LLVM 20.0.0git
AsmWriter.cpp
Go to the documentation of this file.
1//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This library implements `print` family of functions in classes like
10// Module, Function, Value, etc. In-memory representation of those classes is
11// converted to IR strings.
12//
13// Note that these routines must be extremely tolerant of various errors in the
14// LLVM code, because it can be used for debugging transformations.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/llvm-config.h"
32#include "llvm/IR/Argument.h"
34#include "llvm/IR/Attributes.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/CFG.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Comdat.h"
39#include "llvm/IR/Constant.h"
40#include "llvm/IR/Constants.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GlobalAlias.h"
46#include "llvm/IR/GlobalIFunc.h"
48#include "llvm/IR/GlobalValue.h"
51#include "llvm/IR/InlineAsm.h"
52#include "llvm/IR/InstrTypes.h"
53#include "llvm/IR/Instruction.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Metadata.h"
58#include "llvm/IR/Module.h"
61#include "llvm/IR/Operator.h"
62#include "llvm/IR/Type.h"
63#include "llvm/IR/TypeFinder.h"
65#include "llvm/IR/Use.h"
66#include "llvm/IR/User.h"
67#include "llvm/IR/Value.h"
71#include "llvm/Support/Debug.h"
73#include "llvm/Support/Format.h"
77#include <cassert>
78#include <cctype>
79#include <cstddef>
80#include <cstdint>
81#include <iterator>
82#include <memory>
83#include <optional>
84#include <string>
85#include <tuple>
86#include <utility>
87#include <vector>
88
89using namespace llvm;
90
91// Make virtual table appear in this compilation unit.
93
94//===----------------------------------------------------------------------===//
95// Helper Functions
96//===----------------------------------------------------------------------===//
97
99
102
103/// Look for a value that might be wrapped as metadata, e.g. a value in a
104/// metadata operand. Returns the input value as-is if it is not wrapped.
105static const Value *skipMetadataWrapper(const Value *V) {
106 if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
107 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108 return VAM->getValue();
109 return V;
110}
111
112static void orderValue(const Value *V, OrderMap &OM) {
113 if (OM.lookup(V))
114 return;
115
116 if (const Constant *C = dyn_cast<Constant>(V))
117 if (C->getNumOperands() && !isa<GlobalValue>(C))
118 for (const Value *Op : C->operands())
119 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
120 orderValue(Op, OM);
121
122 // Note: we cannot cache this lookup above, since inserting into the map
123 // changes the map's size, and thus affects the other IDs.
124 unsigned ID = OM.size() + 1;
125 OM[V] = ID;
126}
127
128static OrderMap orderModule(const Module *M) {
129 OrderMap OM;
130
131 for (const GlobalVariable &G : M->globals()) {
132 if (G.hasInitializer())
133 if (!isa<GlobalValue>(G.getInitializer()))
134 orderValue(G.getInitializer(), OM);
135 orderValue(&G, OM);
136 }
137 for (const GlobalAlias &A : M->aliases()) {
138 if (!isa<GlobalValue>(A.getAliasee()))
139 orderValue(A.getAliasee(), OM);
140 orderValue(&A, OM);
141 }
142 for (const GlobalIFunc &I : M->ifuncs()) {
143 if (!isa<GlobalValue>(I.getResolver()))
144 orderValue(I.getResolver(), OM);
145 orderValue(&I, OM);
146 }
147 for (const Function &F : *M) {
148 for (const Use &U : F.operands())
149 if (!isa<GlobalValue>(U.get()))
150 orderValue(U.get(), OM);
151
152 orderValue(&F, OM);
153
154 if (F.isDeclaration())
155 continue;
156
157 for (const Argument &A : F.args())
158 orderValue(&A, OM);
159 for (const BasicBlock &BB : F) {
160 orderValue(&BB, OM);
161 for (const Instruction &I : BB) {
162 for (const Value *Op : I.operands()) {
164 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
165 isa<InlineAsm>(*Op))
166 orderValue(Op, OM);
167 }
168 orderValue(&I, OM);
169 }
170 }
171 }
172 return OM;
173}
174
175static std::vector<unsigned>
176predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
177 // Predict use-list order for this one.
178 using Entry = std::pair<const Use *, unsigned>;
180 for (const Use &U : V->uses())
181 // Check if this user will be serialized.
182 if (OM.lookup(U.getUser()))
183 List.push_back(std::make_pair(&U, List.size()));
184
185 if (List.size() < 2)
186 // We may have lost some users.
187 return {};
188
189 // When referencing a value before its declaration, a temporary value is
190 // created, which will later be RAUWed with the actual value. This reverses
191 // the use list. This happens for all values apart from basic blocks.
192 bool GetsReversed = !isa<BasicBlock>(V);
193 if (auto *BA = dyn_cast<BlockAddress>(V))
194 ID = OM.lookup(BA->getBasicBlock());
195 llvm::sort(List, [&](const Entry &L, const Entry &R) {
196 const Use *LU = L.first;
197 const Use *RU = R.first;
198 if (LU == RU)
199 return false;
200
201 auto LID = OM.lookup(LU->getUser());
202 auto RID = OM.lookup(RU->getUser());
203
204 // If ID is 4, then expect: 7 6 5 1 2 3.
205 if (LID < RID) {
206 if (GetsReversed)
207 if (RID <= ID)
208 return true;
209 return false;
210 }
211 if (RID < LID) {
212 if (GetsReversed)
213 if (LID <= ID)
214 return false;
215 return true;
216 }
217
218 // LID and RID are equal, so we have different operands of the same user.
219 // Assume operands are added in order for all instructions.
220 if (GetsReversed)
221 if (LID <= ID)
222 return LU->getOperandNo() < RU->getOperandNo();
223 return LU->getOperandNo() > RU->getOperandNo();
224 });
225
227 // Order is already correct.
228 return {};
229
230 // Store the shuffle.
231 std::vector<unsigned> Shuffle(List.size());
232 for (size_t I = 0, E = List.size(); I != E; ++I)
233 Shuffle[I] = List[I].second;
234 return Shuffle;
235}
236
238 OrderMap OM = orderModule(M);
239 UseListOrderMap ULOM;
240 for (const auto &Pair : OM) {
241 const Value *V = Pair.first;
242 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
243 continue;
244
245 std::vector<unsigned> Shuffle =
246 predictValueUseListOrder(V, Pair.second, OM);
247 if (Shuffle.empty())
248 continue;
249
250 const Function *F = nullptr;
251 if (auto *I = dyn_cast<Instruction>(V))
252 F = I->getFunction();
253 if (auto *A = dyn_cast<Argument>(V))
254 F = A->getParent();
255 if (auto *BB = dyn_cast<BasicBlock>(V))
256 F = BB->getParent();
257 ULOM[F][V] = std::move(Shuffle);
258 }
259 return ULOM;
260}
261
262static const Module *getModuleFromVal(const Value *V) {
263 if (const Argument *MA = dyn_cast<Argument>(V))
264 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
265
266 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
267 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
268
269 if (const Instruction *I = dyn_cast<Instruction>(V)) {
270 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
271 return M ? M->getParent() : nullptr;
272 }
273
274 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
275 return GV->getParent();
276
277 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
278 for (const User *U : MAV->users())
279 if (isa<Instruction>(U))
280 if (const Module *M = getModuleFromVal(U))
281 return M;
282 return nullptr;
283 }
284
285 return nullptr;
286}
287
288static const Module *getModuleFromDPI(const DbgMarker *Marker) {
289 const Function *M =
290 Marker->getParent() ? Marker->getParent()->getParent() : nullptr;
291 return M ? M->getParent() : nullptr;
292}
293
294static const Module *getModuleFromDPI(const DbgRecord *DR) {
295 return DR->getMarker() ? getModuleFromDPI(DR->getMarker()) : nullptr;
296}
297
298static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
299 switch (cc) {
300 default: Out << "cc" << cc; break;
301 case CallingConv::Fast: Out << "fastcc"; break;
302 case CallingConv::Cold: Out << "coldcc"; break;
303 case CallingConv::AnyReg: Out << "anyregcc"; break;
304 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
305 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
306 case CallingConv::PreserveNone: Out << "preserve_nonecc"; break;
307 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
308 case CallingConv::GHC: Out << "ghccc"; break;
309 case CallingConv::Tail: Out << "tailcc"; break;
310 case CallingConv::GRAAL: Out << "graalcc"; break;
311 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
312 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
313 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
314 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
315 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
316 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
317 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
318 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
319 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
320 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
321 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
323 Out << "aarch64_sve_vector_pcs";
324 break;
326 Out << "aarch64_sme_preservemost_from_x0";
327 break;
329 Out << "aarch64_sme_preservemost_from_x1";
330 break;
332 Out << "aarch64_sme_preservemost_from_x2";
333 break;
334 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
335 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
336 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
337 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
338 case CallingConv::PTX_Device: Out << "ptx_device"; break;
339 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
340 case CallingConv::Win64: Out << "win64cc"; break;
341 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
342 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
343 case CallingConv::Swift: Out << "swiftcc"; break;
344 case CallingConv::SwiftTail: Out << "swifttailcc"; break;
345 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
347 Out << "hhvmcc";
348 break;
350 Out << "hhvm_ccc";
351 break;
352 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
353 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
354 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
355 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
356 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
357 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
358 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
360 Out << "amdgpu_cs_chain";
361 break;
363 Out << "amdgpu_cs_chain_preserve";
364 break;
365 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
366 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
367 case CallingConv::M68k_RTD: Out << "m68k_rtdcc"; break;
369 Out << "riscv_vector_cc";
370 break;
371 }
372}
373
381
383 assert(!Name.empty() && "Cannot get empty name!");
384
385 // Scan the name to see if it needs quotes first.
386 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
387 if (!NeedsQuotes) {
388 for (unsigned char C : Name) {
389 // By making this unsigned, the value passed in to isalnum will always be
390 // in the range 0-255. This is important when building with MSVC because
391 // its implementation will assert. This situation can arise when dealing
392 // with UTF-8 multibyte characters.
393 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
394 C != '_') {
395 NeedsQuotes = true;
396 break;
397 }
398 }
399 }
400
401 // If we didn't need any quotes, just write out the name in one blast.
402 if (!NeedsQuotes) {
403 OS << Name;
404 return;
405 }
406
407 // Okay, we need quotes. Output the quotes and escape any scary characters as
408 // needed.
409 OS << '"';
410 printEscapedString(Name, OS);
411 OS << '"';
412}
413
414/// Turn the specified name into an 'LLVM name', which is either prefixed with %
415/// (if the string only contains simple characters) or is surrounded with ""'s
416/// (if it has special chars in it). Print it out.
418 switch (Prefix) {
419 case NoPrefix:
420 break;
421 case GlobalPrefix:
422 OS << '@';
423 break;
424 case ComdatPrefix:
425 OS << '$';
426 break;
427 case LabelPrefix:
428 break;
429 case LocalPrefix:
430 OS << '%';
431 break;
432 }
434}
435
436/// Turn the specified name into an 'LLVM name', which is either prefixed with %
437/// (if the string only contains simple characters) or is surrounded with ""'s
438/// (if it has special chars in it). Print it out.
439static void PrintLLVMName(raw_ostream &OS, const Value *V) {
440 PrintLLVMName(OS, V->getName(),
441 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
442}
443
444static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
445 Out << ", <";
446 if (isa<ScalableVectorType>(Ty))
447 Out << "vscale x ";
448 Out << Mask.size() << " x i32> ";
449 bool FirstElt = true;
450 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
451 Out << "zeroinitializer";
452 } else if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
453 Out << "poison";
454 } else {
455 Out << "<";
456 for (int Elt : Mask) {
457 if (FirstElt)
458 FirstElt = false;
459 else
460 Out << ", ";
461 Out << "i32 ";
462 if (Elt == PoisonMaskElem)
463 Out << "poison";
464 else
465 Out << Elt;
466 }
467 Out << ">";
468 }
469}
470
471namespace {
472
473class TypePrinting {
474public:
475 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
476
477 TypePrinting(const TypePrinting &) = delete;
478 TypePrinting &operator=(const TypePrinting &) = delete;
479
480 /// The named types that are used by the current module.
481 TypeFinder &getNamedTypes();
482
483 /// The numbered types, number to type mapping.
484 std::vector<StructType *> &getNumberedTypes();
485
486 bool empty();
487
488 void print(Type *Ty, raw_ostream &OS);
489
490 void printStructBody(StructType *Ty, raw_ostream &OS);
491
492private:
493 void incorporateTypes();
494
495 /// A module to process lazily when needed. Set to nullptr as soon as used.
496 const Module *DeferredM;
497
498 TypeFinder NamedTypes;
499
500 // The numbered types, along with their value.
502
503 std::vector<StructType *> NumberedTypes;
504};
505
506} // end anonymous namespace
507
508TypeFinder &TypePrinting::getNamedTypes() {
509 incorporateTypes();
510 return NamedTypes;
511}
512
513std::vector<StructType *> &TypePrinting::getNumberedTypes() {
514 incorporateTypes();
515
516 // We know all the numbers that each type is used and we know that it is a
517 // dense assignment. Convert the map to an index table, if it's not done
518 // already (judging from the sizes):
519 if (NumberedTypes.size() == Type2Number.size())
520 return NumberedTypes;
521
522 NumberedTypes.resize(Type2Number.size());
523 for (const auto &P : Type2Number) {
524 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
525 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
526 NumberedTypes[P.second] = P.first;
527 }
528 return NumberedTypes;
529}
530
531bool TypePrinting::empty() {
532 incorporateTypes();
533 return NamedTypes.empty() && Type2Number.empty();
534}
535
536void TypePrinting::incorporateTypes() {
537 if (!DeferredM)
538 return;
539
540 NamedTypes.run(*DeferredM, false);
541 DeferredM = nullptr;
542
543 // The list of struct types we got back includes all the struct types, split
544 // the unnamed ones out to a numbering and remove the anonymous structs.
545 unsigned NextNumber = 0;
546
547 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
548 for (StructType *STy : NamedTypes) {
549 // Ignore anonymous types.
550 if (STy->isLiteral())
551 continue;
552
553 if (STy->getName().empty())
554 Type2Number[STy] = NextNumber++;
555 else
556 *NextToUse++ = STy;
557 }
558
559 NamedTypes.erase(NextToUse, NamedTypes.end());
560}
561
562/// Write the specified type to the specified raw_ostream, making use of type
563/// names or up references to shorten the type name where possible.
564void TypePrinting::print(Type *Ty, raw_ostream &OS) {
565 switch (Ty->getTypeID()) {
566 case Type::VoidTyID: OS << "void"; return;
567 case Type::HalfTyID: OS << "half"; return;
568 case Type::BFloatTyID: OS << "bfloat"; return;
569 case Type::FloatTyID: OS << "float"; return;
570 case Type::DoubleTyID: OS << "double"; return;
571 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
572 case Type::FP128TyID: OS << "fp128"; return;
573 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
574 case Type::LabelTyID: OS << "label"; return;
576 OS << "metadata";
577 return;
578 case Type::X86_AMXTyID: OS << "x86_amx"; return;
579 case Type::TokenTyID: OS << "token"; return;
581 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
582 return;
583
584 case Type::FunctionTyID: {
585 FunctionType *FTy = cast<FunctionType>(Ty);
586 print(FTy->getReturnType(), OS);
587 OS << " (";
588 ListSeparator LS;
589 for (Type *Ty : FTy->params()) {
590 OS << LS;
591 print(Ty, OS);
592 }
593 if (FTy->isVarArg())
594 OS << LS << "...";
595 OS << ')';
596 return;
597 }
598 case Type::StructTyID: {
599 StructType *STy = cast<StructType>(Ty);
600
601 if (STy->isLiteral())
602 return printStructBody(STy, OS);
603
604 if (!STy->getName().empty())
605 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
606
607 incorporateTypes();
608 const auto I = Type2Number.find(STy);
609 if (I != Type2Number.end())
610 OS << '%' << I->second;
611 else // Not enumerated, print the hex address.
612 OS << "%\"type " << STy << '\"';
613 return;
614 }
615 case Type::PointerTyID: {
616 PointerType *PTy = cast<PointerType>(Ty);
617 OS << "ptr";
618 if (unsigned AddressSpace = PTy->getAddressSpace())
619 OS << " addrspace(" << AddressSpace << ')';
620 return;
621 }
622 case Type::ArrayTyID: {
623 ArrayType *ATy = cast<ArrayType>(Ty);
624 OS << '[' << ATy->getNumElements() << " x ";
625 print(ATy->getElementType(), OS);
626 OS << ']';
627 return;
628 }
631 VectorType *PTy = cast<VectorType>(Ty);
632 ElementCount EC = PTy->getElementCount();
633 OS << "<";
634 if (EC.isScalable())
635 OS << "vscale x ";
636 OS << EC.getKnownMinValue() << " x ";
637 print(PTy->getElementType(), OS);
638 OS << '>';
639 return;
640 }
642 TypedPointerType *TPTy = cast<TypedPointerType>(Ty);
643 OS << "typedptr(" << *TPTy->getElementType() << ", "
644 << TPTy->getAddressSpace() << ")";
645 return;
646 }
648 TargetExtType *TETy = cast<TargetExtType>(Ty);
649 OS << "target(\"";
650 printEscapedString(Ty->getTargetExtName(), OS);
651 OS << "\"";
652 for (Type *Inner : TETy->type_params()) {
653 OS << ", ";
654 Inner->print(OS, /*IsForDebug=*/false, /*NoDetails=*/true);
655 }
656 for (unsigned IntParam : TETy->int_params())
657 OS << ", " << IntParam;
658 OS << ")";
659 return;
660 }
661 llvm_unreachable("Invalid TypeID");
662}
663
664void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
665 if (STy->isOpaque()) {
666 OS << "opaque";
667 return;
668 }
669
670 if (STy->isPacked())
671 OS << '<';
672
673 if (STy->getNumElements() == 0) {
674 OS << "{}";
675 } else {
676 OS << "{ ";
677 ListSeparator LS;
678 for (Type *Ty : STy->elements()) {
679 OS << LS;
680 print(Ty, OS);
681 }
682
683 OS << " }";
684 }
685 if (STy->isPacked())
686 OS << '>';
687}
688
690
691namespace llvm {
692
693//===----------------------------------------------------------------------===//
694// SlotTracker Class: Enumerate slot numbers for unnamed values
695//===----------------------------------------------------------------------===//
696/// This class provides computation of slot numbers for LLVM Assembly writing.
697///
699public:
700 /// ValueMap - A mapping of Values to slot numbers.
702
703private:
704 /// TheModule - The module for which we are holding slot numbers.
705 const Module* TheModule;
706
707 /// TheFunction - The function for which we are holding slot numbers.
708 const Function* TheFunction = nullptr;
709 bool FunctionProcessed = false;
710 bool ShouldInitializeAllMetadata;
711
712 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
713 ProcessModuleHookFn;
714 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
715 ProcessFunctionHookFn;
716
717 /// The summary index for which we are holding slot numbers.
718 const ModuleSummaryIndex *TheIndex = nullptr;
719
720 /// mMap - The slot map for the module level data.
721 ValueMap mMap;
722 unsigned mNext = 0;
723
724 /// fMap - The slot map for the function level data.
725 ValueMap fMap;
726 unsigned fNext = 0;
727
728 /// mdnMap - Map for MDNodes.
730 unsigned mdnNext = 0;
731
732 /// asMap - The slot map for attribute sets.
734 unsigned asNext = 0;
735
736 /// ModulePathMap - The slot map for Module paths used in the summary index.
737 StringMap<unsigned> ModulePathMap;
738 unsigned ModulePathNext = 0;
739
740 /// GUIDMap - The slot map for GUIDs used in the summary index.
742 unsigned GUIDNext = 0;
743
744 /// TypeIdMap - The slot map for type ids used in the summary index.
745 StringMap<unsigned> TypeIdMap;
746 unsigned TypeIdNext = 0;
747
748 /// TypeIdCompatibleVtableMap - The slot map for type compatible vtable ids
749 /// used in the summary index.
750 StringMap<unsigned> TypeIdCompatibleVtableMap;
751 unsigned TypeIdCompatibleVtableNext = 0;
752
753public:
754 /// Construct from a module.
755 ///
756 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
757 /// functions, giving correct numbering for metadata referenced only from
758 /// within a function (even if no functions have been initialized).
759 explicit SlotTracker(const Module *M,
760 bool ShouldInitializeAllMetadata = false);
761
762 /// Construct from a function, starting out in incorp state.
763 ///
764 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
765 /// functions, giving correct numbering for metadata referenced only from
766 /// within a function (even if no functions have been initialized).
767 explicit SlotTracker(const Function *F,
768 bool ShouldInitializeAllMetadata = false);
769
770 /// Construct from a module summary index.
771 explicit SlotTracker(const ModuleSummaryIndex *Index);
772
773 SlotTracker(const SlotTracker &) = delete;
775
776 ~SlotTracker() = default;
777
778 void setProcessHook(
779 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
780 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
781 const Function *, bool)>);
782
783 unsigned getNextMetadataSlot() override { return mdnNext; }
784
785 void createMetadataSlot(const MDNode *N) override;
786
787 /// Return the slot number of the specified value in it's type
788 /// plane. If something is not in the SlotTracker, return -1.
789 int getLocalSlot(const Value *V);
790 int getGlobalSlot(const GlobalValue *V);
791 int getMetadataSlot(const MDNode *N) override;
795 int getTypeIdSlot(StringRef Id);
797
798 /// If you'd like to deal with a function instead of just a module, use
799 /// this method to get its data into the SlotTracker.
801 TheFunction = F;
802 FunctionProcessed = false;
803 }
804
805 const Function *getFunction() const { return TheFunction; }
806
807 /// After calling incorporateFunction, use this method to remove the
808 /// most recently incorporated function from the SlotTracker. This
809 /// will reset the state of the machine back to just the module contents.
810 void purgeFunction();
811
812 /// MDNode map iterators.
814
815 mdn_iterator mdn_begin() { return mdnMap.begin(); }
816 mdn_iterator mdn_end() { return mdnMap.end(); }
817 unsigned mdn_size() const { return mdnMap.size(); }
818 bool mdn_empty() const { return mdnMap.empty(); }
819
820 /// AttributeSet map iterators.
822
823 as_iterator as_begin() { return asMap.begin(); }
824 as_iterator as_end() { return asMap.end(); }
825 unsigned as_size() const { return asMap.size(); }
826 bool as_empty() const { return asMap.empty(); }
827
828 /// GUID map iterators.
830
831 /// These functions do the actual initialization.
832 inline void initializeIfNeeded();
834
835 // Implementation Details
836private:
837 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
838 void CreateModuleSlot(const GlobalValue *V);
839
840 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
841 void CreateMetadataSlot(const MDNode *N);
842
843 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
844 void CreateFunctionSlot(const Value *V);
845
846 /// Insert the specified AttributeSet into the slot table.
847 void CreateAttributeSetSlot(AttributeSet AS);
848
849 inline void CreateModulePathSlot(StringRef Path);
850 void CreateGUIDSlot(GlobalValue::GUID GUID);
851 void CreateTypeIdSlot(StringRef Id);
852 void CreateTypeIdCompatibleVtableSlot(StringRef Id);
853
854 /// Add all of the module level global variables (and their initializers)
855 /// and function declarations, but not the contents of those functions.
856 void processModule();
857 // Returns number of allocated slots
858 int processIndex();
859
860 /// Add all of the functions arguments, basic blocks, and instructions.
861 void processFunction();
862
863 /// Add the metadata directly attached to a GlobalObject.
