LLVM 19.0.0git
MIParser.cpp
Go to the documentation of this file.
1//===- MIParser.cpp - Machine instructions parser implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the parsing of machine instructions.
10//
11//===----------------------------------------------------------------------===//
12
14#include "MILexer.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/StringMap.h"
21#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
44#include "llvm/IR/BasicBlock.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DataLayout.h"
48#include "llvm/IR/DebugLoc.h"
49#include "llvm/IR/Function.h"
50#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Module.h"
56#include "llvm/IR/Type.h"
57#include "llvm/IR/Value.h"
59#include "llvm/MC/LaneBitmask.h"
60#include "llvm/MC/MCContext.h"
61#include "llvm/MC/MCDwarf.h"
62#include "llvm/MC/MCInstrDesc.h"
68#include "llvm/Support/SMLoc.h"
72#include <cassert>
73#include <cctype>
74#include <cstddef>
75#include <cstdint>
76#include <limits>
77#include <string>
78#include <utility>
79
80using namespace llvm;
81
83 const TargetSubtargetInfo &NewSubtarget) {
84
85 // If the subtarget changed, over conservatively assume everything is invalid.
86 if (&Subtarget == &NewSubtarget)
87 return;
88
89 Names2InstrOpCodes.clear();
90 Names2Regs.clear();
91 Names2RegMasks.clear();
92 Names2SubRegIndices.clear();
93 Names2TargetIndices.clear();
94 Names2DirectTargetFlags.clear();
95 Names2BitmaskTargetFlags.clear();
96 Names2MMOTargetFlags.clear();
97
98 initNames2RegClasses();
99 initNames2RegBanks();
100}
101
102void PerTargetMIParsingState::initNames2Regs() {
103 if (!Names2Regs.empty())
104 return;
105
106 // The '%noreg' register is the register 0.
107 Names2Regs.insert(std::make_pair("noreg", 0));
108 const auto *TRI = Subtarget.getRegisterInfo();
109 assert(TRI && "Expected target register info");
110
111 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
112 bool WasInserted =
113 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
114 .second;
115 (void)WasInserted;
116 assert(WasInserted && "Expected registers to be unique case-insensitively");
117 }
118}
119
121 Register &Reg) {
122 initNames2Regs();
123 auto RegInfo = Names2Regs.find(RegName);
124 if (RegInfo == Names2Regs.end())
125 return true;
126 Reg = RegInfo->getValue();
127 return false;
128}
129
130void PerTargetMIParsingState::initNames2InstrOpCodes() {
131 if (!Names2InstrOpCodes.empty())
132 return;
133 const auto *TII = Subtarget.getInstrInfo();
134 assert(TII && "Expected target instruction info");
135 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
136 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
137}
138
140 unsigned &OpCode) {
141 initNames2InstrOpCodes();
142 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
143 if (InstrInfo == Names2InstrOpCodes.end())
144 return true;
145 OpCode = InstrInfo->getValue();
146 return false;
147}
148
149void PerTargetMIParsingState::initNames2RegMasks() {
150 if (!Names2RegMasks.empty())
151 return;
152 const auto *TRI = Subtarget.getRegisterInfo();
153 assert(TRI && "Expected target register info");
154 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
155 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
156 assert(RegMasks.size() == RegMaskNames.size());
157 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
158 Names2RegMasks.insert(
159 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
160}
161
163 initNames2RegMasks();
164 auto RegMaskInfo = Names2RegMasks.find(Identifier);
165 if (RegMaskInfo == Names2RegMasks.end())
166 return nullptr;
167 return RegMaskInfo->getValue();
168}
169
170void PerTargetMIParsingState::initNames2SubRegIndices() {
171 if (!Names2SubRegIndices.empty())
172 return;
173 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
174 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
175 Names2SubRegIndices.insert(
176 std::make_pair(TRI->getSubRegIndexName(I), I));
177}
178
180 initNames2SubRegIndices();
181 auto SubRegInfo = Names2SubRegIndices.find(Name);
182 if (SubRegInfo == Names2SubRegIndices.end())
183 return 0;
184 return SubRegInfo->getValue();
185}
186
187void PerTargetMIParsingState::initNames2TargetIndices() {
188 if (!Names2TargetIndices.empty())
189 return;
190 const auto *TII = Subtarget.getInstrInfo();
191 assert(TII && "Expected target instruction info");
192 auto Indices = TII->getSerializableTargetIndices();
193 for (const auto &I : Indices)
194 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
195}
196
198 initNames2TargetIndices();
199 auto IndexInfo = Names2TargetIndices.find(Name);
200 if (IndexInfo == Names2TargetIndices.end())
201 return true;
202 Index = IndexInfo->second;
203 return false;
204}
205
206void PerTargetMIParsingState::initNames2DirectTargetFlags() {
207 if (!Names2DirectTargetFlags.empty())
208 return;
209
210 const auto *TII = Subtarget.getInstrInfo();
211 assert(TII && "Expected target instruction info");
213 for (const auto &I : Flags)
214 Names2DirectTargetFlags.insert(
215 std::make_pair(StringRef(I.second), I.first));
216}
217
219 unsigned &Flag) {
220 initNames2DirectTargetFlags();
221 auto FlagInfo = Names2DirectTargetFlags.find(Name);
222 if (FlagInfo == Names2DirectTargetFlags.end())
223 return true;
224 Flag = FlagInfo->second;
225 return false;
226}
227
228void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
229 if (!Names2BitmaskTargetFlags.empty())
230 return;
231
232 const auto *TII = Subtarget.getInstrInfo();
233 assert(TII && "Expected target instruction info");
235 for (const auto &I : Flags)
236 Names2BitmaskTargetFlags.insert(
237 std::make_pair(StringRef(I.second), I.first));
238}
239
241 unsigned &Flag) {
242 initNames2BitmaskTargetFlags();
243 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
244 if (FlagInfo == Names2BitmaskTargetFlags.end())
245 return true;
246 Flag = FlagInfo->second;
247 return false;
248}
249
250void PerTargetMIParsingState::initNames2MMOTargetFlags() {
251 if (!Names2MMOTargetFlags.empty())
252 return;
253
254 const auto *TII = Subtarget.getInstrInfo();
255 assert(TII && "Expected target instruction info");
256 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
257 for (const auto &I : Flags)
258 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
259}
260
263 initNames2MMOTargetFlags();
264 auto FlagInfo = Names2MMOTargetFlags.find(Name);
265 if (FlagInfo == Names2MMOTargetFlags.end())
266 return true;
267 Flag = FlagInfo->second;
268 return false;
269}
270
271void PerTargetMIParsingState::initNames2RegClasses() {
272 if (!Names2RegClasses.empty())
273 return;
274
275 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
276 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
277 const auto *RC = TRI->getRegClass(I);
278 Names2RegClasses.insert(
279 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
280 }
281}
282
283void PerTargetMIParsingState::initNames2RegBanks() {
284 if (!Names2RegBanks.empty())
285 return;
286
287 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
288 // If the target does not support GlobalISel, we may not have a
289 // register bank info.
290 if (!RBI)
291 return;
292
293 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
294 const auto &RegBank = RBI->getRegBank(I);
295 Names2RegBanks.insert(
296 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
297 }
298}
299
302 auto RegClassInfo = Names2RegClasses.find(Name);
303 if (RegClassInfo == Names2RegClasses.end())
304 return nullptr;
305 return RegClassInfo->getValue();
306}
307
309 auto RegBankInfo = Names2RegBanks.find(Name);
310 if (RegBankInfo == Names2RegBanks.end())
311 return nullptr;
312 return RegBankInfo->getValue();
313}
314
316 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
317 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
318}
319
321 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
322 if (I.second) {
325 Info->VReg = MRI.createIncompleteVirtualRegister();
326 I.first->second = Info;
327 }
328 return *I.first->second;
329}
330
332 assert(RegName != "" && "Expected named reg.");
333
334 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
335 if (I.second) {
338 I.first->second = Info;
339 }
340 return *I.first->second;
341}
342
343static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
344 DenseMap<unsigned, const Value *> &Slots2Values) {
345 int Slot = MST.getLocalSlot(V);
346 if (Slot == -1)
347 return;
348 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
349}
350
351/// Creates the mapping from slot numbers to function's unnamed IR values.
352static void initSlots2Values(const Function &F,
353 DenseMap<unsigned, const Value *> &Slots2Values) {
354 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
356 for (const auto &Arg : F.args())
357 mapValueToSlot(&Arg, MST, Slots2Values);
358 for (const auto &BB : F) {
359 mapValueToSlot(&BB, MST, Slots2Values);
360 for (const auto &I : BB)
361 mapValueToSlot(&I, MST, Slots2Values);
362 }
363}
364
366 if (Slots2Values.empty())
368 return Slots2Values.lookup(Slot);
369}
370
371namespace {
372
373/// A wrapper struct around the 'MachineOperand' struct that includes a source
374/// range and other attributes.
