50#define DEBUG_TYPE "instsimplify"
94 CmpInst *Cmp = dyn_cast<CmpInst>(V);
98 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
99 if (CPred == Pred && CLHS ==
LHS && CRHS ==
RHS)
112 unsigned MaxRecurse,
Constant *TrueOrFalse) {
114 if (SimplifiedCmp ==
Cond) {
122 return SimplifiedCmp;
128 unsigned MaxRecurse) {
136 unsigned MaxRecurse) {
146 unsigned MaxRecurse) {
183 if (
I->getParent()->isEntryBlock() && !isa<InvokeInst>(
I) &&
196 auto *
B = dyn_cast<BinaryOperator>(V);
197 if (!
B ||
B->getOpcode() != OpcodeToExpand)
199 Value *B0 =
B->getOperand(0), *B1 =
B->getOperand(1);
210 if ((L == B0 && R == B1) ||
231 unsigned MaxRecurse) {
248 unsigned MaxRecurse) {
351 unsigned MaxRecurse) {
357 if (isa<SelectInst>(
LHS)) {
358 SI = cast<SelectInst>(
LHS);
360 assert(isa<SelectInst>(
RHS) &&
"No select instruction operand!");
361 SI = cast<SelectInst>(
RHS);
388 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
394 if ((FV && !TV) || (TV && !FV)) {
397 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
398 if (Simplified && Simplified->getOpcode() ==
unsigned(Opcode) &&
399 !Simplified->hasPoisonGeneratingFlags()) {
403 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
404 Value *UnsimplifiedLHS = SI ==
LHS ? UnsimplifiedBranch :
LHS;
405 Value *UnsimplifiedRHS = SI ==
LHS ?
RHS : UnsimplifiedBranch;
406 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
407 Simplified->getOperand(1) == UnsimplifiedRHS)
409 if (Simplified->isCommutative() &&
410 Simplified->getOperand(1) == UnsimplifiedLHS &&
411 Simplified->getOperand(0) == UnsimplifiedRHS)
435 if (!isa<SelectInst>(
LHS)) {
439 assert(isa<SelectInst>(
LHS) &&
"Not comparing with a select instruction!");
442 Value *TV = SI->getTrueValue();
443 Value *FV = SI->getFalseValue();
475 unsigned MaxRecurse) {
481 if (isa<PHINode>(
LHS)) {
482 PI = cast<PHINode>(
LHS);
487 assert(isa<PHINode>(
RHS) &&
"No PHI instruction operand!");
488 PI = cast<PHINode>(
RHS);
495 Value *CommonValue =
nullptr;
508 if (!V || (CommonValue && V != CommonValue))
527 if (!isa<PHINode>(
LHS)) {
531 assert(isa<PHINode>(
LHS) &&
"Not comparing with a phi instruction!");
539 Value *CommonValue =
nullptr;
553 if (!V || (CommonValue && V != CommonValue))
564 if (
auto *CLHS = dyn_cast<Constant>(Op0)) {
565 if (
auto *CRHS = dyn_cast<Constant>(Op1)) {
569 case Instruction::FAdd:
570 case Instruction::FSub:
571 case Instruction::FMul:
572 case Instruction::FDiv:
573 case Instruction::FRem:
574 if (Q.
CxtI !=
nullptr)
595 if (isa<PoisonValue>(Op1))
658 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query,
RecursionLimit);
671 bool AllowNonInbounds =
false) {
672 assert(V->getType()->isPtrOrPtrVectorTy());
675 V = V->stripAndAccumulateConstantOffsets(
DL,
Offset, AllowNonInbounds);
678 return Offset.sextOrTrunc(
DL.getIndexTypeSizeInBits(V->getType()));
698 if (
auto *VecTy = dyn_cast<VectorType>(
LHS->
getType()))
713 std::optional<bool> Imp =
718 case Instruction::Sub:
719 case Instruction::Xor:
720 case Instruction::URem:
721 case Instruction::SRem:
724 case Instruction::SDiv:
725 case Instruction::UDiv:
726 return ConstantInt::get(Ty, 1);
728 case Instruction::And:
729 case Instruction::Or:
748 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
784 Value *
X =
nullptr, *
Y =
nullptr, *Z = Op1;
842 if (
X->getType() ==
Y->getType())
887 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
898 if (isa<PoisonValue>(Op1))
922 return ConstantInt::getNullValue(Op0->
getType());
937 Instruction::Add, Q, MaxRecurse))
942 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
949 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
959 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
968 Constant *
C = dyn_cast_or_null<Constant>(V);
969 return (
C &&
C->isAllOnesValue());
975 unsigned MaxRecurse,
bool IsSigned) {
992 Type *Ty =
X->getType();
998 Constant *PosDividendC = ConstantInt::get(Ty,
C->abs());
999 Constant *NegDividendC = ConstantInt::get(Ty, -
C->abs());
1008 if (
C->isMinSignedValue())
1014 Constant *PosDivisorC = ConstantInt::get(Ty,
C->abs());
1015 Constant *NegDivisorC = ConstantInt::get(Ty, -
C->abs());
1035 return isICmpTrue(ICmpInst::ICMP_ULT,
X,
Y, Q, MaxRecurse);
1042 unsigned MaxRecurse) {
1043 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1044 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1061 if (isa<PoisonValue>(Op0))
1101 auto *
Mul = cast<OverflowingBinaryOperator>(Op0);
1112 if (
isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1120 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1126 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1136 unsigned MaxRecurse) {
1159 (Opcode == Instruction::UDiv
1179 if ((Opcode == Instruction::SRem &&
1181 (Opcode == Instruction::URem &&
1189 if (Opcode == Instruction::SRem
1192 return C.srem(*C0).isZero();
1196 return C.urem(*C0).isZero();
1212 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1224 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1235 unsigned MaxRecurse) {
1240 return ConstantInt::getNullValue(Op0->
getType());
1244 return ConstantInt::getNullValue(Op0->
getType());
1246 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1256 unsigned MaxRecurse) {
1257 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1266 Constant *
C = dyn_cast<Constant>(Amount);
1276 const APInt *AmountC;
1282 if (isa<ConstantVector>(
C) || isa<ConstantDataVector>(
C)) {
1283 for (
unsigned I = 0,
1284 E = cast<FixedVectorType>(
C->getType())->getNumElements();
1298 unsigned MaxRecurse) {
1303 if (isa<PoisonValue>(Op0))
1324 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1330 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1348 assert(Opcode == Instruction::Shl &&
"Expected shl for nsw instruction");
1367 Value *Op1,
bool IsExact,
1386 if (Op0Known.
