if (AM.Scale) {
3243 Scale = AM.Scale;
3244 break;
3245 }
3246 break;
3247 case ExtAddrMode::BaseOffsField:
3248 // The offset is no longer a constant, so it goes in ScaledReg with a
3249 // scale of 1.
3250 assert(ScaledReg == nullptr);
3251 ScaledReg = V;
3252 Scale = 1;
3253 BaseOffs = 0;
3254 break;
3255 }
3256 }
3257};
3258
3259#ifndef NDEBUG
3260static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
3261 AM.print(OS);
3262 return OS;
3263}
3264#endif
3265
3266#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3267void ExtAddrMode::print(raw_ostream &OS) const {
3268 bool NeedPlus = false;
3269 OS << "[";
3270 if (InBounds)
3271 OS << "inbounds ";
3272 if (BaseGV) {
3273 OS << "GV:";
3274 BaseGV->printAsOperand(OS, /*PrintType=*/false);
3275 NeedPlus = true;
3276 }
3277
3278 if (BaseOffs) {
3279 OS << (NeedPlus ? " + " : "") << BaseOffs;
3280 NeedPlus = true;
3281 }
3282
3283 if (BaseReg) {
3284 OS << (NeedPlus ? " + " : "") << "Base:";
3285 BaseReg->printAsOperand(OS, /*PrintType=*/false);
3286 NeedPlus = true;
3287 }
3288 if (Scale) {
3289 OS << (NeedPlus ? " + " : "") << Scale << "*";
3290 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
3291 }
3292
3293 OS << ']';
3294}
3295
3296LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
3297 print(dbgs());
3298 dbgs() << '\n';
3299}
3300#endif
3301
3302} // end anonymous namespace
3303
3304namespace {
3305
3306/// This class provides transaction based operation on the IR.
3307/// Every change made through this class is recorded in the internal state and
3308/// can be undone (rollback) until commit is called.
3309/// CGP does not check if instructions could be speculatively executed when
3310/// moved. Preserving the original location would pessimize the debugging
3311/// experience, as well as negatively impact the quality of sample PGO.
3312class TypePromotionTransaction {
3313 /// This represents the common interface of the individual transaction.
3314 /// Each class implements the logic for doing one specific modification on
3315 /// the IR via the TypePromotionTransaction.
3316 class TypePromotionAction {
3317 protected:
3318 /// The Instruction modified.
3319 Instruction *Inst;
3320
3321 public:
3322 /// Constructor of the action.
3323 /// The constructor performs the related action on the IR.
3324 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
3325
3326 virtual ~TypePromotionAction() = default;
3327
3328 /// Undo the modification done by this action.
3329 /// When this method is called, the IR must be in the same state as it was
3330 /// before this action was applied.
3331 /// \pre Undoing the action works if and only if the IR is in the exact same
3332 /// state as it was directly after this action was applied.
3333 virtual void undo() = 0;
3334
3335 /// Advocate every change made by this action.
3336 /// When the results on the IR of the action are to be kept, it is important
3337 /// to call this function, otherwise hidden information may be kept forever.
3338 virtual void commit() {
3339 // Nothing to be done, this action is not doing anything.
3340 }
3341 };
3342
3343 /// Utility to remember the position of an instruction.
3344 class InsertionHandler {
3345 /// Position of an instruction.
3346 /// Either an instruction:
3347 /// - Is the first in a basic block: BB is used.
3348 /// - Has a previous instruction: PrevInst is used.
3349 struct {
3350 BasicBlock::iterator PrevInst;
3351 BasicBlock *BB;
3352 } Point;
3353 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt;
3354
3355 /// Remember whether or not the instruction had a previous instruction.
3356 bool HasPrevInstruction;
3357
3358 public:
3359 /// Record the position of \p Inst.
3360 InsertionHandler(Instruction *Inst) {
3361 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin()));
3362 BasicBlock *BB = Inst->getParent();
3363
3364 // Record where we would have to re-insert the instruction in the sequence
3365 // of DbgRecords, if we ended up reinserting.
3366 BeforeDbgRecord = Inst->getDbgReinsertionPosition();
3367
3368 if (HasPrevInstruction) {
3369 Point.PrevInst = std::prev(Inst->getIterator());
3370 } else {
3371 Point.BB = BB;
3372 }
3373 }
3374
3375 /// Insert \p Inst at the recorded position.
3376 void insert(Instruction *Inst) {
3377 if (HasPrevInstruction) {
3378 if (Inst->getParent())
3379 Inst->removeFromParent();
3380 Inst->insertAfter(Point.PrevInst);
3381 } else {
3382 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt();
3383 if (Inst->getParent())
3384 Inst->moveBefore(*Point.BB, Position);
3385 else
3386 Inst->insertBefore(*Point.BB, Position);
3387 }
3388
3389 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord);
3390 }
3391 };
3392
3393 /// Move an instruction before another.
3394 class InstructionMoveBefore : public TypePromotionAction {
3395 /// Original position of the instruction.
3396 InsertionHandler Position;
3397
3398 public:
3399 /// Move \p Inst before \p Before.
3400 InstructionMoveBefore(Instruction *Inst, BasicBlock::iterator Before)
3401 : TypePromotionAction(Inst), Position(Inst) {
3402 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
3403 << "\n");
3404 Inst->moveBefore(Before);
3405 }
3406
3407 /// Move the instruction back to its original position.
3408 void undo() override {
3409 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
3410 Position.insert(Inst);
3411 }
3412 };
3413
3414 /// Set the operand of an instruction with a new value.
3415 class OperandSetter : public TypePromotionAction {
3416 /// Original operand of the instruction.
3417 Value *Origin;
3418
3419 /// Index of the modified instruction.
3420 unsigned Idx;
3421
3422 public:
3423 /// Set \p Idx operand of \p Inst with \p NewVal.
3424 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
3425 : TypePromotionAction(Inst), Idx(Idx) {
3426 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
3427 << "for:" << *Inst << "\n"
3428 << "with:" << *NewVal << "\n");
3429 Origin = Inst->getOperand(Idx);
3430 Inst->setOperand(Idx, NewVal);
3431 }
3432
3433 /// Restore the original value of the instruction.
3434 void undo() override {
3435 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
3436 << "for: " << *Inst << "\n"
3437 << "with: " << *Origin << "\n");
3438 Inst->setOperand(Idx, Origin);
3439 }
3440 };
3441
3442 /// Hide the operands of an instruction.
3443 /// Do as if this instruction was not using any of its operands.
3444 class OperandsHider : public TypePromotionAction {
3445 /// The list of original operands.
3446 SmallVector<Value *, 4> OriginalValues;
3447
3448 public:
3449 /// Remove \p Inst from the uses of the operands of \p Inst.
3450 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
3451 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
3452 unsigned NumOpnds = Inst->getNumOperands();
3453 OriginalValues.reserve(NumOpnds);
3454 for (unsigned It = 0; It < NumOpnds; ++It) {
3455 // Save the current operand.
3456 Value *Val = Inst->getOperand(It);
3457 OriginalValues.push_back(Val);
3458 // Set a dummy one.
3459 // We could use OperandSetter here, but that would imply an overhead
3460 // that we are not willing to pay.
3461 Inst->setOperand(It, PoisonValue::get(Val->getType()));
3462 }
3463 }
3464
3465 /// Restore the original list of uses.
3466 void undo() override {
3467 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3468 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3469 Inst->setOperand(It, OriginalValues[It]);
3470 }
3471 };
3472
3473 /// Build a truncate instruction.
3474 class TruncBuilder : public TypePromotionAction {
3475 Value *Val;
3476
3477 public:
3478 /// Build a truncate instruction of \p Opnd producing a \p Ty
3479 /// result.
3480 /// trunc Opnd to Ty.
3481 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3482 IRBuilder<> Builder(Opnd);
3483 Builder.SetCurrentDebugLocation(DebugLoc());
3484 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3485 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3486 }
3487
3488 /// Get the built value.
3489 Value *getBuiltValue() { return Val; }
3490
3491 /// Remove the built instruction.
3492 void undo() override {
3493 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3494 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3495 IVal->eraseFromParent();
3496 }
3497 };
3498
3499 /// Build a sign extension instruction.
3500 class SExtBuilder : public TypePromotionAction {
3501 Value *Val;
3502
3503 public:
3504 /// Build a sign extension instruction of \p Opnd producing a \p Ty
3505 /// result.
3506 /// sext Opnd to Ty.
3507 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3508 : TypePromotionAction(InsertPt) {
3509 IRBuilder<> Builder(InsertPt);
3510 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3511 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3512 }
3513
3514 /// Get the built value.
3515 Value *getBuiltValue() { return Val; }
3516
3517 /// Remove the built instruction.
3518 void undo() override {
3519 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3520 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3521 IVal->eraseFromParent();
3522 }
3523 };
3524
3525 /// Build a zero extension instruction.
3526 class ZExtBuilder : public TypePromotionAction {
3527 Value *Val;
3528
3529 public:
3530 /// Build a zero extension instruction of \p Opnd producing a \p Ty
3531 /// result.
3532 /// zext Opnd to Ty.
3533 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3534 : TypePromotionAction(InsertPt) {
3535 IRBuilder<> Builder(InsertPt);
3536 Builder.SetCurrentDebugLocation(DebugLoc());
3537 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3538 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3539 }
3540
3541 /// Get the built value.
3542 Value *getBuiltValue() { return Val; }
3543
3544 /// Remove the built instruction.
3545 void undo() override {
3546 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3547 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3548 IVal->eraseFromParent();
3549 }
3550 };
3551
3552 /// Mutate an instruction to another type.
3553 class TypeMutator : public TypePromotionAction {
3554 /// Record the original type.
3555 Type *OrigTy;
3556
3557 public:
3558 /// Mutate the type of \p Inst into \p NewTy.
3559 TypeMutator(Instruction *Inst, Type *NewTy)
3560 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3561 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3562 << "\n");
3563 Inst->mutateType(NewTy);
3564 }
3565
3566 /// Mutate the instruction back to its original type.
3567 void undo() override {
3568 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3569 << "\n");
3570 Inst->mutateType(OrigTy);
3571 }
3572 };
3573
3574 /// Replace the uses of an instruction by another instruction.
3575 class UsesReplacer : public TypePromotionAction {
3576 /// Helper structure to keep track of the replaced uses.
3577 struct InstructionAndIdx {
3578 /// The instruction using the instruction.
3579 Instruction *Inst;
3580
3581 /// The index where this instruction is used for Inst.
3582 unsigned Idx;
3583
3584 InstructionAndIdx(Instruction *Inst, unsigned Idx)
3585 : Inst(Inst), Idx(Idx) {}
3586 };
3587
3588 /// Keep track of the original uses (pair Instruction, Index).
3590 /// Keep track of the debug users.
3591 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
3592
3593 /// Keep track of the new value so that we can undo it by replacing
3594 /// instances of the new value with the original value.
3595 Value *New;
3596
3598
3599 public:
3600 /// Replace all the use of \p Inst by \p New.
3601 UsesReplacer(Instruction *Inst, Value *New)
3602 : TypePromotionAction(Inst), New(New) {
3603 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3604 << "\n");
3605 // Record the original uses.
3606 for (Use &U : Inst->uses()) {
3607 Instruction *UserI = cast<Instruction>(U.getUser());
3608 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3609 }
3610 // Record the debug uses separately. They are not in the instruction's
3611 // use list, but they are replaced by RAUW.
3612 findDbgValues(Inst, DbgVariableRecords);
3613
3614 // Now, we can replace the uses.
3615 Inst->replaceAllUsesWith(New);
3616 }
3617
3618 /// Reassign the original uses of Inst to Inst.
3619 void undo() override {
3620 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3621 for (InstructionAndIdx &Use : OriginalUses)
3622 Use.Inst->setOperand(Use.Idx, Inst);
3623 // RAUW has replaced all original uses with references to the new value,
3624 // including the debug uses. Since we are undoing the replacements,
3625 // the original debug uses must also be reinstated to maintain the
3626 // correctness and utility of debug value records.
3627 for (DbgVariableRecord *DVR : DbgVariableRecords)
3628 DVR->replaceVariableLocationOp(New, Inst);
3629 }
3630 };
3631
3632 /// Remove an instruction from the IR.
3633 class InstructionRemover : public TypePromotionAction {
3634 /// Original position of the instruction.
3635 InsertionHandler Inserter;
3636
3637 /// Helper structure to hide all the link to the instruction. In other
3638 /// words, this helps to do as if the instruction was removed.
3639 OperandsHider Hider;
3640
3641 /// Keep track of the uses replaced, if any.
3642 UsesReplacer *Replacer = nullptr;
3643
3644 /// Keep track of instructions removed.
3645 SetOfInstrs &RemovedInsts;
3646
3647 public:
3648 /// Remove all reference of \p Inst and optionally replace all its
3649 /// uses with New.
3650 /// \p RemovedInsts Keep track of the instructions removed by this Action.
3651 /// \pre If !Inst->use_empty(), then New != nullptr
3652 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3653 Value *New = nullptr)
3654 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3655 RemovedInsts(RemovedInsts) {
3656 if (New)
3657 Replacer = new UsesReplacer(Inst, New);
3658 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3659 RemovedInsts.insert(Inst);
3660 /// The instructions removed here will be freed after completing
3661 /// optimizeBlock() for all blocks as we need to keep track of the
3662 /// removed instructions during promotion.
3663 Inst->removeFromParent();
3664 }
3665
3666 ~InstructionRemover() override { delete Replacer; }
3667
3668 InstructionRemover &operator=(const InstructionRemover &other) = delete;
3669 InstructionRemover(const InstructionRemover &other) = delete;
3670
3671 /// Resurrect the instruction and reassign it to the proper uses if
3672 /// new value was provided when build this action.
3673 void undo() override {
3674 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3675 Inserter.insert(Inst);
3676 if (Replacer)
3677 Replacer->undo();
3678 Hider.undo();
3679 RemovedInsts.erase(Inst);
3680 }
3681 };
3682
3683public:
3684 /// Restoration point.
3685 /// The restoration point is a pointer to an action instead of an iterator
3686 /// because the iterator may be invalidated but not the pointer.
3687 using ConstRestorationPt = const TypePromotionAction *;
3688
3689 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3690 : RemovedInsts(RemovedInsts) {}
3691
3692 /// Advocate every changes made in that transaction. Return true if any change
3693 /// happen.
3694 bool commit();
3695
3696 /// Undo all the changes made after the given point.
3697 void rollback(ConstRestorationPt Point);
3698
3699 /// Get the current restoration point.
3700 ConstRestorationPt getRestorationPoint() const;
3701
3702 /// \name API for IR modification with state keeping to support rollback.
3703 /// @{
3704 /// Same as Instruction::setOperand.
3705 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3706
3707 /// Same as Instruction::eraseFromParent.
3708 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3709
3710 /// Same as Value::replaceAllUsesWith.
3711 void replaceAllUsesWith(Instruction *Inst, Value *New);
3712
3713 /// Same as Value::mutateType.
3714 void mutateType(Instruction *Inst, Type *NewTy);
3715
3716 /// Same as IRBuilder::createTrunc.
3717 Value *createTrunc(Instruction *Opnd, Type *Ty);
3718
3719 /// Same as IRBuilder::createSExt.
3720 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3721
3722 /// Same as IRBuilder::createZExt.
3723 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3724
3725private:
3726 /// The ordered list of actions made so far.
3728
3729 using CommitPt =
3730 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3731
3732 SetOfInstrs &RemovedInsts;
3733};
3734
3735} // end anonymous namespace
3736
3737void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3738 Value *NewVal) {
3739 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3740 Inst, Idx, NewVal));
3741}
3742
3743void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3744 Value *NewVal) {
3745 Actions.push_back(
3746 std::make_unique<TypePromotionTransaction::InstructionRemover>(
3747 Inst, RemovedInsts, NewVal));
3748}
3749
3750void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3751 Value *New) {
3752 Actions.push_back(
3753 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3754}
3755
3756void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3757 Actions.push_back(
3758 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3759}
3760
3761Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3762 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3763 Value *Val = Ptr->getBuiltValue();
3764 Actions.push_back(std::move(Ptr));
3765 return Val;
3766}
3767
3768Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3769 Type *Ty) {
3770 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3771 Value *Val = Ptr->getBuiltValue();
3772 Actions.push_back(std::move(Ptr));
3773 return Val;
3774}
3775
3776Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3777 Type *Ty) {
3778 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3779 Value *Val = Ptr->getBuiltValue();
3780 Actions.push_back(std::move(Ptr));
3781 return Val;
3782}
3783
3784TypePromotionTransaction::ConstRestorationPt
3785TypePromotionTransaction::getRestorationPoint() const {
3786 return !Actions.empty() ? Actions.back().get() : nullptr;
3787}
3788
3789bool TypePromotionTransaction::commit() {
3790 for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3791 Action->commit();
3792 bool Modified = !Actions.empty();
3793 Actions.clear();
3794 return Modified;
3795}
3796
3797void TypePromotionTransaction::rollback(
3798 TypePromotionTransaction::ConstRestorationPt Point) {
3799 while (!Actions.empty() && Point != Actions.back().get()) {
3800 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3801 Curr->undo();
3802 }
3803}
3804
3805namespace {
3806
3807/// A helper class for matching addressing modes.
3808///
3809/// This encapsulates the logic for matching the target-legal addressing modes.
3810class AddressingModeMatcher {
3811 SmallVectorImpl<Instruction *> &AddrModeInsts;
3812 const TargetLowering &TLI;
3813 const TargetRegisterInfo &TRI;
3814 const DataLayout &DL;
3815 const LoopInfo &LI;
3816 const std::function<const DominatorTree &()> getDTFn;
3817
3818 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3819 /// the memory instruction that we're computing this address for.
3820 Type *AccessTy;
3821 unsigned AddrSpace;
3822 Instruction *MemoryInst;
3823
3824 /// This is the addressing mode that we're building up. This is
3825 /// part of the return value of this addressing mode matching stuff.
3826 ExtAddrMode &AddrMode;
3827
3828 /// The instructions inserted by other CodeGenPrepare optimizations.
3829 const SetOfInstrs &InsertedInsts;
3830
3831 /// A map from the instructions to their type before promotion.
3832 InstrToOrigTy &PromotedInsts;
3833
3834 /// The ongoing transaction where every action should be registered.
3835 TypePromotionTransaction &TPT;
3836
3837 // A GEP which has too large offset to be folded into the addressing mode.
3838 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3839
3840 /// This is set to true when we should not do profitability checks.
3841 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3842 bool IgnoreProfitability;
3843
3844 /// True if we are optimizing for size.
3845 bool OptSize = false;
3846
3847 ProfileSummaryInfo *PSI;
3848 BlockFrequencyInfo *BFI;
3849
3850 AddressingModeMatcher(
3851 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3852 const TargetRegisterInfo &TRI, const LoopInfo &LI,
3853 const std::function<const DominatorTree &()> getDTFn, Type *AT,
3854 unsigned AS, Instruction *MI, ExtAddrMode &AM,
3855 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3856 TypePromotionTransaction &TPT,
3857 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3858 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3859 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3860 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn),
3861 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3862 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3863 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3864 IgnoreProfitability = false;
3865 }
3866
3867public:
3868 /// Find the maximal addressing mode that a load/store of V can fold,
3869 /// give an access type of AccessTy. This returns a list of involved
3870 /// instructions in AddrModeInsts.
3871 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3872 /// optimizations.
3873 /// \p PromotedInsts maps the instructions to their type before promotion.
3874 /// \p The ongoing transaction where every action should be registered.
3875 static ExtAddrMode
3876 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3877 SmallVectorImpl<Instruction *> &AddrModeInsts,
3878 const TargetLowering &TLI, const LoopInfo &LI,
3879 const std::function<const DominatorTree &()> getDTFn,
3880 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3881 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3882 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3883 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3884 ExtAddrMode Result;
3885
3886 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3887 AccessTy, AS, MemoryInst, Result,
3888 InsertedInsts, PromotedInsts, TPT,
3889 LargeOffsetGEP, OptSize, PSI, BFI)
3890 .matchAddr(V, 0);
3891 (void)Success;
3892 assert(Success && "Couldn't select *anything*?");
3893 return Result;
3894 }
3895
3896private:
3897 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3898 bool matchAddr(Value *Addr, unsigned Depth);
3899 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3900 bool *MovedAway = nullptr);
3901 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3902 ExtAddrMode &AMBefore,
3903 ExtAddrMode &AMAfter);
3904 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3905 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3906 Value *PromotedOperand) const;
3907};
3908
3909class PhiNodeSet;
3910
3911/// An iterator for PhiNodeSet.
3912class PhiNodeSetIterator {
3913 PhiNodeSet *const Set;
3914 size_t CurrentIndex = 0;
3915
3916public:
3917 /// The constructor. Start should point to either a valid element, or be equal
3918 /// to the size of the underlying SmallVector of the PhiNodeSet.
3919 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3920 PHINode *operator*() const;
3921 PhiNodeSetIterator &operator++();
3922 bool operator==(const PhiNodeSetIterator &RHS) const;
3923 bool operator!=(const PhiNodeSetIterator &RHS) const;
3924};
3925
3926/// Keeps a set of PHINodes.
3927///
3928/// This is a minimal set implementation for a specific use case:
3929/// It is very fast when there are very few elements, but also provides good
3930/// performance when there are many. It is similar to SmallPtrSet, but also
3931/// provides iteration by insertion order, which is deterministic and stable
3932/// across runs. It is also similar to SmallSetVector, but provides removing
3933/// elements in O(1) time. This is achieved by not actually removing the element
3934/// from the underlying vector, so comes at the cost of using more memory, but
3935/// that is fine, since PhiNodeSets are used as short lived objects.
3936class PhiNodeSet {
3937 friend class PhiNodeSetIterator;
3938
3939 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3940 using iterator = PhiNodeSetIterator;
3941
3942 /// Keeps the elements in the order of their insertion in the underlying
3943 /// vector. To achieve constant time removal, it never deletes any element.
3945
3946 /// Keeps the elements in the underlying set implementation. This (and not the
3947 /// NodeList defined above) is the source of truth on whether an element
3948 /// is actually in the collection.
3949 MapType NodeMap;
3950
3951 /// Points to the first valid (not deleted) element when the set is not empty
3952 /// and the value is not zero. Equals to the size of the underlying vector
3953 /// when the set is empty. When the value is 0, as in the beginning, the
3954 /// first element may or may not be valid.
3955 size_t FirstValidElement = 0;
3956
3957public:
3958 /// Inserts a new element to the collection.
3959 /// \returns true if the element is actually added, i.e. was not in the
3960 /// collection before the operation.
3961 bool insert(PHINode *Ptr) {
3962 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3963 NodeList.push_back(Ptr);
3964 return true;
3965 }
3966 return false;
3967 }
3968
3969 /// Removes the element from the collection.
3970 /// \returns whether the element is actually removed, i.e. was in the
3971 /// collection before the operation.
3972 bool erase(PHINode *Ptr) {
3973 if (NodeMap.erase(Ptr)) {
3974 SkipRemovedElements(FirstValidElement);
3975 return true;
3976 }
3977 return false;
3978 }
3979
3980 /// Removes all elements and clears the collection.
3981 void clear() {
3982 NodeMap.clear();
3983 NodeList.clear();
3984 FirstValidElement = 0;
3985 }
3986
3987 /// \returns an iterator that will iterate the elements in the order of
3988 /// insertion.
3989 iterator begin() {
3990 if (FirstValidElement == 0)
3991 SkipRemovedElements(FirstValidElement);
3992 return PhiNodeSetIterator(this, FirstValidElement);
3993 }
3994
3995 /// \returns an iterator that points to the end of the collection.
3996 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3997
3998 /// Returns the number of elements in the collection.
3999 size_t size() const { return NodeMap.size(); }
4000
4001 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
4002 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
4003
4004private:
4005 /// Updates the CurrentIndex so that it will point to a valid element.
4006 ///
4007 /// If the element of NodeList at CurrentIndex is valid, it does not
4008 /// change it. If there are no more valid elements, it updates CurrentIndex
4009 /// to point to the end of the NodeList.
4010 void SkipRemovedElements(size_t &CurrentIndex) {
4011 while (CurrentIndex < NodeList.size()) {
4012 auto it = NodeMap.find(NodeList[CurrentIndex]);
4013 // If the element has been deleted and added again later, NodeMap will
4014 // point to a different index, so CurrentIndex will still be invalid.
4015 if (it != NodeMap.end() && it->second == CurrentIndex)
4016 break;
4017 ++CurrentIndex;
4018 }
4019 }
4020};
4021
4022PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
4023 : Set(Set), CurrentIndex(Start) {}
4024
4025PHINode *PhiNodeSetIterator::operator*() const {
4026 assert(CurrentIndex < Set->NodeList.size() &&
4027 "PhiNodeSet access out of range");
4028 return Set->NodeList[CurrentIndex];
4029}
4030
4031PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
4032 assert(CurrentIndex < Set->NodeList.size() &&
4033 "PhiNodeSet access out of range");
4034 ++CurrentIndex;
4035 Set->SkipRemovedElements(CurrentIndex);
4036 return *this;
4037}
4038
4039bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
4040 return CurrentIndex == RHS.CurrentIndex;
4041}
4042
4043bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
4044 return !((*this) == RHS);
4045}
4046
4047/// Keep track of simplification of Phi nodes.
4048/// Accept the set of all phi nodes and erase phi node from this set
4049/// if it is simplified.
4050class SimplificationTracker {
4051 DenseMap<Value *, Value *> Storage;
4052 // Tracks newly created Phi nodes. The elements are iterated by insertion
4053 // order.
4054 PhiNodeSet AllPhiNodes;
4055 // Tracks newly created Select nodes.
4056 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
4057
4058public:
4059 Value *Get(Value *V) {
4060 do {
4061 auto SV = Storage.find(V);
4062 if (SV == Storage.end())
4063 return V;
4064 V = SV->second;
4065 } while (true);
4066 }
4067
4068 void Put(Value *From, Value *To) { Storage.insert({From, To}); }
4069
4070 void ReplacePhi(PHINode *From, PHINode *To) {
4071 Value *OldReplacement = Get(From);
4072 while (OldReplacement != From) {
4073 From = To;
4074 To = dyn_cast<PHINode>(OldReplacement);
4075 OldReplacement = Get(From);
4076 }
4077 assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
4078 Put(From, To);
4079 From->replaceAllUsesWith(To);
4080 AllPhiNodes.erase(From);
4081 From->eraseFromParent();
4082 }
4083
4084 PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
4085
4086 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
4087
4088 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
4089
4090 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
4091
4092 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
4093
4094 void destroyNewNodes(Type *CommonType) {
4095 // For safe erasing, replace the uses with dummy value first.
4096 auto *Dummy = PoisonValue::get(CommonType);
4097 for (auto *I : AllPhiNodes) {
4098 I->replaceAllUsesWith(Dummy);
4099 I->eraseFromParent();
4100 }
4101 AllPhiNodes.clear();
4102 for (auto *I : AllSelectNodes) {
4103 I->replaceAllUsesWith(Dummy);
4104 I->eraseFromParent();
4105 }
4106 AllSelectNodes.clear();
4107 }
4108};
4109
4110/// A helper class for combining addressing modes.
4111class AddressingModeCombiner {
4112 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
4113 typedef std::pair<PHINode *, PHINode *> PHIPair;
4114
4115private:
4116 /// The addressing modes we've collected.
4118
4119 /// The field in which the AddrModes differ, when we have more than one.
4120 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
4121
4122 /// Are the AddrModes that we have all just equal to their original values?
4123 bool AllAddrModesTrivial = true;
4124
4125 /// Common Type for all different fields in addressing modes.
4126 Type *CommonType = nullptr;
4127
4128 const DataLayout &DL;
4129
4130 /// Original Address.
4131 Value *Original;
4132
4133 /// Common value among addresses
4134 Value *CommonValue = nullptr;
4135
4136public:
4137 AddressingModeCombiner(const DataLayout &DL, Value *OriginalValue)
4138 : DL(DL), Original(OriginalValue) {}
4139
4140 ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
4141
4142 /// Get the combined AddrMode
4143 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
4144
4145 /// Add a new AddrMode if it's compatible with the AddrModes we already
4146 /// have.
4147 /// \return True iff we succeeded in doing so.
4148 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
4149 // Take note of if we have any non-trivial AddrModes, as we need to detect
4150 // when all AddrModes are trivial as then we would introduce a phi or select
4151 // which just duplicates what's already there.
4152 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
4153
4154 // If this is the first addrmode then everything is fine.
4155 if (AddrModes.empty()) {
4156 AddrModes.emplace_back(NewAddrMode);
4157 return true;
4158 }
4159
4160 // Figure out how different this is from the other address modes, which we
4161 // can do just by comparing against the first one given that we only care
4162 // about the cumulative difference.
4163 ExtAddrMode::FieldName ThisDifferentField =
4164 AddrModes[0].compare(NewAddrMode);
4165 if (DifferentField == ExtAddrMode::NoField)
4166 DifferentField = ThisDifferentField;
4167 else if (DifferentField != ThisDifferentField)
4168 DifferentField = ExtAddrMode::MultipleFields;
4169
4170 // If NewAddrMode differs in more than one dimension we cannot handle it.
4171 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
4172
4173 // If Scale Field is different then we reject.
4174 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
4175
4176 // We also must reject the case when base offset is different and
4177 // scale reg is not null, we cannot handle this case due to merge of
4178 // different offsets will be used as ScaleReg.
4179 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
4180 !NewAddrMode.ScaledReg);
4181
4182 // We also must reject the case when GV is different and BaseReg installed
4183 // due to we want to use base reg as a merge of GV values.