375struct ParsedMachineOperand {
376 MachineOperand Operand;
379 std::optional<unsigned> TiedDefIdx;
380
381 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
383 std::optional<unsigned> &TiedDefIdx)
384 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
385 if (TiedDefIdx)
386 assert(Operand.isReg() && Operand.isUse() &&
387 "Only used register operands can be tied");
388 }
389};
390
391class MIParser {
392 MachineFunction &MF;
394 StringRef Source, CurrentSource;
395 SMRange SourceRange;
396 MIToken Token;
398 /// Maps from slot numbers to function's unnamed basic blocks.
400
401public:
403 StringRef Source);
405 StringRef Source, SMRange SourceRange);
406
407 /// \p SkipChar gives the number of characters to skip before looking
408 /// for the next token.
409 void lex(unsigned SkipChar = 0);
410
411 /// Report an error at the current location with the given message.
412 ///
413 /// This function always return true.
414 bool error(const Twine &Msg);
415
416 /// Report an error at the given location with the given message.
417 ///
418 /// This function always return true.
419 bool error(StringRef::iterator Loc, const Twine &Msg);
420
421 bool
422 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
423 bool parseBasicBlocks();
424 bool parse(MachineInstr *&MI);
425 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
426 bool parseStandaloneNamedRegister(Register &Reg);
427 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
428 bool parseStandaloneRegister(Register &Reg);
429 bool parseStandaloneStackObject(int &FI);
430 bool parseStandaloneMDNode(MDNode *&Node);
432 bool parseMDTuple(MDNode *&MD, bool IsDistinct);
433 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
434 bool parseMetadata(Metadata *&MD);
435
436 bool
437 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
438 bool parseBasicBlock(MachineBasicBlock &MBB,
439 MachineBasicBlock *&AddFalthroughFrom);
440 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
441 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
442
443 bool parseNamedRegister(Register &Reg);
444 bool parseVirtualRegister(VRegInfo *&Info);
445 bool parseNamedVirtualRegister(VRegInfo *&Info);
446 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
447 bool parseRegisterFlag(unsigned &Flags);
448 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
449 bool parseSubRegisterIndex(unsigned &SubReg);
450 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
451 bool parseRegisterOperand(MachineOperand &Dest,
452 std::optional<unsigned> &TiedDefIdx,
453 bool IsDef = false);
454 bool parseImmediateOperand(MachineOperand &Dest);
455 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
456 const Constant *&C);
458 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
459 bool parseTypedImmediateOperand(MachineOperand &Dest);
460 bool parseFPImmediateOperand(MachineOperand &Dest);
462 bool parseMBBOperand(MachineOperand &Dest);
463 bool parseStackFrameIndex(int &FI);
464 bool parseStackObjectOperand(MachineOperand &Dest);
465 bool parseFixedStackFrameIndex(int &FI);
466 bool parseFixedStackObjectOperand(MachineOperand &Dest);
467 bool parseGlobalValue(GlobalValue *&GV);
468 bool parseGlobalAddressOperand(MachineOperand &Dest);
469 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
470 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
471 bool parseJumpTableIndexOperand(MachineOperand &Dest);
472 bool parseExternalSymbolOperand(MachineOperand &Dest);
473 bool parseMCSymbolOperand(MachineOperand &Dest);
474 [[nodiscard]] bool parseMDNode(MDNode *&Node);
475 bool parseDIExpression(MDNode *&Expr);
476 bool parseDILocation(MDNode *&Expr);
477 bool parseMetadataOperand(MachineOperand &Dest);
478 bool parseCFIOffset(int &Offset);
479 bool parseCFIRegister(Register &Reg);
480 bool parseCFIAddressSpace(unsigned &AddressSpace);
481 bool parseCFIEscapeValues(std::string& Values);
482 bool parseCFIOperand(MachineOperand &Dest);
483 bool parseIRBlock(BasicBlock *&BB, const Function &F);
484 bool parseBlockAddressOperand(MachineOperand &Dest);
485 bool parseIntrinsicOperand(MachineOperand &Dest);
486 bool parsePredicateOperand(MachineOperand &Dest);
487 bool parseShuffleMaskOperand(MachineOperand &Dest);
488 bool parseTargetIndexOperand(MachineOperand &Dest);
489 bool parseDbgInstrRefOperand(MachineOperand &Dest);
490 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
491 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
492 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
493 MachineOperand &Dest,
494 std::optional<unsigned> &TiedDefIdx);
495 bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
496 const unsigned OpIdx,
497 MachineOperand &Dest,
498 std::optional<unsigned> &TiedDefIdx);
499 bool parseOffset(int64_t &Offset);
500 bool parseIRBlockAddressTaken(BasicBlock *&BB);
501 bool parseAlignment(uint64_t &Alignment);
502 bool parseAddrspace(unsigned &Addrspace);
503 bool parseSectionID(std::optional<MBBSectionID> &SID);
504 bool parseBBID(std::optional<UniqueBBID> &BBID);
505 bool parseCallFrameSize(unsigned &CallFrameSize);
506 bool parseOperandsOffset(MachineOperand &Op);
507 bool parseIRValue(const Value *&V);
508 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
509 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
510 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
511 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
512 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
513 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
514 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
515 bool parseHeapAllocMarker(MDNode *&Node);
516 bool parsePCSections(MDNode *&Node);
517
518 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
519 MachineOperand &Dest, const MIRFormatter &MF);
520
521private:
522 /// Convert the integer literal in the current token into an unsigned integer.
523 ///
524 /// Return true if an error occurred.
525 bool getUnsigned(unsigned &Result);
526
527 /// Convert the integer literal in the current token into an uint64.
528 ///
529 /// Return true if an error occurred.
530 bool getUint64(uint64_t &Result);
531
532 /// Convert the hexadecimal literal in the current token into an unsigned
533 /// APInt with a minimum bitwidth required to represent the value.
534 ///
535 /// Return true if the literal does not represent an integer value.
536 bool getHexUint(APInt &Result);
537
538 /// If the current token is of the given kind, consume it and return false.
539 /// Otherwise report an error and return true.
540 bool expectAndConsume(MIToken::TokenKind TokenKind);
541
542 /// If the current token is of the given kind, consume it and return true.
543 /// Otherwise return false.
544 bool consumeIfPresent(MIToken::TokenKind TokenKind);
545
546 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
547
548 bool assignRegisterTies(MachineInstr &MI,
550
551 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
552 const MCInstrDesc &MCID);
553
554 const BasicBlock *getIRBlock(unsigned Slot);
555 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
556
557 /// Get or create an MCSymbol for a given name.
558 MCSymbol *getOrCreateMCSymbol(StringRef Name);
559
560 /// parseStringConstant
561 /// ::= StringConstant
562 bool parseStringConstant(std::string &Result);
563
564 /// Map the location in the MI string to the corresponding location specified
565 /// in `SourceRange`.
566 SMLoc mapSMLoc(StringRef::iterator Loc);
567};
568
569} // end anonymous namespace
570
571MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
572 StringRef Source)
573 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
574{}
575
576MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
577 StringRef Source, SMRange SourceRange)
578 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
579 SourceRange(SourceRange), PFS(PFS) {}
580
581void MIParser::lex(unsigned SkipChar) {
582 CurrentSource = lexMIToken(
583 CurrentSource.slice(SkipChar, StringRef::npos), Token,
584 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
585}
586
587bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
588
589bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
590 const SourceMgr &SM = *PFS.SM;
591 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
592 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
593 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
594 // Create an ordinary diagnostic when the source manager's buffer is the
595 // source string.
597 return true;
598 }
599 // Create a diagnostic for a YAML string literal.
600 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
601 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
602 Source, std::nullopt, std::nullopt);
603 return true;
604}
605
606SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
607 assert(SourceRange.isValid() && "Invalid source range");
608 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
609 return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
610 (Loc - Source.data()));
611}
612
613typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
615
616static const char *toString(MIToken::TokenKind TokenKind) {
617 switch (TokenKind) {
618 case MIToken::comma:
619 return "','";
620 case MIToken::equal:
621 return "'='";
622 case MIToken::colon:
623 return "':'";
624 case MIToken::lparen:
625 return "'('";
626 case MIToken::rparen:
627 return "')'";
628 default:
629 return "<unknown token>";
630 }
631}
632
633bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
634 if (Token.isNot(TokenKind))
635 return error(Twine("expected ") + toString(TokenKind));
636 lex();
637 return false;
638}
639
640bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
641 if (Token.isNot(TokenKind))
642 return false;
643 lex();
644 return true;
645}
646
647// Parse Machine Basic Block Section ID.
648bool MIParser::parseSectionID(std::optional<MBBSectionID> &SID) {
650 lex();
651 if (Token.is(MIToken::IntegerLiteral)) {
652 unsigned Value = 0;
653 if (getUnsigned(Value))
654 return error("Unknown Section ID");
655 SID = MBBSectionID{Value};
656 } else {
657 const StringRef &S = Token.stringValue();
658 if (S == "Exception")
660 else if (S == "Cold")
662 else
663 return error("Unknown Section ID");
664 }
665 lex();
666 return false;
667}
668
669// Parse Machine Basic Block ID.