One[0])
1398 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1422 if (IsNSW && IsNUW &&
1431 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
1453 const APInt *ShRAmt, *ShLAmt;
1456 *ShRAmt == *ShLAmt) {
1459 if (ShRAmt->
uge(EffWidthY))
1507 ICmpInst *UnsignedICmp,
bool IsAnd,
1521 if (
match(UnsignedICmp,
1523 ICmpInst::isUnsigned(UnsignedPred)) {
1525 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1526 UnsignedPred == ICmpInst::ICMP_ULE) &&
1527 EqPred == ICmpInst::ICMP_NE && !IsAnd)
1530 if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1531 UnsignedPred == ICmpInst::ICMP_UGT) &&
1532 EqPred == ICmpInst::ICMP_EQ && IsAnd)
1537 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1538 UnsignedPred == ICmpInst::ICMP_UGT))
1539 return IsAnd ? UnsignedICmp : ZeroICmp;
1543 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1544 UnsignedPred == ICmpInst::ICMP_UGE))
1545 return IsAnd ? ZeroICmp : UnsignedICmp;
1551 if (
match(UnsignedICmp,
1553 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1555 return UnsignedICmp;
1556 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1558 return UnsignedICmp;
1563 ICmpInst::isUnsigned(UnsignedPred))
1565 else if (
match(UnsignedICmp,
1567 ICmpInst::isUnsigned(UnsignedPred))
1568 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1574 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1576 return IsAnd ? ZeroICmp : UnsignedICmp;
1580 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1582 return IsAnd ? UnsignedICmp : ZeroICmp;
1591 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1592 return IsAnd ? UnsignedICmp : ZeroICmp;
1596 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1597 return IsAnd ? ZeroICmp : UnsignedICmp;
1600 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1605 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1621 const APInt *C0, *C1;
1631 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1636 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1644 if (Range0.contains(Range1))
1645 return IsAnd ? Cmp1 : Cmp0;
1646 if (Range1.contains(Range0))
1647 return IsAnd ? Cmp0 : Cmp1;
1656 const APInt *C0, *C1;
1664 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->
getOperand(0));
1665 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1672 const APInt Delta = *C1 - *C0;
1675 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1677 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1681 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1683 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1689 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1692 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1711 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE)
1714 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ)
1747 const APInt *C0, *C1;
1755 auto *AddInst = cast<BinaryOperator>(Op0->
getOperand(0));
1756 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1763 const APInt Delta = *C1 - *C0;
1766 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1768 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1772 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1774 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1780 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1783 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1815 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1816 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1822 if ((PredL == FCmpInst::FCMP_ORD || PredL == FCmpInst::FCMP_UNO) &&
1823 ((FCmpInst::isOrdered(PredR) && IsAnd) ||
1824 (FCmpInst::isUnordered(PredR) && !IsAnd))) {
1829 if ((
match(RHS0, AbsOrSelfLHS0) ||
match(RHS1, AbsOrSelfLHS0)) &&
1831 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR)
1837 if ((PredR == FCmpInst::FCMP_ORD || PredR == FCmpInst::FCMP_UNO) &&
1838 ((FCmpInst::isOrdered(PredL) && IsAnd) ||
1839 (FCmpInst::isUnordered(PredL) && !IsAnd))) {
1844 if ((
match(LHS0, AbsOrSelfRHS0) ||
match(LHS1, AbsOrSelfRHS0)) &&
1846 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR)
1855 Value *Op1,
bool IsAnd) {
1857 auto *Cast0 = dyn_cast<CastInst>(Op0);
1858 auto *Cast1 = dyn_cast<CastInst>(Op1);
1859 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1860 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1861 Op0 = Cast0->getOperand(0);
1862 Op1 = Cast1->getOperand(0);
1866 auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1867 auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1872 auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1873 auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1884 if (
auto *
C = dyn_cast<Constant>(V))
1893 bool AllowRefinement,
1895 unsigned MaxRecurse);
1899 unsigned MaxRecurse) {
1900 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1915 (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
1916 if (Res == Absorber)
1926 if (Res == Absorber)
1936 nullptr, MaxRecurse))
1937 return Simplify(Res);
1940 nullptr, MaxRecurse))
1941 return Simplify(Res);
1951 assert(BinaryOperator::isBitwiseLogicOp(Opcode) &&
"Expected logic op");
1963 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1964 : ConstantInt::getAllOnesValue(Ty);
1973 unsigned MaxRecurse) {
2007 const APInt *Shift1, *Shift2;
2012 Shift1->
uge(*Shift2))
2025 unsigned MaxRecurse) {
2030 if (isa<PoisonValue>(Op1))
2065 (~(*Mask)).lshr(*ShAmt).isZero())
2071 (~(*Mask)).shl(*ShAmt).isZero())
2076 const APInt *PowerC;
2085 return ConstantInt::getNullValue(Op1->
getType());
2098 Instruction::Or, Q, MaxRecurse))
2103 Instruction::Xor, Q, MaxRecurse))
2106 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2124 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2148 if (EffWidthY <= ShftCnt) {
2181 if (*Implied ==
true)
2184 if (*Implied ==
false)
2209 assert(
X->getType() ==
Y->getType() &&
"Expected same type for 'or' ops");
2210 Type *Ty =
X->getType();
2214 return ConstantInt::getAllOnesValue(Ty);
2218 return ConstantInt::getAllOnesValue(Ty);
2236 return ConstantInt::getAllOnesValue(Ty);
2260 return ConstantInt::getAllOnesValue(Ty);
2300 unsigned MaxRecurse) {
2305 if (isa<PoisonValue>(Op1))
2339 C->ule(
X->getType()->getScalarSizeInBits())) {
2340 return ConstantInt::getAllOnesValue(
X->getType());
2394 Instruction::And, Q, MaxRecurse))
2397 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2415 const APInt *C1, *C2;
2441 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2451 if (std::optional<bool> Implied =
2454 if (*Implied ==
false)
2457 if (*Implied ==
true)
2460 if (std::optional<bool> Implied =
2463 if (*Implied ==
false)
2466 if (*Implied ==
true)
2484 unsigned MaxRecurse) {
2489 if (isa<PoisonValue>(Op1))
2526 if (
Value *R = foldAndOrNot(Op0, Op1))
2528 if (
Value *R = foldAndOrNot(Op1, Op0))
2578 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2581 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2582 if (Pred == Cmp->getPredicate() &&
LHS == CmpLHS &&
RHS == CmpRHS)
2585 LHS == CmpRHS &&
RHS == CmpLHS)
2598 if (
const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2599 return AI->isStaticAlloca();
2600 if (
const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2601 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2602 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2603 !GV->isThreadLocal();
2604 if (
const Argument *
A = dyn_cast<Argument>(V))
2605 return A->hasByValAttr();
2638 auto isByValArg = [](
const Value *V) {
2639 const Argument *
A = dyn_cast<Argument>(V);
2640 return A &&
A->hasByValAttr();
2646 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2);
2648 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1);
2650 return isa<AllocaInst>(V1) &&
2651 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2));
2720 unsigned IndexSize =
DL.getIndexTypeSizeInBits(
LHS->
getType());
2721 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0);
2741 Opts.
EvalMode = ObjectSizeOpts::Mode::Min;
2743 if (
auto *
I = dyn_cast<Instruction>(V))
2744 return I->getFunction();
2745 if (
auto *
A = dyn_cast<Argument>(V))
2746 return A->getParent();
2752 APInt Dist = LHSOffset - RHSOffset;
2780 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2781 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2801 bool Captured =
false;
2804 if (
auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) {
2808 unsigned OtherIdx = 1 - U->getOperandNo();
2809 auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx));
2810 if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
2818 CustomCaptureTracker Tracker;
2820 if (!Tracker.Captured)
2842 auto ExtractNotLHS = [](
Value *V) ->
Value * {
2904 case ICmpInst::ICMP_UGE:
2908 case ICmpInst::ICMP_SGE:
2919 case ICmpInst::ICMP_ULE:
2923 case ICmpInst::ICMP_SLE:
2943 case ICmpInst::ICMP_ULT:
2945 case ICmpInst::ICMP_UGE:
2947 case ICmpInst::ICMP_EQ:
2948 case ICmpInst::ICMP_ULE:
2952 case ICmpInst::ICMP_NE:
2953 case ICmpInst::ICMP_UGT:
2957 case ICmpInst::ICMP_SLT: {
2965 case ICmpInst::ICMP_SLE: {
2973 case ICmpInst::ICMP_SGE: {
2981 case ICmpInst::ICMP_SGT: {
3034 *MulC != 0 &&
C->urem(*MulC) != 0) ||
3036 *MulC != 0 &&
C->srem(*MulC) != 0)))
3037 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
3047 if (!Res.
insert(V).second)
3054 auto *
I = dyn_cast<Instruction>(V);
3067 switch (
I->getOpcode()) {
3068 case Instruction::And:
3072 case Instruction::URem:
3073 case Instruction::UDiv:
3074 case Instruction::LShr:
3077 case Instruction::Call:
3089 if (Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_ULT)
3098 for (
Value *GV : GreaterValues)
3101 Pred == ICmpInst::ICMP_UGE);
3107 unsigned MaxRecurse) {
3113 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
3128 case ICmpInst::ICMP_SGT:
3129 case ICmpInst::ICMP_SGE: {
3135 case ICmpInst::ICMP_EQ:
3136 case ICmpInst::ICMP_UGT:
3137 case ICmpInst::ICMP_UGE:
3139 case ICmpInst::ICMP_SLT:
3140 case ICmpInst::ICMP_SLE: {
3146 case ICmpInst::ICMP_NE:
3147 case ICmpInst::ICMP_ULT:
3148 case ICmpInst::ICMP_ULE:
3170 case ICmpInst::ICMP_EQ:
3171 case ICmpInst::ICMP_UGE:
3172 case ICmpInst::ICMP_UGT:
3174 case ICmpInst::ICMP_NE:
3175 case ICmpInst::ICMP_ULT:
3176 case ICmpInst::ICMP_ULE:
3191 const APInt *C1, *C2;
3198 if (Pred == ICmpInst::ICMP_UGT)
3200 if (Pred == ICmpInst::ICMP_ULE)
3238 const APInt *C1, *C2;
3252 unsigned MaxRecurse) {
3255 if (MaxRecurse && (LBO || RBO)) {
3257 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
3259 bool NoLHSWrapProblem =
false, NoRHSWrapProblem =
false;
3260 if (LBO && LBO->
getOpcode() == Instruction::Add) {
3270 if (RBO && RBO->
getOpcode() == Instruction::Add) {
3282 if ((
A ==
RHS ||
B ==
RHS) && NoLHSWrapProblem)
3289 if ((
C ==
LHS ||
D ==
LHS) && NoRHSWrapProblem)
3292 C ==
LHS ?