4184 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
4185 !NewAddrMode.HasBaseReg);
4186
4187 // Even if NewAddMode is the same we still need to collect it due to
4188 // original value is different. And later we will need all original values
4189 // as anchors during finding the common Phi node.
4190 if (CanHandle)
4191 AddrModes.emplace_back(NewAddrMode);
4192 else
4193 AddrModes.clear();
4194
4195 return CanHandle;
4196 }
4197
4198 /// Combine the addressing modes we've collected into a single
4199 /// addressing mode.
4200 /// \return True iff we successfully combined them or we only had one so
4201 /// didn't need to combine them anyway.
4202 bool combineAddrModes() {
4203 // If we have no AddrModes then they can't be combined.
4204 if (AddrModes.size() == 0)
4205 return false;
4206
4207 // A single AddrMode can trivially be combined.
4208 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
4209 return true;
4210
4211 // If the AddrModes we collected are all just equal to the value they are
4212 // derived from then combining them wouldn't do anything useful.
4213 if (AllAddrModesTrivial)
4214 return false;
4215
4216 if (!addrModeCombiningAllowed())
4217 return false;
4218
4219 // Build a map between <original value, basic block where we saw it> to
4220 // value of base register.
4221 // Bail out if there is no common type.
4222 FoldAddrToValueMapping Map;
4223 if (!initializeMap(Map))
4224 return false;
4225
4226 CommonValue = findCommon(Map);
4227 if (CommonValue)
4228 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
4229 return CommonValue != nullptr;
4230 }
4231
4232private:
4233 /// `CommonValue` may be a placeholder inserted by us.
4234 /// If the placeholder is not used, we should remove this dead instruction.
4235 void eraseCommonValueIfDead() {
4236 if (CommonValue && CommonValue->use_empty())
4237 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
4238 CommonInst->eraseFromParent();
4239 }
4240
4241 /// Initialize Map with anchor values. For address seen
4242 /// we set the value of different field saw in this address.
4243 /// At the same time we find a common type for different field we will
4244 /// use to create new Phi/Select nodes. Keep it in CommonType field.
4245 /// Return false if there is no common type found.
4246 bool initializeMap(FoldAddrToValueMapping &Map) {
4247 // Keep track of keys where the value is null. We will need to replace it
4248 // with constant null when we know the common type.
4249 SmallVector<Value *, 2> NullValue;
4250 Type *IntPtrTy = DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
4251 for (auto &AM : AddrModes) {
4252 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
4253 if (DV) {
4254 auto *Type = DV->getType();
4255 if (CommonType && CommonType != Type)
4256 return false;
4257 CommonType = Type;
4258 Map[AM.OriginalValue] = DV;
4259 } else {
4260 NullValue.push_back(AM.OriginalValue);
4261 }
4262 }
4263 assert(CommonType && "At least one non-null value must be!");
4264 for (auto *V : NullValue)
4265 Map[V] = Constant::getNullValue(CommonType);
4266 return true;
4267 }
4268
4269 /// We have mapping between value A and other value B where B was a field in
4270 /// addressing mode represented by A. Also we have an original value C
4271 /// representing an address we start with. Traversing from C through phi and
4272 /// selects we ended up with A's in a map. This utility function tries to find
4273 /// a value V which is a field in addressing mode C and traversing through phi
4274 /// nodes and selects we will end up in corresponded values B in a map.
4275 /// The utility will create a new Phi/Selects if needed.
4276 // The simple example looks as follows:
4277 // BB1:
4278 // p1 = b1 + 40
4279 // br cond BB2, BB3
4280 // BB2:
4281 // p2 = b2 + 40
4282 // br BB3
4283 // BB3:
4284 // p = phi [p1, BB1], [p2, BB2]
4285 // v = load p
4286 // Map is
4287 // p1 -> b1
4288 // p2 -> b2
4289 // Request is
4290 // p -> ?
4291 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
4292 Value *findCommon(FoldAddrToValueMapping &Map) {
4293 // Tracks the simplification of newly created phi nodes. The reason we use
4294 // this mapping is because we will add new created Phi nodes in AddrToBase.
4295 // Simplification of Phi nodes is recursive, so some Phi node may
4296 // be simplified after we added it to AddrToBase. In reality this
4297 // simplification is possible only if original phi/selects were not
4298 // simplified yet.
4299 // Using this mapping we can find the current value in AddrToBase.
4300 SimplificationTracker ST;
4301
4302 // First step, DFS to create PHI nodes for all intermediate blocks.
4303 // Also fill traverse order for the second step.
4304 SmallVector<Value *, 32> TraverseOrder;
4305 InsertPlaceholders(Map, TraverseOrder, ST);
4306
4307 // Second Step, fill new nodes by merged values and simplify if possible.
4308 FillPlaceholders(Map, TraverseOrder, ST);
4309
4310 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
4311 ST.destroyNewNodes(CommonType);
4312 return nullptr;
4313 }
4314
4315 // Now we'd like to match New Phi nodes to existed ones.
4316 unsigned PhiNotMatchedCount = 0;
4317 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
4318 ST.destroyNewNodes(CommonType);
4319 return nullptr;
4320 }
4321
4322 auto *Result = ST.Get(Map.find(Original)->second);
4323 if (Result) {
4324 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
4325 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
4326 }
4327 return Result;
4328 }
4329
4330 /// Try to match PHI node to Candidate.
4331 /// Matcher tracks the matched Phi nodes.
4332 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
4333 SmallSetVector<PHIPair, 8> &Matcher,
4334 PhiNodeSet &PhiNodesToMatch) {
4335 SmallVector<PHIPair, 8> WorkList;
4336 Matcher.insert({PHI, Candidate});
4337 SmallPtrSet<PHINode *, 8> MatchedPHIs;
4338 MatchedPHIs.insert(PHI);
4339 WorkList.push_back({PHI, Candidate});
4340 SmallSet<PHIPair, 8> Visited;
4341 while (!WorkList.empty()) {
4342 auto Item = WorkList.pop_back_val();
4343 if (!Visited.insert(Item).second)
4344 continue;
4345 // We iterate over all incoming values to Phi to compare them.
4346 // If values are different and both of them Phi and the first one is a
4347 // Phi we added (subject to match) and both of them is in the same basic
4348 // block then we can match our pair if values match. So we state that
4349 // these values match and add it to work list to verify that.
4350 for (auto *B : Item.first->blocks()) {
4351 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
4352 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
4353 if (FirstValue == SecondValue)
4354 continue;
4355
4356 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
4357 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
4358
4359 // One of them is not Phi or
4360 // The first one is not Phi node from the set we'd like to match or
4361 // Phi nodes from different basic blocks then
4362 // we will not be able to match.
4363 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
4364 FirstPhi->getParent() != SecondPhi->getParent())
4365 return false;
4366
4367 // If we already matched them then continue.
4368 if (Matcher.count({FirstPhi, SecondPhi}))
4369 continue;
4370 // So the values are different and does not match. So we need them to
4371 // match. (But we register no more than one match per PHI node, so that
4372 // we won't later try to replace them twice.)
4373 if (MatchedPHIs.insert(FirstPhi).second)
4374 Matcher.insert({FirstPhi, SecondPhi});
4375 // But me must check it.
4376 WorkList.push_back({FirstPhi, SecondPhi});
4377 }
4378 }
4379 return true;
4380 }
4381
4382 /// For the given set of PHI nodes (in the SimplificationTracker) try
4383 /// to find their equivalents.
4384 /// Returns false if this matching fails and creation of new Phi is disabled.
4385 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
4386 unsigned &PhiNotMatchedCount) {
4387 // Matched and PhiNodesToMatch iterate their elements in a deterministic
4388 // order, so the replacements (ReplacePhi) are also done in a deterministic
4389 // order.
4390 SmallSetVector<PHIPair, 8> Matched;
4391 SmallPtrSet<PHINode *, 8> WillNotMatch;
4392 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
4393 while (PhiNodesToMatch.size()) {
4394 PHINode *PHI = *PhiNodesToMatch.begin();
4395
4396 // Add us, if no Phi nodes in the basic block we do not match.
4397 WillNotMatch.clear();
4398 WillNotMatch.insert(PHI);
4399
4400 // Traverse all Phis until we found equivalent or fail to do that.
4401 bool IsMatched = false;
4402 for (auto &P : PHI->getParent()->phis()) {
4403 // Skip new Phi nodes.
4404 if (PhiNodesToMatch.count(&P))
4405 continue;
4406 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
4407 break;
4408 // If it does not match, collect all Phi nodes from matcher.
4409 // if we end up with no match, them all these Phi nodes will not match
4410 // later.
4411 WillNotMatch.insert_range(llvm::make_first_range(Matched));
4412 Matched.clear();
4413 }
4414 if (IsMatched) {
4415 // Replace all matched values and erase them.
4416 for (auto MV : Matched)
4417 ST.ReplacePhi(MV.first, MV.second);
4418 Matched.clear();
4419 continue;
4420 }
4421 // If we are not allowed to create new nodes then bail out.
4422 if (!AllowNewPhiNodes)
4423 return false;
4424 // Just remove all seen values in matcher. They will not match anything.
4425 PhiNotMatchedCount += WillNotMatch.size();
4426 for (auto *P : WillNotMatch)
4427 PhiNodesToMatch.erase(P);
4428 }
4429 return true;
4430 }
4431 /// Fill the placeholders with values from predecessors and simplify them.
4432 void FillPlaceholders(FoldAddrToValueMapping &Map,
4433 SmallVectorImpl<Value *> &TraverseOrder,
4434 SimplificationTracker &ST) {
4435 while (!TraverseOrder.empty()) {
4436 Value *Current = TraverseOrder.pop_back_val();
4437 assert(Map.contains(Current) && "No node to fill!!!");
4438 Value *V = Map[Current];
4439
4440 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
4441 // CurrentValue also must be Select.
4442 auto *CurrentSelect = cast<SelectInst>(Current);
4443 auto *TrueValue = CurrentSelect->getTrueValue();
4444 assert(Map.contains(TrueValue) && "No True Value!");
4445 Select->setTrueValue(ST.Get(Map[TrueValue]));
4446 auto *FalseValue = CurrentSelect->getFalseValue();
4447 assert(Map.contains(FalseValue) && "No False Value!");
4448 Select->setFalseValue(ST.Get(Map[FalseValue]));
4449 } else {
4450 // Must be a Phi node then.
4451 auto *PHI = cast<PHINode>(V);
4452 // Fill the Phi node with values from predecessors.
4453 for (auto *B : predecessors(PHI->getParent())) {
4454 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
4455 assert(Map.contains(PV) && "No predecessor Value!");
4456 PHI->addIncoming(ST.Get(Map[PV]), B);
4457 }
4458 }
4459 }
4460 }
4461
4462 /// Starting from original value recursively iterates over def-use chain up to
4463 /// known ending values represented in a map. For each traversed phi/select
4464 /// inserts a placeholder Phi or Select.
4465 /// Reports all new created Phi/Select nodes by adding them to set.
4466 /// Also reports and order in what values have been traversed.
4467 void InsertPlaceholders(FoldAddrToValueMapping &Map,
4468 SmallVectorImpl<Value *> &TraverseOrder,
4469 SimplificationTracker &ST) {
4470 SmallVector<Value *, 32> Worklist;
4471 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
4472 "Address must be a Phi or Select node");
4473 auto *Dummy = PoisonValue::get(CommonType);
4474 Worklist.push_back(Original);
4475 while (!Worklist.empty()) {
4476 Value *Current = Worklist.pop_back_val();
4477 // if it is already visited or it is an ending value then skip it.
4478 if (Map.contains(Current))
4479 continue;
4480 TraverseOrder.push_back(Current);
4481
4482 // CurrentValue must be a Phi node or select. All others must be covered
4483 // by anchors.
4484 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
4485 // Is it OK to get metadata from OrigSelect?!
4486 // Create a Select placeholder with dummy value.
4487 SelectInst *Select =
4488 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy,
4489 CurrentSelect->getName(),
4490 CurrentSelect->getIterator(), CurrentSelect);
4491 Map[Current] = Select;
4492 ST.insertNewSelect(Select);
4493 // We are interested in True and False values.
4494 Worklist.push_back(CurrentSelect->getTrueValue());
4495 Worklist.push_back(CurrentSelect->getFalseValue());
4496 } else {
4497 // It must be a Phi node then.
4498 PHINode *CurrentPhi = cast<PHINode>(Current);
4499 unsigned PredCount = CurrentPhi->getNumIncomingValues();
4500 PHINode *PHI =
4501 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator());
4502 Map[Current] = PHI;
4503 ST.insertNewPhi(PHI);
4504 append_range(Worklist, CurrentPhi->incoming_values());
4505 }
4506 }
4507 }
4508
4509 bool addrModeCombiningAllowed() {
4511 return false;
4512 switch (DifferentField) {
4513 default:
4514 return false;
4515 case ExtAddrMode::BaseRegField:
4517 case ExtAddrMode::BaseGVField:
4518 return AddrSinkCombineBaseGV;
4519 case ExtAddrMode::BaseOffsField:
4521 case ExtAddrMode::ScaledRegField:
4523 }
4524 }
4525};
4526} // end anonymous namespace
4527
4528/// Try adding ScaleReg*Scale to the current addressing mode.
4529/// Return true and update AddrMode if this addr mode is legal for the target,
4530/// false if not.
4531bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4532 unsigned Depth) {
4533 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4534 // mode. Just process that directly.
4535 if (Scale == 1)
4536 return matchAddr(ScaleReg, Depth);
4537
4538 // If the scale is 0, it takes nothing to add this.
4539 if (Scale == 0)
4540 return true;
4541
4542 // If we already have a scale of this value, we can add to it, otherwise, we
4543 // need an available scale field.
4544 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4545 return false;
4546
4547 ExtAddrMode TestAddrMode = AddrMode;
4548
4549 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
4550 // [A+B + A*7] -> [B+A*8].
4551 TestAddrMode.Scale += Scale;
4552 TestAddrMode.ScaledReg = ScaleReg;
4553
4554 // If the new address isn't legal, bail out.
4555 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4556 return false;
4557
4558 // It was legal, so commit it.
4559 AddrMode = TestAddrMode;
4560
4561 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
4562 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
4563 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4564 // go any further: we can reuse it and cannot eliminate it.
4565 ConstantInt *CI = nullptr;
4566 Value *AddLHS = nullptr;
4567 if (isa<Instruction>(ScaleReg) && // not a constant expr.
4568 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4569 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4570 TestAddrMode.InBounds = false;
4571 TestAddrMode.ScaledReg = AddLHS;
4572 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4573
4574 // If this addressing mode is legal, commit it and remember that we folded
4575 // this instruction.
4576 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4577 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4578 AddrMode = TestAddrMode;
4579 return true;
4580 }
4581 // Restore status quo.
4582 TestAddrMode = AddrMode;
4583 }
4584
4585 // If this is an add recurrence with a constant step, return the increment
4586 // instruction and the canonicalized step.
4587 auto GetConstantStep =
4588 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4589 auto *PN = dyn_cast<PHINode>(V);
4590 if (!PN)
4591 return std::nullopt;
4592 auto IVInc = getIVIncrement(PN, &LI);
4593 if (!IVInc)
4594 return std::nullopt;
4595 // TODO: The result of the intrinsics above is two-complement. However when
4596 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4597 // If it has nuw or nsw flags, we need to make sure that these flags are
4598 // inferrable at the point of memory instruction. Otherwise we are replacing
4599 // well-defined two-complement computation with poison. Currently, to avoid
4600 // potentially complex analysis needed to prove this, we reject such cases.
4601 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4602 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4603 return std::nullopt;
4604 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4605 return std::make_pair(IVInc->first, ConstantStep->getValue());
4606 return std::nullopt;
4607 };
4608
4609 // Try to account for the following special case:
4610 // 1. ScaleReg is an inductive variable;
4611 // 2. We use it with non-zero offset;
4612 // 3. IV's increment is available at the point of memory instruction.
4613 //
4614 // In this case, we may reuse the IV increment instead of the IV Phi to
4615 // achieve the following advantages:
4616 // 1. If IV step matches the offset, we will have no need in the offset;
4617 // 2. Even if they don't match, we will reduce the overlap of living IV
4618 // and IV increment, that will potentially lead to better register
4619 // assignment.
4620 if (AddrMode.BaseOffs) {
4621 if (auto IVStep = GetConstantStep(ScaleReg)) {
4622 Instruction *IVInc = IVStep->first;
4623 // The following assert is important to ensure a lack of infinite loops.
4624 // This transforms is (intentionally) the inverse of the one just above.
4625 // If they don't agree on the definition of an increment, we'd alternate
4626 // back and forth indefinitely.
4627 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4628 APInt Step = IVStep->second;
4629 APInt Offset = Step * AddrMode.Scale;
4630 if (Offset.isSignedIntN(64)) {
4631 TestAddrMode.InBounds = false;
4632 TestAddrMode.ScaledReg = IVInc;
4633 TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4634 // If this addressing mode is legal, commit it..
4635 // (Note that we defer the (expensive) domtree base legality check
4636 // to the very last possible point.)
4637 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4638 getDTFn().dominates(IVInc, MemoryInst)) {
4639 AddrModeInsts.push_back(cast<Instruction>(IVInc));
4640 AddrMode = TestAddrMode;
4641 return true;
4642 }
4643 // Restore status quo.
4644 TestAddrMode = AddrMode;
4645 }
4646 }
4647 }
4648
4649 // Otherwise, just return what we have.
4650 return true;
4651}
4652
4653/// This is a little filter, which returns true if an addressing computation
4654/// involving I might be folded into a load/store accessing it.
4655/// This doesn't need to be perfect, but needs to accept at least
4656/// the set of instructions that MatchOperationAddr can.
4658 switch (I->getOpcode()) {
4659 case Instruction::BitCast:
4660 case Instruction::AddrSpaceCast:
4661 // Don't touch identity bitcasts.
4662 if (I->getType() == I->getOperand(0)->getType())
4663 return false;
4664 return I->getType()->isIntOrPtrTy();
4665 case Instruction::PtrToInt:
4666 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4667 return true;
4668 case Instruction::IntToPtr:
4669 // We know the input is intptr_t, so this is foldable.
4670 return true;
4671 case Instruction::Add:
4672 return true;
4673 case Instruction::Mul:
4674 case Instruction::Shl:
4675 // Can only handle X*C and X << C.
4676 return isa<ConstantInt>(I->getOperand(1));
4677 case Instruction::GetElementPtr:
4678 return true;
4679 default:
4680 return false;
4681 }
4682}
4683
4684/// Check whether or not \p Val is a legal instruction for \p TLI.
4685/// \note \p Val is assumed to be the product of some type promotion.
4686/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4687/// to be legal, as the non-promoted value would have had the same state.
4689 const DataLayout &DL, Value *Val) {
4690 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4691 if (!PromotedInst)
4692 return false;
4693 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4694 // If the ISDOpcode is undefined, it was undefined before the promotion.
4695 if (!ISDOpcode)
4696 return true;
4697 // Otherwise, check if the promoted instruction is legal or not.
4698 return TLI.isOperationLegalOrCustom(
4699 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4700}
4701
4702namespace {
4703
4704/// Hepler class to perform type promotion.
4705class TypePromotionHelper {
4706 /// Utility function to add a promoted instruction \p ExtOpnd to
4707 /// \p PromotedInsts and record the type of extension we have seen.
4708 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4709 Instruction *ExtOpnd, bool IsSExt) {
4710 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4711 auto [It, Inserted] = PromotedInsts.try_emplace(ExtOpnd);
4712 if (!Inserted) {
4713 // If the new extension is same as original, the information in
4714 // PromotedInsts[ExtOpnd] is still correct.
4715 if (It->second.getInt() == ExtTy)
4716 return;
4717
4718 // Now the new extension is different from old extension, we make
4719 // the type information invalid by setting extension type to
4720 // BothExtension.
4721 ExtTy = BothExtension;
4722 }
4723 It->second = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4724 }
4725
4726 /// Utility function to query the original type of instruction \p Opnd
4727 /// with a matched extension type. If the extension doesn't match, we
4728 /// cannot use the information we had on the original type.
4729 /// BothExtension doesn't match any extension type.
4730 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4731 Instruction *Opnd, bool IsSExt) {
4732 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4733 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4734 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4735 return It->second.getPointer();
4736 return nullptr;
4737 }
4738
4739 /// Utility function to check whether or not a sign or zero extension
4740 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4741 /// either using the operands of \p Inst or promoting \p Inst.
4742 /// The type of the extension is defined by \p IsSExt.
4743 /// In other words, check if:
4744 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4745 /// #1 Promotion applies:
4746 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4747 /// #2 Operand reuses:
4748 /// ext opnd1 to ConsideredExtType.
4749 /// \p PromotedInsts maps the instructions to their type before promotion.
4750 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4751 const InstrToOrigTy &PromotedInsts, bool IsSExt);
4752
4753 /// Utility function to determine if \p OpIdx should be promoted when
4754 /// promoting \p Inst.
4755 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4756 return !(isa<SelectInst>(Inst) && OpIdx == 0);
4757 }
4758
4759 /// Utility function to promote the operand of \p Ext when this
4760 /// operand is a promotable trunc or sext or zext.
4761 /// \p PromotedInsts maps the instructions to their type before promotion.
4762 /// \p CreatedInstsCost[out] contains the cost of all instructions
4763 /// created to promote the operand of Ext.
4764 /// Newly added extensions are inserted in \p Exts.
4765 /// Newly added truncates are inserted in \p Truncs.
4766 /// Should never be called directly.
4767 /// \return The promoted value which is used instead of Ext.
4768 static Value *promoteOperandForTruncAndAnyExt(
4769 Instruction *Ext, TypePromotionTransaction &TPT,
4770 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4771 SmallVectorImpl<Instruction *> *Exts,
4772 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4773
4774 /// Utility function to promote the operand of \p Ext when this
4775 /// operand is promotable and is not a supported trunc or sext.
4776 /// \p PromotedInsts maps the instructions to their type before promotion.
4777 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4778 /// created to promote the operand of Ext.
4779 /// Newly added extensions are inserted in \p Exts.
4780 /// Newly added truncates are inserted in \p Truncs.
4781 /// Should never be called directly.
4782 /// \return The promoted value which is used instead of Ext.
4783 static Value *promoteOperandForOther(Instruction *Ext,
4784 TypePromotionTransaction &TPT,
4785 InstrToOrigTy &PromotedInsts,
4786 unsigned &CreatedInstsCost,
4787 SmallVectorImpl<Instruction *> *Exts,
4788 SmallVectorImpl<Instruction *> *Truncs,
4789 const TargetLowering &TLI, bool IsSExt);
4790
4791 /// \see promoteOperandForOther.
4792 static Value *signExtendOperandForOther(
4793 Instruction *Ext, TypePromotionTransaction &TPT,
4794 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4795 SmallVectorImpl<Instruction *> *Exts,
4796 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4797 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4798 Exts, Truncs, TLI, true);
4799 }
4800
4801 /// \see promoteOperandForOther.
4802 static Value *zeroExtendOperandForOther(
4803 Instruction *Ext, TypePromotionTransaction &TPT,
4804 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4805 SmallVectorImpl<Instruction *> *Exts,
4806 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4807 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4808 Exts, Truncs, TLI, false);
4809 }
4810
4811public:
4812 /// Type for the utility function that promotes the operand of Ext.
4813 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4814 InstrToOrigTy &PromotedInsts,
4815 unsigned &CreatedInstsCost,
4816 SmallVectorImpl<Instruction *> *Exts,
4817 SmallVectorImpl<Instruction *> *Truncs,
4818 const TargetLowering &TLI);
4819
4820 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4821 /// action to promote the operand of \p Ext instead of using Ext.
4822 /// \return NULL if no promotable action is possible with the current
4823 /// sign extension.
4824 /// \p InsertedInsts keeps track of all the instructions inserted by the
4825 /// other CodeGenPrepare optimizations. This information is important
4826 /// because we do not want to promote these instructions as CodeGenPrepare
4827 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4828 /// \p PromotedInsts maps the instructions to their type before promotion.
4829 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4830 const TargetLowering &TLI,
4831 const InstrToOrigTy &PromotedInsts);
4832};
4833
4834} // end anonymous namespace
4835
4836bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4837 Type *ConsideredExtType,
4838 const InstrToOrigTy &PromotedInsts,
4839 bool IsSExt) {
4840 // The promotion helper does not know how to deal with vector types yet.
4841 // To be able to fix that, we would need to fix the places where we
4842 // statically extend, e.g., constants and such.
4843 if (Inst->getType()->isVectorTy())
4844 return false;
4845
4846 // We can always get through zext.
4847 if (isa<ZExtInst>(Inst))
4848 return true;
4849
4850 // sext(sext) is ok too.
4851 if (IsSExt && isa<SExtInst>(Inst))
4852 return true;
4853
4854 // We can get through binary operator, if it is legal. In other words, the
4855 // binary operator must have a nuw or nsw flag.
4856 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4857 if (isa<OverflowingBinaryOperator>(BinOp) &&
4858 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4859 (IsSExt && BinOp->hasNoSignedWrap())))
4860 return true;
4861
4862 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4863 if ((Inst->getOpcode() == Instruction::And ||
4864 Inst->getOpcode() == Instruction::Or))
4865 return true;
4866
4867 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4868 if (Inst->getOpcode() == Instruction::Xor) {
4869 // Make sure it is not a NOT.
4870 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4871 if (!Cst->getValue().isAllOnes())
4872 return true;
4873 }
4874
4875 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4876 // It may change a poisoned value into a regular value, like
4877 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4878 // poisoned value regular value
4879 // It should be OK since undef covers valid value.
4880 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4881 return true;
4882
4883 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4884 // It may change a poisoned value into a regular value, like
4885 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4886 // poisoned value regular value
4887 // It should be OK since undef covers valid value.
4888 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4889 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4890 if (ExtInst->hasOneUse()) {
4891 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4892 if (AndInst && AndInst->getOpcode() == Instruction::And) {
4893 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4894 if (Cst &&
4895 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4896 return true;
4897 }
4898 }
4899 }
4900
4901 // Check if we can do the following simplification.
4902 // ext(trunc(opnd)) --> ext(opnd)
4903 if (!isa<TruncInst>(Inst))
4904 return false;
4905
4906 Value *OpndVal = Inst->getOperand(0);
4907 // Check if we can use this operand in the extension.
4908 // If the type is larger than the result type of the extension, we cannot.
4909 if (!OpndVal->getType()->isIntegerTy() ||
4910 OpndVal->getType()->getIntegerBitWidth() >
4911 ConsideredExtType->getIntegerBitWidth())
4912 return false;
4913
4914 // If the operand of the truncate is not an instruction, we will not have
4915 // any information on the dropped bits.
4916 // (Actually we could for constant but it is not worth the extra logic).
4917 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4918 if (!Opnd)
4919 return false;
4920
4921 // Check if the source of the type is narrow enough.
4922 // I.e., check that trunc just drops extended bits of the same kind of
4923 // the extension.
4924 // #1 get the type of the operand and check the kind of the extended bits.
4925 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4926 if (OpndType)
4927 ;
4928 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4929 OpndType = Opnd->getOperand(0)->getType();
4930 else
4931 return false;
4932
4933 // #2 check that the truncate just drops extended bits.
4934 return Inst->getType()->getIntegerBitWidth() >=
4935 OpndType->getIntegerBitWidth();
4936}
4937
4938TypePromotionHelper::Action TypePromotionHelper::getAction(
4939 Instruction *Ext, const SetOfInstrs &InsertedInsts,
4940 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4941 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4942 "Unexpected instruction type");
4943 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4944 Type *ExtTy = Ext->getType();
4945 bool IsSExt = isa<SExtInst>(Ext);
4946 // If the operand of the extension is not an instruction, we cannot
4947 // get through.
4948 // If it, check we can get through.
4949 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4950 return nullptr;
4951
4952 // Do not promote if the operand has been added by codegenprepare.
4953 // Otherwise, it means we are undoing an optimization that is likely to be
4954 // redone, thus causing potential infinite loop.
4955 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4956 return nullptr;
4957
4958 // SExt or Trunc instructions.
4959 // Return the related handler.
4960 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4961 isa<ZExtInst>(ExtOpnd))
4962 return promoteOperandForTruncAndAnyExt;
4963
4964 // Regular instruction.
4965 // Abort early if we will have to insert non-free instructions.
4966 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4967 return nullptr;
4968 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4969}
4970
4971Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4972 Instruction *SExt, TypePromotionTransaction &TPT,
4973 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4974 SmallVectorImpl<Instruction *> *Exts,
4975 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4976 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4977 // get through it and this method should not be called.
4978 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4979 Value *ExtVal = SExt;
4980 bool HasMergedNonFreeExt = false;
4981 if (isa<ZExtInst>(SExtOpnd)) {
4982 // Replace s|zext(zext(opnd))
4983 // => zext(opnd).
4984 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4985 Value *ZExt =
4986 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4987 TPT.replaceAllUsesWith(SExt, ZExt);
4988 TPT.eraseInstruction(SExt);
4989 ExtVal = ZExt;
4990 } else {
4991 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4992 // => z|sext(opnd).
4993 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4994 }
4995 CreatedInstsCost = 0;
4996
4997 // Remove dead code.
4998 if (SExtOpnd->use_empty())
4999 TPT.eraseInstruction(SExtOpnd);
5000
5001 // Check if the extension is still needed.
5002 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
5003 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
5004 if (ExtInst) {
5005 if (Exts)
5006 Exts->push_back(ExtInst);
5007 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
5008 }
5009 return ExtVal;
5010 }
5011
5012 // At this point we have: ext ty opnd to ty.