670bool MIParser::parseBBID(std::optional<UniqueBBID> &BBID) {
671 assert(Token.is(MIToken::kw_bb_id));
672 lex();
673 unsigned BaseID = 0;
674 unsigned CloneID = 0;
675 if (getUnsigned(BaseID))
676 return error("Unknown BB ID");
677 lex();
678 if (Token.is(MIToken::IntegerLiteral)) {
679 if (getUnsigned(CloneID))
680 return error("Unknown Clone ID");
681 lex();
682 }
683 BBID = {BaseID, CloneID};
684 return false;
685}
686
687// Parse basic block call frame size.
688bool MIParser::parseCallFrameSize(unsigned &CallFrameSize) {
690 lex();
691 unsigned Value = 0;
692 if (getUnsigned(Value))
693 return error("Unknown call frame size");
694 CallFrameSize = Value;
695 lex();
696 return false;
697}
698
699bool MIParser::parseBasicBlockDefinition(
702 unsigned ID = 0;
703 if (getUnsigned(ID))
704 return true;
705 auto Loc = Token.location();
706 auto Name = Token.stringValue();
707 lex();
708 bool MachineBlockAddressTaken = false;
709 BasicBlock *AddressTakenIRBlock = nullptr;
710 bool IsLandingPad = false;
711 bool IsInlineAsmBrIndirectTarget = false;
712 bool IsEHFuncletEntry = false;
713 std::optional<MBBSectionID> SectionID;
714 uint64_t Alignment = 0;
715 std::optional<UniqueBBID> BBID;
716 unsigned CallFrameSize = 0;
717 BasicBlock *BB = nullptr;
718 if (consumeIfPresent(MIToken::lparen)) {
719 do {
720 // TODO: Report an error when multiple same attributes are specified.
721 switch (Token.kind()) {
723 MachineBlockAddressTaken = true;
724 lex();
725 break;
727 if (parseIRBlockAddressTaken(AddressTakenIRBlock))
728 return true;
729 break;
731 IsLandingPad = true;
732 lex();
733 break;
735 IsInlineAsmBrIndirectTarget = true;
736 lex();
737 break;
739 IsEHFuncletEntry = true;
740 lex();
741 break;
743 if (parseAlignment(Alignment))
744 return true;
745 break;
746 case MIToken::IRBlock:
748 // TODO: Report an error when both name and ir block are specified.
749 if (parseIRBlock(BB, MF.getFunction()))
750 return true;
751 lex();
752 break;
754 if (parseSectionID(SectionID))
755 return true;
756 break;
758 if (parseBBID(BBID))
759 return true;
760 break;
762 if (parseCallFrameSize(CallFrameSize))
763 return true;
764 break;
765 default:
766 break;
767 }
768 } while (consumeIfPresent(MIToken::comma));
769 if (expectAndConsume(MIToken::rparen))
770 return true;
771 }
772 if (expectAndConsume(MIToken::colon))
773 return true;
774
775 if (!Name.empty()) {
776 BB = dyn_cast_or_null<BasicBlock>(
777 MF.getFunction().getValueSymbolTable()->lookup(Name));
778 if (!BB)
779 return error(Loc, Twine("basic block '") + Name +
780 "' is not defined in the function '" +
781 MF.getName() + "'");
782 }
783 auto *MBB = MF.CreateMachineBasicBlock(BB);
784 MF.insert(MF.end(), MBB);
785 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
786 if (!WasInserted)
787 return error(Loc, Twine("redefinition of machine basic block with id #") +
788 Twine(ID));
789 if (Alignment)
790 MBB->setAlignment(Align(Alignment));
791 if (MachineBlockAddressTaken)
793 if (AddressTakenIRBlock)
794 MBB->setAddressTakenIRBlock(AddressTakenIRBlock);
795 MBB->setIsEHPad(IsLandingPad);
796 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget);
797 MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
798 if (SectionID) {
799 MBB->setSectionID(*SectionID);
800 MF.setBBSectionsType(BasicBlockSection::List);
801 }
802 if (BBID.has_value()) {
803 // BBSectionsType is set to `List` if any basic blocks has `SectionID`.
804 // Here, we set it to `Labels` if it hasn't been set above.
805 if (!MF.hasBBSections())
806 MF.setBBSectionsType(BasicBlockSection::Labels);
807 MBB->setBBID(BBID.value());
808 }
809 MBB->setCallFrameSize(CallFrameSize);
810 return false;
811}
812
813bool MIParser::parseBasicBlockDefinitions(
815 lex();
816 // Skip until the first machine basic block.
817 while (Token.is(MIToken::Newline))
818 lex();
819 if (Token.isErrorOrEOF())
820 return Token.isError();
821 if (Token.isNot(MIToken::MachineBasicBlockLabel))
822 return error("expected a basic block definition before instructions");
823 unsigned BraceDepth = 0;
824 do {
825 if (parseBasicBlockDefinition(MBBSlots))
826 return true;
827 bool IsAfterNewline = false;
828 // Skip until the next machine basic block.
829 while (true) {
830 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
831 Token.isErrorOrEOF())
832 break;
833 else if (Token.is(MIToken::MachineBasicBlockLabel))
834 return error("basic block definition should be located at the start of "
835 "the line");
836 else if (consumeIfPresent(MIToken::Newline)) {
837 IsAfterNewline = true;
838 continue;
839 }
840 IsAfterNewline = false;
841 if (Token.is(MIToken::lbrace))
842 ++BraceDepth;
843 if (Token.is(MIToken::rbrace)) {
844 if (!BraceDepth)
845 return error("extraneous closing brace ('}')");
846 --BraceDepth;
847 }
848 lex();
849 }
850 // Verify that we closed all of the '{' at the end of a file or a block.
851 if (!Token.isError() && BraceDepth)
852 return error("expected '}'"); // FIXME: Report a note that shows '{'.
853 } while (!Token.isErrorOrEOF());
854 return Token.isError();
855}
856
857bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
858 assert(Token.is(MIToken::kw_liveins));
859 lex();
860 if (expectAndConsume(MIToken::colon))
861 return true;
862 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
863 return false;
864 do {
865 if (Token.isNot(MIToken::NamedRegister))
866 return error("expected a named register");
868 if (parseNamedRegister(Reg))
869 return true;
870 lex();
872 if (consumeIfPresent(MIToken::colon)) {
873 // Parse lane mask.
874 if (Token.isNot(MIToken::IntegerLiteral) &&
875 Token.isNot(MIToken::HexLiteral))
876 return error("expected a lane mask");
877 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
878 "Use correct get-function for lane mask");
880 if (getUint64(V))
881 return error("invalid lane mask value");
882 Mask = LaneBitmask(V);
883 lex();
884 }
885 MBB.addLiveIn(Reg, Mask);
886 } while (consumeIfPresent(MIToken::comma));
887 return false;
888}
889
890bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
892 lex();
893 if (expectAndConsume(MIToken::colon))
894 return true;
895 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
896 return false;
897 do {
898 if (Token.isNot(MIToken::MachineBasicBlock))
899 return error("expected a machine basic block reference");
900 MachineBasicBlock *SuccMBB = nullptr;
901 if (parseMBBReference(SuccMBB))
902 return true;
903 lex();
904 unsigned Weight = 0;
905 if (consumeIfPresent(MIToken::lparen)) {
906 if (Token.isNot(MIToken::IntegerLiteral) &&
907 Token.isNot(MIToken::HexLiteral))
908 return error("expected an integer literal after '('");
909 if (getUnsigned(Weight))
910 return true;
911 lex();
912 if (expectAndConsume(MIToken::rparen))
913 return true;
914 }
916 } while (consumeIfPresent(MIToken::comma));
918 return false;
919}
920
921bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
922 MachineBasicBlock *&AddFalthroughFrom) {
923 // Skip the definition.
925 lex();
926 if (consumeIfPresent(MIToken::lparen)) {
927 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
928 lex();
929 consumeIfPresent(MIToken::rparen);
930 }
931 consumeIfPresent(MIToken::colon);
932
933 // Parse the liveins and successors.
934 // N.B: Multiple lists of successors and liveins are allowed and they're
935 // merged into one.
936 // Example:
937 // liveins: $edi
938 // liveins: $esi
939 //
940 // is equivalent to
941 // liveins: $edi, $esi
942 bool ExplicitSuccessors = false;
943 while (true) {
944 if (Token.is(MIToken::kw_successors)) {
945 if (parseBasicBlockSuccessors(MBB))
946 return true;
947 ExplicitSuccessors = true;
948 } else if (Token.is(MIToken::kw_liveins)) {
949 if (parseBasicBlockLiveins(MBB))
950 return true;
951 } else if (consumeIfPresent(MIToken::Newline)) {
952 continue;
953 } else
954 break;
955 if (!Token.isNewlineOrEOF())
956 return error("expected line break at the end of a list");
957 lex();
958 }
959
960 // Parse the instructions.
961 bool IsInBundle = false;
962 MachineInstr *PrevMI = nullptr;
963 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
964 !Token.is(MIToken::Eof)) {
965 if (consumeIfPresent(MIToken::Newline))
966 continue;
967 if (consumeIfPresent(MIToken::rbrace)) {
968 // The first parsing pass should verify that all closing '}' have an
969 // opening '{'.
