31#include "llvm/Config/llvm-config.h"
106 if (
const auto *MAV = dyn_cast<MetadataAsValue>(V))
107 if (
const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108 return VAM->getValue();
116 if (
const Constant *
C = dyn_cast<Constant>(V))
117 if (
C->getNumOperands() && !isa<GlobalValue>(
C))
118 for (
const Value *
Op :
C->operands())
119 if (!isa<BasicBlock>(
Op) && !isa<GlobalValue>(
Op))
124 unsigned ID = OM.size() + 1;
132 if (
G.hasInitializer())
133 if (!isa<GlobalValue>(
G.getInitializer()))
138 if (!isa<GlobalValue>(
A.getAliasee()))
143 if (!isa<GlobalValue>(
I.getResolver()))
148 for (
const Use &U :
F.operands())
149 if (!isa<GlobalValue>(U.get()))
154 if (
F.isDeclaration())
162 for (
const Value *
Op :
I.operands()) {
164 if ((isa<Constant>(*
Op) && !isa<GlobalValue>(*
Op)) ||
175static std::vector<unsigned>
178 using Entry = std::pair<const Use *, unsigned>;
180 for (
const Use &U : V->uses())
182 if (OM.lookup(U.getUser()))
183 List.push_back(std::make_pair(&U,
List.size()));
192 bool GetsReversed = !isa<BasicBlock>(V);
193 if (
auto *BA = dyn_cast<BlockAddress>(V))
194 ID = OM.lookup(BA->getBasicBlock());
196 const Use *LU = L.first;
197 const Use *RU = R.first;
201 auto LID = OM.lookup(LU->getUser());
202 auto RID = OM.lookup(RU->getUser());
222 return LU->getOperandNo() < RU->getOperandNo();
223 return LU->getOperandNo() > RU->getOperandNo();
231 std::vector<unsigned> Shuffle(
List.size());
232 for (
size_t I = 0, E =
List.size();
I != E; ++
I)
233 Shuffle[
I] =
List[
I].second;
240 for (
const auto &Pair : OM) {
241 const Value *V = Pair.first;
242 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
245 std::vector<unsigned> Shuffle =
251 if (
auto *
I = dyn_cast<Instruction>(V))
252 F =
I->getFunction();
253 if (
auto *
A = dyn_cast<Argument>(V))
255 if (
auto *BB = dyn_cast<BasicBlock>(V))
257 ULOM[
F][V] = std::move(Shuffle);
263 if (
const Argument *MA = dyn_cast<Argument>(V))
264 return MA->getParent() ? MA->getParent()->getParent() :
nullptr;
266 if (
const BasicBlock *BB = dyn_cast<BasicBlock>(V))
267 return BB->getParent() ? BB->getParent()->getParent() :
nullptr;
270 const Function *M =
I->getParent() ?
I->getParent()->getParent() :
nullptr;
271 return M ? M->getParent() :
nullptr;
274 if (
const GlobalValue *GV = dyn_cast<GlobalValue>(V))
275 return GV->getParent();
277 if (
const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
278 for (
const User *U : MAV->users())
279 if (isa<Instruction>(U))
291 return M ? M->getParent() :
nullptr;
300 default: Out <<
"cc" << cc;
break;
323 Out <<
"aarch64_sve_vector_pcs";
326 Out <<
"aarch64_sme_preservemost_from_x0";
329 Out <<
"aarch64_sme_preservemost_from_x1";
332 Out <<
"aarch64_sme_preservemost_from_x2";
360 Out <<
"amdgpu_cs_chain";
363 Out <<
"amdgpu_cs_chain_preserve";
369 Out <<
"riscv_vector_cc";
383 assert(!
Name.empty() &&
"Cannot get empty name!");
386 bool NeedsQuotes = isdigit(
static_cast<unsigned char>(
Name[0]));
388 for (
unsigned char C :
Name) {
393 if (!isalnum(
static_cast<unsigned char>(
C)) &&
C !=
'-' &&
C !=
'.' &&
410 printEscapedString(
Name,
OS);
446 if (isa<ScalableVectorType>(Ty))
448 Out << Mask.size() <<
" x i32> ";
449 bool FirstElt =
true;
450 if (
all_of(Mask, [](
int Elt) {
return Elt == 0; })) {
451 Out <<
"zeroinitializer";
456 for (
int Elt : Mask) {
475 TypePrinting(
const Module *M =
nullptr) : DeferredM(
M) {}
477 TypePrinting(
const TypePrinting &) =
delete;
478 TypePrinting &operator=(
const TypePrinting &) =
delete;
484 std::vector<StructType *> &getNumberedTypes();
493 void incorporateTypes();
503 std::vector<StructType *> NumberedTypes;
513std::vector<StructType *> &TypePrinting::getNumberedTypes() {
519 if (NumberedTypes.size() == Type2Number.size())
520 return NumberedTypes;
522 NumberedTypes.resize(Type2Number.size());
523 for (
const auto &
P : Type2Number) {
524 assert(
P.second < NumberedTypes.size() &&
"Didn't get a dense numbering?");
525 assert(!NumberedTypes[
P.second] &&
"Didn't get a unique numbering?");
526 NumberedTypes[
P.second] =
P.first;
528 return NumberedTypes;
531bool TypePrinting::empty() {
533 return NamedTypes.empty() && Type2Number.empty();
536void TypePrinting::incorporateTypes() {
540 NamedTypes.run(*DeferredM,
false);
545 unsigned NextNumber = 0;
547 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
550 if (STy->isLiteral())
553 if (STy->getName().empty())
554 Type2Number[STy] = NextNumber++;
559 NamedTypes.erase(NextToUse, NamedTypes.end());
581 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
586 print(FTy->getReturnType(),
OS);
589 for (
Type *Ty : FTy->params()) {
602 return printStructBody(STy,
OS);
608 const auto I = Type2Number.find(STy);
609 if (
I != Type2Number.end())
610 OS <<
'%' <<
I->second;
612 OS <<
"%\"type " << STy <<
'\"';
624 OS <<
'[' << ATy->getNumElements() <<
" x ";
625 print(ATy->getElementType(),
OS);
636 OS <<
EC.getKnownMinValue() <<
" x ";
637 print(PTy->getElementType(),
OS);
654 Inner->print(
OS,
false,
true);
657 OS <<
", " << IntParam;
708 const Function* TheFunction =
nullptr;
709 bool FunctionProcessed =
false;
710 bool ShouldInitializeAllMetadata;
715 ProcessFunctionHookFn;
730 unsigned mdnNext = 0;
738 unsigned ModulePathNext = 0;
742 unsigned GUIDNext = 0;
746 unsigned TypeIdNext = 0;
751 unsigned TypeIdCompatibleVtableNext = 0;
760 bool ShouldInitializeAllMetadata =
false);
768 bool ShouldInitializeAllMetadata =
false);
802 FunctionProcessed =
false;
841 void CreateMetadataSlot(
const MDNode *
N);
844 void CreateFunctionSlot(
const Value *V);
849 inline void CreateModulePathSlot(
StringRef Path);
852 void CreateTypeIdCompatibleVtableSlot(
StringRef Id);
856 void processModule();
861 void processFunction();
864 void processGlobalObjectMetadata(
const GlobalObject &GO);
867 void processFunctionMetadata(
const Function &
F);
873 void processDbgRecordMetadata(
const DbgRecord &DVR);
883 bool ShouldInitializeAllMetadata)
884 : ShouldCreateStorage(M),
885 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
890 if (!ShouldCreateStorage)
893 ShouldCreateStorage =
false;
895 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
896 Machine = MachineStorage.get();
897 if (ProcessModuleHookFn)
899 if (ProcessFunctionHookFn)
919 assert(F &&
"No function incorporated");
926 ProcessModuleHookFn = Fn;
932 ProcessFunctionHookFn = Fn;
936 if (
const Argument *FA = dyn_cast<Argument>(V))
943 if (
const BasicBlock *BB = dyn_cast<BasicBlock>(V))
949 if (
const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
952 if (
const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
955 if (
const Function *Func = dyn_cast<Function>(V))
962#define ST_DEBUG(X) dbgs() << X
970 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
975 : TheModule(
F ?
F->
getParent() : nullptr), TheFunction(
F),
976 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
979 : TheModule(nullptr), ShouldInitializeAllMetadata(
false), TheIndex(Index) {}
987 if (TheFunction && !FunctionProcessed)
994 int NumSlots = processIndex();
1001void SlotTracker::processModule() {
1002 ST_DEBUG(
"begin processModule!\n");
1007 CreateModuleSlot(&Var);
1008 processGlobalObjectMetadata(Var);
1009 auto Attrs = Var.getAttributes();
1010 if (Attrs.hasAttributes())
1011 CreateAttributeSetSlot(Attrs);
1016 CreateModuleSlot(&
A);
1021 CreateModuleSlot(&
I);
1026 for (
const MDNode *
N : NMD.operands())
1027 CreateMetadataSlot(
N);
1033 CreateModuleSlot(&
F);
1035 if (ShouldInitializeAllMetadata)
1036 processFunctionMetadata(
F);
1042 CreateAttributeSetSlot(FnAttrs);
1045 if (ProcessModuleHookFn)
1046 ProcessModuleHookFn(
this, TheModule, ShouldInitializeAllMetadata);
1052void SlotTracker::processFunction() {
1053 ST_DEBUG(
"begin processFunction!\n");
1057 if (!ShouldInitializeAllMetadata)
1058 processFunctionMetadata(*TheFunction);
1062 AE = TheFunction->
arg_end(); AI != AE; ++AI)
1064 CreateFunctionSlot(&*AI);
1066 ST_DEBUG(
"Inserting Instructions:\n");
1069 for (
auto &BB : *TheFunction) {
1071 CreateFunctionSlot(&BB);
1073 for (
auto &
I : BB) {
1074 if (!
I.getType()->isVoidTy() && !
I.hasName())
1075 CreateFunctionSlot(&
I);
1079 if (
const auto *Call = dyn_cast<CallBase>(&
I)) {
1082 if (
Attrs.hasAttributes())
1083 CreateAttributeSetSlot(Attrs);
1088 if (ProcessFunctionHookFn)
1089 ProcessFunctionHookFn(
this, TheFunction, ShouldInitializeAllMetadata);
1091 FunctionProcessed =
true;
1093 ST_DEBUG(
"end processFunction!\n");
1097int SlotTracker::processIndex() {
1104 std::vector<StringRef> ModulePaths;
1106 ModulePaths.push_back(ModPath);
1107 llvm::sort(ModulePaths.begin(), ModulePaths.end());
1108 for (
auto &ModPath : ModulePaths)
1109 CreateModulePathSlot(ModPath);
1112 GUIDNext = ModulePathNext;
1114 for (
auto &GlobalList : *TheIndex)
1115 CreateGUIDSlot(GlobalList.first);
1118 TypeIdCompatibleVtableNext = GUIDNext;
1119 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap())
1120 CreateTypeIdCompatibleVtableSlot(TId.first);
1123 TypeIdNext = TypeIdCompatibleVtableNext;
1124 for (
const auto &TID : TheIndex->typeIds())
1125 CreateTypeIdSlot(TID.second.first);
1131void SlotTracker::processGlobalObjectMetadata(
const GlobalObject &GO) {
1134 for (
auto &MD : MDs)
1135 CreateMetadataSlot(MD.second);
1138void SlotTracker::processFunctionMetadata(
const Function &
F) {
1139 processGlobalObjectMetadata(
F);
1140 for (
auto &BB :
F) {
1141 for (
auto &
I : BB) {
1142 for (
const DbgRecord &DR :
I.getDbgRecordRange())
1143 processDbgRecordMetadata(DR);
1144 processInstructionMetadata(
I);
1149void SlotTracker::processDbgRecordMetadata(
const DbgRecord &DR) {
1155 if (
auto *Empty = dyn_cast<MDNode>(DVR->getRawLocation()))
1156 CreateMetadataSlot(Empty);
1157 CreateMetadataSlot(DVR->getRawVariable());
1158 if (DVR->isDbgAssign()) {
1159 CreateMetadataSlot(cast<MDNode>(DVR->getRawAssignID()));
1160 if (
auto *Empty = dyn_cast<MDNode>(DVR->getRawAddress()))
1161 CreateMetadataSlot(Empty);
1163 }
else if (
const DbgLabelRecord *DLR = dyn_cast<const DbgLabelRecord>(&DR)) {
1164 CreateMetadataSlot(DLR->getRawLabel());
1171void SlotTracker::processInstructionMetadata(
const Instruction &
I) {
1173 if (
const CallInst *CI = dyn_cast<CallInst>(&
I))
1174 if (
Function *
F = CI->getCalledFunction())
1175 if (
F->isIntrinsic())
1176 for (
auto &
Op :
I.operands())
1177 if (
auto *V = dyn_cast_or_null<MetadataAsValue>(
Op))
1178 if (
MDNode *
N = dyn_cast<MDNode>(
V->getMetadata()))
1179 CreateMetadataSlot(
N);
1183 I.getAllMetadata(MDs);
1184 for (
auto &MD : MDs)
1185 CreateMetadataSlot(MD.second);
1192 ST_DEBUG(
"begin purgeFunction!\n");
1194 TheFunction =
nullptr;
1195 FunctionProcessed =
false;
1206 return MI == mMap.
end() ? -1 : (int)
MI->second;
1212 ProcessModuleHookFn = Fn;
1218 ProcessFunctionHookFn = Fn;
1231 return MI == mdnMap.
end() ? -1 : (int)
MI->second;
1236 assert(!isa<Constant>(V) &&
"Can't get a constant or global slot with this!");
1242 return FI == fMap.
end() ? -1 : (int)FI->second;
1251 return AI == asMap.
end() ? -1 : (int)AI->second;
1259 auto I = ModulePathMap.
find(Path);
1260 return I == ModulePathMap.
end() ? -1 : (int)
I->second;
1269 return I == GUIDMap.
end() ? -1 : (int)
I->second;
1277 auto I = TypeIdMap.
find(Id);
1278 return I == TypeIdMap.
end() ? -1 : (int)
I->second;
1286 auto I = TypeIdCompatibleVtableMap.
find(Id);
1287 return I == TypeIdCompatibleVtableMap.
end() ? -1 : (int)
I->second;
1291void SlotTracker::CreateModuleSlot(
const GlobalValue *V) {
1292 assert(V &&
"Can't insert a null Value into SlotTracker!");
1293 assert(!V->getType()->isVoidTy() &&
"Doesn't need a slot!");
1294 assert(!V->hasName() &&
"Doesn't need a slot!");
1296 unsigned DestSlot = mNext++;
1299 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1302 ST_DEBUG((isa<GlobalVariable>(V) ?