5013 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
5014 Value *NextVal = ExtInst->getOperand(0);
5015 TPT.eraseInstruction(ExtInst, NextVal);
5016 return NextVal;
5017}
5018
5019Value *TypePromotionHelper::promoteOperandForOther(
5020 Instruction *Ext, TypePromotionTransaction &TPT,
5021 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
5022 SmallVectorImpl<Instruction *> *Exts,
5023 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
5024 bool IsSExt) {
5025 // By construction, the operand of Ext is an instruction. Otherwise we cannot
5026 // get through it and this method should not be called.
5027 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
5028 CreatedInstsCost = 0;
5029 if (!ExtOpnd->hasOneUse()) {
5030 // ExtOpnd will be promoted.
5031 // All its uses, but Ext, will need to use a truncated value of the
5032 // promoted version.
5033 // Create the truncate now.
5034 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
5035 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
5036 // Insert it just after the definition.
5037 ITrunc->moveAfter(ExtOpnd);
5038 if (Truncs)
5039 Truncs->push_back(ITrunc);
5040 }
5041
5042 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
5043 // Restore the operand of Ext (which has been replaced by the previous call
5044 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
5045 TPT.setOperand(Ext, 0, ExtOpnd);
5046 }
5047
5048 // Get through the Instruction:
5049 // 1. Update its type.
5050 // 2. Replace the uses of Ext by Inst.
5051 // 3. Extend each operand that needs to be extended.
5052
5053 // Remember the original type of the instruction before promotion.
5054 // This is useful to know that the high bits are sign extended bits.
5055 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
5056 // Step #1.
5057 TPT.mutateType(ExtOpnd, Ext->getType());
5058 // Step #2.
5059 TPT.replaceAllUsesWith(Ext, ExtOpnd);
5060 // Step #3.
5061 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
5062 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
5063 ++OpIdx) {
5064 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
5065 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
5066 !shouldExtOperand(ExtOpnd, OpIdx)) {
5067 LLVM_DEBUG(dbgs() << "No need to propagate\n");
5068 continue;
5069 }
5070 // Check if we can statically extend the operand.
5071 Value *Opnd = ExtOpnd->getOperand(OpIdx);
5072 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
5073 LLVM_DEBUG(dbgs() << "Statically extend\n");
5074 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
5075 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
5076 : Cst->getValue().zext(BitWidth);
5077 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
5078 continue;
5079 }
5080 // UndefValue are typed, so we have to statically sign extend them.
5081 if (isa<UndefValue>(Opnd)) {
5082 LLVM_DEBUG(dbgs() << "Statically extend\n");
5083 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
5084 continue;
5085 }
5086
5087 // Otherwise we have to explicitly sign extend the operand.
5088 Value *ValForExtOpnd = IsSExt
5089 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType())
5090 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType());
5091 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
5092 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd);
5093 if (!InstForExtOpnd)
5094 continue;
5095
5096 if (Exts)
5097 Exts->push_back(InstForExtOpnd);
5098
5099 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd);
5100 }
5101 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
5102 TPT.eraseInstruction(Ext);
5103 return ExtOpnd;
5104}
5105
5106/// Check whether or not promoting an instruction to a wider type is profitable.
5107/// \p NewCost gives the cost of extension instructions created by the
5108/// promotion.
5109/// \p OldCost gives the cost of extension instructions before the promotion
5110/// plus the number of instructions that have been
5111/// matched in the addressing mode the promotion.
5112/// \p PromotedOperand is the value that has been promoted.
5113/// \return True if the promotion is profitable, false otherwise.
5114bool AddressingModeMatcher::isPromotionProfitable(
5115 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
5116 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
5117 << '\n');
5118 // The cost of the new extensions is greater than the cost of the
5119 // old extension plus what we folded.
5120 // This is not profitable.
5121 if (NewCost > OldCost)
5122 return false;
5123 if (NewCost < OldCost)
5124 return true;
5125 // The promotion is neutral but it may help folding the sign extension in
5126 // loads for instance.
5127 // Check that we did not create an illegal instruction.
5128 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
5129}
5130
5131/// Given an instruction or constant expr, see if we can fold the operation
5132/// into the addressing mode. If so, update the addressing mode and return
5133/// true, otherwise return false without modifying AddrMode.
5134/// If \p MovedAway is not NULL, it contains the information of whether or
5135/// not AddrInst has to be folded into the addressing mode on success.
5136/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
5137/// because it has been moved away.
5138/// Thus AddrInst must not be added in the matched instructions.
5139/// This state can happen when AddrInst is a sext, since it may be moved away.
5140/// Therefore, AddrInst may not be valid when MovedAway is true and it must
5141/// not be referenced anymore.
5142bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
5143 unsigned Depth,
5144 bool *MovedAway) {
5145 // Avoid exponential behavior on extremely deep expression trees.
5146 if (Depth >= 5)
5147 return false;
5148
5149 // By default, all matched instructions stay in place.
5150 if (MovedAway)
5151 *MovedAway = false;
5152
5153 switch (Opcode) {
5154 case Instruction::PtrToInt:
5155 // PtrToInt is always a noop, as we know that the int type is pointer sized.
5156 return matchAddr(AddrInst->getOperand(0), Depth);
5157 case Instruction::IntToPtr: {
5158 auto AS = AddrInst->getType()->getPointerAddressSpace();
5159 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
5160 // This inttoptr is a no-op if the integer type is pointer sized.
5161 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
5162 return matchAddr(AddrInst->getOperand(0), Depth);
5163 return false;
5164 }
5165 case Instruction::BitCast:
5166 // BitCast is always a noop, and we can handle it as long as it is
5167 // int->int or pointer->pointer (we don't want int<->fp or something).
5168 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
5169 // Don't touch identity bitcasts. These were probably put here by LSR,
5170 // and we don't want to mess around with them. Assume it knows what it
5171 // is doing.
5172 AddrInst->getOperand(0)->getType() != AddrInst->getType())
5173 return matchAddr(AddrInst->getOperand(0), Depth);
5174 return false;
5175 case Instruction::AddrSpaceCast: {
5176 unsigned SrcAS =
5177 AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
5178 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
5179 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
5180 return matchAddr(AddrInst->getOperand(0), Depth);
5181 return false;
5182 }
5183 case Instruction::Add: {
5184 // Check to see if we can merge in one operand, then the other. If so, we
5185 // win.
5186 ExtAddrMode BackupAddrMode = AddrMode;
5187 unsigned OldSize = AddrModeInsts.size();
5188 // Start a transaction at this point.
5189 // The LHS may match but not the RHS.
5190 // Therefore, we need a higher level restoration point to undo partially
5191 // matched operation.
5192 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5193 TPT.getRestorationPoint();
5194
5195 // Try to match an integer constant second to increase its chance of ending
5196 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
5197 int First = 0, Second = 1;
5198 if (isa<ConstantInt>(AddrInst->getOperand(First))
5199 && !isa<ConstantInt>(AddrInst->getOperand(Second)))
5200 std::swap(First, Second);
5201 AddrMode.InBounds = false;
5202 if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
5203 matchAddr(AddrInst->getOperand(Second), Depth + 1))
5204 return true;
5205
5206 // Restore the old addr mode info.
5207 AddrMode = BackupAddrMode;
5208 AddrModeInsts.resize(OldSize);
5209 TPT.rollback(LastKnownGood);
5210
5211 // Otherwise this was over-aggressive. Try merging operands in the opposite
5212 // order.
5213 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
5214 matchAddr(AddrInst->getOperand(First), Depth + 1))
5215 return true;
5216
5217 // Otherwise we definitely can't merge the ADD in.
5218 AddrMode = BackupAddrMode;
5219 AddrModeInsts.resize(OldSize);
5220 TPT.rollback(LastKnownGood);
5221 break;
5222 }
5223 // case Instruction::Or:
5224 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
5225 // break;
5226 case Instruction::Mul:
5227 case Instruction::Shl: {
5228 // Can only handle X*C and X << C.
5229 AddrMode.InBounds = false;
5230 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
5231 if (!RHS || RHS->getBitWidth() > 64)
5232 return false;
5233 int64_t Scale = Opcode == Instruction::Shl
5234 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
5235 : RHS->getSExtValue();
5236
5237 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
5238 }
5239 case Instruction::GetElementPtr: {
5240 // Scan the GEP. We check it if it contains constant offsets and at most
5241 // one variable offset.
5242 int VariableOperand = -1;
5243 unsigned VariableScale = 0;
5244
5245 int64_t ConstantOffset = 0;
5246 gep_type_iterator GTI = gep_type_begin(AddrInst);
5247 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
5248 if (StructType *STy = GTI.getStructTypeOrNull()) {
5249 const StructLayout *SL = DL.getStructLayout(STy);
5250 unsigned Idx =
5251 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
5252 ConstantOffset += SL->getElementOffset(Idx);
5253 } else {
5254 TypeSize TS = GTI.getSequentialElementStride(DL);
5255 if (TS.isNonZero()) {
5256 // The optimisations below currently only work for fixed offsets.
5257 if (TS.isScalable())
5258 return false;
5259 int64_t TypeSize = TS.getFixedValue();
5260 if (ConstantInt *CI =
5261 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
5262 const APInt &CVal = CI->getValue();
5263 if (CVal.getSignificantBits() <= 64) {
5264 ConstantOffset += CVal.getSExtValue() * TypeSize;
5265 continue;
5266 }
5267 }
5268 // We only allow one variable index at the moment.
5269 if (VariableOperand != -1)
5270 return false;
5271
5272 // Remember the variable index.
5273 VariableOperand = i;
5274 VariableScale = TypeSize;
5275 }
5276 }
5277 }
5278
5279 // A common case is for the GEP to only do a constant offset. In this case,
5280 // just add it to the disp field and check validity.
5281 if (VariableOperand == -1) {
5282 AddrMode.BaseOffs += ConstantOffset;
5283 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
5284 if (!cast<GEPOperator>(AddrInst)->isInBounds())
5285 AddrMode.InBounds = false;
5286 return true;
5287 }
5288 AddrMode.BaseOffs -= ConstantOffset;
5289
5291 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
5292 ConstantOffset > 0) {
5293 // Record GEPs with non-zero offsets as candidates for splitting in
5294 // the event that the offset cannot fit into the r+i addressing mode.
5295 // Simple and common case that only one GEP is used in calculating the
5296 // address for the memory access.
5297 Value *Base = AddrInst->getOperand(0);
5298 auto *BaseI = dyn_cast<Instruction>(Base);
5299 auto *GEP = cast<GetElementPtrInst>(AddrInst);
5301 (BaseI && !isa<CastInst>(BaseI) &&
5302 !isa<GetElementPtrInst>(BaseI))) {
5303 // Make sure the parent block allows inserting non-PHI instructions
5304 // before the terminator.
5305 BasicBlock *Parent = BaseI ? BaseI->getParent()
5306 : &GEP->getFunction()->getEntryBlock();
5307 if (!Parent->getTerminator()->isEHPad())
5308 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
5309 }
5310 }
5311
5312 return false;
5313 }
5314
5315 // Save the valid addressing mode in case we can't match.
5316 ExtAddrMode BackupAddrMode = AddrMode;
5317 unsigned OldSize = AddrModeInsts.size();
5318
5319 // See if the scale and offset amount is valid for this target.
5320 AddrMode.BaseOffs += ConstantOffset;
5321 if (!cast<GEPOperator>(AddrInst)->isInBounds())
5322 AddrMode.InBounds = false;
5323
5324 // Match the base operand of the GEP.
5325 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
5326 // If it couldn't be matched, just stuff the value in a register.
5327 if (AddrMode.HasBaseReg) {
5328 AddrMode = BackupAddrMode;
5329 AddrModeInsts.resize(OldSize);
5330 return false;
5331 }
5332 AddrMode.HasBaseReg = true;
5333 AddrMode.BaseReg = AddrInst->getOperand(0);
5334 }
5335
5336 // Match the remaining variable portion of the GEP.
5337 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
5338 Depth)) {
5339 // If it couldn't be matched, try stuffing the base into a register
5340 // instead of matching it, and retrying the match of the scale.
5341 AddrMode = BackupAddrMode;
5342 AddrModeInsts.resize(OldSize);
5343 if (AddrMode.HasBaseReg)
5344 return false;
5345 AddrMode.HasBaseReg = true;
5346 AddrMode.BaseReg = AddrInst->getOperand(0);
5347 AddrMode.BaseOffs += ConstantOffset;
5348 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
5349 VariableScale, Depth)) {
5350 // If even that didn't work, bail.
5351 AddrMode = BackupAddrMode;
5352 AddrModeInsts.resize(OldSize);
5353 return false;
5354 }
5355 }
5356
5357 return true;
5358 }
5359 case Instruction::SExt:
5360 case Instruction::ZExt: {
5362 if (!Ext)
5363 return false;
5364
5365 // Try to move this ext out of the way of the addressing mode.
5366 // Ask for a method for doing so.
5367 TypePromotionHelper::Action TPH =
5368 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
5369 if (!TPH)
5370 return false;
5371
5372 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5373 TPT.getRestorationPoint();
5374 unsigned CreatedInstsCost = 0;
5375 unsigned ExtCost = !TLI.isExtFree(Ext);
5376 Value *PromotedOperand =
5377 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
5378 // SExt has been moved away.
5379 // Thus either it will be rematched later in the recursive calls or it is
5380 // gone. Anyway, we must not fold it into the addressing mode at this point.
5381 // E.g.,
5382 // op = add opnd, 1
5383 // idx = ext op
5384 // addr = gep base, idx
5385 // is now:
5386 // promotedOpnd = ext opnd <- no match here
5387 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
5388 // addr = gep base, op <- match
5389 if (MovedAway)
5390 *MovedAway = true;
5391
5392 assert(PromotedOperand &&
5393 "TypePromotionHelper should have filtered out those cases");
5394
5395 ExtAddrMode BackupAddrMode = AddrMode;
5396 unsigned OldSize = AddrModeInsts.size();
5397
5398 if (!matchAddr(PromotedOperand, Depth) ||
5399 // The total of the new cost is equal to the cost of the created
5400 // instructions.
5401 // The total of the old cost is equal to the cost of the extension plus
5402 // what we have saved in the addressing mode.
5403 !isPromotionProfitable(CreatedInstsCost,
5404 ExtCost + (AddrModeInsts.size() - OldSize),
5405 PromotedOperand)) {
5406 AddrMode = BackupAddrMode;
5407 AddrModeInsts.resize(OldSize);
5408 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
5409 TPT.rollback(LastKnownGood);
5410 return false;
5411 }
5412
5413 // SExt has been deleted. Make sure it is not referenced by the AddrMode.
5414 AddrMode.replaceWith(Ext, PromotedOperand);
5415 return true;
5416 }
5417 case Instruction::Call:
5418 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) {
5419 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) {
5420 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0));
5421 if (TLI.addressingModeSupportsTLS(GV))
5422 return matchAddr(AddrInst->getOperand(0), Depth);
5423 }
5424 }
5425 break;
5426 }
5427 return false;
5428}
5429
5430/// If we can, try to add the value of 'Addr' into the current addressing mode.
5431/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
5432/// unmodified. This assumes that Addr is either a pointer type or intptr_t
5433/// for the target.
5434///
5435bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
5436 // Start a transaction at this point that we will rollback if the matching
5437 // fails.
5438 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5439 TPT.getRestorationPoint();
5440 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
5441 if (CI->getValue().isSignedIntN(64)) {
5442 // Check if the addition would result in a signed overflow.
5443 int64_t Result;
5444 bool Overflow =
5445 AddOverflow(AddrMode.BaseOffs, CI->getSExtValue(), Result);
5446 if (!Overflow) {
5447 // Fold in immediates if legal for the target.
5448 AddrMode.BaseOffs = Result;
5449 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5450 return true;
5451 AddrMode.BaseOffs -= CI->getSExtValue();
5452 }
5453 }
5454 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
5455 // If this is a global variable, try to fold it into the addressing mode.
5456 if (!AddrMode.BaseGV) {
5457 AddrMode.BaseGV = GV;
5458 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5459 return true;
5460 AddrMode.BaseGV = nullptr;
5461 }
5462 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
5463 ExtAddrMode BackupAddrMode = AddrMode;
5464 unsigned OldSize = AddrModeInsts.size();
5465
5466 // Check to see if it is possible to fold this operation.
5467 bool MovedAway = false;
5468 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
5469 // This instruction may have been moved away. If so, there is nothing
5470 // to check here.
5471 if (MovedAway)
5472 return true;
5473 // Okay, it's possible to fold this. Check to see if it is actually
5474 // *profitable* to do so. We use a simple cost model to avoid increasing
5475 // register pressure too much.
5476 if (I->hasOneUse() ||
5477 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
5478 AddrModeInsts.push_back(I);
5479 return true;
5480 }
5481
5482 // It isn't profitable to do this, roll back.
5483 AddrMode = BackupAddrMode;
5484 AddrModeInsts.resize(OldSize);
5485 TPT.rollback(LastKnownGood);
5486 }
5487 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
5488 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
5489 return true;
5490 TPT.rollback(LastKnownGood);
5491 } else if (isa<ConstantPointerNull>(Addr)) {
5492 // Null pointer gets folded without affecting the addressing mode.
5493 return true;
5494 }
5495
5496 // Worse case, the target should support [reg] addressing modes. :)
5497 if (!AddrMode.HasBaseReg) {
5498 AddrMode.HasBaseReg = true;
5499 AddrMode.BaseReg = Addr;
5500 // Still check for legality in case the target supports [imm] but not [i+r].
5501 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5502 return true;
5503 AddrMode.HasBaseReg = false;
5504 AddrMode.BaseReg = nullptr;
5505 }
5506
5507 // If the base register is already taken, see if we can do [r+r].
5508 if (AddrMode.Scale == 0) {
5509 AddrMode.Scale = 1;
5510 AddrMode.ScaledReg = Addr;
5511 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5512 return true;
5513 AddrMode.Scale = 0;
5514 AddrMode.ScaledReg = nullptr;
5515 }
5516 // Couldn't match.
5517 TPT.rollback(LastKnownGood);
5518 return false;
5519}
5520
5521/// Check to see if all uses of OpVal by the specified inline asm call are due
5522/// to memory operands. If so, return true, otherwise return false.
5524 const TargetLowering &TLI,
5525 const TargetRegisterInfo &TRI) {
5526 const Function *F = CI->getFunction();
5527 TargetLowering::AsmOperandInfoVector TargetConstraints =
5528 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI);
5529
5530 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5531 // Compute the constraint code and ConstraintType to use.
5532 TLI.ComputeConstraintToUse(OpInfo, SDValue());
5533
5534 // If this asm operand is our Value*, and if it isn't an indirect memory
5535 // operand, we can't fold it! TODO: Also handle C_Address?
5536 if (OpInfo.CallOperandVal == OpVal &&
5537 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
5538 !OpInfo.isIndirect))
5539 return false;
5540 }
5541
5542 return true;
5543}
5544
5545/// Recursively walk all the uses of I until we find a memory use.
5546/// If we find an obviously non-foldable instruction, return true.
5547/// Add accessed addresses and types to MemoryUses.
5549 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5550 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5551 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5552 BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5553 // If we already considered this instruction, we're done.
5554 if (!ConsideredInsts.insert(I).second)
5555 return false;
5556
5557 // If this is an obviously unfoldable instruction, bail out.
5558 if (!MightBeFoldableInst(I))
5559 return true;
5560
5561 // Loop over all the uses, recursively processing them.
5562 for (Use &U : I->uses()) {
5563 // Conservatively return true if we're seeing a large number or a deep chain
5564 // of users. This avoids excessive compilation times in pathological cases.
5565 if (SeenInsts++ >= MaxAddressUsersToScan)
5566 return true;
5567
5568 Instruction *UserI = cast<Instruction>(U.getUser());
5569 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5570 MemoryUses.push_back({&U, LI->getType()});
5571 continue;
5572 }
5573
5574 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5575 if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5576 return true; // Storing addr, not into addr.
5577 MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5578 continue;
5579 }
5580
5581 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5582 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5583 return true; // Storing addr, not into addr.
5584 MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5585 continue;
5586 }
5587
5589 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5590 return true; // Storing addr, not into addr.
5591 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5592 continue;
5593 }
5594
5597 Type *AccessTy;
5598 if (!TLI.getAddrModeArguments(II, PtrOps, AccessTy))
5599 return true;
5600
5601 if (!find(PtrOps, U.get()))
5602 return true;
5603
5604 MemoryUses.push_back({&U, AccessTy});
5605 continue;
5606 }
5607
5608 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5609 if (CI->hasFnAttr(Attribute::Cold)) {
5610 // If this is a cold call, we can sink the addressing calculation into
5611 // the cold path. See optimizeCallInst
5612 if (!llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI))
5613 continue;
5614 }
5615
5616 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5617 if (!IA)
5618 return true;
5619
5620 // If this is a memory operand, we're cool, otherwise bail out.
5621 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5622 return true;
5623 continue;
5624 }
5625
5626 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5627 PSI, BFI, SeenInsts))
5628 return true;
5629 }
5630
5631 return false;
5632}
5633
5635 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5636 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5638 unsigned SeenInsts = 0;
5639 SmallPtrSet<Instruction *, 16> ConsideredInsts;
5640 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5641 PSI, BFI, SeenInsts);
5642}
5643
5644
5645/// Return true if Val is already known to be live at the use site that we're
5646/// folding it into. If so, there is no cost to include it in the addressing
5647/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5648/// instruction already.
5649bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5650 Value *KnownLive1,
5651 Value *KnownLive2) {
5652 // If Val is either of the known-live values, we know it is live!
5653 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5654 return true;
5655
5656 // All values other than instructions and arguments (e.g. constants) are live.
5657 if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5658 return true;
5659
5660 // If Val is a constant sized alloca in the entry block, it is live, this is
5661 // true because it is just a reference to the stack/frame pointer, which is
5662 // live for the whole function.
5663 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5664 if (AI->isStaticAlloca())
5665 return true;
5666
5667 // Check to see if this value is already used in the memory instruction's
5668 // block. If so, it's already live into the block at the very least, so we
5669 // can reasonably fold it.
5670 return Val->isUsedInBasicBlock(MemoryInst->getParent());
5671}
5672
5673/// It is possible for the addressing mode of the machine to fold the specified
5674/// instruction into a load or store that ultimately uses it.
5675/// However, the specified instruction has multiple uses.
5676/// Given this, it may actually increase register pressure to fold it
5677/// into the load. For example, consider this code:
5678///
5679/// X = ...
5680/// Y = X+1
5681/// use(Y) -> nonload/store
5682/// Z = Y+1
5683/// load Z
5684///
5685/// In this case, Y has multiple uses, and can be folded into the load of Z
5686/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
5687/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
5688/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
5689/// number of computations either.
5690///
5691/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
5692/// X was live across 'load Z' for other reasons, we actually *would* want to
5693/// fold the addressing mode in the Z case. This would make Y die earlier.
5694bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5695 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5696 if (IgnoreProfitability)
5697 return true;
5698
5699 // AMBefore is the addressing mode before this instruction was folded into it,
5700 // and AMAfter is the addressing mode after the instruction was folded. Get
5701 // the set of registers referenced by AMAfter and subtract out those
5702 // referenced by AMBefore: this is the set of values which folding in this
5703 // address extends the lifetime of.
5704 //
5705 // Note that there are only two potential values being referenced here,
5706 // BaseReg and ScaleReg (global addresses are always available, as are any
5707 // folded immediates).
5708 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5709
5710 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5711 // lifetime wasn't extended by adding this instruction.
5712 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5713 BaseReg = nullptr;
5714 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5715 ScaledReg = nullptr;
5716
5717 // If folding this instruction (and it's subexprs) didn't extend any live
5718 // ranges, we're ok with it.
5719 if (!BaseReg && !ScaledReg)
5720 return true;
5721
5722 // If all uses of this instruction can have the address mode sunk into them,
5723 // we can remove the addressing mode and effectively trade one live register
5724 // for another (at worst.) In this context, folding an addressing mode into
5725 // the use is just a particularly nice way of sinking it.
5727 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5728 return false; // Has a non-memory, non-foldable use!
5729
5730 // Now that we know that all uses of this instruction are part of a chain of
5731 // computation involving only operations that could theoretically be folded
5732 // into a memory use, loop over each of these memory operation uses and see
5733 // if they could *actually* fold the instruction. The assumption is that
5734 // addressing modes are cheap and that duplicating the computation involved
5735 // many times is worthwhile, even on a fastpath. For sinking candidates
5736 // (i.e. cold call sites), this serves as a way to prevent excessive code
5737 // growth since most architectures have some reasonable small and fast way to
5738 // compute an effective address. (i.e LEA on x86)
5739 SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5740 for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5741 Value *Address = Pair.first->get();
5742 Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5743 Type *AddressAccessTy = Pair.second;
5744 unsigned AS = Address->getType()->getPointerAddressSpace();
5745
5746 // Do a match against the root of this address, ignoring profitability. This
5747 // will tell us if the addressing mode for the memory operation will
5748 // *actually* cover the shared instruction.
5749 ExtAddrMode Result;
5750 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5751 0);
5752 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5753 TPT.getRestorationPoint();
5754 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5755 AddressAccessTy, AS, UserI, Result,
5756 InsertedInsts, PromotedInsts, TPT,
5757 LargeOffsetGEP, OptSize, PSI, BFI);
5758 Matcher.IgnoreProfitability = true;
5759 bool Success = Matcher.matchAddr(Address, 0);
5760 (void)Success;
5761 assert(Success && "Couldn't select *anything*?");
5762
5763 // The match was to check the profitability, the changes made are not
5764 // part of the original matcher. Therefore, they should be dropped
5765 // otherwise the original matcher will not present the right state.
5766 TPT.rollback(LastKnownGood);
5767
5768 // If the match didn't cover I, then it won't be shared by it.
5769 if (!is_contained(MatchedAddrModeInsts, I))
5770 return false;
5771
5772 MatchedAddrModeInsts.clear();
5773 }
5774
5775 return true;
5776}
5777
5778/// Return true if the specified values are defined in a
5779/// different basic block than BB.
5780static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5782 return I->getParent() != BB;
5783 return false;
5784}
5785
5786// Find an insert position of Addr for MemoryInst. We can't guarantee MemoryInst
5787// is the first instruction that will use Addr. So we need to find the first
5788// user of Addr in current BB.
5790 Value *SunkAddr) {
5791 if (Addr->hasOneUse())
5792 return MemoryInst->getIterator();
5793
5794 // We already have a SunkAddr in current BB, but we may need to insert cast
5795 // instruction after it.
5796 if (SunkAddr) {
5797 if (Instruction *AddrInst = dyn_cast<Instruction>(SunkAddr))
5798 return std::next(AddrInst->getIterator());
5799 }
5800
5801 // Find the first user of Addr in current BB.
5802 Instruction *Earliest = MemoryInst;
5803 for (User *U : Addr->users()) {
5804 Instruction *UserInst = dyn_cast<Instruction>(U);
5805 if (UserInst && UserInst->getParent() == MemoryInst->getParent()) {
5806 if (isa<PHINode>(UserInst) || UserInst->isDebugOrPseudoInst())
5807 continue;
5808 if (UserInst->comesBefore(Earliest))
5809 Earliest = UserInst;
5810 }
5811 }
5812 return Earliest->getIterator();
5813}
5814
5815/// Sink addressing mode computation immediate before MemoryInst if doing so
5816/// can be done without increasing register pressure. The need for the
5817/// register pressure constraint means this can end up being an all or nothing
5818/// decision for all uses of the same addressing computation.
5819///
5820/// Load and Store Instructions often have addressing modes that can do
5821/// significant amounts of computation. As such, instruction selection will try
5822/// to get the load or store to do as much computation as possible for the
5823/// program. The problem is that isel can only see within a single block. As
5824/// such, we sink as much legal addressing mode work into the block as possible.
5825///
5826/// This method is used to optimize both load/store and inline asms with memory
5827/// operands. It's also used to sink addressing computations feeding into cold
5828/// call sites into their (cold) basic block.
5829///
5830/// The motivation for handling sinking into cold blocks is that doing so can
5831/// both enable other address mode sinking (by satisfying the register pressure
5832/// constraint above), and reduce register pressure globally (by removing the
5833/// addressing mode computation from the fast path entirely.).
5834bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5835 Type *AccessTy, unsigned AddrSpace) {
5836 Value *Repl = Addr;
5837
5838 // Try to collapse single-value PHI nodes. This is necessary to undo
5839 // unprofitable PRE transformations.
5840 SmallVector<Value *, 8> worklist;
5841 SmallPtrSet<Value *, 16> Visited;
5842 worklist.push_back(Addr);
5843
5844 // Use a worklist to iteratively look through PHI and select nodes, and
5845 // ensure that the addressing mode obtained from the non-PHI/select roots of
5846 // the graph are compatible.
5847 bool PhiOrSelectSeen = false;
5848 SmallVector<Instruction *, 16> AddrModeInsts;
5849 AddressingModeCombiner AddrModes(*DL, Addr);
5850 TypePromotionTransaction TPT(RemovedInsts);
5851 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5852 TPT.getRestorationPoint();
5853 while (!worklist.empty()) {
5854 Value *V = worklist.pop_back_val();
5855
5856 // We allow traversing cyclic Phi nodes.
5857 // In case of success after this loop we ensure that traversing through
5858 // Phi nodes ends up with all cases to compute address of the form
5859 // BaseGV + Base + Scale * Index + Offset
5860 // where Scale and Offset are constans and BaseGV, Base and Index
5861 // are exactly the same Values in all cases.