970 assert(IsInBundle);
971 IsInBundle = false;
972 continue;
973 }
974 MachineInstr *MI = nullptr;
975 if (parse(MI))
976 return true;
977 MBB.insert(MBB.end(), MI);
978 if (IsInBundle) {
981 }
982 PrevMI = MI;
983 if (Token.is(MIToken::lbrace)) {
984 if (IsInBundle)
985 return error("nested instruction bundles are not allowed");
986 lex();
987 // This instruction is the start of the bundle.
989 IsInBundle = true;
990 if (!Token.is(MIToken::Newline))
991 // The next instruction can be on the same line.
992 continue;
993 }
994 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
995 lex();
996 }
997
998 // Construct successor list by searching for basic block machine operands.
999 if (!ExplicitSuccessors) {
1001 bool IsFallthrough;
1002 guessSuccessors(MBB, Successors, IsFallthrough);
1003 for (MachineBasicBlock *Succ : Successors)
1004 MBB.addSuccessor(Succ);
1005
1006 if (IsFallthrough) {
1007 AddFalthroughFrom = &MBB;
1008 } else {
1010 }
1011 }
1012
1013 return false;
1014}
1015
1016bool MIParser::parseBasicBlocks() {
1017 lex();
1018 // Skip until the first machine basic block.
1019 while (Token.is(MIToken::Newline))
1020 lex();
1021 if (Token.isErrorOrEOF())
1022 return Token.isError();
1023 // The first parsing pass should have verified that this token is a MBB label
1024 // in the 'parseBasicBlockDefinitions' method.
1026 MachineBasicBlock *AddFalthroughFrom = nullptr;
1027 do {
1028 MachineBasicBlock *MBB = nullptr;
1030 return true;
1031 if (AddFalthroughFrom) {
1032 if (!AddFalthroughFrom->isSuccessor(MBB))
1033 AddFalthroughFrom->addSuccessor(MBB);
1034 AddFalthroughFrom->normalizeSuccProbs();
1035 AddFalthroughFrom = nullptr;
1036 }
1037 if (parseBasicBlock(*MBB, AddFalthroughFrom))
1038 return true;
1039 // The method 'parseBasicBlock' should parse the whole block until the next
1040 // block or the end of file.
1041 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
1042 } while (Token.isNot(MIToken::Eof));
1043 return false;
1044}
1045
1046bool MIParser::parse(MachineInstr *&MI) {
1047 // Parse any register operands before '='
1050 while (Token.isRegister() || Token.isRegisterFlag()) {
1051 auto Loc = Token.location();
1052 std::optional<unsigned> TiedDefIdx;
1053 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
1054 return true;
1055 Operands.push_back(
1056 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1057 if (Token.isNot(MIToken::comma))
1058 break;
1059 lex();
1060 }
1061 if (!Operands.empty() && expectAndConsume(MIToken::equal))
1062 return true;
1063
1064 unsigned OpCode, Flags = 0;
1065 if (Token.isError() || parseInstruction(OpCode, Flags))
1066 return true;
1067
1068 // Parse the remaining machine operands.
1069 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1070 Token.isNot(MIToken::kw_post_instr_symbol) &&
1071 Token.isNot(MIToken::kw_heap_alloc_marker) &&
1072 Token.isNot(MIToken::kw_pcsections) &&
1073 Token.isNot(MIToken::kw_cfi_type) &&
1074 Token.isNot(MIToken::kw_debug_location) &&
1075 Token.isNot(MIToken::kw_debug_instr_number) &&
1076 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1077 auto Loc = Token.location();
1078 std::optional<unsigned> TiedDefIdx;
1079 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1080 return true;
1081 Operands.push_back(
1082 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1083 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1084 Token.is(MIToken::lbrace))
1085 break;
1086 if (Token.isNot(MIToken::comma))
1087 return error("expected ',' before the next machine operand");
1088 lex();
1089 }
1090
1091 MCSymbol *PreInstrSymbol = nullptr;
1092 if (Token.is(MIToken::kw_pre_instr_symbol))
1093 if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1094 return true;
1095 MCSymbol *PostInstrSymbol = nullptr;
1096 if (Token.is(MIToken::kw_post_instr_symbol))
1097 if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1098 return true;
1099 MDNode *HeapAllocMarker = nullptr;
1100 if (Token.is(MIToken::kw_heap_alloc_marker))
1101 if (parseHeapAllocMarker(HeapAllocMarker))
1102 return true;
1103 MDNode *PCSections = nullptr;
1104 if (Token.is(MIToken::kw_pcsections))
1105 if (parsePCSections(PCSections))
1106 return true;
1107
1108 unsigned CFIType = 0;
1109 if (Token.is(MIToken::kw_cfi_type)) {
1110 lex();
1111 if (Token.isNot(MIToken::IntegerLiteral))
1112 return error("expected an integer literal after 'cfi-type'");
1113 // getUnsigned is sufficient for 32-bit integers.
1114 if (getUnsigned(CFIType))
1115 return true;
1116 lex();
1117 // Lex past trailing comma if present.
1118 if (Token.is(MIToken::comma))
1119 lex();
1120 }
1121
1122 unsigned InstrNum = 0;
1123 if (Token.is(MIToken::kw_debug_instr_number)) {
1124 lex();
1125 if (Token.isNot(MIToken::IntegerLiteral))
1126 return error("expected an integer literal after 'debug-instr-number'");
1127 if (getUnsigned(InstrNum))
1128 return true;
1129 lex();
1130 // Lex past trailing comma if present.
1131 if (Token.is(MIToken::comma))
1132 lex();
1133 }
1134
1135 DebugLoc DebugLocation;
1136 if (Token.is(MIToken::kw_debug_location)) {
1137 lex();
1138 MDNode *Node = nullptr;
1139 if (Token.is(MIToken::exclaim)) {
1140 if (parseMDNode(Node))
1141 return true;
1142 } else if (Token.is(MIToken::md_dilocation)) {
1143 if (parseDILocation(Node))
1144 return true;
1145 } else
1146 return error("expected a metadata node after 'debug-location'");
1147 if (!isa<DILocation>(Node))
1148 return error("referenced metadata is not a DILocation");
1149 DebugLocation = DebugLoc(Node);
1150 }
1151
1152 // Parse the machine memory operands.
1154 if (Token.is(MIToken::coloncolon)) {
1155 lex();
1156 while (!Token.isNewlineOrEOF()) {
1157 MachineMemOperand *MemOp = nullptr;
1158 if (parseMachineMemoryOperand(MemOp))
1159 return true;
1160 MemOperands.push_back(MemOp);
1161 if (Token.isNewlineOrEOF())
1162 break;
1163 if (Token.isNot(MIToken::comma))
1164 return error("expected ',' before the next machine memory operand");
1165 lex();
1166 }
1167 }
1168
1169 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1170 if (!MCID.isVariadic()) {
1171 // FIXME: Move the implicit operand verification to the machine verifier.
1172 if (verifyImplicitOperands(Operands, MCID))
1173 return true;
1174 }
1175
1176 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1177 MI->setFlags(Flags);
1178
1179 // Don't check the operands make sense, let the verifier catch any
1180 // improprieties.