'G' :
1303 (isa<Function>(V) ?
'F' :
1304 (isa<GlobalAlias>(V) ?
'A' :
1305 (isa<GlobalIFunc>(V) ?
'I' :
'o')))) <<
"]\n");
1309void SlotTracker::CreateFunctionSlot(
const Value *V) {
1310 assert(!V->getType()->isVoidTy() && !V->hasName() &&
"Doesn't need a slot!");
1312 unsigned DestSlot = fNext++;
1316 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1317 DestSlot <<
" [o]\n");
1321void SlotTracker::CreateMetadataSlot(
const MDNode *
N) {
1322 assert(
N &&
"Can't insert a null Value into SlotTracker!");
1325 if (isa<DIExpression>(
N))
1328 unsigned DestSlot = mdnNext;
1329 if (!mdnMap.
insert(std::make_pair(
N, DestSlot)).second)
1334 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i)
1335 if (
const MDNode *
Op = dyn_cast_or_null<MDNode>(
N->getOperand(i)))
1336 CreateMetadataSlot(
Op);
1339void SlotTracker::CreateAttributeSetSlot(
AttributeSet AS) {
1347void SlotTracker::CreateModulePathSlot(
StringRef Path) {
1348 ModulePathMap[
Path] = ModulePathNext++;
1353 GUIDMap[
GUID] = GUIDNext++;
1357void SlotTracker::CreateTypeIdSlot(
StringRef Id) {
1358 TypeIdMap[
Id] = TypeIdNext++;
1362void SlotTracker::CreateTypeIdCompatibleVtableSlot(
StringRef Id) {
1363 TypeIdCompatibleVtableMap[
Id] = TypeIdCompatibleVtableNext++;
1368struct AsmWriterContext {
1369 TypePrinting *TypePrinter =
nullptr;
1371 const Module *Context =
nullptr;
1374 : TypePrinter(TP),
Machine(
ST), Context(
M) {}
1376 static AsmWriterContext &getEmpty() {
1377 static AsmWriterContext EmptyCtx(
nullptr,
nullptr);
1383 virtual void onWriteMetadataAsOperand(
const Metadata *) {}
1385 virtual ~AsmWriterContext() =
default;
1394 AsmWriterContext &WriterCtx);
1397 AsmWriterContext &WriterCtx,
1398 bool FromValue =
false);
1401 if (
const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1402 Out << FPO->getFastMathFlags();
1405 dyn_cast<OverflowingBinaryOperator>(U)) {
1406 if (OBO->hasNoUnsignedWrap())
1408 if (OBO->hasNoSignedWrap())
1411 dyn_cast<PossiblyExactOperator>(U)) {
1415 dyn_cast<PossiblyDisjointInst>(U)) {
1416 if (PDI->isDisjoint())
1419 if (
GEP->isInBounds())
1421 else if (
GEP->hasNoUnsignedSignedWrap())
1423 if (
GEP->hasNoUnsignedWrap())
1426 Out <<
" inrange(" <<
InRange->getLower() <<
", " <<
InRange->getUpper()
1429 }
else if (
const auto *NNI = dyn_cast<PossiblyNonNegInst>(U)) {
1430 if (NNI->hasNonNeg())
1432 }
else if (
const auto *TI = dyn_cast<TruncInst>(U)) {
1433 if (TI->hasNoUnsignedWrap())
1435 if (TI->hasNoSignedWrap())
1437 }
else if (
const auto *ICmp = dyn_cast<ICmpInst>(U)) {
1438 if (ICmp->hasSameSign())
1454 bool isNaN = APF.
isNaN();
1456 if (!isInf && !isNaN) {
1465 ((StrVal[0] ==
'-' || StrVal[0] ==
'+') &&
isDigit(StrVal[1]))) &&
1466 "[-+]?[0-9] regex does not match!");
1478 static_assert(
sizeof(double) ==
sizeof(
uint64_t),
1479 "assuming that double is 64 bits!");
1537 AsmWriterContext &WriterCtx) {
1538 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1539 Type *Ty = CI->getType();
1548 Out << (CI->getZExtValue() ?
"true" :
"false");
1550 Out << CI->getValue();
1558 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1559 Type *Ty = CFP->getType();
1575 if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1576 Out <<
"zeroinitializer";
1580 if (
const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1581 Out <<
"blockaddress(";
1589 if (
const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1590 Out <<
"dso_local_equivalent ";
1595 if (
const auto *
NC = dyn_cast<NoCFIValue>(CV)) {
1605 unsigned NumOpsToWrite = 2;
1606 if (!CPA->getOperand(2)->isNullValue())
1608 if (!CPA->getOperand(3)->isNullValue())
1612 for (
unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1614 WriterCtx.TypePrinter->print(CPA->getOperand(i)->getType(), Out);
1622 if (
const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1623 Type *ETy = CA->getType()->getElementType();
1625 WriterCtx.TypePrinter->print(ETy, Out);
1628 for (
unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1630 WriterCtx.TypePrinter->print(ETy, Out);
1641 if (CA->isString()) {
1643 printEscapedString(CA->getAsString(), Out);
1648 Type *ETy = CA->getType()->getElementType();
1650 WriterCtx.TypePrinter->print(ETy, Out);
1653 for (
unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1655 WriterCtx.TypePrinter->print(ETy, Out);
1664 if (CS->getType()->isPacked())
1667 unsigned N = CS->getNumOperands();
1670 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1675 for (
unsigned i = 1; i <
N; i++) {
1677 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1686 if (CS->getType()->isPacked())
1691 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1692 auto *CVVTy = cast<FixedVectorType>(CV->
getType());
1693 Type *ETy = CVVTy->getElementType();
1701 if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1703 WriterCtx.TypePrinter->print(ETy, Out);
1712 WriterCtx.TypePrinter->print(ETy, Out);
1715 for (
unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1717 WriterCtx.TypePrinter->print(ETy, Out);
1725 if (isa<ConstantPointerNull>(CV)) {
1730 if (isa<ConstantTokenNone>(CV)) {
1735 if (isa<PoisonValue>(CV)) {
1740 if (isa<UndefValue>(CV)) {
1745 if (
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1751 if (CE->getOpcode() == Instruction::ShuffleVector) {
1752 if (
auto *SplatVal = CE->getSplatValue()) {
1753 if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1755 WriterCtx.TypePrinter->print(SplatVal->getType(), Out);
1764 Out << CE->getOpcodeName();
1769 WriterCtx.TypePrinter->print(
GEP->getSourceElementType(), Out);
1775 WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1778 if (OI+1 != CE->op_end())
1784 WriterCtx.TypePrinter->print(CE->getType(), Out);
1787 if (CE->getOpcode() == Instruction::ShuffleVector)
1794 Out <<
"<placeholder or erroneous Constant>";
1798 AsmWriterContext &WriterCtx) {
1800 for (
unsigned mi = 0, me =
Node->getNumOperands(); mi != me; ++mi) {
1804 else if (
auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1805 Value *V = MDV->getValue();
1806 WriterCtx.TypePrinter->print(V->getType(), Out);
1811 WriterCtx.onWriteMetadataAsOperand(MD);
1822struct FieldSeparator {
1826 FieldSeparator(
const char *Sep =
", ") : Sep(Sep) {}
1834 return OS <<
FS.Sep;
1837struct MDFieldPrinter {
1840 AsmWriterContext &WriterCtx;
1843 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1844 MDFieldPrinter(
raw_ostream &Out, AsmWriterContext &Ctx)
1845 : Out(Out), WriterCtx(Ctx) {}
1847 void printTag(
const DINode *
N);
1851 bool ShouldSkipEmpty =
true);
1853 bool ShouldSkipNull =
true);
1854 template <
class IntTy>
1857 bool ShouldSkipZero);
1859 std::optional<bool>
Default = std::nullopt);
1862 template <
class IntTy,
class Stringifier>
1864 bool ShouldSkipZero =
true);
1872void MDFieldPrinter::printTag(
const DINode *
N) {
1873 Out <<
FS <<
"tag: ";
1881void MDFieldPrinter::printMacinfoType(
const DIMacroNode *
N) {
1882 Out <<
FS <<
"type: ";
1887 Out <<
N->getMacinfoType();
1890void MDFieldPrinter::printChecksum(
1893 printString(
"checksum", Checksum.
Value,
false);
1897 bool ShouldSkipEmpty) {
1898 if (ShouldSkipEmpty &&
Value.empty())
1901 Out <<
FS <<
Name <<
": \"";
1902 printEscapedString(
Value, Out);
1907 AsmWriterContext &WriterCtx) {
1913 WriterCtx.onWriteMetadataAsOperand(MD);
1917 bool ShouldSkipNull) {
1918 if (ShouldSkipNull && !MD)
1921 Out <<
FS <<
Name <<
": ";
1925template <
class IntTy>
1926void MDFieldPrinter::printInt(
StringRef Name, IntTy
Int,
bool ShouldSkipZero) {
1927 if (ShouldSkipZero && !
Int)
1934 bool IsUnsigned,
bool ShouldSkipZero) {
1935 if (ShouldSkipZero &&
Int.isZero())
1938 Out <<
FS <<
Name <<
": ";
1939 Int.print(Out, !IsUnsigned);
1943 std::optional<bool>
Default) {
1946 Out <<
FS <<
Name <<
": " << (
Value ?
