94#define DEBUG_TYPE "licm"
96STATISTIC(NumCreatedBlocks,
"Number of blocks created");
97STATISTIC(NumClonedBranches,
"Number of branches cloned");
98STATISTIC(NumSunk,
"Number of instructions sunk out of loop");
99STATISTIC(NumHoisted,
"Number of instructions hoisted out of loop");
100STATISTIC(NumMovedLoads,
"Number of load insts hoisted or sunk");
101STATISTIC(NumMovedCalls,
"Number of call insts hoisted or sunk");
102STATISTIC(NumPromotionCandidates,
"Number of promotion candidates");
103STATISTIC(NumLoadPromoted,
"Number of load-only promotions");
104STATISTIC(NumLoadStorePromoted,
"Number of load and store promotions");
106 "Number of min/max expressions hoisted out of the loop");
108 "Number of geps reassociated and hoisted out of the loop");
109STATISTIC(NumAddSubHoisted,
"Number of add/subtract expressions reassociated "
110 "and hoisted out of the loop");
111STATISTIC(NumFPAssociationsHoisted,
"Number of invariant FP expressions "
112 "reassociated and hoisted out of the loop");
114 "Number of invariant int expressions "
115 "reassociated and hoisted out of the loop");
116STATISTIC(NumBOAssociationsHoisted,
"Number of invariant BinaryOp expressions "
117 "reassociated and hoisted out of the loop");
122 cl::desc(
"Disable memory promotion in LICM pass"));
126 cl::desc(
"Enable control flow (and PHI) hoisting in LICM"));
130 cl::desc(
"Force thread model single in LICM pass"));
134 cl::desc(
"Max num uses visited for identifying load "
135 "invariance in loop using invariant start (default = 8)"));
140 "Set upper limit for the number of transformations performed "
141 "during a single round of hoisting the reassociated expressions."));
146 "Set upper limit for the number of transformations performed "
147 "during a single round of hoisting the reassociated expressions."));
159 cl::desc(
"Enable imprecision in LICM in pathological cases, in exchange "
160 "for faster compile. Caps the MemorySSA clobbering calls."));
167 cl::desc(
"[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
168 "effect. When MSSA in LICM is enabled, then this is the maximum "
169 "number of accesses allowed to be present in a loop in order to "
170 "enable memory promotion."));
180 bool &FoldableInLoop,
bool LoopNestMode);
199 bool InvariantGroup);
221 std::pair<SmallSetVector<Value *, 8>,
bool>;
226struct LoopInvariantCodeMotion {
232 LoopInvariantCodeMotion(
unsigned LicmMssaOptCap,
233 unsigned LicmMssaNoAccForPromotionCap,
234 bool LicmAllowSpeculation)
235 : LicmMssaOptCap(LicmMssaOptCap),
236 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
237 LicmAllowSpeculation(LicmAllowSpeculation) {}
240 unsigned LicmMssaOptCap;
241 unsigned LicmMssaNoAccForPromotionCap;
242 bool LicmAllowSpeculation;
245struct LegacyLICMPass :
public LoopPass {
250 bool LicmAllowSpeculation =
true)
251 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
252 LicmAllowSpeculation) {
256 bool runOnLoop(Loop *L, LPPassManager &LPM)
override {
261 <<
L->getHeader()->getNameOrAsOperand() <<
"\n");
265 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
266 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
270 OptimizationRemarkEmitter ORE(
L->getHeader()->getParent());
271 return LICM.runOnLoop(
272 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
273 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
274 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
275 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*
F),
276 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*
F),
277 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*
F),
278 SE ? &SE->getSE() :
nullptr, MSSA, &ORE);
284 void getAnalysisUsage(AnalysisUsage &AU)
const override {
299 LoopInvariantCodeMotion LICM;
313 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
314 Opts.AllowSpeculation);
315 if (!LICM.runOnLoop(&L, &AR.
AA, &AR.
LI, &AR.
DT, &AR.
AC, &AR.
TLI, &AR.
TTI,
328 OS, MapClassName2PassName);
331 OS << (Opts.AllowSpeculation ?
"" :
"no-") <<
"allowspeculation";
346 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
347 Opts.AllowSpeculation);
350 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.
AA, &AR.
LI, &AR.
DT, &AR.
AC,
368 OS, MapClassName2PassName);
371 OS << (Opts.AllowSpeculation ?
"" :
"no-") <<
"allowspeculation";
375char LegacyLICMPass::ID = 0;
399 unsigned AccessCapCount = 0;
400 for (
auto *BB : L.getBlocks())
424 assert(L->isLCSSAForm(*DT) &&
"Loop is not in LCSSA form.");
442 using namespace PatternMatch;
443 return any_of(make_pointer_range(*BB),
444 match_fn(m_Intrinsic<Intrinsic::coro_suspend>()));
452 BasicBlock *Preheader = L->getLoopPreheader();
467 if (L->hasDedicatedExits())
471 TLI,
TTI, L, MSSAU, &SafetyInfo, Flags, ORE)
473 MSSAU, &SafetyInfo, Flags, ORE);
474 Flags.setIsSink(
false);
477 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
478 LicmAllowSpeculation);
488 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
490 SmallVector<BasicBlock *, 8> ExitBlocks;
491 L->getUniqueExitBlocks(ExitBlocks);
494 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
495 return isa<CatchSwitchInst>(Exit->getTerminator());
498 if (!HasCatchSwitch) {
501 InsertPts.
reserve(ExitBlocks.size());
502 MSSAInsertPts.
reserve(ExitBlocks.size());
504 InsertPts.
push_back(ExitBlock->getFirstInsertionPt());
512 bool Promoted =
false;
515 LocalPromoted =
false;
516 for (
auto [PointerMustAliases, HasReadsOutsideSet] :
519 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts,
PIC, LI,
520 DT, AC, TLI,
TTI, L, MSSAU, &SafetyInfo, ORE,
521 LicmAllowSpeculation, HasReadsOutsideSet);
523 Promoted |= LocalPromoted;
524 }
while (LocalPromoted);
542 assert(
L->isLCSSAForm(*DT) &&
"Loop not left in LCSSA form after LICM!");
543 assert((
L->isOutermost() ||
L->getParentLoop()->isLCSSAForm(*DT)) &&
544 "Parent loop not left in LCSSA form after LICM!");
567 assert(
N !=
nullptr &&
AA !=
nullptr && LI !=
nullptr && DT !=
nullptr &&
568 CurLoop !=
nullptr && SafetyInfo !=
nullptr &&
569 "Unexpected input to sinkRegion.");
603 bool FoldableInLoop =
false;
604 bool LoopNestMode = OutermostLoop !=
nullptr;
605 if (!