864 void processGlobalObjectMetadata(const GlobalObject &GO);
865
866 /// Add all of the metadata from a function.
867 void processFunctionMetadata(const Function &F);
868
869 /// Add all of the metadata from an instruction.
870 void processInstructionMetadata(const Instruction &I);
871
872 /// Add all of the metadata from a DbgRecord.
873 void processDbgRecordMetadata(const DbgRecord &DVR);
874};
875
876} // end namespace llvm
877
879 const Function *F)
880 : M(M), F(F), Machine(&Machine) {}
881
883 bool ShouldInitializeAllMetadata)
884 : ShouldCreateStorage(M),
885 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
886
888
890 if (!ShouldCreateStorage)
891 return Machine;
892
893 ShouldCreateStorage = false;
894 MachineStorage =
895 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
896 Machine = MachineStorage.get();
897 if (ProcessModuleHookFn)
898 Machine->setProcessHook(ProcessModuleHookFn);
899 if (ProcessFunctionHookFn)
900 Machine->setProcessHook(ProcessFunctionHookFn);
901 return Machine;
902}
903
905 // Using getMachine() may lazily create the slot tracker.
906 if (!getMachine())
907 return;
908
909 // Nothing to do if this is the right function already.
910 if (this->F == &F)
911 return;
912 if (this->F)
913 Machine->purgeFunction();
914 Machine->incorporateFunction(&F);
915 this->F = &F;
916}
917
919 assert(F && "No function incorporated");
920 return Machine->getLocalSlot(V);
921}
922
924 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
925 Fn) {
926 ProcessModuleHookFn = Fn;
927}
928
930 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
931 Fn) {
932 ProcessFunctionHookFn = Fn;
933}
934
936 if (const Argument *FA = dyn_cast<Argument>(V))
937 return new SlotTracker(FA->getParent());
938
939 if (const Instruction *I = dyn_cast<Instruction>(V))
940 if (I->getParent())
941 return new SlotTracker(I->getParent()->getParent());
942
943 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
944 return new SlotTracker(BB->getParent());
945
946 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
947 return new SlotTracker(GV->getParent());
948
949 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
950 return new SlotTracker(GA->getParent());
951
952 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
953 return new SlotTracker(GIF->getParent());
954
955 if (const Function *Func = dyn_cast<Function>(V))
956 return new SlotTracker(Func);
957
958 return nullptr;
959}
960
961#if 0
962#define ST_DEBUG(X) dbgs() << X
963#else
964#define ST_DEBUG(X)
965#endif
966
967// Module level constructor. Causes the contents of the Module (sans functions)
968// to be added to the slot table.
969SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
970 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
971
972// Function level constructor. Causes the contents of the Module and the one
973// function provided to be added to the slot table.
974SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
975 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
976 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
977
979 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
980
982 if (TheModule) {
983 processModule();
984 TheModule = nullptr; ///< Prevent re-processing next time we're called.
985 }
986
987 if (TheFunction && !FunctionProcessed)
988 processFunction();
989}
990
992 if (!TheIndex)
993 return 0;
994 int NumSlots = processIndex();
995 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
996 return NumSlots;
997}
998
999// Iterate through all the global variables, functions, and global
1000// variable initializers and create slots for them.
1001void SlotTracker::processModule() {
1002 ST_DEBUG("begin processModule!\n");
1003
1004 // Add all of the unnamed global variables to the value table.
1005 for (const GlobalVariable &Var : TheModule->globals()) {
1006 if (!Var.hasName())
1007 CreateModuleSlot(&Var);
1008 processGlobalObjectMetadata(Var);
1009 auto Attrs = Var.getAttributes();
1010 if (Attrs.hasAttributes())
1011 CreateAttributeSetSlot(Attrs);
1012 }
1013
1014 for (const GlobalAlias &A : TheModule->aliases()) {
1015 if (!A.hasName())
1016 CreateModuleSlot(&A);
1017 }
1018
1019 for (const GlobalIFunc &I : TheModule->ifuncs()) {
1020 if (!I.hasName())
1021 CreateModuleSlot(&I);
1022 }
1023
1024 // Add metadata used by named metadata.
1025 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1026 for (const MDNode *N : NMD.operands())
1027 CreateMetadataSlot(N);
1028 }
1029
1030 for (const Function &F : *TheModule) {
1031 if (!F.hasName())
1032 // Add all the unnamed functions to the table.
1033 CreateModuleSlot(&F);
1034
1035 if (ShouldInitializeAllMetadata)
1036 processFunctionMetadata(F);
1037
1038 // Add all the function attributes to the table.
1039 // FIXME: Add attributes of other objects?
1040 AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1041 if (FnAttrs.hasAttributes())
1042 CreateAttributeSetSlot(FnAttrs);
1043 }
1044
1045 if (ProcessModuleHookFn)
1046 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1047
1048 ST_DEBUG("end processModule!\n");
1049}
1050
1051// Process the arguments, basic blocks, and instructions of a function.
1052void SlotTracker::processFunction() {
1053 ST_DEBUG("begin processFunction!\n");
1054 fNext = 0;
1055
1056 // Process function metadata if it wasn't hit at the module-level.
1057 if (!ShouldInitializeAllMetadata)
1058 processFunctionMetadata(*TheFunction);
1059
1060 // Add all the function arguments with no names.
1061 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1062 AE = TheFunction->arg_end(); AI != AE; ++AI)
1063 if (!AI->hasName())
1064 CreateFunctionSlot(&*AI);
1065
1066 ST_DEBUG("Inserting Instructions:\n");
1067
1068 // Add all of the basic blocks and instructions with no names.
1069 for (auto &BB : *TheFunction) {
1070 if (!BB.hasName())
1071 CreateFunctionSlot(&BB);
1072
1073 for (auto &I : BB) {
1074 if (!I.getType()->isVoidTy() && !I.hasName())
1075 CreateFunctionSlot(&I);
1076
1077 // We allow direct calls to any llvm.foo function here, because the
1078 // target may not be linked into the optimizer.
1079 if (const auto *Call = dyn_cast<CallBase>(&I)) {
1080 // Add all the call attributes to the table.
1081 AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1082 if (Attrs.hasAttributes())
1083 CreateAttributeSetSlot(Attrs);
1084 }
1085 }
1086 }
1087
1088 if (ProcessFunctionHookFn)
1089 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1090
1091 FunctionProcessed = true;
1092
1093 ST_DEBUG("end processFunction!\n");
1094}
1095
1096// Iterate through all the GUID in the index and create slots for them.
1097int SlotTracker::processIndex() {
1098 ST_DEBUG("begin processIndex!\n");
1099 assert(TheIndex);
1100
1101 // The first block of slots are just the module ids, which start at 0 and are
1102 // assigned consecutively. Since the StringMap iteration order isn't
1103 // guaranteed, order by path string before assigning slots.
1104 std::vector<StringRef> ModulePaths;
1105 for (auto &[ModPath, _] : TheIndex->modulePaths())
1106 ModulePaths.push_back(ModPath);
1107 llvm::sort(ModulePaths.begin(), ModulePaths.end());
1108 for (auto &ModPath : ModulePaths)
1109 CreateModulePathSlot(ModPath);
1110
1111 // Start numbering the GUIDs after the module ids.
1112 GUIDNext = ModulePathNext;
1113
1114 for (auto &GlobalList : *TheIndex)
1115 CreateGUIDSlot(GlobalList.first);
1116
1117 // Start numbering the TypeIdCompatibleVtables after the GUIDs.
1118 TypeIdCompatibleVtableNext = GUIDNext;
1119 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1120 CreateTypeIdCompatibleVtableSlot(TId.first);
1121
1122 // Start numbering the TypeIds after the TypeIdCompatibleVtables.
1123 TypeIdNext = TypeIdCompatibleVtableNext;
1124 for (const auto &TID : TheIndex->typeIds())
1125 CreateTypeIdSlot(TID.second.first);
1126
1127 ST_DEBUG("end processIndex!\n");
1128 return TypeIdNext;
1129}
1130
1131void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1133 GO.getAllMetadata(MDs);
1134 for (auto &MD : MDs)
1135 CreateMetadataSlot(MD.second);
1136}
1137
1138void SlotTracker::processFunctionMetadata(const Function &F) {
1139 processGlobalObjectMetadata(F);
1140 for (auto &BB : F) {
1141 for (auto &I : BB) {
1142 for (const DbgRecord &DR : I.getDbgRecordRange())
1143 processDbgRecordMetadata(DR);
1144 processInstructionMetadata(I);
1145 }
1146 }
1147}
1148
1149void SlotTracker::processDbgRecordMetadata(const DbgRecord &DR) {
1150 if (const DbgVariableRecord *DVR = dyn_cast<const DbgVariableRecord>(&DR)) {
1151 // Process metadata used by DbgRecords; we only specifically care about the
1152 // DILocalVariable, DILocation, and DIAssignID fields, as the Value and
1153 // Expression fields should only be printed inline and so do not use a slot.
1154 // Note: The above doesn't apply for empty-metadata operands.
1155 if (auto *Empty = dyn_cast<MDNode>(DVR->getRawLocation()))
1156 CreateMetadataSlot(Empty);
1157 CreateMetadataSlot(DVR->getRawVariable());
1158 if (DVR->isDbgAssign()) {
1159 CreateMetadataSlot(cast<MDNode>(DVR->getRawAssignID()));
1160 if (auto *Empty = dyn_cast<MDNode>(DVR->getRawAddress()))
1161 CreateMetadataSlot(Empty);
1162 }
1163 } else if (const DbgLabelRecord *DLR = dyn_cast<const DbgLabelRecord>(&DR)) {
1164 CreateMetadataSlot(DLR->getRawLabel());
1165 } else {
1166 llvm_unreachable("unsupported DbgRecord kind");
1167 }
1168 CreateMetadataSlot(DR.getDebugLoc().getAsMDNode());
1169}
1170
1171void SlotTracker::processInstructionMetadata(const Instruction &I) {
1172 // Process metadata used directly by intrinsics.
1173 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1174 if (Function *F = CI->getCalledFunction())
1175 if (F->isIntrinsic())
1176 for (auto &Op : I.operands())
1177 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1178 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1179 CreateMetadataSlot(N);
1180
1181 // Process metadata attached to this instruction.
1183 I.getAllMetadata(MDs);
1184 for (auto &MD : MDs)
1185 CreateMetadataSlot(MD.second);
1186}
1187
1188/// Clean up after incorporating a function. This is the only way to get out of
1189/// the function incorporation state that affects get*Slot/Create*Slot. Function
1190/// incorporation state is indicated by TheFunction != 0.
1192 ST_DEBUG("begin purgeFunction!\n");
1193 fMap.clear(); // Simply discard the function level map
1194 TheFunction = nullptr;
1195 FunctionProcessed = false;
1196 ST_DEBUG("end purgeFunction!\n");
1197}
1198
1199/// getGlobalSlot - Get the slot number of a global value.
1201 // Check for uninitialized state and do lazy initialization.
1203
1204 // Find the value in the module map
1205 ValueMap::iterator MI = mMap.find(V);
1206 return MI == mMap.end() ? -1 : (int)MI->second;
1207}
1208
1210 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1211 Fn) {
1212 ProcessModuleHookFn = Fn;
1213}
1214
1216 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1217 Fn) {
1218 ProcessFunctionHookFn = Fn;
1219}
1220
1221/// getMetadataSlot - Get the slot number of a MDNode.
1222void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1223
1224/// getMetadataSlot - Get the slot number of a MDNode.
1226 // Check for uninitialized state and do lazy initialization.
1228
1229 // Find the MDNode in the module map
1230 mdn_iterator MI = mdnMap.find(N);
1231 return MI == mdnMap.end() ? -1 : (int)MI->second;
1232}
1233
1234/// getLocalSlot - Get the slot number for a value that is local to a function.
1236 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1237
1238 // Check for uninitialized state and do lazy initialization.
1240
1241 ValueMap::iterator FI = fMap.find(V);
1242 return FI == fMap.end() ? -1 : (int)FI->second;
1243}
1244
1246 // Check for uninitialized state and do lazy initialization.
1248
1249 // Find the AttributeSet in the module map.
1250 as_iterator AI = asMap.find(AS);
1251 return AI == asMap.end() ? -1 : (int)AI->second;
1252}
1253
1255 // Check for uninitialized state and do lazy initialization.
1257
1258 // Find the Module path in the map
1259 auto I = ModulePathMap.find(Path);
1260 return I == ModulePathMap.end() ? -1 : (int)I->second;
1261}
1262
1264 // Check for uninitialized state and do lazy initialization.
1266
1267 // Find the GUID in the map
1268 guid_iterator I = GUIDMap.find(GUID);
1269 return I == GUIDMap.end() ? -1 : (int)I->second;
1270}
1271
1273 // Check for uninitialized state and do lazy initialization.
1275
1276 // Find the TypeId string in the map
1277 auto I = TypeIdMap.find(Id);
1278 return I == TypeIdMap.end() ? -1 : (int)I->second;
1279}
1280
1282 // Check for uninitialized state and do lazy initialization.
1284
1285 // Find the TypeIdCompatibleVtable string in the map
1286 auto I = TypeIdCompatibleVtableMap.find(Id);
1287 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1288}
1289
1290/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1291void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1292 assert(V && "Can't insert a null Value into SlotTracker!");
1293 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1294 assert(!V->hasName() && "Doesn't need a slot!");
1295
1296 unsigned DestSlot = mNext++;
1297 mMap[V] = DestSlot;
1298
1299 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1300 DestSlot << " [");
1301 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1302 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1303 (isa<Function>(V) ? 'F' :
1304 (isa<GlobalAlias>(V) ? 'A' :
1305 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1306}
1307
1308/// CreateSlot - Create a new slot for the specified value if it has no name.
1309void SlotTracker::CreateFunctionSlot(const Value *V) {
1310 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1311
1312 unsigned DestSlot = fNext++;
1313 fMap[V] = DestSlot;
1314
1315 // G = Global, F = Function, o = other
1316 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1317 DestSlot << " [o]\n");
1318}
1319
1320/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1321void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1322 assert(N && "Can't insert a null Value into SlotTracker!");
1323
1324 // Don't make slots for DIExpressions. We just print them inline everywhere.
1325 if (isa<DIExpression>(N))
1326 return;
1327
1328 unsigned DestSlot = mdnNext;
1329 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1330 return;
1331 ++mdnNext;
1332
1333 // Recursively add any MDNodes referenced by operands.
1334 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1335 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1336 CreateMetadataSlot(Op);
1337}
1338
1339void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1340 assert(AS.hasAttributes() && "Doesn't need a slot!");
1341
1342 if (asMap.try_emplace(AS, asNext).second)
1343 ++asNext;
1344}
1345
1346/// Create a new slot for the specified Module
1347void SlotTracker::CreateModulePathSlot(StringRef Path) {
1348 ModulePathMap[Path] = ModulePathNext++;
1349}
1350
1351/// Create a new slot for the specified GUID
1352void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1353 GUIDMap[GUID] = GUIDNext++;
1354}
1355
1356/// Create a new slot for the specified Id
1357void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1358 TypeIdMap[Id] = TypeIdNext++;
1359}
1360
1361/// Create a new slot for the specified Id
1362void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1363 TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1364}
1365
1366namespace {
1367/// Common instances used by most of the printer functions.
1368struct AsmWriterContext {
1369 TypePrinting *TypePrinter = nullptr;
1370 SlotTracker *Machine = nullptr;
1371 const Module *Context = nullptr;
1372
1373 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1374 : TypePrinter(TP), Machine(ST), Context(M) {}
1375
1376 static AsmWriterContext &getEmpty() {
1377 static AsmWriterContext EmptyCtx(nullptr, nullptr);
1378 return EmptyCtx;
1379 }
1380
1381 /// A callback that will be triggered when the underlying printer
1382 /// prints a Metadata as operand.
1383 virtual void onWriteMetadataAsOperand(const Metadata *) {}
1384
1385 virtual ~AsmWriterContext() = default;
1386};
1387} // end anonymous namespace
1388
1389//===----------------------------------------------------------------------===//
1390// AsmWriter Implementation
1391//===----------------------------------------------------------------------===//
1392
1393static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1394 AsmWriterContext &WriterCtx);
1395
1396static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1397 AsmWriterContext &WriterCtx,
1398 bool FromValue = false);
1399
1400static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1401 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1402 Out << FPO->getFastMathFlags();
1403
1404 if (const OverflowingBinaryOperator *OBO =
1405 dyn_cast<OverflowingBinaryOperator>(U)) {
1406 if (OBO->hasNoUnsignedWrap())
1407 Out << " nuw";
1408 if (OBO->hasNoSignedWrap())
1409 Out << " nsw";
1410 } else if (const PossiblyExactOperator *Div =
1411 dyn_cast<PossiblyExactOperator>(U)) {
1412 if (Div->isExact())
1413 Out << " exact";
1414 } else if (const PossiblyDisjointInst *PDI =
1415 dyn_cast<PossiblyDisjointInst>(U)) {
1416 if (PDI->isDisjoint())
1417 Out << " disjoint";
1418 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1419 if (GEP->isInBounds())
1420 Out << " inbounds";
1421 else if (GEP->hasNoUnsignedSignedWrap())
1422 Out << " nusw";
1423 if (GEP->hasNoUnsignedWrap())
1424 Out << " nuw";
1425 if (auto InRange = GEP->getInRange()) {
1426 Out << " inrange(" << InRange->getLower() << ", " << InRange->getUpper()
1427 << ")";
1428 }
1429 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(U)) {
1430 if (NNI->hasNonNeg())
1431 Out << " nneg";
1432 } else if (const auto *TI = dyn_cast<TruncInst>(U)) {
1433 if (TI->hasNoUnsignedWrap())
1434 Out << " nuw";
1435 if (TI->hasNoSignedWrap())
1436 Out << " nsw";
1437 } else if (const auto *ICmp = dyn_cast<ICmpInst>(U)) {
1438 if (ICmp->hasSameSign())
1439 Out << " samesign";
1440 }
1441}
1442
1443static void WriteAPFloatInternal(raw_ostream &Out, const APFloat &APF) {
1444 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1445 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1446 // We would like to output the FP constant value in exponential notation,
1447 // but we cannot do this if doing so will lose precision. Check here to
1448 // make sure that we only output it in exponential format if we can parse
1449 // the value back and get the same value.
1450 //
1451 bool ignored;
1452 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1453 bool isInf = APF.isInfinity();
1454 bool isNaN = APF.isNaN();
1455
1456 if (!isInf && !isNaN) {
1457 double Val = APF.convertToDouble();
1458 SmallString<128> StrVal;
1459 APF.toString(StrVal, 6, 0, false);
1460 // Check to make sure that the stringized number is not some string like
1461 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1462 // that the string matches the "[-+]?[0-9]" regex.
1463 //
1464 assert((isDigit(StrVal[0]) ||
1465 ((StrVal[0] == '-' || StrVal[0] == '+') && isDigit(StrVal[1]))) &&
1466 "[-+]?[0-9] regex does not match!");
1467 // Reparse stringized version!
1468 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1469 Out << StrVal;
1470 return;
1471 }
1472 }
1473
1474 // Otherwise we could not reparse it to exactly the same value, so we must
1475 // output the string in hexadecimal format! Note that loading and storing
1476 // floating point types changes the bits of NaNs on some hosts, notably
1477 // x86, so we must not use these types.
1478 static_assert(sizeof(double) == sizeof(uint64_t),
1479 "assuming that double is 64 bits!");
1480 APFloat apf = APF;
1481
1482 // Floats are represented in ASCII IR as double, convert.
1483 // FIXME: We should allow 32-bit hex float and remove this.
1484 if (!isDouble) {
1485 // A signaling NaN is quieted on conversion, so we need to recreate the
1486 // expected value after convert (quiet bit of the payload is clear).
1487 bool IsSNAN = apf.isSignaling();
1489 &ignored);
1490 if (IsSNAN) {
1491 APInt Payload = apf.bitcastToAPInt();
1492 apf =
1494 }
1495 }
1496
1497 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1498 return;
1499 }
1500
1501 // Either half, bfloat or some form of long double.
1502 // These appear as a magic letter identifying the type, then a
1503 // fixed number of hex digits.
1504 Out << "0x";
1505 APInt API = APF.bitcastToAPInt();
1506 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1507 Out << 'K';
1508 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1509 /*Upper=*/true);
1510 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1511 /*Upper=*/true);
1512 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1513 Out << 'L';
1514 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1515 /*Upper=*/true);
1516 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1517 /*Upper=*/true);
1518 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1519 Out << 'M';
1520 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1521 /*Upper=*/true);
1522 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1523 /*Upper=*/true);
1524 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1525 Out << 'H';
1526 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1527 /*Upper=*/true);
1528 } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1529 Out << 'R';
1530 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1531 /*Upper=*/true);
1532 } else
1533 llvm_unreachable("Unsupported floating point type");
1534}
1535
1536static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1537 AsmWriterContext &WriterCtx) {
1538 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1539 Type *Ty = CI->getType();
1540
1541 if (Ty->isVectorTy()) {
1542 Out << "splat (";
1543 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1544 Out << " ";
1545 }
1546
1547 if (Ty->getScalarType()->isIntegerTy(1))
1548 Out << (CI->getZExtValue() ? "true" : "false");
1549 else
1550 Out << CI->getValue();
1551
1552 if (Ty->isVectorTy())
1553 Out << ")";
1554
1555 return;
1556 }
1557
1558 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1559 Type *Ty = CFP->getType();
1560
1561 if (Ty->isVectorTy()) {
1562 Out << "splat (";
1563 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1564 Out << " ";
1565 }
1566
1567 WriteAPFloatInternal(Out, CFP->getValueAPF());
1568
1569 if (Ty->isVectorTy())
1570 Out << ")";
1571
1572 return;
1573 }
1574
1575 if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1576 Out << "zeroinitializer";
1577 return;
1578 }
1579
1580 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1581 Out << "blockaddress(";
1582 WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1583 Out << ", ";
1584 WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1585 Out << ")";
1586 return;
1587 }
1588
1589 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1590 Out << "dso_local_equivalent ";
1591 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1592 return;
1593 }
1594
1595 if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1596 Out << "no_cfi ";
1597 WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1598 return;
1599 }
1600
1601 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV)) {
1602 Out << "ptrauth (";
1603
1604 // ptrauth (ptr CST, i32 KEY[, i64 DISC[, ptr ADDRDISC]?]?)
1605 unsigned NumOpsToWrite = 2;
1606 if (!CPA->getOperand(2)->isNullValue())
1607 NumOpsToWrite = 3;
1608 if (!CPA->getOperand(3)->isNullValue())
1609 NumOpsToWrite = 4;
1610
1611 ListSeparator LS;
1612 for (unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1613 Out << LS;
1614 WriterCtx.TypePrinter->print(CPA->getOperand(i)->getType(), Out);
1615 Out << ' ';
1616 WriteAsOperandInternal(Out, CPA->getOperand(i), WriterCtx);
1617 }
1618 Out << ')';
1619 return;
1620 }
1621
1622 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1623 Type *ETy = CA->getType()->getElementType();
1624 Out << '[';
1625 WriterCtx.TypePrinter->print(ETy, Out);
1626 Out << ' ';
1627 WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1628 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1629 Out << ", ";
1630 WriterCtx.TypePrinter->print(ETy, Out);
1631 Out << ' ';
1632 WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1633 }
1634 Out << ']';
1635 return;
1636 }
1637
1638 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1639 // As a special case, print the array as a string if it is an array of
1640 // i8 with ConstantInt values.