1181 for (const auto &Operand : Operands)
1182 MI->addOperand(MF, Operand.Operand);
1183
1184 if (assignRegisterTies(*MI, Operands))
1185 return true;
1186 if (PreInstrSymbol)
1187 MI->setPreInstrSymbol(MF, PreInstrSymbol);
1188 if (PostInstrSymbol)
1189 MI->setPostInstrSymbol(MF, PostInstrSymbol);
1190 if (HeapAllocMarker)
1191 MI->setHeapAllocMarker(MF, HeapAllocMarker);
1192 if (PCSections)
1193 MI->setPCSections(MF, PCSections);
1194 if (CFIType)
1195 MI->setCFIType(MF, CFIType);
1196 if (!MemOperands.empty())
1197 MI->setMemRefs(MF, MemOperands);
1198 if (InstrNum)
1199 MI->setDebugInstrNum(InstrNum);
1200 return false;
1201}
1202
1203bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1204 lex();
1205 if (Token.isNot(MIToken::MachineBasicBlock))
1206 return error("expected a machine basic block reference");
1208 return true;
1209 lex();
1210 if (Token.isNot(MIToken::Eof))
1211 return error(
1212 "expected end of string after the machine basic block reference");
1213 return false;
1214}
1215
1216bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1217 lex();
1218 if (Token.isNot(MIToken::NamedRegister))
1219 return error("expected a named register");
1220 if (parseNamedRegister(Reg))
1221 return true;
1222 lex();
1223 if (Token.isNot(MIToken::Eof))
1224 return error("expected end of string after the register reference");
1225 return false;
1226}
1227
1228bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1229 lex();
1230 if (Token.isNot(MIToken::VirtualRegister))
1231 return error("expected a virtual register");
1232 if (parseVirtualRegister(Info))
1233 return true;
1234 lex();
1235 if (Token.isNot(MIToken::Eof))
1236 return error("expected end of string after the register reference");
1237 return false;
1238}
1239
1240bool MIParser::parseStandaloneRegister(Register &Reg) {
1241 lex();
1242 if (Token.isNot(MIToken::NamedRegister) &&
1243 Token.isNot(MIToken::VirtualRegister))
1244 return error("expected either a named or virtual register");
1245
1246 VRegInfo *Info;
1247 if (parseRegister(Reg, Info))
1248 return true;
1249
1250 lex();
1251 if (Token.isNot(MIToken::Eof))
1252 return error("expected end of string after the register reference");
1253 return false;
1254}
1255
1256bool MIParser::parseStandaloneStackObject(int &FI) {
1257 lex();
1258 if (Token.isNot(MIToken::StackObject))
1259 return error("expected a stack object");
1260 if (parseStackFrameIndex(FI))
1261 return true;
1262 if (Token.isNot(MIToken::Eof))
1263 return error("expected end of string after the stack object reference");
1264 return false;
1265}
1266
1267bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1268 lex();
1269 if (Token.is(MIToken::exclaim)) {
1270 if (parseMDNode(Node))
1271 return true;
1272 } else if (Token.is(MIToken::md_diexpr)) {
1273 if (parseDIExpression(Node))
1274 return true;
1275 } else if (Token.is(MIToken::md_dilocation)) {
1276 if (parseDILocation(Node))
1277 return true;
1278 } else
1279 return error("expected a metadata node");
1280 if (Token.isNot(MIToken::Eof))
1281 return error("expected end of string after the metadata node");
1282 return false;
1283}
1284
1285bool MIParser::parseMachineMetadata() {
1286 lex();
1287 if (Token.isNot(MIToken::exclaim))
1288 return error("expected a metadata node");
1289
1290 lex();
1291 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1292 return error("expected metadata id after '!'");
1293 unsigned ID = 0;
1294 if (getUnsigned(ID))
1295 return true;
1296 lex();
1297 if (expectAndConsume(MIToken::equal))
1298 return true;
1299 bool IsDistinct = Token.is(MIToken::kw_distinct);
1300 if (IsDistinct)
1301 lex();
1302 if (Token.isNot(MIToken::exclaim))
1303 return error("expected a metadata node");
1304 lex();
1305
1306 MDNode *MD;
1307 if (parseMDTuple(MD, IsDistinct))
1308 return true;
1309
1310 auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1311 if (FI != PFS.MachineForwardRefMDNodes.end()) {
1312 FI->second.first->replaceAllUsesWith(MD);
1313 PFS.MachineForwardRefMDNodes.erase(FI);
1314
1315 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1316 } else {
1317 if (PFS.MachineMetadataNodes.count(ID))
1318 return error("Metadata id is already used");
1319 PFS.MachineMetadataNodes[ID].reset(MD);
1320 }
1321
1322 return false;
1323}
1324
1325bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1327 if (parseMDNodeVector(Elts))
1328 return true;
1329 MD = (IsDistinct ? MDTuple::getDistinct
1330 : MDTuple::get)(MF.getFunction().getContext(), Elts);
1331 return false;
1332}
1333
1334bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1335 if (Token.isNot(MIToken::lbrace))
1336 return error("expected '{' here");
1337 lex();
1338
1339 if (Token.is(MIToken::rbrace)) {
1340 lex();
1341 return false;
1342 }
1343
1344 do {
1345 Metadata *MD;
1346 if (parseMetadata(MD))
1347 return true;
1348
1349 Elts.push_back(MD);
1350
1351 if (Token.isNot(MIToken::comma))
1352 break;
1353 lex();
1354 } while (true);
1355
1356 if (Token.isNot(MIToken::rbrace))
1357 return error("expected end of metadata node");
1358 lex();
1359
1360 return false;
1361}
1362
1363// ::= !42
1364// ::= !"string"
1365bool MIParser::parseMetadata(Metadata *&MD) {
1366 if (Token.isNot(MIToken::exclaim))
1367 return error("expected '!' here");
1368 lex();
1369
1370 if (Token.is(MIToken::StringConstant)) {
1371 std::string Str;
1372 if (parseStringConstant(Str))
1373 return true;
1374 MD = MDString::get(MF.getFunction().getContext(), Str);
1375 return false;
1376 }
1377
1378 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1379 return error("expected metadata id after '!'");
1380
1381 SMLoc Loc = mapSMLoc(Token.location());
1382
1383 unsigned ID = 0;
1384 if (getUnsigned(ID))
1385 return true;
1386 lex();
1387
1388 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1389 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1390 MD = NodeInfo->second.get();
1391 return false;
1392 }
1393 // Check machine metadata.
1394 NodeInfo = PFS.MachineMetadataNodes.find(ID);
1395 if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1396 MD = NodeInfo->second.get();
1397 return false;
1398 }
1399 // Forward reference.
1400 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1401 FwdRef = std::make_pair(
1402 MDTuple::getTemporary(MF.getFunction().getContext(), std::nullopt), Loc);
1403 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1404 MD = FwdRef.first.get();
1405
1406 return false;
1407}
1408
1409static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1410 assert(MO.isImplicit());
1411 return MO.isDef() ? "implicit-def" : "implicit";
1412}
1413
1414static std::string getRegisterName(const TargetRegisterInfo *TRI,
1415 Register Reg) {
1416 assert(Reg.isPhysical() && "expected phys reg");
1417 return StringRef(TRI->getName(Reg)).lower();
1418}
1419
1420/// Return true if the parsed machine operands contain a given machine operand.
1421static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1423 for (const auto &I : Operands) {
1424 if (ImplicitOperand.isIdenticalTo(I.Operand))
1425 return true;
1426 }
1427 return false;
1428}
1429
1430bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1431 const MCInstrDesc &MCID) {
1432 if (MCID.isCall())
1433 // We can't verify call instructions as they can contain arbitrary implicit
1434 // register and register mask operands.
1435 return false;
1436
1437 // Gather all the expected implicit operands.
1438 SmallVector<MachineOperand, 4> ImplicitOperands;
1439 for (MCPhysReg ImpDef : MCID.implicit_defs())
1440 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpDef, true, true));
1441 for (MCPhysReg ImpUse : MCID.implicit_uses())
1442 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpUse, false, true));
1443
1444 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1445 assert(TRI && "Expected target register info");
1446 for (const auto &I : ImplicitOperands) {
1448 continue;
1449 return error(Operands.empty() ? Token.location() : Operands.back().End,
1450 Twine("missing implicit register operand '") +
1452 getRegisterName(TRI, I.getReg()) + "'");
1453 }
1454 return false;
1455}
1456
1457bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1458 // Allow frame and fast math flags for OPCODE
1459 // clang-format off
1460 while (Token.is(MIToken::kw_frame_setup) ||
1461 Token.is(MIToken::kw_frame_destroy) ||
1462 Token.is(MIToken::kw_nnan) ||
1463 Token.is(MIToken::kw_ninf) ||
1464 Token.is(MIToken::kw_nsz) ||
1465 Token.is(MIToken::kw_arcp) ||
1466 Token.is(MIToken::kw_contract) ||
1467 Token.is(MIToken::kw_afn) ||
1468 Token.is(MIToken::kw_reassoc) ||
1469 Token.is(MIToken::kw_nuw) ||
1470 Token.is(MIToken::kw_nsw) ||
1471 Token.is(MIToken::kw_exact) ||
1472 Token.is(MIToken::kw_nofpexcept) ||
1473 Token.is(MIToken::kw_noconvergent) ||
1474 Token.is(MIToken::kw_unpredictable) ||
1475 Token.is(MIToken::kw_nneg) ||
1476 Token.is(MIToken::kw_disjoint)) {
1477 // clang-format on
1478 // Mine frame and fast math flags
1479 if (Token.is(MIToken::kw_frame_setup))
1481 if (Token.is(MIToken::kw_frame_destroy))
1483 if (Token.is(MIToken::kw_nnan))
1485 if (Token.is(MIToken::kw_ninf))
1487 if (Token.is(MIToken::kw_nsz))
1489 if (Token.is(MIToken::kw_arcp))
1491 if (Token.is(MIToken::kw_contract))
1493 if (Token.is(MIToken::kw_afn))
1495 if (Token.is(MIToken::kw_reassoc))
1497 if (Token.is(MIToken::kw_nuw))
1499 if (Token.is(MIToken::kw_nsw))
1501 if (Token.is(MIToken::kw_exact))
1503 if (Token.is(MIToken::kw_nofpexcept))
1505 if (Token.is(MIToken::kw_unpredictable))
1507 if (Token.is(MIToken::kw_noconvergent))
1509 if (Token.is(MIToken::kw_nneg))
1511 if (Token.is(MIToken::kw_disjoint))
1513
1514 lex();
1515 }
1516 if (Token.isNot(MIToken::Identifier))
1517 return error("expected a machine instruction");
1518 StringRef InstrName = Token.stringValue();
1519 if (PFS.Target.parseInstrName(InstrName, OpCode))
1520 return error(Twine("unknown machine instruction name '") + InstrName + "'");
1521 lex();
1522 return false;
1523}
1524
1525bool MIParser::parseNamedRegister(Register &Reg) {
1526 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1527 StringRef Name = Token.stringValue();
1528 if (PFS.Target.getRegisterByName(Name, Reg))
1529 return error(Twine("unknown register name '") + Name + "'");
1530 return false;
1531}
1532
1533bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1534 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1535 StringRef Name = Token.stringValue();
1536 // TODO: Check that the VReg name is not the same as a physical register name.
1537 // If it is, then print a warning (when warnings are implemented).