I.mayHaveSideEffects() &&
607 SafetyInfo,
TTI, FoldableInLoop,
610 if (
sink(
I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
611 if (!FoldableInLoop) {
638 while (!Worklist.
empty()) {
641 MSSAU, SafetyInfo, Flags, ORE, CurLoop);
654class ControlFlowHoister {
673 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
675 void registerPossiblyHoistableBranch(BranchInst *BI) {
687 TrueDest == FalseDest)
700 if (TrueDestSucc.count(FalseDest)) {
701 CommonSucc = FalseDest;
702 }
else if (FalseDestSucc.count(TrueDest)) {
703 CommonSucc = TrueDest;
707 if (TrueDestSucc.size() == 1)
708 CommonSucc = *TrueDestSucc.
begin();
712 else if (!TrueDestSucc.empty()) {
714 auto IsSucc = [&](
BasicBlock &BB) {
return TrueDestSucc.count(&BB); };
716 assert(It !=
F->end() &&
"Could not find successor in function");
728 if (CommonSucc && DT->
dominates(BI, CommonSucc))
729 HoistableBranches[BI] = CommonSucc;
732 bool canHoistPHI(PHINode *PN) {
746 if (PredecessorBlocks.size() !=
pred_size(BB))
748 for (
auto &Pair : HoistableBranches) {
749 if (Pair.second == BB) {
752 if (Pair.first->getSuccessor(0) == BB) {
753 PredecessorBlocks.erase(Pair.first->getParent());
754 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
755 }
else if (Pair.first->getSuccessor(1) == BB) {
756 PredecessorBlocks.erase(Pair.first->getParent());
757 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
759 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
760 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
766 return PredecessorBlocks.empty();
769 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
773 if (
auto It = HoistDestinationMap.
find(BB); It != HoistDestinationMap.
end())
777 auto HasBBAsSuccessor =
778 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
779 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
780 Pair.first->getSuccessor(1) == BB);
782 auto It =
llvm::find_if(HoistableBranches, HasBBAsSuccessor);
786 if (It == HoistableBranches.end()) {
789 <<
" as hoist destination for "
791 HoistDestinationMap[BB] = InitialPreheader;
792 return InitialPreheader;
794 BranchInst *BI = It->first;
795 assert(std::none_of(std::next(It), HoistableBranches.end(),
797 "BB is expected to be the target of at most one branch");
802 BasicBlock *CommonSucc = HoistableBranches[BI];
806 auto CreateHoistedBlock = [&](
BasicBlock *Orig) {
818 <<
" as hoist destination for " << Orig->getName()
822 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
823 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
824 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
831 assert(TargetSucc &&
"Expected hoist target to have a single successor");
846 if (HoistTarget == InitialPreheader) {
857 for (
auto &Pair : HoistDestinationMap)
858 if (Pair.second == InitialPreheader && Pair.first != BI->
getParent())
859 Pair.second = HoistCommonSucc;
870 NewBI->copyMetadata(*BI, {LLVMContext::MD_prof});
878 "Hoisting blocks should not have destroyed preheader");
879 return HoistDestinationMap[BB];
896 bool AllowSpeculation) {
898 assert(
N !=
nullptr &&
AA !=
nullptr && LI !=
nullptr && DT !=
nullptr &&
899 CurLoop !=
nullptr && SafetyInfo !=
nullptr &&
900 "Unexpected input to hoistRegion.");
902 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
918 if (!LoopNestMode &&
inSubLoop(BB, CurLoop, LI))
934 hoist(
I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
943 if (
I.getOpcode() == Instruction::FDiv &&
I.hasAllowReciprocal() &&
945 auto Divisor =
I.getOperand(1);
946 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
947 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
948 ReciprocalDivisor->setFastMathFlags(
I.getFastMathFlags());
950 ReciprocalDivisor->insertBefore(
I.getIterator());
951 ReciprocalDivisor->setDebugLoc(
I.getDebugLoc());
954 BinaryOperator::CreateFMul(
I.getOperand(0), ReciprocalDivisor);
955 Product->setFastMathFlags(
I.getFastMathFlags());
957 Product->insertAfter(
I.getIterator());
958 Product->setDebugLoc(
I.getDebugLoc());
959 I.replaceAllUsesWith(Product);
962 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
963 SafetyInfo, MSSAU, SE, ORE);
964 HoistedInstructions.
push_back(ReciprocalDivisor);
971 return I.use_empty() &&
974 auto MustExecuteWithoutWritesBefore = [&](
Instruction &
I) {
978 if ((IsInvariantStart(
I) ||
isGuard(&
I)) &&
980 MustExecuteWithoutWritesBefore(
I)) {
981 hoist(
I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
989 if (CFH.canHoistPHI(PN)) {
995 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
1013 CFH.registerPossiblyHoistableBranch(BI);
1028 [&](
Use &U) { return DT->dominates(I, U); })) {
1034 "New hoist point expected to dominate old hoist point");
1038 << HoistPoint->
getParent()->getNameOrAsOperand()
1039 <<
": " << *
I <<
"\n");
1052#ifdef EXPENSIVE_CHECKS
1054 assert(DT->
verify(DominatorTree::VerificationLevel::Fast) &&
1055 "Dominator tree verification failed");
1090 unsigned UsesVisited = 0;
1093 for (
auto *U : Addr->
users()) {
1100 if (!