1641 if (CA->isString()) {
1642 Out << "c\"";
1643 printEscapedString(CA->getAsString(), Out);
1644 Out << '"';
1645 return;
1646 }
1647
1648 Type *ETy = CA->getType()->getElementType();
1649 Out << '[';
1650 WriterCtx.TypePrinter->print(ETy, Out);
1651 Out << ' ';
1652 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1653 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1654 Out << ", ";
1655 WriterCtx.TypePrinter->print(ETy, Out);
1656 Out << ' ';
1657 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1658 }
1659 Out << ']';
1660 return;
1661 }
1662
1663 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1664 if (CS->getType()->isPacked())
1665 Out << '<';
1666 Out << '{';
1667 unsigned N = CS->getNumOperands();
1668 if (N) {
1669 Out << ' ';
1670 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1671 Out << ' ';
1672
1673 WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1674
1675 for (unsigned i = 1; i < N; i++) {
1676 Out << ", ";
1677 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1678 Out << ' ';
1679
1680 WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1681 }
1682 Out << ' ';
1683 }
1684
1685 Out << '}';
1686 if (CS->getType()->isPacked())
1687 Out << '>';
1688 return;
1689 }
1690
1691 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1692 auto *CVVTy = cast<FixedVectorType>(CV->getType());
1693 Type *ETy = CVVTy->getElementType();
1694
1695 // Use the same shorthand for splat vector (i.e. "splat(Ty val)") as is
1696 // permitted on IR input to reduce the output changes when enabling
1697 // UseConstant{Int,FP}ForFixedLengthSplat.
1698 // TODO: Remove this block when the UseConstant{Int,FP}ForFixedLengthSplat
1699 // options are removed.
1700 if (auto *SplatVal = CV->getSplatValue()) {
1701 if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1702 Out << "splat (";
1703 WriterCtx.TypePrinter->print(ETy, Out);
1704 Out << ' ';
1705 WriteAsOperandInternal(Out, SplatVal, WriterCtx);
1706 Out << ')';
1707 return;
1708 }
1709 }
1710
1711 Out << '<';
1712 WriterCtx.TypePrinter->print(ETy, Out);
1713 Out << ' ';
1714 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1715 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1716 Out << ", ";
1717 WriterCtx.TypePrinter->print(ETy, Out);
1718 Out << ' ';
1719 WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1720 }
1721 Out << '>';
1722 return;
1723 }
1724
1725 if (isa<ConstantPointerNull>(CV)) {
1726 Out << "null";
1727 return;
1728 }
1729
1730 if (isa<ConstantTokenNone>(CV)) {
1731 Out << "none";
1732 return;
1733 }
1734
1735 if (isa<PoisonValue>(CV)) {
1736 Out << "poison";
1737 return;
1738 }
1739
1740 if (isa<UndefValue>(CV)) {
1741 Out << "undef";
1742 return;
1743 }
1744
1745 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1746 // Use the same shorthand for splat vector (i.e. "splat(Ty val)") as is
1747 // permitted on IR input to reduce the output changes when enabling
1748 // UseConstant{Int,FP}ForScalableSplat.
1749 // TODO: Remove this block when the UseConstant{Int,FP}ForScalableSplat
1750 // options are removed.
1751 if (CE->getOpcode() == Instruction::ShuffleVector) {
1752 if (auto *SplatVal = CE->getSplatValue()) {
1753 if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1754 Out << "splat (";
1755 WriterCtx.TypePrinter->print(SplatVal->getType(), Out);
1756 Out << ' ';
1757 WriteAsOperandInternal(Out, SplatVal, WriterCtx);
1758 Out << ')';
1759 return;
1760 }
1761 }
1762 }
1763
1764 Out << CE->getOpcodeName();
1765 WriteOptimizationInfo(Out, CE);
1766 Out << " (";
1767
1768 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1769 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1770 Out << ", ";
1771 }
1772
1773 for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end();
1774 ++OI) {
1775 WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1776 Out << ' ';
1777 WriteAsOperandInternal(Out, *OI, WriterCtx);
1778 if (OI+1 != CE->op_end())
1779 Out << ", ";
1780 }
1781
1782 if (CE->isCast()) {
1783 Out << " to ";
1784 WriterCtx.TypePrinter->print(CE->getType(), Out);
1785 }
1786
1787 if (CE->getOpcode() == Instruction::ShuffleVector)
1788 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1789
1790 Out << ')';
1791 return;
1792 }
1793
1794 Out << "<placeholder or erroneous Constant>";
1795}
1796
1797static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1798 AsmWriterContext &WriterCtx) {
1799 Out << "!{";
1800 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1801 const Metadata *MD = Node->getOperand(mi);
1802 if (!MD)
1803 Out << "null";
1804 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1805 Value *V = MDV->getValue();
1806 WriterCtx.TypePrinter->print(V->getType(), Out);
1807 Out << ' ';
1808 WriteAsOperandInternal(Out, V, WriterCtx);
1809 } else {
1810 WriteAsOperandInternal(Out, MD, WriterCtx);
1811 WriterCtx.onWriteMetadataAsOperand(MD);
1812 }
1813 if (mi + 1 != me)
1814 Out << ", ";
1815 }
1816
1817 Out << "}";
1818}
1819
1820namespace {
1821
1822struct FieldSeparator {
1823 bool Skip = true;
1824 const char *Sep;
1825
1826 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1827};
1828
1829raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1830 if (FS.Skip) {
1831 FS.Skip = false;
1832 return OS;
1833 }
1834 return OS << FS.Sep;
1835}
1836
1837struct MDFieldPrinter {
1838 raw_ostream &Out;
1839 FieldSeparator FS;
1840 AsmWriterContext &WriterCtx;
1841
1842 explicit MDFieldPrinter(raw_ostream &Out)
1843 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1844 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1845 : Out(Out), WriterCtx(Ctx) {}
1846
1847 void printTag(const DINode *N);
1848 void printMacinfoType(const DIMacroNode *N);
1849 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1850 void printString(StringRef Name, StringRef Value,
1851 bool ShouldSkipEmpty = true);
1852 void printMetadata(StringRef Name, const Metadata *MD,
1853 bool ShouldSkipNull = true);
1854 template <class IntTy>
1855 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1856 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1857 bool ShouldSkipZero);
1858 void printBool(StringRef Name, bool Value,
1859 std::optional<bool> Default = std::nullopt);
1860 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1861 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1862 template <class IntTy, class Stringifier>
1863 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1864 bool ShouldSkipZero = true);
1865 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1866 void printNameTableKind(StringRef Name,
1868};
1869
1870} // end anonymous namespace
1871
1872void MDFieldPrinter::printTag(const DINode *N) {
1873 Out << FS << "tag: ";
1874 auto Tag = dwarf::TagString(N->getTag());
1875 if (!Tag.empty())
1876 Out << Tag;
1877 else
1878 Out << N->getTag();
1879}
1880
1881void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1882 Out << FS << "type: ";
1883 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1884 if (!Type.empty())
1885 Out << Type;
1886 else
1887 Out << N->getMacinfoType();
1888}
1889
1890void MDFieldPrinter::printChecksum(
1891 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1892 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1893 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1894}
1895
1896void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1897 bool ShouldSkipEmpty) {
1898 if (ShouldSkipEmpty && Value.empty())
1899 return;
1900
1901 Out << FS << Name << ": \"";
1902 printEscapedString(Value, Out);
1903 Out << "\"";
1904}
1905
1906static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1907 AsmWriterContext &WriterCtx) {
1908 if (!MD) {
1909 Out << "null";
1910 return;
1911 }
1912 WriteAsOperandInternal(Out, MD, WriterCtx);
1913 WriterCtx.onWriteMetadataAsOperand(MD);
1914}
1915
1916void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1917 bool ShouldSkipNull) {
1918 if (ShouldSkipNull && !MD)
1919 return;
1920
1921 Out << FS << Name << ": ";
1922 writeMetadataAsOperand(Out, MD, WriterCtx);
1923}
1924
1925template <class IntTy>
1926void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1927 if (ShouldSkipZero && !Int)
1928 return;
1929
1930 Out << FS << Name << ": " << Int;
1931}
1932
1933void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1934 bool IsUnsigned, bool ShouldSkipZero) {
1935 if (ShouldSkipZero && Int.isZero())
1936 return;
1937
1938 Out << FS << Name << ": ";
1939 Int.print(Out, !IsUnsigned);
1940}
1941
1942void MDFieldPrinter::printBool(StringRef Name, bool Value,
1943 std::optional<bool> Default) {
1944 if (Default && Value == *Default)
1945 return;
1946 Out << FS << Name << ": " << (Value ? "true" : "false");
1947}
1948
1949void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1950 if (!Flags)
1951 return;
1952
1953 Out << FS << Name << ": ";
1954
1956 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1957
1958 FieldSeparator FlagsFS(" | ");
1959 for (auto F : SplitFlags) {
1960 auto StringF = DINode::getFlagString(F);
1961 assert(!StringF.empty() && "Expected valid flag");
1962 Out << FlagsFS << StringF;
1963 }
1964 if (Extra || SplitFlags.empty())
1965 Out << FlagsFS << Extra;
1966}
1967
1968void MDFieldPrinter::printDISPFlags(StringRef Name,
1970 // Always print this field, because no flags in the IR at all will be
1971 // interpreted as old-style isDefinition: true.
1972 Out << FS << Name << ": ";
1973
1974 if (!Flags) {
1975 Out << 0;
1976 return;
1977 }
1978
1980 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1981
1982 FieldSeparator FlagsFS(" | ");
1983 for (auto F : SplitFlags) {
1984 auto StringF = DISubprogram::getFlagString(F);
1985 assert(!StringF.empty() && "Expected valid flag");
1986 Out << FlagsFS << StringF;
1987 }
1988 if (Extra || SplitFlags.empty())
1989 Out << FlagsFS << Extra;
1990}
1991
1992void MDFieldPrinter::printEmissionKind(StringRef Name,
1994 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1995}
1996
1997void MDFieldPrinter::printNameTableKind(StringRef Name,
2000 return;
2001 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
2002}
2003
2004template <class IntTy, class Stringifier>
2005void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
2006 Stringifier toString, bool ShouldSkipZero) {
2007 if (!Value)
2008 return;
2009
2010 Out << FS << Name << ": ";
2011 auto S = toString(Value);
2012 if (!S.empty())
2013 Out << S;
2014 else
2015 Out << Value;
2016}
2017
2019 AsmWriterContext &WriterCtx) {
2020 Out << "!GenericDINode(";
2021 MDFieldPrinter Printer(Out, WriterCtx);
2022 Printer.printTag(N);
2023 Printer.printString("header", N->getHeader());
2024 if (N->getNumDwarfOperands()) {
2025 Out << Printer.FS << "operands: {";
2026 FieldSeparator IFS;
2027 for (auto &I : N->dwarf_operands()) {
2028 Out << IFS;
2029 writeMetadataAsOperand(Out, I, WriterCtx);
2030 }
2031 Out << "}";
2032 }
2033 Out << ")";
2034}
2035
2036static void writeDILocation(raw_ostream &Out, const DILocation *DL,
2037 AsmWriterContext &WriterCtx) {
2038 Out << "!DILocation(";
2039 MDFieldPrinter Printer(Out, WriterCtx);
2040 // Always output the line, since 0 is a relevant and important value for it.
2041 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
2042 Printer.printInt("column", DL->getColumn());
2043 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
2044 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
2045 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
2046 /* Default */ false);
2047 Out << ")";
2048}
2049
2050static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL,
2051 AsmWriterContext &WriterCtx) {
2052 Out << "!DIAssignID()";
2053 MDFieldPrinter Printer(Out, WriterCtx);
2054}
2055
2056static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
2057 AsmWriterContext &WriterCtx) {
2058 Out << "!DISubrange(";
2059 MDFieldPrinter Printer(Out, WriterCtx);
2060
2061 auto *Count = N->getRawCountNode();
2062 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
2063 auto *CV = cast<ConstantInt>(CE->getValue());
2064 Printer.printInt("count", CV->getSExtValue(),
2065 /* ShouldSkipZero */ false);
2066 } else
2067 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2068
2069 // A lowerBound of constant 0 should not be skipped, since it is different
2070 // from an unspecified lower bound (= nullptr).
2071 auto *LBound = N->getRawLowerBound();
2072 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
2073 auto *LV = cast<ConstantInt>(LE->getValue());
2074 Printer.printInt("lowerBound", LV->getSExtValue(),
2075 /* ShouldSkipZero */ false);
2076 } else
2077 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2078
2079 auto *UBound = N->getRawUpperBound();
2080 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
2081 auto *UV = cast<ConstantInt>(UE->getValue());
2082 Printer.printInt("upperBound", UV->getSExtValue(),
2083 /* ShouldSkipZero */ false);
2084 } else
2085 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2086
2087 auto *Stride = N->getRawStride();
2088 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
2089 auto *SV = cast<ConstantInt>(SE->getValue());
2090 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
2091 } else
2092 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2093
2094 Out << ")";
2095}
2096
2098 AsmWriterContext &WriterCtx) {
2099 Out << "!DIGenericSubrange(";
2100 MDFieldPrinter Printer(Out, WriterCtx);
2101
2102 auto IsConstant = [&](Metadata *Bound) -> bool {
2103 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
2104 return BE->isConstant() &&
2106 *BE->isConstant();
2107 }
2108 return false;
2109 };
2110
2111 auto GetConstant = [&](Metadata *Bound) -> int64_t {
2112 assert(IsConstant(Bound) && "Expected constant");
2113 auto *BE = dyn_cast_or_null<DIExpression>(Bound);
2114 return static_cast<int64_t>(BE->getElement(1));
2115 };
2116
2117 auto *Count = N->getRawCountNode();
2118 if (IsConstant(Count))
2119 Printer.printInt("count", GetConstant(Count),
2120 /* ShouldSkipZero */ false);
2121 else
2122 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2123
2124 auto *LBound = N->getRawLowerBound();
2125 if (IsConstant(LBound))
2126 Printer.printInt("lowerBound", GetConstant(LBound),
2127 /* ShouldSkipZero */ false);
2128 else
2129 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2130
2131 auto *UBound = N->getRawUpperBound();
2132 if (IsConstant(UBound))
2133 Printer.printInt("upperBound", GetConstant(UBound),
2134 /* ShouldSkipZero */ false);
2135 else
2136 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2137
2138 auto *Stride = N->getRawStride();
2139 if (IsConstant(Stride))
2140 Printer.printInt("stride", GetConstant(Stride),
2141 /* ShouldSkipZero */ false);
2142 else
2143 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2144
2145 Out << ")";
2146}
2147
2149 AsmWriterContext &) {
2150 Out << "!DIEnumerator(";
2151 MDFieldPrinter Printer(Out);
2152 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
2153 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2154 /*ShouldSkipZero=*/false);
2155 if (N->isUnsigned())
2156 Printer.printBool("isUnsigned", true);
2157 Out << ")";
2158}
2159
2161 AsmWriterContext &) {
2162 Out << "!DIBasicType(";
2163 MDFieldPrinter Printer(Out);
2164 if (N->getTag() != dwarf::DW_TAG_base_type)
2165 Printer.printTag(N);
2166 Printer.printString("name", N->getName());
2167 Printer.printInt("size", N->getSizeInBits());
2168 Printer.printInt("align", N->getAlignInBits());
2169 Printer.printDwarfEnum("encoding", N->getEncoding(),
2171 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2172 Printer.printDIFlags("flags", N->getFlags());
2173 Out << ")";
2174}
2175
2177 AsmWriterContext &WriterCtx) {
2178 Out << "!DIStringType(";
2179 MDFieldPrinter Printer(Out, WriterCtx);
2180 if (N->getTag() != dwarf::DW_TAG_string_type)
2181 Printer.printTag(N);
2182 Printer.printString("name", N->getName());
2183 Printer.printMetadata("stringLength", N->getRawStringLength());
2184 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2185 Printer.printMetadata("stringLocationExpression",
2186 N->getRawStringLocationExp());
2187 Printer.printInt("size", N->getSizeInBits());
2188 Printer.printInt("align", N->getAlignInBits());
2189 Printer.printDwarfEnum("encoding", N->getEncoding(),
2191 Out << ")";
2192}
2193
2195 AsmWriterContext &WriterCtx) {
2196 Out << "!DIDerivedType(";
2197 MDFieldPrinter Printer(Out, WriterCtx);
2198 Printer.printTag(N);
2199 Printer.printString("name", N->getName());
2200 Printer.printMetadata("scope", N->getRawScope());
2201 Printer.printMetadata("file", N->getRawFile());
2202 Printer.printInt("line", N->getLine());
2203 Printer.printMetadata("baseType", N->getRawBaseType(),
2204 /* ShouldSkipNull */ false);
2205 Printer.printInt("size", N->getSizeInBits());
2206 Printer.printInt("align", N->getAlignInBits());
2207 Printer.printInt("offset", N->getOffsetInBits());
2208 Printer.printDIFlags("flags", N->getFlags());
2209 Printer.printMetadata("extraData", N->getRawExtraData());
2210 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2211 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2212 /* ShouldSkipZero */ false);
2213 Printer.printMetadata("annotations", N->getRawAnnotations());
2214 if (auto PtrAuthData = N->getPtrAuthData()) {
2215 Printer.printInt("ptrAuthKey", PtrAuthData->key());
2216 Printer.printBool("ptrAuthIsAddressDiscriminated",
2217 PtrAuthData->isAddressDiscriminated());
2218 Printer.printInt("ptrAuthExtraDiscriminator",
2219 PtrAuthData->extraDiscriminator());
2220 Printer.printBool("ptrAuthIsaPointer", PtrAuthData->isaPointer());
2221 Printer.printBool("ptrAuthAuthenticatesNullValues",
2222 PtrAuthData->authenticatesNullValues());
2223 }
2224 Out << ")";
2225}
2226
2228 AsmWriterContext &WriterCtx) {
2229 Out << "!DICompositeType(";
2230 MDFieldPrinter Printer(Out, WriterCtx);
2231 Printer.printTag(N);
2232 Printer.printString("name", N->getName());
2233 Printer.printMetadata("scope", N->getRawScope());
2234 Printer.printMetadata("file", N->getRawFile());
2235 Printer.printInt("line", N->getLine());
2236 Printer.printMetadata("baseType", N->getRawBaseType());
2237 Printer.printInt("size", N->getSizeInBits());
2238 Printer.printInt("align", N->getAlignInBits());
2239 Printer.printInt("offset", N->getOffsetInBits());
2240 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2241 Printer.printDIFlags("flags", N->getFlags());
2242 Printer.printMetadata("elements", N->getRawElements());
2243 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2245 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2246 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2247 Printer.printString("identifier", N->getIdentifier());
2248 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2249 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2250 Printer.printMetadata("associated", N->getRawAssociated());
2251 Printer.printMetadata("allocated", N->getRawAllocated());
2252 if (auto *RankConst = N->getRankConst())
2253 Printer.printInt("rank", RankConst->getSExtValue(),
2254 /* ShouldSkipZero */ false);
2255 else
2256 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2257 Printer.printMetadata("annotations", N->getRawAnnotations());
2258 if (auto *Specification = N->getRawSpecification())
2259 Printer.printMetadata("specification", Specification);
2260 Out << ")";
2261}
2262
2264 AsmWriterContext &WriterCtx) {
2265 Out << "!DISubroutineType(";
2266 MDFieldPrinter Printer(Out, WriterCtx);
2267 Printer.printDIFlags("flags", N->getFlags());
2268 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2269 Printer.printMetadata("types", N->getRawTypeArray(),
2270 /* ShouldSkipNull */ false);
2271 Out << ")";
2272}
2273
2274static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2275 Out << "!DIFile(";
2276 MDFieldPrinter Printer(Out);
2277 Printer.printString("filename", N->getFilename(),
2278 /* ShouldSkipEmpty */ false);
2279 Printer.printString("directory", N->getDirectory(),
2280 /* ShouldSkipEmpty */ false);
2281 // Print all values for checksum together, or not at all.