"true" :
"false");
1953 Out <<
FS <<
Name <<
": ";
1958 FieldSeparator FlagsFS(
" | ");
1959 for (
auto F : SplitFlags) {
1961 assert(!StringF.empty() &&
"Expected valid flag");
1962 Out << FlagsFS << StringF;
1964 if (Extra || SplitFlags.empty())
1965 Out << FlagsFS << Extra;
1972 Out <<
FS <<
Name <<
": ";
1982 FieldSeparator FlagsFS(
" | ");
1983 for (
auto F : SplitFlags) {
1985 assert(!StringF.empty() &&
"Expected valid flag");
1986 Out << FlagsFS << StringF;
1988 if (Extra || SplitFlags.empty())
1989 Out << FlagsFS << Extra;
2004template <
class IntTy,
class Stringifier>
2006 Stringifier
toString,
bool ShouldSkipZero) {
2010 Out <<
FS <<
Name <<
": ";
2019 AsmWriterContext &WriterCtx) {
2020 Out <<
"!GenericDINode(";
2021 MDFieldPrinter
Printer(Out, WriterCtx);
2023 Printer.printString(
"header",
N->getHeader());
2024 if (
N->getNumDwarfOperands()) {
2025 Out <<
Printer.FS <<
"operands: {";
2027 for (
auto &
I :
N->dwarf_operands()) {
2037 AsmWriterContext &WriterCtx) {
2038 Out <<
"!DILocation(";
2039 MDFieldPrinter
Printer(Out, WriterCtx);
2041 Printer.printInt(
"line",
DL->getLine(),
false);
2042 Printer.printInt(
"column",
DL->getColumn());
2043 Printer.printMetadata(
"scope",
DL->getRawScope(),
false);
2044 Printer.printMetadata(
"inlinedAt",
DL->getRawInlinedAt());
2045 Printer.printBool(
"isImplicitCode",
DL->isImplicitCode(),
2051 AsmWriterContext &WriterCtx) {
2052 Out <<
"!DIAssignID()";
2053 MDFieldPrinter
Printer(Out, WriterCtx);
2057 AsmWriterContext &WriterCtx) {
2058 Out <<
"!DISubrange(";
2059 MDFieldPrinter
Printer(Out, WriterCtx);
2061 auto *Count =
N->getRawCountNode();
2062 if (
auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
2063 auto *CV = cast<ConstantInt>(CE->getValue());
2064 Printer.printInt(
"count", CV->getSExtValue(),
2067 Printer.printMetadata(
"count", Count,
true);
2071 auto *LBound =
N->getRawLowerBound();
2072 if (
auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
2073 auto *LV = cast<ConstantInt>(LE->getValue());
2074 Printer.printInt(
"lowerBound", LV->getSExtValue(),
2077 Printer.printMetadata(
"lowerBound", LBound,
true);
2079 auto *UBound =
N->getRawUpperBound();
2080 if (
auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
2081 auto *UV = cast<ConstantInt>(UE->getValue());
2082 Printer.printInt(
"upperBound", UV->getSExtValue(),
2085 Printer.printMetadata(
"upperBound", UBound,
true);
2087 auto *Stride =
N->getRawStride();
2088 if (
auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
2089 auto *SV = cast<ConstantInt>(SE->getValue());
2090 Printer.printInt(
"stride", SV->getSExtValue(),
false);
2092 Printer.printMetadata(
"stride", Stride,
true);
2098 AsmWriterContext &WriterCtx) {
2099 Out <<
"!DIGenericSubrange(";
2100 MDFieldPrinter
Printer(Out, WriterCtx);
2102 auto IsConstant = [&](
Metadata *Bound) ->
bool {
2103 if (
auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
2104 return BE->isConstant() &&
2111 auto GetConstant = [&](
Metadata *Bound) -> int64_t {
2112 assert(IsConstant(Bound) &&
"Expected constant");
2113 auto *BE = dyn_cast_or_null<DIExpression>(Bound);
2114 return static_cast<int64_t
>(BE->getElement(1));
2117 auto *Count =
N->getRawCountNode();
2118 if (IsConstant(Count))
2119 Printer.printInt(
"count", GetConstant(Count),
2122 Printer.printMetadata(
"count", Count,
true);
2124 auto *LBound =
N->getRawLowerBound();
2125 if (IsConstant(LBound))
2126 Printer.printInt(
"lowerBound", GetConstant(LBound),
2129 Printer.printMetadata(
"lowerBound", LBound,
true);
2131 auto *UBound =
N->getRawUpperBound();
2132 if (IsConstant(UBound))
2133 Printer.printInt(
"upperBound", GetConstant(UBound),
2136 Printer.printMetadata(
"upperBound", UBound,
true);
2138 auto *Stride =
N->getRawStride();
2139 if (IsConstant(Stride))
2140 Printer.printInt(
"stride", GetConstant(Stride),
2143 Printer.printMetadata(
"stride", Stride,
true);
2149 AsmWriterContext &) {
2150 Out <<
"!DIEnumerator(";
2152 Printer.printString(
"name",
N->getName(),
false);
2153 Printer.printAPInt(
"value",
N->getValue(),
N->isUnsigned(),
2155 if (
N->isUnsigned())
2156 Printer.printBool(
"isUnsigned",
true);
2161 AsmWriterContext &) {
2162 Out <<
"!DIBasicType(";
2164 if (
N->getTag() != dwarf::DW_TAG_base_type)
2166 Printer.printString(
"name",
N->getName());
2167 Printer.printInt(
"size",
N->getSizeInBits());
2168 Printer.printInt(
"align",
N->getAlignInBits());
2169 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2171 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2172 Printer.printDIFlags(
"flags",
N->getFlags());
2177 AsmWriterContext &WriterCtx) {
2178 Out <<
"!DIStringType(";
2179 MDFieldPrinter
Printer(Out, WriterCtx);
2180 if (
N->getTag() != dwarf::DW_TAG_string_type)
2182 Printer.printString(
"name",
N->getName());
2183 Printer.printMetadata(
"stringLength",
N->getRawStringLength());
2184 Printer.printMetadata(
"stringLengthExpression",
N->getRawStringLengthExp());
2185 Printer.printMetadata(
"stringLocationExpression",
2186 N->getRawStringLocationExp());
2187 Printer.printInt(
"size",
N->getSizeInBits());
2188 Printer.printInt(
"align",
N->getAlignInBits());
2189 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2195 AsmWriterContext &WriterCtx) {
2196 Out <<
"!DIDerivedType(";
2197 MDFieldPrinter
Printer(Out, WriterCtx);
2199 Printer.printString(
"name",
N->getName());
2200 Printer.printMetadata(
"scope",
N->getRawScope());
2201 Printer.printMetadata(
"file",
N->getRawFile());
2202 Printer.printInt(
"line",
N->getLine());
2203 Printer.printMetadata(
"baseType",
N->getRawBaseType(),
2205 Printer.printInt(
"size",
N->getSizeInBits());
2206 Printer.printInt(
"align",
N->getAlignInBits());
2207 Printer.printInt(
"offset",
N->getOffsetInBits());
2208 Printer.printDIFlags(
"flags",
N->getFlags());
2209 Printer.printMetadata(
"extraData",
N->getRawExtraData());
2210 if (
const auto &DWARFAddressSpace =
N->getDWARFAddressSpace())
2211 Printer.printInt(
"dwarfAddressSpace", *DWARFAddressSpace,
2213 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2214 if (
auto PtrAuthData =
N->getPtrAuthData()) {
2215 Printer.printInt(
"ptrAuthKey", PtrAuthData->key());
2216 Printer.printBool(
"ptrAuthIsAddressDiscriminated",
2217 PtrAuthData->isAddressDiscriminated());
2218 Printer.printInt(
"ptrAuthExtraDiscriminator",
2219 PtrAuthData->extraDiscriminator());
2220 Printer.printBool(
"ptrAuthIsaPointer", PtrAuthData->isaPointer());
2221 Printer.printBool(
"ptrAuthAuthenticatesNullValues",
2222 PtrAuthData->authenticatesNullValues());
2228 AsmWriterContext &WriterCtx) {
2229 Out <<
"!DICompositeType(";
2230 MDFieldPrinter
Printer(Out, WriterCtx);
2232 Printer.printString(
"name",
N->getName());
2233 Printer.printMetadata(
"scope",
N->getRawScope());
2234 Printer.printMetadata(
"file",
N->getRawFile());
2235 Printer.printInt(
"line",
N->getLine());
2236 Printer.printMetadata(
"baseType",
N->getRawBaseType());
2237 Printer.printInt(
"size",
N->getSizeInBits());
2238 Printer.printInt(
"align",
N->getAlignInBits());
2239 Printer.printInt(
"offset",
N->getOffsetInBits());
2240 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2241 Printer.printDIFlags(
"flags",
N->getFlags());
2242 Printer.printMetadata(
"elements",
N->getRawElements());
2243 Printer.printDwarfEnum(
"runtimeLang",
N->getRuntimeLang(),
2245 Printer.printMetadata(
"vtableHolder",
N->getRawVTableHolder());
2246 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2247 Printer.printString(
"identifier",
N->getIdentifier());
2248 Printer.printMetadata(
"discriminator",
N->getRawDiscriminator());
2249 Printer.printMetadata(
"dataLocation",
N->getRawDataLocation());
2250 Printer.printMetadata(
"associated",
N->getRawAssociated());
2251 Printer.printMetadata(
"allocated",
N->getRawAllocated());
2252 if (
auto *RankConst =
N->getRankConst())
2253 Printer.printInt(
"rank", RankConst->getSExtValue(),
2256 Printer.printMetadata(
"rank",
N->getRawRank(),
true);
2257 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2258 if (
auto *Specification =
N->getRawSpecification())
2259 Printer.printMetadata(
"specification", Specification);
2264 AsmWriterContext &WriterCtx) {
2265 Out <<
"!DISubroutineType(";
2266 MDFieldPrinter
Printer(Out, WriterCtx);
2267 Printer.printDIFlags(
"flags",
N->getFlags());
2269 Printer.printMetadata(
"types",
N->getRawTypeArray(),
2277 Printer.printString(
"filename",
N->getFilename(),
2279 Printer.printString(
"directory",
N->getDirectory(),
2282 if (
N->getChecksum())
2283 Printer.printChecksum(*
N->getChecksum());
2290 AsmWriterContext &WriterCtx) {
2291 Out <<
"!DICompileUnit(";
2292 MDFieldPrinter
Printer(Out, WriterCtx);
2293 Printer.printDwarfEnum(
"language",
N->getSourceLanguage(),
2295 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2296 Printer.printString(
"producer",
N->getProducer());
2297 Printer.printBool(
"isOptimized",
N->isOptimized());
2298 Printer.printString(
"flags",
N->getFlags());
2299 Printer.printInt(
"runtimeVersion",
N->getRuntimeVersion(),
2301 Printer.printString(
"splitDebugFilename",
N->getSplitDebugFilename());
2302 Printer.printEmissionKind(
"emissionKind",
N->getEmissionKind());
2303 Printer.printMetadata(
"enums",
N->getRawEnumTypes());
2304 Printer.printMetadata(
"retainedTypes",
N->getRawRetainedTypes());
2305 Printer.printMetadata(
"globals",
N->getRawGlobalVariables());
2306 Printer.printMetadata(
"imports",
N->getRawImportedEntities());
2307 Printer.printMetadata(
"macros",
N->getRawMacros());
2308 Printer.printInt(
"dwoId",
N->getDWOId());
2309 Printer.printBool(
"splitDebugInlining",
N->getSplitDebugInlining(),
true);
2310 Printer.printBool(
"debugInfoForProfiling",
N->getDebugInfoForProfiling(),
2312 Printer.printNameTableKind(
"nameTableKind",
N->getNameTableKind());
2313 Printer.printBool(
"rangesBaseAddress",
N->getRangesBaseAddress(),
false);
2314 Printer.printString(
"sysroot",
N->getSysRoot());
2315 Printer.printString(
"sdk",
N->getSDK());
2320 AsmWriterContext &WriterCtx) {
2321 Out <<
"!DISubprogram(";
2322 MDFieldPrinter
Printer(Out, WriterCtx);
2323 Printer.printString(
"name",
N->getName());
2324 Printer.printString(
"linkageName",
N->getLinkageName());
2325 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2326 Printer.printMetadata(
"file",
N->getRawFile());
2327 Printer.printInt(
"line",
N->getLine());
2328 Printer.printMetadata(
"type",
N->getRawType());
2329 Printer.printInt(
"scopeLine",
N->getScopeLine());
2330 Printer.printMetadata(
"containingType",
N->getRawContainingType());
2331 if (
N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2332 N->getVirtualIndex() != 0)
2333 Printer.printInt(
"virtualIndex",
N->getVirtualIndex(),
false);
2334 Printer.printInt(
"thisAdjustment",
N->getThisAdjustment());
2335 Printer.printDIFlags(
"flags",
N->getFlags());
2336 Printer.printDISPFlags(
"spFlags",
N->getSPFlags());
2337 Printer.printMetadata(
"unit",
N->getRawUnit());
2338 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2339 Printer.printMetadata(
"declaration",
N->getRawDeclaration());
2340 Printer.printMetadata(
"retainedNodes",
N->getRawRetainedNodes());
2341 Printer.printMetadata(
"thrownTypes",
N->getRawThrownTypes());
2342 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2343 Printer.printString(
"targetFuncName",
N->getTargetFuncName());
2348 AsmWriterContext &WriterCtx) {
2349 Out <<
"!DILexicalBlock(";
2350 MDFieldPrinter
Printer(Out, WriterCtx);
2351 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2352 Printer.printMetadata(
"file",
N->getRawFile());
2353 Printer.printInt(
"line",
N->getLine());
2354 Printer.printInt(
"column",
N->getColumn());
2360 AsmWriterContext &WriterCtx) {
2361 Out <<
"!DILexicalBlockFile(";
2362 MDFieldPrinter
Printer(Out, WriterCtx);
2363 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2364 Printer.printMetadata(
"file",
N->getRawFile());
2365 Printer.printInt(
"discriminator",
N->getDiscriminator(),
2371 AsmWriterContext &WriterCtx) {
2372 Out <<
"!DINamespace(";
2373 MDFieldPrinter
Printer(Out, WriterCtx);
2374 Printer.printString(
"name",
N->getName());
2375 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2376 Printer.printBool(
"exportSymbols",
N->getExportSymbols(),
false);
2381 AsmWriterContext &WriterCtx) {
2382 Out <<
"!DICommonBlock(";
2383 MDFieldPrinter
Printer(Out, WriterCtx);
2384 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2385 Printer.printMetadata(
"declaration",
N->getRawDecl(),
false);
2386 Printer.printString(
"name",
N->getName());
2387 Printer.printMetadata(
"file",
N->getRawFile());
2388 Printer.printInt(
"line",
N->getLineNo());
2393 AsmWriterContext &WriterCtx) {
2395 MDFieldPrinter
Printer(Out, WriterCtx);
2397 Printer.printInt(
"line",
N->getLine());
2398 Printer.printString(
"name",
N->getName());
2399 Printer.printString(
"value",
N->getValue());
2404 AsmWriterContext &WriterCtx) {
2405 Out <<
"!DIMacroFile(";
2406 MDFieldPrinter
Printer(Out, WriterCtx);
2407 Printer.printInt(
"line",
N->getLine());
2408 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2409 Printer.printMetadata(
"nodes",
N->getRawElements());
2414 AsmWriterContext &WriterCtx) {
2415 Out <<
"!DIModule(";
2416 MDFieldPrinter
Printer(Out, WriterCtx);
2417 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2418 Printer.printString(
"name",
N->getName());