D :
C, Q, MaxRecurse - 1))
3296 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3298 if (
A &&
C && (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D) && CanSimplify) {
3305 }
else if (
A ==
D) {
3309 }
else if (
B ==
C) {
3330 ICmpInst::getSwappedPredicate(Pred), RBO,
LHS, Q, MaxRecurse))
3337 if (
C->isStrictlyPositive()) {
3338 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3340 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3343 if (
C->isNonNegative()) {
3344 if (Pred == ICmpInst::ICMP_SLE)
3346 if (Pred == ICmpInst::ICMP_SGT)
3369 if (Pred == ICmpInst::ICMP_EQ)
3371 if (Pred == ICmpInst::ICMP_NE)
3380 if (Pred == ICmpInst::ICMP_UGT)
3382 if (Pred == ICmpInst::ICMP_ULE)
3393 case Instruction::Shl: {
3396 if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) ||
3409 case Instruction::And:
3410 case Instruction::Or: {
3411 const APInt *C1, *C2;
3417 Pred = ICmpInst::getSwappedPredicate(Pred);
3420 if (Pred == ICmpInst::ICMP_ULE)
3422 if (Pred == ICmpInst::ICMP_UGT)
3425 if (Pred == ICmpInst::ICMP_SLE)
3427 if (Pred == ICmpInst::ICMP_SGT)
3441 case Instruction::UDiv:
3442 case Instruction::LShr:
3443 if (ICmpInst::isSigned(Pred) || !Q.
IIQ.
isExact(LBO) ||
3450 case Instruction::SDiv:
3458 case Instruction::AShr:
3465 case Instruction::Shl: {
3470 if (!NSW && ICmpInst::isSigned(Pred))
3486 unsigned MaxRecurse) {
3642 Pred = ICmpInst::getSwappedPredicate(Pred);
3648 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3657 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3681 CallInst *Assume = cast<CallInst>(AssumeVH);
3683 Assume->getArgOperand(0), Predicate,
LHS,
RHS, Q.
DL))
3694 auto *
II = dyn_cast<IntrinsicInst>(
LHS);
3698 switch (
II->getIntrinsicID()) {
3699 case Intrinsic::uadd_sat:
3703 if (Pred == ICmpInst::ICMP_UGE)
3705 if (Pred == ICmpInst::ICMP_ULT)
3709 case Intrinsic::usub_sat:
3713 if (Pred == ICmpInst::ICMP_ULE)
3715 if (Pred == ICmpInst::ICMP_UGT)
3731 if (
const Argument *
A = dyn_cast<Argument>(V))
3732 return A->getRange();
3733 else if (
const CallBase *CB = dyn_cast<CallBase>(V))
3734 return CB->getRange();
3736 return std::nullopt;
3753 assert(!isa<UndefValue>(
LHS) &&
"Unexpected icmp undef,%X");
3758 if (isa<PoisonValue>(
RHS))
3787 if (LhsCr->icmp(Pred, *RhsCr))
3795 if (isa<CastInst>(
LHS) && (isa<Constant>(
RHS) || isa<CastInst>(
RHS))) {
3803 if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3812 if (RI->getOperand(0)->getType() == SrcTy)
3820 if (isa<ZExtInst>(
LHS)) {
3824 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3828 RI->getOperand(0), Q, MaxRecurse - 1))
3832 else if (
SExtInst *RI = dyn_cast<SExtInst>(
RHS)) {
3833 if (
SrcOp == RI->getOperand(0)) {
3834 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3836 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3850 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3853 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3856 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
3863 SrcOp, Trunc, Q, MaxRecurse - 1))
3873 case ICmpInst::ICMP_EQ:
3874 case ICmpInst::ICMP_UGT:
3875 case ICmpInst::ICMP_UGE:
3878 case ICmpInst::ICMP_NE:
3879 case ICmpInst::ICMP_ULT:
3880 case ICmpInst::ICMP_ULE:
3885 case ICmpInst::ICMP_SGT:
3886 case ICmpInst::ICMP_SGE:
3890 case ICmpInst::ICMP_SLT:
3891 case ICmpInst::ICMP_SLE:
3900 if (isa<SExtInst>(
LHS)) {
3904 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3911 else if (
ZExtInst *RI = dyn_cast<ZExtInst>(
RHS)) {
3912 if (
SrcOp == RI->getOperand(0)) {
3913 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3915 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3928 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3931 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3934 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
3949 case ICmpInst::ICMP_EQ:
3951 case ICmpInst::ICMP_NE:
3956 case ICmpInst::ICMP_SGT:
3957 case ICmpInst::ICMP_SGE:
3961 case ICmpInst::ICMP_SLT:
3962 case ICmpInst::ICMP_SLE:
3969 case ICmpInst::ICMP_UGT:
3970 case ICmpInst::ICMP_UGE:
3978 case ICmpInst::ICMP_ULT:
3979 case ICmpInst::ICMP_ULE:
4010 ICmpInst::getSwappedPredicate(Pred),
RHS,
LHS))
4016 ICmpInst::getSwappedPredicate(Pred),
RHS,
LHS))
4022 if (std::optional<bool> Res =
4031 if (
auto *CLHS = dyn_cast<PtrToIntOperator>(
LHS))
4032 if (
auto *CRHS = dyn_cast<PtrToIntOperator>(
RHS))
4033 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() &&
4037 CRHS->getPointerOperand(), Q))
4042 if (isa<SelectInst>(
LHS) || isa<SelectInst>(
RHS))
4048 if (isa<PHINode>(
LHS) || isa<PHINode>(
RHS))
4064 unsigned MaxRecurse) {
4079 if (Pred == FCmpInst::FCMP_FALSE)
4081 if (Pred == FCmpInst::FCMP_TRUE)
4086 if (isa<PoisonValue>(
LHS) || isa<PoisonValue>(
RHS))
4109 if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) {
4117 return ConstantInt::get(
RetTy, Pred == FCmpInst::FCMP_ORD);
4125 std::optional<KnownFPClass> FullKnownClassLHS;
4129 auto computeLHSClass = [=, &FullKnownClassLHS](
FPClassTest InterestedFlags =
4131 if (FullKnownClassLHS)
4132 return *FullKnownClassLHS;
4145 FullKnownClassLHS = computeLHSClass();
4146 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) ==
fcNone)
4148 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) ==
fcNone)
4163 if (
C->isNegative() && !