2282 if (N->getChecksum())
2283 Printer.printChecksum(*N->getChecksum());
2284 Printer.printString("source", N->getSource().value_or(StringRef()),
2285 /* ShouldSkipEmpty */ true);
2286 Out << ")";
2287}
2288
2290 AsmWriterContext &WriterCtx) {
2291 Out << "!DICompileUnit(";
2292 MDFieldPrinter Printer(Out, WriterCtx);
2293 Printer.printDwarfEnum("language", N->getSourceLanguage(),
2294 dwarf::LanguageString, /* ShouldSkipZero */ false);
2295 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2296 Printer.printString("producer", N->getProducer());
2297 Printer.printBool("isOptimized", N->isOptimized());
2298 Printer.printString("flags", N->getFlags());
2299 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2300 /* ShouldSkipZero */ false);
2301 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2302 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2303 Printer.printMetadata("enums", N->getRawEnumTypes());
2304 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2305 Printer.printMetadata("globals", N->getRawGlobalVariables());
2306 Printer.printMetadata("imports", N->getRawImportedEntities());
2307 Printer.printMetadata("macros", N->getRawMacros());
2308 Printer.printInt("dwoId", N->getDWOId());
2309 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2310 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2311 false);
2312 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2313 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2314 Printer.printString("sysroot", N->getSysRoot());
2315 Printer.printString("sdk", N->getSDK());
2316 Out << ")";
2317}
2318
2320 AsmWriterContext &WriterCtx) {
2321 Out << "!DISubprogram(";
2322 MDFieldPrinter Printer(Out, WriterCtx);
2323 Printer.printString("name", N->getName());
2324 Printer.printString("linkageName", N->getLinkageName());
2325 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2326 Printer.printMetadata("file", N->getRawFile());
2327 Printer.printInt("line", N->getLine());
2328 Printer.printMetadata("type", N->getRawType());
2329 Printer.printInt("scopeLine", N->getScopeLine());
2330 Printer.printMetadata("containingType", N->getRawContainingType());
2331 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2332 N->getVirtualIndex() != 0)
2333 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2334 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2335 Printer.printDIFlags("flags", N->getFlags());
2336 Printer.printDISPFlags("spFlags", N->getSPFlags());
2337 Printer.printMetadata("unit", N->getRawUnit());
2338 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2339 Printer.printMetadata("declaration", N->getRawDeclaration());
2340 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2341 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2342 Printer.printMetadata("annotations", N->getRawAnnotations());
2343 Printer.printString("targetFuncName", N->getTargetFuncName());
2344 Out << ")";
2345}
2346
2348 AsmWriterContext &WriterCtx) {
2349 Out << "!DILexicalBlock(";
2350 MDFieldPrinter Printer(Out, WriterCtx);
2351 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2352 Printer.printMetadata("file", N->getRawFile());
2353 Printer.printInt("line", N->getLine());
2354 Printer.printInt("column", N->getColumn());
2355 Out << ")";
2356}
2357
2359 const DILexicalBlockFile *N,
2360 AsmWriterContext &WriterCtx) {
2361 Out << "!DILexicalBlockFile(";
2362 MDFieldPrinter Printer(Out, WriterCtx);
2363 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2364 Printer.printMetadata("file", N->getRawFile());
2365 Printer.printInt("discriminator", N->getDiscriminator(),
2366 /* ShouldSkipZero */ false);
2367 Out << ")";
2368}
2369
2371 AsmWriterContext &WriterCtx) {
2372 Out << "!DINamespace(";
2373 MDFieldPrinter Printer(Out, WriterCtx);
2374 Printer.printString("name", N->getName());
2375 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2376 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2377 Out << ")";
2378}
2379
2381 AsmWriterContext &WriterCtx) {
2382 Out << "!DICommonBlock(";
2383 MDFieldPrinter Printer(Out, WriterCtx);
2384 Printer.printMetadata("scope", N->getRawScope(), false);
2385 Printer.printMetadata("declaration", N->getRawDecl(), false);
2386 Printer.printString("name", N->getName());
2387 Printer.printMetadata("file", N->getRawFile());
2388 Printer.printInt("line", N->getLineNo());
2389 Out << ")";
2390}
2391
2392static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2393 AsmWriterContext &WriterCtx) {
2394 Out << "!DIMacro(";
2395 MDFieldPrinter Printer(Out, WriterCtx);
2396 Printer.printMacinfoType(N);
2397 Printer.printInt("line", N->getLine());
2398 Printer.printString("name", N->getName());
2399 Printer.printString("value", N->getValue());
2400 Out << ")";
2401}
2402
2404 AsmWriterContext &WriterCtx) {
2405 Out << "!DIMacroFile(";
2406 MDFieldPrinter Printer(Out, WriterCtx);
2407 Printer.printInt("line", N->getLine());
2408 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2409 Printer.printMetadata("nodes", N->getRawElements());
2410 Out << ")";
2411}
2412
2413static void writeDIModule(raw_ostream &Out, const DIModule *N,
2414 AsmWriterContext &WriterCtx) {
2415 Out << "!DIModule(";
2416 MDFieldPrinter Printer(Out, WriterCtx);
2417 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2418 Printer.printString("name", N->getName());
2419 Printer.printString("configMacros", N->getConfigurationMacros());
2420 Printer.printString("includePath", N->getIncludePath());
2421 Printer.printString("apinotes", N->getAPINotesFile());
2422 Printer.printMetadata("file", N->getRawFile());
2423 Printer.printInt("line", N->getLineNo());
2424 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2425 Out << ")";
2426}
2427
2430 AsmWriterContext &WriterCtx) {
2431 Out << "!DITemplateTypeParameter(";
2432 MDFieldPrinter Printer(Out, WriterCtx);
2433 Printer.printString("name", N->getName());
2434 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2435 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2436 Out << ")";
2437}
2438
2441 AsmWriterContext &WriterCtx) {
2442 Out << "!DITemplateValueParameter(";
2443 MDFieldPrinter Printer(Out, WriterCtx);
2444 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2445 Printer.printTag(N);
2446 Printer.printString("name", N->getName());
2447 Printer.printMetadata("type", N->getRawType());
2448 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2449 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2450 Out << ")";
2451}
2452
2454 AsmWriterContext &WriterCtx) {
2455 Out << "!DIGlobalVariable(";
2456 MDFieldPrinter Printer(Out, WriterCtx);
2457 Printer.printString("name", N->getName());
2458 Printer.printString("linkageName", N->getLinkageName());
2459 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2460 Printer.printMetadata("file", N->getRawFile());
2461 Printer.printInt("line", N->getLine());
2462 Printer.printMetadata("type", N->getRawType());
2463 Printer.printBool("isLocal", N->isLocalToUnit());
2464 Printer.printBool("isDefinition", N->isDefinition());
2465 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2466 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2467 Printer.printInt("align", N->getAlignInBits());
2468 Printer.printMetadata("annotations", N->getRawAnnotations());
2469 Out << ")";
2470}
2471
2473 AsmWriterContext &WriterCtx) {
2474 Out << "!DILocalVariable(";
2475 MDFieldPrinter Printer(Out, WriterCtx);
2476 Printer.printString("name", N->getName());
2477 Printer.printInt("arg", N->getArg());
2478 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2479 Printer.printMetadata("file", N->getRawFile());
2480 Printer.printInt("line", N->getLine());
2481 Printer.printMetadata("type", N->getRawType());
2482 Printer.printDIFlags("flags", N->getFlags());
2483 Printer.printInt("align", N->getAlignInBits());
2484 Printer.printMetadata("annotations", N->getRawAnnotations());
2485 Out << ")";
2486}
2487
2488static void writeDILabel(raw_ostream &Out, const DILabel *N,
2489 AsmWriterContext &WriterCtx) {
2490 Out << "!DILabel(";
2491 MDFieldPrinter Printer(Out, WriterCtx);
2492 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2493 Printer.printString("name", N->getName());
2494 Printer.printMetadata("file", N->getRawFile());
2495 Printer.printInt("line", N->getLine());
2496 Out << ")";
2497}
2498
2500 AsmWriterContext &WriterCtx) {
2501 Out << "!DIExpression(";
2502 FieldSeparator FS;
2503 if (N->isValid()) {
2504 for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2505 auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2506 assert(!OpStr.empty() && "Expected valid opcode");
2507
2508 Out << FS << OpStr;
2509 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2510 Out << FS << Op.getArg(0);
2511 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2512 } else {
2513 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2514 Out << FS << Op.getArg(A);
2515 }
2516 }
2517 } else {
2518 for (const auto &I : N->getElements())
2519 Out << FS << I;
2520 }
2521 Out << ")";
2522}
2523
2524static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2525 AsmWriterContext &WriterCtx,
2526 bool FromValue = false) {
2527 assert(FromValue &&
2528 "Unexpected DIArgList metadata outside of value argument");
2529 Out << "!DIArgList(";
2530 FieldSeparator FS;
2531 MDFieldPrinter Printer(Out, WriterCtx);
2532 for (Metadata *Arg : N->getArgs()) {
2533 Out << FS;
2534 WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2535 }
2536 Out << ")";
2537}
2538
2541 AsmWriterContext &WriterCtx) {
2542 Out << "!DIGlobalVariableExpression(";
2543 MDFieldPrinter Printer(Out, WriterCtx);
2544 Printer.printMetadata("var", N->getVariable());
2545 Printer.printMetadata("expr", N->getExpression());
2546 Out << ")";
2547}
2548
2550 AsmWriterContext &WriterCtx) {
2551 Out << "!DIObjCProperty(";
2552 MDFieldPrinter Printer(Out, WriterCtx);
2553 Printer.printString("name", N->getName());
2554 Printer.printMetadata("file", N->getRawFile());
2555 Printer.printInt("line", N->getLine());
2556 Printer.printString("setter", N->getSetterName());
2557 Printer.printString("getter", N->getGetterName());
2558 Printer.printInt("attributes", N->getAttributes());
2559 Printer.printMetadata("type", N->getRawType());
2560 Out << ")";
2561}
2562
2564 AsmWriterContext &WriterCtx) {
2565 Out << "!DIImportedEntity(";
2566 MDFieldPrinter Printer(Out, WriterCtx);
2567 Printer.printTag(N);
2568 Printer.printString("name", N->getName());
2569 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2570 Printer.printMetadata("entity", N->getRawEntity());
2571 Printer.printMetadata("file", N->getRawFile());
2572 Printer.printInt("line", N->getLine());
2573 Printer.printMetadata("elements", N->getRawElements());
2574 Out << ")";
2575}
2576
2578 AsmWriterContext &Ctx) {
2579 if (Node->isDistinct())
2580 Out << "distinct ";
2581 else if (Node->isTemporary())
2582 Out << "<temporary!> "; // Handle broken code.
2583
2584 switch (Node->getMetadataID()) {
2585 default:
2586 llvm_unreachable("Expected uniquable MDNode");
2587#define HANDLE_MDNODE_LEAF(CLASS) \
2588 case Metadata::CLASS##Kind: \
2589 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2590 break;
2591#include "llvm/IR/Metadata.def"
2592 }
2593}
2594
2595// Full implementation of printing a Value as an operand with support for
2596// TypePrinting, etc.
2597static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2598 AsmWriterContext &WriterCtx) {
2599 if (V->hasName()) {
2600 PrintLLVMName(Out, V);
2601 return;
2602 }
2603
2604 const Constant *CV = dyn_cast<Constant>(V);
2605 if (CV && !isa<GlobalValue>(CV)) {
2606 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2607 WriteConstantInternal(Out, CV, WriterCtx);
2608 return;
2609 }
2610
2611 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2612 Out << "asm ";
2613 if (IA->hasSideEffects())
2614 Out << "sideeffect ";
2615 if (IA->isAlignStack())
2616 Out << "alignstack ";
2617 // We don't emit the AD_ATT dialect as it's the assumed default.
2618 if (IA->getDialect() == InlineAsm::AD_Intel)
2619 Out << "inteldialect ";
2620 if (IA->canThrow())
2621 Out << "unwind ";
2622 Out << '"';
2623 printEscapedString(IA->getAsmString(), Out);
2624 Out << "\", \"";
2625 printEscapedString(IA->getConstraintString(), Out);
2626 Out << '"';
2627 return;
2628 }
2629
2630 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2631 WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2632 /* FromValue */ true);
2633 return;
2634 }
2635
2636 char Prefix = '%';
2637 int Slot;
2638 auto *Machine = WriterCtx.Machine;
2639 // If we have a SlotTracker, use it.
2640 if (Machine) {
2641 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2642 Slot = Machine->getGlobalSlot(GV);
2643 Prefix = '@';
2644 } else {
2645 Slot = Machine->getLocalSlot(V);
2646
2647 // If the local value didn't succeed, then we may be referring to a value
2648 // from a different function. Translate it, as this can happen when using
2649 // address of blocks.
2650 if (Slot == -1)
2651 if ((Machine = createSlotTracker(V))) {
2652 Slot = Machine->getLocalSlot(V);
2653 delete Machine;
2654 }
2655 }
2656 } else if ((Machine = createSlotTracker(V))) {
2657 // Otherwise, create one to get the # and then destroy it.
2658 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2659 Slot = Machine->getGlobalSlot(GV);
2660 Prefix = '@';
2661 } else {
2662 Slot = Machine->getLocalSlot(V);
2663 }
2664 delete Machine;
2665 Machine = nullptr;
2666 } else {
2667 Slot = -1;
2668 }
2669
2670 if (Slot != -1)
2671 Out << Prefix << Slot;
2672 else
2673 Out << "<badref>";
2674}
2675
2676static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2677 AsmWriterContext &WriterCtx,
2678 bool FromValue) {
2679 // Write DIExpressions and DIArgLists inline when used as a value. Improves
2680 // readability of debug info intrinsics.
2681 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2682 writeDIExpression(Out, Expr, WriterCtx);
2683 return;
2684 }
2685 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2686 writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2687 return;
2688 }
2689
2690 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2691 std::unique_ptr<SlotTracker> MachineStorage;
2692 SaveAndRestore SARMachine(WriterCtx.Machine);
2693 if (!WriterCtx.Machine) {
2694 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2695 WriterCtx.Machine = MachineStorage.get();
2696 }
2697 int Slot = WriterCtx.Machine->getMetadataSlot(N);
2698 if (Slot == -1) {
2699 if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2700 writeDILocation(Out, Loc, WriterCtx);
2701 return;
2702 }
2703 // Give the pointer value instead of "badref", since this comes up all
2704 // the time when debugging.
2705 Out << "<" << N << ">";
2706 } else
2707 Out << '!' << Slot;
2708 return;
2709 }
2710
2711 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2712 Out << "!\"";
2713 printEscapedString(MDS->getString(), Out);
2714 Out << '"';
2715 return;
2716 }
2717
2718 auto *V = cast<ValueAsMetadata>(MD);
2719 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2720 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2721 "Unexpected function-local metadata outside of value argument");
2722
2723 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2724 Out << ' ';
2725 WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2726}
2727
2728namespace {
2729
2730class AssemblyWriter {
2732 const Module *TheModule = nullptr;
2733 const ModuleSummaryIndex *TheIndex = nullptr;
2734 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2736 TypePrinting TypePrinter;
2737 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2739 bool IsForDebug;
2740 bool ShouldPreserveUseListOrder;
2741 UseListOrderMap UseListOrders;
2743 /// Synchronization scope names registered with LLVMContext.
2746
2747public:
2748 /// Construct an AssemblyWriter with an external SlotTracker
2749 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2750 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2751 bool ShouldPreserveUseListOrder = false);
2752
2753 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2754 const ModuleSummaryIndex *Index, bool IsForDebug);
2755
2756 AsmWriterContext getContext() {
2757 return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2758 }
2759
2760 void printMDNodeBody(const MDNode *MD);
2761 void printNamedMDNode(const NamedMDNode *NMD);
2762
2763 void printModule(const Module *M);
2764
2765 void writeOperand(const Value *Op, bool PrintType);
2766 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2767 void writeOperandBundles(const CallBase *Call);
2768 void writeSyncScope(const LLVMContext &Context,
2769 SyncScope::ID SSID);
2770 void writeAtomic(const LLVMContext &Context,
2771 AtomicOrdering Ordering,
2772 SyncScope::ID SSID);
2773 void writeAtomicCmpXchg(const LLVMContext &Context,
2774 AtomicOrdering SuccessOrdering,
2775 AtomicOrdering FailureOrdering,
2776 SyncScope::ID SSID);
2777
2778 void writeAllMDNodes();
2779 void writeMDNode(unsigned Slot, const MDNode *Node);
2780 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2781 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2782 void writeAllAttributeGroups();
2783
2784 void printTypeIdentities();
2785 void printGlobal(const GlobalVariable *GV);
2786 void printAlias(const GlobalAlias *GA);
2787 void printIFunc(const GlobalIFunc *GI);
2788 void printComdat(const Comdat *C);
2789 void printFunction(const Function *F);
2790 void printArgument(const Argument *FA, AttributeSet Attrs);
2791 void printBasicBlock(const BasicBlock *BB);
2792 void printInstructionLine(const Instruction &I);
2793 void printInstruction(const Instruction &I);
2794 void printDbgMarker(const DbgMarker &DPI);
2795 void printDbgVariableRecord(const DbgVariableRecord &DVR);
2796 void printDbgLabelRecord(const DbgLabelRecord &DLR);
2797 void printDbgRecord(const DbgRecord &DR);
2798 void printDbgRecordLine(const DbgRecord &DR);
2799
2800 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2801 void printUseLists(const Function *F);
2802
2803 void printModuleSummaryIndex();
2804 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2805 void printSummary(const GlobalValueSummary &Summary);
2806 void printAliasSummary(const AliasSummary *AS);
2807 void printGlobalVarSummary(const GlobalVarSummary *GS);
2808 void printFunctionSummary(const FunctionSummary *FS);
2809 void printTypeIdSummary(const TypeIdSummary &TIS);
2810 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2811 void printTypeTestResolution(const TypeTestResolution &TTRes);
2812 void printArgs(const std::vector<uint64_t> &Args);
2813 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2814 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2815 void printVFuncId(const FunctionSummary::VFuncId VFId);
2816 void
2817 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2818 const char *Tag);
2819 void
2820 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2821 const char *Tag);
2822
2823private:
2824 /// Print out metadata attachments.
2825 void printMetadataAttachments(
2826 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2827 StringRef Separator);
2828
2829 // printInfoComment - Print a little comment after the instruction indicating
2830 // which slot it occupies.
2831 void printInfoComment(const Value &V);
2832
2833 // printGCRelocateComment - print comment after call to the gc.relocate
2834 // intrinsic indicating base and derived pointer names.
2835 void printGCRelocateComment(const GCRelocateInst &Relocate);
2836};
2837
2838} // end anonymous namespace
2839
2840AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2841 const Module *M, AssemblyAnnotationWriter *AAW,
2842 bool IsForDebug, bool ShouldPreserveUseListOrder)
2843 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2844 IsForDebug(IsForDebug),
2845 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2846 if (!TheModule)
2847 return;
2848 for (const GlobalObject &GO : TheModule->global_objects())
2849 if (const Comdat *C = GO.getComdat())
2850 Comdats.insert(C);
2851}
2852
2853AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2854 const ModuleSummaryIndex *Index, bool IsForDebug)
2855 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2856 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2857
2858void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2859 if (!Operand) {
2860 Out << "<null operand!>";
2861 return;
2862 }
2863 if (PrintType) {
2864 TypePrinter.print(Operand->getType(), Out);
2865 Out << ' ';
2866 }
2867 auto WriterCtx = getContext();
2868 WriteAsOperandInternal(Out, Operand, WriterCtx);
2869}
2870
2871void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2872 SyncScope::ID SSID) {
2873 switch (SSID) {
2874 case SyncScope::System: {
2875 break;
2876 }
2877 default: {
2878 if (SSNs.empty())
2879 Context.getSyncScopeNames(SSNs);
2880
2881 Out << " syncscope(\"";
2882 printEscapedString(SSNs[SSID], Out);
2883 Out << "\")";
2884 break;
2885 }
2886 }
2887}
2888
2889void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2890 AtomicOrdering Ordering,
2891 SyncScope::ID SSID) {
2892 if (Ordering == AtomicOrdering::NotAtomic)
2893 return;
2894
2895 writeSyncScope(Context, SSID);
2896 Out << " " << toIRString(Ordering);
2897}
2898
2899void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2900 AtomicOrdering SuccessOrdering,
2901 AtomicOrdering FailureOrdering,
2902 SyncScope::ID SSID) {
2903 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2904 FailureOrdering != AtomicOrdering::NotAtomic);
2905
2906 writeSyncScope(Context, SSID);
2907 Out << " " << toIRString(SuccessOrdering);
2908 Out << " " << toIRString(FailureOrdering);
2909}
2910
2911void AssemblyWriter::writeParamOperand(const Value *Operand,
2912 AttributeSet Attrs) {
2913 if (!Operand) {
2914 Out << "<null operand!>";
2915 return;
2916 }
2917
2918 // Print the type
2919 TypePrinter.print(Operand->getType(), Out);
2920 // Print parameter attributes list
2921 if (Attrs.hasAttributes()) {
2922 Out << ' ';
2923 writeAttributeSet(Attrs);
2924 }
2925 Out << ' ';
2926 // Print the operand
2927 auto WriterCtx = getContext();
2928 WriteAsOperandInternal(Out, Operand, WriterCtx);
2929}
2930
2931void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2932 if (!Call->hasOperandBundles())
2933 return;
2934
2935 Out << " [ ";
2936
2937 bool FirstBundle = true;
2938 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2939 OperandBundleUse BU = Call->getOperandBundleAt(i);
2940
2941 if (!FirstBundle)
2942 Out << ", ";
2943 FirstBundle = false;
2944
2945 Out << '"';
2946 printEscapedString(BU.getTagName(), Out);
2947 Out << '"';
2948
2949 Out << '(';
2950
2951 bool FirstInput = true;
2952 auto WriterCtx = getContext();
2953 for (const auto &Input : BU.Inputs) {
2954 if (!FirstInput)
2955 Out << ", ";
2956 FirstInput = false;
2957
2958 if (Input == nullptr)
2959 Out << "<null operand bundle!>";
2960 else {
2961 TypePrinter.print(Input->getType(), Out);
2962 Out << " ";
2963 WriteAsOperandInternal(Out, Input, WriterCtx);
2964 }
2965 }
2966
2967 Out << ')';
2968 }
2969
2970 Out << " ]";
2971}
2972
2973void AssemblyWriter::printModule(const Module *M) {
2974 Machine.initializeIfNeeded();
2975
2976 if (ShouldPreserveUseListOrder)
2977 UseListOrders = predictUseListOrder(M);
2978
2979 if (!M->getModuleIdentifier().empty() &&
2980 // Don't print the ID if it will start a new line (which would
2981 // require a comment char before it).
2982 M->getModuleIdentifier().find('\n') == std::string::npos)
2983 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2984
2985 if (!M->getSourceFileName().empty()) {
2986 Out << "source_filename = \"";
2987 printEscapedString(M->getSourceFileName(), Out);
2988 Out << "\"\n";
2989 }
2990
2991 const std::string &DL = M->getDataLayoutStr();
2992 if (!DL.empty())
2993 Out << "target datalayout = \"" << DL << "\"\n";
2994 if (!M->getTargetTriple().empty())
2995 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2996
2997 if (!M->getModuleInlineAsm().empty()) {
2998 Out << '\n';
2999
3000 // Split the string into lines, to make it easier to read the .ll file.
3001 StringRef Asm = M->getModuleInlineAsm();
3002 do {
3003 StringRef Front;
3004 std::tie(Front, Asm) = Asm.split('\n');
3005
3006 // We found a newline, print the portion of the asm string from the
3007 // last newline up to this newline.
3008 Out << "module asm \"";
3009 printEscapedString(Front, Out);
3010 Out << "\"\n";
3011 } while (!Asm.empty());
3012 }
3013
3014 printTypeIdentities();
3015
3016 // Output all comdats.
3017 if (!Comdats.empty())
3018 Out << '\n';
3019 for (const Comdat *C : Comdats) {
3020 printComdat(C);
3021 if (C != Comdats.back())
3022 Out << '\n';
3023 }
3024
3025 // Output all globals.
3026 if (!M->global_empty()) Out << '\n';
3027 for (const GlobalVariable &GV : M->globals()) {
3028 printGlobal(&GV); Out << '\n';
3029 }
3030
3031 // Output all aliases.
3032 if (!M->alias_empty()) Out << "\n";
3033 for (const GlobalAlias &GA : M->aliases())
3034 printAlias(&GA);
3035
3036 // Output all ifuncs.
3037 if (!M->ifunc_empty()) Out << "\n";
3038 for (const GlobalIFunc &GI : M->ifuncs())
3039 printIFunc(&GI);
3040
3041 // Output all of the functions.
3042 for (const Function &F : *M) {
3043 Out << '\n';
3044 printFunction(&F);
3045 }
3046
3047 // Output global use-lists.
3048 printUseLists(nullptr);
3049
3050 // Output all attribute groups.
3051 if (!Machine.as_empty()) {
3052 Out << '\n';
3053 writeAllAttributeGroups();
3054 }
3055
3056 // Output named metadata.
3057 if (!M->named_metadata_empty()) Out << '\n';
3058
3059 for (const NamedMDNode &Node : M->named_metadata())
3060 printNamedMDNode(&Node);
3061
3062 // Output metadata.
3063 if (!Machine.mdn_empty()) {
3064 Out << '\n';
3065 writeAllMDNodes();
3066 }
3067}
3068
3069void AssemblyWriter::printModuleSummaryIndex() {
3070 assert(TheIndex);
3071 int NumSlots = Machine.initializeIndexIfNeeded();
3072
3073 Out << "\n";
3074
3075 // Print module path entries. To print in order, add paths to a vector
3076 // indexed by module slot.
3077 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3078 std::string RegularLTOModuleName =
3080 moduleVec.resize(TheIndex->modulePaths().size());
3081 for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
3082 moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
3083 // An empty module path is a special entry for a regular LTO module
3084 // created during the thin link.
3085 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3086
3087 unsigned i = 0;
3088 for (auto &ModPair : moduleVec) {
3089 Out << "^" << i++ << " = module: (";
3090 Out << "path: \"";
3091 printEscapedString(ModPair.first, Out);
3092 Out << "\", hash: (";
3093 FieldSeparator FS;
3094 for (auto Hash : ModPair.second)
3095 Out << FS << Hash;
3096 Out << "))\n";
3097 }
3098
3099 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
3100 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
3101 for (auto &GlobalList : *TheIndex) {
3102 auto GUID = GlobalList.first;
3103 for (auto &Summary : GlobalList.second.SummaryList)
3104 SummaryToGUIDMap[Summary.get()] = GUID;
3105 }
3106
3107 // Print the global value summary entries.
3108 for (auto &GlobalList : *TheIndex) {
3109 auto GUID = GlobalList.first;
3110 auto VI = TheIndex->getValueInfo(GlobalList);
3111 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
3112 }
3113
3114 // Print the TypeIdMap entries.