2419 Printer.printString(
"configMacros",
N->getConfigurationMacros());
2420 Printer.printString(
"includePath",
N->getIncludePath());
2421 Printer.printString(
"apinotes",
N->getAPINotesFile());
2422 Printer.printMetadata(
"file",
N->getRawFile());
2423 Printer.printInt(
"line",
N->getLineNo());
2424 Printer.printBool(
"isDecl",
N->getIsDecl(),
false);
2430 AsmWriterContext &WriterCtx) {
2431 Out <<
"!DITemplateTypeParameter(";
2432 MDFieldPrinter
Printer(Out, WriterCtx);
2433 Printer.printString(
"name",
N->getName());
2434 Printer.printMetadata(
"type",
N->getRawType(),
false);
2435 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2441 AsmWriterContext &WriterCtx) {
2442 Out <<
"!DITemplateValueParameter(";
2443 MDFieldPrinter
Printer(Out, WriterCtx);
2444 if (
N->getTag() != dwarf::DW_TAG_template_value_parameter)
2446 Printer.printString(
"name",
N->getName());
2447 Printer.printMetadata(
"type",
N->getRawType());
2448 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2449 Printer.printMetadata(
"value",
N->getValue(),
false);
2454 AsmWriterContext &WriterCtx) {
2455 Out <<
"!DIGlobalVariable(";
2456 MDFieldPrinter
Printer(Out, WriterCtx);
2457 Printer.printString(
"name",
N->getName());
2458 Printer.printString(
"linkageName",
N->getLinkageName());
2459 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2460 Printer.printMetadata(
"file",
N->getRawFile());
2461 Printer.printInt(
"line",
N->getLine());
2462 Printer.printMetadata(
"type",
N->getRawType());
2463 Printer.printBool(
"isLocal",
N->isLocalToUnit());
2464 Printer.printBool(
"isDefinition",
N->isDefinition());
2465 Printer.printMetadata(
"declaration",
N->getRawStaticDataMemberDeclaration());
2466 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2467 Printer.printInt(
"align",
N->getAlignInBits());
2468 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2473 AsmWriterContext &WriterCtx) {
2474 Out <<
"!DILocalVariable(";
2475 MDFieldPrinter
Printer(Out, WriterCtx);
2476 Printer.printString(
"name",
N->getName());
2477 Printer.printInt(
"arg",
N->getArg());
2478 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2479 Printer.printMetadata(
"file",
N->getRawFile());
2480 Printer.printInt(
"line",
N->getLine());
2481 Printer.printMetadata(
"type",
N->getRawType());
2482 Printer.printDIFlags(
"flags",
N->getFlags());
2483 Printer.printInt(
"align",
N->getAlignInBits());
2484 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2489 AsmWriterContext &WriterCtx) {
2491 MDFieldPrinter
Printer(Out, WriterCtx);
2492 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2493 Printer.printString(
"name",
N->getName());
2494 Printer.printMetadata(
"file",
N->getRawFile());
2495 Printer.printInt(
"line",
N->getLine());
2500 AsmWriterContext &WriterCtx) {
2501 Out <<
"!DIExpression(";
2506 assert(!OpStr.empty() &&
"Expected valid opcode");
2510 Out << FS <<
Op.getArg(0);
2513 for (
unsigned A = 0, AE =
Op.getNumArgs();
A != AE; ++
A)
2514 Out << FS <<
Op.getArg(
A);
2518 for (
const auto &
I :
N->getElements())
2525 AsmWriterContext &WriterCtx,
2526 bool FromValue =
false) {
2528 "Unexpected DIArgList metadata outside of value argument");
2529 Out <<
"!DIArgList(";
2531 MDFieldPrinter
Printer(Out, WriterCtx);
2541 AsmWriterContext &WriterCtx) {
2542 Out <<
"!DIGlobalVariableExpression(";
2543 MDFieldPrinter
Printer(Out, WriterCtx);
2544 Printer.printMetadata(
"var",
N->getVariable());
2545 Printer.printMetadata(
"expr",
N->getExpression());
2550 AsmWriterContext &WriterCtx) {
2551 Out <<
"!DIObjCProperty(";
2552 MDFieldPrinter
Printer(Out, WriterCtx);
2553 Printer.printString(
"name",
N->getName());
2554 Printer.printMetadata(
"file",
N->getRawFile());
2555 Printer.printInt(
"line",
N->getLine());
2556 Printer.printString(
"setter",
N->getSetterName());
2557 Printer.printString(
"getter",
N->getGetterName());
2558 Printer.printInt(
"attributes",
N->getAttributes());
2559 Printer.printMetadata(
"type",
N->getRawType());
2564 AsmWriterContext &WriterCtx) {
2565 Out <<
"!DIImportedEntity(";
2566 MDFieldPrinter
Printer(Out, WriterCtx);
2568 Printer.printString(
"name",
N->getName());
2569 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2570 Printer.printMetadata(
"entity",
N->getRawEntity());
2571 Printer.printMetadata(
"file",
N->getRawFile());
2572 Printer.printInt(
"line",
N->getLine());
2573 Printer.printMetadata(
"elements",
N->getRawElements());
2578 AsmWriterContext &Ctx) {
2579 if (
Node->isDistinct())
2581 else if (
Node->isTemporary())
2582 Out <<
"<temporary!> ";
2584 switch (
Node->getMetadataID()) {
2587#define HANDLE_MDNODE_LEAF(CLASS) \
2588 case Metadata::CLASS##Kind: \
2589 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2591#include "llvm/IR/Metadata.def"
2598 AsmWriterContext &WriterCtx) {
2604 const Constant *CV = dyn_cast<Constant>(V);
2605 if (CV && !isa<GlobalValue>(CV)) {
2606 assert(WriterCtx.TypePrinter &&
"Constants require TypePrinting!");
2611 if (
const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2613 if (IA->hasSideEffects())
2614 Out <<
"sideeffect ";
2615 if (IA->isAlignStack())
2616 Out <<
"alignstack ";
2619 Out <<
"inteldialect ";
2623 printEscapedString(IA->getAsmString(), Out);
2625 printEscapedString(IA->getConstraintString(), Out);
2630 if (
auto *MD = dyn_cast<MetadataAsValue>(V)) {
2638 auto *
Machine = WriterCtx.Machine;
2641 if (
const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2642 Slot =
Machine->getGlobalSlot(GV);
2645 Slot =
Machine->getLocalSlot(V);
2652 Slot =
Machine->getLocalSlot(V);
2658 if (
const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2659 Slot =
Machine->getGlobalSlot(GV);
2662 Slot =
Machine->getLocalSlot(V);
2671 Out << Prefix << Slot;
2677 AsmWriterContext &WriterCtx,
2681 if (
const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2685 if (
const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2690 if (
const MDNode *
N = dyn_cast<MDNode>(MD)) {
2691 std::unique_ptr<SlotTracker> MachineStorage;
2693 if (!WriterCtx.Machine) {
2694 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2695 WriterCtx.Machine = MachineStorage.get();
2697 int Slot = WriterCtx.Machine->getMetadataSlot(
N);
2699 if (
const DILocation *Loc = dyn_cast<DILocation>(
N)) {
2705 Out <<
"<" <<
N <<
">";
2711 if (
const MDString *MDS = dyn_cast<MDString>(MD)) {
2713 printEscapedString(MDS->getString(), Out);
2718 auto *V = cast<ValueAsMetadata>(MD);
2719 assert(WriterCtx.TypePrinter &&
"TypePrinter required for metadata values");
2720 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2721 "Unexpected function-local metadata outside of value argument");
2723 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2730class AssemblyWriter {
2732 const Module *TheModule =
nullptr;
2734 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2736 TypePrinting TypePrinter;
2740 bool ShouldPreserveUseListOrder;
2751 bool ShouldPreserveUseListOrder =
false);
2756 AsmWriterContext getContext() {
2757 return AsmWriterContext(&TypePrinter, &
Machine, TheModule);
2760 void printMDNodeBody(
const MDNode *MD);
2763 void printModule(
const Module *M);
2765 void writeOperand(
const Value *
Op,
bool PrintType);
2767 void writeOperandBundles(
const CallBase *Call);
2773 void writeAtomicCmpXchg(
const LLVMContext &Context,
2778 void writeAllMDNodes();
2779 void writeMDNode(
unsigned Slot,
const MDNode *
Node);
2780 void writeAttribute(
const Attribute &Attr,
bool InAttrGroup =
false);
2781 void writeAttributeSet(
const AttributeSet &AttrSet,
bool InAttrGroup =
false);
2782 void writeAllAttributeGroups();
2784 void printTypeIdentities();
2788 void printComdat(
const Comdat *
C);
2794 void printDbgMarker(
const DbgMarker &DPI);
2797 void printDbgRecord(
const DbgRecord &DR);
2798 void printDbgRecordLine(
const DbgRecord &DR);
2800 void printUseListOrder(
const Value *V,
const std::vector<unsigned> &Shuffle);
2803 void printModuleSummaryIndex();
2804 void printSummaryInfo(
unsigned Slot,
const ValueInfo &VI);
2812 void printArgs(
const std::vector<uint64_t> &Args);
2817 printNonConstVCalls(
const std::vector<FunctionSummary::VFuncId> &VCallList,
2820 printConstVCalls(
const std::vector<FunctionSummary::ConstVCall> &VCallList,
2825 void printMetadataAttachments(
2831 void printInfoComment(
const Value &V);
2842 bool IsForDebug,
bool ShouldPreserveUseListOrder)
2843 : Out(
o), TheModule(
M),
Machine(Mac), TypePrinter(
M), AnnotationWriter(AAW),
2844 IsForDebug(IsForDebug),
2845 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2848 for (
const GlobalObject &GO : TheModule->global_objects())
2855 : Out(
o), TheIndex(
Index),
Machine(Mac), TypePrinter(nullptr),
2856 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(
false) {}
2858void AssemblyWriter::writeOperand(
const Value *Operand,
bool PrintType) {
2860 Out <<
"<null operand!>";
2864 TypePrinter.print(Operand->
getType(), Out);
2867 auto WriterCtx = getContext();
2871void AssemblyWriter::writeSyncScope(
const LLVMContext &Context,
2881 Out <<
" syncscope(\"";
2882 printEscapedString(SSNs[SSID], Out);
2889void AssemblyWriter::writeAtomic(
const LLVMContext &Context,
2892 if (Ordering == AtomicOrdering::NotAtomic)
2895 writeSyncScope(Context, SSID);
2899void AssemblyWriter::writeAtomicCmpXchg(
const LLVMContext &Context,
2903 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2904 FailureOrdering != AtomicOrdering::NotAtomic);
2906 writeSyncScope(Context, SSID);
2911void AssemblyWriter::writeParamOperand(
const Value *Operand,
2914 Out <<
"<null operand!>";
2919 TypePrinter.print(Operand->
getType(), Out);
2921 if (
Attrs.hasAttributes()) {
2923 writeAttributeSet(Attrs);
2927 auto WriterCtx = getContext();
2931void AssemblyWriter::writeOperandBundles(
const CallBase *Call) {
2932 if (!
Call->hasOperandBundles())
2937 bool FirstBundle =
true;
2938 for (
unsigned i = 0, e =
Call->getNumOperandBundles(); i != e; ++i) {
2943 FirstBundle =
false;
2951 bool FirstInput =
true;
2952 auto WriterCtx = getContext();
2953 for (
const auto &Input : BU.
Inputs) {
2958 if (Input ==
nullptr)
2959 Out <<
"<null operand bundle!>";
2961 TypePrinter.print(Input->getType(), Out);
2973void AssemblyWriter::printModule(
const Module *M) {
2976 if (ShouldPreserveUseListOrder)
2979 if (!
M->getModuleIdentifier().empty() &&
2982 M->getModuleIdentifier().find(
'\n') == std::string::npos)
2983 Out <<
"; ModuleID = '" <<
M->getModuleIdentifier() <<
"'\n";
2985 if (!
M->getSourceFileName().empty()) {
2986 Out <<
"source_filename = \"";
2987 printEscapedString(
M->getSourceFileName(), Out);
2991 const std::string &
DL =
M->getDataLayoutStr();
2993 Out <<
"target datalayout = \"" <<
DL <<
"\"\n";
2994 if (!
M->getTargetTriple().empty())
2995 Out <<
"target triple = \"" <<
M->getTargetTriple() <<
"\"\n";
2997 if (!
M->getModuleInlineAsm().empty()) {
3004 std::tie(Front, Asm) =
Asm.split(
'\n');
3008 Out <<
"module asm \"";
3009 printEscapedString(Front, Out);
3011 }
while (!
Asm.empty());
3014 printTypeIdentities();
3017 if (!Comdats.empty())
3019 for (
const Comdat *
C : Comdats) {
3021 if (
C != Comdats.back())
3026 if (!
M->global_empty()) Out <<
'\n';
3028 printGlobal(&GV); Out <<
'\n';
3032 if (!
M->alias_empty()) Out <<
"\n";
3037 if (!
M->ifunc_empty()) Out <<
"\n";
3048 printUseLists(
nullptr);
3053 writeAllAttributeGroups();
3057 if (!
M->named_metadata_empty()) Out <<
'\n';
3060 printNamedMDNode(&
Node);
3069void AssemblyWriter::printModuleSummaryIndex() {
3071 int NumSlots =
Machine.initializeIndexIfNeeded();
3077 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3078 std::string RegularLTOModuleName =
3080 moduleVec.resize(TheIndex->modulePaths().size());
3081 for (
auto &[ModPath, ModHash] : TheIndex->modulePaths())
3082 moduleVec[
Machine.getModulePathSlot(ModPath)] = std::make_pair(
3085 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3088 for (
auto &ModPair : moduleVec) {
3089 Out <<
"^" << i++ <<
" = module: (";
3091 printEscapedString(ModPair.first, Out);
3092 Out <<
"\", hash: (";
3094 for (
auto Hash : ModPair.second)
3101 for (
auto &GlobalList : *TheIndex) {
3102 auto GUID = GlobalList.first;
3103 for (
auto &Summary : GlobalList.second.SummaryList)
3108 for (
auto &GlobalList : *TheIndex) {
3109 auto GUID = GlobalList.first;
3110 auto VI = TheIndex->getValueInfo(GlobalList);
3111 printSummaryInfo(
Machine.getGUIDSlot(GUID), VI);
3115 for (
const auto &TID : TheIndex->typeIds()) {
3116 Out <<
"^" <<
Machine.getTypeIdSlot(TID.second.first)
3117 <<
" = typeid: (name: \"" << TID.second.first <<
"\"";
3118 printTypeIdSummary(TID.second.second);
3119 Out <<
") ; guid = " << TID.first <<
"\n";
3123 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3125 Out <<
"^" <<
Machine.getTypeIdCompatibleVtableSlot(TId.first)
3126 <<
" = typeidCompatibleVTable: (name: \"" << TId.first <<
"\"";
3127 printTypeIdCompatibleVtableSummary(TId.second);
3128 Out <<
") ; guid = " <<
GUID <<
"\n";
3132 if (TheIndex->getFlags()) {
3133 Out <<
"^" << NumSlots <<
" = flags: " << TheIndex->getFlags() <<
"\n";
3137 Out <<
"^" << NumSlots <<
" = blockcount: " << TheIndex->getBlockCount()
3147 return "singleImpl";
3149 return "branchFunnel";
3160 return "uniformRetVal";
3162 return "uniqueRetVal";
3164 return "virtualConstProp";
3194 Out <<
", alignLog2: " << TTRes.