1538 Info = &PFS.getVRegInfoNamed(Name);
1539 return false;
1540}
1541
1542bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1543 if (Token.is(MIToken::NamedVirtualRegister))
1544 return parseNamedVirtualRegister(Info);
1545 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1546 unsigned ID;
1547 if (getUnsigned(ID))
1548 return true;
1549 Info = &PFS.getVRegInfo(ID);
1550 return false;
1551}
1552
1553bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1554 switch (Token.kind()) {
1556 Reg = 0;
1557 return false;
1559 return parseNamedRegister(Reg);
1562 if (parseVirtualRegister(Info))
1563 return true;
1564 Reg = Info->VReg;
1565 return false;
1566 // TODO: Parse other register kinds.
1567 default:
1568 llvm_unreachable("The current token should be a register");
1569 }
1570}
1571
1572bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1573 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1574 return error("expected '_', register class, or register bank name");
1575 StringRef::iterator Loc = Token.location();
1576 StringRef Name = Token.stringValue();
1577
1578 // Was it a register class?
1579 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1580 if (RC) {
1581 lex();
1582
1583 switch (RegInfo.Kind) {
1584 case VRegInfo::UNKNOWN:
1585 case VRegInfo::NORMAL:
1587 if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1588 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1589 return error(Loc, Twine("conflicting register classes, previously: ") +
1590 Twine(TRI.getRegClassName(RegInfo.D.RC)));
1591 }
1592 RegInfo.D.RC = RC;
1593 RegInfo.Explicit = true;
1594 return false;
1595
1596 case VRegInfo::GENERIC:
1597 case VRegInfo::REGBANK:
1598 return error(Loc, "register class specification on generic register");
1599 }
1600 llvm_unreachable("Unexpected register kind");
1601 }
1602
1603 // Should be a register bank or a generic register.
1604 const RegisterBank *RegBank = nullptr;
1605 if (Name != "_") {
1606 RegBank = PFS.Target.getRegBank(Name);
1607 if (!RegBank)
1608 return error(Loc, "expected '_', register class, or register bank name");
1609 }
1610
1611 lex();
1612
1613 switch (RegInfo.Kind) {
1614 case VRegInfo::UNKNOWN:
1615 case VRegInfo::GENERIC:
1616 case VRegInfo::REGBANK:
1618 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1619 return error(Loc, "conflicting generic register banks");
1620 RegInfo.D.RegBank = RegBank;
1621 RegInfo.Explicit = true;
1622 return false;
1623
1624 case VRegInfo::NORMAL:
1625 return error(Loc, "register bank specification on normal register");
1626 }
1627 llvm_unreachable("Unexpected register kind");
1628}
1629
1630bool MIParser::parseRegisterFlag(unsigned &Flags) {
1631 const unsigned OldFlags = Flags;
1632 switch (Token.kind()) {
1635 break;
1638 break;
1639 case MIToken::kw_def:
1641 break;
1642 case MIToken::kw_dead:
1644 break;
1645 case MIToken::kw_killed:
1647 break;
1648 case MIToken::kw_undef:
1650 break;
1653 break;
1656 break;
1659 break;
1662 break;
1663 default:
1664 llvm_unreachable("The current token should be a register flag");
1665 }
1666 if (OldFlags == Flags)
1667 // We know that the same flag is specified more than once when the flags
1668 // weren't modified.
1669 return error("duplicate '" + Token.stringValue() + "' register flag");
1670 lex();
1671 return false;
1672}
1673
1674bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1675 assert(Token.is(MIToken::dot));
1676 lex();
1677 if (Token.isNot(MIToken::Identifier))
1678 return error("expected a subregister index after '.'");
1679 auto Name = Token.stringValue();
1680 SubReg = PFS.Target.getSubRegIndex(Name);
1681 if (!SubReg)
1682 return error(Twine("use of unknown subregister index '") + Name + "'");
1683 lex();
1684 return false;
1685}
1686
1687bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1688 if (!consumeIfPresent(MIToken::kw_tied_def))
1689 return true;
1690 if (Token.isNot(MIToken::IntegerLiteral))
1691 return error("expected an integer literal after 'tied-def'");
1692 if (getUnsigned(TiedDefIdx))
1693 return true;
1694 lex();
1695 if (expectAndConsume(MIToken::rparen))
1696 return true;
1697 return false;
1698}
1699
1700bool MIParser::assignRegisterTies(MachineInstr &MI,
1702 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1703 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1704 if (!Operands[I].TiedDefIdx)
1705 continue;
1706 // The parser ensures that this operand is a register use, so we just have
1707 // to check the tied-def operand.
1708 unsigned DefIdx = *Operands[I].TiedDefIdx;
1709 if (DefIdx >= E)
1710 return error(Operands[I].Begin,
1711 Twine("use of invalid tied-def operand index '" +
1712 Twine(DefIdx) + "'; instruction has only ") +
1713 Twine(E) + " operands");
1714 const auto &DefOperand = Operands[DefIdx].Operand;
1715 if (!DefOperand.isReg() || !DefOperand.isDef())
1716 // FIXME: add note with the def operand.
1717 return error(Operands[I].Begin,
1718 Twine("use of invalid tied-def operand index '") +
1719 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1720 " isn't a defined register");
1721 // Check that the tied-def operand wasn't tied elsewhere.
1722 for (const auto &TiedPair : TiedRegisterPairs) {
1723 if (TiedPair.first == DefIdx)
1724 return error(Operands[I].Begin,
1725 Twine("the tied-def operand #") + Twine(DefIdx) +
1726 " is already tied with another register operand");
1727 }
1728 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1729 }
1730 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1731 // indices must be less than tied max.
1732 for (const auto &TiedPair : TiedRegisterPairs)
1733 MI.tieOperands(TiedPair.first, TiedPair.second);
1734 return false;
1735}
1736
1737bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1738 std::optional<unsigned> &TiedDefIdx,
1739 bool IsDef) {
1740 unsigned Flags = IsDef ? RegState::Define : 0;
1741 while (Token.isRegisterFlag()) {
1742 if (parseRegisterFlag(Flags))
1743 return true;
1744 }
1745 if (!Token.isRegister())
1746 return error("expected a register after register flags");
1747 Register Reg;
1749 if (parseRegister(Reg, RegInfo))
1750 return true;
1751 lex();
1752 unsigned SubReg = 0;
1753 if (Token.is(MIToken::dot)) {
1754 if (parseSubRegisterIndex(SubReg))
1755 return true;
1756 if (!Reg.isVirtual())
1757 return error("subregister index expects a virtual register");
1758 }
1759 if (Token.is(MIToken::colon)) {
1760 if (!Reg.isVirtual())
1761 return error("register class specification expects a virtual register");
1762 lex();
1763 if (parseRegisterClassOrBank(*RegInfo))
1764 return true;
1765 }
1766 MachineRegisterInfo &MRI = MF.getRegInfo();
1767 if ((Flags & RegState::Define) == 0) {
1768 if (consumeIfPresent(MIToken::lparen)) {
1769 unsigned Idx;
1770 if (!parseRegisterTiedDefIndex(Idx))
1771 TiedDefIdx = Idx;
1772 else {
1773 // Try a redundant low-level type.
1774 LLT Ty;
1775 if (parseLowLevelType(Token.location(), Ty))
1776 return error("expected tied-def or low-level type after '('");
1777
1778 if (expectAndConsume(MIToken::rparen))
1779 return true;
1780
1781 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1782 return error("inconsistent type for generic virtual register");
1783
1784 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1785 MRI.setType(Reg, Ty);
1786 }
1787 }
1788 } else if (consumeIfPresent(MIToken::lparen)) {
1789 // Virtual registers may have a tpe with GlobalISel.
1790 if (!Reg.isVirtual())
1791 return error("unexpected type on physical register");
1792
1793 LLT Ty;
1794 if (parseLowLevelType(Token.location(), Ty))
1795 return true;
1796
1797 if (expectAndConsume(MIToken::rparen))
1798 return true;
1799
1800 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1801 return error("inconsistent type for generic virtual register");
1802
1803 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1804 MRI.setType(Reg, Ty);
1805 } else if (Reg.isVirtual()) {
1806 // Generic virtual registers must have a type.
1807 // If we end up here this means the type hasn't been specified and
1808 // this is bad!
1809 if (RegInfo->Kind == VRegInfo::GENERIC ||
1811 return error("generic virtual registers must have a type");
1812 }
1813
1814 if (Flags & RegState::Define) {
1815 if (Flags & RegState::Kill)
1816 return error("cannot have a killed def operand");
1817 } else {
1818 if (Flags & RegState::Dead)
1819 return error("cannot have a dead use operand");
1820 }
1821
1823 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1824 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1827
1828 return false;
1829}
1830
1831bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1833 const APSInt &Int = Token.integerValue();
1834 if (auto SImm = Int.trySExtValue(); Int.isSigned() && SImm.has_value())
1835 Dest = MachineOperand::CreateImm(*SImm);
1836 else if (auto UImm = Int.tryZExtValue(); !Int.isSigned() && UImm.has_value())
1837 Dest = MachineOperand::CreateImm(*UImm);
1838 else
1839 return error("integer literal is too large to be an immediate operand");
1840 lex();
1841 return false;
1842}
1843
1844bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1845 const unsigned OpIdx,
1846 MachineOperand &Dest,
1847 const MIRFormatter &MF) {
1848 assert(Token.is(MIToken::dot));
1849 auto Loc = Token.location(); // record start position
1850 size_t Len = 1; // for "."