3115 for (const auto &TID : TheIndex->typeIds()) {
3116 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
3117 << " = typeid: (name: \"" << TID.second.first << "\"";
3118 printTypeIdSummary(TID.second.second);
3119 Out << ") ; guid = " << TID.first << "\n";
3120 }
3121
3122 // Print the TypeIdCompatibleVtableMap entries.
3123 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3124 auto GUID = GlobalValue::getGUID(TId.first);
3125 Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
3126 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
3127 printTypeIdCompatibleVtableSummary(TId.second);
3128 Out << ") ; guid = " << GUID << "\n";
3129 }
3130
3131 // Don't emit flags when it's not really needed (value is zero by default).
3132 if (TheIndex->getFlags()) {
3133 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3134 ++NumSlots;
3135 }
3136
3137 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3138 << "\n";
3139}
3140
3141static const char *
3143 switch (K) {
3145 return "indir";
3147 return "singleImpl";
3149 return "branchFunnel";
3150 }
3151 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3152}
3153
3156 switch (K) {
3158 return "indir";
3160 return "uniformRetVal";
3162 return "uniqueRetVal";
3164 return "virtualConstProp";
3165 }
3166 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3167}
3168
3170 switch (K) {
3172 return "unknown";
3174 return "unsat";
3176 return "byteArray";
3178 return "inline";
3180 return "single";
3182 return "allOnes";
3183 }
3184 llvm_unreachable("invalid TypeTestResolution kind");
3185}
3186
3187void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3188 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3189 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3190
3191 // The following fields are only used if the target does not support the use
3192 // of absolute symbols to store constants. Print only if non-zero.
3193 if (TTRes.AlignLog2)
3194 Out << ", alignLog2: " << TTRes.AlignLog2;
3195 if (TTRes.SizeM1)
3196 Out << ", sizeM1: " << TTRes.SizeM1;
3197 if (TTRes.BitMask)
3198 // BitMask is uint8_t which causes it to print the corresponding char.
3199 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3200 if (TTRes.InlineBits)
3201 Out << ", inlineBits: " << TTRes.InlineBits;
3202
3203 Out << ")";
3204}
3205
3206void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3207 Out << ", summary: (";
3208 printTypeTestResolution(TIS.TTRes);
3209 if (!TIS.WPDRes.empty()) {
3210 Out << ", wpdResolutions: (";
3211 FieldSeparator FS;
3212 for (auto &WPDRes : TIS.WPDRes) {
3213 Out << FS;
3214 Out << "(offset: " << WPDRes.first << ", ";
3215 printWPDRes(WPDRes.second);
3216 Out << ")";
3217 }
3218 Out << ")";
3219 }
3220 Out << ")";
3221}
3222
3223void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3224 const TypeIdCompatibleVtableInfo &TI) {
3225 Out << ", summary: (";
3226 FieldSeparator FS;
3227 for (auto &P : TI) {
3228 Out << FS;
3229 Out << "(offset: " << P.AddressPointOffset << ", ";
3230 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3231 Out << ")";
3232 }
3233 Out << ")";
3234}
3235
3236void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3237 Out << "args: (";
3238 FieldSeparator FS;
3239 for (auto arg : Args) {
3240 Out << FS;
3241 Out << arg;
3242 }
3243 Out << ")";
3244}
3245
3246void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3247 Out << "wpdRes: (kind: ";
3249
3251 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3252
3253 if (!WPDRes.ResByArg.empty()) {
3254 Out << ", resByArg: (";
3255 FieldSeparator FS;
3256 for (auto &ResByArg : WPDRes.ResByArg) {
3257 Out << FS;
3258 printArgs(ResByArg.first);
3259 Out << ", byArg: (kind: ";
3260 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3261 if (ResByArg.second.TheKind ==
3263 ResByArg.second.TheKind ==
3265 Out << ", info: " << ResByArg.second.Info;
3266
3267 // The following fields are only used if the target does not support the
3268 // use of absolute symbols to store constants. Print only if non-zero.
3269 if (ResByArg.second.Byte || ResByArg.second.Bit)
3270 Out << ", byte: " << ResByArg.second.Byte
3271 << ", bit: " << ResByArg.second.Bit;
3272
3273 Out << ")";
3274 }
3275 Out << ")";
3276 }
3277 Out << ")";
3278}
3279
3281 switch (SK) {
3283 return "alias";
3285 return "function";
3287 return "variable";
3288 }
3289 llvm_unreachable("invalid summary kind");
3290}
3291
3292void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3293 Out << ", aliasee: ";
3294 // The indexes emitted for distributed backends may not include the
3295 // aliasee summary (only if it is being imported directly). Handle
3296 // that case by just emitting "null" as the aliasee.
3297 if (AS->hasAliasee())
3298 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3299 else
3300 Out << "null";
3301}
3302
3303void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3304 auto VTableFuncs = GS->vTableFuncs();
3305 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3306 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3307 << "constant: " << GS->VarFlags.Constant;
3308 if (!VTableFuncs.empty())
3309 Out << ", "
3310 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3311 Out << ")";
3312
3313 if (!VTableFuncs.empty()) {
3314 Out << ", vTableFuncs: (";
3315 FieldSeparator FS;
3316 for (auto &P : VTableFuncs) {
3317 Out << FS;
3318 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3319 << ", offset: " << P.VTableOffset;
3320 Out << ")";
3321 }
3322 Out << ")";
3323 }
3324}
3325
3327 switch (LT) {
3329 return "external";
3331 return "private";
3333 return "internal";
3335 return "linkonce";
3337 return "linkonce_odr";
3339 return "weak";
3341 return "weak_odr";
3343 return "common";
3345 return "appending";
3347 return "extern_weak";
3349 return "available_externally";
3350 }
3351 llvm_unreachable("invalid linkage");
3352}
3353
3354// When printing the linkage types in IR where the ExternalLinkage is
3355// not printed, and other linkage types are expected to be printed with
3356// a space after the name.
3359 return "";
3360 return getLinkageName(LT) + " ";
3361}
3362
3364 switch (Vis) {
3366 return "default";
3368 return "hidden";
3370 return "protected";
3371 }
3372 llvm_unreachable("invalid visibility");
3373}
3374
3376 switch (IK) {
3378 return "definition";
3380 return "declaration";
3381 }
3382 llvm_unreachable("invalid import kind");
3383}
3384
3385void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3386 Out << ", insts: " << FS->instCount();
3387 if (FS->fflags().anyFlagSet())
3388 Out << ", " << FS->fflags();
3389
3390 if (!FS->calls().empty()) {
3391 Out << ", calls: (";
3392 FieldSeparator IFS;
3393 for (auto &Call : FS->calls()) {
3394 Out << IFS;
3395 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3396 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3397 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3398 else if (Call.second.RelBlockFreq)
3399 Out << ", relbf: " << Call.second.RelBlockFreq;
3400 // Follow the convention of emitting flags as a boolean value, but only
3401 // emit if true to avoid unnecessary verbosity and test churn.
3402 if (Call.second.HasTailCall)
3403 Out << ", tail: 1";
3404 Out << ")";
3405 }
3406 Out << ")";
3407 }
3408
3409 if (const auto *TIdInfo = FS->getTypeIdInfo())
3410 printTypeIdInfo(*TIdInfo);
3411
3412 // The AllocationType identifiers capture the profiled context behavior
3413 // reaching a specific static allocation site (possibly cloned).
3414 auto AllocTypeName = [](uint8_t Type) -> const char * {
3415 switch (Type) {
3416 case (uint8_t)AllocationType::None:
3417 return "none";
3418 case (uint8_t)AllocationType::NotCold:
3419 return "notcold";
3420 case (uint8_t)AllocationType::Cold:
3421 return "cold";
3422 case (uint8_t)AllocationType::Hot:
3423 return "hot";
3424 }
3425 llvm_unreachable("Unexpected alloc type");
3426 };
3427
3428 if (!FS->allocs().empty()) {
3429 Out << ", allocs: (";
3430 FieldSeparator AFS;
3431 for (auto &AI : FS->allocs()) {
3432 Out << AFS;
3433 Out << "(versions: (";
3434 FieldSeparator VFS;
3435 for (auto V : AI.Versions) {
3436 Out << VFS;
3437 Out << AllocTypeName(V);
3438 }
3439 Out << "), memProf: (";
3440 FieldSeparator MIBFS;
3441 for (auto &MIB : AI.MIBs) {
3442 Out << MIBFS;
3443 Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3444 Out << ", stackIds: (";
3445 FieldSeparator SIDFS;
3446 for (auto Id : MIB.StackIdIndices) {
3447 Out << SIDFS;
3448 Out << TheIndex->getStackIdAtIndex(Id);
3449 }
3450 Out << "))";
3451 }
3452 Out << "))";
3453 }
3454 Out << ")";
3455 }
3456
3457 if (!FS->callsites().empty()) {
3458 Out << ", callsites: (";
3459 FieldSeparator SNFS;
3460 for (auto &CI : FS->callsites()) {
3461 Out << SNFS;
3462 if (CI.Callee)
3463 Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3464 else
3465 Out << "(callee: null";
3466 Out << ", clones: (";
3467 FieldSeparator VFS;
3468 for (auto V : CI.Clones) {
3469 Out << VFS;
3470 Out << V;
3471 }
3472 Out << "), stackIds: (";
3473 FieldSeparator SIDFS;
3474 for (auto Id : CI.StackIdIndices) {
3475 Out << SIDFS;
3476 Out << TheIndex->getStackIdAtIndex(Id);
3477 }
3478 Out << "))";
3479 }
3480 Out << ")";
3481 }
3482
3483 auto PrintRange = [&](const ConstantRange &Range) {
3484 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3485 };
3486
3487 if (!FS->paramAccesses().empty()) {
3488 Out << ", params: (";
3489 FieldSeparator IFS;
3490 for (auto &PS : FS->paramAccesses()) {
3491 Out << IFS;
3492 Out << "(param: " << PS.ParamNo;
3493 Out << ", offset: ";
3494 PrintRange(PS.Use);
3495 if (!PS.Calls.empty()) {
3496 Out << ", calls: (";
3497 FieldSeparator IFS;
3498 for (auto &Call : PS.Calls) {
3499 Out << IFS;
3500 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3501 Out << ", param: " << Call.ParamNo;
3502 Out << ", offset: ";
3503 PrintRange(Call.Offsets);
3504 Out << ")";
3505 }
3506 Out << ")";
3507 }
3508 Out << ")";
3509 }
3510 Out << ")";
3511 }
3512}
3513
3514void AssemblyWriter::printTypeIdInfo(
3515 const FunctionSummary::TypeIdInfo &TIDInfo) {
3516 Out << ", typeIdInfo: (";
3517 FieldSeparator TIDFS;
3518 if (!TIDInfo.TypeTests.empty()) {
3519 Out << TIDFS;
3520 Out << "typeTests: (";
3521 FieldSeparator FS;
3522 for (auto &GUID : TIDInfo.TypeTests) {
3523 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3524 if (TidIter.first == TidIter.second) {
3525 Out << FS;
3526 Out << GUID;
3527 continue;
3528 }
3529 // Print all type id that correspond to this GUID.
3530 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3531 Out << FS;
3532 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3533 assert(Slot != -1);
3534 Out << "^" << Slot;
3535 }
3536 }
3537 Out << ")";
3538 }
3539 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3540 Out << TIDFS;
3541 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3542 }
3543 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3544 Out << TIDFS;
3545 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3546 }
3547 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3548 Out << TIDFS;
3549 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3550 "typeTestAssumeConstVCalls");
3551 }
3552 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3553 Out << TIDFS;
3554 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3555 "typeCheckedLoadConstVCalls");
3556 }
3557 Out << ")";
3558}
3559
3560void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3561 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3562 if (TidIter.first == TidIter.second) {
3563 Out << "vFuncId: (";
3564 Out << "guid: " << VFId.GUID;
3565 Out << ", offset: " << VFId.Offset;
3566 Out << ")";
3567 return;
3568 }
3569 // Print all type id that correspond to this GUID.
3570 FieldSeparator FS;
3571 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3572 Out << FS;
3573 Out << "vFuncId: (";
3574 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3575 assert(Slot != -1);
3576 Out << "^" << Slot;
3577 Out << ", offset: " << VFId.Offset;
3578 Out << ")";
3579 }
3580}
3581
3582void AssemblyWriter::printNonConstVCalls(
3583 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3584 Out << Tag << ": (";
3585 FieldSeparator FS;
3586 for (auto &VFuncId : VCallList) {
3587 Out << FS;
3588 printVFuncId(VFuncId);
3589 }
3590 Out << ")";
3591}
3592
3593void AssemblyWriter::printConstVCalls(
3594 const std::vector<FunctionSummary::ConstVCall> &VCallList,
3595 const char *Tag) {
3596 Out << Tag << ": (";
3597 FieldSeparator FS;
3598 for (auto &ConstVCall : VCallList) {
3599 Out << FS;
3600 Out << "(";
3601 printVFuncId(ConstVCall.VFunc);
3602 if (!ConstVCall.Args.empty()) {
3603 Out << ", ";
3604 printArgs(ConstVCall.Args);
3605 }
3606 Out << ")";
3607 }
3608 Out << ")";
3609}
3610
3611void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3612 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3614 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3615 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3616 << ", flags: (";
3617 Out << "linkage: " << getLinkageName(LT);
3618 Out << ", visibility: "
3620 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3621 Out << ", live: " << GVFlags.Live;
3622 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3623 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3624 Out << ", importType: "
3626 Out << ")";
3627
3628 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3629 printAliasSummary(cast<AliasSummary>(&Summary));
3630 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3631 printFunctionSummary(cast<FunctionSummary>(&Summary));
3632 else
3633 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3634
3635 auto RefList = Summary.refs();
3636 if (!RefList.empty()) {
3637 Out << ", refs: (";
3638 FieldSeparator FS;
3639 for (auto &Ref : RefList) {
3640 Out << FS;
3641 if (Ref.isReadOnly())
3642 Out << "readonly ";
3643 else if (Ref.isWriteOnly())
3644 Out << "writeonly ";
3645 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3646 }
3647 Out << ")";
3648 }
3649
3650 Out << ")";
3651}
3652
3653void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3654 Out << "^" << Slot << " = gv: (";
3655 if (VI.hasName() && !VI.name().empty())
3656 Out << "name: \"" << VI.name() << "\"";
3657 else
3658 Out << "guid: " << VI.getGUID();
3659 if (!VI.getSummaryList().empty()) {
3660 Out << ", summaries: (";
3661 FieldSeparator FS;
3662 for (auto &Summary : VI.getSummaryList()) {
3663 Out << FS;
3664 printSummary(*Summary);
3665 }
3666 Out << ")";
3667 }
3668 Out << ")";
3669 if (VI.hasName() && !VI.name().empty())
3670 Out << " ; guid = " << VI.getGUID();
3671 Out << "\n";
3672}
3673
3675 formatted_raw_ostream &Out) {
3676 if (Name.empty()) {
3677 Out << "<empty name> ";
3678 } else {
3679 unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3680 if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3681 FirstC == '_')
3682 Out << FirstC;
3683 else
3684 Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3685 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3686 unsigned char C = Name[i];
3687 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3688 Out << C;
3689 else
3690 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3691 }
3692 }
3693}
3694
3695void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3696 Out << '!';
3697 printMetadataIdentifier(NMD->getName(), Out);
3698 Out << " = !{";
3699 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3700 if (i)
3701 Out << ", ";
3702
3703 // Write DIExpressions inline.
3704 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3705 MDNode *Op = NMD->getOperand(i);
3706 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3707 writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3708 continue;
3709 }
3710
3711 int Slot = Machine.getMetadataSlot(Op);
3712 if (Slot == -1)
3713 Out << "<badref>";
3714 else
3715 Out << '!' << Slot;
3716 }
3717 Out << "}\n";
3718}
3719
3721 formatted_raw_ostream &Out) {
3722 switch (Vis) {
3724 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3725 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3726 }
3727}
3728
3729static void PrintDSOLocation(const GlobalValue &GV,
3730 formatted_raw_ostream &Out) {
3731 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3732 Out << "dso_local ";
3733}
3734
3736 formatted_raw_ostream &Out) {
3737 switch (SCT) {
3739 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3740 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3741 }
3742}
3743
3745 formatted_raw_ostream &Out) {
3746 switch (TLM) {
3747 case GlobalVariable::NotThreadLocal:
3748 break;
3749 case GlobalVariable::GeneralDynamicTLSModel:
3750 Out << "thread_local ";
3751 break;
3752 case GlobalVariable::LocalDynamicTLSModel:
3753 Out << "thread_local(localdynamic) ";
3754 break;
3755 case GlobalVariable::InitialExecTLSModel:
3756 Out << "thread_local(initialexec) ";
3757 break;
3758 case GlobalVariable::LocalExecTLSModel:
3759 Out << "thread_local(localexec) ";
3760 break;
3761 }
3762}
3763
3765 switch (UA) {
3766 case GlobalVariable::UnnamedAddr::None:
3767 return "";
3768 case GlobalVariable::UnnamedAddr::Local:
3769 return "local_unnamed_addr";
3770 case GlobalVariable::UnnamedAddr::Global:
3771 return "unnamed_addr";
3772 }
3773 llvm_unreachable("Unknown UnnamedAddr");
3774}
3775
3777 const GlobalObject &GO) {
3778 const Comdat *C = GO.getComdat();
3779 if (!C)
3780 return;
3781
3782 if (isa<GlobalVariable>(GO))
3783 Out << ',';
3784 Out << " comdat";
3785
3786 if (GO.getName() == C->getName())
3787 return;
3788
3789 Out << '(';
3790 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3791 Out << ')';
3792}
3793
3794void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3795 if (GV->isMaterializable())
3796 Out << "; Materializable\n";
3797
3798 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3799 WriteAsOperandInternal(Out, GV, WriterCtx);
3800 Out << " = ";
3801
3802 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3803 Out << "external ";
3804
3805 Out << getLinkageNameWithSpace(GV->getLinkage());
3806 PrintDSOLocation(*GV, Out);
3807 PrintVisibility(GV->getVisibility(), Out);
3811 if (!UA.empty())
3812 Out << UA << ' ';
3813
3814 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3815 Out << "addrspace(" << AddressSpace << ") ";
3816 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3817 Out << (GV->isConstant() ? "constant " : "global ");
3818 TypePrinter.print(GV->getValueType(), Out);
3819
3820 if (GV->hasInitializer()) {
3821 Out << ' ';
3822 writeOperand(GV->getInitializer(), false);
3823 }
3824
3825 if (GV->hasSection()) {
3826 Out << ", section \"";
3827 printEscapedString(GV->getSection(), Out);
3828 Out << '"';
3829 }
3830 if (GV->hasPartition()) {
3831 Out << ", partition \"";
3832 printEscapedString(GV->getPartition(), Out);
3833 Out << '"';
3834 }
3835 if (auto CM = GV->getCodeModel()) {
3836 Out << ", code_model \"";
3837 switch (*CM) {
3838 case CodeModel::Tiny:
3839 Out << "tiny";
3840 break;
3841 case CodeModel::Small:
3842 Out << "small";
3843 break;
3844 case CodeModel::Kernel:
3845 Out << "kernel";
3846 break;
3847 case CodeModel::Medium:
3848 Out << "medium";
3849 break;
3850 case CodeModel::Large:
3851 Out << "large";
3852 break;
3853 }
3854 Out << '"';
3855 }
3856
3858 if (GV->hasSanitizerMetadata()) {
3860 if (MD.NoAddress)
3861 Out << ", no_sanitize_address";
3862 if (MD.NoHWAddress)
3863 Out << ", no_sanitize_hwaddress";
3864 if (MD.Memtag)
3865 Out << ", sanitize_memtag";
3866 if (MD.IsDynInit)
3867 Out << ", sanitize_address_dyninit";
3868 }
3869
3870 maybePrintComdat(Out, *GV);
3871 if (MaybeAlign A = GV->getAlign())
3872 Out << ", align " << A->value();
3873
3875 GV->getAllMetadata(MDs);
3876 printMetadataAttachments(MDs, ", ");
3877
3878 auto Attrs = GV->getAttributes();
3879 if (Attrs.hasAttributes())
3880 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3881
3882 printInfoComment(*GV);
3883}
3884
3885void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3886 if (GA->isMaterializable())
3887 Out << "; Materializable\n";
3888
3889 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3890 WriteAsOperandInternal(Out, GA, WriterCtx);
3891 Out << " = ";
3892
3893 Out << getLinkageNameWithSpace(GA->getLinkage());
3894 PrintDSOLocation(*GA, Out);
3895 PrintVisibility(GA->getVisibility(), Out);
3899 if (!UA.empty())
3900 Out << UA << ' ';
3901
3902 Out << "alias ";
3903
3904 TypePrinter.print(GA->getValueType(), Out);
3905 Out << ", ";
3906
3907 if (const Constant *Aliasee = GA->getAliasee()) {
3908 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3909 } else {
3910 TypePrinter.print(GA->getType(), Out);
3911 Out << " <<NULL ALIASEE>>";
3912 }
3913
3914 if (GA->hasPartition()) {
3915 Out << ", partition \"";
3916 printEscapedString(GA->getPartition(), Out);
3917 Out << '"';
3918 }
3919
3920 printInfoComment(*GA);
3921 Out << '\n';
3922}
3923
3924void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3925 if (GI->isMaterializable())
3926 Out << "; Materializable\n";
3927
3928 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3929 WriteAsOperandInternal(Out, GI, WriterCtx);
3930 Out << " = ";
3931
3932 Out << getLinkageNameWithSpace(GI->getLinkage());
3933 PrintDSOLocation(*GI, Out);
3934 PrintVisibility(GI->getVisibility(), Out);
3935
3936 Out << "ifunc ";
3937
3938 TypePrinter.print(GI->getValueType(), Out);
3939 Out << ", ";
3940
3941 if (const Constant *Resolver = GI->getResolver()) {
3942 writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3943 } else {
3944 TypePrinter.print(GI->getType(), Out);
3945 Out << " <<NULL RESOLVER>>";
3946 }
3947
3948 if (GI->hasPartition()) {
3949 Out << ", partition \"";
3950 printEscapedString(GI->getPartition(), Out);
3951 Out << '"';
3952 }
3953
3954 printInfoComment(*GI);
3955 Out << '\n';
3956}
3957
3958void AssemblyWriter::printComdat(const Comdat *C) {
3959 C->print(Out);
3960}
3961
3962void AssemblyWriter::printTypeIdentities() {
3963 if (TypePrinter.empty())
3964 return;
3965
3966 Out << '\n';
3967
3968 // Emit all numbered types.
3969 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3970 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3971 Out << '%' << I << " = type ";
3972
3973 // Make sure we print out at least one level of the type structure, so
3974 // that we do not get %2 = type %2
3975 TypePrinter.printStructBody(NumberedTypes[I], Out);
3976 Out << '\n';
3977 }
3978
3979 auto &NamedTypes = TypePrinter.getNamedTypes();
3980 for (StructType *NamedType : NamedTypes) {
3981 PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3982 Out << " = type ";
3983
3984 // Make sure we print out at least one level of the type structure, so
3985 // that we do not get %FILE = type %FILE
3986 TypePrinter.printStructBody(NamedType, Out);
3987 Out << '\n';
3988 }
3989}
3990
3991/// printFunction - Print all aspects of a function.