C->isNegZero()) {
4169 case FCmpInst::FCMP_UGE:
4170 case FCmpInst::FCMP_UGT:
4171 case FCmpInst::FCMP_UNE: {
4179 case FCmpInst::FCMP_OEQ:
4180 case FCmpInst::FCMP_OLE:
4181 case FCmpInst::FCMP_OLT: {
4200 cast<IntrinsicInst>(
LHS)->getIntrinsicID() == Intrinsic::maxnum;
4204 case FCmpInst::FCMP_OEQ:
4205 case FCmpInst::FCMP_UEQ:
4209 case FCmpInst::FCMP_ONE:
4210 case FCmpInst::FCMP_UNE:
4214 case FCmpInst::FCMP_OGE:
4215 case FCmpInst::FCMP_UGE:
4216 case FCmpInst::FCMP_OGT:
4217 case FCmpInst::FCMP_UGT:
4222 return ConstantInt::get(
RetTy, IsMaxNum);
4223 case FCmpInst::FCMP_OLE:
4224 case FCmpInst::FCMP_ULE:
4225 case FCmpInst::FCMP_OLT:
4226 case FCmpInst::FCMP_ULT:
4231 return ConstantInt::get(
RetTy, !IsMaxNum);
4243 case FCmpInst::FCMP_OGE:
4244 case FCmpInst::FCMP_ULT: {
4247 Interested |=
fcNan;
4258 case FCmpInst::FCMP_UGE:
4259 case FCmpInst::FCMP_OLT: {
4276 if (isa<SelectInst>(
LHS) || isa<SelectInst>(
RHS))
4282 if (isa<PHINode>(
LHS) || isa<PHINode>(
RHS))
4295 ArrayRef<std::pair<Value *, Value *>> Ops,
4297 bool AllowRefinement,
4299 unsigned MaxRecurse) {
4301 "If AllowRefinement=false then CanUseUndef=false");
4302 for (
const auto &OpAndRepOp : Ops) {
4304 if (isa<Constant>(OpAndRepOp.first))
4308 if (V == OpAndRepOp.first)
4309 return OpAndRepOp.second;
4315 auto *
I = dyn_cast<Instruction>(V);
4321 if (isa<PHINode>(
I))
4325 if (
match(
I, m_Intrinsic<Intrinsic::is_constant>()))
4329 if (isa<FreezeInst>(
I))
4332 for (
const auto &OpAndRepOp : Ops) {
4335 if (OpAndRepOp.first->getType()->isVectorTy() &&
4342 bool AnyReplaced =
false;
4343 for (
Value *InstOp :
I->operands()) {
4345 InstOp, Ops, Q, AllowRefinement, DropFlags, MaxRecurse)) {
4347 AnyReplaced = InstOp != NewInstOp;
4361 if (!AllowRefinement) {
4366 if (
auto *BO = dyn_cast<BinaryOperator>(
I)) {
4367 unsigned Opcode = BO->getOpcode();
4370 if (!BO->getType()->isFPOrFPVectorTy()) {
4379 if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4380 NewOps[0] == NewOps[1]) {
4382 if (
auto *PDI = dyn_cast<PossiblyDisjointInst>(BO)) {
4383 if (PDI->isDisjoint()) {
4395 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) &&
4396 NewOps[0] == NewOps[1] &&
4397 any_of(Ops, [=](
const auto &Rep) {
return NewOps[0] == Rep.second; }))
4408 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) &&
4410 [=](
const auto &Rep) {
return impliesPoison(BO, Rep.first); }))
4414 if (isa<GetElementPtrInst>(
I)) {
4430 auto PreventSelfSimplify = [V](
Value *Simplified) {
4431 return Simplified != V ? Simplified :
nullptr;
4434 return PreventSelfSimplify(
4441 for (
Value *NewOp : NewOps) {
4442 if (
Constant *ConstOp = dyn_cast<Constant>(NewOp))
4457 if (!AllowRefinement) {
4460 if (
auto *
II = dyn_cast<IntrinsicInst>(
I);
4461 II &&
II->getIntrinsicID() == Intrinsic::abs) {
4462 if (!ConstOps[0]->isNotMinSignedValue())
4469 if (DropFlags && Res &&
I->hasPoisonGeneratingAnnotations())
4480 bool AllowRefinement,
4482 unsigned MaxRecurse) {
4484 DropFlags, MaxRecurse);
4489 bool AllowRefinement,
4493 if (!AllowRefinement)
4496 return ::simplifyWithOpReplaced(V,
Op, RepOp, Q, AllowRefinement, DropFlags,
4503 const APInt *
Y,
bool TrueWhenUnset) {
4510 return TrueWhenUnset ? FalseVal : TrueVal;
4516 return TrueWhenUnset ? FalseVal : TrueVal;
4518 if (
Y->isPowerOf2()) {
4524 if (TrueWhenUnset && cast<PossiblyDisjointInst>(TrueVal)->isDisjoint())
4526 return TrueWhenUnset ? TrueVal : FalseVal;
4534 if (!TrueWhenUnset && cast<PossiblyDisjointInst>(FalseVal)->isDisjoint())
4536 return TrueWhenUnset ? TrueVal : FalseVal;
4547 if (CmpRHS == TVal || CmpRHS == FVal) {
4549 Pred = ICmpInst::getSwappedPredicate(Pred);
4553 if (CmpLHS == FVal) {
4555 Pred = ICmpInst::getInversePredicate(Pred);
4560 Value *
X = CmpLHS, *
Y = CmpRHS;
4561 bool PeekedThroughSelectShuffle =
false;
4562 auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal);
4563 if (Shuf && Shuf->isSelect()) {
4564 if (Shuf->getOperand(0) ==
Y)
4565 FVal = Shuf->getOperand(1);
4566 else if (Shuf->getOperand(1) ==
Y)
4567 FVal = Shuf->getOperand(0);
4570 PeekedThroughSelectShuffle =
true;
4574 auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal);
4575 if (!MMI || TVal !=
X ||
4593 if (PeekedThroughSelectShuffle)
4622 Res->Pred == ICmpInst::ICMP_EQ);
4630 ArrayRef<std::pair<Value *, Value *>> Replacements,
Value *TrueVal,
4632 Value *SimplifiedFalseVal =
4635 nullptr, MaxRecurse);
4636 if (!SimplifiedFalseVal)
4637 SimplifiedFalseVal = FalseVal;
4639 Value *SimplifiedTrueVal =
4642 nullptr, MaxRecurse);
4643 if (!SimplifiedTrueVal)
4644 SimplifiedTrueVal = TrueVal;
4646 if (SimplifiedFalseVal == SimplifiedTrueVal)
4657 unsigned MaxRecurse) {
4659 Value *CmpLHS, *CmpRHS;
4667 if (Pred == ICmpInst::ICMP_NE) {
4668 Pred = ICmpInst::ICMP_EQ;
4675 if (TrueVal->getType()->isIntOrIntVectorTy()) {
4683 X->getType()->getScalarSizeInBits());
4689 if (Pred == ICmpInst::ICMP_EQ &&
match(CmpRHS,
m_Zero())) {
4703 if (
match(TrueVal, isFsh) && FalseVal ==
X && CmpLHS == ShAmt)
4716 if (
match(FalseVal, isRotate) && TrueVal ==
X && CmpLHS == ShAmt &&
4717 Pred == ICmpInst::ICMP_EQ)
4722 if (
match(TrueVal, m_Intrinsic<Intrinsic::abs>(
m_Specific(CmpLHS))) &&
4739 if (Pred == ICmpInst::ICMP_EQ) {
4741 FalseVal, Q, MaxRecurse))
4744 FalseVal, Q, MaxRecurse))
4754 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4763 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4775 unsigned MaxRecurse) {
4777 Value *CmpLHS, *CmpRHS;
4782 bool IsEquiv =
I->isEquivalence();
4783 if (
I->isEquivalence(
true)) {
4785 Pred = FCmpInst::getInversePredicate(Pred);
4801 if (CmpLHS ==
F && CmpRHS ==
T)
4804 if (CmpLHS !=
T || CmpRHS !=
F)
4810 if (Pred == FCmpInst::FCMP_OEQ)
4814 if (Pred == FCmpInst::FCMP_UNE)
4825 if (
auto *CondC = dyn_cast<Constant>(
Cond)) {
4826 if (
auto *TrueC = dyn_cast<Constant>(TrueVal))
4827 if (
auto *FalseC = dyn_cast<Constant>(FalseVal))
4832 if (isa<PoisonValue>(CondC))
4837 return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4849 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
4850 "Select must have bool or bool vector condition");
4851 assert(TrueVal->getType() == FalseVal->getType() &&
4852 "Select must have same types for true/false ops");
4854 if (
Cond->getType() == TrueVal->getType()) {
4917 if (TrueVal == FalseVal)
4920 if (
Cond == TrueVal) {
4928 if (
Cond == FalseVal) {
4942 if (isa<PoisonValue>(TrueVal) ||
4947 if (isa<PoisonValue>(FalseVal) ||
4953 if (isa<FixedVectorType>(TrueVal->getType()) &&
4957 cast<FixedVectorType>(TrueC->
getType())->getNumElements();
4959 for (
unsigned i = 0; i != NumElts; ++i) {
4963 if (!TEltC || !FEltC)
4970 else if (isa<PoisonValue>(TEltC) ||
4973 else if (isa<PoisonValue>(FEltC) ||
4979 if (NewC.
size() == NumElts)
4992 return *Imp ? TrueVal : FalseVal;
5009 cast<PointerType>(
Ptr->getType()->getScalarType())->getAddressSpace();
5012 if (Indices.
empty())
5022 if (
VectorType *VT = dyn_cast<VectorType>(
Op->getType())) {
5023 GEPTy = VectorType::get(GEPTy, VT->getElementCount());
5030 if (
Ptr->getType() == GEPTy &&
5036 if (isa<PoisonValue>(
Ptr) ||
5037 any_of(Indices, [](
const auto *V) {
return isa<PoisonValue>(V); }))
5044 bool IsScalableVec =
5046 return isa<ScalableVectorType>(V->getType());
5049 if (Indices.
size() == 1) {
5051 if (!IsScalableVec && Ty->
isSized()) {
5056 if (TyAllocSize == 0 &&
Ptr->getType() == GEPTy)
5061 if (Indices[0]->
getType()->getScalarSizeInBits() ==
5063 auto CanSimplify = [GEPTy, &
P,
Ptr]() ->
bool {
5064 return P->getType() == GEPTy &&
5068 if (TyAllocSize == 1 &&
5079 TyAllocSize == 1ULL <<
C && CanSimplify())
5095 [](
Value *
Idx) { return match(Idx, m_Zero()); })) {
5099 APInt BasePtrOffset(IdxWidth, 0);
5100 Value *StrippedBasePtr =
5101 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, BasePtrOffset);
5110 !BasePtrOffset.
isZero()) {
5111 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset);
5117 !BasePtrOffset.
isOne()) {
5118 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset - 1);
5125 if (!isa<Constant>(
Ptr) ||
5126 !