AlignLog2;
3196 Out <<
", sizeM1: " << TTRes.
SizeM1;
3206void AssemblyWriter::printTypeIdSummary(
const TypeIdSummary &TIS) {
3207 Out <<
", summary: (";
3208 printTypeTestResolution(TIS.
TTRes);
3209 if (!TIS.
WPDRes.empty()) {
3210 Out <<
", wpdResolutions: (";
3212 for (
auto &WPDRes : TIS.
WPDRes) {
3214 Out <<
"(offset: " << WPDRes.first <<
", ";
3215 printWPDRes(WPDRes.second);
3223void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3225 Out <<
", summary: (";
3227 for (
auto &
P : TI) {
3229 Out <<
"(offset: " <<
P.AddressPointOffset <<
", ";
3230 Out <<
"^" <<
Machine.getGUIDSlot(
P.VTableVI.getGUID());
3236void AssemblyWriter::printArgs(
const std::vector<uint64_t> &Args) {
3239 for (
auto arg : Args) {
3247 Out <<
"wpdRes: (kind: ";
3254 Out <<
", resByArg: (";
3256 for (
auto &ResByArg : WPDRes.
ResByArg) {
3258 printArgs(ResByArg.first);
3259 Out <<
", byArg: (kind: ";
3261 if (ResByArg.second.TheKind ==
3263 ResByArg.second.TheKind ==
3265 Out <<
", info: " << ResByArg.second.Info;
3269 if (ResByArg.second.Byte || ResByArg.second.Bit)
3270 Out <<
", byte: " << ResByArg.second.Byte
3271 <<
", bit: " << ResByArg.second.Bit;
3292void AssemblyWriter::printAliasSummary(
const AliasSummary *AS) {
3293 Out <<
", aliasee: ";
3304 auto VTableFuncs =
GS->vTableFuncs();
3305 Out <<
", varFlags: (readonly: " <<
GS->VarFlags.MaybeReadOnly <<
", "
3306 <<
"writeonly: " <<
GS->VarFlags.MaybeWriteOnly <<
", "
3307 <<
"constant: " <<
GS->VarFlags.Constant;
3308 if (!VTableFuncs.empty())
3310 <<
"vcall_visibility: " <<
GS->VarFlags.VCallVisibility;
3313 if (!VTableFuncs.empty()) {
3314 Out <<
", vTableFuncs: (";
3316 for (
auto &
P : VTableFuncs) {
3318 Out <<
"(virtFunc: ^" <<
Machine.getGUIDSlot(
P.FuncVI.getGUID())
3319 <<
", offset: " <<
P.VTableOffset;
3337 return "linkonce_odr";
3347 return "extern_weak";
3349 return "available_externally";
3378 return "definition";
3380 return "declaration";
3386 Out <<
", insts: " <<
FS->instCount();
3387 if (
FS->fflags().anyFlagSet())
3388 Out <<
", " <<
FS->fflags();
3390 if (!
FS->calls().empty()) {
3391 Out <<
", calls: (";
3393 for (
auto &Call :
FS->calls()) {
3395 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.first.getGUID());
3396 if (
Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3398 else if (
Call.second.RelBlockFreq)
3399 Out <<
", relbf: " <<
Call.second.RelBlockFreq;
3402 if (
Call.second.HasTailCall)
3409 if (
const auto *TIdInfo =
FS->getTypeIdInfo())
3410 printTypeIdInfo(*TIdInfo);
3414 auto AllocTypeName = [](
uint8_t Type) ->
const char * {
3416 case (
uint8_t)AllocationType::None:
3418 case (
uint8_t)AllocationType::NotCold:
3420 case (
uint8_t)AllocationType::Cold:
3422 case (
uint8_t)AllocationType::Hot:
3428 if (!
FS->allocs().empty()) {
3429 Out <<
", allocs: (";
3431 for (
auto &AI :
FS->allocs()) {
3433 Out <<
"(versions: (";
3435 for (
auto V : AI.Versions) {
3437 Out << AllocTypeName(V);
3439 Out <<
"), memProf: (";
3440 FieldSeparator MIBFS;
3441 for (
auto &MIB : AI.MIBs) {
3443 Out <<
"(type: " << AllocTypeName((
uint8_t)MIB.AllocType);
3444 Out <<
", stackIds: (";
3445 FieldSeparator SIDFS;
3446 for (
auto Id : MIB.StackIdIndices) {
3448 Out << TheIndex->getStackIdAtIndex(Id);
3457 if (!
FS->callsites().empty()) {
3458 Out <<
", callsites: (";
3459 FieldSeparator SNFS;
3460 for (
auto &CI :
FS->callsites()) {
3463 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(CI.Callee.getGUID());
3465 Out <<
"(callee: null";
3466 Out <<
", clones: (";
3468 for (
auto V : CI.Clones) {
3472 Out <<
"), stackIds: (";
3473 FieldSeparator SIDFS;
3474 for (
auto Id : CI.StackIdIndices) {
3476 Out << TheIndex->getStackIdAtIndex(Id);
3487 if (!
FS->paramAccesses().empty()) {
3488 Out <<
", params: (";
3490 for (
auto &PS :
FS->paramAccesses()) {
3492 Out <<
"(param: " << PS.ParamNo;
3493 Out <<
", offset: ";
3495 if (!PS.Calls.empty()) {
3496 Out <<
", calls: (";
3498 for (
auto &Call : PS.Calls) {
3500 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.Callee.getGUID());
3501 Out <<
", param: " <<
Call.ParamNo;
3502 Out <<
", offset: ";
3503 PrintRange(
Call.Offsets);
3514void AssemblyWriter::printTypeIdInfo(
3516 Out <<
", typeIdInfo: (";
3517 FieldSeparator TIDFS;
3520 Out <<
"typeTests: (";
3523 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3524 if (TidIter.first == TidIter.second) {
3530 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3532 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3550 "typeTestAssumeConstVCalls");
3555 "typeCheckedLoadConstVCalls");
3561 auto TidIter = TheIndex->typeIds().equal_range(VFId.
GUID);
3562 if (TidIter.first == TidIter.second) {
3563 Out <<
"vFuncId: (";
3564 Out <<
"guid: " << VFId.
GUID;
3565 Out <<
", offset: " << VFId.
Offset;
3571 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3573 Out <<
"vFuncId: (";
3574 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3577 Out <<
", offset: " << VFId.
Offset;
3582void AssemblyWriter::printNonConstVCalls(
3583 const std::vector<FunctionSummary::VFuncId> &VCallList,
const char *Tag) {
3584 Out <<
Tag <<
": (";
3586 for (
auto &VFuncId : VCallList) {
3588 printVFuncId(VFuncId);
3593void AssemblyWriter::printConstVCalls(
3594 const std::vector<FunctionSummary::ConstVCall> &VCallList,
3596 Out <<
Tag <<
": (";
3598 for (
auto &ConstVCall : VCallList) {
3601 printVFuncId(ConstVCall.VFunc);
3602 if (!ConstVCall.Args.empty()) {
3604 printArgs(ConstVCall.Args);
3615 Out <<
"(module: ^" <<
Machine.getModulePathSlot(
Summary.modulePath())
3618 Out <<
", visibility: "
3621 Out <<
", live: " << GVFlags.
Live;
3622 Out <<
", dsoLocal: " << GVFlags.
DSOLocal;
3624 Out <<
", importType: "
3629 printAliasSummary(cast<AliasSummary>(&Summary));
3631 printFunctionSummary(cast<FunctionSummary>(&Summary));
3633 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3635 auto RefList =
Summary.refs();
3636 if (!RefList.empty()) {
3639 for (
auto &
Ref : RefList) {
3641 if (
Ref.isReadOnly())
3643 else if (
Ref.isWriteOnly())
3644 Out <<
"writeonly ";
3645 Out <<
"^" <<
Machine.getGUIDSlot(
Ref.getGUID());
3653void AssemblyWriter::printSummaryInfo(
unsigned Slot,
const ValueInfo &VI) {
3654 Out <<
"^" <<
Slot <<
" = gv: (";
3655 if (
VI.hasName() && !
VI.name().empty())
3656 Out <<
"name: \"" <<
VI.name() <<
"\"";
3658 Out <<
"guid: " <<
VI.getGUID();
3659 if (!
VI.getSummaryList().empty()) {
3660 Out <<
", summaries: (";
3662 for (
auto &Summary :
VI.getSummaryList()) {
3664 printSummary(*Summary);
3669 if (
VI.hasName() && !
VI.name().empty())
3670 Out <<
" ; guid = " <<
VI.getGUID();
3677 Out <<
"<empty name> ";
3679 unsigned char FirstC =
static_cast<unsigned char>(
Name[0]);
3680 if (isalpha(FirstC) || FirstC ==
'-' || FirstC ==
'$' || FirstC ==
'.' ||
3684 Out <<
'\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3685 for (
unsigned i = 1, e =
Name.size(); i != e; ++i) {
3686 unsigned char C =
Name[i];
3687 if (isalnum(
C) ||
C ==
'-' ||
C ==
'$' ||
C ==
'.' ||
C ==
'_')
3690 Out <<
'\\' << hexdigit(
C >> 4) << hexdigit(
C & 0x0F);
3695void AssemblyWriter::printNamedMDNode(
const NamedMDNode *NMD) {
3706 if (
auto *Expr = dyn_cast<DIExpression>(
Op)) {
3732 Out <<
"dso_local ";
3747 case GlobalVariable::NotThreadLocal:
3749 case GlobalVariable::GeneralDynamicTLSModel:
3750 Out <<
"thread_local ";
3752 case GlobalVariable::LocalDynamicTLSModel:
3753 Out <<
"thread_local(localdynamic) ";
3755 case GlobalVariable::InitialExecTLSModel:
3756 Out <<
"thread_local(initialexec) ";
3758 case GlobalVariable::LocalExecTLSModel:
3759 Out <<
"thread_local(localexec) ";
3766 case GlobalVariable::UnnamedAddr::None:
3768 case GlobalVariable::UnnamedAddr::Local:
3769 return "local_unnamed_addr";
3770 case GlobalVariable::UnnamedAddr::Global:
3771 return "unnamed_addr";
3782 if (isa<GlobalVariable>(GO))
3796 Out <<
"; Materializable\n";
3817 Out << (GV->
isConstant() ?
"constant " :
"global ");
3826 Out <<
", section \"";
3831 Out <<
", partition \"";
3836 Out <<
", code_model \"";
3861 Out <<
", no_sanitize_address";
3863 Out <<
", no_sanitize_hwaddress";
3865 Out <<
", sanitize_memtag";
3867 Out <<
", sanitize_address_dyninit";
3872 Out <<
", align " <<
A->value();
3876 printMetadataAttachments(MDs,
", ");
3879 if (
Attrs.hasAttributes())
3880 Out <<
" #" <<
Machine.getAttributeGroupSlot(Attrs);
3882 printInfoComment(*GV);
3885void AssemblyWriter::printAlias(
const GlobalAlias *GA) {
3887 Out <<
"; Materializable\n";
3908 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3910 TypePrinter.print(GA->
getType(), Out);
3911 Out <<
" <<NULL ALIASEE>>";
3915 Out <<
", partition \"";
3920 printInfoComment(*GA);
3924void AssemblyWriter::printIFunc(
const GlobalIFunc *GI) {
3926 Out <<
"; Materializable\n";
3944 TypePrinter.print(GI->
getType(), Out);
3945 Out <<
" <<NULL RESOLVER>>";
3949 Out <<
", partition \"";
3954 printInfoComment(*GI);
3958void AssemblyWriter::printComdat(
const Comdat *
C) {
3962void AssemblyWriter::printTypeIdentities() {
3963 if (TypePrinter.empty())
3969 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3970 for (
unsigned I = 0, E = NumberedTypes.size();
I != E; ++
I) {
3971 Out <<
'%' <<
I <<
" = type ";
3975 TypePrinter.printStructBody(NumberedTypes[
I], Out);
3979 auto &NamedTypes = TypePrinter.getNamedTypes();
3986 TypePrinter.printStructBody(NamedType, Out);
3992void AssemblyWriter::printFunction(
const Function *
F) {
3993 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(
F, Out);
3995 if (
F->isMaterializable())
3996 Out <<
"; Materializable\n";
3999 if (
Attrs.hasFnAttrs()) {
4001 std::string AttrStr;
4004 if (!Attr.isStringAttribute()) {
4005 if (!AttrStr.empty()) AttrStr +=
' ';
4006 AttrStr += Attr.getAsString();
4010 if (!AttrStr.empty())
4011 Out <<
"; Function Attrs: " << AttrStr <<
'\n';
4016 if (
F->isDeclaration()) {
4019 F->getAllMetadata(MDs);
4020 printMetadataAttachments(MDs,
" ");
4037 if (
Attrs.hasRetAttrs())
4039 TypePrinter.print(
F->getReturnType(), Out);
4040 AsmWriterContext WriterCtx(&TypePrinter, &
Machine,
F->getParent());
4046 if (
F->isDeclaration() && !IsForDebug) {
4048 for (
unsigned I = 0, E = FT->getNumParams();
I != E; ++
I) {
4053 TypePrinter.print(FT->getParamType(
I), Out);
4058 writeAttributeSet(ArgAttrs);
4065 if (Arg.getArgNo() != 0)
4067 printArgument(&Arg,
Attrs.getParamAttrs(Arg.getArgNo()));
4072 if (FT->isVarArg()) {
4073 if (FT->getNumParams()) Out <<
", ";
4084 if (
F->getAddressSpace() != 0 || !