3992void AssemblyWriter::printFunction(const Function *F) {
3993 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3994
3995 if (F->isMaterializable())
3996 Out << "; Materializable\n";
3997
3998 const AttributeList &Attrs = F->getAttributes();
3999 if (Attrs.hasFnAttrs()) {
4000 AttributeSet AS = Attrs.getFnAttrs();
4001 std::string AttrStr;
4002
4003 for (const Attribute &Attr : AS) {
4004 if (!Attr.isStringAttribute()) {
4005 if (!AttrStr.empty()) AttrStr += ' ';
4006 AttrStr += Attr.getAsString();
4007 }
4008 }
4009
4010 if (!AttrStr.empty())
4011 Out << "; Function Attrs: " << AttrStr << '\n';
4012 }
4013
4014 Machine.incorporateFunction(F);
4015
4016 if (F->isDeclaration()) {
4017 Out << "declare";
4019 F->getAllMetadata(MDs);
4020 printMetadataAttachments(MDs, " ");
4021 Out << ' ';
4022 } else
4023 Out << "define ";
4024
4025 Out << getLinkageNameWithSpace(F->getLinkage());
4026 PrintDSOLocation(*F, Out);
4027 PrintVisibility(F->getVisibility(), Out);
4028 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
4029
4030 // Print the calling convention.
4031 if (F->getCallingConv() != CallingConv::C) {
4032 PrintCallingConv(F->getCallingConv(), Out);
4033 Out << " ";
4034 }
4035
4036 FunctionType *FT = F->getFunctionType();
4037 if (Attrs.hasRetAttrs())
4038 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
4039 TypePrinter.print(F->getReturnType(), Out);
4040 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
4041 Out << ' ';
4042 WriteAsOperandInternal(Out, F, WriterCtx);
4043 Out << '(';
4044
4045 // Loop over the arguments, printing them...
4046 if (F->isDeclaration() && !IsForDebug) {
4047 // We're only interested in the type here - don't print argument names.
4048 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
4049 // Insert commas as we go... the first arg doesn't get a comma
4050 if (I)
4051 Out << ", ";
4052 // Output type...
4053 TypePrinter.print(FT->getParamType(I), Out);
4054
4055 AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
4056 if (ArgAttrs.hasAttributes()) {
4057 Out << ' ';
4058 writeAttributeSet(ArgAttrs);
4059 }
4060 }
4061 } else {
4062 // The arguments are meaningful here, print them in detail.
4063 for (const Argument &Arg : F->args()) {
4064 // Insert commas as we go... the first arg doesn't get a comma
4065 if (Arg.getArgNo() != 0)
4066 Out << ", ";
4067 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
4068 }
4069 }
4070
4071 // Finish printing arguments...
4072 if (FT->isVarArg()) {
4073 if (FT->getNumParams()) Out << ", ";
4074 Out << "..."; // Output varargs portion of signature!
4075 }
4076 Out << ')';
4077 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
4078 if (!UA.empty())
4079 Out << ' ' << UA;
4080 // We print the function address space if it is non-zero or if we are writing
4081 // a module with a non-zero program address space or if there is no valid
4082 // Module* so that the file can be parsed without the datalayout string.
4083 const Module *Mod = F->getParent();
4084 if (F->getAddressSpace() != 0 || !Mod ||
4085 Mod->getDataLayout().getProgramAddressSpace() != 0)
4086 Out << " addrspace(" << F->getAddressSpace() << ")";
4087 if (Attrs.hasFnAttrs())
4088 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
4089 if (F->hasSection()) {
4090 Out << " section \"";
4091 printEscapedString(F->getSection(), Out);
4092 Out << '"';
4093 }
4094 if (F->hasPartition()) {
4095 Out << " partition \"";
4096 printEscapedString(F->getPartition(), Out);
4097 Out << '"';
4098 }
4099 maybePrintComdat(Out, *F);
4100 if (MaybeAlign A = F->getAlign())
4101 Out << " align " << A->value();
4102 if (F->hasGC())
4103 Out << " gc \"" << F->getGC() << '"';
4104 if (F->hasPrefixData()) {
4105 Out << " prefix ";
4106 writeOperand(F->getPrefixData(), true);
4107 }
4108 if (F->hasPrologueData()) {
4109 Out << " prologue ";
4110 writeOperand(F->getPrologueData(), true);
4111 }
4112 if (F->hasPersonalityFn()) {
4113 Out << " personality ";
4114 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
4115 }
4116
4117 if (F->isDeclaration()) {
4118 Out << '\n';
4119 } else {
4121 F->getAllMetadata(MDs);
4122 printMetadataAttachments(MDs, " ");
4123
4124 Out << " {";
4125 // Output all of the function's basic blocks.
4126 for (const BasicBlock &BB : *F)
4127 printBasicBlock(&BB);
4128
4129 // Output the function's use-lists.
4130 printUseLists(F);
4131
4132 Out << "}\n";
4133 }
4134
4135 Machine.purgeFunction();
4136}
4137
4138/// printArgument - This member is called for every argument that is passed into
4139/// the function. Simply print it out
4140void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4141 // Output type...
4142 TypePrinter.print(Arg->getType(), Out);
4143
4144 // Output parameter attributes list
4145 if (Attrs.hasAttributes()) {
4146 Out << ' ';
4147 writeAttributeSet(Attrs);
4148 }
4149
4150 // Output name, if available...
4151 if (Arg->hasName()) {
4152 Out << ' ';
4153 PrintLLVMName(Out, Arg);
4154 } else {
4155 int Slot = Machine.getLocalSlot(Arg);
4156 assert(Slot != -1 && "expect argument in function here");
4157 Out << " %" << Slot;
4158 }
4159}
4160
4161/// printBasicBlock - This member is called for each basic block in a method.
4162void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4163 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
4164 if (BB->hasName()) { // Print out the label if it exists...
4165 Out << "\n";
4166 PrintLLVMName(Out, BB->getName(), LabelPrefix);
4167 Out << ':';
4168 } else if (!IsEntryBlock) {
4169 Out << "\n";
4170 int Slot = Machine.getLocalSlot(BB);
4171 if (Slot != -1)
4172 Out << Slot << ":";
4173 else
4174 Out << "<badref>:";
4175 }
4176
4177 if (!IsEntryBlock) {
4178 // Output predecessors for the block.
4179 Out.PadToColumn(50);
4180 Out << ";";
4181 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
4182
4183 if (PI == PE) {
4184 Out << " No predecessors!";
4185 } else {
4186 Out << " preds = ";
4187 writeOperand(*PI, false);
4188 for (++PI; PI != PE; ++PI) {
4189 Out << ", ";
4190 writeOperand(*PI, false);
4191 }
4192 }
4193 }
4194
4195 Out << "\n";
4196
4197 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4198
4199 // Output all of the instructions in the basic block...
4200 for (const Instruction &I : *BB) {
4201 for (const DbgRecord &DR : I.getDbgRecordRange())
4202 printDbgRecordLine(DR);
4203 printInstructionLine(I);
4204 }
4205
4206 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4207}
4208
4209/// printInstructionLine - Print an instruction and a newline character.
4210void AssemblyWriter::printInstructionLine(const Instruction &I) {
4211 printInstruction(I);
4212 Out << '\n';
4213}
4214
4215/// printGCRelocateComment - print comment after call to the gc.relocate
4216/// intrinsic indicating base and derived pointer names.
4217void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4218 Out << " ; (";
4219 writeOperand(Relocate.getBasePtr(), false);
4220 Out << ", ";
4221 writeOperand(Relocate.getDerivedPtr(), false);
4222 Out << ")";
4223}
4224
4225/// printInfoComment - Print a little comment after the instruction indicating
4226/// which slot it occupies.
4227void AssemblyWriter::printInfoComment(const Value &V) {
4228 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4229 printGCRelocateComment(*Relocate);
4230
4231 if (AnnotationWriter) {
4232 AnnotationWriter->printInfoComment(V, Out);
4233 }
4234}
4235
4236static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
4237 raw_ostream &Out) {
4238 // We print the address space of the call if it is non-zero.
4239 if (Operand == nullptr) {
4240 Out << " <cannot get addrspace!>";
4241 return;
4242 }
4243 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
4244 bool PrintAddrSpace = CallAddrSpace != 0;
4245 if (!PrintAddrSpace) {
4246 const Module *Mod = getModuleFromVal(I);
4247 // We also print it if it is zero but not equal to the program address space
4248 // or if we can't find a valid Module* to make it possible to parse
4249 // the resulting file even without a datalayout string.
4250 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
4251 PrintAddrSpace = true;
4252 }
4253 if (PrintAddrSpace)
4254 Out << " addrspace(" << CallAddrSpace << ")";
4255}
4256
4257// This member is called for each Instruction in a function..
4258void AssemblyWriter::printInstruction(const Instruction &I) {
4259 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4260
4261 // Print out indentation for an instruction.
4262 Out << " ";
4263
4264 // Print out name if it exists...
4265 if (I.hasName()) {
4266 PrintLLVMName(Out, &I);
4267 Out << " = ";
4268 } else if (!I.getType()->isVoidTy()) {
4269 // Print out the def slot taken.
4270 int SlotNum = Machine.getLocalSlot(&I);
4271 if (SlotNum == -1)
4272 Out << "<badref> = ";
4273 else
4274 Out << '%' << SlotNum << " = ";
4275 }
4276
4277 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4278 if (CI->isMustTailCall())
4279 Out << "musttail ";
4280 else if (CI->isTailCall())
4281 Out << "tail ";
4282 else if (CI->isNoTailCall())
4283 Out << "notail ";
4284 }
4285
4286 // Print out the opcode...
4287 Out << I.getOpcodeName();
4288
4289 // If this is an atomic load or store, print out the atomic marker.
4290 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
4291 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
4292 Out << " atomic";
4293
4294 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
4295 Out << " weak";
4296
4297 // If this is a volatile operation, print out the volatile marker.
4298 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
4299 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
4300 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
4301 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
4302 Out << " volatile";
4303
4304 // Print out optimization information.
4305 WriteOptimizationInfo(Out, &I);
4306
4307 // Print out the compare instruction predicates
4308 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4309 Out << ' ' << CI->getPredicate();
4310
4311 // Print out the atomicrmw operation
4312 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4313 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4314
4315 // Print out the type of the operands...
4316 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4317
4318 // Special case conditional branches to swizzle the condition out to the front
4319 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4320 const BranchInst &BI(cast<BranchInst>(I));
4321 Out << ' ';
4322 writeOperand(BI.getCondition(), true);
4323 Out << ", ";
4324 writeOperand(BI.getSuccessor(0), true);
4325 Out << ", ";
4326 writeOperand(BI.getSuccessor(1), true);
4327
4328 } else if (isa<SwitchInst>(I)) {
4329 const SwitchInst& SI(cast<SwitchInst>(I));
4330 // Special case switch instruction to get formatting nice and correct.
4331 Out << ' ';
4332 writeOperand(SI.getCondition(), true);
4333 Out << ", ";
4334 writeOperand(SI.getDefaultDest(), true);
4335 Out << " [";
4336 for (auto Case : SI.cases()) {
4337 Out << "\n ";
4338 writeOperand(Case.getCaseValue(), true);
4339 Out << ", ";
4340 writeOperand(Case.getCaseSuccessor(), true);
4341 }
4342 Out << "\n ]";
4343 } else if (isa<IndirectBrInst>(I)) {
4344 // Special case indirectbr instruction to get formatting nice and correct.
4345 Out << ' ';
4346 writeOperand(Operand, true);
4347 Out << ", [";
4348
4349 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4350 if (i != 1)
4351 Out << ", ";
4352 writeOperand(I.getOperand(i), true);
4353 }
4354 Out << ']';
4355 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4356 Out << ' ';
4357 TypePrinter.print(I.getType(), Out);
4358 Out << ' ';
4359
4360 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4361 if (op) Out << ", ";
4362 Out << "[ ";
4363 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4364 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4365 }
4366 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4367 Out << ' ';
4368 writeOperand(I.getOperand(0), true);
4369 for (unsigned i : EVI->indices())
4370 Out << ", " << i;
4371 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4372 Out << ' ';
4373 writeOperand(I.getOperand(0), true); Out << ", ";
4374 writeOperand(I.getOperand(1), true);
4375 for (unsigned i : IVI->indices())
4376 Out << ", " << i;
4377 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4378 Out << ' ';
4379 TypePrinter.print(I.getType(), Out);
4380 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4381 Out << '\n';
4382
4383 if (LPI->isCleanup())
4384 Out << " cleanup";
4385
4386 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4387 if (i != 0 || LPI->isCleanup()) Out << "\n";
4388 if (LPI->isCatch(i))
4389 Out << " catch ";
4390 else
4391 Out << " filter ";
4392
4393 writeOperand(LPI->getClause(i), true);
4394 }
4395 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4396 Out << " within ";
4397 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4398 Out << " [";
4399 unsigned Op = 0;
4400 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4401 if (Op > 0)
4402 Out << ", ";
4403 writeOperand(PadBB, /*PrintType=*/true);
4404 ++Op;
4405 }
4406 Out << "] unwind ";
4407 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4408 writeOperand(UnwindDest, /*PrintType=*/true);
4409 else
4410 Out << "to caller";
4411 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4412 Out << " within ";
4413 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4414 Out << " [";
4415 for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4416 if (Op > 0)
4417 Out << ", ";
4418 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4419 }
4420 Out << ']';
4421 } else if (isa<ReturnInst>(I) && !Operand) {
4422 Out << " void";
4423 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4424 Out << " from ";
4425 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4426
4427 Out << " to ";
4428 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4429 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4430 Out << " from ";
4431 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4432
4433 Out << " unwind ";
4434 if (CRI->hasUnwindDest())
4435 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4436 else
4437 Out << "to caller";
4438 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4439 // Print the calling convention being used.
4440 if (CI->getCallingConv() != CallingConv::C) {
4441 Out << " ";
4442 PrintCallingConv(CI->getCallingConv(), Out);
4443 }
4444
4445 Operand = CI->getCalledOperand();
4446 FunctionType *FTy = CI->getFunctionType();
4447 Type *RetTy = FTy->getReturnType();
4448 const AttributeList &PAL = CI->getAttributes();
4449
4450 if (PAL.hasRetAttrs())
4451 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4452
4453 // Only print addrspace(N) if necessary:
4454 maybePrintCallAddrSpace(Operand, &I, Out);
4455
4456 // If possible, print out the short form of the call instruction. We can
4457 // only do this if the first argument is a pointer to a nonvararg function,
4458 // and if the return type is not a pointer to a function.
4459 Out << ' ';
4460 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4461 Out << ' ';
4462 writeOperand(Operand, false);
4463 Out << '(';
4464 for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4465 if (op > 0)
4466 Out << ", ";
4467 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4468 }
4469
4470 // Emit an ellipsis if this is a musttail call in a vararg function. This
4471 // is only to aid readability, musttail calls forward varargs by default.
4472 if (CI->isMustTailCall() && CI->getParent() &&
4473 CI->getParent()->getParent() &&
4474 CI->getParent()->getParent()->isVarArg()) {
4475 if (CI->arg_size() > 0)
4476 Out << ", ";
4477 Out << "...";
4478 }
4479
4480 Out << ')';
4481 if (PAL.hasFnAttrs())
4482 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4483
4484 writeOperandBundles(CI);
4485 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4486 Operand = II->getCalledOperand();
4487 FunctionType *FTy = II->getFunctionType();
4488 Type *RetTy = FTy->getReturnType();
4489 const AttributeList &PAL = II->getAttributes();
4490
4491 // Print the calling convention being used.
4492 if (II->getCallingConv() != CallingConv::C) {
4493 Out << " ";
4494 PrintCallingConv(II->getCallingConv(), Out);
4495 }
4496
4497 if (PAL.hasRetAttrs())
4498 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4499
4500 // Only print addrspace(N) if necessary:
4501 maybePrintCallAddrSpace(Operand, &I, Out);
4502
4503 // If possible, print out the short form of the invoke instruction. We can
4504 // only do this if the first argument is a pointer to a nonvararg function,
4505 // and if the return type is not a pointer to a function.
4506 //
4507 Out << ' ';
4508 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4509 Out << ' ';
4510 writeOperand(Operand, false);
4511 Out << '(';
4512 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4513 if (op)
4514 Out << ", ";
4515 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4516 }
4517
4518 Out << ')';
4519 if (PAL.hasFnAttrs())
4520 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4521
4522 writeOperandBundles(II);
4523
4524 Out << "\n to ";
4525 writeOperand(II->getNormalDest(), true);
4526 Out << " unwind ";
4527 writeOperand(II->getUnwindDest(), true);
4528 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4529 Operand = CBI->getCalledOperand();
4530 FunctionType *FTy = CBI->getFunctionType();
4531 Type *RetTy = FTy->getReturnType();
4532 const AttributeList &PAL = CBI->getAttributes();
4533
4534 // Print the calling convention being used.
4535 if (CBI->getCallingConv() != CallingConv::C) {
4536 Out << " ";
4537 PrintCallingConv(CBI->getCallingConv(), Out);
4538 }
4539
4540 if (PAL.hasRetAttrs())
4541 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4542
4543 // If possible, print out the short form of the callbr instruction. We can
4544 // only do this if the first argument is a pointer to a nonvararg function,
4545 // and if the return type is not a pointer to a function.
4546 //
4547 Out << ' ';
4548 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4549 Out << ' ';
4550 writeOperand(Operand, false);
4551 Out << '(';
4552 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4553 if (op)
4554 Out << ", ";
4555 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4556 }
4557
4558 Out << ')';
4559 if (PAL.hasFnAttrs())
4560 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4561
4562 writeOperandBundles(CBI);
4563
4564 Out << "\n to ";
4565 writeOperand(CBI->getDefaultDest(), true);
4566 Out << " [";
4567 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4568 if (i != 0)
4569 Out << ", ";
4570 writeOperand(CBI->getIndirectDest(i), true);
4571 }
4572 Out << ']';
4573 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4574 Out << ' ';
4575 if (AI->isUsedWithInAlloca())
4576 Out << "inalloca ";
4577 if (AI->isSwiftError())
4578 Out << "swifterror ";
4579 TypePrinter.print(AI->getAllocatedType(), Out);
4580
4581 // Explicitly write the array size if the code is broken, if it's an array
4582 // allocation, or if the type is not canonical for scalar allocations. The
4583 // latter case prevents the type from mutating when round-tripping through
4584 // assembly.
4585 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4586 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4587 Out << ", ";
4588 writeOperand(AI->getArraySize(), true);
4589 }
4590 if (MaybeAlign A = AI->getAlign()) {
4591 Out << ", align " << A->value();
4592 }
4593
4594 unsigned AddrSpace = AI->getAddressSpace();
4595 if (AddrSpace != 0) {
4596 Out << ", addrspace(" << AddrSpace << ')';
4597 }
4598 } else if (isa<CastInst>(I)) {
4599 if (Operand) {
4600 Out << ' ';
4601 writeOperand(Operand, true); // Work with broken code
4602 }
4603 Out << " to ";
4604 TypePrinter.print(I.getType(), Out);
4605 } else if (isa<VAArgInst>(I)) {
4606 if (Operand) {
4607 Out << ' ';
4608 writeOperand(Operand, true); // Work with broken code
4609 }
4610 Out << ", ";
4611 TypePrinter.print(I.getType(), Out);
4612 } else if (Operand) { // Print the normal way.
4613 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4614 Out << ' ';
4615 TypePrinter.print(GEP->getSourceElementType(), Out);
4616 Out << ',';
4617 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4618 Out << ' ';
4619 TypePrinter.print(LI->getType(), Out);
4620 Out << ',';
4621 }
4622
4623 // PrintAllTypes - Instructions who have operands of all the same type
4624 // omit the type from all but the first operand. If the instruction has
4625 // different type operands (for example br), then they are all printed.
4626 bool PrintAllTypes = false;
4627 Type *TheType = Operand->getType();
4628
4629 // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4630 // types.
4631 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4632 isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) ||
4633 isa<AtomicRMWInst>(I)) {
4634 PrintAllTypes = true;
4635 } else {
4636 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4637 Operand = I.getOperand(i);
4638 // note that Operand shouldn't be null, but the test helps make dump()
4639 // more tolerant of malformed IR
4640 if (Operand && Operand->getType() != TheType) {
4641 PrintAllTypes = true; // We have differing types! Print them all!
4642 break;
4643 }
4644 }
4645 }
4646
4647 if (!PrintAllTypes) {
4648 Out << ' ';
4649 TypePrinter.print(TheType, Out);
4650 }
4651
4652 Out << ' ';
4653 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4654 if (i) Out << ", ";
4655 writeOperand(I.getOperand(i), PrintAllTypes);
4656 }
4657 }
4658
4659 // Print atomic ordering/alignment for memory operations
4660 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4661 if (LI->isAtomic())
4662 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4663 if (MaybeAlign A = LI->getAlign())
4664 Out << ", align " << A->value();
4665 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4666 if (SI->isAtomic())
4667 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4668 if (MaybeAlign A = SI->getAlign())
4669 Out << ", align " << A->value();
4670 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4671 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4672 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4673 Out << ", align " << CXI->getAlign().value();
4674 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4675 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4676 RMWI->getSyncScopeID());
4677 Out << ", align " << RMWI->getAlign().value();
4678 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4679 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4680 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4681 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4682 }
4683
4684 // Print Metadata info.
4686 I.getAllMetadata(InstMD);
4687 printMetadataAttachments(InstMD, ", ");
4688
4689 // Print a nice comment.
4690 printInfoComment(I);
4691}
4692
4693void AssemblyWriter::printDbgMarker(const DbgMarker &Marker) {
4694 // There's no formal representation of a DbgMarker -- print purely as a
4695 // debugging aid.
4696 for (const DbgRecord &DPR : Marker.StoredDbgRecords) {
4697 printDbgRecord(DPR);
4698 Out << "\n";
4699 }
4700
4701 Out << " DbgMarker -> { ";
4702 printInstruction(*Marker.MarkedInstr);
4703 Out << " }";
4704}
4705
4706void AssemblyWriter::printDbgRecord(const DbgRecord &DR) {
4707 if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR))
4708 printDbgVariableRecord(*DVR);
4709 else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR))
4710 printDbgLabelRecord(*DLR);
4711 else
4712 llvm_unreachable("Unexpected DbgRecord kind");
4713}
4714
4715void AssemblyWriter::printDbgVariableRecord(const DbgVariableRecord &DVR) {
4716 auto WriterCtx = getContext();
4717 Out << "#dbg_";
4718 switch (DVR.getType()) {
4719 case DbgVariableRecord::LocationType::Value:
4720 Out << "value";
4721 break;
4722 case DbgVariableRecord::LocationType::Declare:
4723 Out << "declare";
4724 break;
4725 case DbgVariableRecord::LocationType::Assign:
4726 Out << "assign";
4727 break;
4728 default:
4730 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4731 }
4732 Out << "(";
4733 WriteAsOperandInternal(Out, DVR.getRawLocation(), WriterCtx, true);
4734 Out << ", ";
4735 WriteAsOperandInternal(Out, DVR.getRawVariable(), WriterCtx, true);
4736 Out << ", ";
4737 WriteAsOperandInternal(Out, DVR.getRawExpression(), WriterCtx, true);
4738 Out << ", ";
4739 if (DVR.isDbgAssign()) {
4740 WriteAsOperandInternal(Out, DVR.getRawAssignID(), WriterCtx, true);
4741 Out << ", ";
4742 WriteAsOperandInternal(Out, DVR.getRawAddress(), WriterCtx, true);
4743 Out << ", ";
4744 WriteAsOperandInternal(Out, DVR.getRawAddressExpression(), WriterCtx, true);
4745 Out << ", ";
4746 }
4747 WriteAsOperandInternal(Out, DVR.getDebugLoc().getAsMDNode(), WriterCtx, true);
4748 Out << ")";
4749}
4750
4751/// printDbgRecordLine - Print a DbgRecord with indentation and a newline
4752/// character.