II ||
II->getIntrinsicID() != Intrinsic::invariant_start ||
1138 for (
auto *BB : L->getBlocks())
1141 for (
const auto &Acc : *Accs) {
1145 if (MUD->getMemoryInst() !=
I || NotAPhi++ == 1)
1157 if (Flags.tooManyClobberingCalls())
1162 Flags.incrementClobberingCalls();
1168 bool TargetExecutesOncePerLoop,
1178 if (!LI->isUnordered())
1183 if (!
isModSet(
AA->getModRefInfoMask(LI->getOperand(0))))
1185 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1188 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1197 bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group);
1200 MSSA, MU, CurLoop,
I, Flags, InvariantGroup);
1203 if (ORE && Invalidated && CurLoop->
isLoopInvariant(LI->getPointerOperand()))
1206 DEBUG_TYPE,
"LoadWithLoopInvariantAddressInvalidated", LI)
1207 <<
"failed to move load with loop-invariant address "
1208 "because the loop may invalidate its value";
1211 return !Invalidated;
1221 if (CI->isConvergent())
1229 if (CI->getFunction()->isPresplitCoroutine())
1252 MSSA, MU, CurLoop,
I, Flags,
false);
1267 if (!
SI->isUnordered())
1280 assert(!
I.mayReadOrWriteMemory() &&
"unhandled aliasing");
1312 for (
const User *U :
GEP->users()) {
1334 bool &FoldableInLoop,
bool LoopNestMode) {
1337 for (
const User *U :
I.users()) {
1348 if (!BlockColors.empty() &&
1349 BlockColors.find(
const_cast<BasicBlock *
>(BB))->second.size() != 1)
1364 FoldableInLoop =
true;
1384 for (
unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1385 BundleIdx != BundleEnd; ++BundleIdx) {
1393 if (!BlockColors.empty()) {
1394 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1395 assert(CV.
size() == 1 &&
"non-unique color for exit block!");
1398 if (EHPad->isEHPad())
1403 New->copyMetadata(*CI);
1409 if (!
I.getName().empty())
1410 New->setName(
I.getName() +
".le");
1436 for (
Use &
Op : New->operands())
1441 OInst->getName() +
".lcssa");
1454 I.eraseFromParent();
1463 I.moveBefore(*Dest->getParent(), Dest);
1478 "Expect only trivially replaceable PHI");
1480 auto [It, Inserted] = SunkCopies.
try_emplace(ExitBlock);
1515 assert(ExitBlockSet.
count(ExitBB) &&
"Expect the PHI is in an exit block.");
1552 while (!PredBBs.
empty()) {
1555 "Expect all predecessors are in the loop");
1558 ExitBB, PredBB,
".split.loop.exit", &DTU, LI, MSSAU,
true);
1562 if (!BlockColors.empty())
1588 Use &U = UI.getUse();
1626 UI =
I.user_begin();
1630 if (VisitedUsers.
empty())
1635 <<
"sinking " <<
ore::NV(
"Inst", &
I);
1658 for (
auto *UI :
Users) {
1666 "The LCSSA PHI is not in an exit block!");
1670 PN, &
I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1672 New->dropLocation();
1707 I.dropUBImplyingAttrsAndMetadata();
1718 I.updateLocationAfterHoist();
1735 if (AllowSpeculation &&
1739 bool GuaranteedToExecute =
1742 if (!GuaranteedToExecute) {
1747 DEBUG_TYPE,
"LoadWithLoopInvariantAddressCondExecuted", LI)
1748 <<
"failed to hoist load with loop-invariant address "
1749 "because load is conditionally executed";
1753 return GuaranteedToExecute;
1759 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1760 SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts;
1761 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1762 PredIteratorCache &PredCache;
1763 MemorySSAUpdater &MSSAU;
1767 bool UnorderedAtomic;
1769 ICFLoopSafetyInfo &SafetyInfo;
1770 bool CanInsertStoresInExitBlocks;
1776 Value *maybeInsertLCSSAPHI(
Value *V, BasicBlock *BB)
const {
1784 I->getName() +
".lcssa");
1786 for (BasicBlock *Pred : PredCache.
get(BB))
1793 SmallVectorImpl<BasicBlock *> &LEB,
1794 SmallVectorImpl<BasicBlock::iterator> &LIP,
1795 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &
PIC,
1796 MemorySSAUpdater &MSSAU, LoopInfo &li,
DebugLoc dl,
1797 Align Alignment,
bool UnorderedAtomic,
const AAMDNodes &AATags,
1798 ICFLoopSafetyInfo &SafetyInfo,
bool CanInsertStoresInExitBlocks)
1799 : LoadAndStorePromoter(Insts, S), SomePtr(
SP), LoopExitBlocks(LEB),
1800 LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(
PIC), MSSAU(MSSAU),
1801 LI(li),
DL(std::
move(dl)), Alignment(Alignment),
1802 UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1803 SafetyInfo(SafetyInfo),
1804 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks),
Uses(Insts) {}
1806 void insertStoresInLoopExitBlocks() {
1811 DIAssignID *NewID =
nullptr;
1812 for (
unsigned i = 0, e = LoopExitBlocks.