all_of(Indices, [](
Value *V) {
return isa<Constant>(V); }))
5148 if (
Constant *CAgg = dyn_cast<Constant>(Agg))
5149 if (
Constant *CVal = dyn_cast<Constant>(Val))
5154 if (isa<PoisonValue>(Val) ||
5160 if (EV->getAggregateOperand()->getType() == Agg->
getType() &&
5161 EV->getIndices() == Idxs) {
5164 if (isa<PoisonValue>(Agg) ||
5167 return EV->getAggregateOperand();
5170 if (Agg == EV->getAggregateOperand())
5180 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q,
RecursionLimit);
5186 auto *VecC = dyn_cast<Constant>(Vec);
5187 auto *ValC = dyn_cast<Constant>(Val);
5188 auto *IdxC = dyn_cast<Constant>(
Idx);
5189 if (VecC && ValC && IdxC)
5193 if (
auto *CI = dyn_cast<ConstantInt>(
Idx)) {
5194 if (isa<FixedVectorType>(Vec->
getType()) &&
5195 CI->uge(cast<FixedVectorType>(Vec->
getType())->getNumElements()))
5205 if (isa<PoisonValue>(Val) ||
5210 if (VecC && ValC && VecC->getSplatValue() == ValC)
5226 if (
auto *CAgg = dyn_cast<Constant>(Agg))
5230 unsigned NumIdxs = Idxs.
size();
5231 for (
auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI !=
nullptr;
5232 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
5234 unsigned NumInsertValueIdxs = InsertValueIdxs.
size();
5235 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
5236 if (InsertValueIdxs.
slice(0, NumCommonIdxs) ==
5237 Idxs.
slice(0, NumCommonIdxs)) {
5238 if (NumIdxs == NumInsertValueIdxs)
5239 return IVI->getInsertedValueOperand();
5256 auto *VecVTy = cast<VectorType>(Vec->
getType());
5257 if (
auto *CVec = dyn_cast<Constant>(Vec)) {
5258 if (
auto *CIdx = dyn_cast<Constant>(
Idx))
5272 if (
auto *IdxC = dyn_cast<ConstantInt>(
Idx)) {
5274 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
5275 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
5278 if (IdxC->getValue().ult(MinNumElts))
5288 auto *IE = dyn_cast<InsertElementInst>(Vec);
5289 if (IE && IE->getOperand(2) ==
Idx)
5290 return IE->getOperand(1);
5313 Value *CommonValue =
nullptr;
5314 bool HasPoisonInput =
false;
5315 bool HasUndefInput =
false;
5321 HasPoisonInput =
true;
5326 HasUndefInput =
true;
5329 if (CommonValue &&
Incoming != CommonValue)
5340 if (HasPoisonInput || HasUndefInput) {
5348 if (HasUndefInput &&
5359 if (
auto *
C = dyn_cast<Constant>(
Op))
5362 if (
auto *CI = dyn_cast<CastInst>(
Op)) {
5363 auto *Src = CI->getOperand(0);
5364 Type *SrcTy = Src->getType();
5365 Type *MidTy = CI->getType();
5367 if (Src->getType() == Ty) {
5377 SrcIntPtrTy, MidIntPtrTy,
5378 DstIntPtrTy) == Instruction::BitCast)
5384 if (CastOpc == Instruction::BitCast)
5385 if (
Op->getType() == Ty)
5390 if (CastOpc == Instruction::PtrToInt &&
5408 int MaskVal,
Value *RootVec,
5409 unsigned MaxRecurse) {
5419 int InVecNumElts = cast<FixedVectorType>(Op0->
getType())->getNumElements();
5420 int RootElt = MaskVal;
5421 Value *SourceOp = Op0;
5422 if (MaskVal >= InVecNumElts) {
5423 RootElt = MaskVal - InVecNumElts;
5429 if (
auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
5431 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5432 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5441 if (RootVec != SourceOp)
5446 if (RootElt != DestElt)
5455 unsigned MaxRecurse) {
5459 auto *InVecTy = cast<VectorType>(Op0->
getType());
5460 unsigned MaskNumElts = Mask.size();
5461 ElementCount InVecEltCount = InVecTy->getElementCount();
5466 Indices.
assign(Mask.begin(), Mask.end());
5471 bool MaskSelects0 =
false, MaskSelects1 =
false;
5473 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5474 if (Indices[i] == -1)
5476 if ((
unsigned)Indices[i] < InVecNumElts)
5477 MaskSelects0 =
true;
5479 MaskSelects1 =
true;
5487 auto *Op0Const = dyn_cast<Constant>(Op0);
5488 auto *Op1Const = dyn_cast<Constant>(Op1);
5493 if (Op0Const && Op1Const)
5499 if (!Scalable && Op0Const && !Op1Const) {
5517 if (
all_of(Indices, [InsertIndex](
int MaskElt) {
5518 return MaskElt == InsertIndex || MaskElt == -1;
5520 assert(isa<UndefValue>(Op1) &&
"Expected undef operand 1 for splat");
5524 for (
unsigned i = 0; i != MaskNumElts; ++i)
5525 if (Indices[i] == -1)
5533 if (
auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
5553 Value *RootVec =
nullptr;
5554 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5576 if (
auto *
C = dyn_cast<Constant>(
Op))
5604 Type *Ty = In->getType();
5605 if (
auto *VecTy = dyn_cast<FixedVectorType>(Ty)) {
5606 unsigned NumElts = VecTy->getNumElements();
5608 for (
unsigned i = 0; i != NumElts; ++i) {
5609 Constant *EltC = In->getAggregateElement(i);
5612 if (EltC && isa<PoisonValue>(EltC))
5614 else if (EltC && EltC->
isNaN())
5615 NewC[i] = ConstantFP::get(
5616 EltC->
getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet());
5630 if (isa<ScalableVectorType>(Ty)) {
5631 auto *
Splat = In->getSplatValue();
5633 "Found a scalable-vector NaN but not a splat");
5639 return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet());
5654 for (
Value *V : Ops) {
5662 if (FMF.
noNaNs() && (IsNan || IsUndef))
5664 if (FMF.
noInfs() && (IsInf || IsUndef))
5690 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5756 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5871 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5877 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5884 return ::simplifyFAddInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5892 return ::simplifyFSubInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5900 return ::simplifyFMulInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5908 return ::simplifyFMAFMul(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5916 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5941 return ConstantFP::get(Op0->
getType(), 1.0);
5953 return ConstantFP::get(Op0->
getType(), -1.0);
5967 return ::simplifyFDivInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5975 RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
6005 return ::simplifyFRemInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6014 unsigned MaxRecurse) {
6016 case Instruction::FNeg:
6028 unsigned MaxRecurse) {
6030 case Instruction::FNeg:
6051 case Instruction::Add:
6054 case Instruction::Sub:
6057 case Instruction::Mul:
6060 case Instruction::SDiv:
6062 case Instruction::UDiv:
6064 case Instruction::SRem:
6066 case Instruction::URem:
6068 case Instruction::Shl:
6071 case Instruction::LShr:
6073 case Instruction::AShr:
6075 case Instruction::And:
6077 case Instruction::Or:
6079 case Instruction::Xor:
6081 case Instruction::FAdd:
6083 case Instruction::FSub:
6085 case Instruction::FMul:
6087 case Instruction::FDiv:
6089 case Instruction::FRem:
6101 unsigned MaxRecurse) {
6103 case Instruction::FAdd:
6105 case Instruction::FSub:
6107 case Instruction::FMul:
6109 case Instruction::FDiv:
6145 case Intrinsic::fabs:
6146 case Intrinsic::floor:
6147 case Intrinsic::ceil:
6148 case Intrinsic::trunc:
6149 case Intrinsic::rint:
6150 case Intrinsic::nearbyint:
6151 case Intrinsic::round:
6152 case Intrinsic::roundeven:
6153 case Intrinsic::canonicalize:
6154 case Intrinsic::arithmetic_fence:
6166 case Intrinsic::floor:
6167 case Intrinsic::ceil:
6168 case Intrinsic::trunc:
6169 case Intrinsic::rint:
6170 case Intrinsic::nearbyint:
6171 case Intrinsic::round:
6172 case Intrinsic::roundeven:
6186 auto *OffsetConstInt = dyn_cast<ConstantInt>(
Offset);
6187 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64)
6191 DL.getIndexTypeSizeInBits(
Ptr->getType()));
6192 if (OffsetInt.