4753void AssemblyWriter::printDbgRecordLine(const DbgRecord &DR) {
4754 // Print lengthier indentation to bring out-of-line with instructions.
4755 Out << " ";
4756 printDbgRecord(DR);
4757 Out << '\n';
4758}
4759
4760void AssemblyWriter::printDbgLabelRecord(const DbgLabelRecord &Label) {
4761 auto WriterCtx = getContext();
4762 Out << "#dbg_label(";
4763 WriteAsOperandInternal(Out, Label.getRawLabel(), WriterCtx, true);
4764 Out << ", ";
4765 WriteAsOperandInternal(Out, Label.getDebugLoc(), WriterCtx, true);
4766 Out << ")";
4767}
4768
4769void AssemblyWriter::printMetadataAttachments(
4770 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4771 StringRef Separator) {
4772 if (MDs.empty())
4773 return;
4774
4775 if (MDNames.empty())
4776 MDs[0].second->getContext().getMDKindNames(MDNames);
4777
4778 auto WriterCtx = getContext();
4779 for (const auto &I : MDs) {
4780 unsigned Kind = I.first;
4781 Out << Separator;
4782 if (Kind < MDNames.size()) {
4783 Out << "!";
4784 printMetadataIdentifier(MDNames[Kind], Out);
4785 } else
4786 Out << "!<unknown kind #" << Kind << ">";
4787 Out << ' ';
4788 WriteAsOperandInternal(Out, I.second, WriterCtx);
4789 }
4790}
4791
4792void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4793 Out << '!' << Slot << " = ";
4794 printMDNodeBody(Node);
4795 Out << "\n";
4796}
4797
4798void AssemblyWriter::writeAllMDNodes() {
4800 Nodes.resize(Machine.mdn_size());
4801 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4802 Nodes[I.second] = cast<MDNode>(I.first);
4803
4804 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4805 writeMDNode(i, Nodes[i]);
4806 }
4807}
4808
4809void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4810 auto WriterCtx = getContext();
4811 WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4812}
4813
4814void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4815 if (!Attr.isTypeAttribute()) {
4816 Out << Attr.getAsString(InAttrGroup);
4817 return;
4818 }
4819
4821 if (Type *Ty = Attr.getValueAsType()) {
4822 Out << '(';
4823 TypePrinter.print(Ty, Out);
4824 Out << ')';
4825 }
4826}
4827
4828void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4829 bool InAttrGroup) {
4830 bool FirstAttr = true;
4831 for (const auto &Attr : AttrSet) {
4832 if (!FirstAttr)
4833 Out << ' ';
4834 writeAttribute(Attr, InAttrGroup);
4835 FirstAttr = false;
4836 }
4837}
4838
4839void AssemblyWriter::writeAllAttributeGroups() {
4840 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4841 asVec.resize(Machine.as_size());
4842
4843 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4844 asVec[I.second] = I;
4845
4846 for (const auto &I : asVec)
4847 Out << "attributes #" << I.second << " = { "
4848 << I.first.getAsString(true) << " }\n";
4849}
4850
4851void AssemblyWriter::printUseListOrder(const Value *V,
4852 const std::vector<unsigned> &Shuffle) {
4853 bool IsInFunction = Machine.getFunction();
4854 if (IsInFunction)
4855 Out << " ";
4856
4857 Out << "uselistorder";
4858 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4859 Out << "_bb ";
4860 writeOperand(BB->getParent(), false);
4861 Out << ", ";
4862 writeOperand(BB, false);
4863 } else {
4864 Out << " ";
4865 writeOperand(V, true);
4866 }
4867 Out << ", { ";
4868
4869 assert(Shuffle.size() >= 2 && "Shuffle too small");
4870 Out << Shuffle[0];
4871 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4872 Out << ", " << Shuffle[I];
4873 Out << " }\n";
4874}
4875
4876void AssemblyWriter::printUseLists(const Function *F) {
4877 auto It = UseListOrders.find(F);
4878 if (It == UseListOrders.end())
4879 return;
4880
4881 Out << "\n; uselistorder directives\n";
4882 for (const auto &Pair : It->second)
4883 printUseListOrder(Pair.first, Pair.second);
4884}
4885
4886//===----------------------------------------------------------------------===//
4887// External Interface declarations
4888//===----------------------------------------------------------------------===//
4889
4891 bool ShouldPreserveUseListOrder,
4892 bool IsForDebug) const {
4893 SlotTracker SlotTable(this->getParent());
4895 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4896 IsForDebug,
4897 ShouldPreserveUseListOrder);
4898 W.printFunction(this);
4899}
4900
4902 bool ShouldPreserveUseListOrder,
4903 bool IsForDebug) const {
4904 SlotTracker SlotTable(this->getParent());
4906 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4907 IsForDebug,
4908 ShouldPreserveUseListOrder);
4909 W.printBasicBlock(this);
4910}
4911
4913 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4914 SlotTracker SlotTable(this);
4916 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4917 ShouldPreserveUseListOrder);
4918 W.printModule(this);
4919}
4920
4921void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4922 SlotTracker SlotTable(getParent());
4924 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4925 W.printNamedMDNode(this);
4926}
4927
4929 bool IsForDebug) const {
4930 std::optional<SlotTracker> LocalST;
4931 SlotTracker *SlotTable;
4932 if (auto *ST = MST.getMachine())
4933 SlotTable = ST;
4934 else {
4935 LocalST.emplace(getParent());
4936 SlotTable = &*LocalST;
4937 }
4938
4940 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4941 W.printNamedMDNode(this);
4942}
4943
4944void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4946 ROS << " = comdat ";
4947
4948 switch (getSelectionKind()) {
4949 case Comdat::Any:
4950 ROS << "any";
4951 break;
4952 case Comdat::ExactMatch:
4953 ROS << "exactmatch";
4954 break;
4955 case Comdat::Largest:
4956 ROS << "largest";
4957 break;
4959 ROS << "nodeduplicate";
4960 break;
4961 case Comdat::SameSize:
4962 ROS << "samesize";
4963 break;
4964 }
4965
4966 ROS << '\n';
4967}
4968
4969void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4970 TypePrinting TP;
4971 TP.print(const_cast<Type*>(this), OS);
4972
4973 if (NoDetails)
4974 return;
4975
4976 // If the type is a named struct type, print the body as well.
4977 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4978 if (!STy->isLiteral()) {
4979 OS << " = type ";
4980 TP.printStructBody(STy, OS);
4981 }
4982}
4983
4984static bool isReferencingMDNode(const Instruction &I) {
4985 if (const auto *CI = dyn_cast<CallInst>(&I))
4986 if (Function *F = CI->getCalledFunction())
4987 if (F->isIntrinsic())
4988 for (auto &Op : I.operands())
4989 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4990 if (isa<MDNode>(V->getMetadata()))
4991 return true;
4992 return false;
4993}
4994
4995void DbgMarker::print(raw_ostream &ROS, bool IsForDebug) const {
4996
4997 ModuleSlotTracker MST(getModuleFromDPI(this), true);
4998 print(ROS, MST, IsForDebug);
4999}
5000
5001void DbgVariableRecord::print(raw_ostream &ROS, bool IsForDebug) const {
5002
5003 ModuleSlotTracker MST(getModuleFromDPI(this), true);
5004 print(ROS, MST, IsForDebug);
5005}
5006
5008 bool IsForDebug) const {
5010 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5011 SlotTracker &SlotTable =
5012 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5013 auto incorporateFunction = [&](const Function *F) {
5014 if (F)
5015 MST.incorporateFunction(*F);
5016 };
5017 incorporateFunction(getParent() ? getParent()->getParent() : nullptr);
5018 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5019 W.printDbgMarker(*this);
5020}
5021
5022void DbgLabelRecord::print(raw_ostream &ROS, bool IsForDebug) const {
5023
5024 ModuleSlotTracker MST(getModuleFromDPI(this), true);
5025 print(ROS, MST, IsForDebug);
5026}
5027
5029 bool IsForDebug) const {
5031 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5032 SlotTracker &SlotTable =
5033 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5034 auto incorporateFunction = [&](const Function *F) {
5035 if (F)
5036 MST.incorporateFunction(*F);
5037 };
5038 incorporateFunction(Marker && Marker->getParent()
5039 ? Marker->getParent()->getParent()
5040 : nullptr);
5041 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5042 W.printDbgVariableRecord(*this);
5043}
5044
5046 bool IsForDebug) const {
5048 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5049 SlotTracker &SlotTable =
5050 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5051 auto incorporateFunction = [&](const Function *F) {
5052 if (F)
5053 MST.incorporateFunction(*F);
5054 };
5055 incorporateFunction(Marker->getParent() ? Marker->getParent()->getParent()
5056 : nullptr);
5057 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5058 W.printDbgLabelRecord(*this);
5059}
5060
5061void Value::print(raw_ostream &ROS, bool IsForDebug) const {
5062 bool ShouldInitializeAllMetadata = false;
5063 if (auto *I = dyn_cast<Instruction>(this))
5064 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
5065 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
5066 ShouldInitializeAllMetadata = true;
5067
5068 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
5069 print(ROS, MST, IsForDebug);
5070}
5071
5073 bool IsForDebug) const {
5075 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5076 SlotTracker &SlotTable =
5077 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5078 auto incorporateFunction = [&](const Function *F) {
5079 if (F)
5080 MST.incorporateFunction(*F);
5081 };
5082
5083 if (const Instruction *I = dyn_cast<Instruction>(this)) {
5084 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
5085 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
5086 W.printInstruction(*I);
5087 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
5088 incorporateFunction(BB->getParent());
5089 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
5090 W.printBasicBlock(BB);
5091 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
5092 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
5093 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
5094 W.printGlobal(V);
5095 else if (const Function *F = dyn_cast<Function>(GV))
5096 W.printFunction(F);
5097 else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
5098 W.printAlias(A);
5099 else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
5100 W.printIFunc(I);
5101 else
5102 llvm_unreachable("Unknown GlobalValue to print out!");
5103 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
5104 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
5105 } else if (const Constant *C = dyn_cast<Constant>(this)) {
5106 TypePrinting TypePrinter;
5107 TypePrinter.print(C->getType(), OS);
5108 OS << ' ';
5109 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
5110 WriteConstantInternal(OS, C, WriterCtx);
5111 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
5112 this->printAsOperand(OS, /* PrintType */ true, MST);
5113 } else {
5114 llvm_unreachable("Unknown value to print out!");
5115 }
5116}
5117
5118/// Print without a type, skipping the TypePrinting object.
5119///
5120/// \return \c true iff printing was successful.
5121static bool printWithoutType(const Value &V, raw_ostream &O,
5122 SlotTracker *Machine, const Module *M) {
5123 if (V.hasName() || isa<GlobalValue>(V) ||
5124 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
5125 AsmWriterContext WriterCtx(nullptr, Machine, M);
5126 WriteAsOperandInternal(O, &V, WriterCtx);
5127 return true;
5128 }
5129 return false;
5130}
5131
5132static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
5133 ModuleSlotTracker &MST) {
5134 TypePrinting TypePrinter(MST.getModule());
5135 if (PrintType) {
5136 TypePrinter.print(V.getType(), O);
5137 O << ' ';
5138 }
5139
5140 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
5141 WriteAsOperandInternal(O, &V, WriterCtx);
5142}
5143
5144void Value::printAsOperand(raw_ostream &O, bool PrintType,
5145 const Module *M) const {
5146 if (!M)
5147 M = getModuleFromVal(this);
5148
5149 if (!PrintType)
5150 if (printWithoutType(*this, O, nullptr, M))
5151 return;
5152
5154 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
5155 ModuleSlotTracker MST(Machine, M);
5156 printAsOperandImpl(*this, O, PrintType, MST);
5157}
5158
5159void Value::printAsOperand(raw_ostream &O, bool PrintType,
5160 ModuleSlotTracker &MST) const {
5161 if (!PrintType)
5162 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
5163 return;
5164
5165 printAsOperandImpl(*this, O, PrintType, MST);
5166}
5167
5168/// Recursive version of printMetadataImpl.
5169static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
5170 AsmWriterContext &WriterCtx) {
5172 WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
5173
5174 auto *N = dyn_cast<MDNode>(&MD);
5175 if (!N || isa<DIExpression>(MD))
5176 return;
5177
5178 OS << " = ";
5179 WriteMDNodeBodyInternal(OS, N, WriterCtx);
5180}
5181
5182namespace {
5183struct MDTreeAsmWriterContext : public AsmWriterContext {
5184 unsigned Level;
5185 // {Level, Printed string}
5186 using EntryTy = std::pair<unsigned, std::string>;
5188
5189 // Used to break the cycle in case there is any.
5191
5192 raw_ostream &MainOS;
5193
5194 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5195 raw_ostream &OS, const Metadata *InitMD)
5196 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5197
5198 void onWriteMetadataAsOperand(const Metadata *MD) override {
5199 if (!Visited.insert(MD).second)
5200 return;
5201
5202 std::string Str;
5204 ++Level;
5205 // A placeholder entry to memorize the correct
5206 // position in buffer.
5207 Buffer.emplace_back(std::make_pair(Level, ""));
5208 unsigned InsertIdx = Buffer.size() - 1;
5209
5210 printMetadataImplRec(SS, *MD, *this);
5211 Buffer[InsertIdx].second = std::move(SS.str());
5212 --Level;
5213 }
5214
5215 ~MDTreeAsmWriterContext() {
5216 for (const auto &Entry : Buffer) {
5217 MainOS << "\n";
5218 unsigned NumIndent = Entry.first * 2U;
5219 MainOS.indent(NumIndent) << Entry.second;
5220 }
5221 }
5222};
5223} // end anonymous namespace
5224
5225static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
5226 ModuleSlotTracker &MST, const Module *M,
5227 bool OnlyAsOperand, bool PrintAsTree = false) {
5229
5230 TypePrinting TypePrinter(M);
5231
5232 std::unique_ptr<AsmWriterContext> WriterCtx;
5233 if (PrintAsTree && !OnlyAsOperand)
5234 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5235 &TypePrinter, MST.getMachine(), M, OS, &MD);
5236 else
5237 WriterCtx =
5238 std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
5239
5240 WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
5241
5242 auto *N = dyn_cast<MDNode>(&MD);
5243 if (OnlyAsOperand || !N || isa<DIExpression>(MD))
5244 return;
5245
5246 OS << " = ";
5247 WriteMDNodeBodyInternal(OS, N, *WriterCtx);
5248}
5249
5251 ModuleSlotTracker MST(M, isa<MDNode>(this));
5252 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5253}
5254
5256 const Module *M) const {
5257 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5258}
5259
5261 bool /*IsForDebug*/) const {
5262 ModuleSlotTracker MST(M, isa<MDNode>(this));
5263 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5264}
5265
5267 const Module *M, bool /*IsForDebug*/) const {
5268 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5269}
5270
5271void MDNode::printTree(raw_ostream &OS, const Module *M) const {
5272 ModuleSlotTracker MST(M, true);
5273 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5274 /*PrintAsTree=*/true);
5275}
5276
5278 const Module *M) const {
5279 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5280 /*PrintAsTree=*/true);
5281}
5282
5283void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
5284 SlotTracker SlotTable(this);
5286 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5287 W.printModuleSummaryIndex();
5288}
5289
5291 unsigned UB) const {
5292 SlotTracker *ST = MachineStorage.get();
5293 if (!ST)
5294 return;
5295
5296 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5297 if (I.second >= LB && I.second < UB)
5298 L.push_back(std::make_pair(I.second, I.first));
5299}
5300
5301#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5302// Value::dump - allow easy printing of Values from the debugger.
5304void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5305
5306// Value::dump - allow easy printing of Values from the debugger.
5308void DbgMarker::dump() const {
5309 print(dbgs(), /*IsForDebug=*/true);
5310 dbgs() << '\n';
5311}
5312
5313// Value::dump - allow easy printing of Values from the debugger.
5315void DbgRecord::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5316
5317// Type::dump - allow easy printing of Types from the debugger.
5319void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5320
5321// Module::dump() - Allow printing of Modules from the debugger.
5323void Module::dump() const {
5324 print(dbgs(), nullptr,
5325 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
5326}
5327
5328// Allow printing of Comdats from the debugger.
5330void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5331
5332// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
5334void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5335
5337void Metadata::dump() const { dump(nullptr); }
5338
5340void Metadata::dump(const Module *M) const {
5341 print(dbgs(), M, /*IsForDebug=*/true);
5342 dbgs() << '\n';
5343}
5344
5346void MDNode::dumpTree() const { dumpTree(nullptr); }
5347
5349void MDNode::dumpTree(const Module *M) const {
5350 printTree(dbgs(), M);
5351 dbgs() << '\n';
5352}
5353
5354// Allow printing of ModuleSummaryIndex from the debugger.
5356void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5357#endif
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static void writeDIMacro(raw_ostream &Out, const DIMacro *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2392
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:1906
static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2539
MapVector< const Value *, unsigned > OrderMap
Definition: AsmWriter.cpp:98
static void PrintCallingConv(unsigned cc, raw_ostream &Out)
Definition: AsmWriter.cpp:298
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2227
static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)
Definition: AsmWriter.cpp:3142
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand, bool PrintAsTree=false)
Definition: AsmWriter.cpp:5225
static void WriteOptimizationInfo(raw_ostream &Out, const User *U)
Definition: AsmWriter.cpp:1400
static void writeDIStringType(raw_ostream &Out, const DIStringType *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2176
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)
Definition: AsmWriter.cpp:3357
static std::vector< unsigned > predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM)
Definition: AsmWriter.cpp:176
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2453
static void orderValue(const Value *V, OrderMap &OM)
Definition: AsmWriter.cpp:112
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:3744
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
Definition: AsmWriter.cpp:417
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
Definition: AsmWriter.cpp:3764
static const char * getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)
Definition: AsmWriter.cpp:3154
static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef< int > Mask)
Definition: AsmWriter.cpp:444
static void writeDIModule(raw_ostream &Out, const DIModule *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2413
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &)
Definition: AsmWriter.cpp:2274
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2263
static bool isReferencingMDNode(const Instruction &I)
Definition: AsmWriter.cpp:4984
static void writeDILabel(raw_ostream &Out, const DILabel *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2488
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, AsmWriterContext &Ctx)
Definition: AsmWriter.cpp:2577
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2194
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:3674
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2563
static const Module * getModuleFromDPI(const DbgMarker *Marker)
Definition: AsmWriter.cpp:288
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
Definition: AsmWriter.cpp:5132
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2549
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:3735
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2319
static const char * getSummaryKindName(GlobalValueSummary::SummaryKind SK)
Definition: AsmWriter.cpp:3280
static OrderMap orderModule(const Module *M)
Definition: AsmWriter.cpp:128
static const char * getVisibilityName(GlobalValue::VisibilityTypes Vis)
Definition: AsmWriter.cpp:3363
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, AsmWriterContext &WriterCtx)
Recursive version of printMetadataImpl.
Definition: AsmWriter.cpp:5169
static SlotTracker * createSlotTracker(const Value *V)
Definition: AsmWriter.cpp:935
static void WriteAPFloatInternal(raw_ostream &Out, const APFloat &APF)
Definition: AsmWriter.cpp:1443
static void writeDILocation(raw_ostream &Out, const DILocation *DL, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2036
static void writeDINamespace(raw_ostream &Out, const DINamespace *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2370
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2380
static UseListOrderMap predictUseListOrder(const Module *M)
Definition: AsmWriter.cpp:237
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:1536
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2597
static std::string getLinkageName(GlobalValue::LinkageTypes LT)
Definition: AsmWriter.cpp:3326
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, AsmWriterContext &)
Definition: AsmWriter.cpp:2160
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2018
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2472
static const char * getTTResKindName(TypeTestResolution::Kind K)
Definition: AsmWriter.cpp:3169
static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2428
static const char * getImportTypeName(GlobalValueSummary::ImportKind IK)
Definition: AsmWriter.cpp:3375
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2289
static const Module * getModuleFromVal(const Value *V)
Definition: AsmWriter.cpp:262
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out)
Definition: AsmWriter.cpp:4236
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2097
static void writeDISubrange(raw_ostream &Out, const DISubrange *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2056
static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:3720
static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2358
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, AsmWriterContext &)
Definition: AsmWriter.cpp:2148
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:1797
static void writeDIExpression(raw_ostream &Out, const DIExpression *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2499
static void PrintDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out)
Definition: AsmWriter.cpp:3729
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2050
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2347
PrefixType
Definition: AsmWriter.cpp:374
@ GlobalPrefix
Definition: AsmWriter.cpp:375
@ LabelPrefix
Definition: AsmWriter.cpp:377
@ LocalPrefix
Definition: AsmWriter.cpp:378
@ NoPrefix
Definition: AsmWriter.cpp:379
@ ComdatPrefix
Definition: AsmWriter.cpp:376
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
Definition: AsmWriter.cpp:3776
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
Definition: AsmWriter.cpp:5121
#define ST_DEBUG(X)
Definition: AsmWriter.cpp:964
static void writeDIArgList(raw_ostream &Out, const DIArgList *N, AsmWriterContext &WriterCtx, bool FromValue=false)
Definition: AsmWriter.cpp:2524
static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2439
static const Value * skipMetadataWrapper(const Value *V)
Look for a value that might be wrapped as metadata, e.g.
Definition: AsmWriter.cpp:105
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, AsmWriterContext &WriterCtx)
Definition: AsmWriter.cpp:2403
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:390
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil pretty DXIL Metadata Pretty Printer
return RetTy
Looks at all the uses of the given value Returns the Liveness deduced from the uses of this value Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses If the result is MaybeLiveUses might be modified but its content should be ignored(since it might not be complete). DeadArgumentEliminationPass
This file defines the DenseMap class.
@ Default
Definition: DwarfDebug.cpp:87
This file contains constants used for implementing Dwarf debug support.
std::string Name
uint32_t Index
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
#define op(i)
Hexagon Common GEP
#define _
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file contains an interface for creating legacy passes to print out IR in various granularities.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
This file contains the declarations for metadata subclasses.
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
if(PassOpts->AAPipeline)
const NodeList & List
Definition: RDFGraph.cpp:200
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file provides utility classes that use RAII to save and restore values.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
Definition: APFloat.h:1125
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:5465
bool isNegative() const
Definition: APFloat.h:1440
double convertToDouble() const
Converts this APFloat to host double value.
Definition: APFloat.cpp:5527
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
Definition: APFloat.h:1470
const fltSemantics & getSemantics() const
Definition: APFloat.h:1448
bool isNaN() const
Definition: APFloat.h:1438
bool isSignaling() const
Definition: APFloat.h:1442
APInt bitcastToAPInt() const
Definition: APFloat.h:1346
bool isInfinity() const
Definition: APFloat.h:1437
Class for arbitrary precision integers.
Definition: APInt.h:78
APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition: APInt.cpp:617
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition: APInt.cpp:612
Abstract interface of slot tracker storage.
Alias summary information.
const GlobalValueSummary & getAliasee() const
an instruction to allocate memory on the stack
Definition: Instructions.h:63
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:501
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:704
static StringRef getOperationName(BinOp Op)
AttributeSet getFnAttrs() const
The function attributes are returned.
std::string getAsString(unsigned Index, bool InAttrGrp=false) const
Return the attributes at the index as a string.
bool hasRetAttrs() const
Return true if attributes exist for the return value.
Definition: Attributes.h:854
AttributeSet getAttributes(unsigned Index) const
The attributes for the specified index are returned.
bool hasFnAttrs() const
Return true the attributes exist for the function.
Definition: Attributes.h:863
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
bool hasAttributes() const
Return true if attributes exists in this set.