5862 // It means that BaseGV, Scale and Offset dominate our memory instruction
5863 // and have the same value as they had in address computation represented
5864 // as Phi. So we can safely sink address computation to memory instruction.
5865 if (!Visited.insert(V).second)
5866 continue;
5867
5868 // For a PHI node, push all of its incoming values.
5869 if (PHINode *P = dyn_cast<PHINode>(V)) {
5870 append_range(worklist, P->incoming_values());
5871 PhiOrSelectSeen = true;
5872 continue;
5873 }
5874 // Similar for select.
5875 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5876 worklist.push_back(SI->getFalseValue());
5877 worklist.push_back(SI->getTrueValue());
5878 PhiOrSelectSeen = true;
5879 continue;
5880 }
5881
5882 // For non-PHIs, determine the addressing mode being computed. Note that
5883 // the result may differ depending on what other uses our candidate
5884 // addressing instructions might have.
5885 AddrModeInsts.clear();
5886 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5887 0);
5888 // Defer the query (and possible computation of) the dom tree to point of
5889 // actual use. It's expected that most address matches don't actually need
5890 // the domtree.
5891 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5892 Function *F = MemoryInst->getParent()->getParent();
5893 return this->getDT(*F);
5894 };
5895 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5896 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5897 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5898 BFI.get());
5899
5900 GetElementPtrInst *GEP = LargeOffsetGEP.first;
5901 if (GEP && !NewGEPBases.count(GEP)) {
5902 // If splitting the underlying data structure can reduce the offset of a
5903 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5904 // previously split data structures.
5905 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5906 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5907 }
5908
5909 NewAddrMode.OriginalValue = V;
5910 if (!AddrModes.addNewAddrMode(NewAddrMode))
5911 break;
5912 }
5913
5914 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5915 // or we have multiple but either couldn't combine them or combining them
5916 // wouldn't do anything useful, bail out now.
5917 if (!AddrModes.combineAddrModes()) {
5918 TPT.rollback(LastKnownGood);
5919 return false;
5920 }
5921 bool Modified = TPT.commit();
5922
5923 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5924 ExtAddrMode AddrMode = AddrModes.getAddrMode();
5925
5926 // If all the instructions matched are already in this BB, don't do anything.
5927 // If we saw a Phi node then it is not local definitely, and if we saw a
5928 // select then we want to push the address calculation past it even if it's
5929 // already in this BB.
5930 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5931 return IsNonLocalValue(V, MemoryInst->getParent());
5932 })) {
5933 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5934 << "\n");
5935 return Modified;
5936 }
5937
5938 // Now that we determined the addressing expression we want to use and know
5939 // that we have to sink it into this block. Check to see if we have already
5940 // done this for some other load/store instr in this block. If so, reuse
5941 // the computation. Before attempting reuse, check if the address is valid
5942 // as it may have been erased.
5943
5944 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5945
5946 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5947 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5948
5949 // The current BB may be optimized multiple times, we can't guarantee the
5950 // reuse of Addr happens later, call findInsertPos to find an appropriate
5951 // insert position.
5952 auto InsertPos = findInsertPos(Addr, MemoryInst, SunkAddr);
5953
5954 // TODO: Adjust insert point considering (Base|Scaled)Reg if possible.
5955 if (!SunkAddr) {
5956 auto &DT = getDT(*MemoryInst->getFunction());
5957 if ((AddrMode.BaseReg && !DT.dominates(AddrMode.BaseReg, &*InsertPos)) ||
5958 (AddrMode.ScaledReg && !DT.dominates(AddrMode.ScaledReg, &*InsertPos)))
5959 return Modified;
5960 }
5961
5962 IRBuilder<> Builder(MemoryInst->getParent(), InsertPos);
5963
5964 if (SunkAddr) {
5965 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5966 << " for " << *MemoryInst << "\n");
5967 if (SunkAddr->getType() != Addr->getType()) {
5968 if (SunkAddr->getType()->getPointerAddressSpace() !=
5969 Addr->getType()->getPointerAddressSpace() &&
5970 !DL->isNonIntegralPointerType(Addr->getType())) {
5971 // There are two reasons the address spaces might not match: a no-op
5972 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5973 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5974 // TODO: allow bitcast between different address space pointers with the
5975 // same size.
5976 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5977 SunkAddr =
5978 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5979 } else
5980 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5981 }
5983 SubtargetInfo->addrSinkUsingGEPs())) {
5984 // By default, we use the GEP-based method when AA is used later. This
5985 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5986 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5987 << " for " << *MemoryInst << "\n");
5988 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5989
5990 // First, find the pointer.
5991 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5992 ResultPtr = AddrMode.BaseReg;
5993 AddrMode.BaseReg = nullptr;
5994 }
5995
5996 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5997 // We can't add more than one pointer together, nor can we scale a
5998 // pointer (both of which seem meaningless).
5999 if (ResultPtr || AddrMode.Scale != 1)
6000 return Modified;
6001
6002 ResultPtr = AddrMode.ScaledReg;
6003 AddrMode.Scale = 0;
6004 }
6005
6006 // It is only safe to sign extend the BaseReg if we know that the math
6007 // required to create it did not overflow before we extend it. Since
6008 // the original IR value was tossed in favor of a constant back when
6009 // the AddrMode was created we need to bail out gracefully if widths
6010 // do not match instead of extending it.
6011 //
6012 // (See below for code to add the scale.)
6013 if (AddrMode.Scale) {
6014 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
6015 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
6016 cast<IntegerType>(ScaledRegTy)->getBitWidth())
6017 return Modified;
6018 }
6019
6020 GlobalValue *BaseGV = AddrMode.BaseGV;
6021 if (BaseGV != nullptr) {
6022 if (ResultPtr)
6023 return Modified;
6024
6025 if (BaseGV->isThreadLocal()) {
6026 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV);
6027 } else {
6028 ResultPtr = BaseGV;
6029 }
6030 }
6031
6032 // If the real base value actually came from an inttoptr, then the matcher
6033 // will look through it and provide only the integer value. In that case,
6034 // use it here.
6035 if (!DL->isNonIntegralPointerType(Addr->getType())) {
6036 if (!ResultPtr && AddrMode.BaseReg) {
6037 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
6038 "sunkaddr");
6039 AddrMode.BaseReg = nullptr;
6040 } else if (!ResultPtr && AddrMode.Scale == 1) {
6041 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
6042 "sunkaddr");
6043 AddrMode.Scale = 0;
6044 }
6045 }
6046
6047 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
6048 !AddrMode.BaseOffs) {
6049 SunkAddr = Constant::getNullValue(Addr->getType());
6050 } else if (!ResultPtr) {
6051 return Modified;
6052 } else {
6053 Type *I8PtrTy =
6054 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace());
6055
6056 // Start with the base register. Do this first so that subsequent address
6057 // matching finds it last, which will prevent it from trying to match it
6058 // as the scaled value in case it happens to be a mul. That would be
6059 // problematic if we've sunk a different mul for the scale, because then
6060 // we'd end up sinking both muls.
6061 if (AddrMode.BaseReg) {
6062 Value *V = AddrMode.BaseReg;
6063 if (V->getType() != IntPtrTy)
6064 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
6065
6066 ResultIndex = V;
6067 }
6068
6069 // Add the scale value.
6070 if (AddrMode.Scale) {
6071 Value *V = AddrMode.ScaledReg;
6072 if (V->getType() == IntPtrTy) {
6073 // done.
6074 } else {
6075 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
6076 cast<IntegerType>(V->getType())->getBitWidth() &&
6077 "We can't transform if ScaledReg is too narrow");
6078 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
6079 }
6080
6081 if (AddrMode.Scale != 1)
6082 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
6083 "sunkaddr");
6084 if (ResultIndex)
6085 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
6086 else
6087 ResultIndex = V;
6088 }
6089
6090 // Add in the Base Offset if present.
6091 if (AddrMode.BaseOffs) {
6092 Value *V = ConstantInt::getSigned(IntPtrTy, AddrMode.BaseOffs);
6093 if (ResultIndex) {
6094 // We need to add this separately from the scale above to help with
6095 // SDAG consecutive load/store merging.
6096 if (ResultPtr->getType() != I8PtrTy)
6097 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
6098 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
6099 AddrMode.InBounds);
6100 }
6101
6102 ResultIndex = V;
6103 }
6104
6105 if (!ResultIndex) {
6106 auto PtrInst = dyn_cast<Instruction>(ResultPtr);
6107 // We know that we have a pointer without any offsets. If this pointer
6108 // originates from a different basic block than the current one, we
6109 // must be able to recreate it in the current basic block.
6110 // We do not support the recreation of any instructions yet.
6111 if (PtrInst && PtrInst->getParent() != MemoryInst->getParent())
6112 return Modified;
6113 SunkAddr = ResultPtr;
6114 } else {
6115 if (ResultPtr->getType() != I8PtrTy)
6116 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
6117 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
6118 AddrMode.InBounds);
6119 }
6120
6121 if (SunkAddr->getType() != Addr->getType()) {
6122 if (SunkAddr->getType()->getPointerAddressSpace() !=
6123 Addr->getType()->getPointerAddressSpace() &&
6124 !DL->isNonIntegralPointerType(Addr->getType())) {
6125 // There are two reasons the address spaces might not match: a no-op
6126 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
6127 // ptrtoint/inttoptr pair to ensure we match the original semantics.
6128 // TODO: allow bitcast between different address space pointers with
6129 // the same size.
6130 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
6131 SunkAddr =
6132 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
6133 } else
6134 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
6135 }
6136 }
6137 } else {
6138 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
6139 // non-integral pointers, so in that case bail out now.
6140 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
6141 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
6142 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
6143 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
6144 if (DL->isNonIntegralPointerType(Addr->getType()) ||
6145 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
6146 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
6147 (AddrMode.BaseGV &&
6148 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
6149 return Modified;
6150
6151 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
6152 << " for " << *MemoryInst << "\n");
6153 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
6154 Value *Result = nullptr;
6155
6156 // Start with the base register. Do this first so that subsequent address
6157 // matching finds it last, which will prevent it from trying to match it
6158 // as the scaled value in case it happens to be a mul. That would be
6159 // problematic if we've sunk a different mul for the scale, because then
6160 // we'd end up sinking both muls.
6161 if (AddrMode.BaseReg) {
6162 Value *V = AddrMode.BaseReg;
6163 if (V->getType()->isPointerTy())
6164 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
6165 if (V->getType() != IntPtrTy)
6166 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
6167 Result = V;
6168 }
6169
6170 // Add the scale value.
6171 if (AddrMode.Scale) {
6172 Value *V = AddrMode.ScaledReg;
6173 if (V->getType() == IntPtrTy) {
6174 // done.
6175 } else if (V->getType()->isPointerTy()) {
6176 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
6177 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
6178 cast<IntegerType>(V->getType())->getBitWidth()) {
6179 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
6180 } else {
6181 // It is only safe to sign extend the BaseReg if we know that the math
6182 // required to create it did not overflow before we extend it. Since
6183 // the original IR value was tossed in favor of a constant back when
6184 // the AddrMode was created we need to bail out gracefully if widths
6185 // do not match instead of extending it.
6187 if (I && (Result != AddrMode.BaseReg))
6188 I->eraseFromParent();
6189 return Modified;
6190 }
6191 if (AddrMode.Scale != 1)
6192 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
6193 "sunkaddr");
6194 if (Result)
6195 Result = Builder.CreateAdd(Result, V, "sunkaddr");
6196 else
6197 Result = V;
6198 }
6199
6200 // Add in the BaseGV if present.
6201 GlobalValue *BaseGV = AddrMode.BaseGV;
6202 if (BaseGV != nullptr) {
6203 Value *BaseGVPtr;
6204 if (BaseGV->isThreadLocal()) {
6205 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV);
6206 } else {
6207 BaseGVPtr = BaseGV;
6208 }
6209 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr");
6210 if (Result)
6211 Result = Builder.CreateAdd(Result, V, "sunkaddr");
6212 else
6213 Result = V;
6214 }
6215
6216 // Add in the Base Offset if present.
6217 if (AddrMode.BaseOffs) {
6218 Value *V = ConstantInt::getSigned(IntPtrTy, AddrMode.BaseOffs);
6219 if (Result)
6220 Result = Builder.CreateAdd(Result, V, "sunkaddr");
6221 else
6222 Result = V;
6223 }
6224
6225 if (!Result)
6226 SunkAddr = Constant::getNullValue(Addr->getType());
6227 else
6228 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
6229 }
6230
6231 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
6232 // Store the newly computed address into the cache. In the case we reused a
6233 // value, this should be idempotent.
6234 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
6235
6236 // If we have no uses, recursively delete the value and all dead instructions
6237 // using it.
6238 if (Repl->use_empty()) {
6239 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
6240 RecursivelyDeleteTriviallyDeadInstructions(
6241 Repl, TLInfo, nullptr,
6242 [&](Value *V) { removeAllAssertingVHReferences(V); });
6243 });
6244 }
6245 ++NumMemoryInsts;
6246 return true;
6247}
6248
6249/// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
6250/// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
6251/// only handle a 2 operand GEP in the same basic block or a splat constant
6252/// vector. The 2 operands to the GEP must have a scalar pointer and a vector
6253/// index.
6254///
6255/// If the existing GEP has a vector base pointer that is splat, we can look
6256/// through the splat to find the scalar pointer. If we can't find a scalar
6257/// pointer there's nothing we can do.
6258///
6259/// If we have a GEP with more than 2 indices where the middle indices are all
6260/// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
6261///
6262/// If the final index isn't a vector or is a splat, we can emit a scalar GEP
6263/// followed by a GEP with an all zeroes vector index. This will enable
6264/// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
6265/// zero index.
6266bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
6267 Value *Ptr) {
6268 Value *NewAddr;
6269
6270 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
6271 // Don't optimize GEPs that don't have indices.
6272 if (!GEP->hasIndices())
6273 return false;
6274
6275 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
6276 // FIXME: We should support this by sinking the GEP.
6277 if (MemoryInst->getParent() != GEP->getParent())
6278 return false;
6279
6280 SmallVector<Value *, 2> Ops(GEP->operands());
6281
6282 bool RewriteGEP = false;
6283
6284 if (Ops[0]->getType()->isVectorTy()) {
6285 Ops[0] = getSplatValue(Ops[0]);
6286 if (!Ops[0])
6287 return false;
6288 RewriteGEP = true;
6289 }
6290
6291 unsigned FinalIndex = Ops.size() - 1;
6292
6293 // Ensure all but the last index is 0.
6294 // FIXME: This isn't strictly required. All that's required is that they are
6295 // all scalars or splats.
6296 for (unsigned i = 1; i < FinalIndex; ++i) {
6297 auto *C = dyn_cast<Constant>(Ops[i]);
6298 if (!C)
6299 return false;
6300 if (isa<VectorType>(C->getType()))
6301 C = C->getSplatValue();
6302 auto *CI = dyn_cast_or_null<ConstantInt>(C);
6303 if (!CI || !CI->isZero())
6304 return false;
6305 // Scalarize the index if needed.
6306 Ops[i] = CI;
6307 }
6308
6309 // Try to scalarize the final index.
6310 if (Ops[FinalIndex]->getType()->isVectorTy()) {
6311 if (Value *V = getSplatValue(Ops[FinalIndex])) {
6312 auto *C = dyn_cast<ConstantInt>(V);
6313 // Don't scalarize all zeros vector.
6314 if (!C || !C->isZero()) {
6315 Ops[FinalIndex] = V;
6316 RewriteGEP = true;
6317 }
6318 }
6319 }
6320
6321 // If we made any changes or the we have extra operands, we need to generate
6322 // new instructions.
6323 if (!RewriteGEP && Ops.size() == 2)
6324 return false;
6325
6326 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
6327
6328 IRBuilder<> Builder(MemoryInst);
6329
6330 Type *SourceTy = GEP->getSourceElementType();
6331 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
6332
6333 // If the final index isn't a vector, emit a scalar GEP containing all ops
6334 // and a vector GEP with all zeroes final index.
6335 if (!Ops[FinalIndex]->getType()->isVectorTy()) {
6336 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
6337 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
6338 auto *SecondTy = GetElementPtrInst::getIndexedType(
6339 SourceTy, ArrayRef(Ops).drop_front());
6340 NewAddr =
6341 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
6342 } else {
6343 Value *Base = Ops[0];
6344 Value *Index = Ops[FinalIndex];
6345
6346 // Create a scalar GEP if there are more than 2 operands.
6347 if (Ops.size() != 2) {
6348 // Replace the last index with 0.
6349 Ops[FinalIndex] =
6350 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
6351 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
6353 SourceTy, ArrayRef(Ops).drop_front());
6354 }
6355
6356 // Now create the GEP with scalar pointer and vector index.
6357 NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
6358 }
6359 } else if (!isa<Constant>(Ptr)) {
6360 // Not a GEP, maybe its a splat and we can create a GEP to enable
6361 // SelectionDAGBuilder to use it as a uniform base.
6362 Value *V = getSplatValue(Ptr);
6363 if (!V)
6364 return false;
6365
6366 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
6367
6368 IRBuilder<> Builder(MemoryInst);
6369
6370 // Emit a vector GEP with a scalar pointer and all 0s vector index.
6371 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
6372 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
6373 Type *ScalarTy;
6374 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
6375 Intrinsic::masked_gather) {
6376 ScalarTy = MemoryInst->getType()->getScalarType();
6377 } else {
6378 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
6379 Intrinsic::masked_scatter);
6380 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
6381 }
6382 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
6383 } else {
6384 // Constant, SelectionDAGBuilder knows to check if its a splat.
6385 return false;
6386 }
6387
6388 MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
6389
6390 // If we have no uses, recursively delete the value and all dead instructions
6391 // using it.
6392 if (Ptr->use_empty())
6394 Ptr, TLInfo, nullptr,
6395 [&](Value *V) { removeAllAssertingVHReferences(V); });
6396
6397 return true;
6398}
6399
6400// This is a helper for CodeGenPrepare::optimizeMulWithOverflow.
6401// Check the pattern we are interested in where there are maximum 2 uses
6402// of the intrinsic which are the extract instructions.
6404 ExtractValueInst *&OverflowExtract) {
6405 // Bail out if it's more than 2 users:
6406 if (I->hasNUsesOrMore(3))
6407 return false;
6408
6409 for (User *U : I->users()) {
6410 auto *Extract = dyn_cast<ExtractValueInst>(U);
6411 if (!Extract || Extract->getNumIndices() != 1)
6412 return false;
6413
6414 unsigned Index = Extract->getIndices()[0];
6415 if (Index == 0)
6416 MulExtract = Extract;
6417 else if (Index == 1)
6418 OverflowExtract = Extract;
6419 else
6420 return false;
6421 }
6422 return true;
6423}
6424
6425// Rewrite the mul_with_overflow intrinsic by checking if both of the
6426// operands' value ranges are within the legal type. If so, we can optimize the
6427// multiplication algorithm. This code is supposed to be written during the step
6428// of type legalization, but given that we need to reconstruct the IR which is
6429// not doable there, we do it here.
6430// The IR after the optimization will look like:
6431// entry:
6432// if signed:
6433// ( (lhs_lo>>BW-1) ^ lhs_hi) || ( (rhs_lo>>BW-1) ^ rhs_hi) ? overflow,
6434// overflow_no
6435// else:
6436// (lhs_hi != 0) || (rhs_hi != 0) ? overflow, overflow_no
6437// overflow_no:
6438// overflow:
6439// overflow.res:
6440// \returns true if optimization was applied
6441// TODO: This optimization can be further improved to optimize branching on
6442// overflow where the 'overflow_no' BB can branch directly to the false
6443// successor of overflow, but that would add additional complexity so we leave
6444// it for future work.
6445bool CodeGenPrepare::optimizeMulWithOverflow(Instruction *I, bool IsSigned,
6446 ModifyDT &ModifiedDT) {
6447 // Check if target supports this optimization.
6449 I->getContext(),
6450 TLI->getValueType(*DL, I->getType()->getContainedType(0))))
6451 return false;
6452
6453 ExtractValueInst *MulExtract = nullptr, *OverflowExtract = nullptr;
6454 if (!matchOverflowPattern(I, MulExtract, OverflowExtract))
6455 return false;
6456
6457 // Keep track of the instruction to stop reoptimizing it again.
6458 InsertedInsts.insert(I);
6459
6460 Value *LHS = I->getOperand(0);
6461 Value *RHS = I->getOperand(1);
6462 Type *Ty = LHS->getType();
6463 unsigned VTHalfBitWidth = Ty->getScalarSizeInBits() / 2;
6464 Type *LegalTy = Ty->getWithNewBitWidth(VTHalfBitWidth);
6465
6466 // New BBs:
6467 BasicBlock *OverflowEntryBB =
6468 I->getParent()->splitBasicBlock(I, "", /*Before*/ true);
6469 OverflowEntryBB->takeName(I->getParent());
6470 // Keep the 'br' instruction that is generated as a result of the split to be
6471 // erased/replaced later.
6472 Instruction *OldTerminator = OverflowEntryBB->getTerminator();
6473 BasicBlock *NoOverflowBB =
6474 BasicBlock::Create(I->getContext(), "overflow.no", I->getFunction());
6475 NoOverflowBB->moveAfter(OverflowEntryBB);
6476 BasicBlock *OverflowBB =
6477 BasicBlock::Create(I->getContext(), "overflow", I->getFunction());
6478 OverflowBB->moveAfter(NoOverflowBB);
6479
6480 // BB overflow.entry:
6481 IRBuilder<> Builder(OverflowEntryBB);
6482 // Extract low and high halves of LHS:
6483 Value *LoLHS = Builder.CreateTrunc(LHS, LegalTy, "lo.lhs");
6484 Value *HiLHS = Builder.CreateLShr(LHS, VTHalfBitWidth, "lhs.lsr");
6485 HiLHS = Builder.CreateTrunc(HiLHS, LegalTy, "hi.lhs");
6486
6487 // Extract low and high halves of RHS:
6488 Value *LoRHS = Builder.CreateTrunc(RHS, LegalTy, "lo.rhs");
6489 Value *HiRHS = Builder.CreateLShr(RHS, VTHalfBitWidth, "rhs.lsr");
6490 HiRHS = Builder.CreateTrunc(HiRHS, LegalTy, "hi.rhs");
6491
6492 Value *IsAnyBitTrue;
6493 if (IsSigned) {
6494 Value *SignLoLHS =
6495 Builder.CreateAShr(LoLHS, VTHalfBitWidth - 1, "sign.lo.lhs");
6496 Value *SignLoRHS =
6497 Builder.CreateAShr(LoRHS, VTHalfBitWidth - 1, "sign.lo.rhs");
6498 Value *XorLHS = Builder.CreateXor(HiLHS, SignLoLHS);
6499 Value *XorRHS = Builder.CreateXor(HiRHS, SignLoRHS);
6500 Value *Or = Builder.CreateOr(XorLHS, XorRHS, "or.lhs.rhs");
6501 IsAnyBitTrue = Builder.CreateCmp(ICmpInst::ICMP_NE, Or,
6502 ConstantInt::getNullValue(Or->getType()));
6503 } else {
6504 Value *CmpLHS = Builder.CreateCmp(ICmpInst::ICMP_NE, HiLHS,
6505 ConstantInt::getNullValue(LegalTy));
6506 Value *CmpRHS = Builder.CreateCmp(ICmpInst::ICMP_NE, HiRHS,
6507 ConstantInt::getNullValue(LegalTy));
6508 IsAnyBitTrue = Builder.CreateOr(CmpLHS, CmpRHS, "or.lhs.rhs");
6509 }
6510 Builder.CreateCondBr(IsAnyBitTrue, OverflowBB, NoOverflowBB);
6511
6512 // BB overflow.no:
6513 Builder.SetInsertPoint(NoOverflowBB);
6514 Value *ExtLoLHS, *ExtLoRHS;
6515 if (IsSigned) {
6516 ExtLoLHS = Builder.CreateSExt(LoLHS, Ty, "lo.lhs.ext");
6517 ExtLoRHS = Builder.CreateSExt(LoRHS, Ty, "lo.rhs.ext");
6518 } else {
6519 ExtLoLHS = Builder.CreateZExt(LoLHS, Ty, "lo.lhs.ext");
6520 ExtLoRHS = Builder.CreateZExt(LoRHS, Ty, "lo.rhs.ext");
6521 }
6522
6523 Value *Mul = Builder.CreateMul(ExtLoLHS, ExtLoRHS, "mul.overflow.no");
6524
6525 // Create the 'overflow.res' BB to merge the results of
6526 // the two paths:
6527 BasicBlock *OverflowResBB = I->getParent();
6528 OverflowResBB->setName("overflow.res");
6529
6530 // BB overflow.no: jump to overflow.res BB
6531 Builder.CreateBr(OverflowResBB);
6532 // No we don't need the old terminator in overflow.entry BB, erase it:
6533 OldTerminator->eraseFromParent();
6534
6535 // BB overflow.res:
6536 Builder.SetInsertPoint(OverflowResBB, OverflowResBB->getFirstInsertionPt());
6537 // Create PHI nodes to merge results from no.overflow BB and overflow BB to
6538 // replace the extract instructions.
6539 PHINode *OverflowResPHI = Builder.CreatePHI(Ty, 2),
6540 *OverflowFlagPHI =
6541 Builder.CreatePHI(IntegerType::getInt1Ty(I->getContext()), 2);
6542
6543 // Add the incoming values from no.overflow BB and later from overflow BB.
6544 OverflowResPHI->addIncoming(Mul, NoOverflowBB);
6545 OverflowFlagPHI->addIncoming(ConstantInt::getFalse(I->getContext()),
6546 NoOverflowBB);
6547
6548 // Replace all users of MulExtract and OverflowExtract to use the PHI nodes.
6549 if (MulExtract) {
6550 MulExtract->replaceAllUsesWith(OverflowResPHI);
6551 MulExtract->eraseFromParent();
6552 }
6553 if (OverflowExtract) {
6554 OverflowExtract->replaceAllUsesWith(OverflowFlagPHI);
6555 OverflowExtract->eraseFromParent();
6556 }
6557
6558 // Remove the intrinsic from parent (overflow.res BB) as it will be part of
6559 // overflow BB
6560 I->removeFromParent();
6561 // BB overflow:
6562 I->insertInto(OverflowBB, OverflowBB->end());
6563 Builder.SetInsertPoint(OverflowBB, OverflowBB->end());
6564 Value *MulOverflow = Builder.CreateExtractValue(I, {0}, "mul.overflow");
6565 Value *OverflowFlag = Builder.CreateExtractValue(I, {1}, "overflow.flag");
6566 Builder.CreateBr(OverflowResBB);
6567
6568 // Add The Extracted values to the PHINodes in the overflow.res BB.
6569 OverflowResPHI->addIncoming(MulOverflow, OverflowBB);
6570 OverflowFlagPHI->addIncoming(OverflowFlag, OverflowBB);
6571
6572 ModifiedDT = ModifyDT::ModifyBBDT;
6573 return true;
6574}
6575
6576/// If there are any memory operands, use OptimizeMemoryInst to sink their
6577/// address computing into the block when possible / profitable.
6578bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
6579 bool MadeChange = false;
6580
6581 const TargetRegisterInfo *TRI =
6583 TargetLowering::AsmOperandInfoVector TargetConstraints =
6584 TLI->ParseConstraints(*DL, TRI, *CS);
6585 unsigned ArgNo = 0;
6586 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
6587 // Compute the constraint code and ConstraintType to use.
6588 TLI->ComputeConstraintToUse(OpInfo, SDValue());
6589
6590 // TODO: Also handle C_Address?
6591 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6592 OpInfo.isIndirect) {
6593 Value *OpVal = CS->getArgOperand(ArgNo++);
6594 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
6595 } else if (OpInfo.Type == InlineAsm::isInput)
6596 ArgNo++;
6597 }
6598
6599 return MadeChange;
6600}
6601
6602/// Check if all the uses of \p Val are equivalent (or free) zero or
6603/// sign extensions.
6604static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
6605 assert(!Val->use_empty() && "Input must have at least one use");
6606 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
6607 bool IsSExt = isa<SExtInst>(FirstUser);
6608 Type *ExtTy = FirstUser->getType();
6609 for (const User *U : Val->users()) {
6610 const Instruction *UI = cast<Instruction>(U);
6611 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
6612 return false;
6613 Type *CurTy = UI->getType();
6614 // Same input and output types: Same instruction after CSE.
6615 if (CurTy == ExtTy)
6616 continue;
6617
6618 // If IsSExt is true, we are in this situation:
6619 // a = Val
6620 // b = sext ty1 a to ty2
6621 // c = sext ty1 a to ty3
6622 // Assuming ty2 is shorter than ty3, this could be turned into:
6623 // a = Val
6624 // b = sext ty1 a to ty2
6625 // c = sext ty2 b to ty3
6626 // However, the last sext is not free.
6627 if (IsSExt)
6628 return false;
6629
6630 // This is a ZExt, maybe this is free to extend from one type to another.
6631 // In that case, we would not account for a different use.
6632 Type *NarrowTy;
6633 Type *LargeTy;
6634 if (ExtTy->getScalarType()->getIntegerBitWidth() >
6635 CurTy->getScalarType()->getIntegerBitWidth()) {
6636 NarrowTy = CurTy;
6637 LargeTy = ExtTy;
6638 } else {
6639 NarrowTy = ExtTy;
6640 LargeTy = CurTy;
6641 }
6642
6643 if (!TLI.isZExtFree(NarrowTy, LargeTy))
6644 return false;
6645 }
6646 // All uses are the same or can be derived from one another for free.