size(); i != e; ++i) {
1814 Value *LiveInValue =
SSA.GetValueInMiddleOfBlock(ExitBlock);
1815 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1816 Value *
Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1818 StoreInst *NewSI =
new StoreInst(LiveInValue,
Ptr, InsertPos);
1819 if (UnorderedAtomic)
1835 NewSI->
setMetadata(LLVMContext::MD_DIAssignID, NewID);
1841 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1842 MemoryAccess *NewMemAcc;
1843 if (!MSSAInsertPoint) {
1845 NewSI,
nullptr, NewSI->
getParent(), MemorySSA::Beginning);
1850 MSSAInsertPts[i] = NewMemAcc;
1856 void doExtraRewritesBeforeFinalDeletion()
override {
1857 if (CanInsertStoresInExitBlocks)
1858 insertStoresInLoopExitBlocks();
1861 void instructionDeleted(Instruction *
I)
const override {
1866 bool shouldDelete(Instruction *
I)
const override {
1868 return CanInsertStoresInExitBlocks;
1873bool isNotCapturedBeforeOrInLoop(
const Value *V,
const Loop *L,
1880 V,
true,
L->getHeader()->getTerminator(), DT,
1886bool isNotVisibleOnUnwindInLoop(
const Value *Object,
const Loop *L,
1888 bool RequiresNoCaptureBeforeUnwind;
1892 return !RequiresNoCaptureBeforeUnwind ||
1893 isNotCapturedBeforeOrInLoop(Object, L, DT);
1901 isNotCapturedBeforeOrInLoop(Object, L, DT)) ||
1921 bool HasReadsOutsideSet) {
1923 assert(LI !=
nullptr && DT !=
nullptr && CurLoop !=
nullptr &&
1924 SafetyInfo !=
nullptr &&
1925 "Unexpected Input to promoteLoopAccessesToScalars");
1928 dbgs() <<
"Trying to promote set of must-aliased pointers:\n";
1929 for (
Value *
Ptr : PointerMustAliases)
1930 dbgs() <<
" " << *
Ptr <<
"\n";
1932 ++NumPromotionCandidates;
1934 Value *SomePtr = *PointerMustAliases.
begin();
1974 bool DereferenceableInPH =
false;
1975 bool StoreIsGuanteedToExecute =
false;
1976 bool LoadIsGuaranteedToExecute =
false;
1977 bool FoundLoadToPromote =
false;
1984 } StoreSafety = StoreSafetyUnknown;
1992 bool SawUnorderedAtomic =
false;
1993 bool SawNotAtomic =
false;
2000 if (HasReadsOutsideSet)
2001 StoreSafety = StoreUnsafe;
2010 if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
2011 StoreSafety = StoreUnsafe;
2017 Type *AccessTy =
nullptr;
2018 for (
Value *ASIV : PointerMustAliases) {
2028 if (!Load->isUnordered())
2031 SawUnorderedAtomic |= Load->isAtomic();
2032 SawNotAtomic |= !Load->isAtomic();
2033 FoundLoadToPromote =
true;
2035 Align InstAlignment = Load->getAlign();
2037 if (!LoadIsGuaranteedToExecute)
2038 LoadIsGuaranteedToExecute =
2045 if (!DereferenceableInPH || (InstAlignment > Alignment))
2047 *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2049 DereferenceableInPH =
true;
2050 Alignment = std::max(Alignment, InstAlignment);
2057 if (!Store->isUnordered())
2060 SawUnorderedAtomic |= Store->isAtomic();
2061 SawNotAtomic |= !Store->isAtomic();
2068 Align InstAlignment = Store->getAlign();
2069 bool GuaranteedToExecute =
2071 StoreIsGuanteedToExecute |= GuaranteedToExecute;
2072 if (GuaranteedToExecute) {
2073 DereferenceableInPH =
true;
2074 if (StoreSafety == StoreSafetyUnknown)
2075 StoreSafety = StoreSafe;
2076 Alignment = std::max(Alignment, InstAlignment);
2085 if (StoreSafety == StoreSafetyUnknown &&
2087 return DT->
dominates(Store->getParent(), Exit);
2089 StoreSafety = StoreSafe;
2093 if (!DereferenceableInPH) {
2095 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2096 Store->getAlign(), MDL, Preheader->
getTerminator(), AC, DT, TLI);
2107 if (LoopUses.
empty()) {
2110 }
else if (AATags) {
2122 if (SawUnorderedAtomic && SawNotAtomic)
2132 if (!DereferenceableInPH) {
2133 LLVM_DEBUG(
dbgs() <<
"Not promoting: Not dereferenceable in preheader\n");
2141 if (StoreSafety == StoreSafetyUnknown) {
2143 bool ExplicitlyDereferenceableOnly;
2145 (!ExplicitlyDereferenceableOnly ||
2147 isThreadLocalObject(Object, CurLoop, DT,
TTI))
2148 StoreSafety = StoreSafe;
2153 if (StoreSafety != StoreSafe && !FoundLoadToPromote)
2158 if (StoreSafety == StoreSafe) {
2159 LLVM_DEBUG(
dbgs() <<
"LICM: Promoting load/store of the value: " << *SomePtr
2161 ++NumLoadStorePromoted;
2163 LLVM_DEBUG(
dbgs() <<
"LICM: Promoting load of the value: " << *SomePtr
2171 <<
"Moving accesses to memory location out of the loop";
2175 std::vector<DebugLoc> LoopUsesLocs;
2176 for (
auto U : LoopUses)
2177 LoopUsesLocs.push_back(U->getDebugLoc());
2183 LoopPromoter Promoter(SomePtr, LoopUses,
SSA, ExitBlocks, InsertPts,
2184 MSSAInsertPts,
PIC, MSSAU, *LI,
DL, Alignment,
2186 StoreIsGuanteedToExecute ? AATags :
AAMDNodes(),
2187 *SafetyInfo, StoreSafety == StoreSafe);
2192 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) {
2196 if (SawUnorderedAtomic)
2200 if (AATags && LoadIsGuaranteedToExecute)
2207 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2216 Promoter.run(LoopUses);
2221 if (PreheaderLoad && PreheaderLoad->
use_empty())
2233 Fn(MUD->getMemoryInst());
2243 auto IsPotentiallyPromotable = [L](
const Instruction *
I) {
2245 const Value *PtrOp =
SI->getPointerOperand();
2249 const Value *PtrOp = LI->getPointerOperand();
2258 if (IsPotentiallyPromotable(
I)) {
2259 AttemptingPromotion.
insert(
I);
2267 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2295 for (
auto [Set, HasReadsOutsideSet] : Sets) {
2297 for (
const auto &MemLoc : *Set)
2298 PointerMustAliases.
insert(
const_cast<Value *
>(MemLoc.Ptr));
2299 Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet);
2314 if (Flags.tooManyMemoryAccesses())
2343 if (!Flags.getIsSink() && !MSSA->
dominates(IMD, MU))
2348 assert(!LI->isUnordered() &&
"Expected unordered load");
2379 bool InvariantGroup) {
2381 if (!Flags.getIsSink()) {
2394 CurLoop->
contains(Source->getBlock()) &&
2415 if (Flags.tooManyMemoryAccesses())
2443 Value *Cond1, *Cond2;
2455 if (!