srem(4) != 0)
6200 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
6204 if (LoadedCE->getOpcode() == Instruction::Trunc) {
6205 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
6210 if (LoadedCE->getOpcode() != Instruction::Sub)
6213 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
6214 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
6216 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
6220 APInt LoadedRHSOffset;
6223 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
6226 return LoadedLHSPtr;
6234 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
6257 if (
C && (
C->isZero() ||
C->isInfinity()))
6266 if (
C &&
C->isNaN())
6267 return ConstantFP::get(Op0->
getType(),
C->makeQuiet());
6285 if (
auto *
II = dyn_cast<IntrinsicInst>(Op0))
6286 if (
II->getIntrinsicID() == IID)
6295 auto *
II = dyn_cast<IntrinsicInst>(Op0);
6303 case Intrinsic::fabs:
6307 case Intrinsic::bswap:
6312 case Intrinsic::bitreverse:
6317 case Intrinsic::ctpop: {
6321 return ConstantInt::get(Op0->
getType(), 1);
6330 case Intrinsic::exp:
6332 if (Call->hasAllowReassoc() &&
6336 case Intrinsic::exp2:
6338 if (Call->hasAllowReassoc() &&
6342 case Intrinsic::exp10:
6344 if (Call->hasAllowReassoc() &&
6348 case Intrinsic::log:
6350 if (Call->hasAllowReassoc() &&
6354 case Intrinsic::log2:
6356 if (Call->hasAllowReassoc() &&
6362 case Intrinsic::log10:
6365 if (Call->hasAllowReassoc() &&
6371 case Intrinsic::vector_reverse:
6379 case Intrinsic::frexp: {
6403 auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
6408 if (Op1 ==
X || Op1 ==
Y ||
6425 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum ||
6426 IID == Intrinsic::maximum || IID == Intrinsic::minimum) &&
6427 "Unsupported intrinsic");
6429 auto *
M0 = dyn_cast<IntrinsicInst>(Op0);
6433 if (!
M0 ||
M0->getIntrinsicID() != IID)
6435 Value *X0 =
M0->getOperand(0);
6436 Value *Y0 =
M0->getOperand(1);
6443 if (X0 == Op1 || Y0 == Op1)
6446 auto *
M1 = dyn_cast<IntrinsicInst>(Op1);
6449 Value *X1 =
M1->getOperand(0);
6450 Value *Y1 =
M1->getOperand(1);
6458 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1))
6469 unsigned BitWidth = ReturnType->getScalarSizeInBits();
6471 case Intrinsic::abs:
6479 case Intrinsic::cttz: {
6485 case Intrinsic::ctlz: {
6493 case Intrinsic::ptrmask: {
6494 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
6504 "Invalid mask width");
6521 APInt IrrelevantPtrBits =
6524 Instruction::Or,
C, ConstantInt::get(
C->getType(), IrrelevantPtrBits),
6526 if (
C !=
nullptr &&
C->isAllOnesValue())
6531 case Intrinsic::smax:
6532 case Intrinsic::smin:
6533 case Intrinsic::umax:
6534 case Intrinsic::umin: {
6545 return ConstantInt::get(
6553 return ConstantInt::get(ReturnType, *
C);
6564 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
6565 if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6567 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6568 const APInt *InnerC;
6571 ICmpInst::getNonStrictPredicate(
6591 case Intrinsic::scmp:
6592 case Intrinsic::ucmp: {
6599 IID == Intrinsic::scmp ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
6601 return ConstantInt::get(ReturnType, 1);
6604 IID == Intrinsic::scmp ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
6610 case Intrinsic::usub_with_overflow:
6611 case Intrinsic::ssub_with_overflow:
6618 case Intrinsic::uadd_with_overflow:
6619 case Intrinsic::sadd_with_overflow:
6624 cast<StructType>(ReturnType),
6629 case Intrinsic::umul_with_overflow:
6630 case Intrinsic::smul_with_overflow:
6640 case Intrinsic::uadd_sat:
6646 case Intrinsic::sadd_sat:
6661 case Intrinsic::usub_sat:
6666 case Intrinsic::ssub_sat:
6674 case Intrinsic::load_relative:
6675 if (
auto *C0 = dyn_cast<Constant>(Op0))
6676 if (
auto *C1 = dyn_cast<Constant>(Op1))
6679 case Intrinsic::powi:
6680 if (
auto *Power = dyn_cast<ConstantInt>(Op1)) {
6682 if (Power->isZero())
6683 return ConstantFP::get(Op0->
getType(), 1.0);
6689 case Intrinsic::ldexp:
6691 case Intrinsic::copysign:
6701 case Intrinsic::is_fpclass: {
6702 if (isa<PoisonValue>(Op0))
6705 uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue();
6708 return ConstantInt::get(ReturnType,
true);
6710 return ConstantInt::get(ReturnType,
false);
6715 case Intrinsic::maxnum:
6716 case Intrinsic::minnum:
6717 case Intrinsic::maximum:
6718 case Intrinsic::minimum: {
6724 if (isa<Constant>(Op0))
6731 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6732 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
6739 return PropagateNaN ?
propagateNaN(cast<Constant>(Op1)) : Op0;
6745 (
C->isInfinity() || (Call && Call->hasNoInfs() &&
C->isLargest()))) {
6750 if (
C->isNegative() == IsMin &&
6751 (!PropagateNaN || (Call && Call->hasNoNaNs())))
6752 return ConstantFP::get(ReturnType, *
C);
6758 if (
C->isNegative() != IsMin &&
6759 (PropagateNaN || (Call && Call->hasNoNaNs())))
6772 case Intrinsic::vector_extract: {
6774 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
6778 IdxN == 0 &&
X->getType() == ReturnType)
6794 assert(Call->arg_size() == Args.size());
6795 unsigned NumOperands = Args.size();
6803 case Intrinsic::vscale: {
6807 return ConstantInt::get(
RetTy,
C->getZExtValue());
6815 if (NumOperands == 1)
6818 if (NumOperands == 2)
6824 case Intrinsic::masked_load:
6825 case Intrinsic::masked_gather: {
6826 Value *MaskArg = Args[2];
6827 Value *PassthruArg = Args[3];
6833 case Intrinsic::fshl:
6834 case Intrinsic::fshr: {
6835 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2];
6843 return Args[IID == Intrinsic::fshl ? 0 : 1];
6845 const APInt *ShAmtC;
6850 return Args[IID == Intrinsic::fshl ? 0 : 1];
6855 return ConstantInt::getNullValue(
F->getReturnType());
6859 return ConstantInt::getAllOnesValue(
F->getReturnType());
6863 case Intrinsic::experimental_constrained_fma: {
6864 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6866 *FPI->getRoundingMode()))
6870 case Intrinsic::fma:
6871 case Intrinsic::fmuladd: {
6873 RoundingMode::NearestTiesToEven))
6877 case Intrinsic::smul_fix:
6878 case Intrinsic::smul_fix_sat: {
6879 Value *Op0 = Args[0];
6880 Value *Op1 = Args[1];
6881 Value *Op2 = Args[2];
6882 Type *ReturnType =
F->getReturnType();
6887 if (isa<Constant>(Op0))
6901 cast<ConstantInt>(Op2)->getZExtValue());
6907 case Intrinsic::vector_insert: {
6908 Value *Vec = Args[0];
6909 Value *SubVec = Args[1];
6911 Type *ReturnType =
F->getReturnType();
6915 unsigned IdxN = cast<ConstantInt>(
Idx)->getZExtValue();
6920 X->getType() == ReturnType)
6925 case Intrinsic::experimental_constrained_fadd: {
6926 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6928 *FPI->getExceptionBehavior(),
6929 *FPI->getRoundingMode());
6931 case Intrinsic::experimental_constrained_fsub: {
6932 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6934 *FPI->getExceptionBehavior(),
6935 *FPI->getRoundingMode());
6937 case Intrinsic::experimental_constrained_fmul: {
6938 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6940 *FPI->getExceptionBehavior(),
6941 *FPI->getRoundingMode());
6943 case Intrinsic::experimental_constrained_fdiv: {
6944 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6946 *FPI->getExceptionBehavior(),
6947 *FPI->getRoundingMode());
6949 case Intrinsic::experimental_constrained_frem: {
6950 auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6952 *FPI->getExceptionBehavior(),
6953 *FPI->getRoundingMode());
6955 case Intrinsic::experimental_constrained_ldexp:
6957 case Intrinsic::experimental_gc_relocate: {
6963 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
6967 if (
auto *PT = dyn_cast<PointerType>(GCR.