1851 lex();
1852
1853 // Handle the case that mnemonic starts with number.
1854 if (Token.is(MIToken::IntegerLiteral)) {
1855 Len += Token.range().size();
1856 lex();
1857 }
1858
1859 StringRef Src;
1860 if (Token.is(MIToken::comma))
1861 Src = StringRef(Loc, Len);
1862 else {
1863 assert(Token.is(MIToken::Identifier));
1864 Src = StringRef(Loc, Len + Token.stringValue().size());
1865 }
1866 int64_t Val;
1867 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1868 [this](StringRef::iterator Loc, const Twine &Msg)
1869 -> bool { return error(Loc, Msg); }))
1870 return true;
1871
1872 Dest = MachineOperand::CreateImm(Val);
1873 if (!Token.is(MIToken::comma))
1874 lex();
1875 return false;
1876}
1877
1878static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1879 PerFunctionMIParsingState &PFS, const Constant *&C,
1880 ErrorCallbackType ErrCB) {
1881 auto Source = StringValue.str(); // The source has to be null terminated.
1882 SMDiagnostic Err;
1883 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1884 &PFS.IRSlots);
1885 if (!C)
1886 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1887 return false;
1888}
1889
1890bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1891 const Constant *&C) {
1892 return ::parseIRConstant(
1893 Loc, StringValue, PFS, C,
1894 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1895 return error(Loc, Msg);
1896 });
1897}
1898
1899bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1900 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1901 return true;
1902 lex();
1903 return false;
1904}
1905
1906// See LLT implementation for bit size limits.
1908 return Size != 0 && isUInt<16>(Size);
1909}
1910
1912 return NumElts != 0 && isUInt<16>(NumElts);
1913}
1914
1915static bool verifyAddrSpace(uint64_t AddrSpace) {
1916 return isUInt<24>(AddrSpace);
1917}
1918
1919bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1920 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1921 StringRef SizeStr = Token.range().drop_front();
1922 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1923 return error("expected integers after 's'/'p' type character");
1924 }
1925
1926 if (Token.range().front() == 's') {
1927 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1928 if (ScalarSize) {
1929 if (!verifyScalarSize(ScalarSize))
1930 return error("invalid size for scalar type");
1931 Ty = LLT::scalar(ScalarSize);
1932 } else {
1933 Ty = LLT::token();
1934 }
1935 lex();
1936 return false;
1937 } else if (Token.range().front() == 'p') {
1938 const DataLayout &DL = MF.getDataLayout();
1939 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1940 if (!verifyAddrSpace(AS))
1941 return error("invalid address space number");
1942
1943 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1944 lex();
1945 return false;
1946 }
1947
1948 // Now we're looking for a vector.
1949 if (Token.isNot(MIToken::less))
1950 return error(Loc, "expected sN, pA, <M x sN>, <M x pA>, <vscale x M x sN>, "
1951 "or <vscale x M x pA> for GlobalISel type");
1952 lex();
1953
1954 bool HasVScale =
1955 Token.is(MIToken::Identifier) && Token.stringValue() == "vscale";
1956 if (HasVScale) {
1957 lex();
1958 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1959 return error("expected <vscale x M x sN> or <vscale x M x pA>");
1960 lex();
1961 }
1962
1963 auto GetError = [this, &HasVScale, Loc]() {
1964 if (HasVScale)
1965 return error(
1966 Loc, "expected <vscale x M x sN> or <vscale M x pA> for vector type");
1967 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1968 };
1969
1970 if (Token.isNot(MIToken::IntegerLiteral))
1971 return GetError();
1972 uint64_t NumElements = Token.integerValue().getZExtValue();
1973 if (!verifyVectorElementCount(NumElements))
1974 return error("invalid number of vector elements");
1975
1976 lex();
1977
1978 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1979 return GetError();
1980 lex();
1981
1982 if (Token.range().front() != 's' && Token.range().front() != 'p')
1983 return GetError();
1984
1985 StringRef SizeStr = Token.range().drop_front();
1986 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1987 return error("expected integers after 's'/'p' type character");
1988
1989 if (Token.range().front() == 's') {
1990 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1991 if (!verifyScalarSize(ScalarSize))
1992 return error("invalid size for scalar element in vector");
1993 Ty = LLT::scalar(ScalarSize);
1994 } else if (Token.range().front() == 'p') {
1995 const DataLayout &DL = MF.getDataLayout();
1996 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1997 if (!verifyAddrSpace(AS))
1998 return error("invalid address space number");
1999
2000 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
2001 } else
2002 return GetError();
2003 lex();
2004
2005 if (Token.isNot(MIToken::greater))
2006 return GetError();
2007
2008 lex();
2009
2010 Ty = LLT::vector(ElementCount::get(NumElements, HasVScale), Ty);
2011 return false;
2012}
2013
2014bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
2015 assert(Token.is(MIToken::Identifier));
2016 StringRef TypeStr = Token.range();
2017 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
2018 TypeStr.front() != 'p')
2019 return error(
2020 "a typed immediate operand should start with one of 'i', 's', or 'p'");
2021 StringRef SizeStr = Token.range().drop_front();
2022 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
2023 return error("expected integers after 'i'/'s'/'p' type character");
2024
2025 auto Loc = Token.location();
2026 lex();
2027 if (Token.isNot(MIToken::IntegerLiteral)) {
2028 if (Token.isNot(MIToken::Identifier) ||
2029 !(Token.range() == "true" || Token.range() == "false"))
2030 return error("expected an integer literal");
2031 }
2032 const Constant *C = nullptr;
2033 if (parseIRConstant(Loc, C))
2034 return true;
2035 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
2036 return false;
2037}
2038
2039bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
2040 auto Loc = Token.location();
2041 lex();
2042 if (Token.isNot(MIToken::FloatingPointLiteral) &&
2043 Token.isNot(MIToken::HexLiteral))
2044 return error("expected a floating point literal");
2045 const Constant *C = nullptr;
2046 if (parseIRConstant(Loc, C))
2047 return true;
2048 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
2049 return false;
2050}
2051
2052static bool getHexUint(const MIToken &Token, APInt &Result) {
2054 StringRef S = Token.range();
2055 assert(S[0] == '0' && tolower(S[1]) == 'x');
2056 // This could be a floating point literal with a special prefix.
2057 if (!isxdigit(S[2]))
2058 return true;
2059 StringRef V = S.substr(2);
2060 APInt A(V.size()*4, V, 16);
2061
2062 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2063 // sure it isn't the case before constructing result.
2064 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2065 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2066 return false;
2067}
2068
2069static bool getUnsigned(const MIToken &Token, unsigned &Result,
2070 ErrorCallbackType ErrCB) {
2071 if (Token.hasIntegerValue()) {
2072 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
2073 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
2074 if (Val64 == Limit)
2075 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2076 Result = Val64;
2077 return false;
2078 }
2079 if (Token.is(MIToken::HexLiteral)) {
2080 APInt A;
2081 if (getHexUint(Token, A))
2082 return true;
2083 if (A.getBitWidth() > 32)
2084 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2085 Result = A.getZExtValue();
2086 return false;
2087 }
2088 return true;
2089}
2090
2091bool MIParser::getUnsigned(unsigned &Result) {
2092 return ::getUnsigned(
2093 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2094 return error(Loc, Msg);
2095 });
2096}
2097
2098bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
2101 unsigned Number;
2102 if (getUnsigned(Number))
2103 return true;
2104 auto MBBInfo = PFS.MBBSlots.find(Number);
2105 if (MBBInfo == PFS.MBBSlots.end())
2106 return error(Twine("use of undefined machine basic block #") +
2107 Twine(Number));
2108 MBB = MBBInfo->second;
2109 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
2110 // we drop the <irname> from the bb.<id>.<irname> format.