LHS->getType()->isIntegerTy())
2459 if (L.isLoopInvariant(
LHS)) {
2463 if (L.isLoopInvariant(
LHS) || !L.isLoopInvariant(
RHS))
2470 Value *LHS1, *LHS2, *RHS1, *RHS2;
2471 if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) ||
2472 !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2))
2475 if (!MatchingPred || LHS1 != LHS2)
2483 "Relational predicate is either less (or equal) or greater (or equal)!");
2485 ? (UseMin ? Intrinsic::smin : Intrinsic::smax)
2486 : (UseMin ? Intrinsic::umin : Intrinsic::umax);
2487 auto *Preheader = L.getLoopPreheader();
2488 assert(Preheader &&
"Loop is not in simplify form?");
2495 RHS2 = Builder.CreateFreeze(RHS2, RHS2->
getName() +
".fr");
2496 Value *NewRHS = Builder.CreateBinaryIntrinsic(
2497 id, RHS1, RHS2,
nullptr,
2500 (UseMin ?
"min" :
"max"));
2501 Builder.SetInsertPoint(&
I);
2505 Value *NewCond = Builder.CreateICmp(
P, LHS1, NewRHS);
2507 I.replaceAllUsesWith(NewCond);
2530 if (
GEP->hasAllConstantIndices())
2534 if (!Src || !Src->hasOneUse() || !L.contains(Src))
2537 Value *SrcPtr = Src->getPointerOperand();
2538 auto LoopInvariant = [&](
Value *V) {
return L.isLoopInvariant(V); };
2539 if (!L.isLoopInvariant(SrcPtr) || !
all_of(
GEP->indices(), LoopInvariant))
2546 if (
all_of(Src->indices(), LoopInvariant))
2556 bool IsInBounds = Src->isInBounds() &&
GEP->isInBounds() &&
2560 BasicBlock *Preheader = L.getLoopPreheader();
2562 Value *NewSrc = Builder.CreateGEP(
GEP->getSourceElementType(), SrcPtr,
2564 "invariant.gep", IsInBounds);
2565 Builder.SetInsertPoint(
GEP);
2566 Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc,
2569 GEP->replaceAllUsesWith(NewGEP);
2582 assert(!L.isLoopInvariant(VariantLHS) &&
"Precondition.");
2583 assert(L.isLoopInvariant(InvariantRHS) &&
"Precondition.");
2589 Value *VariantOp, *InvariantOp;
2599 if (L.isLoopInvariant(VariantOp))
2601 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2608 auto &
DL = L.getHeader()->getDataLayout();
2617 auto *Preheader = L.getLoopPreheader();
2618 assert(Preheader &&
"Loop is not in simplify form?");
2621 Builder.CreateSub(InvariantRHS, InvariantOp,
"invariant.op",
2622 !IsSigned, IsSigned);
2640 assert(!L.isLoopInvariant(VariantLHS) &&
"Precondition.");
2641 assert(L.isLoopInvariant(InvariantRHS) &&
"Precondition.");
2647 Value *VariantOp, *InvariantOp;
2655 bool VariantSubtracted =
false;
2659 if (L.isLoopInvariant(VariantOp)) {
2661 VariantSubtracted =
true;
2664 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2672 auto &
DL = L.getHeader()->getDataLayout();
2674 if (VariantSubtracted && IsSigned) {
2679 }
else if (VariantSubtracted && !IsSigned) {
2684 }
else if (!VariantSubtracted && IsSigned) {
2695 auto *Preheader = L.getLoopPreheader();
2696 assert(Preheader &&
"Loop is not in simplify form?");
2700 ? Builder.CreateSub(InvariantOp, InvariantRHS,
"invariant.op",
2701 !IsSigned, IsSigned)
2702 : Builder.CreateAdd(InvariantOp, InvariantRHS,
"invariant.op",
2703 !IsSigned, IsSigned);
2725 if (L.isLoopInvariant(
LHS)) {
2731 if (L.isLoopInvariant(
LHS) || !L.isLoopInvariant(
RHS) || !
LHS->hasOneUse())
2746 unsigned FPOpcode) {
2747 if (
I->getOpcode() == IntOpcode)
2749 if (
I->getOpcode() == FPOpcode &&
I->hasAllowReassoc() &&
2750 I->hasNoSignedZeros())
2766 Value *VariantOp =
I.getOperand(0);
2767 Value *InvariantOp =
I.getOperand(1);
2768 if (L.isLoopInvariant(VariantOp))
2770 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2772 Value *Factor = InvariantOp;
2780 while (!Worklist.
empty()) {
2793 L.isLoopInvariant(BO))
2797 if (L.isLoopInvariant(U0))
2799 else if (L.isLoopInvariant(U1))
2803 unsigned Limit =
I.getType()->isIntOrIntVectorTy()
2806 if (Changes.
size() > Limit)
2809 if (Changes.
empty())
2813 if (
I.getType()->isIntOrIntVectorTy()) {
2814 for (
auto *
Add : Adds)
2815 Add->dropPoisonGeneratingFlags();
2819 auto *Preheader = L.getLoopPreheader();
2820 assert(Preheader &&
"Loop is not in simplify form?");
2822 for (
auto *U : Changes) {
2823 assert(L.isLoopInvariant(U->get()));
2826 if (
I.getType()->isIntOrIntVectorTy()) {
2827 Mul = Builder.CreateMul(U->get(), Factor,
"factor.op.mul");
2829 Ins->dropPoisonGeneratingFlags();
2831 Mul = Builder.CreateFMulFMF(U->get(), Factor, Ins,
"factor.op.fmul");
2834 unsigned OpIdx = U->getOperandNo();
2835 auto *
LHS =
OpIdx == 0 ?