getType())) {
6971 if (isa<ConstantPointerNull>(DerivedPtr)) {
6986 auto *
F = dyn_cast<Function>(Callee);
6991 ConstantArgs.
reserve(Args.size());
6992 for (
Value *Arg : Args) {
6995 if (isa<MetadataAsValue>(Arg))
7008 assert(Call->arg_size() == Args.size());
7012 if (Call->isMustTailCall())
7017 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
7023 auto *
F = dyn_cast<Function>(Callee);
7024 if (
F &&
F->isIntrinsic())
7032 assert(isa<ConstrainedFPIntrinsic>(Call));
7051 return ::simplifyFreezeInst(Op0, Q);
7059 if (
auto *PtrOpC = dyn_cast<Constant>(PtrOp))
7065 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
7096 unsigned MaxRecurse) {
7097 assert(
I->getFunction() &&
"instruction should be inserted in a function");
7099 "context instruction should be in the same function");
7103 switch (
I->getOpcode()) {
7108 [](
Value *V) { return cast<Constant>(V); });
7112 case Instruction::FNeg:
7114 case Instruction::FAdd:
7117 case Instruction::Add:
7121 case Instruction::FSub:
7124 case Instruction::Sub:
7128 case Instruction::FMul:
7131 case Instruction::Mul:
7135 case Instruction::SDiv:
7139 case Instruction::UDiv:
7143 case Instruction::FDiv:
7146 case Instruction::SRem:
7148 case Instruction::URem:
7150 case Instruction::FRem:
7153 case Instruction::Shl:
7157 case Instruction::LShr:
7161 case Instruction::AShr:
7165 case Instruction::And:
7167 case Instruction::Or:
7169 case Instruction::Xor:
7171 case Instruction::ICmp:
7173 NewOps[1], Q, MaxRecurse);
7174 case Instruction::FCmp:
7176 NewOps[1],
I->getFastMathFlags(), Q, MaxRecurse);
7177 case Instruction::Select:
7179 case Instruction::GetElementPtr: {
7180 auto *GEPI = cast<GetElementPtrInst>(
I);
7182 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q,
7185 case Instruction::InsertValue: {
7190 case Instruction::InsertElement:
7192 case Instruction::ExtractValue: {
7193 auto *EVI = cast<ExtractValueInst>(
I);
7197 case Instruction::ExtractElement:
7199 case Instruction::ShuffleVector: {
7200 auto *SVI = cast<ShuffleVectorInst>(
I);
7202 SVI->getShuffleMask(), SVI->getType(), Q,
7205 case Instruction::PHI:
7207 case Instruction::Call:
7209 cast<CallInst>(
I), NewOps.
back(),
7210 NewOps.
drop_back(1 + cast<CallInst>(
I)->getNumTotalBundleOperands()), Q);
7211 case Instruction::Freeze:
7213#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7214#include "llvm/IR/Instruction.def"
7215#undef HANDLE_CAST_INST
7218 case Instruction::Alloca:
7221 case Instruction::Load:
7230 "Number of operands should match the instruction!");
7231 return ::simplifyInstructionWithOperands(
I, NewOps, SQ,
RecursionLimit);
7261 bool Simplified =
false;
7268 for (
User *U :
I->users())
7270 Worklist.
insert(cast<Instruction>(U));
7273 I->replaceAllUsesWith(SimpleV);
7275 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7276 I->eraseFromParent();
7288 if (UnsimplifiedUsers)
7289 UnsimplifiedUsers->insert(
I);
7298 for (
User *U :
I->users())
7299 Worklist.
insert(cast<Instruction>(U));
7302 I->replaceAllUsesWith(SimpleV);
7304 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7305 I->eraseFromParent();
7314 assert(
I != SimpleV &&
"replaceAndRecursivelySimplify(X,X) is not valid!");
7315 assert(SimpleV &&
"Must provide a simplified value.");
7323 auto *DT = DTWP ? &DTWP->getDomTree() :
nullptr;
7325 auto *TLI = TLIWP ? &TLIWP->
getTLI(
F) :
nullptr;
7328 return {
F.getDataLayout(), TLI, DT, AC};
7336template <
class T,
class... TArgs>
7339 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(
F);
7340 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(
F);
7341 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(
F);
7342 return {
F.getDataLayout(), TLI, DT, AC};
7356void InstSimplifyFolder::anchor() {}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static Value * simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q)
Given operands for a Freeze, see if we can fold the result.
static Value * simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with false branch of select.
static Value * simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse, Constant *TrueOrFalse)
Simplify comparison with true or false branch of select: sel = select i1 cond, i32 tv,...
static Value * simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, CmpPredicate Pred, Value *TrueVal, Value *FalseVal)
An alternative way to test if a bit is set or not uses sgt/slt instead of eq/ne.
static Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an LShr, see if we can fold the result.
static Value * simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for a UDiv, see if we can fold the result.
static Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for a Sub, see if we can fold the result.
static Value * simplifyFCmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an FCmpInst, see if we can fold the result.
static Value * expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, Value *R, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify binops of form "A op (B op' C)" or the commuted variant by distributing op over op'.
static Constant * foldOrCommuteConstant(Instruction::BinaryOps Opcode, Value *&Op0, Value *&Op1, const SimplifyQuery &Q)
static bool haveNonOverlappingStorage(const Value *V1, const Value *V2)
Return true if V1 and V2 are each the base of some distict storage region [V, object_size(V)] which d...
static Constant * foldConstant(Instruction::UnaryOps Opcode, Value *&Op, const SimplifyQuery &Q)
static Value * handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
We know comparison with both branches of select can be simplified, but they are not equal.
static Value * threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a PHI instruction, try to simplify the comparison by seeing whether ...
static Constant * propagateNaN(Constant *In)
Try to propagate existing NaN values when possible.
static Value * simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Fold an icmp when its operands have i1 scalar type.
static Value * simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an AShr, see if we can fold the result.
static Value * simplifyRelativeLoad(Constant *Ptr, Constant *Offset, const DataLayout &DL)
static Value * simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SDiv and UDiv.
static Value * simplifyPHINode(PHINode *PN, ArrayRef< Value * > IncomingValues, const SimplifyQuery &Q)
See if we can fold the given phi. If not, returns null.
static Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &, unsigned)
Given operands for an ExtractValueInst, see if we can fold the result.
static Value * simplifySelectInst(Value *, Value *, Value *, const SimplifyQuery &, unsigned)
Given operands for a SelectInst, see if we can fold the result.
static Value * simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an Add, see if we can fold the result.
static Value * simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned)
Given the operand for a UnaryOperator, see if we can fold the result.
static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
static Value * simplifyAndCommutative(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &SQ, unsigned MaxRecurse)
See if we can compute a simplified version of this instruction.
static bool isIdempotent(Intrinsic::ID ID)
static std::optional< ConstantRange > getRange(Value *V, const InstrInfoQuery &IIQ)
Helper method to get range from metadata or attribute.
static Value * simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Try to simplify and/or of icmp with ctpop intrinsic.
static Value * simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Value * tryConstantFoldCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyWithOpsReplaced(Value *V, ArrayRef< std::pair< Value *, Value * > > Ops, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags, unsigned MaxRecurse)
static Value * simplifyICmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an ICmpInst, see if we can fold the result.
static Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q, unsigned)
Given operands for an ExtractElementInst, see if we can fold the result.
static Value * simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
simplify integer comparisons where at least one operand of the compare matches an integer min/max idi...
static Value * simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with true branch of select.
static Value * simplifyIntrinsic(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static void getUnsignedMonotonicValues(SmallPtrSetImpl< Value * > &Res, Value *V, MonotonicType Type, unsigned Depth=0)
Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq).
static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q)
Returns true if a shift by Amount always yields poison.
static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, bool AllowNonInbounds=false)
Compute the base pointer and cumulative constant offsets for V.
static Value * simplifyCmpInst(CmpPredicate, Value *, Value *, const SimplifyQuery &, unsigned)
Given operands for a CmpInst, see if we can fold the result.
static Value * simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse, fp::ExceptionBehavior ExBehavior, RoundingMode Rounding)
static Value * simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an LShr or AShr, see if we can fold the result.
static Value * simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS, Value *RHS)
static Value * simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an SDiv, see if we can fold the result.
static Value * simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Test if there is a dominating equivalence condition for the two operands.
static Value * simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, const SimplifyQuery &, unsigned)
Given the operand for a UnaryOperator, see if we can fold the result.
static Value * simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
TODO: A large part of this logic is duplicated in InstCombine's foldICmpBinOp().
static Value * simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, see if we can fold the result.
static Value * simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static Value * expandBinOp(Instruction::BinaryOps Opcode, Value *V, Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a binary operator of form "V op OtherOp" where V is "(B0 opex B1)" by distributing 'o...
static Value * simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Try hard to fold icmp with zero RHS because this is a common case.
static Value * simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS, Value *RHS, const InstrInfoQuery &IIQ)
static Value * simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is a floating-point comparison.
static Constant * getFalse(Type *Ty)
For a boolean type or a vector of boolean type, return false or a vector with every element false.
static Value * simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Check for common or similar folds of integer division or integer remainder.