Definition: Attributes.h:408
std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
Definition: Attributes.cpp:522
Attribute::AttrKind getKindAsEnum() const
Return the attribute's kind as an enum (Attribute::AttrKind).
Definition: Attributes.cpp:364
static StringRef getNameFromAttrKind(Attribute::AttrKind AttrKind)
Definition: Attributes.cpp:314
bool isTypeAttribute() const
Return true if the attribute is a type attribute.
Definition: Attributes.cpp:352
Type * getValueAsType() const
Return the attribute's value as a Type.
Definition: Attributes.cpp:399
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4901
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
Definition: BasicBlock.cpp:571
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:292
The address of a basic block.
Definition: Constants.h:893
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1120
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:661
void print(raw_ostream &OS, bool IsForDebug=false) const
Definition: AsmWriter.cpp:4944
StringRef getName() const
Definition: Comdat.cpp:28
void dump() const
Definition: AsmWriter.cpp:5330
@ Largest
The linker will choose the largest COMDAT.
Definition: Comdat.h:38
@ SameSize
The data referenced by the COMDAT must be the same size.
Definition: Comdat.h:40
@ Any
The linker may choose any COMDAT.
Definition: Comdat.h:36
@ NoDeduplicate
No deduplication is performed.
Definition: Comdat.h:39
@ ExactMatch
The data referenced by the COMDAT must be the same.
Definition: Comdat.h:37
SelectionKind getSelectionKind() const
Definition: Comdat.h:46
ConstantArray - Constant Array Declarations.
Definition: Constants.h:427
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:696
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:1108
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:271
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
A signed pointer, in the ptrauth sense.
Definition: Constants.h:1021
This class represents a range of values.
Definition: ConstantRange.h:47
APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This is an important base class in LLVM.
Definition: Constant.h:42
Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
Definition: Constants.cpp:1708
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Assignment ID.
Basic type, like 'int' or 'float'.
Debug common block.
static const char * nameTableKindString(DebugNameTableKind PK)
static const char * emissionKindString(DebugEmissionKind EK)
Enumeration value.
A lightweight wrapper around an expression operand.
DWARF expression.
A pair of DIGlobalVariable and DIExpression.
An imported module (C++ using directive or similar).
Debug lexical block.
Debug location.
Macro Info DWARF-like metadata node.
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Debug lexical block.
Tagged DWARF-like metadata node.
static DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static StringRef getFlagString(DIFlags Flag)
DIFlags
Debug info flags.
String type, Fortran CHARACTER(n)
Subprogram description.
static DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static StringRef getFlagString(DISPFlags Flag)
DISPFlags
Debug info subprogram flags.
Array subrange.
Type array for a subprogram.
This class represents an Operation in the Expression.
Records a position in IR for a source label (DILabel).
void print(raw_ostream &O, bool IsForDebug=false) const
Definition: AsmWriter.cpp:5022
Per-instruction record of debug-info.
void dump() const
Definition: AsmWriter.cpp:5308
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on DbgMarker.
Definition: AsmWriter.cpp:4995
const BasicBlock * getParent() const
simple_ilist< DbgRecord > StoredDbgRecords
List of DbgRecords, the non-instruction equivalent of llvm.dbg.
Base class for non-instruction debug metadata records that have positions within IR.
void print(raw_ostream &O, bool IsForDebug=false) const
DebugLoc getDebugLoc() const
void dump() const
Definition: AsmWriter.cpp:5315
DbgMarker * Marker
Marker that this DbgRecord is linked into.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
void print(raw_ostream &O, bool IsForDebug=false) const
Definition: AsmWriter.cpp:5001
MDNode * getRawAddressExpression() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
MDNode * getAsMDNode() const
Return this as a bar MDNode.
Definition: DebugLoc.h:106
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:226
unsigned size() const
Definition: DenseMap.h:99
bool empty() const
Definition: DenseMap.h:98
iterator begin()
Definition: DenseMap.h:75
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
This instruction extracts a struct member or array element value from an aggregate value.
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:205
An instruction for ordering other memory operations.
Definition: Instructions.h:424
Function summary information to aid decisions and implementation of importing.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4890
arg_iterator arg_end()
Definition: Function.h:877
arg_iterator arg_begin()
Definition: Function.h:868
Represents calls to the gc.relocate intrinsic.
Value * getBasePtr() const
Value * getDerivedPtr() const
Generic tagged DWARF-like metadata node.
const Constant * getAliasee() const
Definition: GlobalAlias.h:86
const Constant * getResolver() const
Definition: GlobalIFunc.h:72
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:117
MaybeAlign getAlign() const
Returns the alignment of the given variable or function.
Definition: GlobalObject.h:79
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
Definition: Metadata.cpp:1521
const Comdat * getComdat() const
Definition: GlobalObject.h:128
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:109
Function and variable summary information to aid decisions and implementation of importing.
SummaryKind
Sububclass discriminator (for dyn_cast<> et al.)
bool hasPartition() const
Definition: GlobalValue.h:309
const SanitizerMetadata & getSanitizerMetadata() const
Definition: Globals.cpp:243
bool hasExternalLinkage() const
Definition: GlobalValue.h:511
bool isDSOLocal() const
Definition: GlobalValue.h:305
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:248
bool isImplicitDSOLocal() const
Definition: GlobalValue.h:298
LinkageTypes getLinkage() const
Definition: GlobalValue.h:546
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:271
DLLStorageClassTypes
Storage classes of global values for PE targets.
Definition: GlobalValue.h:73
@ DLLExportStorageClass
Function to be accessible from DLL.
Definition: GlobalValue.h:76
@ DLLImportStorageClass
Function to be imported from DLL.
Definition: GlobalValue.h:75
bool hasSanitizerMetadata() const
Definition: GlobalValue.h:355
GUID getGUID() const
Return a 64-bit global unique ID constructed from global value name (i.e.
Definition: GlobalValue.h:595
StringRef getPartition() const
Definition: Globals.cpp:220
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition: GlobalValue.h:66
@ DefaultVisibility
The GV is visible.
Definition: GlobalValue.h:67
@ HiddenVisibility
The GV is hidden.
Definition: GlobalValue.h:68
@ ProtectedVisibility
The GV is protected.
Definition: GlobalValue.h:69
bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source,...
Definition: Globals.cpp:43
UnnamedAddr getUnnamedAddr() const
Definition: GlobalValue.h:228
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:51
@ PrivateLinkage
Like Internal, but omit from symbol table.
Definition: GlobalValue.h:60
@ CommonLinkage
Tentative definitions.
Definition: GlobalValue.h:62
@ InternalLinkage
Rename collisions when linking (static functions).
Definition: GlobalValue.h:59
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
Definition: GlobalValue.h:54
@ WeakODRLinkage
Same, but only replaced by something equivalent.
Definition: GlobalValue.h:57
@ ExternalLinkage
Externally visible function.
Definition: GlobalValue.h:52
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
Definition: GlobalValue.h:56
@ AppendingLinkage
Special purpose, only applies to global arrays.
Definition: GlobalValue.h:58
@ AvailableExternallyLinkage
Available for inspection, not emission.
Definition: GlobalValue.h:53
@ ExternalWeakLinkage
ExternalWeak linkage description.
Definition: GlobalValue.h:61
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
Definition: GlobalValue.h:55
DLLStorageClassTypes getDLLStorageClass() const
Definition: GlobalValue.h:275
Type * getValueType() const
Definition: GlobalValue.h:296
Global variable summary information to aid decisions and implementation of importing.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isExternallyInitialized() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
AttributeSet getAttributes() const
Return the attribute set for this global.
std::optional< CodeModel::Model > getCodeModel() const
Get the custom code model of this global if it has one.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
This instruction inserts a struct field of array element value into an aggregate value.
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
void getSyncScopeNames(SmallVectorImpl< StringRef > &SSNs) const
getSyncScopeNames - Populates client supplied SmallVector with synchronization scope names registered...
The landingpad instruction holds all of the information necessary to generate correct exception handl...
An instruction for reading from memory.
Definition: Instructions.h:176
Metadata node.
Definition: Metadata.h:1069
void printTree(raw_ostream &OS, const Module *M=nullptr) const
Print in tree shape.
Definition: AsmWriter.cpp:5271
void dumpTree() const
User-friendly dump in tree shape.
Definition: AsmWriter.cpp:5346
A single uniqued string.
Definition: Metadata.h:720
Tuple of metadata.
Definition: Metadata.h:1473
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
Metadata wrapper in the Value hierarchy.
Definition: Metadata.h:176
Root of the metadata hierarchy.
Definition: Metadata.h:62
void print(raw_ostream &OS, const Module *M=nullptr, bool IsForDebug=false) const
Print.
Definition: AsmWriter.cpp:5260
void printAsOperand(raw_ostream &OS, const Module *M=nullptr) const
Print as operand.
Definition: AsmWriter.cpp:5250
void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:5337
Manage lifetime of a slot tracker for printing IR.
std::vector< std::pair< unsigned, const MDNode * > > MachineMDNodeListType
const Module * getModule() const
ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F=nullptr)
Wrap a preinitialized SlotTracker.
Definition: AsmWriter.cpp:878
virtual ~ModuleSlotTracker()
Destructor to clean up storage.
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
Definition: AsmWriter.cpp:918
void collectMDNodes(MachineMDNodeListType &L, unsigned LB, unsigned UB) const
Definition: AsmWriter.cpp:5290
SlotTracker * getMachine()
Lazily creates a slot tracker.
Definition: AsmWriter.cpp:889
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
Definition: AsmWriter.cpp:923
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition: AsmWriter.cpp:904
Class to hold module path string table and global value map, and encapsulate methods for operating on...
static constexpr const char * getRegularLTOModuleName()
const StringMap< ModuleHash > & modulePaths() const
Table of modules, containing module hash and id.
void dump() const
Dump to stderr (for debugging).
Definition: AsmWriter.cpp:5356
void print(raw_ostream &OS, bool IsForDebug=false) const
Print to an output stream.
Definition: AsmWriter.cpp:5283
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
iterator_range< ifunc_iterator > ifuncs()
Definition: Module.h:760
iterator_range< named_metadata_iterator > named_metadata()
Definition: Module.h:807
iterator_range< alias_iterator > aliases()
Definition: Module.h:742
iterator_range< global_iterator > globals()
Definition: Module.h:702
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4912
void dump() const
Dump the module to stderr (for debugging).
Definition: AsmWriter.cpp:5323
A tuple of MDNodes.
Definition: Metadata.h:1731
void dump() const
Definition: AsmWriter.cpp:5334
StringRef getName() const
Definition: Metadata.cpp:1442
void print(raw_ostream &ROS, bool IsForDebug=false) const
Definition: AsmWriter.cpp:4921
MDNode * getOperand(unsigned i) const
Definition: Metadata.cpp:1425
unsigned getNumOperands() const
Definition: Metadata.cpp:1421
Module * getParent()
Get the module that holds this named metadata collection.
Definition: Metadata.h:1801
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition: Operator.h:77
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:703
An or instruction, which can be marked as "disjoint", indicating that the inputs don't have a 1 in th...
Definition: InstrTypes.h:400
A udiv or sdiv instruction, which can be marked as "exact", indicating that no bits are destroyed.
Definition: Operator.h:155
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
Definition: Record.h:2203
A vector that has set insertion semantics.
Definition: SetVector.h:57
This instruction constructs a fixed permutation of two input vectors.
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:698
bool mdn_empty() const
Definition: AsmWriter.cpp:818
int getMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
Definition: AsmWriter.cpp:1225
int getTypeIdCompatibleVtableSlot(StringRef Id)
Definition: AsmWriter.cpp:1281
int getModulePathSlot(StringRef Path)
Definition: AsmWriter.cpp:1254
bool as_empty() const
Definition: AsmWriter.cpp:826
unsigned mdn_size() const
Definition: AsmWriter.cpp:817
SlotTracker(const SlotTracker &)=delete
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
Definition: AsmWriter.cpp:1191
mdn_iterator mdn_end()
Definition: AsmWriter.cpp:816
int getTypeIdSlot(StringRef Id)
Definition: AsmWriter.cpp:1272
void initializeIfNeeded()
These functions do the actual initialization.
Definition: AsmWriter.cpp:981
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
Definition: AsmWriter.cpp:1200
as_iterator as_begin()
Definition: AsmWriter.cpp:823
const Function * getFunction() const
Definition: AsmWriter.cpp:805
unsigned getNextMetadataSlot() override
Definition: AsmWriter.cpp:783
void incorporateFunction(const Function *F)
If you'd like to deal with a function instead of just a module, use this method to get its data into ...
Definition: AsmWriter.cpp:800
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
Definition: AsmWriter.cpp:1235
int getAttributeGroupSlot(AttributeSet AS)
Definition: AsmWriter.cpp:1245
SlotTracker(const Module *M, bool ShouldInitializeAllMetadata=false)
Construct from a module.
Definition: AsmWriter.cpp:969
void createMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
Definition: AsmWriter.cpp:1222
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
Definition: AsmWriter.cpp:1209
~SlotTracker()=default
as_iterator as_end()
Definition: AsmWriter.cpp:824
unsigned as_size() const
Definition: AsmWriter.cpp:825
SlotTracker & operator=(const SlotTracker &)=delete
int getGUIDSlot(GlobalValue::GUID GUID)
Definition: AsmWriter.cpp:1263
mdn_iterator mdn_begin()
Definition: AsmWriter.cpp:815
int initializeIndexIfNeeded()
Definition: AsmWriter.cpp:991
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void resize(size_type N)
Definition: SmallVector.h:638
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition: StringMap.h:128
iterator end()
Definition: StringMap.h:220
iterator find(StringRef Key)
Definition: StringMap.h:233
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
Class to represent struct types.
Definition: DerivedTypes.h:218
ArrayRef< Type * > elements() const
Definition: DerivedTypes.h:357
bool isPacked() const
Definition: DerivedTypes.h:284
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:365
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
Definition: DerivedTypes.h:288
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
Definition: DerivedTypes.h:292
StringRef getName() const
Return the name for this struct type if it has an identity.
Definition: Type.cpp:689
Multiway switch.
Class to represent target extensions types, which are generally unintrospectable from target-independ...
Definition: DerivedTypes.h:744
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
Definition: DerivedTypes.h:782
ArrayRef< unsigned > int_params() const
Return the integer parameters for this particular target extension type.
Definition: DerivedTypes.h:797
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
Definition: TypeFinder.h:31
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
void dump() const
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ X86_AMXTyID
AMX vectors (8192 bits, X86 specific)
Definition: Type.h:66
@ FunctionTyID
Functions.
Definition: Type.h:71
@ ArrayTyID
Arrays.
Definition: Type.h:74
@ TypedPointerTyID
Typed pointer used by some GPU targets.
Definition: Type.h:77
@ HalfTyID
16-bit floating point type
Definition: Type.h:56
@ TargetExtTyID
Target extension type.
Definition: Type.h:78
@ VoidTyID
type with no size
Definition: Type.h:63
@ ScalableVectorTyID
Scalable SIMD vector type.
Definition: Type.h:76
@ LabelTyID
Labels.
Definition: Type.h:64
@ FloatTyID
32-bit floating point type
Definition: Type.h:58
@ StructTyID
Structures.
Definition: Type.h:73
@ IntegerTyID
Arbitrary bit width integers.
Definition: Type.h:70
@ FixedVectorTyID
Fixed width SIMD vector type.
Definition: Type.h:75
@ BFloatTyID
16-bit floating point type (7-bit significand)
Definition: Type.h:57
@ DoubleTyID
64-bit floating point type
Definition: Type.h:59
@ X86_FP80TyID
80-bit floating point type (X87)
Definition: Type.h:60
@ PPC_FP128TyID
128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:62
@ MetadataTyID
Metadata.
Definition: Type.h:65
@ TokenTyID
Tokens.
Definition: Type.h:67
@ PointerTyID
Pointers.
Definition: Type.h:72
@ FP128TyID
128-bit floating point type (112-bit significand)
Definition: Type.h:61
void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
StringRef getTargetExtName() const
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:136
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:355
A few GPU targets, such as DXIL and SPIR-V, have typed pointers.
Type * getElementType() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
Definition: AsmWriter.cpp:5061
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:5144
bool hasName() const
Definition: Value.h:261
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:5304
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
StringRef LanguageString(unsigned Language)
Definition: Dwarf.cpp:393
StringRef AttributeEncodingString(unsigned Encoding)
Definition: Dwarf.cpp:263
StringRef ConventionString(unsigned Convention)
Definition: Dwarf.cpp:470
StringRef MacinfoString(unsigned Encoding)
Definition: Dwarf.cpp:534
StringRef OperationEncodingString(unsigned Encoding)
Definition: Dwarf.cpp:138
StringRef TagString(unsigned Tag)
Definition: Dwarf.cpp:21
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
@ Entry
Definition: COFF.h:844
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
Definition: CallingConv.h:221
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
Definition: CallingConv.h:151
@ RISCV_VectorCall
Calling convention used for RISC-V V-extension.
Definition: CallingConv.h:268
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
Definition: CallingConv.h:197
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
Definition: CallingConv.h:188
@ AVR_SIGNAL
Used for AVR signal routines.
Definition: CallingConv.h:179
@ Swift
Calling convention for Swift.
Definition: CallingConv.h:69
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
Definition: CallingConv.h:200
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
Definition: CallingConv.h:224
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
Definition: CallingConv.h:107
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
Definition: CallingConv.h:82
@ AVR_INTR
Used for AVR interrupt routines.
Definition: CallingConv.h:176
@ PreserveMost
Used for runtime calls that preserves most registers.
Definition: CallingConv.h:63
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition: CallingConv.h:60
@ AMDGPU_Gfx
Used for AMD graphics targets.
Definition: CallingConv.h:232
@ DUMMY_HHVM
Placeholders for HHVM calling conventions (deprecated, removed).
Definition: CallingConv.h:166
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
Definition: CallingConv.h:249
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
Definition: CallingConv.h:206
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
Definition: CallingConv.h:111
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
Definition: CallingConv.h:191
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
Definition: CallingConv.h:241
@ CXX_FAST_TLS
Used for access functions.
Definition: CallingConv.h:72
@ X86_INTR
x86 hardware interrupt context.
Definition: CallingConv.h:173
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
Definition: CallingConv.h:238
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
Definition: CallingConv.h:245
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition: CallingConv.h:50
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
Definition: CallingConv.h:194
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
Definition: CallingConv.h:47
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
Definition: CallingConv.h:271
@ X86_ThisCall
Similar to X86_StdCall.
Definition: CallingConv.h:122
@ PTX_Device
Call to a PTX device function.
Definition: CallingConv.h:129
@ SPIR_KERNEL
Used for SPIR kernel functions.
Definition: CallingConv.h:144
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
Definition: CallingConv.h:66
@ X86_StdCall
stdcall is mostly used by the Win32 API.
Definition: CallingConv.h:99
@ SPIR_FUNC
Used for SPIR non-kernel device functions.
Definition: CallingConv.h:138
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ MSP430_INTR
Used for MSP430 interrupt routines.
Definition: CallingConv.h:117
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
Definition: CallingConv.h:163
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
Definition: CallingConv.h:147
@ PreserveNone
Used for runtime calls that preserves none general registers.
Definition: CallingConv.h:90
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
Definition: CallingConv.h:218
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
Definition: CallingConv.h:159
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
Definition: CallingConv.h:125
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition: CallingConv.h:87
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
Definition: CallingConv.h:255
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
Definition: CallingConv.h:213
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:114
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
Definition: CallingConv.h:203
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
Definition: CallingConv.h:252
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ X86_FastCall
'fast' analog of X86_StdCall.
Definition: CallingConv.h:103
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ System
Synchronized with respect to all concurrently executing threads.
Definition: LLVMContext.h:57
@ SS
Definition: X86.h:212
@ FS
Definition: X86.h:211
@ GS
Definition: X86.h:210
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Definition: Dwarf.h:143
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
auto pred_end(const MachineBasicBlock *BB)
const char * getHotnessName(CalleeInfo::HotnessType HT)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition: STLExtras.h:1926
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
Definition: Format.h:187
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
Definition: Format.h:200
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Ref
The access may reference the value stored in memory.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:303
auto pred_begin(const MachineBasicBlock *BB)
const char * toString(DWARFSectionKind Kind)
@ Default
The result values are uniform if and only if all operands are uniform.
std::vector< TypeIdOffsetVtableInfo > TypeIdCompatibleVtableInfo
List of vtable definitions decorated by a particular type identifier, and their corresponding offsets...
void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
Definition: AsmWriter.cpp:382
#define N
#define NC
Definition: regutils.h:42
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:265
static constexpr roundingMode rmNearestTiesToEven
Definition: APFloat.h:297
static const fltSemantics & PPCDoubleDouble() LLVM_READNONE
Definition: APFloat.cpp:268
static const fltSemantics & x87DoubleExtended() LLVM_READNONE
Definition: APFloat.cpp:288
static const fltSemantics & IEEEquad() LLVM_READNONE
Definition: APFloat.cpp:267
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:266
static const fltSemantics & IEEEhalf() LLVM_READNONE
Definition: APFloat.cpp:263
static const fltSemantics & BFloat() LLVM_READNONE
Definition: APFloat.cpp:264
A single checksum, represented by a Kind and a Value (a string).
T Value
The string value of the checksum.
StringRef getKindAsString() const
All type identifier related information.
std::vector< ConstVCall > TypeCheckedLoadConstVCalls
std::vector< VFuncId > TypeCheckedLoadVCalls
std::vector< ConstVCall > TypeTestAssumeConstVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
std::vector< GlobalValue::GUID > TypeTests
List of type identifiers used by this function in llvm.type.test intrinsics referenced by something o...
std::vector< VFuncId > TypeTestAssumeVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
An "identifier" for a virtual function.
Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
unsigned DSOLocal
Indicates that the linker resolved the symbol to a definition from within the same linkage unit.
unsigned CanAutoHide
In the per-module summary, indicates that the global value is linkonce_odr and global unnamed addr (s...
unsigned ImportType
This field is written by the ThinLTO indexing step to postlink combined summary.
unsigned NotEligibleToImport
Indicate if the global value cannot be imported (e.g.
unsigned Linkage
The linkage type of the associated global value.
unsigned Visibility
Indicates the visibility.
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
A lightweight accessor for an operand bundle meant to be passed around by value.
Definition: InstrTypes.h:1015
StringRef getTagName() const
Return the tag of this operand bundle as a string.
Definition: InstrTypes.h:1034
ArrayRef< Use > Inputs
Definition: InstrTypes.h:1016
A utility class that uses RAII to save and restore the value of a variable.
std::map< uint64_t, WholeProgramDevirtResolution > WPDRes
Mapping from byte offset to whole-program devirt resolution for that (typeid, byte offset) pair.
TypeTestResolution TTRes
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
Struct that holds a reference to a particular GUID in a global value summary.
@ UniformRetVal
Uniform return value optimization.
@ VirtualConstProp
Virtual constant propagation.
@ UniqueRetVal
Unique return value optimization.
@ Indir
Just do a regular virtual call.
enum llvm::WholeProgramDevirtResolution::Kind TheKind
std::map< std::vector< uint64_t >, ByArg > ResByArg
Resolutions for calls with all constant integer arguments (excluding the first argument,...
@ SingleImpl
Single implementation devirtualization.
@ Indir
Just do a regular virtual call.
@ BranchFunnel
When retpoline mitigation is enabled, use a branch funnel that is defined in the merged module.
Function object to check whether the second component of a container supported by std::get (like std:...
Definition: STLExtras.h:1476