6647 return true;
6648}
6649
6650/// Try to speculatively promote extensions in \p Exts and continue
6651/// promoting through newly promoted operands recursively as far as doing so is
6652/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
6653/// When some promotion happened, \p TPT contains the proper state to revert
6654/// them.
6655///
6656/// \return true if some promotion happened, false otherwise.
6657bool CodeGenPrepare::tryToPromoteExts(
6658 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
6659 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
6660 unsigned CreatedInstsCost) {
6661 bool Promoted = false;
6662
6663 // Iterate over all the extensions to try to promote them.
6664 for (auto *I : Exts) {
6665 // Early check if we directly have ext(load).
6666 if (isa<LoadInst>(I->getOperand(0))) {
6667 ProfitablyMovedExts.push_back(I);
6668 continue;
6669 }
6670
6671 // Check whether or not we want to do any promotion. The reason we have
6672 // this check inside the for loop is to catch the case where an extension
6673 // is directly fed by a load because in such case the extension can be moved
6674 // up without any promotion on its operands.
6676 return false;
6677
6678 // Get the action to perform the promotion.
6679 TypePromotionHelper::Action TPH =
6680 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
6681 // Check if we can promote.
6682 if (!TPH) {
6683 // Save the current extension as we cannot move up through its operand.
6684 ProfitablyMovedExts.push_back(I);
6685 continue;
6686 }
6687
6688 // Save the current state.
6689 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6690 TPT.getRestorationPoint();
6691 SmallVector<Instruction *, 4> NewExts;
6692 unsigned NewCreatedInstsCost = 0;
6693 unsigned ExtCost = !TLI->isExtFree(I);
6694 // Promote.
6695 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
6696 &NewExts, nullptr, *TLI);
6697 assert(PromotedVal &&
6698 "TypePromotionHelper should have filtered out those cases");
6699
6700 // We would be able to merge only one extension in a load.
6701 // Therefore, if we have more than 1 new extension we heuristically
6702 // cut this search path, because it means we degrade the code quality.
6703 // With exactly 2, the transformation is neutral, because we will merge
6704 // one extension but leave one. However, we optimistically keep going,
6705 // because the new extension may be removed too. Also avoid replacing a
6706 // single free extension with multiple extensions, as this increases the
6707 // number of IR instructions while not providing any savings.
6708 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
6709 // FIXME: It would be possible to propagate a negative value instead of
6710 // conservatively ceiling it to 0.
6711 TotalCreatedInstsCost =
6712 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
6713 if (!StressExtLdPromotion &&
6714 (TotalCreatedInstsCost > 1 ||
6715 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) ||
6716 (ExtCost == 0 && NewExts.size() > 1))) {
6717 // This promotion is not profitable, rollback to the previous state, and
6718 // save the current extension in ProfitablyMovedExts as the latest
6719 // speculative promotion turned out to be unprofitable.
6720 TPT.rollback(LastKnownGood);
6721 ProfitablyMovedExts.push_back(I);
6722 continue;
6723 }
6724 // Continue promoting NewExts as far as doing so is profitable.
6725 SmallVector<Instruction *, 2> NewlyMovedExts;
6726 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
6727 bool NewPromoted = false;
6728 for (auto *ExtInst : NewlyMovedExts) {
6729 Instruction *MovedExt = cast<Instruction>(ExtInst);
6730 Value *ExtOperand = MovedExt->getOperand(0);
6731 // If we have reached to a load, we need this extra profitability check
6732 // as it could potentially be merged into an ext(load).
6733 if (isa<LoadInst>(ExtOperand) &&
6734 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
6735 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
6736 continue;
6737
6738 ProfitablyMovedExts.push_back(MovedExt);
6739 NewPromoted = true;
6740 }
6741
6742 // If none of speculative promotions for NewExts is profitable, rollback
6743 // and save the current extension (I) as the last profitable extension.
6744 if (!NewPromoted) {
6745 TPT.rollback(LastKnownGood);
6746 ProfitablyMovedExts.push_back(I);
6747 continue;
6748 }
6749 // The promotion is profitable.
6750 Promoted = true;
6751 }
6752 return Promoted;
6753}
6754
6755/// Merging redundant sexts when one is dominating the other.
6756bool CodeGenPrepare::mergeSExts(Function &F) {
6757 bool Changed = false;
6758 for (auto &Entry : ValToSExtendedUses) {
6759 SExts &Insts = Entry.second;
6760 SExts CurPts;
6761 for (Instruction *Inst : Insts) {
6762 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6763 Inst->getOperand(0) != Entry.first)
6764 continue;
6765 bool inserted = false;
6766 for (auto &Pt : CurPts) {
6767 if (getDT(F).dominates(Inst, Pt)) {
6768 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6769 RemovedInsts.insert(Pt);
6770 Pt->removeFromParent();
6771 Pt = Inst;
6772 inserted = true;
6773 Changed = true;
6774 break;
6775 }
6776 if (!getDT(F).dominates(Pt, Inst))
6777 // Give up if we need to merge in a common dominator as the
6778 // experiments show it is not profitable.
6779 continue;
6780 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6781 RemovedInsts.insert(Inst);
6782 Inst->removeFromParent();
6783 inserted = true;
6784 Changed = true;
6785 break;
6786 }
6787 if (!inserted)
6788 CurPts.push_back(Inst);
6789 }
6790 }
6791 return Changed;
6792}
6793
6794// Splitting large data structures so that the GEPs accessing them can have
6795// smaller offsets so that they can be sunk to the same blocks as their users.
6796// For example, a large struct starting from %base is split into two parts
6797// where the second part starts from %new_base.
6798//
6799// Before:
6800// BB0:
6801// %base =
6802//
6803// BB1:
6804// %gep0 = gep %base, off0
6805// %gep1 = gep %base, off1
6806// %gep2 = gep %base, off2
6807//
6808// BB2:
6809// %load1 = load %gep0
6810// %load2 = load %gep1
6811// %load3 = load %gep2
6812//
6813// After:
6814// BB0:
6815// %base =
6816// %new_base = gep %base, off0
6817//
6818// BB1:
6819// %new_gep0 = %new_base
6820// %new_gep1 = gep %new_base, off1 - off0
6821// %new_gep2 = gep %new_base, off2 - off0
6822//
6823// BB2:
6824// %load1 = load i32, i32* %new_gep0
6825// %load2 = load i32, i32* %new_gep1
6826// %load3 = load i32, i32* %new_gep2
6827//
6828// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6829// their offsets are smaller enough to fit into the addressing mode.
6830bool CodeGenPrepare::splitLargeGEPOffsets() {
6831 bool Changed = false;
6832 for (auto &Entry : LargeOffsetGEPMap) {
6833 Value *OldBase = Entry.first;
6834 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6835 &LargeOffsetGEPs = Entry.second;
6836 auto compareGEPOffset =
6837 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6838 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6839 if (LHS.first == RHS.first)
6840 return false;
6841 if (LHS.second != RHS.second)
6842 return LHS.second < RHS.second;
6843 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6844 };
6845 // Sorting all the GEPs of the same data structures based on the offsets.
6846 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6847 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end());
6848 // Skip if all the GEPs have the same offsets.
6849 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6850 continue;
6851 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6852 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6853 Value *NewBaseGEP = nullptr;
6854
6855 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase,
6856 GetElementPtrInst *GEP) {
6857 LLVMContext &Ctx = GEP->getContext();
6858 Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6859 Type *I8PtrTy =
6860 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace());
6861
6862 BasicBlock::iterator NewBaseInsertPt;
6863 BasicBlock *NewBaseInsertBB;
6864 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6865 // If the base of the struct is an instruction, the new base will be
6866 // inserted close to it.
6867 NewBaseInsertBB = BaseI->getParent();
6868 if (isa<PHINode>(BaseI))
6869 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6870 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6871 NewBaseInsertBB =
6872 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6873 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6874 } else
6875 NewBaseInsertPt = std::next(BaseI->getIterator());
6876 } else {
6877 // If the current base is an argument or global value, the new base
6878 // will be inserted to the entry block.
6879 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6880 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6881 }
6882 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6883 // Create a new base.
6884 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6885 NewBaseGEP = OldBase;
6886 if (NewBaseGEP->getType() != I8PtrTy)
6887 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6888 NewBaseGEP =
6889 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep");
6890 NewGEPBases.insert(NewBaseGEP);
6891 return;
6892 };
6893
6894 // Check whether all the offsets can be encoded with prefered common base.
6895 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset(
6896 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) {
6897 BaseOffset = PreferBase;
6898 // Create a new base if the offset of the BaseGEP can be decoded with one
6899 // instruction.
6900 createNewBase(BaseOffset, OldBase, BaseGEP);
6901 }
6902
6903 auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6904 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6905 GetElementPtrInst *GEP = LargeOffsetGEP->first;
6906 int64_t Offset = LargeOffsetGEP->second;
6907 if (Offset != BaseOffset) {
6908 TargetLowering::AddrMode AddrMode;
6909 AddrMode.HasBaseReg = true;
6910 AddrMode.BaseOffs = Offset - BaseOffset;
6911 // The result type of the GEP might not be the type of the memory
6912 // access.
6913 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6914 GEP->getResultElementType(),
6915 GEP->getAddressSpace())) {
6916 // We need to create a new base if the offset to the current base is
6917 // too large to fit into the addressing mode. So, a very large struct
6918 // may be split into several parts.
6919 BaseGEP = GEP;
6920 BaseOffset = Offset;
6921 NewBaseGEP = nullptr;
6922 }
6923 }
6924
6925 // Generate a new GEP to replace the current one.
6926 Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6927
6928 if (!NewBaseGEP) {
6929 // Create a new base if we don't have one yet. Find the insertion
6930 // pointer for the new base first.
6931 createNewBase(BaseOffset, OldBase, GEP);
6932 }
6933
6934 IRBuilder<> Builder(GEP);
6935 Value *NewGEP = NewBaseGEP;
6936 if (Offset != BaseOffset) {
6937 // Calculate the new offset for the new GEP.
6938 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6939 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index);
6940 }
6941 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6942 LargeOffsetGEPID.erase(GEP);
6943 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6944 GEP->eraseFromParent();
6945 Changed = true;
6946 }
6947 }
6948 return Changed;
6949}
6950
6951bool CodeGenPrepare::optimizePhiType(
6952 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6953 SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6954 // We are looking for a collection on interconnected phi nodes that together
6955 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6956 // are of the same type. Convert the whole set of nodes to the type of the
6957 // bitcast.
6958 Type *PhiTy = I->getType();
6959 Type *ConvertTy = nullptr;
6960 if (Visited.count(I) ||
6961 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6962 return false;
6963
6964 SmallVector<Instruction *, 4> Worklist;
6965 Worklist.push_back(cast<Instruction>(I));
6966 SmallPtrSet<PHINode *, 4> PhiNodes;
6967 SmallPtrSet<ConstantData *, 4> Constants;
6968 PhiNodes.insert(I);
6969 Visited.insert(I);
6970 SmallPtrSet<Instruction *, 4> Defs;
6971 SmallPtrSet<Instruction *, 4> Uses;
6972 // This works by adding extra bitcasts between load/stores and removing
6973 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6974 // we can get in the situation where we remove a bitcast in one iteration
6975 // just to add it again in the next. We need to ensure that at least one
6976 // bitcast we remove are anchored to something that will not change back.
6977 bool AnyAnchored = false;
6978
6979 while (!Worklist.empty()) {
6980 Instruction *II = Worklist.pop_back_val();
6981
6982 if (auto *Phi = dyn_cast<PHINode>(II)) {
6983 // Handle Defs, which might also be PHI's
6984 for (Value *V : Phi->incoming_values()) {
6985 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6986 if (!PhiNodes.count(OpPhi)) {
6987 if (!Visited.insert(OpPhi).second)
6988 return false;
6989 PhiNodes.insert(OpPhi);
6990 Worklist.push_back(OpPhi);
6991 }
6992 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6993 if (!OpLoad->isSimple())
6994 return false;
6995 if (Defs.insert(OpLoad).second)
6996 Worklist.push_back(OpLoad);
6997 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6998 if (Defs.insert(OpEx).second)
6999 Worklist.push_back(OpEx);
7000 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
7001 if (!ConvertTy)
7002 ConvertTy = OpBC->getOperand(0)->getType();
7003 if (OpBC->getOperand(0)->getType() != ConvertTy)
7004 return false;
7005 if (Defs.insert(OpBC).second) {
7006 Worklist.push_back(OpBC);
7007 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
7008 !isa<ExtractElementInst>(OpBC->getOperand(0));
7009 }
7010 } else if (auto *OpC = dyn_cast<ConstantData>(V))
7011 Constants.insert(OpC);
7012 else
7013 return false;
7014 }
7015 }
7016
7017 // Handle uses which might also be phi's
7018 for (User *V : II->users()) {
7019 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
7020 if (!PhiNodes.count(OpPhi)) {
7021 if (Visited.count(OpPhi))
7022 return false;
7023 PhiNodes.insert(OpPhi);
7024 Visited.insert(OpPhi);
7025 Worklist.push_back(OpPhi);
7026 }
7027 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
7028 if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
7029 return false;
7030 Uses.insert(OpStore);
7031 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
7032 if (!ConvertTy)
7033 ConvertTy = OpBC->getType();
7034 if (OpBC->getType() != ConvertTy)
7035 return false;
7036 Uses.insert(OpBC);
7037 AnyAnchored |=
7038 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
7039 } else {
7040 return false;
7041 }
7042 }
7043 }
7044
7045 if (!ConvertTy || !AnyAnchored ||
7046 !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
7047 return false;
7048
7049 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to "
7050 << *ConvertTy << "\n");
7051
7052 // Create all the new phi nodes of the new type, and bitcast any loads to the
7053 // correct type.
7054 ValueToValueMap ValMap;
7055 for (ConstantData *C : Constants)
7056 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy);
7057 for (Instruction *D : Defs) {
7058 if (isa<BitCastInst>(D)) {
7059 ValMap[D] = D->getOperand(0);
7060 DeletedInstrs.insert(D);
7061 } else {
7062 BasicBlock::iterator insertPt = std::next(D->getIterator());
7063 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt);
7064 }
7065 }
7066 for (PHINode *Phi : PhiNodes)
7067 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
7068 Phi->getName() + ".tc", Phi->getIterator());
7069 // Pipe together all the PhiNodes.
7070 for (PHINode *Phi : PhiNodes) {
7071 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
7072 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
7073 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
7074 Phi->getIncomingBlock(i));
7075 Visited.insert(NewPhi);
7076 }
7077 // And finally pipe up the stores and bitcasts
7078 for (Instruction *U : Uses) {
7079 if (isa<BitCastInst>(U)) {
7080 DeletedInstrs.insert(U);
7081 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
7082 } else {
7083 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc",
7084 U->getIterator()));
7085 }
7086 }
7087
7088 // Save the removed phis to be deleted later.
7089 DeletedInstrs.insert_range(PhiNodes);
7090 return true;
7091}
7092
7093bool CodeGenPrepare::optimizePhiTypes(Function &F) {
7094 if (!OptimizePhiTypes)
7095 return false;
7096
7097 bool Changed = false;
7098 SmallPtrSet<PHINode *, 4> Visited;
7099 SmallPtrSet<Instruction *, 4> DeletedInstrs;
7100
7101 // Attempt to optimize all the phis in the functions to the correct type.
7102 for (auto &BB : F)
7103 for (auto &Phi : BB.phis())
7104 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
7105
7106 // Remove any old phi's that have been converted.
7107 for (auto *I : DeletedInstrs) {
7108 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
7109 I->eraseFromParent();
7110 }
7111
7112 return Changed;
7113}
7114
7115/// Return true, if an ext(load) can be formed from an extension in
7116/// \p MovedExts.
7117bool CodeGenPrepare::canFormExtLd(
7118 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
7119 Instruction *&Inst, bool HasPromoted) {
7120 for (auto *MovedExtInst : MovedExts) {
7121 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
7122 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
7123 Inst = MovedExtInst;
7124 break;
7125 }
7126 }
7127 if (!LI)
7128 return false;
7129
7130 // If they're already in the same block, there's nothing to do.
7131 // Make the cheap checks first if we did not promote.
7132 // If we promoted, we need to check if it is indeed profitable.
7133 if (!HasPromoted && LI->getParent() == Inst->getParent())
7134 return false;
7135
7136 return TLI->isExtLoad(LI, Inst, *DL);
7137}
7138
7139/// Move a zext or sext fed by a load into the same basic block as the load,
7140/// unless conditions are unfavorable. This allows SelectionDAG to fold the
7141/// extend into the load.
7142///
7143/// E.g.,
7144/// \code
7145/// %ld = load i32* %addr
7146/// %add = add nuw i32 %ld, 4
7147/// %zext = zext i32 %add to i64
7148// \endcode
7149/// =>
7150/// \code
7151/// %ld = load i32* %addr
7152/// %zext = zext i32 %ld to i64
7153/// %add = add nuw i64 %zext, 4
7154/// \encode
7155/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
7156/// allow us to match zext(load i32*) to i64.
7157///
7158/// Also, try to promote the computations used to obtain a sign extended
7159/// value used into memory accesses.
7160/// E.g.,
7161/// \code
7162/// a = add nsw i32 b, 3
7163/// d = sext i32 a to i64
7164/// e = getelementptr ..., i64 d
7165/// \endcode
7166/// =>
7167/// \code
7168/// f = sext i32 b to i64
7169/// a = add nsw i64 f, 3
7170/// e = getelementptr ..., i64 a
7171/// \endcode
7172///
7173/// \p Inst[in/out] the extension may be modified during the process if some
7174/// promotions apply.
7175bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
7176 bool AllowPromotionWithoutCommonHeader = false;
7177 /// See if it is an interesting sext operations for the address type
7178 /// promotion before trying to promote it, e.g., the ones with the right
7179 /// type and used in memory accesses.
7180 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
7181 *Inst, AllowPromotionWithoutCommonHeader);
7182 TypePromotionTransaction TPT(RemovedInsts);
7183 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
7184 TPT.getRestorationPoint();
7186 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
7187 Exts.push_back(Inst);
7188
7189 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
7190
7191 // Look for a load being extended.
7192 LoadInst *LI = nullptr;
7193 Instruction *ExtFedByLoad;
7194
7195 // Try to promote a chain of computation if it allows to form an extended
7196 // load.
7197 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
7198 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
7199 TPT.commit();
7200 // Move the extend into the same block as the load.
7201 ExtFedByLoad->moveAfter(LI);
7202 ++NumExtsMoved;
7203 Inst = ExtFedByLoad;
7204 return true;
7205 }
7206
7207 // Continue promoting SExts if known as considerable depending on targets.
7208 if (ATPConsiderable &&
7209 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
7210 HasPromoted, TPT, SpeculativelyMovedExts))
7211 return true;
7212
7213 TPT.rollback(LastKnownGood);
7214 return false;
7215}
7216
7217// Perform address type promotion if doing so is profitable.
7218// If AllowPromotionWithoutCommonHeader == false, we should find other sext
7219// instructions that sign extended the same initial value. However, if
7220// AllowPromotionWithoutCommonHeader == true, we expect promoting the
7221// extension is just profitable.
7222bool CodeGenPrepare::performAddressTypePromotion(
7223 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
7224 bool HasPromoted, TypePromotionTransaction &TPT,
7225 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
7226 bool Promoted = false;
7227 SmallPtrSet<Instruction *, 1> UnhandledExts;
7228 bool AllSeenFirst = true;
7229 for (auto *I : SpeculativelyMovedExts) {
7230 Value *HeadOfChain = I->getOperand(0);
7231 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
7232 SeenChainsForSExt.find(HeadOfChain);
7233 // If there is an unhandled SExt which has the same header, try to promote
7234 // it as well.
7235 if (AlreadySeen != SeenChainsForSExt.end()) {
7236 if (AlreadySeen->second != nullptr)
7237 UnhandledExts.insert(AlreadySeen->second);
7238 AllSeenFirst = false;
7239 }
7240 }
7241
7242 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
7243 SpeculativelyMovedExts.size() == 1)) {
7244 TPT.commit();
7245 if (HasPromoted)
7246 Promoted = true;
7247 for (auto *I : SpeculativelyMovedExts) {
7248 Value *HeadOfChain = I->getOperand(0);
7249 SeenChainsForSExt[HeadOfChain] = nullptr;
7250 ValToSExtendedUses[HeadOfChain].push_back(I);
7251 }
7252 // Update Inst as promotion happen.
7253 Inst = SpeculativelyMovedExts.pop_back_val();
7254 } else {
7255 // This is the first chain visited from the header, keep the current chain
7256 // as unhandled. Defer to promote this until we encounter another SExt
7257 // chain derived from the same header.
7258 for (auto *I : SpeculativelyMovedExts) {
7259 Value *HeadOfChain = I->getOperand(0);
7260 SeenChainsForSExt[HeadOfChain] = Inst;
7261 }
7262 return false;
7263 }
7264
7265 if (!AllSeenFirst && !UnhandledExts.empty())
7266 for (auto *VisitedSExt : UnhandledExts) {
7267 if (RemovedInsts.count(VisitedSExt))
7268 continue;
7269 TypePromotionTransaction TPT(RemovedInsts);
7271 SmallVector<Instruction *, 2> Chains;
7272 Exts.push_back(VisitedSExt);
7273 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
7274 TPT.commit();
7275 if (HasPromoted)
7276 Promoted = true;
7277 for (auto *I : Chains) {
7278 Value *HeadOfChain = I->getOperand(0);
7279 // Mark this as handled.
7280 SeenChainsForSExt[HeadOfChain] = nullptr;
7281 ValToSExtendedUses[HeadOfChain].push_back(I);
7282 }
7283 }
7284 return Promoted;
7285}
7286
7287bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
7288 BasicBlock *DefBB = I->getParent();
7289
7290 // If the result of a {s|z}ext and its source are both live out, rewrite all
7291 // other uses of the source with result of extension.
7292 Value *Src = I->getOperand(0);
7293 if (Src->hasOneUse())
7294 return false;
7295
7296 // Only do this xform if truncating is free.
7297 if (!TLI->isTruncateFree(I->getType(), Src->getType()))
7298 return false;
7299
7300 // Only safe to perform the optimization if the source is also defined in
7301 // this block.
7302 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
7303 return false;
7304
7305 bool DefIsLiveOut = false;
7306 for (User *U : I->users()) {
7308
7309 // Figure out which BB this ext is used in.
7310 BasicBlock *UserBB = UI->getParent();
7311 if (UserBB == DefBB)
7312 continue;
7313 DefIsLiveOut = true;
7314 break;
7315 }
7316 if (!DefIsLiveOut)
7317 return false;
7318
7319 // Make sure none of the uses are PHI nodes.
7320 for (User *U : Src->users()) {
7322 BasicBlock *UserBB = UI->getParent();
7323 if (UserBB == DefBB)
7324 continue;
7325 // Be conservative. We don't want this xform to end up introducing
7326 // reloads just before load / store instructions.
7327 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
7328 return false;
7329 }
7330
7331 // InsertedTruncs - Only insert one trunc in each block once.
7332 DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
7333
7334 bool MadeChange = false;
7335 for (Use &U : Src->uses()) {
7336 Instruction *User = cast<Instruction>(U.getUser());
7337
7338 // Figure out which BB this ext is used in.
7339 BasicBlock *UserBB = User->getParent();
7340 if (UserBB == DefBB)
7341 continue;
7342
7343 // Both src and def are live in this block. Rewrite the use.
7344 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
7345
7346 if (!InsertedTrunc) {
7347 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
7348 assert(InsertPt != UserBB->end());
7349 InsertedTrunc = new TruncInst(I, Src->getType(), "");
7350 InsertedTrunc->insertBefore(*UserBB, InsertPt);
7351 InsertedInsts.insert(InsertedTrunc);
7352 }
7353
7354 // Replace a use of the {s|z}ext source with a use of the result.
7355 U = InsertedTrunc;
7356 ++NumExtUses;
7357 MadeChange = true;
7358 }
7359
7360 return MadeChange;
7361}
7362
7363// Find loads whose uses only use some of the loaded value's bits. Add an "and"
7364// just after the load if the target can fold this into one extload instruction,
7365// with the hope of eliminating some of the other later "and" instructions using
7366// the loaded value. "and"s that are made trivially redundant by the insertion
7367// of the new "and" are removed by this function, while others (e.g. those whose
7368// path from the load goes through a phi) are left for isel to potentially
7369// remove.
7370//
7371// For example:
7372//
7373// b0:
7374// x = load i32
7375// ...
7376// b1:
7377// y = and x, 0xff
7378// z = use y
7379//
7380// becomes:
7381//
7382// b0:
7383// x = load i32
7384// x' = and x, 0xff
7385// ...
7386// b1:
7387// z = use x'
7388//
7389// whereas:
7390//
7391// b0:
7392// x1 = load i32
7393// ...
7394// b1:
7395// x2 = load i32
7396// ...
7397// b2:
7398// x = phi x1, x2
7399// y = and x, 0xff
7400//
7401// becomes (after a call to optimizeLoadExt for each load):
7402//
7403// b0:
7404// x1 = load i32
7405// x1' = and x1, 0xff
7406// ...
7407// b1:
7408// x2 = load i32
7409// x2' = and x2, 0xff
7410// ...
7411// b2:
7412// x = phi x1', x2'
7413// y = and x, 0xff
7414bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
7415 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
7416 return false;
7417
7418 // Skip loads we've already transformed.
7419 if (Load->hasOneUse() &&
7420 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
7421 return false;
7422
7423 // Look at all uses of Load, looking through phis, to determine how many bits
7424 // of the loaded value are needed.
7425 SmallVector<Instruction *, 8> WorkList;
7426 SmallPtrSet<Instruction *, 16> Visited;
7427 SmallVector<Instruction *, 8> AndsToMaybeRemove;
7428 SmallVector<Instruction *, 8> DropFlags;
7429 for (auto *U : Load->users())
7430 WorkList.push_back(cast<Instruction>(U));
7431
7432 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
7433 unsigned BitWidth = LoadResultVT.getSizeInBits();
7434 // If the BitWidth is 0, do not try to optimize the type
7435 if (BitWidth == 0)
7436 return false;
7437
7438 APInt DemandBits(BitWidth, 0);
7439 APInt WidestAndBits(BitWidth, 0);
7440
7441 while (!WorkList.empty()) {
7442 Instruction *I = WorkList.pop_back_val();
7443
7444 // Break use-def graph loops.
7445 if (!Visited.insert(I).second)
7446 continue;
7447
7448 // For a PHI node, push all of its users.
7449 if (auto *Phi = dyn_cast<PHINode>(I)) {
7450 for (auto *U : Phi->users())
7451 WorkList.push_back(cast<Instruction>(U));
7452 continue;
7453 }
7454
7455 switch (I->getOpcode()) {
7456 case Instruction::And: {
7457 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
7458 if (!AndC)
7459 return false;
7460 APInt AndBits = AndC->getValue();
7461 DemandBits |= AndBits;
7462 // Keep track of the widest and mask we see.
7463 if (AndBits.ugt(WidestAndBits))
7464 WidestAndBits = AndBits;
7465 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
7466 AndsToMaybeRemove.push_back(I);
7467 break;
7468 }
7469
7470 case Instruction::Shl: {
7471 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
7472 if (!ShlC)
7473 return false;
7474 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
7475 DemandBits.setLowBits(BitWidth - ShiftAmt);
7476 DropFlags.push_back(I);
7477 break;
7478 }
7479
7480 case Instruction::Trunc: {
7481 EVT TruncVT = TLI->getValueType(*DL, I->getType());
7482 unsigned TruncBitWidth = TruncVT.getSizeInBits();
7483 DemandBits.setLowBits(TruncBitWidth);
7484 DropFlags.push_back(I);
7485 break;
7486 }
7487
7488 default:
7489 return false;
7490 }
7491 }
7492
7493 uint32_t ActiveBits = DemandBits.getActiveBits();
7494 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
7495 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
7496 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
7497 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
7498 // followed by an AND.
7499 // TODO: Look into removing this restriction by fixing backends to either
7500 // return false for isLoadExtLegal for i1 or have them select this pattern to
7501 // a single instruction.
7502 //
7503 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
7504 // mask, since these are the only ands that will be removed by isel.
7505 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
7506 WidestAndBits != DemandBits)
7507 return false;
7508
7509 LLVMContext &Ctx = Load->getType()->getContext();
7510 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
7511 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
7512
7513 // Reject cases that won't be matched as extloads.
7514 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
7515 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
7516 return false;
7517
7518 IRBuilder<> Builder(Load->getNextNode());
7519 auto *NewAnd = cast<Instruction>(
7520 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
7521 // Mark this instruction as "inserted by CGP", so that other
7522 // optimizations don't touch it.
7523 InsertedInsts.insert(NewAnd);
7524
7525 // Replace all uses of load with new and (except for the use of load in the
7526 // new and itself).
7527 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
7528 NewAnd->setOperand(0, Load);
7529
7530 // Remove any and instructions that are now redundant.
7531 for (auto *And : AndsToMaybeRemove)
7532 // Check that the and mask is the same as the one we decided to put on the
7533 // new and.
7534 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
7535 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
7536 if (&*CurInstIterator == And)
7537 CurInstIterator = std::next(And->getIterator());
7538 And->eraseFromParent();
7539 ++NumAndUses;
7540 }
7541
7542 // NSW flags may not longer hold.
7543 for (auto *Inst : DropFlags)
7544 Inst->setHasNoSignedWrap(false);
7545
7546 ++NumAndsAdded;
7547 return true;
7548}
7549
7550/// Check if V (an operand of a select instruction) is an expensive instruction
7551/// that is only used once.