Mul : Ins->getOperand(0);
2836 auto *
RHS =
OpIdx == 1 ?
Mul : Ins->getOperand(1);
2839 Ins->getName() +
".reass", Ins->getIterator());
2841 NewBO->copyIRFlags(Ins);
2842 if (VariantOp == Ins)
2844 Ins->replaceAllUsesWith(NewBO);
2848 I.replaceAllUsesWith(VariantOp);
2868 if (!BO || !BO->isAssociative())
2872 bool LVInRHS = L.isLoopInvariant(BO->getOperand(0));
2874 if (!BO0 || BO0->getOpcode() != Opcode || !BO0->isAssociative() ||
2875 BO0->hasNUsesOrMore(BO0->getType()->isIntegerTy() ? 2 : 3))
2878 Value *LV = BO0->getOperand(0);
2879 Value *C1 = BO0->getOperand(1);
2880 Value *C2 = BO->getOperand(!LVInRHS);
2882 assert(BO->isCommutative() && BO0->isCommutative() &&
2883 "Associativity implies commutativity");
2884 if (L.isLoopInvariant(LV) && !L.isLoopInvariant(C1))
2886 if (L.isLoopInvariant(LV) || !L.isLoopInvariant(C1) || !L.isLoopInvariant(C2))
2889 auto *Preheader = L.getLoopPreheader();
2890 assert(Preheader &&
"Loop is not in simplify form?");
2893 auto *Inv = Builder.CreateBinOp(Opcode, C1, C2,
"invariant.op");
2896 Opcode, LV, Inv, BO->
getName() +
".reass", BO->getIterator());
2899 if (Opcode == Instruction::FAdd || Opcode == Instruction::FMul) {
2901 FastMathFlags Intersect = BO->getFastMathFlags() & BO0->getFastMathFlags();
2903 I->setFastMathFlags(Intersect);
2904 NewBO->setFastMathFlags(Intersect);
2908 Flags.AllKnownNonZero =
false;
2909 Flags.mergeFlags(*BO);
2910 Flags.mergeFlags(*BO0);
2913 Flags.applyFlags(*
I);
2914 Flags.applyFlags(*NewBO);
2917 BO->replaceAllUsesWith(NewBO);
2922 if (BO0->use_empty()) {
2944 if (
hoistGEP(
I, L, SafetyInfo, MSSAU, AC, DT)) {
2957 bool IsInt =
I.getType()->isIntOrIntVectorTy();
2961 ++NumIntAssociationsHoisted;
2963 ++NumFPAssociationsHoisted;
2969 ++NumBOAssociationsHoisted;
2980 assert(CurLoop->
contains(BB) &&
"Only valid if BB is IN the loop");
unsigned const MachineRegisterInfo * MRI
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
early cse Early CSE w MemorySSA
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
static bool isReassociableOp(Instruction *I, unsigned IntOpcode, unsigned FPOpcode)
static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, TargetTransformInfo *TTI, bool &FoldableInLoop, bool LoopNestMode)
Return true if the only users of this instruction are outside of the loop.
static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT)
Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if this allows hoisting the inner ...
static cl::opt< bool > SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), cl::desc("Force thread model single in LICM pass"))
static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, LoopInfo *LI, const Loop *CurLoop, LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU)
static cl::opt< unsigned > FPAssociationUpperLimit("licm-max-num-fp-reassociations", cl::init(5U), cl::Hidden, cl::desc("Set upper limit for the number of transformations performed " "during a single round of hoisting the reassociated expressions."))
static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop, const TargetTransformInfo *TTI)
Return true if the instruction is foldable in the loop.
static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < min(INV_1, INV_2)),...
static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE)
static Instruction * cloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU)
static cl::opt< bool > ControlFlowHoisting("licm-control-flow-hoisting", cl::Hidden, cl::init(false), cl::desc("Enable control flow (and PHI) hoisting in LICM"))
static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, Loop *CurLoop, Instruction &I, SinkAndHoistLICMFlags &Flags, bool InvariantGroup)
static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS, Value *InvariantRHS, ICmpInst &ICmp, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT)
Try to turn things like "LV + C1 < C2" into "LV < C2 - C1".
static MemoryAccess * getClobberingMemoryAccess(MemorySSA &MSSA, BatchAAResults &BAA, SinkAndHoistLICMFlags &Flags, MemoryUseOrDef *MA)
static SmallVector< PointersAndHasReadsOutsideSet, 0 > collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L)
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
When an instruction is found to only use loop invariant operands that is safe to hoist,...
static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo)
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE)
When an instruction is found to only be used outside of the loop, this function moves it to the exit ...
static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT)
Reassociate and hoist add/sub expressions.
static bool hoistMulAddAssociation(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT)
Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where A1, A2,...
static cl::opt< uint32_t > MaxNumUsesTraversed("licm-max-num-uses-traversed", cl::Hidden, cl::init(8), cl::desc("Max num uses visited for identifying load " "invariance in loop using invariant start (default = 8)"))
static bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, const MemorySSAUpdater &MSSAU)
Return true if I is the only Instruction with a MemoryAccess in L.
static cl::opt< unsigned > IntAssociationUpperLimit("licm-max-num-int-reassociations", cl::init(5U), cl::Hidden, cl::desc("Set upper limit for the number of transformations performed " "during a single round of hoisting the reassociated expressions."))
static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, function_ref< void(Instruction *)> Fn)
static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, Loop *CurLoop)
static bool isHoistableAndSinkableInst(Instruction &I)
Return true if-and-only-if we know how to (mechanically) both hoist and sink a given instruction out ...
static Instruction * sinkThroughTriviallyReplaceablePHI(PHINode *TPN, Instruction *I, LoopInfo *LI, SmallDenseMap< BasicBlock *, Instruction *, 32 > &SunkCopies, const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, MemorySSAUpdater &MSSAU)
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI)
Little predicate that returns true if the specified basic block is in a subloop of the current one,...
static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS, Value *InvariantRHS, ICmpInst &ICmp, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT)
Try to reassociate and hoist the following two patterns: LV - C1 < C2 --> LV < C1 + C2,...