Mod ||
4085 Mod->getDataLayout().getProgramAddressSpace() != 0)
4086 Out <<
" addrspace(" <<
F->getAddressSpace() <<
")";
4087 if (
Attrs.hasFnAttrs())
4088 Out <<
" #" <<
Machine.getAttributeGroupSlot(
Attrs.getFnAttrs());
4089 if (
F->hasSection()) {
4090 Out <<
" section \"";
4091 printEscapedString(
F->getSection(), Out);
4094 if (
F->hasPartition()) {
4095 Out <<
" partition \"";
4096 printEscapedString(
F->getPartition(), Out);
4101 Out <<
" align " <<
A->value();
4103 Out <<
" gc \"" <<
F->getGC() <<
'"';
4104 if (
F->hasPrefixData()) {
4106 writeOperand(
F->getPrefixData(),
true);
4108 if (
F->hasPrologueData()) {
4109 Out <<
" prologue ";
4110 writeOperand(
F->getPrologueData(),
true);
4112 if (
F->hasPersonalityFn()) {
4113 Out <<
" personality ";
4114 writeOperand(
F->getPersonalityFn(),
true);
4117 if (
F->isDeclaration()) {
4121 F->getAllMetadata(MDs);
4122 printMetadataAttachments(MDs,
" ");
4127 printBasicBlock(&BB);
4142 TypePrinter.print(Arg->
getType(), Out);
4145 if (
Attrs.hasAttributes()) {
4147 writeAttributeSet(Attrs);
4156 assert(Slot != -1 &&
"expect argument in function here");
4157 Out <<
" %" <<
Slot;
4162void AssemblyWriter::printBasicBlock(
const BasicBlock *BB) {
4168 }
else if (!IsEntryBlock) {
4177 if (!IsEntryBlock) {
4179 Out.PadToColumn(50);
4184 Out <<
" No predecessors!";
4187 writeOperand(*PI,
false);
4188 for (++PI; PI != PE; ++PI) {
4190 writeOperand(*PI,
false);
4197 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4201 for (
const DbgRecord &DR :
I.getDbgRecordRange())
4202 printDbgRecordLine(DR);
4203 printInstructionLine(
I);
4206 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4210void AssemblyWriter::printInstructionLine(
const Instruction &
I) {
4211 printInstruction(
I);
4217void AssemblyWriter::printGCRelocateComment(
const GCRelocateInst &Relocate) {
4227void AssemblyWriter::printInfoComment(
const Value &V) {
4228 if (
const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4229 printGCRelocateComment(*Relocate);
4231 if (AnnotationWriter) {
4232 AnnotationWriter->printInfoComment(V, Out);
4239 if (Operand ==
nullptr) {
4240 Out <<
" <cannot get addrspace!>";
4244 bool PrintAddrSpace = CallAddrSpace != 0;
4245 if (!PrintAddrSpace) {
4250 if (!
Mod ||
Mod->getDataLayout().getProgramAddressSpace() != 0)
4251 PrintAddrSpace =
true;
4254 Out <<
" addrspace(" << CallAddrSpace <<
")";
4258void AssemblyWriter::printInstruction(
const Instruction &
I) {
4259 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&
I, Out);
4268 }
else if (!
I.getType()->isVoidTy()) {
4270 int SlotNum =
Machine.getLocalSlot(&
I);
4272 Out <<
"<badref> = ";
4274 Out <<
'%' << SlotNum <<
" = ";
4277 if (
const CallInst *CI = dyn_cast<CallInst>(&
I)) {
4278 if (CI->isMustTailCall())
4280 else if (CI->isTailCall())
4282 else if (CI->isNoTailCall())
4287 Out <<
I.getOpcodeName();
4290 if ((isa<LoadInst>(
I) && cast<LoadInst>(
I).isAtomic()) ||
4291 (isa<StoreInst>(
I) && cast<StoreInst>(
I).isAtomic()))
4294 if (isa<AtomicCmpXchgInst>(
I) && cast<AtomicCmpXchgInst>(
I).isWeak())
4298 if ((isa<LoadInst>(
I) && cast<LoadInst>(
I).isVolatile()) ||
4299 (isa<StoreInst>(
I) && cast<StoreInst>(
I).isVolatile()) ||
4300 (isa<AtomicCmpXchgInst>(
I) && cast<AtomicCmpXchgInst>(
I).isVolatile()) ||
4301 (isa<AtomicRMWInst>(
I) && cast<AtomicRMWInst>(
I).isVolatile()))
4308 if (
const CmpInst *CI = dyn_cast<CmpInst>(&
I))
4309 Out <<
' ' << CI->getPredicate();
4316 const Value *Operand =
I.getNumOperands() ?
I.getOperand(0) :
nullptr;
4319 if (isa<BranchInst>(
I) && cast<BranchInst>(
I).isConditional()) {
4322 writeOperand(BI.getCondition(),
true);
4324 writeOperand(BI.getSuccessor(0),
true);
4326 writeOperand(BI.getSuccessor(1),
true);
4328 }
else if (isa<SwitchInst>(
I)) {
4332 writeOperand(
SI.getCondition(),
true);
4334 writeOperand(
SI.getDefaultDest(),
true);
4336 for (
auto Case :
SI.cases()) {
4338 writeOperand(Case.getCaseValue(),
true);
4340 writeOperand(Case.getCaseSuccessor(),
true);
4343 }
else if (isa<IndirectBrInst>(
I)) {
4346 writeOperand(Operand,
true);
4349 for (
unsigned i = 1, e =
I.getNumOperands(); i != e; ++i) {
4352 writeOperand(
I.getOperand(i),
true);
4355 }
else if (
const PHINode *PN = dyn_cast<PHINode>(&
I)) {
4357 TypePrinter.print(
I.getType(), Out);
4360 for (
unsigned op = 0, Eop = PN->getNumIncomingValues();
op < Eop; ++
op) {
4361 if (
op) Out <<
", ";
4363 writeOperand(PN->getIncomingValue(
op),
false); Out <<
", ";
4364 writeOperand(PN->getIncomingBlock(
op),
false); Out <<
" ]";
4368 writeOperand(
I.getOperand(0),
true);
4369 for (
unsigned i : EVI->indices())
4373 writeOperand(
I.getOperand(0),
true); Out <<
", ";
4374 writeOperand(
I.getOperand(1),
true);
4375 for (
unsigned i : IVI->indices())
4377 }
else if (
const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&
I)) {
4379 TypePrinter.print(
I.getType(), Out);
4380 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4383 if (LPI->isCleanup())
4386 for (
unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4387 if (i != 0 || LPI->isCleanup()) Out <<
"\n";
4388 if (LPI->isCatch(i))
4393 writeOperand(LPI->getClause(i),
true);
4395 }
else if (
const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&
I)) {
4397 writeOperand(CatchSwitch->getParentPad(),
false);
4400 for (
const BasicBlock *PadBB : CatchSwitch->handlers()) {
4403 writeOperand(PadBB,
true);
4407 if (
const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4408 writeOperand(UnwindDest,
true);
4411 }
else if (
const auto *FPI = dyn_cast<FuncletPadInst>(&
I)) {
4413 writeOperand(FPI->getParentPad(),
false);
4415 for (
unsigned Op = 0, NumOps = FPI->arg_size();
Op < NumOps; ++
Op) {
4418 writeOperand(FPI->getArgOperand(
Op),
true);
4421 }
else if (isa<ReturnInst>(
I) && !Operand) {
4423 }
else if (
const auto *CRI = dyn_cast<CatchReturnInst>(&
I)) {
4425 writeOperand(CRI->getOperand(0),
false);
4428 writeOperand(CRI->getOperand(1),
true);
4429 }
else if (
const auto *CRI = dyn_cast<CleanupReturnInst>(&
I)) {
4431 writeOperand(CRI->getOperand(0),
false);
4434 if (CRI->hasUnwindDest())
4435 writeOperand(CRI->getOperand(1),
true);
4438 }
else if (
const CallInst *CI = dyn_cast<CallInst>(&
I)) {
4445 Operand = CI->getCalledOperand();
4460 TypePrinter.print(FTy->isVarArg() ? FTy :
RetTy, Out);
4462 writeOperand(Operand,
false);
4464 for (
unsigned op = 0, Eop = CI->arg_size();
op < Eop; ++
op) {
4472 if (CI->isMustTailCall() && CI->getParent() &&
4473 CI->getParent()->getParent() &&
4474 CI->getParent()->getParent()->isVarArg()) {
4475 if (CI->arg_size() > 0)
4484 writeOperandBundles(CI);
4485 }
else if (
const InvokeInst *
II = dyn_cast<InvokeInst>(&
I)) {
4486 Operand =
II->getCalledOperand();
4508 TypePrinter.print(FTy->isVarArg() ? FTy :
RetTy, Out);
4510 writeOperand(Operand,
false);
4512 for (
unsigned op = 0, Eop =
II->arg_size();
op < Eop; ++
op) {
4522 writeOperandBundles(
II);
4525 writeOperand(
II->getNormalDest(),
true);
4527 writeOperand(
II->getUnwindDest(),
true);
4528 }
else if (
const CallBrInst *CBI = dyn_cast<CallBrInst>(&
I)) {
4529 Operand = CBI->getCalledOperand();
4548 TypePrinter.print(FTy->isVarArg() ? FTy :
RetTy, Out);
4550 writeOperand(Operand,
false);
4552 for (
unsigned op = 0, Eop = CBI->arg_size();
op < Eop; ++
op) {
4562 writeOperandBundles(CBI);
4565 writeOperand(CBI->getDefaultDest(),
true);
4567 for (
unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4570 writeOperand(CBI->getIndirectDest(i),
true);
4573 }
else if (
const AllocaInst *AI = dyn_cast<AllocaInst>(&
I)) {
4575 if (AI->isUsedWithInAlloca())
4577 if (AI->isSwiftError())
4578 Out <<
"swifterror ";
4579 TypePrinter.print(AI->getAllocatedType(), Out);
4585 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4586 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4588 writeOperand(AI->getArraySize(),
true);
4591 Out <<
", align " <<
A->value();
4594 unsigned AddrSpace = AI->getAddressSpace();
4595 if (AddrSpace != 0) {
4596 Out <<
", addrspace(" << AddrSpace <<
')';
4598 }
else if (isa<CastInst>(
I)) {
4601 writeOperand(Operand,
true);
4604 TypePrinter.print(
I.getType(), Out);
4605 }
else if (isa<VAArgInst>(
I)) {
4608 writeOperand(Operand,
true);
4611 TypePrinter.print(
I.getType(), Out);
4612 }
else if (Operand) {
4613 if (
const auto *
GEP = dyn_cast<GetElementPtrInst>(&
I)) {
4615 TypePrinter.print(
GEP->getSourceElementType(), Out);
4617 }
else if (
const auto *LI = dyn_cast<LoadInst>(&
I)) {
4619 TypePrinter.print(LI->getType(), Out);
4626 bool PrintAllTypes =
false;
4631 if (isa<SelectInst>(
I) || isa<StoreInst>(
I) || isa<ShuffleVectorInst>(
I) ||
4632 isa<ReturnInst>(
I) || isa<AtomicCmpXchgInst>(
I) ||
4633 isa<AtomicRMWInst>(
I)) {
4634 PrintAllTypes =
true;
4636 for (
unsigned i = 1, E =
I.getNumOperands(); i != E; ++i) {
4637 Operand =
I.getOperand(i);
4640 if (Operand && Operand->
getType() != TheType) {
4641 PrintAllTypes =
true;
4647 if (!PrintAllTypes) {
4649 TypePrinter.print(TheType, Out);
4653 for (
unsigned i = 0, E =
I.getNumOperands(); i != E; ++i) {
4655 writeOperand(
I.getOperand(i), PrintAllTypes);
4660 if (
const LoadInst *LI = dyn_cast<LoadInst>(&
I)) {
4662 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4664 Out <<
", align " <<
A->value();
4665 }
else if (
const StoreInst *SI = dyn_cast<StoreInst>(&
I)) {
4667 writeAtomic(
SI->getContext(),
SI->getOrdering(),
SI->getSyncScopeID());
4669 Out <<
", align " <<
A->value();
4671 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4672 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4673 Out <<
", align " << CXI->getAlign().value();
4674 }
else if (
const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&
I)) {
4675 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4676 RMWI->getSyncScopeID());
4677 Out <<
", align " << RMWI->getAlign().value();
4678 }
else if (
const FenceInst *FI = dyn_cast<FenceInst>(&
I)) {
4679 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4686 I.getAllMetadata(InstMD);
4687 printMetadataAttachments(InstMD,
", ");
4690 printInfoComment(
I);
4693void AssemblyWriter::printDbgMarker(
const DbgMarker &Marker) {
4697 printDbgRecord(DPR);
4701 Out <<
" DbgMarker -> { ";
4706void AssemblyWriter::printDbgRecord(
const DbgRecord &DR) {
4707 if (
auto *DVR = dyn_cast<DbgVariableRecord>(&DR))
4708 printDbgVariableRecord(*DVR);
4709 else if (
auto *DLR = dyn_cast<DbgLabelRecord>(&DR))
4710 printDbgLabelRecord(*DLR);
4716 auto WriterCtx = getContext();
4719 case DbgVariableRecord::LocationType::Value:
4722 case DbgVariableRecord::LocationType::Declare:
4725 case DbgVariableRecord::LocationType::Assign:
4730 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4753void AssemblyWriter::printDbgRecordLine(
const DbgRecord &DR) {
4760void AssemblyWriter::printDbgLabelRecord(
const DbgLabelRecord &Label) {
4761 auto WriterCtx = getContext();
4762 Out <<
"#dbg_label(";
4769void AssemblyWriter::printMetadataAttachments(
4775 if (MDNames.empty())
4776 MDs[0].second->getContext().getMDKindNames(MDNames);
4778 auto WriterCtx = getContext();
4779 for (
const auto &
I : MDs) {
4780 unsigned Kind =
I.first;
4782 if (Kind < MDNames.size()) {
4786 Out <<
"!<unknown kind #" <<
Kind <<
">";
4792void AssemblyWriter::writeMDNode(
unsigned Slot,
const MDNode *
Node) {
4793 Out <<
'!' <<
Slot <<
" = ";
4794 printMDNodeBody(
Node);
4798void AssemblyWriter::writeAllMDNodes() {
4802 Nodes[
I.second] = cast<MDNode>(
I.first);
4804 for (
unsigned i = 0, e = Nodes.