7553 auto *I = dyn_cast<Instruction>(V);
7554 // If it's safe to speculatively execute, then it should not have side
7555 // effects; therefore, it's safe to sink and possibly *not* execute.
7556 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
7557 TTI->isExpensiveToSpeculativelyExecute(I);
7558}
7559
7560/// Returns true if a SelectInst should be turned into an explicit branch.
7562 const TargetLowering *TLI,
7563 SelectInst *SI) {
7564 // If even a predictable select is cheap, then a branch can't be cheaper.
7565 if (!TLI->isPredictableSelectExpensive())
7566 return false;
7567
7568 // FIXME: This should use the same heuristics as IfConversion to determine
7569 // whether a select is better represented as a branch.
7570
7571 // If metadata tells us that the select condition is obviously predictable,
7572 // then we want to replace the select with a branch.
7573 uint64_t TrueWeight, FalseWeight;
7574 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
7575 uint64_t Max = std::max(TrueWeight, FalseWeight);
7576 uint64_t Sum = TrueWeight + FalseWeight;
7577 if (Sum != 0) {
7578 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
7579 if (Probability > TTI->getPredictableBranchThreshold())
7580 return true;
7581 }
7582 }
7583
7584 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
7585
7586 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
7587 // comparison condition. If the compare has more than one use, there's
7588 // probably another cmov or setcc around, so it's not worth emitting a branch.
7589 if (!Cmp || !Cmp->hasOneUse())
7590 return false;
7591
7592 // If either operand of the select is expensive and only needed on one side
7593 // of the select, we should form a branch.
7594 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
7595 sinkSelectOperand(TTI, SI->getFalseValue()))
7596 return true;
7597
7598 return false;
7599}
7600
7601/// If \p isTrue is true, return the true value of \p SI, otherwise return
7602/// false value of \p SI. If the true/false value of \p SI is defined by any
7603/// select instructions in \p Selects, look through the defining select
7604/// instruction until the true/false value is not defined in \p Selects.
7605static Value *
7607 const SmallPtrSet<const Instruction *, 2> &Selects) {
7608 Value *V = nullptr;
7609
7610 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
7611 DefSI = dyn_cast<SelectInst>(V)) {
7612 assert(DefSI->getCondition() == SI->getCondition() &&
7613 "The condition of DefSI does not match with SI");
7614 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
7615 }
7616
7617 assert(V && "Failed to get select true/false value");
7618 return V;
7619}
7620
7621bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
7622 assert(Shift->isShift() && "Expected a shift");
7623
7624 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
7625 // general vector shifts, and (3) the shift amount is a select-of-splatted
7626 // values, hoist the shifts before the select:
7627 // shift Op0, (select Cond, TVal, FVal) -->
7628 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
7629 //
7630 // This is inverting a generic IR transform when we know that the cost of a
7631 // general vector shift is more than the cost of 2 shift-by-scalars.
7632 // We can't do this effectively in SDAG because we may not be able to
7633 // determine if the select operands are splats from within a basic block.
7634 Type *Ty = Shift->getType();
7635 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty))
7636 return false;
7637 Value *Cond, *TVal, *FVal;
7638 if (!match(Shift->getOperand(1),
7639 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7640 return false;
7641 if (!isSplatValue(TVal) || !isSplatValue(FVal))
7642 return false;
7643
7644 IRBuilder<> Builder(Shift);
7645 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
7646 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
7647 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
7648 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7649 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
7650 Shift->eraseFromParent();
7651 return true;
7652}
7653
7654bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
7655 Intrinsic::ID Opcode = Fsh->getIntrinsicID();
7656 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
7657 "Expected a funnel shift");
7658
7659 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
7660 // than general vector shifts, and (3) the shift amount is select-of-splatted
7661 // values, hoist the funnel shifts before the select:
7662 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
7663 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
7664 //
7665 // This is inverting a generic IR transform when we know that the cost of a
7666 // general vector shift is more than the cost of 2 shift-by-scalars.
7667 // We can't do this effectively in SDAG because we may not be able to
7668 // determine if the select operands are splats from within a basic block.
7669 Type *Ty = Fsh->getType();
7670 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty))
7671 return false;
7672 Value *Cond, *TVal, *FVal;
7673 if (!match(Fsh->getOperand(2),
7674 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7675 return false;
7676 if (!isSplatValue(TVal) || !isSplatValue(FVal))
7677 return false;
7678
7679 IRBuilder<> Builder(Fsh);
7680 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
7681 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
7682 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
7683 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7684 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
7685 Fsh->eraseFromParent();
7686 return true;
7687}
7688
7689/// If we have a SelectInst that will likely profit from branch prediction,
7690/// turn it into a branch.
7691bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
7693 return false;
7694
7695 // If the SelectOptimize pass is enabled, selects have already been optimized.
7697 return false;
7698
7699 // Find all consecutive select instructions that share the same condition.
7701 ASI.push_back(SI);
7703 It != SI->getParent()->end(); ++It) {
7704 SelectInst *I = dyn_cast<SelectInst>(&*It);
7705 if (I && SI->getCondition() == I->getCondition()) {
7706 ASI.push_back(I);
7707 } else {
7708 break;
7709 }
7710 }
7711
7712 SelectInst *LastSI = ASI.back();
7713 // Increment the current iterator to skip all the rest of select instructions
7714 // because they will be either "not lowered" or "all lowered" to branch.
7715 CurInstIterator = std::next(LastSI->getIterator());
7716 // Examine debug-info attached to the consecutive select instructions. They
7717 // won't be individually optimised by optimizeInst, so we need to perform
7718 // DbgVariableRecord maintenence here instead.
7719 for (SelectInst *SI : ArrayRef(ASI).drop_front())
7720 fixupDbgVariableRecordsOnInst(*SI);
7721
7722 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
7723
7724 // Can we convert the 'select' to CF ?
7725 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
7726 return false;
7727
7728 TargetLowering::SelectSupportKind SelectKind;
7729 if (SI->getType()->isVectorTy())
7730 SelectKind = TargetLowering::ScalarCondVectorVal;
7731 else
7732 SelectKind = TargetLowering::ScalarValSelect;
7733
7734 if (TLI->isSelectSupported(SelectKind) &&
7736 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
7737 return false;
7738
7739 // The DominatorTree needs to be rebuilt by any consumers after this
7740 // transformation. We simply reset here rather than setting the ModifiedDT
7741 // flag to avoid restarting the function walk in runOnFunction for each
7742 // select optimized.
7743 DT.reset();
7744
7745 // Transform a sequence like this:
7746 // start:
7747 // %cmp = cmp uge i32 %a, %b
7748 // %sel = select i1 %cmp, i32 %c, i32 %d
7749 //
7750 // Into:
7751 // start:
7752 // %cmp = cmp uge i32 %a, %b
7753 // %cmp.frozen = freeze %cmp
7754 // br i1 %cmp.frozen, label %select.true, label %select.false
7755 // select.true:
7756 // br label %select.end
7757 // select.false:
7758 // br label %select.end
7759 // select.end:
7760 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7761 //
7762 // %cmp should be frozen, otherwise it may introduce undefined behavior.
7763 // In addition, we may sink instructions that produce %c or %d from
7764 // the entry block into the destination(s) of the new branch.
7765 // If the true or false blocks do not contain a sunken instruction, that
7766 // block and its branch may be optimized away. In that case, one side of the
7767 // first branch will point directly to select.end, and the corresponding PHI
7768 // predecessor block will be the start block.
7769
7770 // Collect values that go on the true side and the values that go on the false
7771 // side.
7772 SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7773 for (SelectInst *SI : ASI) {
7774 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7775 TrueInstrs.push_back(cast<Instruction>(V));
7776 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7777 FalseInstrs.push_back(cast<Instruction>(V));
7778 }
7779
7780 // Split the select block, according to how many (if any) values go on each
7781 // side.
7782 BasicBlock *StartBlock = SI->getParent();
7783 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI));
7784 // We should split before any debug-info.
7785 SplitPt.setHeadBit(true);
7786
7787 IRBuilder<> IB(SI);
7788 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7789
7790 BasicBlock *TrueBlock = nullptr;
7791 BasicBlock *FalseBlock = nullptr;
7792 BasicBlock *EndBlock = nullptr;
7793 BranchInst *TrueBranch = nullptr;
7794 BranchInst *FalseBranch = nullptr;
7795 if (TrueInstrs.size() == 0) {
7797 CondFr, SplitPt, false, nullptr, nullptr, LI));
7798 FalseBlock = FalseBranch->getParent();
7799 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7800 } else if (FalseInstrs.size() == 0) {
7802 CondFr, SplitPt, false, nullptr, nullptr, LI));
7803 TrueBlock = TrueBranch->getParent();
7804 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7805 } else {
7806 Instruction *ThenTerm = nullptr;
7807 Instruction *ElseTerm = nullptr;
7808 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm,
7809 nullptr, nullptr, LI);
7810 TrueBranch = cast<BranchInst>(ThenTerm);
7811 FalseBranch = cast<BranchInst>(ElseTerm);
7812 TrueBlock = TrueBranch->getParent();
7813 FalseBlock = FalseBranch->getParent();
7814 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7815 }
7816
7817 EndBlock->setName("select.end");
7818 if (TrueBlock)
7819 TrueBlock->setName("select.true.sink");
7820 if (FalseBlock)
7821 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7822 : "select.false.sink");
7823
7824 if (IsHugeFunc) {
7825 if (TrueBlock)
7826 FreshBBs.insert(TrueBlock);
7827 if (FalseBlock)
7828 FreshBBs.insert(FalseBlock);
7829 FreshBBs.insert(EndBlock);
7830 }
7831
7832 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
7833
7834 static const unsigned MD[] = {
7835 LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7836 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7837 StartBlock->getTerminator()->copyMetadata(*SI, MD);
7838
7839 // Sink expensive instructions into the conditional blocks to avoid executing
7840 // them speculatively.
7841 for (Instruction *I : TrueInstrs)
7842 I->moveBefore(TrueBranch->getIterator());
7843 for (Instruction *I : FalseInstrs)
7844 I->moveBefore(FalseBranch->getIterator());
7845
7846 // If we did not create a new block for one of the 'true' or 'false' paths
7847 // of the condition, it means that side of the branch goes to the end block
7848 // directly and the path originates from the start block from the point of
7849 // view of the new PHI.
7850 if (TrueBlock == nullptr)
7851 TrueBlock = StartBlock;
7852 else if (FalseBlock == nullptr)
7853 FalseBlock = StartBlock;
7854
7855 SmallPtrSet<const Instruction *, 2> INS(llvm::from_range, ASI);
7856 // Use reverse iterator because later select may use the value of the
7857 // earlier select, and we need to propagate value through earlier select
7858 // to get the PHI operand.
7859 for (SelectInst *SI : llvm::reverse(ASI)) {
7860 // The select itself is replaced with a PHI Node.
7861 PHINode *PN = PHINode::Create(SI->getType(), 2, "");
7862 PN->insertBefore(EndBlock->begin());
7863 PN->takeName(SI);
7864 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7865 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7866 PN->setDebugLoc(SI->getDebugLoc());
7867
7868 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7869 SI->eraseFromParent();
7870 INS.erase(SI);
7871 ++NumSelectsExpanded;
7872 }
7873
7874 // Instruct OptimizeBlock to skip to the next block.
7875 CurInstIterator = StartBlock->end();
7876 return true;
7877}
7878
7879/// Some targets only accept certain types for splat inputs. For example a VDUP
7880/// in MVE takes a GPR (integer) register, and the instruction that incorporate
7881/// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7882bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7883 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7885 m_Undef(), m_ZeroMask())))
7886 return false;
7887 Type *NewType = TLI->shouldConvertSplatType(SVI);
7888 if (!NewType)
7889 return false;
7890
7891 auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7892 assert(!NewType->isVectorTy() && "Expected a scalar type!");
7893 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7894 "Expected a type of the same size!");
7895 auto *NewVecType =
7896 FixedVectorType::get(NewType, SVIVecType->getNumElements());
7897
7898 // Create a bitcast (shuffle (insert (bitcast(..))))
7899 IRBuilder<> Builder(SVI->getContext());
7900 Builder.SetInsertPoint(SVI);
7901 Value *BC1 = Builder.CreateBitCast(
7902 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7903 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7904 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7905
7906 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7908 SVI, TLInfo, nullptr,
7909 [&](Value *V) { removeAllAssertingVHReferences(V); });
7910
7911 // Also hoist the bitcast up to its operand if it they are not in the same
7912 // block.
7913 if (auto *BCI = dyn_cast<Instruction>(BC1))
7914 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7915 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7916 !Op->isTerminator() && !Op->isEHPad())
7917 BCI->moveAfter(Op);
7918
7919 return true;
7920}
7921
7922bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7923 // If the operands of I can be folded into a target instruction together with
7924 // I, duplicate and sink them.
7925 SmallVector<Use *, 4> OpsToSink;
7926 if (!TTI->isProfitableToSinkOperands(I, OpsToSink))
7927 return false;
7928
7929 // OpsToSink can contain multiple uses in a use chain (e.g.
7930 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7931 // uses must come first, so we process the ops in reverse order so as to not
7932 // create invalid IR.
7933 BasicBlock *TargetBB = I->getParent();
7934 bool Changed = false;
7935 SmallVector<Use *, 4> ToReplace;
7936 Instruction *InsertPoint = I;
7937 DenseMap<const Instruction *, unsigned long> InstOrdering;
7938 unsigned long InstNumber = 0;
7939 for (const auto &I : *TargetBB)
7940 InstOrdering[&I] = InstNumber++;
7941
7942 for (Use *U : reverse(OpsToSink)) {
7943 auto *UI = cast<Instruction>(U->get());
7944 if (isa<PHINode>(UI))
7945 continue;
7946 if (UI->getParent() == TargetBB) {
7947 if (InstOrdering[UI] < InstOrdering[InsertPoint])
7948 InsertPoint = UI;
7949 continue;
7950 }
7951 ToReplace.push_back(U);
7952 }
7953
7954 SetVector<Instruction *> MaybeDead;
7955 DenseMap<Instruction *, Instruction *> NewInstructions;
7956 for (Use *U : ToReplace) {
7957 auto *UI = cast<Instruction>(U->get());
7958 Instruction *NI = UI->clone();
7959
7960 if (IsHugeFunc) {
7961 // Now we clone an instruction, its operands' defs may sink to this BB
7962 // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7963 for (Value *Op : NI->operands())
7964 if (auto *OpDef = dyn_cast<Instruction>(Op))
7965 FreshBBs.insert(OpDef->getParent());
7966 }
7967
7968 NewInstructions[UI] = NI;
7969 MaybeDead.insert(UI);
7970 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7971 NI->insertBefore(InsertPoint->getIterator());
7972 InsertPoint = NI;
7973 InsertedInsts.insert(NI);
7974
7975 // Update the use for the new instruction, making sure that we update the
7976 // sunk instruction uses, if it is part of a chain that has already been
7977 // sunk.
7978 Instruction *OldI = cast<Instruction>(U->getUser());
7979 if (auto It = NewInstructions.find(OldI); It != NewInstructions.end())
7980 It->second->setOperand(U->getOperandNo(), NI);
7981 else
7982 U->set(NI);
7983 Changed = true;
7984 }
7985
7986 // Remove instructions that are dead after sinking.
7987 for (auto *I : MaybeDead) {
7988 if (!I->hasNUsesOrMore(1)) {
7989 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7990 I->eraseFromParent();
7991 }
7992 }
7993
7994 return Changed;
7995}
7996
7997bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7998 Value *Cond = SI->getCondition();
7999 Type *OldType = Cond->getType();
8000 LLVMContext &Context = Cond->getContext();
8001 EVT OldVT = TLI->getValueType(*DL, OldType);
8002 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
8003 unsigned RegWidth = RegType.getSizeInBits();
8004
8005 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
8006 return false;
8007
8008 // If the register width is greater than the type width, expand the condition
8009 // of the switch instruction and each case constant to the width of the
8010 // register. By widening the type of the switch condition, subsequent
8011 // comparisons (for case comparisons) will not need to be extended to the
8012 // preferred register width, so we will potentially eliminate N-1 extends,
8013 // where N is the number of cases in the switch.
8014 auto *NewType = Type::getIntNTy(Context, RegWidth);
8015
8016 // Extend the switch condition and case constants using the target preferred
8017 // extend unless the switch condition is a function argument with an extend
8018 // attribute. In that case, we can avoid an unnecessary mask/extension by
8019 // matching the argument extension instead.
8020 Instruction::CastOps ExtType = Instruction::ZExt;
8021 // Some targets prefer SExt over ZExt.
8022 if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
8023 ExtType = Instruction::SExt;
8024
8025 if (auto *Arg = dyn_cast<Argument>(Cond)) {
8026 if (Arg->hasSExtAttr())
8027 ExtType = Instruction::SExt;
8028 if (Arg->hasZExtAttr())
8029 ExtType = Instruction::ZExt;
8030 }
8031
8032 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
8033 ExtInst->insertBefore(SI->getIterator());
8034 ExtInst->setDebugLoc(SI->getDebugLoc());
8035 SI->setCondition(ExtInst);
8036 for (auto Case : SI->cases()) {
8037 const APInt &NarrowConst = Case.getCaseValue()->getValue();
8038 APInt WideConst = (ExtType == Instruction::ZExt)
8039 ? NarrowConst.zext(RegWidth)
8040 : NarrowConst.sext(RegWidth);
8041 Case.setValue(ConstantInt::get(Context, WideConst));
8042 }
8043
8044 return true;
8045}
8046
8047bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
8048 // The SCCP optimization tends to produce code like this:
8049 // switch(x) { case 42: phi(42, ...) }
8050 // Materializing the constant for the phi-argument needs instructions; So we
8051 // change the code to:
8052 // switch(x) { case 42: phi(x, ...) }
8053
8054 Value *Condition = SI->getCondition();
8055 // Avoid endless loop in degenerate case.
8056 if (isa<ConstantInt>(*Condition))
8057 return false;
8058
8059 bool Changed = false;
8060 BasicBlock *SwitchBB = SI->getParent();
8061 Type *ConditionType = Condition->getType();
8062
8063 for (const SwitchInst::CaseHandle &Case : SI->cases()) {
8064 ConstantInt *CaseValue = Case.getCaseValue();
8065 BasicBlock *CaseBB = Case.getCaseSuccessor();
8066 // Set to true if we previously checked that `CaseBB` is only reached by
8067 // a single case from this switch.
8068 bool CheckedForSinglePred = false;
8069 for (PHINode &PHI : CaseBB->phis()) {
8070 Type *PHIType = PHI.getType();
8071 // If ZExt is free then we can also catch patterns like this:
8072 // switch((i32)x) { case 42: phi((i64)42, ...); }
8073 // and replace `(i64)42` with `zext i32 %x to i64`.
8074 bool TryZExt =
8075 PHIType->isIntegerTy() &&
8076 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
8077 TLI->isZExtFree(ConditionType, PHIType);
8078 if (PHIType == ConditionType || TryZExt) {
8079 // Set to true to skip this case because of multiple preds.
8080 bool SkipCase = false;
8081 Value *Replacement = nullptr;
8082 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
8083 Value *PHIValue = PHI.getIncomingValue(I);
8084 if (PHIValue != CaseValue) {
8085 if (!TryZExt)
8086 continue;
8087 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
8088 if (!PHIValueInt ||
8089 PHIValueInt->getValue() !=
8090 CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
8091 continue;
8092 }
8093 if (PHI.getIncomingBlock(I) != SwitchBB)
8094 continue;
8095 // We cannot optimize if there are multiple case labels jumping to
8096 // this block. This check may get expensive when there are many
8097 // case labels so we test for it last.
8098 if (!CheckedForSinglePred) {
8099 CheckedForSinglePred = true;
8100 if (SI->findCaseDest(CaseBB) == nullptr) {
8101 SkipCase = true;
8102 break;
8103 }
8104 }
8105
8106 if (Replacement == nullptr) {
8107 if (PHIValue == CaseValue) {
8108 Replacement = Condition;
8109 } else {
8110 IRBuilder<> Builder(SI);
8111 Replacement = Builder.CreateZExt(Condition, PHIType);
8112 }
8113 }
8114 PHI.setIncomingValue(I, Replacement);
8115 Changed = true;
8116 }
8117 if (SkipCase)
8118 break;
8119 }
8120 }
8121 }
8122 return Changed;
8123}
8124
8125bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
8126 bool Changed = optimizeSwitchType(SI);
8127 Changed |= optimizeSwitchPhiConstants(SI);
8128 return Changed;
8129}
8130
8131namespace {
8132
8133/// Helper class to promote a scalar operation to a vector one.
8134/// This class is used to move downward extractelement transition.
8135/// E.g.,
8136/// a = vector_op <2 x i32>
8137/// b = extractelement <2 x i32> a, i32 0
8138/// c = scalar_op b
8139/// store c
8140///
8141/// =>
8142/// a = vector_op <2 x i32>
8143/// c = vector_op a (equivalent to scalar_op on the related lane)
8144/// * d = extractelement <2 x i32> c, i32 0
8145/// * store d
8146/// Assuming both extractelement and store can be combine, we get rid of the
8147/// transition.
8148class VectorPromoteHelper {
8149 /// DataLayout associated with the current module.
8150 const DataLayout &DL;
8151
8152 /// Used to perform some checks on the legality of vector operations.
8153 const TargetLowering &TLI;
8154
8155 /// Used to estimated the cost of the promoted chain.
8156 const TargetTransformInfo &TTI;
8157
8158 /// The transition being moved downwards.
8159 Instruction *Transition;
8160
8161 /// The sequence of instructions to be promoted.
8162 SmallVector<Instruction *, 4> InstsToBePromoted;
8163
8164 /// Cost of combining a store and an extract.
8165 unsigned StoreExtractCombineCost;
8166
8167 /// Instruction that will be combined with the transition.
8168 Instruction *CombineInst = nullptr;
8169
8170 /// The instruction that represents the current end of the transition.
8171 /// Since we are faking the promotion until we reach the end of the chain
8172 /// of computation, we need a way to get the current end of the transition.
8173 Instruction *getEndOfTransition() const {
8174 if (InstsToBePromoted.empty())
8175 return Transition;
8176 return InstsToBePromoted.back();
8177 }
8178
8179 /// Return the index of the original value in the transition.
8180 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
8181 /// c, is at index 0.
8182 unsigned getTransitionOriginalValueIdx() const {
8183 assert(isa<ExtractElementInst>(Transition) &&
8184 "Other kind of transitions are not supported yet");
8185 return 0;
8186 }
8187
8188 /// Return the index of the index in the transition.
8189 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
8190 /// is at index 1.
8191 unsigned getTransitionIdx() const {
8192 assert(isa<ExtractElementInst>(Transition) &&
8193 "Other kind of transitions are not supported yet");
8194 return 1;
8195 }
8196
8197 /// Get the type of the transition.
8198 /// This is the type of the original value.
8199 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
8200 /// transition is <2 x i32>.
8201 Type *getTransitionType() const {
8202 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
8203 }
8204
8205 /// Promote \p ToBePromoted by moving \p Def downward through.
8206 /// I.e., we have the following sequence:
8207 /// Def = Transition <ty1> a to <ty2>
8208 /// b = ToBePromoted <ty2> Def, ...
8209 /// =>
8210 /// b = ToBePromoted <ty1> a, ...
8211 /// Def = Transition <ty1> ToBePromoted to <ty2>
8212 void promoteImpl(Instruction *ToBePromoted);
8213
8214 /// Check whether or not it is profitable to promote all the
8215 /// instructions enqueued to be promoted.
8216 bool isProfitableToPromote() {
8217 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
8218 unsigned Index = isa<ConstantInt>(ValIdx)
8219 ? cast<ConstantInt>(ValIdx)->getZExtValue()
8220 : -1;
8221 Type *PromotedType = getTransitionType();
8222
8223 StoreInst *ST = cast<StoreInst>(CombineInst);
8224 unsigned AS = ST->getPointerAddressSpace();
8225 // Check if this store is supported.
8227 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
8228 ST->getAlign())) {
8229 // If this is not supported, there is no way we can combine
8230 // the extract with the store.
8231 return false;
8232 }
8233
8234 // The scalar chain of computation has to pay for the transition
8235 // scalar to vector.
8236 // The vector chain has to account for the combining cost.
8239 InstructionCost ScalarCost =
8240 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
8241 InstructionCost VectorCost = StoreExtractCombineCost;
8242 for (const auto &Inst : InstsToBePromoted) {
8243 // Compute the cost.
8244 // By construction, all instructions being promoted are arithmetic ones.
8245 // Moreover, one argument is a constant that can be viewed as a splat
8246 // constant.
8247 Value *Arg0 = Inst->getOperand(0);
8248 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
8249 isa<ConstantFP>(Arg0);
8250 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
8251 if (IsArg0Constant)
8253 else
8255
8256 ScalarCost += TTI.getArithmeticInstrCost(
8257 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
8258 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
8259 CostKind, Arg0Info, Arg1Info);
8260 }
8261 LLVM_DEBUG(
8262 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
8263 << ScalarCost << "\nVector: " << VectorCost << '\n');
8264 return ScalarCost > VectorCost;
8265 }
8266
8267 /// Generate a constant vector with \p Val with the same
8268 /// number of elements as the transition.
8269 /// \p UseSplat defines whether or not \p Val should be replicated
8270 /// across the whole vector.
8271 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
8272 /// otherwise we generate a vector with as many poison as possible:
8273 /// <poison, ..., poison, Val, poison, ..., poison> where \p Val is only
8274 /// used at the index of the extract.
8275 Value *getConstantVector(Constant *Val, bool UseSplat) const {
8276 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
8277 if (!UseSplat) {
8278 // If we cannot determine where the constant must be, we have to
8279 // use a splat constant.
8280 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
8281 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
8282 ExtractIdx = CstVal->getSExtValue();
8283 else
8284 UseSplat = true;
8285 }
8286
8287 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
8288 if (UseSplat)
8289 return ConstantVector::getSplat(EC, Val);
8290
8291 if (!EC.isScalable()) {
8293 PoisonValue *PoisonVal = PoisonValue::get(Val->getType());
8294 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
8295 if (Idx == ExtractIdx)
8296 ConstVec.push_back(Val);
8297 else
8298 ConstVec.push_back(PoisonVal);
8299 }
8300 return ConstantVector::get(ConstVec);
8301 } else
8303 "Generate scalable vector for non-splat is unimplemented");
8304 }
8305
8306 /// Check if promoting to a vector type an operand at \p OperandIdx
8307 /// in \p Use can trigger undefined behavior.
8308 static bool canCauseUndefinedBehavior(const Instruction *Use,
8309 unsigned OperandIdx) {
8310 // This is not safe to introduce undef when the operand is on
8311 // the right hand side of a division-like instruction.
8312 if (OperandIdx != 1)
8313 return false;
8314 switch (Use->getOpcode()) {
8315 default:
8316 return false;
8317 case Instruction::SDiv:
8318 case Instruction::UDiv:
8319 case Instruction::SRem:
8320 case Instruction::URem:
8321 return true;
8322 case Instruction::FDiv:
8323 case Instruction::FRem:
8324 return !Use->hasNoNaNs();
8325 }
8326 llvm_unreachable(nullptr);
8327 }
8328
8329public:
8330 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
8331 const TargetTransformInfo &TTI, Instruction *Transition,
8332 unsigned CombineCost)
8333 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
8334 StoreExtractCombineCost(CombineCost) {
8335 assert(Transition && "Do not know how to promote null");
8336 }
8337
8338 /// Check if we can promote \p ToBePromoted to \p Type.
8339 bool canPromote(const Instruction *ToBePromoted) const {
8340 // We could support CastInst too.
8341 return isa<BinaryOperator>(ToBePromoted);
8342 }
8343
8344 /// Check if it is profitable to promote \p ToBePromoted
8345 /// by moving downward the transition through.
8346 bool shouldPromote(const Instruction *ToBePromoted) const {
8347 // Promote only if all the operands can be statically expanded.
8348 // Indeed, we do not want to introduce any new kind of transitions.
8349 for (const Use &U : ToBePromoted->operands()) {
8350 const Value *Val = U.get();
8351 if (Val == getEndOfTransition()) {
8352 // If the use is a division and the transition is on the rhs,
8353 // we cannot promote the operation, otherwise we may create a
8354 // division by zero.
8355 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
8356 return false;
8357 continue;
8358 }
8359 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
8360 !isa<ConstantFP>(Val))
8361 return false;
8362 }
8363 // Check that the resulting operation is legal.
8364 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
8365 if (!ISDOpcode)
8366 return false;
8367 return StressStoreExtract ||
8369 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
8370 }
8371
8372 /// Check whether or not \p Use can be combined
8373 /// with the transition.
8374 /// I.e., is it possible to do Use(Transition) => AnotherUse?
8375 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
8376
8377 /// Record \p ToBePromoted as part of the chain to be promoted.
8378 void enqueueForPromotion(Instruction *ToBePromoted) {
8379 InstsToBePromoted.push_back(ToBePromoted);
8380 }
8381
8382 /// Set the instruction that will be combined with the transition.
8383 void recordCombineInstruction(Instruction *ToBeCombined) {
8384 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
8385 CombineInst = ToBeCombined;
8386 }
8387
8388 /// Promote all the instructions enqueued for promotion if it is
8389 /// is profitable.
8390 /// \return True if the promotion happened, false otherwise.
8391 bool promote() {
8392 // Check if there is something to promote.