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
static bool isSafeToExecuteUnconditionally(Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, const Instruction *CtxI, AssumptionCache *AC, bool AllowSpeculation)
Only sink or hoist an instruction if it is not a trapping instruction, or if the instruction is known...
static bool hoistArithmetics(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT)
Aggregates various functions for hoisting computations out of loop.
static bool noConflictingReadWrites(Instruction *I, MemorySSA *MSSA, AAResults *AA, Loop *CurLoop, SinkAndHoistLICMFlags &Flags)
static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I)
Returns true if a PHINode is a trivially replaceable with an Instruction.
std::pair< SmallSetVector< Value *, 8 >, bool > PointersAndHasReadsOutsideSet
static cl::opt< bool > DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), cl::desc("Disable memory promotion in LICM pass"))
Memory promotion is enabled by default.
static bool hoistBOAssociation(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT)
Reassociate associative binary expressions of the form.
static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU)
This file defines the interface for the loop nest analysis.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
PassInstrumentationCallbacks PIC
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file provides a priority worklist.
Remove Loads Into Fake Uses
This file defines generic set operations that may be used on set's of different types,...
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
LLVM_ABI void add(const MemoryLocation &Loc)
These methods are used to add different types of instructions to the alias sets.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
LLVM_ABI void replaceSuccessorsPhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block's successors to refer to basic block New instead of basic bl...
iterator begin()
Instruction iterator methods.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
LLVM_ABI bool canSplitPredecessors() const
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
This is the shared class of boolean and integer constants.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
A parsed version of the target data layout string in and methods for querying it.
TypeSize getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type.
static LLVM_ABI DebugLoc getMergedLocations(ArrayRef< DebugLoc > Locs)
Try to combine the vector of locations passed as input in a single one.
static DebugLoc getDropped()
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Convenience struct for specifying and reasoning about fast-math flags.
This implementation of LoopSafetyInfo use ImplicitControlFlowTracking to give precise answers on "may...
bool doesNotWriteMemoryBefore(const BasicBlock *BB, const Loop *CurLoop) const
Returns true if we could not execute a memory-modifying instruction before we enter BB under assumpti...
void removeInstruction(const Instruction *Inst)
Inform safety info that we are planning to remove the instruction Inst from its block.
bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const override
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
bool anyBlockMayThrow() const override
Returns true iff any block of the loop for which this info is contains an instruction that may throw ...
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
void insertInstructionTo(const Instruction *Inst, const BasicBlock *BB)
Inform the safety info that we are planning to insert a new instruction Inst into the basic block BB.
This instruction compares its operands according to the predicate given to the constructor.
static bool isGE(Predicate P)
Return true if the predicate is SGE or UGE.
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
static bool isLE(Predicate P)
Return true if the predicate is SLE or ULE.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI void mergeDIAssignID(ArrayRef< const Instruction * > SourceInstructions)
Merge the DIAssignID metadata from this instruction and those attached to instructions in SourceInstr...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
PreservedAnalyses run(LoopNest &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
void setAlignment(Align Align)
Value * getPointerOperand()
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this load instruction.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getHeader() const
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
void getUniqueExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all unique successor blocks of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LLVM_ABI bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, const BasicBlock *ExitBB) const
This class represents a loop nest and can be used to query its properties.
Function * getParent() const
Return the function to which the loop-nest belongs.
Loop & getOutermostLoop() const
Return the outermost loop in the loop nest.
Captures loop safety information.
LLVM_ABI void copyColors(BasicBlock *New, BasicBlock *Old)
Copy colors of block Old into the block New.
LLVM_ABI const DenseMap< BasicBlock *, ColorVector > & getBlockColors() const
Returns block colors map that is used to update funclet operand bundles.
virtual bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const =0
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
BasicBlock * getBlock() const
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
An analysis that produces MemorySSA for a function.
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
LLVM_ABI void insertDef(MemoryDef *Def, bool RenameUses=false)
Insert a definition into the MemorySSA IR.
LLVM_ABI void insertUse(MemoryUse *Use, bool RenameUses=false)
LLVM_ABI MemoryAccess * createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point, bool CreationMustSucceed=true)
Create a MemoryAccess in MemorySSA at a specified point in a block.
LLVM_ABI void removeMemoryAccess(MemoryAccess *, bool OptimizePhis=false)
Remove a MemoryAccess from MemorySSA, including updating all definitions and uses.
LLVM_ABI MemoryUseOrDef * createMemoryAccessAfter(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt)
Create a MemoryAccess in MemorySSA after an existing MemoryAccess.
LLVM_ABI void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where)
LLVM_ABI void wireOldPredecessorsToNewImmediatePredecessor(BasicBlock *Old, BasicBlock *New, ArrayRef< BasicBlock * > Preds, bool IdenticalEdgesWereMerged=true)
A new empty BasicBlock (New) now branches directly to Old.
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Legacy analysis pass which computes MemorySSA.
Encapsulates MemorySSA, including all data associated with memory accesses.
const AccessList * getBlockAccesses(const BasicBlock *BB) const
Return the list of MemoryAccess's for a given basic block.
LLVM_ABI MemorySSAWalker * getSkipSelfWalker()
LLVM_ABI bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
const DefsList * getBlockDefs(const BasicBlock *BB) const
Return the list of MemoryDef's and MemoryPhi's for a given basic block.
LLVM_ABI bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in the same basic block, determine whether MemoryAccess A dominates MemoryA...
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Class that has the common methods + fields of memory uses/defs.
MemoryAccess * getDefiningAccess() const
Get the access that produces the memory state used by this Use.