size(); i != e; ++i) {
4805 writeMDNode(i, Nodes[i]);
4809void AssemblyWriter::printMDNodeBody(
const MDNode *
Node) {
4810 auto WriterCtx = getContext();
4814void AssemblyWriter::writeAttribute(
const Attribute &Attr,
bool InAttrGroup) {
4823 TypePrinter.print(Ty, Out);
4828void AssemblyWriter::writeAttributeSet(
const AttributeSet &AttrSet,
4830 bool FirstAttr =
true;
4831 for (
const auto &Attr : AttrSet) {
4834 writeAttribute(Attr, InAttrGroup);
4839void AssemblyWriter::writeAllAttributeGroups() {
4840 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4841 asVec.resize(
Machine.as_size());
4844 asVec[
I.second] =
I;
4846 for (
const auto &
I : asVec)
4847 Out <<
"attributes #" <<
I.second <<
" = { "
4848 <<
I.first.getAsString(
true) <<
" }\n";
4851void AssemblyWriter::printUseListOrder(
const Value *V,
4852 const std::vector<unsigned> &Shuffle) {
4853 bool IsInFunction =
Machine.getFunction();
4857 Out <<
"uselistorder";
4858 if (
const BasicBlock *BB = IsInFunction ?
nullptr : dyn_cast<BasicBlock>(V)) {
4860 writeOperand(BB->getParent(),
false);
4862 writeOperand(BB,
false);
4865 writeOperand(V,
true);
4869 assert(Shuffle.size() >= 2 &&
"Shuffle too small");
4871 for (
unsigned I = 1, E = Shuffle.size();
I != E; ++
I)
4872 Out <<
", " << Shuffle[
I];
4876void AssemblyWriter::printUseLists(
const Function *
F) {
4877 auto It = UseListOrders.find(
F);
4878 if (It == UseListOrders.end())
4881 Out <<
"\n; uselistorder directives\n";
4882 for (
const auto &Pair : It->second)
4883 printUseListOrder(Pair.first, Pair.second);
4891 bool ShouldPreserveUseListOrder,
4892 bool IsForDebug)
const {
4895 AssemblyWriter W(
OS, SlotTable, this->
getParent(), AAW,
4897 ShouldPreserveUseListOrder);
4898 W.printFunction(
this);
4902 bool ShouldPreserveUseListOrder,
4903 bool IsForDebug)
const {
4906 AssemblyWriter W(
OS, SlotTable, this->
getModule(), AAW,
4908 ShouldPreserveUseListOrder);
4909 W.printBasicBlock(
this);
4913 bool ShouldPreserveUseListOrder,
bool IsForDebug)
const {
4916 AssemblyWriter W(
OS, SlotTable,
this, AAW, IsForDebug,
4917 ShouldPreserveUseListOrder);
4918 W.printModule(
this);
4924 AssemblyWriter W(
OS, SlotTable,
getParent(),
nullptr, IsForDebug);
4925 W.printNamedMDNode(
this);
4929 bool IsForDebug)
const {
4930 std::optional<SlotTracker> LocalST;
4936 SlotTable = &*LocalST;
4940 AssemblyWriter W(
OS, *SlotTable,
getParent(),
nullptr, IsForDebug);
4941 W.printNamedMDNode(
this);
4946 ROS <<
" = comdat ";
4953 ROS <<
"exactmatch";
4959 ROS <<
"nodeduplicate";
4971 TP.print(
const_cast<Type*
>(
this),
OS);
4977 if (
StructType *STy = dyn_cast<StructType>(
const_cast<Type*
>(
this)))
4980 TP.printStructBody(STy,
OS);
4985 if (
const auto *CI = dyn_cast<CallInst>(&
I))
4986 if (
Function *
F = CI->getCalledFunction())
4987 if (
F->isIntrinsic())
4988 for (
auto &
Op :
I.operands())
4989 if (
auto *V = dyn_cast_or_null<MetadataAsValue>(
Op))
4990 if (isa<MDNode>(V->getMetadata()))
4998 print(ROS, MST, IsForDebug);
5004 print(ROS, MST, IsForDebug);
5008 bool IsForDebug)
const {
5013 auto incorporateFunction = [&](
const Function *
F) {
5019 W.printDbgMarker(*
this);
5025 print(ROS, MST, IsForDebug);
5029 bool IsForDebug)
const {
5034 auto incorporateFunction = [&](
const Function *
F) {
5042 W.printDbgVariableRecord(*
this);
5046 bool IsForDebug)
const {
5051 auto incorporateFunction = [&](
const Function *
F) {
5058 W.printDbgLabelRecord(*
this);
5062 bool ShouldInitializeAllMetadata =
false;
5063 if (
auto *
I = dyn_cast<Instruction>(
this))
5065 else if (isa<Function>(
this) || isa<MetadataAsValue>(
this))
5066 ShouldInitializeAllMetadata =
true;
5069 print(ROS, MST, IsForDebug);
5073 bool IsForDebug)
const {
5078 auto incorporateFunction = [&](
const Function *
F) {
5083 if (
const Instruction *
I = dyn_cast<Instruction>(
this)) {
5084 incorporateFunction(
I->getParent() ?
I->getParent()->getParent() :
nullptr);
5086 W.printInstruction(*
I);
5087 }
else if (
const BasicBlock *BB = dyn_cast<BasicBlock>(
this)) {
5088 incorporateFunction(BB->getParent());
5090 W.printBasicBlock(BB);
5091 }
else if (
const GlobalValue *GV = dyn_cast<GlobalValue>(
this)) {
5092 AssemblyWriter W(
OS, SlotTable, GV->
getParent(),
nullptr, IsForDebug);
5095 else if (
const Function *
F = dyn_cast<Function>(GV))
5097 else if (
const GlobalAlias *
A = dyn_cast<GlobalAlias>(GV))
5099 else if (
const GlobalIFunc *
I = dyn_cast<GlobalIFunc>(GV))
5103 }
else if (
const MetadataAsValue *V = dyn_cast<MetadataAsValue>(
this)) {
5105 }
else if (
const Constant *
C = dyn_cast<Constant>(
this)) {
5106 TypePrinting TypePrinter;
5107 TypePrinter.print(
C->getType(),
OS);
5109 AsmWriterContext WriterCtx(&TypePrinter, MST.
getMachine());
5111 }
else if (isa<InlineAsm>(
this) || isa<Argument>(
this)) {
5123 if (V.hasName() || isa<GlobalValue>(V) ||
5124 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
5125 AsmWriterContext WriterCtx(
nullptr,
Machine, M);
5134 TypePrinting TypePrinter(MST.
getModule());
5136 TypePrinter.print(V.getType(), O);
5154 M, isa<MetadataAsValue>(
this));
5170 AsmWriterContext &WriterCtx) {
5174 auto *
N = dyn_cast<MDNode>(&MD);
5175 if (!
N || isa<DIExpression>(MD))
5183struct MDTreeAsmWriterContext :
public AsmWriterContext {
5186 using EntryTy = std::pair<unsigned, std::string>;
5196 : AsmWriterContext(TP,
ST,
M), Level(0
U), Visited({InitMD}), MainOS(
OS) {}
5198 void onWriteMetadataAsOperand(
const Metadata *MD)
override {
5199 if (!Visited.
insert(MD).second)
5208 unsigned InsertIdx = Buffer.
size() - 1;
5211 Buffer[InsertIdx].second = std::move(
SS.str());
5215 ~MDTreeAsmWriterContext() {
5216 for (
const auto &Entry : Buffer) {
5218 unsigned NumIndent =
Entry.first * 2U;
5227 bool OnlyAsOperand,
bool PrintAsTree =
false) {
5230 TypePrinting TypePrinter(M);
5232 std::unique_ptr<AsmWriterContext> WriterCtx;
5233 if (PrintAsTree && !OnlyAsOperand)
5234 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5238 std::make_unique<AsmWriterContext>(&TypePrinter, MST.
getMachine(), M);
5242 auto *
N = dyn_cast<MDNode>(&MD);
5243 if (OnlyAsOperand || !
N || isa<DIExpression>(MD))
5267 const Module *M,
bool )
const {
5286 AssemblyWriter W(
OS, SlotTable,
this, IsForDebug);
5287 W.printModuleSummaryIndex();
5291 unsigned UB)
const {
5297 if (
I.second >= LB &&
I.second < UB)
5298 L.push_back(std::make_pair(
I.second,
I.first));
5301#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static void writeDIMacro(raw_ostream &Out, const DIMacro *N, AsmWriterContext &WriterCtx)
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, AsmWriterContext &WriterCtx)
static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, AsmWriterContext &WriterCtx)
MapVector< const Value *, unsigned > OrderMap
static void PrintCallingConv(unsigned cc, raw_ostream &Out)
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, AsmWriterContext &WriterCtx)
static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand, bool PrintAsTree=false)
static void WriteOptimizationInfo(raw_ostream &Out, const User *U)
static void writeDIStringType(raw_ostream &Out, const DIStringType *N, AsmWriterContext &WriterCtx)
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)
static std::vector< unsigned > predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM)
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, AsmWriterContext &WriterCtx)
static void orderValue(const Value *V, OrderMap &OM)
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
static const char * getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)
static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef< int > Mask)
static void writeDIModule(raw_ostream &Out, const DIModule *N, AsmWriterContext &WriterCtx)
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &)
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, AsmWriterContext &WriterCtx)
static bool isReferencingMDNode(const Instruction &I)
static void writeDILabel(raw_ostream &Out, const DILabel *N, AsmWriterContext &WriterCtx)
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, AsmWriterContext &Ctx)
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, AsmWriterContext &WriterCtx)
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromDPI(const DbgMarker *Marker)
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, AsmWriterContext &WriterCtx)
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, AsmWriterContext &WriterCtx)
static const char * getSummaryKindName(GlobalValueSummary::SummaryKind SK)
static OrderMap orderModule(const Module *M)
static const char * getVisibilityName(GlobalValue::VisibilityTypes Vis)
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, AsmWriterContext &WriterCtx)
Recursive version of printMetadataImpl.
static SlotTracker * createSlotTracker(const Value *V)
static void WriteAPFloatInternal(raw_ostream &Out, const APFloat &APF)
static void writeDILocation(raw_ostream &Out, const DILocation *DL, AsmWriterContext &WriterCtx)
static void writeDINamespace(raw_ostream &Out, const DINamespace *N, AsmWriterContext &WriterCtx)
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, AsmWriterContext &WriterCtx)
static UseListOrderMap predictUseListOrder(const Module *M)
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, AsmWriterContext &WriterCtx)
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, AsmWriterContext &WriterCtx)
static std::string getLinkageName(GlobalValue::LinkageTypes LT)
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, AsmWriterContext &)
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, AsmWriterContext &WriterCtx)
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, AsmWriterContext &WriterCtx)
static const char * getTTResKindName(TypeTestResolution::Kind K)
static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, AsmWriterContext &WriterCtx)
static const char * getImportTypeName(GlobalValueSummary::ImportKind IK)
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromVal(const Value *V)
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out)
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, AsmWriterContext &WriterCtx)
static void writeDISubrange(raw_ostream &Out, const DISubrange *N, AsmWriterContext &WriterCtx)
static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, AsmWriterContext &WriterCtx)
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, AsmWriterContext &)
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, AsmWriterContext &WriterCtx)
static void writeDIExpression(raw_ostream &Out, const DIExpression *N, AsmWriterContext &WriterCtx)
static void PrintDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out)
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, AsmWriterContext &WriterCtx)
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, AsmWriterContext &WriterCtx)
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
static void writeDIArgList(raw_ostream &Out, const DIArgList *N, AsmWriterContext &WriterCtx, bool FromValue=false)
static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, AsmWriterContext &WriterCtx)
static const Value * skipMetadataWrapper(const Value *V)
Look for a value that might be wrapped as metadata, e.g.
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, AsmWriterContext &WriterCtx)
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
COFF::MachineTypes Machine
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil pretty DXIL Metadata Pretty Printer
Looks at all the uses of the given value Returns the Liveness deduced from the uses of this value Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses If the result is MaybeLiveUses might be modified but its content should be ignored(since it might not be complete). DeadArgumentEliminationPass
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file contains an interface for creating legacy passes to print out IR in various granularities.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file provides utility classes that use RAII to save and restore values.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
double convertToDouble() const
Converts this APFloat to host double value.
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
const fltSemantics & getSemantics() const
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
uint64_t getZExtValue() const
Get zero extended value.
APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Abstract interface of slot tracker storage.
virtual ~AbstractSlotTrackerStorage()
Alias summary information.
const GlobalValueSummary & getAliasee() const
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
virtual ~AssemblyAnnotationWriter()
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
static StringRef getOperationName(BinOp Op)
AttributeSet getFnAttrs() const
The function attributes are returned.
std::string getAsString(unsigned Index, bool InAttrGrp=false) const
Return the attributes at the index as a string.
bool hasRetAttrs() const
Return true if attributes exist for the return value.