8393 // Right now, if we do not have anything to combine with,
8394 // we assume the promotion is not profitable.
8395 if (InstsToBePromoted.empty() || !CombineInst)
8396 return false;
8397
8398 // Check cost.
8399 if (!StressStoreExtract && !isProfitableToPromote())
8400 return false;
8401
8402 // Promote.
8403 for (auto &ToBePromoted : InstsToBePromoted)
8404 promoteImpl(ToBePromoted);
8405 InstsToBePromoted.clear();
8406 return true;
8407 }
8408};
8409
8410} // end anonymous namespace
8411
8412void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
8413 // At this point, we know that all the operands of ToBePromoted but Def
8414 // can be statically promoted.
8415 // For Def, we need to use its parameter in ToBePromoted:
8416 // b = ToBePromoted ty1 a
8417 // Def = Transition ty1 b to ty2
8418 // Move the transition down.
8419 // 1. Replace all uses of the promoted operation by the transition.
8420 // = ... b => = ... Def.
8421 assert(ToBePromoted->getType() == Transition->getType() &&
8422 "The type of the result of the transition does not match "
8423 "the final type");
8424 ToBePromoted->replaceAllUsesWith(Transition);
8425 // 2. Update the type of the uses.
8426 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
8427 Type *TransitionTy = getTransitionType();
8428 ToBePromoted->mutateType(TransitionTy);
8429 // 3. Update all the operands of the promoted operation with promoted
8430 // operands.
8431 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
8432 for (Use &U : ToBePromoted->operands()) {
8433 Value *Val = U.get();
8434 Value *NewVal = nullptr;
8435 if (Val == Transition)
8436 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
8437 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
8438 isa<ConstantFP>(Val)) {
8439 // Use a splat constant if it is not safe to use undef.
8440 NewVal = getConstantVector(
8441 cast<Constant>(Val),
8442 isa<UndefValue>(Val) ||
8443 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
8444 } else
8445 llvm_unreachable("Did you modified shouldPromote and forgot to update "
8446 "this?");
8447 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
8448 }
8449 Transition->moveAfter(ToBePromoted);
8450 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
8451}
8452
8453/// Some targets can do store(extractelement) with one instruction.
8454/// Try to push the extractelement towards the stores when the target
8455/// has this feature and this is profitable.
8456bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
8457 unsigned CombineCost = std::numeric_limits<unsigned>::max();
8458 if (DisableStoreExtract ||
8461 Inst->getOperand(1), CombineCost)))
8462 return false;
8463
8464 // At this point we know that Inst is a vector to scalar transition.
8465 // Try to move it down the def-use chain, until:
8466 // - We can combine the transition with its single use
8467 // => we got rid of the transition.
8468 // - We escape the current basic block
8469 // => we would need to check that we are moving it at a cheaper place and
8470 // we do not do that for now.
8471 BasicBlock *Parent = Inst->getParent();
8472 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
8473 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
8474 // If the transition has more than one use, assume this is not going to be
8475 // beneficial.
8476 while (Inst->hasOneUse()) {
8477 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
8478 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
8479
8480 if (ToBePromoted->getParent() != Parent) {
8481 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
8482 << ToBePromoted->getParent()->getName()
8483 << ") than the transition (" << Parent->getName()
8484 << ").\n");
8485 return false;
8486 }
8487
8488 if (VPH.canCombine(ToBePromoted)) {
8489 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
8490 << "will be combined with: " << *ToBePromoted << '\n');
8491 VPH.recordCombineInstruction(ToBePromoted);
8492 bool Changed = VPH.promote();
8493 NumStoreExtractExposed += Changed;
8494 return Changed;
8495 }
8496
8497 LLVM_DEBUG(dbgs() << "Try promoting.\n");
8498 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
8499 return false;
8500
8501 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
8502
8503 VPH.enqueueForPromotion(ToBePromoted);
8504 Inst = ToBePromoted;
8505 }
8506 return false;
8507}
8508
8509/// For the instruction sequence of store below, F and I values
8510/// are bundled together as an i64 value before being stored into memory.
8511/// Sometimes it is more efficient to generate separate stores for F and I,
8512/// which can remove the bitwise instructions or sink them to colder places.
8513///
8514/// (store (or (zext (bitcast F to i32) to i64),
8515/// (shl (zext I to i64), 32)), addr) -->
8516/// (store F, addr) and (store I, addr+4)
8517///
8518/// Similarly, splitting for other merged store can also be beneficial, like:
8519/// For pair of {i32, i32}, i64 store --> two i32 stores.
8520/// For pair of {i32, i16}, i64 store --> two i32 stores.
8521/// For pair of {i16, i16}, i32 store --> two i16 stores.
8522/// For pair of {i16, i8}, i32 store --> two i16 stores.
8523/// For pair of {i8, i8}, i16 store --> two i8 stores.
8524///
8525/// We allow each target to determine specifically which kind of splitting is
8526/// supported.
8527///
8528/// The store patterns are commonly seen from the simple code snippet below
8529/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
8530/// void goo(const std::pair<int, float> &);
8531/// hoo() {
8532/// ...
8533/// goo(std::make_pair(tmp, ftmp));
8534/// ...
8535/// }
8536///
8537/// Although we already have similar splitting in DAG Combine, we duplicate
8538/// it in CodeGenPrepare to catch the case in which pattern is across
8539/// multiple BBs. The logic in DAG Combine is kept to catch case generated
8540/// during code expansion.
8542 const TargetLowering &TLI) {
8543 // Handle simple but common cases only.
8544 Type *StoreType = SI.getValueOperand()->getType();
8545
8546 // The code below assumes shifting a value by <number of bits>,
8547 // whereas scalable vectors would have to be shifted by
8548 // <2log(vscale) + number of bits> in order to store the
8549 // low/high parts. Bailing out for now.
8550 if (StoreType->isScalableTy())
8551 return false;
8552
8553 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
8554 DL.getTypeSizeInBits(StoreType) == 0)
8555 return false;
8556
8557 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
8558 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
8559 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
8560 return false;
8561
8562 // Don't split the store if it is volatile.
8563 if (SI.isVolatile())
8564 return false;
8565
8566 // Match the following patterns:
8567 // (store (or (zext LValue to i64),
8568 // (shl (zext HValue to i64), 32)), HalfValBitSize)
8569 // or
8570 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
8571 // (zext LValue to i64),
8572 // Expect both operands of OR and the first operand of SHL have only
8573 // one use.
8574 Value *LValue, *HValue;
8575 if (!match(SI.getValueOperand(),
8578 m_SpecificInt(HalfValBitSize))))))
8579 return false;
8580
8581 // Check LValue and HValue are int with size less or equal than 32.
8582 if (!LValue->getType()->isIntegerTy() ||
8583 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
8584 !HValue->getType()->isIntegerTy() ||
8585 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
8586 return false;
8587
8588 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
8589 // as the input of target query.
8590 auto *LBC = dyn_cast<BitCastInst>(LValue);
8591 auto *HBC = dyn_cast<BitCastInst>(HValue);
8592 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
8593 : EVT::getEVT(LValue->getType());
8594 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
8595 : EVT::getEVT(HValue->getType());
8596 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
8597 return false;
8598
8599 // Start to split store.
8600 IRBuilder<> Builder(SI.getContext());
8601 Builder.SetInsertPoint(&SI);
8602
8603 // If LValue/HValue is a bitcast in another BB, create a new one in current
8604 // BB so it may be merged with the splitted stores by dag combiner.
8605 if (LBC && LBC->getParent() != SI.getParent())
8606 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
8607 if (HBC && HBC->getParent() != SI.getParent())
8608 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
8609
8610 bool IsLE = SI.getDataLayout().isLittleEndian();
8611 auto CreateSplitStore = [&](Value *V, bool Upper) {
8612 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
8613 Value *Addr = SI.getPointerOperand();
8614 Align Alignment = SI.getAlign();
8615 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
8616 if (IsOffsetStore) {
8617 Addr = Builder.CreateGEP(
8618 SplitStoreType, Addr,
8619 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
8620
8621 // When splitting the store in half, naturally one half will retain the
8622 // alignment of the original wider store, regardless of whether it was
8623 // over-aligned or not, while the other will require adjustment.
8624 Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
8625 }
8626 Builder.CreateAlignedStore(V, Addr, Alignment);
8627 };
8628
8629 CreateSplitStore(LValue, false);
8630 CreateSplitStore(HValue, true);
8631
8632 // Delete the old store.
8633 SI.eraseFromParent();
8634 return true;
8635}
8636
8637// Return true if the GEP has two operands, the first operand is of a sequential
8638// type, and the second operand is a constant.
8641 return GEP->getNumOperands() == 2 && I.isSequential() &&
8642 isa<ConstantInt>(GEP->getOperand(1));
8643}
8644
8645// Try unmerging GEPs to reduce liveness interference (register pressure) across
8646// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
8647// reducing liveness interference across those edges benefits global register
8648// allocation. Currently handles only certain cases.
8649//
8650// For example, unmerge %GEPI and %UGEPI as below.
8651//
8652// ---------- BEFORE ----------
8653// SrcBlock:
8654// ...
8655// %GEPIOp = ...
8656// ...
8657// %GEPI = gep %GEPIOp, Idx
8658// ...
8659// indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
8660// (* %GEPI is alive on the indirectbr edges due to other uses ahead)
8661// (* %GEPIOp is alive on the indirectbr edges only because of it's used by
8662// %UGEPI)
8663//
8664// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
8665// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
8666// ...
8667//
8668// DstBi:
8669// ...
8670// %UGEPI = gep %GEPIOp, UIdx
8671// ...
8672// ---------------------------
8673//
8674// ---------- AFTER ----------
8675// SrcBlock:
8676// ... (same as above)
8677// (* %GEPI is still alive on the indirectbr edges)
8678// (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
8679// unmerging)
8680// ...
8681//
8682// DstBi:
8683// ...
8684// %UGEPI = gep %GEPI, (UIdx-Idx)
8685// ...
8686// ---------------------------
8687//
8688// The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8689// no longer alive on them.
8690//
8691// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8692// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8693// not to disable further simplications and optimizations as a result of GEP
8694// merging.
8695//
8696// Note this unmerging may increase the length of the data flow critical path
8697// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8698// between the register pressure and the length of data-flow critical
8699// path. Restricting this to the uncommon IndirectBr case would minimize the
8700// impact of potentially longer critical path, if any, and the impact on compile
8701// time.
8703 const TargetTransformInfo *TTI) {
8704 BasicBlock *SrcBlock = GEPI->getParent();
8705 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8706 // (non-IndirectBr) cases exit early here.
8707 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
8708 return false;
8709 // Check that GEPI is a simple gep with a single constant index.
8710 if (!GEPSequentialConstIndexed(GEPI))
8711 return false;
8712 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
8713 // Check that GEPI is a cheap one.
8714 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
8717 return false;
8718 Value *GEPIOp = GEPI->getOperand(0);
8719 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8720 if (!isa<Instruction>(GEPIOp))
8721 return false;
8722 auto *GEPIOpI = cast<Instruction>(GEPIOp);
8723 if (GEPIOpI->getParent() != SrcBlock)
8724 return false;
8725 // Check that GEP is used outside the block, meaning it's alive on the
8726 // IndirectBr edge(s).
8727 if (llvm::none_of(GEPI->users(), [&](User *Usr) {
8728 if (auto *I = dyn_cast<Instruction>(Usr)) {
8729 if (I->getParent() != SrcBlock) {
8730 return true;
8731 }
8732 }
8733 return false;
8734 }))
8735 return false;
8736 // The second elements of the GEP chains to be unmerged.
8737 std::vector<GetElementPtrInst *> UGEPIs;
8738 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8739 // on IndirectBr edges.
8740 for (User *Usr : GEPIOp->users()) {
8741 if (Usr == GEPI)
8742 continue;
8743 // Check if Usr is an Instruction. If not, give up.
8744 if (!isa<Instruction>(Usr))
8745 return false;
8746 auto *UI = cast<Instruction>(Usr);
8747 // Check if Usr in the same block as GEPIOp, which is fine, skip.
8748 if (UI->getParent() == SrcBlock)
8749 continue;
8750 // Check if Usr is a GEP. If not, give up.
8751 if (!isa<GetElementPtrInst>(Usr))
8752 return false;
8753 auto *UGEPI = cast<GetElementPtrInst>(Usr);
8754 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8755 // the pointer operand to it. If so, record it in the vector. If not, give
8756 // up.
8757 if (!GEPSequentialConstIndexed(UGEPI))
8758 return false;
8759 if (UGEPI->getOperand(0) != GEPIOp)
8760 return false;
8761 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType())
8762 return false;
8763 if (GEPIIdx->getType() !=
8764 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
8765 return false;
8766 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8767 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
8770 return false;
8771 UGEPIs.push_back(UGEPI);
8772 }
8773 if (UGEPIs.size() == 0)
8774 return false;
8775 // Check the materializing cost of (Uidx-Idx).
8776 for (GetElementPtrInst *UGEPI : UGEPIs) {
8777 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8778 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8780 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8781 if (ImmCost > TargetTransformInfo::TCC_Basic)
8782 return false;
8783 }
8784 // Now unmerge between GEPI and UGEPIs.
8785 for (GetElementPtrInst *UGEPI : UGEPIs) {
8786 UGEPI->setOperand(0, GEPI);
8787 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8788 Constant *NewUGEPIIdx = ConstantInt::get(
8789 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8790 UGEPI->setOperand(1, NewUGEPIIdx);
8791 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8792 // inbounds to avoid UB.
8793 if (!GEPI->isInBounds()) {
8794 UGEPI->setIsInBounds(false);
8795 }
8796 }
8797 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8798 // alive on IndirectBr edges).
8799 assert(llvm::none_of(GEPIOp->users(),
8800 [&](User *Usr) {
8801 return cast<Instruction>(Usr)->getParent() != SrcBlock;
8802 }) &&
8803 "GEPIOp is used outside SrcBlock");
8804 return true;
8805}
8806
8807static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8809 bool IsHugeFunc) {
8810 // Try and convert
8811 // %c = icmp ult %x, 8
8812 // br %c, bla, blb
8813 // %tc = lshr %x, 3
8814 // to
8815 // %tc = lshr %x, 3
8816 // %c = icmp eq %tc, 0
8817 // br %c, bla, blb
8818 // Creating the cmp to zero can be better for the backend, especially if the
8819 // lshr produces flags that can be used automatically.
8820 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8821 return false;
8822
8823 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8824 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8825 return false;
8826
8827 Value *X = Cmp->getOperand(0);
8828 if (!X->hasUseList())
8829 return false;
8830
8831 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8832
8833 for (auto *U : X->users()) {
8835 // A quick dominance check
8836 if (!UI ||
8837 (UI->getParent() != Branch->getParent() &&
8838 UI->getParent() != Branch->getSuccessor(0) &&
8839 UI->getParent() != Branch->getSuccessor(1)) ||
8840 (UI->getParent() != Branch->getParent() &&
8841 !UI->getParent()->getSinglePredecessor()))
8842 continue;
8843
8844 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8845 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8846 IRBuilder<> Builder(Branch);
8847 if (UI->getParent() != Branch->getParent())
8848 UI->moveBefore(Branch->getIterator());
8850 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8851 ConstantInt::get(UI->getType(), 0));
8852 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8853 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8854 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8855 return true;
8856 }
8857 if (Cmp->isEquality() &&
8858 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8859 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))) ||
8860 match(UI, m_Xor(m_Specific(X), m_SpecificInt(CmpC))))) {
8861 IRBuilder<> Builder(Branch);
8862 if (UI->getParent() != Branch->getParent())
8863 UI->moveBefore(Branch->getIterator());
8865 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8866 ConstantInt::get(UI->getType(), 0));
8867 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8868 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8869 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8870 return true;
8871 }
8872 }
8873 return false;
8874}
8875
8876bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8877 bool AnyChange = false;
8878 AnyChange = fixupDbgVariableRecordsOnInst(*I);
8879
8880 // Bail out if we inserted the instruction to prevent optimizations from
8881 // stepping on each other's toes.
8882 if (InsertedInsts.count(I))
8883 return AnyChange;
8884
8885 // TODO: Move into the switch on opcode below here.
8886 if (PHINode *P = dyn_cast<PHINode>(I)) {
8887 // It is possible for very late stage optimizations (such as SimplifyCFG)
8888 // to introduce PHI nodes too late to be cleaned up. If we detect such a
8889 // trivial PHI, go ahead and zap it here.
8890 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8891 LargeOffsetGEPMap.erase(P);
8892 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8893 P->eraseFromParent();
8894 ++NumPHIsElim;
8895 return true;
8896 }
8897 return AnyChange;
8898 }
8899
8900 if (CastInst *CI = dyn_cast<CastInst>(I)) {
8901 // If the source of the cast is a constant, then this should have
8902 // already been constant folded. The only reason NOT to constant fold
8903 // it is if something (e.g. LSR) was careful to place the constant
8904 // evaluation in a block other than then one that uses it (e.g. to hoist
8905 // the address of globals out of a loop). If this is the case, we don't
8906 // want to forward-subst the cast.
8907 if (isa<Constant>(CI->getOperand(0)))
8908 return AnyChange;
8909
8910 if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8911 return true;
8912
8914 isa<TruncInst>(I)) &&
8916 I, LI->getLoopFor(I->getParent()), *TTI))
8917 return true;
8918
8919 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8920 /// Sink a zext or sext into its user blocks if the target type doesn't
8921 /// fit in one register
8922 if (TLI->getTypeAction(CI->getContext(),
8923 TLI->getValueType(*DL, CI->getType())) ==
8924 TargetLowering::TypeExpandInteger) {
8925 return SinkCast(CI);
8926 } else {
8928 I, LI->getLoopFor(I->getParent()), *TTI))
8929 return true;
8930
8931 bool MadeChange = optimizeExt(I);
8932 return MadeChange | optimizeExtUses(I);
8933 }
8934 }
8935 return AnyChange;
8936 }
8937
8938 if (auto *Cmp = dyn_cast<CmpInst>(I))
8939 if (optimizeCmp(Cmp, ModifiedDT))
8940 return true;
8941
8942 if (match(I, m_URem(m_Value(), m_Value())))
8943 if (optimizeURem(I))
8944 return true;
8945
8946 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8947 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8948 bool Modified = optimizeLoadExt(LI);
8949 unsigned AS = LI->getPointerAddressSpace();
8950 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8951 return Modified;
8952 }
8953
8954 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8955 if (splitMergedValStore(*SI, *DL, *TLI))
8956 return true;
8957 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8958 unsigned AS = SI->getPointerAddressSpace();
8959 return optimizeMemoryInst(I, SI->getOperand(1),
8960 SI->getOperand(0)->getType(), AS);
8961 }
8962
8963 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8964 unsigned AS = RMW->getPointerAddressSpace();
8965 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8966 }
8967
8968 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8969 unsigned AS = CmpX->getPointerAddressSpace();
8970 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8971 CmpX->getCompareOperand()->getType(), AS);
8972 }
8973
8974 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8975
8976 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8977 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8978 return true;
8979
8980 // TODO: Move this into the switch on opcode - it handles shifts already.
8981 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8982 BinOp->getOpcode() == Instruction::LShr)) {
8983 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8984 if (CI && TLI->hasExtractBitsInsn())
8985 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8986 return true;
8987 }
8988
8989 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8990 if (GEPI->hasAllZeroIndices()) {
8991 /// The GEP operand must be a pointer, so must its result -> BitCast
8992 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8993 GEPI->getName(), GEPI->getIterator());
8994 NC->setDebugLoc(GEPI->getDebugLoc());
8995 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8997 GEPI, TLInfo, nullptr,
8998 [&](Value *V) { removeAllAssertingVHReferences(V); });
8999 ++NumGEPsElim;
9000 optimizeInst(NC, ModifiedDT);
9001 return true;
9002 }
9004 return true;
9005 }
9006 }
9007
9008 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
9009 // freeze(icmp a, const)) -> icmp (freeze a), const
9010 // This helps generate efficient conditional jumps.
9011 Instruction *CmpI = nullptr;
9012 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
9013 CmpI = II;
9014 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
9015 CmpI = F->getFastMathFlags().none() ? F : nullptr;
9016
9017 if (CmpI && CmpI->hasOneUse()) {
9018 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
9019 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
9021 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
9023 if (Const0 || Const1) {
9024 if (!Const0 || !Const1) {
9025 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator());
9026 F->takeName(FI);
9027 CmpI->setOperand(Const0 ? 1 : 0, F);
9028 }
9029 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
9030 FI->eraseFromParent();
9031 return true;
9032 }
9033 }
9034 return AnyChange;
9035 }
9036
9037 if (tryToSinkFreeOperands(I))
9038 return true;
9039
9040 switch (I->getOpcode()) {
9041 case Instruction::Shl:
9042 case Instruction::LShr:
9043 case Instruction::AShr:
9044 return optimizeShiftInst(cast<BinaryOperator>(I));
9045 case Instruction::Call:
9046 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
9047 case Instruction::Select:
9048 return optimizeSelectInst(cast<SelectInst>(I));
9049 case Instruction::ShuffleVector:
9050 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
9051 case Instruction::Switch:
9052 return optimizeSwitchInst(cast<SwitchInst>(I));
9053 case Instruction::ExtractElement:
9054 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
9055 case Instruction::Br:
9056 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
9057 }
9058
9059 return AnyChange;
9060}
9061
9062/// Given an OR instruction, check to see if this is a bitreverse
9063/// idiom. If so, insert the new intrinsic and return true.
9064bool CodeGenPrepare::makeBitReverse(Instruction &I) {
9065 if (!I.getType()->isIntegerTy() ||
9067 TLI->getValueType(*DL, I.getType(), true)))
9068 return false;
9069
9070 SmallVector<Instruction *, 4> Insts;
9071 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
9072 return false;
9073 Instruction *LastInst = Insts.back();
9074 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
9076 &I, TLInfo, nullptr,
9077 [&](Value *V) { removeAllAssertingVHReferences(V); });
9078 return true;
9079}
9080
9081// In this pass we look for GEP and cast instructions that are used
9082// across basic blocks and rewrite them to improve basic-block-at-a-time
9083// selection.
9084bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
9085 SunkAddrs.clear();
9086 bool MadeChange = false;
9087
9088 do {
9089 CurInstIterator = BB.begin();
9090 ModifiedDT = ModifyDT::NotModifyDT;
9091 while (CurInstIterator != BB.end()) {
9092 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
9093 if (ModifiedDT != ModifyDT::NotModifyDT) {
9094 // For huge function we tend to quickly go though the inner optmization
9095 // opportunities in the BB. So we go back to the BB head to re-optimize
9096 // each instruction instead of go back to the function head.
9097 if (IsHugeFunc) {
9098 DT.reset();
9099 getDT(*BB.getParent());
9100 break;
9101 } else {
9102 return true;
9103 }
9104 }
9105 }
9106 } while (ModifiedDT == ModifyDT::ModifyInstDT);
9107
9108 bool MadeBitReverse = true;
9109 while (MadeBitReverse) {
9110 MadeBitReverse = false;
9111 for (auto &I : reverse(BB)) {
9112 if (makeBitReverse(I)) {
9113 MadeBitReverse = MadeChange = true;
9114 break;
9115 }
9116 }
9117 }
9118 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
9119
9120 return MadeChange;
9121}
9122
9123bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) {
9124 bool AnyChange = false;
9125 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
9126 AnyChange |= fixupDbgVariableRecord(DVR);
9127 return AnyChange;
9128}
9129
9130// FIXME: should updating debug-info really cause the "changed" flag to fire,
9131// which can cause a function to be reprocessed?
9132bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) {
9133 if (DVR.Type != DbgVariableRecord::LocationType::Value &&
9134 DVR.Type != DbgVariableRecord::LocationType::Assign)
9135 return false;
9136
9137 // Does this DbgVariableRecord refer to a sunk address calculation?
9138 bool AnyChange = false;
9139 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(),
9140 DVR.location_ops().end());
9141 for (Value *Location : LocationOps) {
9142 WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
9143 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
9144 if (SunkAddr) {
9145 // Point dbg.value at locally computed address, which should give the best
9146 // opportunity to be accurately lowered. This update may change the type
9147 // of pointer being referred to; however this makes no difference to
9148 // debugging information, and we can't generate bitcasts that may affect
9149 // codegen.
9150 DVR.replaceVariableLocationOp(Location, SunkAddr);
9151 AnyChange = true;
9152 }
9153 }
9154 return AnyChange;
9155}
9156
9158 DVR->removeFromParent();
9159 BasicBlock *VIBB = VI->getParent();
9160 if (isa<PHINode>(VI))
9161 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt());
9162 else
9163 VIBB->insertDbgRecordAfter(DVR, &*VI);
9164}
9165
9166// A llvm.dbg.value may be using a value before its definition, due to
9167// optimizations in this pass and others. Scan for such dbg.values, and rescue
9168// them by moving the dbg.value to immediately after the value definition.
9169// FIXME: Ideally this should never be necessary, and this has the potential
9170// to re-order dbg.value intrinsics.
9171bool CodeGenPrepare::placeDbgValues(Function &F) {
9172 bool MadeChange = false;
9173 DominatorTree DT(F);
9174
9175 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) {
9176 SmallVector<Instruction *, 4> VIs;
9177 for (Value *V : DbgItem->location_ops())
9178 if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
9179 VIs.push_back(VI);
9180
9181 // This item may depend on multiple instructions, complicating any
9182 // potential sink. This block takes the defensive approach, opting to
9183 // "undef" the item if it has more than one instruction and any of them do
9184 // not dominate iem.
9185 for (Instruction *VI : VIs) {
9186 if (VI->isTerminator())
9187 continue;
9188
9189 // If VI is a phi in a block with an EHPad terminator, we can't insert
9190 // after it.
9191 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
9192 continue;
9193
9194 // If the defining instruction dominates the dbg.value, we do not need
9195 // to move the dbg.value.
9196 if (DT.dominates(VI, Position))
9197 continue;
9198
9199 // If we depend on multiple instructions and any of them doesn't
9200 // dominate this DVI, we probably can't salvage it: moving it to
9201 // after any of the instructions could cause us to lose the others.
9202 if (VIs.size() > 1) {
9203 LLVM_DEBUG(
9204 dbgs()
9205 << "Unable to find valid location for Debug Value, undefing:\n"
9206 << *DbgItem);
9207 DbgItem->setKillLocation();
9208 break;
9209 }
9210
9211 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
9212 << *DbgItem << ' ' << *VI);
9213 DbgInserterHelper(DbgItem, VI->getIterator());
9214 MadeChange = true;
9215 ++NumDbgValueMoved;
9216 }
9217 };
9218
9219 for (BasicBlock &BB : F) {
9220 for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
9221 // Process any DbgVariableRecord records attached to this
9222 // instruction.
9223 for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
9224 filterDbgVars(Insn.getDbgRecordRange()))) {
9225 if (DVR.Type != DbgVariableRecord::LocationType::Value)
9226 continue;
9227 DbgProcessor(&DVR, &Insn);
9228 }
9229 }
9230 }
9231
9232 return MadeChange;
9233}
9234
9235// Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
9236// probes can be chained dependencies of other regular DAG nodes and block DAG
9237// combine optimizations.
9238bool CodeGenPrepare::placePseudoProbes(Function &F) {
9239 bool MadeChange = false;
9240 for (auto &Block : F) {
9241 // Move the rest probes to the beginning of the block.
9242 auto FirstInst = Block.getFirstInsertionPt();
9243 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
9244 ++FirstInst;
9245 BasicBlock::iterator I(FirstInst);
9246 I++;
9247 while (I != Block.end()) {
9248 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
9249 II->moveBefore(FirstInst);
9250 MadeChange = true;
9251 }
9252 }
9253 }
9254 return MadeChange;
9255}
9256
9257/// Scale down both weights to fit into uint32_t.
9258static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
9259 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
9260 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
9261 NewTrue = NewTrue / Scale;
9262 NewFalse = NewFalse / Scale;
9263}
9264
9265/// Some targets prefer to split a conditional branch like:
9266/// \code
9267/// %0 = icmp ne i32 %a, 0
9268/// %1 = icmp ne i32 %b, 0
9269/// %or.cond = or i1 %0, %1
9270/// br i1 %or.cond, label %TrueBB, label %FalseBB
9271/// \endcode
9272/// into multiple branch instructions like:
9273/// \code
9274/// bb1:
9275/// %0 = icmp ne i32 %a, 0
9276/// br i1 %0, label %TrueBB, label %bb2
9277/// bb2:
9278/// %1 = icmp ne i32 %b, 0
9279/// br i1 %1, label %TrueBB, label %FalseBB
9280/// \endcode
9281/// This usually allows instruction selection to do even further optimizations
9282/// and combine the compare with the branch instruction. Currently this is
9283/// applied for targets which have "cheap" jump instructions.
9284///
9285/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
9286///
9287bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
9288 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
9289 return false;
9290
9291 bool MadeChange = false;
9292 for (auto &BB : F) {
9293 // Does this BB end with the following?
9294 // %cond1 = icmp|fcmp|binary instruction ...
9295 // %cond2 = icmp|fcmp|binary instruction ...
9296 // %cond.or = or|and i1 %cond1, cond2
9297 // br i1 %cond.or label %dest1, label %dest2"
9298 Instruction *LogicOp;
9299 BasicBlock *TBB, *FBB;
9300 if (!match(BB.getTerminator(),
9301 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
9302 continue;
9303
9304 auto *Br1 = cast<BranchInst>(BB.getTerminator());
9305 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
9306 continue;
9307
9308 // The merging of mostly empty BB can cause a degenerate branch.