Represents read-only accesses to memory.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingBlock(unsigned i, BasicBlock *BB)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
PointerIntPair - This class implements a pair of a pointer and small integer.
void setInt(IntType IntVal) &
PointerTy getPointer() const
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
PredIteratorCache - This class is an extremely trivial cache for predecessor iterator queries.
size_t size(BasicBlock *BB)
ArrayRef< BasicBlock * > get(BasicBlock *BB)
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
bool empty() const
Determine if the PriorityWorklist is empty or not.
bool insert(const T &X)
Insert a new element into the PriorityWorklist.
Helper class for SSA formation on a set of values defined in multiple blocks.
The main scalar evolution driver.
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LLVM_ABI void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
bool remove(const value_type &X)
Remove an item from the set vector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
Flags controlling how much is checked when sinking or hoisting instructions.
LLVM_ABI SinkAndHoistLICMFlags(unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, Loop &L, MemorySSA &MSSA)
unsigned LicmMssaNoAccForPromotionCap
A version of PriorityWorklist that selects small size optimized data structures for the vector and ma...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
static unsigned getPointerOperandIndex()
StringRef - Represent a constant reference to a string, i.e.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
A Use represents the edge between a Value definition and its users.
const Use & getOperandUse(unsigned i) const
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI std::string getNameOrAsOperand() const
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
iterator_range< use_iterator > uses()
user_iterator_impl< User > user_iterator
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
Abstract Attribute helper functions.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
@ NeverOverflows
Never overflows.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, Loop *CurLoop, MemorySSAUpdater &MSSAU, bool TargetExecutesOncePerLoop, SinkAndHoistLICMFlags &LICMFlags, OptimizationRemarkEmitter *ORE=nullptr)
Returns true if is legal to hoist or sink this instruction disregarding the possible introduction of ...
auto pred_end(const MachineBasicBlock *BB)
void set_intersect(S1Ty &S1, const S2Ty &S2)
set_intersect(A, B) - Compute A := A ^ B Identical to set_intersection, except that it works on set<>...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
constexpr from_range_t from_range
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
auto pred_size(const MachineBasicBlock *BB)
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI bool PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI=false, unsigned MaxUsesToExplore=0, const LoopInfo *LI=nullptr)
PointerMayBeCapturedBefore - Return true if this pointer value may be captured by the enclosing funct...
LLVM_ABI Pass * createLICMPass()
LLVM_ABI SmallVector< BasicBlock *, 16 > collectChildrenInLoop(DominatorTree *DT, DomTreeNode *N, const Loop *CurLoop)
Does a BFS from a given node to all of its children inside a given loop.
DomTreeNodeBase< BasicBlock > DomTreeNode
AnalysisManager< Loop, LoopStandardAnalysisResults & > LoopAnalysisManager
The loop analysis manager.
LLVM_ABI bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, AssumptionCache *, TargetLibraryInfo *, Loop *, MemorySSAUpdater &, ScalarEvolution *, ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, bool, bool AllowSpeculation)
Walk the specified region of the CFG (defined by all blocks dominated by the specified block,...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
auto reverse(ContainerTy &&C)
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI void initializeLegacyLICMPassPass(PassRegistry &)
bool isModSet(const ModRefInfo MRI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_TEMPLATE_ABI void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
bool isModOrRefSet(const ModRefInfo MRI)
LLVM_ABI bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind)
Return true if Object memory is not visible after an unwind, in the sense that program semantics cann...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
LLVM_ABI bool salvageKnowledge(Instruction *I, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Calls BuildAssumeFromInst and if the resulting llvm.assume is valid insert if before I.
LLVM_ABI bool hasDisableLICMTransformsHint(const Loop *L)
Look for the loop attribute that disables the LICM transformation heuristics.
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI bool isIdentifiedFunctionLocal(const Value *V)
Return true if V is umabigously identified at the function-level.
LLVM_ABI bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
TinyPtrVector< BasicBlock * > ColorVector
auto pred_begin(const MachineBasicBlock *BB)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
auto predecessors(const MachineBasicBlock *BB)
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, TargetLibraryInfo *, TargetTransformInfo *, Loop *CurLoop, MemorySSAUpdater &, ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, Loop *OutermostLoop=nullptr)
Walk the specified region of the CFG (defined by all blocks dominated by the specified block,...
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
cl::opt< unsigned > SetLicmMssaNoAccForPromotionCap
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
bool capturesNothing(CaptureComponents CC)
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool promoteLoopAccessesToScalars(const SmallSetVector< Value *, 8 > &, SmallVectorImpl< BasicBlock * > &, SmallVectorImpl< BasicBlock::iterator > &, SmallVectorImpl< MemoryAccess * > &, PredIteratorCache &, LoopInfo *, DominatorTree *, AssumptionCache *AC, const TargetLibraryInfo *, TargetTransformInfo *, Loop *, MemorySSAUpdater &, ICFLoopSafetyInfo *, OptimizationRemarkEmitter *, bool AllowSpeculation, bool HasReadsOutsideSet)
Try to promote memory values to scalars by sinking stores out of the loop and moving loads to before ...
cl::opt< unsigned > SetLicmMssaOptCap
LLVM_ABI bool sinkRegionForLoopNest(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, TargetLibraryInfo *, TargetTransformInfo *, Loop *, MemorySSAUpdater &, ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *)
Call sinkRegion on loops contained within the specified loop in order from innermost to outermost.
bool isRefSet(const ModRefInfo MRI)
LLVM_ABI bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly)
Return true if the Object is writable, in the sense that any location based on this pointer that can ...
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
LLVM_ABI AAMDNodes merge(const AAMDNodes &Other) const
Given two sets of AAMDNodes applying to potentially different locations, determine the best AAMDNodes...
This struct is a compact representation of a valid (non-zero power of two) alignment.
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
TargetTransformInfo & TTI
A lightweight accessor for an operand bundle meant to be passed around by value.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
A CRTP mix-in to automatically provide informational APIs needed for passes.