AttributeSet getAttributes(unsigned Index) const
The attributes for the specified index are returned.
bool hasFnAttrs() const
Return true the attributes exist for the function.
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
bool hasAttributes() const
Return true if attributes exists in this set.
std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
Attribute::AttrKind getKindAsEnum() const
Return the attribute's kind as an enum (Attribute::AttrKind).
static StringRef getNameFromAttrKind(Attribute::AttrKind AttrKind)
bool isTypeAttribute() const
Return true if the attribute is a type attribute.
Type * getValueAsType() const
Return the attribute's value as a Type.
LLVM Basic Block Representation.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Function * getParent() const
Return the enclosing method, or null if none.
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
The address of a basic block.
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
void print(raw_ostream &OS, bool IsForDebug=false) const
StringRef getName() const
@ Largest
The linker will choose the largest COMDAT.
@ SameSize
The data referenced by the COMDAT must be the same size.
@ Any
The linker may choose any COMDAT.
@ NoDeduplicate
No deduplication is performed.
@ ExactMatch
The data referenced by the COMDAT must be the same.
SelectionKind getSelectionKind() const
ConstantArray - Constant Array Declarations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
A constant value that is initialized with an expression using other constant values.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
A signed pointer, in the ptrauth sense.
This class represents a range of values.
APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This is an important base class in LLVM.
Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Basic type, like 'int' or 'float'.
static const char * nameTableKindString(DebugNameTableKind PK)
static const char * emissionKindString(DebugEmissionKind EK)
A lightweight wrapper around an expression operand.
A pair of DIGlobalVariable and DIExpression.
An imported module (C++ using directive or similar).
Macro Info DWARF-like metadata node.
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Tagged DWARF-like metadata node.
static DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static StringRef getFlagString(DIFlags Flag)
String type, Fortran CHARACTER(n)
static DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static StringRef getFlagString(DISPFlags Flag)
DISPFlags
Debug info subprogram flags.
Type array for a subprogram.
This class represents an Operation in the Expression.
Records a position in IR for a source label (DILabel).
void print(raw_ostream &O, bool IsForDebug=false) const
Per-instruction record of debug-info.
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on DbgMarker.
const BasicBlock * getParent() const
simple_ilist< DbgRecord > StoredDbgRecords
List of DbgRecords, the non-instruction equivalent of llvm.dbg.
Base class for non-instruction debug metadata records that have positions within IR.
void print(raw_ostream &O, bool IsForDebug=false) const
DebugLoc getDebugLoc() const
DbgMarker * Marker
Marker that this DbgRecord is linked into.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
void print(raw_ostream &O, bool IsForDebug=false) const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Metadata * getRawAddress() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Utility class for floating point operations which can have information about relaxed accuracy require...
An instruction for ordering other memory operations.
Function summary information to aid decisions and implementation of importing.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
Represents calls to the gc.relocate intrinsic.
Value * getBasePtr() const
Value * getDerivedPtr() const
Generic tagged DWARF-like metadata node.
const Constant * getAliasee() const
const Constant * getResolver() const
StringRef getSection() const
Get the custom section of this global if it has one.
MaybeAlign getAlign() const
Returns the alignment of the given variable or function.
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
const Comdat * getComdat() const
bool hasSection() const
Check if this global has a custom object file section.
Function and variable summary information to aid decisions and implementation of importing.
SummaryKind
Sububclass discriminator (for dyn_cast<> et al.)
bool hasPartition() const
const SanitizerMetadata & getSanitizerMetadata() const
bool hasExternalLinkage() const
VisibilityTypes getVisibility() const
bool isImplicitDSOLocal() const
LinkageTypes getLinkage() const
ThreadLocalMode getThreadLocalMode() const
DLLStorageClassTypes
Storage classes of global values for PE targets.
@ DLLExportStorageClass
Function to be accessible from DLL.
@ DLLImportStorageClass
Function to be imported from DLL.
bool hasSanitizerMetadata() const
GUID getGUID() const
Return a 64-bit global unique ID constructed from global value name (i.e.
StringRef getPartition() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
@ DefaultVisibility
The GV is visible.
@ HiddenVisibility
The GV is hidden.
@ ProtectedVisibility
The GV is protected.
bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source,...
UnnamedAddr getUnnamedAddr() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
@ PrivateLinkage
Like Internal, but omit from symbol table.
@ CommonLinkage
Tentative definitions.
@ InternalLinkage
Rename collisions when linking (static functions).
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
@ WeakODRLinkage
Same, but only replaced by something equivalent.
@ ExternalLinkage
Externally visible function.
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
@ AppendingLinkage
Special purpose, only applies to global arrays.
@ AvailableExternallyLinkage
Available for inspection, not emission.
@ ExternalWeakLinkage
ExternalWeak linkage description.
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
DLLStorageClassTypes getDLLStorageClass() const
Type * getValueType() const
Global variable summary information to aid decisions and implementation of importing.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isExternallyInitialized() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
AttributeSet getAttributes() const
Return the attribute set for this global.
std::optional< CodeModel::Model > getCodeModel() const
Get the custom code model of this global if it has one.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
This instruction inserts a struct field of array element value into an aggregate value.
This is an important class for using LLVM in a threaded context.
void getSyncScopeNames(SmallVectorImpl< StringRef > &SSNs) const
getSyncScopeNames - Populates client supplied SmallVector with synchronization scope names registered...
The landingpad instruction holds all of the information necessary to generate correct exception handl...
An instruction for reading from memory.
void printTree(raw_ostream &OS, const Module *M=nullptr) const
Print in tree shape.
void dumpTree() const
User-friendly dump in tree shape.
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
std::vector< std::pair< unsigned, const MDNode * > > MachineMDNodeListType
const Module * getModule() const
ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F=nullptr)
Wrap a preinitialized SlotTracker.
virtual ~ModuleSlotTracker()
Destructor to clean up storage.
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
void collectMDNodes(MachineMDNodeListType &L, unsigned LB, unsigned UB) const
SlotTracker * getMachine()
Lazily creates a slot tracker.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
void incorporateFunction(const Function &F)
Incorporate the given function.
Class to hold module path string table and global value map, and encapsulate methods for operating on...
static constexpr const char * getRegularLTOModuleName()
const StringMap< ModuleHash > & modulePaths() const
Table of modules, containing module hash and id.
void dump() const
Dump to stderr (for debugging).
void print(raw_ostream &OS, bool IsForDebug=false) const
Print to an output stream.
A Module instance is used to store all the information related to an LLVM module.
iterator_range< ifunc_iterator > ifuncs()
iterator_range< named_metadata_iterator > named_metadata()
iterator_range< alias_iterator > aliases()
iterator_range< global_iterator > globals()
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
void dump() const
Dump the module to stderr (for debugging).
StringRef getName() const
void print(raw_ostream &ROS, bool IsForDebug=false) const
MDNode * getOperand(unsigned i) const
unsigned getNumOperands() const
Module * getParent()
Get the module that holds this named metadata collection.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
An or instruction, which can be marked as "disjoint", indicating that the inputs don't have a 1 in th...
A udiv or sdiv instruction, which can be marked as "exact", indicating that no bits are destroyed.
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
A vector that has set insertion semantics.
This instruction constructs a fixed permutation of two input vectors.
This class provides computation of slot numbers for LLVM Assembly writing.
int getMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
int getTypeIdCompatibleVtableSlot(StringRef Id)
int getModulePathSlot(StringRef Path)
unsigned mdn_size() const
SlotTracker(const SlotTracker &)=delete
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
int getTypeIdSlot(StringRef Id)
void initializeIfNeeded()
These functions do the actual initialization.
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
const Function * getFunction() const
unsigned getNextMetadataSlot() override
void incorporateFunction(const Function *F)
If you'd like to deal with a function instead of just a module, use this method to get its data into ...
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
int getAttributeGroupSlot(AttributeSet AS)
SlotTracker(const Module *M, bool ShouldInitializeAllMetadata=false)
Construct from a module.
void createMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
SlotTracker & operator=(const SlotTracker &)=delete
int getGUIDSlot(GlobalValue::GUID GUID)
int initializeIndexIfNeeded()
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
iterator find(StringRef Key)
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
Class to represent struct types.
ArrayRef< Type * > elements() const
unsigned getNumElements() const
Random access to the elements.
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
StringRef getName() const
Return the name for this struct type if it has an identity.
Class to represent target extensions types, which are generally unintrospectable from target-independ...
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
ArrayRef< unsigned > int_params() const
Return the integer parameters for this particular target extension type.
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ X86_AMXTyID
AMX vectors (8192 bits, X86 specific)
@ TypedPointerTyID
Typed pointer used by some GPU targets.
@ HalfTyID
16-bit floating point type
@ TargetExtTyID
Target extension type.
@ VoidTyID
type with no size
@ ScalableVectorTyID
Scalable SIMD vector type.
@ FloatTyID
32-bit floating point type
@ IntegerTyID
Arbitrary bit width integers.
@ FixedVectorTyID
Fixed width SIMD vector type.
@ BFloatTyID
16-bit floating point type (7-bit significand)
@ DoubleTyID
64-bit floating point type
@ X86_FP80TyID
80-bit floating point type (X87)
@ PPC_FP128TyID
128-bit floating point type (two 64-bits, PowerPC)
@ FP128TyID
128-bit floating point type (112-bit significand)
void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
StringRef getTargetExtName() const
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A few GPU targets, such as DXIL and SPIR-V, have typed pointers.
Type * getElementType() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
StringRef getName() const
Return a constant reference to the value's name.
void dump() const
Support for debugging, callable in GDB: V->dump()
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
A raw_ostream that writes to an std::string.
StringRef LanguageString(unsigned Language)
StringRef AttributeEncodingString(unsigned Encoding)
StringRef ConventionString(unsigned Convention)
StringRef MacinfoString(unsigned Encoding)
StringRef OperationEncodingString(unsigned Encoding)
StringRef TagString(unsigned Tag)
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ RISCV_VectorCall
Calling convention used for RISC-V V-extension.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AVR_SIGNAL
Used for AVR signal routines.
@ Swift
Calling convention for Swift.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
@ AVR_INTR
Used for AVR interrupt routines.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ DUMMY_HHVM
Placeholders for HHVM calling conventions (deprecated, removed).
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ CXX_FAST_TLS
Used for access functions.
@ X86_INTR
x86 hardware interrupt context.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ X86_ThisCall
Similar to X86_StdCall.
@ PTX_Device
Call to a PTX device function.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ X86_StdCall
stdcall is mostly used by the Win32 API.
@ SPIR_FUNC
Used for SPIR non-kernel device functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ MSP430_INTR
Used for MSP430 interrupt routines.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
@ C
The default llvm calling convention, compatible with C.
@ X86_FastCall
'fast' analog of X86_StdCall.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ System
Synchronized with respect to all concurrently executing threads.
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto pred_end(const MachineBasicBlock *BB)
const char * getHotnessName(CalleeInfo::HotnessType HT)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
void sort(IteratorTy Start, IteratorTy End)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Ref
The access may reference the value stored in memory.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
auto pred_begin(const MachineBasicBlock *BB)
const char * toString(DWARFSectionKind Kind)
@ Default
The result values are uniform if and only if all operands are uniform.
std::vector< TypeIdOffsetVtableInfo > TypeIdCompatibleVtableInfo
List of vtable definitions decorated by a particular type identifier, and their corresponding offsets...
void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
static const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & PPCDoubleDouble() LLVM_READNONE
static const fltSemantics & x87DoubleExtended() LLVM_READNONE
static const fltSemantics & IEEEquad() LLVM_READNONE
static const fltSemantics & IEEEdouble() LLVM_READNONE
static const fltSemantics & IEEEhalf() LLVM_READNONE
static const fltSemantics & BFloat() LLVM_READNONE
A single checksum, represented by a Kind and a Value (a string).
T Value
The string value of the checksum.
StringRef getKindAsString() const
All type identifier related information.
std::vector< ConstVCall > TypeCheckedLoadConstVCalls
std::vector< VFuncId > TypeCheckedLoadVCalls
std::vector< ConstVCall > TypeTestAssumeConstVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
std::vector< GlobalValue::GUID > TypeTests
List of type identifiers used by this function in llvm.type.test intrinsics referenced by something o...
std::vector< VFuncId > TypeTestAssumeVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
An "identifier" for a virtual function.
Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
unsigned DSOLocal
Indicates that the linker resolved the symbol to a definition from within the same linkage unit.
unsigned CanAutoHide
In the per-module summary, indicates that the global value is linkonce_odr and global unnamed addr (s...
unsigned ImportType
This field is written by the ThinLTO indexing step to postlink combined summary.
unsigned NotEligibleToImport
Indicate if the global value cannot be imported (e.g.
unsigned Linkage
The linkage type of the associated global value.
unsigned Visibility
Indicates the visibility.
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
A utility class that uses RAII to save and restore the value of a variable.
std::map< uint64_t, WholeProgramDevirtResolution > WPDRes
Mapping from byte offset to whole-program devirt resolution for that (typeid, byte offset) pair.
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
Struct that holds a reference to a particular GUID in a global value summary.
@ UniformRetVal
Uniform return value optimization.
@ VirtualConstProp
Virtual constant propagation.
@ UniqueRetVal
Unique return value optimization.
@ Indir
Just do a regular virtual call.
enum llvm::WholeProgramDevirtResolution::Kind TheKind
std::map< std::vector< uint64_t >, ByArg > ResByArg
Resolutions for calls with all constant integer arguments (excluding the first argument,...
std::string SingleImplName
@ SingleImpl
Single implementation devirtualization.
@ Indir
Just do a regular virtual call.
@ BranchFunnel
When retpoline mitigation is enabled, use a branch funnel that is defined in the merged module.
Function object to check whether the second component of a container supported by std::get (like std:...