static bool removesFPFraction(Intrinsic::ID ID)
Return true if the intrinsic rounds a floating-point value to an integral floating-point value (not a...
static Value * simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
static Value * simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifySelectWithEquivalence(ArrayRef< std::pair< Value *, Value * > > Replacements, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer equality or floating-po...
static Value * simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for a Mul, see if we can fold the result.
static Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse)
Given the operand for an FNeg, see if we can fold the result.
static Value * simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned)
Given operands for an Or, see if we can fold the result.
static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS, const InstrInfoQuery &IIQ)
static Value * simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, const APInt *Y, bool TrueWhenUnset)
Try to simplify a select instruction when its condition operand is an integer comparison where one op...
static Value * simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Generic simplifications for associative binary operations.
static Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an Shl, see if we can fold the result.
static Value * threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with an operand that is a PHI instruction, try to simplify the bino...
static Value * simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, CmpPredicate Pred, Value *TVal, Value *FVal)
static Value * simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
static Value * simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, see if we can fold the result.
static Value * simplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned)
Given operands for a Xor, see if we can fold the result.
static Value * simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for a URem, see if we can fold the result.
static Constant * simplifyFPOp(ArrayRef< Value * > Ops, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior, RoundingMode Rounding)
Perform folds that are common to any floating-point operation.
static Value * threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a select instruction, try to simplify the comparison by seeing wheth...
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Implementation of recursive simplification through an instruction's uses.
static bool isAllocDisjoint(const Value *V)
Return true if the underlying object (storage) must be disjoint from storage returned by any noalias ...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static Value * simplifyGEPInst(Type *, Value *, ArrayRef< Value * >, GEPNoWrapFlags, const SimplifyQuery &, unsigned)
Given operands for an GetElementPtrInst, see if we can fold the result.
static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, unsigned MaxRecurse, bool IsSigned)
Return true if we can simplify X / Y to 0.
static Value * simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, bool IsStrict)
static Value * simplifyLogicOfAddSub(Value *Op0, Value *Op1, Instruction::BinaryOps Opcode)
Given a bitwise logic op, check if the operands are add/sub with a common source value and inverted c...
static Value * simplifyOrLogic(Value *X, Value *Y)
static Type * getCompareTy(Value *Op)
static Value * simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, unsigned)
static Value * simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static Value * simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, unsigned)
Given operands for a BinaryOperator, see if we can fold the result.
static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Given a predicate and two operands, return true if the comparison is true.
static Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q, unsigned)
Given operands for an InsertValueInst, see if we can fold the result.
static Value * simplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned)
Given operands for an And, see if we can fold the result.
static Value * foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, int MaskVal, Value *RootVec, unsigned MaxRecurse)
For the given destination element of a shuffle, peek through shuffles to match a root vector source o...
static Value * simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, FCmpInst *RHS, bool IsAnd)
static Value * extractEquivalentCondition(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
Rummage around inside V looking for something equivalent to the comparison "LHS Pred RHS".
static Value * simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, Value *Op1, bool IsAnd)
static Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags, unsigned MaxRecurse)
static Value * threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with a select instruction as an operand, try to simplify the binop ...
static Value * simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS, Value *RHS)
static Constant * computePointerDifference(const DataLayout &DL, Value *LHS, Value *RHS)
Compute the constant difference between two pointer values.
static Value * simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an SRem, see if we can fold the result.
static Value * simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given the operands for an FMul, see if we can fold the result.
static Value * simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * simplifyICmpWithDominatingAssume(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsNSW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an Shl, LShr or AShr, see if we can fold the result.
static Constant * computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SRem and URem.
static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT)
Does the given value dominate the specified phi node?
static Value * simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer comparison.
static Value * foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * simplifyUnaryIntrinsic(Function *F, Value *Op0, const SimplifyQuery &Q, const CallBase *Call)
This header provides classes for managing per-loop analyses.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static SymbolRef::Type getType(const Symbol *Sym)
static const uint32_t IV[8]
Class for arbitrary precision integers.
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
bool getBoolValue() const
Convert APInt to a boolean value.
APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
an instruction to allocate memory on the stack
A container for analyses that lazily runs them and caches their results.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
size_t size() const
size - Get the array size.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
An immutable pass that tracks lazily created AssumptionCache objects.
AssumptionCache & getAssumptionCache(Function &F)
Get the cached assumptions for a function.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
bool isFPPredicate() const
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
bool isIntPredicate() const
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static Constant * getNot(Constant *C)
static Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static Constant * getZero(Type *Ty, bool Negative=false)
static Constant * getNegativeZero(Type *Ty)
static Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static ConstantInt * getBool(LLVMContext &Context, bool V)
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
bool isEmptySet() const
Return true if this set contains no members.
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantRange inverse() const
Return a new range that is the logical not of the current set.
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static Constant * get(StructType *T, ArrayRef< Constant * > V)
static Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getAllOnesValue(Type *Ty)
bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
unsigned getIndexSizeInBits(unsigned AS) const
Size in bits of index used for address calculation in getelementptr.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
bool allowReassoc() const
Flag queries.
Represents calls to the gc.relocate intrinsic.
Value * getBasePtr() const
Value * getDerivedPtr() const
Represents flags for the getelementptr instruction/expression.
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
This instruction compares its operands according to the predicate given to the constructor.
static bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
const Function * getFunction() const
Return the function this instruction belongs to.
An instruction for reading from memory.
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Pass interface - Implemented by all 'passes'.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an integer.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
TargetLibraryInfo & getTLI(const Function &F)
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
static IntegerType * getInt32Ty(LLVMContext &C)
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr) const
Accumulate the constant offset this value has compared to a base pointer.
LLVMContext & getContext() const
All values hold a context through their type.
This class represents zero extension of integer types.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match 'fneg X' as 'fsub +-0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
This is an optimization pass for GlobalISel generic memory operations.
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
bool isDefaultFPEnvironment(fp::ExceptionBehavior EB, RoundingMode RM)
Returns true if the exception handling behavior and rounding mode match what is used in the default f...
Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined.
bool canRoundingModeBe(RoundingMode RM, RoundingMode QRM)
Returns true if the rounding mode RM may be QRM at compile time or at run time.
bool isNoAliasCall(const Value *V)
Return true if this pointer is returned by a noalias function.
Value * simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FCmpInst, fold the result or return null.
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
Value * simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q)
Given operands for a CastInst, fold the result or return null.
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
unsigned M1(unsigned Val)
Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts={})
Compute the size of the object pointed by Ptr.
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI=nullptr, const DominatorTree *DT=nullptr, AssumptionCache *AC=nullptr, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Replace all uses of 'I' with 'SimpleV' and simplify the uses recursively.
Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
SelectPatternFlavor
Specific patterns of select instructions we can match.
Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures, unsigned MaxUsesToExplore=0)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
Value * simplifyLoadInst(LoadInst *LI, Value *PtrOp, const SimplifyQuery &Q)
Given a load instruction and its pointer operand, fold the result or return null.
Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given values are known to be non-equal when defined.
@ Or
Bitwise or logical OR of integers.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
Value * simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, Value *Op0, Value *Op1, const SimplifyQuery &Q, const CallBase *Call)
Given operands for a BinaryIntrinsic, fold the result or return null.
RoundingMode
Rounding mode.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
unsigned M0(unsigned Val)
Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
std::pair< Value *, FPClassTest > fcmpToClassTest(CmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=6)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
std::optional< bool > computeKnownFPSignBit(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return false if we can prove that the specified FP value's sign bit is 0.
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
bool cannotBeNegativeZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, unsigned Depth, const SimplifyQuery &SQ)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF)
Returns true if the possibility of a signaling NaN can be safely ignored.
Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This callback is used in conjunction with PointerMayBeCaptured.
virtual void tooManyUses()=0
tooManyUses - The depth of traversal has breached a limit.
virtual bool captured(const Use *U)=0
captured - Information about the pointer was captured by the user of use U.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
bool hasConflict() const
Returns true if there is conflicting information.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
bool isKnownAlwaysNaN() const
Return true if it's known this must always be a nan.
static constexpr FPClassTest OrderedLessThanZeroMask
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
Various options to control the behavior of getObjectSize.
bool NullIsUnknownSize
If this is true, null pointers in address space 0 will be treated as though they can't be evaluated.
Mode EvalMode
How we want to evaluate this object's size.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
bool CanUseUndef
Controls whether simplifications are allowed to constrain the range of possible values for uses of un...
SimplifyQuery getWithInstruction(const Instruction *I) const
bool isUndefValue(Value *V) const
If CanUseUndef is true, returns whether V is undef.
const TargetLibraryInfo * TLI
SimplifyQuery getWithoutUndef() const