9309 if (TBB == FBB)
9310 continue;
9311
9312 unsigned Opc;
9313 Value *Cond1, *Cond2;
9314 if (match(LogicOp,
9315 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
9316 Opc = Instruction::And;
9317 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
9318 m_OneUse(m_Value(Cond2)))))
9319 Opc = Instruction::Or;
9320 else
9321 continue;
9322
9323 auto IsGoodCond = [](Value *Cond) {
9324 return match(
9325 Cond,
9327 m_LogicalOr(m_Value(), m_Value()))));
9328 };
9329 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
9330 continue;
9331
9332 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
9333
9334 // Create a new BB.
9335 auto *TmpBB =
9336 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
9337 BB.getParent(), BB.getNextNode());
9338 if (IsHugeFunc)
9339 FreshBBs.insert(TmpBB);
9340
9341 // Update original basic block by using the first condition directly by the
9342 // branch instruction and removing the no longer needed and/or instruction.
9343 Br1->setCondition(Cond1);
9344 LogicOp->eraseFromParent();
9345
9346 // Depending on the condition we have to either replace the true or the
9347 // false successor of the original branch instruction.
9348 if (Opc == Instruction::And)
9349 Br1->setSuccessor(0, TmpBB);
9350 else
9351 Br1->setSuccessor(1, TmpBB);
9352
9353 // Fill in the new basic block.
9354 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
9355 if (auto *I = dyn_cast<Instruction>(Cond2)) {
9356 I->removeFromParent();
9357 I->insertBefore(Br2->getIterator());
9358 }
9359
9360 // Update PHI nodes in both successors. The original BB needs to be
9361 // replaced in one successor's PHI nodes, because the branch comes now from
9362 // the newly generated BB (NewBB). In the other successor we need to add one
9363 // incoming edge to the PHI nodes, because both branch instructions target
9364 // now the same successor. Depending on the original branch condition
9365 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
9366 // we perform the correct update for the PHI nodes.
9367 // This doesn't change the successor order of the just created branch
9368 // instruction (or any other instruction).
9369 if (Opc == Instruction::Or)
9370 std::swap(TBB, FBB);
9371
9372 // Replace the old BB with the new BB.
9373 TBB->replacePhiUsesWith(&BB, TmpBB);
9374
9375 // Add another incoming edge from the new BB.
9376 for (PHINode &PN : FBB->phis()) {
9377 auto *Val = PN.getIncomingValueForBlock(&BB);
9378 PN.addIncoming(Val, TmpBB);
9379 }
9380
9381 // Update the branch weights (from SelectionDAGBuilder::
9382 // FindMergedConditions).
9383 if (Opc == Instruction::Or) {
9384 // Codegen X | Y as:
9385 // BB1:
9386 // jmp_if_X TBB
9387 // jmp TmpBB
9388 // TmpBB:
9389 // jmp_if_Y TBB
9390 // jmp FBB
9391 //
9392
9393 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
9394 // The requirement is that
9395 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
9396 // = TrueProb for original BB.
9397 // Assuming the original weights are A and B, one choice is to set BB1's
9398 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
9399 // assumes that
9400 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
9401 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
9402 // TmpBB, but the math is more complicated.
9403 uint64_t TrueWeight, FalseWeight;
9404 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
9405 uint64_t NewTrueWeight = TrueWeight;
9406 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
9407 scaleWeights(NewTrueWeight, NewFalseWeight);
9408 Br1->setMetadata(LLVMContext::MD_prof,
9409 MDBuilder(Br1->getContext())
9410 .createBranchWeights(TrueWeight, FalseWeight,
9411 hasBranchWeightOrigin(*Br1)));
9412
9413 NewTrueWeight = TrueWeight;
9414 NewFalseWeight = 2 * FalseWeight;
9415 scaleWeights(NewTrueWeight, NewFalseWeight);
9416 Br2->setMetadata(LLVMContext::MD_prof,
9417 MDBuilder(Br2->getContext())
9418 .createBranchWeights(TrueWeight, FalseWeight));
9419 }
9420 } else {
9421 // Codegen X & Y as:
9422 // BB1:
9423 // jmp_if_X TmpBB
9424 // jmp FBB
9425 // TmpBB:
9426 // jmp_if_Y TBB
9427 // jmp FBB
9428 //
9429 // This requires creation of TmpBB after CurBB.
9430
9431 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
9432 // The requirement is that
9433 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
9434 // = FalseProb for original BB.
9435 // Assuming the original weights are A and B, one choice is to set BB1's
9436 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
9437 // assumes that
9438 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
9439 uint64_t TrueWeight, FalseWeight;
9440 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
9441 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
9442 uint64_t NewFalseWeight = FalseWeight;
9443 scaleWeights(NewTrueWeight, NewFalseWeight);
9444 Br1->setMetadata(LLVMContext::MD_prof,
9445 MDBuilder(Br1->getContext())
9446 .createBranchWeights(TrueWeight, FalseWeight));
9447
9448 NewTrueWeight = 2 * TrueWeight;
9449 NewFalseWeight = FalseWeight;
9450 scaleWeights(NewTrueWeight, NewFalseWeight);
9451 Br2->setMetadata(LLVMContext::MD_prof,
9452 MDBuilder(Br2->getContext())
9453 .createBranchWeights(TrueWeight, FalseWeight));
9454 }
9455 }
9456
9457 ModifiedDT = ModifyDT::ModifyBBDT;
9458 MadeChange = true;
9459
9460 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
9461 TmpBB->dump());
9462 }
9463 return MadeChange;
9464}
#define Success
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, SetOfInstrs &InsertedInsts)
Duplicate and sink the given 'and' instruction into user blocks where it is used in a compare to allo...
static bool SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, DenseMap< BasicBlock *, BinaryOperator * > &InsertedShifts, const TargetLowering &TLI, const DataLayout &DL)
Sink both shift and truncate instruction to the use of truncate's BB.
static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, SmallVectorImpl< Value * > &OffsetV)
static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V)
Check if V (an operand of a select instruction) is an expensive instruction that is only used once.
static bool isExtractBitsCandidateUse(Instruction *User)
Check if the candidates could be combined with a shift instruction, which includes:
static cl::opt< unsigned > MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), cl::Hidden, cl::desc("Max number of address users to look at"))
static cl::opt< bool > OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), cl::desc("Enable converting phi types in CodeGenPrepare"))
static cl::opt< bool > DisableStoreExtract("disable-cgp-store-extract", cl::Hidden, cl::init(false), cl::desc("Disable store(extract) optimizations in CodeGenPrepare"))
static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, const DataLayout &DL)
static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse)
Scale down both weights to fit into uint32_t.
static cl::opt< bool > ProfileUnknownInSpecialSection("profile-unknown-in-special-section", cl::Hidden, cl::desc("In profiling mode like sampleFDO, if a function doesn't have " "profile, we cannot tell the function is cold for sure because " "it may be a function newly added without ever being sampled. " "With the flag enabled, compiler can put such profile unknown " "functions into a special section, so runtime system can choose " "to handle it in a different way than .text section, to save " "RAM for example. "))
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, const TargetLowering &TLI, const DataLayout &DL)
Sink the shift right instruction into user blocks if the uses could potentially be combined with this...
static cl::opt< bool > DisableExtLdPromotion("disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " "CodeGenPrepare"))
static cl::opt< bool > DisablePreheaderProtect("disable-preheader-prot", cl::Hidden, cl::init(false), cl::desc("Disable protection against removing loop preheaders"))
static cl::opt< bool > AddrSinkCombineBaseOffs("addr-sink-combine-base-offs", cl::Hidden, cl::init(true), cl::desc("Allow combining of BaseOffs field in Address sinking."))
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, const DataLayout &DL)
If the specified cast instruction is a noop copy (e.g.
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, const TargetLowering &TLI)
For the instruction sequence of store below, F and I values are bundled together as an i64 value befo...
static bool SinkCast(CastInst *CI)
Sink the specified cast instruction into its user blocks.
static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp)
Many architectures use the same instruction for both subtract and cmp.
static cl::opt< bool > AddrSinkCombineBaseReg("addr-sink-combine-base-reg", cl::Hidden, cl::init(true), cl::desc("Allow combining of BaseReg field in Address sinking."))
static bool FindAllMemoryUses(Instruction *I, SmallVectorImpl< std::pair< Use *, Type * > > &MemoryUses, SmallPtrSetImpl< Instruction * > &ConsideredInsts, const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, unsigned &SeenInsts)
Recursively walk all the uses of I until we find a memory use.
static cl::opt< bool > StressStoreExtract("stress-cgp-store-extract", cl::Hidden, cl::init(false), cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"))
static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, const TargetLowering *TLI, SelectInst *SI)
Returns true if a SelectInst should be turned into an explicit branch.
static std::optional< std::pair< Instruction *, Constant * > > getIVIncrement(const PHINode *PN, const LoopInfo *LI)
If given PN is an inductive variable with value IVInc coming from the backedge, and on each iteration...
static cl::opt< bool > AddrSinkCombineBaseGV("addr-sink-combine-base-gv", cl::Hidden, cl::init(true), cl::desc("Allow combining of BaseGV field in Address sinking."))
static cl::opt< bool > AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), cl::desc("Address sinking in CGP using GEPs."))
static Value * getTrueOrFalseValue(SelectInst *SI, bool isTrue, const SmallPtrSet< const Instruction *, 2 > &Selects)
If isTrue is true, return the true value of SI, otherwise return false value of SI.
static cl::opt< bool > DisableBranchOpts("disable-cgp-branch-opts", cl::Hidden, cl::init(false), cl::desc("Disable branch optimizations in CodeGenPrepare"))
static cl::opt< bool > EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, cl::desc("Enable merging of redundant sexts when one is dominating" " the other."), cl::init(true))
static cl::opt< bool > ProfileGuidedSectionPrefix("profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::desc("Use profile info to add section prefix for hot/cold functions"))
static cl::opt< unsigned > HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, cl::desc("Least BB number of huge function."))
static cl::opt< bool > AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), cl::desc("Allow creation of selects in Address sinking."))
static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL, const LoopInfo *LI, SmallPtrSet< BasicBlock *, 32 > &FreshBBs, bool IsHuge)
static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, SmallPtrSet< BasicBlock *, 32 > &FreshBBs, bool IsHugeFunc)
static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, const TargetTransformInfo *TTI)
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, const TargetLowering &TLI, const TargetRegisterInfo &TRI)
Check to see if all uses of OpVal by the specified inline asm call are due to memory operands.
static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, const CallInst *CI)
static void replaceAllUsesWith(Value *Old, Value *New, SmallPtrSet< BasicBlock *, 32 > &FreshBBs, bool IsHuge)
Replace all old uses with new ones, and push the updated BBs into FreshBBs.
static cl::opt< bool > ForceSplitStore("force-split-store", cl::Hidden, cl::init(false), cl::desc("Force store splitting no matter what the target query says."))
static bool matchOverflowPattern(Instruction *&I, ExtractValueInst *&MulExtract, ExtractValueInst *&OverflowExtract)
static void computeBaseDerivedRelocateMap(const SmallVectorImpl< GCRelocateInst * > &AllRelocateCalls, MapVector< GCRelocateInst *, SmallVector< GCRelocateInst *, 0 > > &RelocateInstMap)
static bool simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, const SmallVectorImpl< GCRelocateInst * > &Targets)
static cl::opt< bool > AddrSinkCombineScaledReg("addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), cl::desc("Allow combining of ScaledReg field in Address sinking."))
static bool foldICmpWithDominatingICmp(CmpInst *Cmp, const TargetLowering &TLI)
For pattern like:
static bool MightBeFoldableInst(Instruction *I)
This is a little filter, which returns true if an addressing computation involving I might be folded ...
static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, Constant *&Step)
static cl::opt< bool > EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, cl::init(true), cl::desc("Enable splitting large offset of GEP."))
static cl::opt< bool > DisableComplexAddrModes("disable-complex-addr-modes", cl::Hidden, cl::init(false), cl::desc("Disables combining addressing modes with different parts " "in optimizeMemoryInst."))
static cl::opt< bool > EnableICMP_EQToICMP_ST("cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."))
static cl::opt< bool > VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), cl::desc("Enable BFI update verification for " "CodeGenPrepare."))
static cl::opt< bool > BBSectionsGuidedSectionPrefix("bbsections-guided-section-prefix", cl::Hidden, cl::init(true), cl::desc("Use the basic-block-sections profile to determine the text " "section prefix for hot functions. Functions with " "basic-block-sections profile will be placed in `.text.hot` " "regardless of their FDO profile info. Other functions won't be " "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " "profiles."))
static bool isRemOfLoopIncrementWithLoopInvariant(Instruction *Rem, const LoopInfo *LI, Value *&RemAmtOut, Value *&AddInstOut, Value *&AddOffsetOut, PHINode *&LoopIncrPNOut)
static bool isIVIncrement(const Value *V, const LoopInfo *LI)
static cl::opt< bool > DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), cl::desc("Disable GC optimizations in CodeGenPrepare"))
static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP)
static void DbgInserterHelper(DbgVariableRecord *DVR, BasicBlock::iterator VI)
static bool isPromotedInstructionLegal(const TargetLowering &TLI, const DataLayout &DL, Value *Val)
Check whether or not Val is a legal instruction for TLI.
static cl::opt< uint64_t > FreqRatioToSkipMerge("cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), cl::desc("Skip merging empty blocks if (frequency of empty block) / " "(frequency of destination block) is greater than this ratio"))
static BasicBlock::iterator findInsertPos(Value *Addr, Instruction *MemoryInst, Value *SunkAddr)
static bool IsNonLocalValue(Value *V, BasicBlock *BB)
Return true if the specified values are defined in a different basic block than BB.
static cl::opt< bool > EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), cl::desc("Enable sinking and/cmp into branches."))
static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI, const DataLayout &DL)
Sink the given CmpInst into user blocks to reduce the number of virtual registers that must be create...
static bool hasSameExtUse(Value *Val, const TargetLowering &TLI)
Check if all the uses of Val are equivalent (or free) zero or sign extensions.
static bool despeculateCountZeros(IntrinsicInst *CountZeros, LoopInfo &LI, const TargetLowering *TLI, const DataLayout *DL, ModifyDT &ModifiedDT, SmallPtrSet< BasicBlock *, 32 > &FreshBBs, bool IsHugeFunc)
If counting leading or trailing zeros is an expensive operation and a zero input is defined,...
static cl::opt< bool > StressExtLdPromotion("stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " "optimization in CodeGenPrepare"))
static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, BinaryOperator *&Add)
Match special-case patterns that check for unsigned add overflow.
static cl::opt< bool > DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, cl::init(false), cl::desc("Disable select to branch conversion."))
static cl::opt< bool > DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), cl::desc("Disable elimination of dead PHI nodes."))
static cl::opt< bool > AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), cl::desc("Allow creation of Phis in Address sinking."))
Defines an IR pass for CodeGen Prepare.
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:638
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
#define DEBUG_TYPE
static Value * getCondition(Instruction *I)
Hexagon Common GEP
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
This defines the Use class.
iv users
Definition IVUsers.cpp:48
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
Definition LICM.cpp:1450
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Register const TargetRegisterInfo * TRI
This file implements a map that provides insertion order iteration.
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
This file defines the PointerIntPair class.
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, const MachineInstr &B)
Remove Loads Into Fake Uses
This file contains some templates that are useful if you are working with the STL at all.
static bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT, const TargetTransformInfo &TTI, const DataLayout &DL, bool HasBranchDivergence, DomTreeUpdater *DTU)
static bool optimizeCallInst(CallInst *CI, bool &ModifiedDT, const TargetTransformInfo &TTI, const DataLayout &DL, bool HasBranchDivergence, DomTreeUpdater *DTU)
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO, unsigned CombineOpc=0)
This file describes how to lower LLVM code to machine code.
static cl::opt< bool > DisableSelectOptimize("disable-select-optimize", cl::init(true), cl::Hidden, cl::desc("Disable the select-optimization pass from running"))
Disable the select optimization pass.
Target-Independent Code Generator Pass Configuration Options pass.
This pass exposes codegen information to IR-level passes.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static Constant * getConstantVector(MVT VT, ArrayRef< APInt > Bits, const APInt &Undefs, LLVMContext &C)
Value * RHS
Value * LHS
BinaryOperator * Mul
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition APInt.h:436
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition APInt.h:1532
unsigned logBase2() const
Definition APInt.h:1762
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1563
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
void setAlignment(Align Align)
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AnalysisUsage & addUsedIfAvailable()
Add the specified Pass class to the set of analyses used by this pass.
AnalysisUsage & addRequired()
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
An instruction that atomically checks whether a specified value is in a memory location,...
static unsigned getPointerOperandIndex()
an instruction that atomically reads a memory location, combines it with another value,...
static unsigned getPointerOperandIndex()
Analysis pass providing the BasicBlockSectionsProfileReader.
bool isFunctionHot(StringRef FuncName) const
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition BasicBlock.h:690
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI void insertDbgRecordBefore(DbgRecord *DR, InstListType::iterator Here)
Insert a DbgRecord into a block at the position given by Here.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI SymbolTableList< BasicBlock >::iterator eraseFromParent()
Unlink 'this' from the containing function and delete it.
LLVM_ABI void insertDbgRecordAfter(DbgRecord *DR, Instruction *I)
Insert a DbgRecord into a block at the position given by I.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
LLVM_ABI void setBlockFreq(const BasicBlock *BB, BlockFrequency Freq)
LLVM_ABI BlockFrequency getBlockFreq(const BasicBlock *BB) const
getblockFreq - Return block frequency.
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Analysis providing branch probability information.
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
bool isInlineAsm() const
Check if this call is an inline asm statement.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition InstrTypes.h:448
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:765
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:214
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI void removeFromParent()
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType Type
Classification of the debug-info record that this DbgVariableRecord represents.
LLVM_ABI void replaceVariableLocationOp(Value *OldValue, Value *NewValue, bool AllowEmpty=false)
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
bool erase(const KeyT &Val)
Definition DenseMap.h:322
unsigned size() const
Definition DenseMap.h:110
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction extracts a struct member or array element value from an aggregate value.
iterator_range< idx_iterator > indices() const
This instruction compares its operands according to the predicate given to the constructor.
bool none() const
Definition FMF.h:57
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
const BasicBlock & getEntryBlock() const
Definition Function.h:807
LLVM_ABI const Value * getStatepoint() const
The statepoint with which this gc.relocate is associated.
Represents calls to the gc.relocate intrinsic.
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
LLVM_ABI bool canIncreaseAlignment() const
Returns true if the alignment of the value can be unilaterally increased.
Definition Globals.cpp:342
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
Type * getValueType() const
void setAlignment(Align Align)
Sets the alignment attribute of the GlobalVariable.
This instruction compares its operands according to the predicate given to the constructor.
bool isEquality() const
Return true if this predicate is either EQ or NE.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
LLVM_ABI bool isDebugOrPseudoInst() const LLVM_READONLY
Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void moveAfter(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isShift() const
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
LLVM_ABI std::optional< simple_ilist< DbgRecord >::iterator > getDbgReinsertionPosition()
Return an iterator to the position of the "Next" DbgRecord after this instruction,...
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI void insertAfter(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately after the specified instruction.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
The legacy pass manager's analysis pass to compute loop information.
Definition LoopInfo.h:596
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
LLVM_ABI void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New)
Update all phi nodes in this basic block to refer to basic block New instead of basic block Old.
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
iterator end()
Definition MapVector.h:67
VectorType::iterator erase(typename VectorType::iterator Iterator)
Remove the element given by Iterator.
Definition MapVector.h:175
iterator find(const KeyT &Key)
Definition MapVector.h:149
bool empty() const
Definition MapVector.h:77
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:119
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
PointerIntPair - This class implements a pair of a pointer and small integer.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool isFunctionColdInCallGraph(const FuncT *F, BFIT &BFI) const
Returns true if F contains only cold code.
LLVM_ABI bool isFunctionHotnessUnknown(const Function &F) const
Returns true if the hotness of F is unknown.
bool isFunctionHotInCallGraph(const FuncT *F, BFIT &BFI) const
Returns true if F contains hot code.
LLVM_ABI bool hasPartialSampleProfile() const
Returns true if module M has partial-profile sample profile.
LLVM_ABI bool hasHugeWorkingSetSize() const
Returns true if the working set size of the code is considered huge.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
void clear()
Completely clear the SetVector.
Definition SetVector.h:265
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:260
bool empty() const
Determine if the SetVector is empty or not.
Definition SetVector.h:98
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:149
value_type pop_back_val()
Definition SetVector.h:277
VectorType * getType() const
Overload to return most specific vector type.
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
void insert_range(Range &&R)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition SmallSet.h:175
bool erase(const T &V)
Definition SmallSet.h:199
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
typename SuperClass::iterator iterator
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
static unsigned getPointerOperandIndex()
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:743
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual bool isSelectSupported(SelectSupportKind) const
virtual bool isEqualityCmpFoldedWithSignedCmp() const
Return true if instruction generated for equality comparison is folded with instruction generated for...
virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const
Try to convert math with an overflow comparison into the corresponding DAG node operation.
virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const
Return if the target supports combining a chain like:
virtual bool shouldOptimizeMulOverflowWithZeroHighBits(LLVMContext &Context, EVT VT) const
bool isExtLoad(const LoadInst *Load, const Instruction *Ext, const DataLayout &DL) const
Return true if Load and Ext can form an ExtLoad.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool enableExtLdPromotion() const
Return true if the target wants to use the optimization that turns ext(promotableInst1(....
virtual bool isCheapToSpeculateCttz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isJumpExpensive() const
Return true if Flow Control is an expensive operation that should be avoided.
bool hasExtractBitsInsn() const
Return true if the target has BitExtract instructions.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isSlowDivBypassed() const
Returns true if target has indicated at least one type should be bypassed.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool hasMultipleConditionRegisters(EVT VT) const
Does the target have multiple (allocatable) condition registers that can be used to store the results...
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const
Return true if the target can combine store(extractelement VectorTy,Idx).
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
virtual bool shouldConsiderGEPOffsetSplit() const
bool isExtFree(const Instruction *I) const
Return true if the extension represented by I is free.
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPredictableSelectExpensive() const
Return true if selects are only cheaper than branches if the branch is unlikely to be predicted right...
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
virtual bool getAddrModeArguments(const IntrinsicInst *, SmallVectorImpl< Value * > &, Type *&) const
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
const DenseMap< unsigned int, unsigned int > & getBypassSlowDivWidths() const
Returns map of slow types for division or remainder with corresponding fast types.
virtual bool isCheapToSpeculateCtlz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic ctlz.
virtual bool useSoftFloat() const
virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) const
Return the prefered common base offset.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldAlignPointerArgs(CallInst *, unsigned &, Align &) const
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
virtual Type * shouldConvertSplatType(ShuffleVectorInst *SVI) const
Given a shuffle vector SVI representing a vector splat, return a new scalar type of size equal to SVI...
virtual bool addressingModeSupportsTLS(const GlobalValue &) const
Returns true if the targets addressing mode can target thread local storage (TLS).
virtual bool shouldConvertPhiType(Type *From, Type *To) const
Given a set in interconnected phis of type 'From' that are loaded/stored or bitcast to type 'To',...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
virtual bool preferZeroCompareBranch() const
Return true if the heuristic to prefer icmp eq zero should be used in code gen prepare.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
virtual bool optimizeExtendOrTruncateConversion(Instruction *I, Loop *L, const TargetTransformInfo &TTI) const
Try to optimize extending or truncating conversion instructions (like zext, trunc,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
std::vector< AsmOperandInfo > AsmOperandInfoVector
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual bool mayBeEmittedAsTailCall(const CallInst *) const
Return true if the target may be able emit the call instruction as a tail call.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target's TargetSubtargetInf...
TargetOptions Options
unsigned EnableFastISel
EnableFastISel - This flag enables fast-path instruction selection which trades away generated code q...
Target-Independent Code Generator Pass Configuration Options.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
virtual bool addrSinkUsingGEPs() const
Sink addresses into blocks using GEP instructions rather than pointer casts and arithmetic.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, const Value *Op0=nullptr, const Value *Op1=nullptr) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
LLVM_ABI InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
LLVM_ABI InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
LLVM_ABI bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
@ TCC_Basic
The cost of a typical 'add' instruction.
LLVM_ABI bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
LLVM_ABI bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
Definition Type.cpp:61
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
Definition Type.h:255
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
const Use & getOperandUse(unsigned i) const
Definition User.h:245
void setOperand(unsigned i, Value *Val)
Definition User.h:237
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:24
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
user_iterator user_begin()
Definition Value.h:402
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
Definition Value.cpp:956
LLVM_ABI bool isUsedInBasicBlock(const BasicBlock *BB) const
Check if this value is used in the specified basic block.
Definition Value.cpp:242
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
user_iterator user_end()
Definition Value.h:410
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
iterator_range< use_iterator > uses()
Definition Value.h:380
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition Value.h:838
user_iterator_impl< User > user_iterator
Definition Value.h:391
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
LLVM_ABI void dump() const
Support for debugging, callable in GDB: V->dump()
bool pointsToAliveValue() const
int getNumOccurrences() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
TypeSize getSequentialElementStride(const DataLayout &DL) const
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
@ Entry
Definition COFF.h:862
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI)
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
UAddWithOverflow_match< LHS_t, RHS_t, Sum_t > m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S)
Match an icmp instruction checking for unsigned overflow on addition.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale)
Compare two scaled numbers.
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
@ Assume
Do not drop type tests (default).
@ User
could "use" a pointer
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
SmallVector< Node, 4 > NodeList
Definition RDFGraph.h:550
iterator end() const
Definition BasicBlock.h:89
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
LLVM_ABI iterator begin() const
BaseReg
Stack frame base register. Bit 0 of FREInfo.Info.
Definition SFrame.h:77
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
std::enable_if_t< std::is_signed_v< T >, T > MulOverflow(T X, T Y, T &Result)
Multiply two signed integers, computing the two's complement truncated result, returning true if an o...
Definition MathExtras.h:753
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition Local.cpp:533
LLVM_ABI bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition Local.cpp:134
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
APInt operator*(APInt a, uint64_t RHS)
Definition APInt.h:2236
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:134
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1724
auto successors(const MachineBasicBlock *BB)
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI ReturnInst * FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, BasicBlock *Pred, DomTreeUpdater *DTU=nullptr)
This method duplicates the specified return instruction into a predecessor which ends in an unconditi...
bool operator!=(uint64_t V1, const APInt &V2)
Definition APInt.h:2114
constexpr from_range_t from_range
LLVM_ABI Instruction * SplitBlockAndInsertIfElse(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ElseBlock=nullptr)
Similar to SplitBlockAndInsertIfThen, but the inserted block is on the false path of the branch.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
auto cast_or_null(const Y &Val)
Definition Casting.h:714
LLVM_ABI void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
LLVM_ABI void initializeCodeGenPrepareLegacyPassPass(PassRegistry &)
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
auto unique(Range &&R, Predicate P)
Definition STLExtras.h:2076
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI bool hasBranchWeightOrigin(const Instruction &I)
Check if Branch Weight Metadata has an "expected" field from an llvm.expect* intrinsic.
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
LLVM_ABI bool SplitIndirectBrCriticalEdges(Function &F, bool IgnoreBlocksWithoutPHI, BranchProbabilityInfo *BPI=nullptr, BlockFrequencyInfo *BFI=nullptr)
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition Local.h:252
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
Definition STLExtras.h:2128
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
LLVM_ABI bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI=nullptr, const DominatorTree *DT=nullptr, AssumptionCache *AC=nullptr, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Replace all uses of 'I' with 'SimpleV' and simplify the uses recursively.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI bool recognizeBSwapOrBitReverseIdiom(Instruction *I, bool MatchBSwaps, bool MatchBitReversals, SmallVectorImpl< Instruction * > &InsertedInsts)
Try to match a bswap or bitreverse idiom.
Definition Local.cpp:3761
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, Instruction **ThenTerm, Instruction **ElseTerm, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, but also creates the ElseBlock...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
auto make_first_range(ContainerTy &&c)
Given a container of pairs, return a range over the first elements.
Definition STLExtras.h:1397
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI FunctionPass * createCodeGenPrepareLegacyPass()
createCodeGenPrepareLegacyPass - Transform the code to expose more pattern matching during instructio...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:207
LLVM_ABI bool VerifyLoopInfo
Enable verification of loop info.
Definition LoopInfo.cpp:51
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
bool attributesPermitTailCall(const Function *F, const Instruction *I, const ReturnInst *Ret, const TargetLoweringBase &TLI, bool *AllowDifferingSizes=nullptr)
Test if given that the input instruction is in the tail call position, if there is an attribute misma...
Definition Analysis.cpp:592
TargetTransformInfo TTI
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
@ Or
Bitwise or logical OR of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition STLExtras.h:1954
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool bypassSlowDivision(BasicBlock *BB, const DenseMap< unsigned int, unsigned int > &BypassWidth)
This optimization identifies DIV instructions in a BB that can be profitably bypassed and carried out...
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2120
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
std::enable_if_t< std::is_signed_v< T >, T > AddOverflow(T X, T Y, T &Result)
Add two signed integers, computing the two's complement truncated result, returning true if overflow ...
Definition MathExtras.h:701
LLVM_ABI Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
DenseMap< const Value *, Value * > ValueToValueMap
LLVM_ABI CGPassBuilderOption getCGPassBuilderOption()
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
bool isRound() const
Return true if the size is a power-of-two number of bytes.
Definition ValueTypes.h:248
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
This contains information for each constraint that we are lowering.