2111 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
2112 return error(Twine("the name of machine basic block #") + Twine(Number) +
2113 " isn't '" + Token.stringValue() + "'");
2114 return false;
2115}
2116
2117bool MIParser::parseMBBOperand(MachineOperand &Dest) {
2120 return true;
2122 lex();
2123 return false;
2124}
2125
2126bool MIParser::parseStackFrameIndex(int &FI) {
2127 assert(Token.is(MIToken::StackObject));
2128 unsigned ID;
2129 if (getUnsigned(ID))
2130 return true;
2131 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
2132 if (ObjectInfo == PFS.StackObjectSlots.end())
2133 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
2134 "'");
2136 if (const auto *Alloca =
2137 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2138 Name = Alloca->getName();
2139 if (!Token.stringValue().empty() && Token.stringValue() != Name)
2140 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2141 "' isn't '" + Token.stringValue() + "'");
2142 lex();
2143 FI = ObjectInfo->second;
2144 return false;
2145}
2146
2147bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2148 int FI;
2149 if (parseStackFrameIndex(FI))
2150 return true;
2151 Dest = MachineOperand::CreateFI(FI);
2152 return false;
2153}
2154
2155bool MIParser::parseFixedStackFrameIndex(int &FI) {
2157 unsigned ID;
2158 if (getUnsigned(ID))
2159 return true;
2160 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2161 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2162 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2163 Twine(ID) + "'");
2164 lex();
2165 FI = ObjectInfo->second;
2166 return false;
2167}
2168
2169bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2170 int FI;
2171 if (parseFixedStackFrameIndex(FI))
2172 return true;
2173 Dest = MachineOperand::CreateFI(FI);
2174 return false;
2175}
2176
2177static bool parseGlobalValue(const MIToken &Token,
2179 ErrorCallbackType ErrCB) {
2180 switch (Token.kind()) {
2182 const Module *M = PFS.MF.getFunction().getParent();
2183 GV = M->getNamedValue(Token.stringValue());
2184 if (!GV)
2185 return ErrCB(Token.location(), Twine("use of undefined global value '") +
2186 Token.range() + "'");
2187 break;
2188 }
2189 case MIToken::GlobalValue: {
2190 unsigned GVIdx;
2191 if (getUnsigned(Token, GVIdx, ErrCB))
2192 return true;
2193 GV = PFS.IRSlots.GlobalValues.get(GVIdx);
2194 if (!GV)
2195 return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2196 Twine(GVIdx) + "'");
2197 break;
2198 }
2199 default:
2200 llvm_unreachable("The current token should be a global value");
2201 }
2202 return false;
2203}
2204
2205bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2206 return ::parseGlobalValue(
2207 Token, PFS, GV,
2208 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2209 return error(Loc, Msg);
2210 });
2211}
2212
2213bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2214 GlobalValue *GV = nullptr;
2215 if (parseGlobalValue(GV))
2216 return true;
2217 lex();
2218 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2219 if (parseOperandsOffset(Dest))
2220 return true;
2221 return false;
2222}
2223
2224bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2226 unsigned ID;
2227 if (getUnsigned(ID))
2228 return true;
2229 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2230 if (ConstantInfo == PFS.ConstantPoolSlots.end())
2231 return error("use of undefined constant '%const." + Twine(ID) + "'");
2232 lex();
2233 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2234 if (parseOperandsOffset(Dest))
2235 return true;
2236 return false;
2237}
2238
2239bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2241 unsigned ID;
2242 if (getUnsigned(ID))
2243 return true;
2244 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2245 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2246 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2247 lex();
2248 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2249 return false;
2250}
2251
2252bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2254 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2255 lex();
2256 Dest = MachineOperand::CreateES(Symbol);
2257 if (parseOperandsOffset(Dest))
2258 return true;
2259 return false;
2260}
2261
2262bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2263 assert(Token.is(MIToken::MCSymbol));
2264 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2265 lex();
2266 Dest = MachineOperand::CreateMCSymbol(Symbol);
2267 if (parseOperandsOffset(Dest))
2268 return true;
2269 return false;
2270}
2271
2272bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2274 StringRef Name = Token.stringValue();
2275 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2276 if (SubRegIndex == 0)
2277 return error(Twine("unknown subregister index '") + Name + "'");
2278 lex();
2279 Dest = MachineOperand::CreateImm(SubRegIndex);
2280 return false;
2281}
2282
2283bool MIParser::parseMDNode(MDNode *&Node) {
2284 assert(Token.is(MIToken::exclaim));
2285
2286 auto Loc = Token.location();
2287 lex();
2288 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2289 return error("expected metadata id after '!'");
2290 unsigned ID;
2291 if (getUnsigned(ID))
2292 return true;
2293 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2294 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2295 NodeInfo = PFS.MachineMetadataNodes.find(ID);
2296 if (NodeInfo == PFS.MachineMetadataNodes.end())
2297 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2298 }
2299 lex();
2300 Node = NodeInfo->second.get();
2301 return false;
2302}
2303
2304bool MIParser::parseDIExpression(MDNode *&Expr) {
2305 unsigned Read;
2307 CurrentSource, Read, Error, *PFS.MF.getFunction().getParent(),
2308 &PFS.IRSlots);
2309 CurrentSource = CurrentSource.slice(Read, StringRef::npos);
2310 lex();
2311 if (!Expr)
2312 return error(Error.getMessage());
2313 return false;
2314}
2315
2316bool MIParser::parseDILocation(MDNode *&Loc) {
2317 assert(Token.is(MIToken::md_dilocation));
2318 lex();
2319
2320 bool HaveLine = false;
2321 unsigned Line = 0;
2322 unsigned Column = 0;
2323 MDNode *Scope = nullptr;
2324 MDNode *InlinedAt = nullptr;
2325 bool ImplicitCode = false;
2326
2327 if (expectAndConsume(MIToken::lparen))
2328 return true;
2329
2330 if (Token.isNot(MIToken::rparen)) {
2331 do {
2332 if (Token.is(MIToken::Identifier)) {
2333 if (Token.stringValue() == "line") {
2334 lex();
2335 if (expectAndConsume(MIToken::colon))
2336 return true;
2337 if (Token.isNot(MIToken::IntegerLiteral) ||
2338 Token.integerValue().isSigned())
2339 return error("expected unsigned integer");
2340 Line = Token.integerValue().getZExtValue();
2341 HaveLine = true;
2342 lex();
2343 continue;
2344 }
2345 if (Token.stringValue() == "column") {
2346 lex();
2347 if (expectAndConsume(MIToken::colon))
2348 return true;
2349 if (Token.isNot(MIToken::IntegerLiteral) ||
2350 Token.integerValue().isSigned())
2351 return error("expected unsigned integer");
2352 Column = Token.integerValue().getZExtValue();
2353 lex();
2354 continue;
2355 }
2356 if (Token.stringValue() == "scope") {
2357 lex();
2358 if (expectAndConsume(MIToken::colon))
2359 return true;
2360 if (parseMDNode(Scope))
2361 return error("expected metadata node");
2362 if (!isa<DIScope>(Scope))
2363 return error("expected DIScope node");
2364 continue;
2365 }
2366 if (Token.stringValue() == "inlinedAt") {
2367 lex();
2368 if (expectAndConsume(MIToken::colon))
2369 return true;
2370 if (Token.is(MIToken::exclaim)) {
2371 if (parseMDNode(InlinedAt))
2372 return true;
2373 } else if (Token.is(MIToken::md_dilocation)) {
2374 if (parseDILocation(InlinedAt))
2375 return true;
2376 } else
2377 return error("expected metadata node");
2378 if (!isa<DILocation>(InlinedAt))
2379 return error("expected DILocation node");
2380 continue;
2381 }
2382 if (Token.stringValue() == "isImplicitCode") {
2383 lex();
2384 if (expectAndConsume(MIToken::colon))
2385 return true;
2386 if (!Token.is(MIToken::Identifier))
2387 return error("expected true/false");
2388 // As far as I can see, we don't have any existing need for parsing
2389 // true/false in MIR yet. Do it ad-hoc until there's something else
2390 // that needs it.
2391 if (Token.stringValue() == "true")
2392 ImplicitCode = true;
2393 else if (Token.stringValue() == "false")
2394 ImplicitCode = false;
2395 else
2396 return error("expected true/false");
2397 lex();
2398 continue;
2399 }
2400 }
2401 return error(Twine("invalid DILocation argument '") +
2402 Token.stringValue() + "'");
2403 } while (consumeIfPresent(MIToken::comma));
2404 }
2405
2406 if (expectAndConsume(MIToken::rparen))
2407 return true;
2408
2409 if (!HaveLine)
2410 return error("DILocation requires line number");
2411 if (!Scope)
2412 return error("DILocation requires a scope");
2413
2414 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2415 InlinedAt, ImplicitCode);
2416 return false;
2417}
2418
2419bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2420 MDNode *Node = nullptr;
2421 if (Token.is(MIToken::exclaim)) {
2422 if (parseMDNode(Node))
2423 return true;
2424 } else if (Token.is(MIToken::md_diexpr)) {
2425 if (parseDIExpression(Node))
2426 return true;
2427 }
2429 return false;
2430}
2431
2432bool MIParser::parseCFIOffset(int &Offset) {
2433 if (Token.isNot(MIToken::IntegerLiteral))
2434 return error("expected a cfi offset");
2435 if (Token.integerValue().getSignificantBits() > 32)
2436 return error("expected a 32 bit integer (the cfi offset is too large)");
2437 Offset = (int)Token.integerValue().getExtValue();
2438 lex();
2439 return false;
2440}
2441
2442bool MIParser::parseCFIRegister(Register &Reg) {
2443 if (Token.isNot(MIToken::NamedRegister))
2444 return error("expected a cfi register");
2445 Register LLVMReg;
2446 if (parseNamedRegister(LLVMReg))
2447 return true;
2448 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2449 assert(TRI && "Expected target register info");
2450 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2451 if (DwarfReg < 0)
2452 return error("invalid DWARF register");
2453 Reg = (unsigned)DwarfReg;
2454 lex();
2455 return false;
2456}
2457
2458bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2459 if (Token.isNot(MIToken::IntegerLiteral))
2460 return error("expected a cfi address space literal");
2461 if (Token.integerValue().isSigned())
2462 return error("expected an unsigned integer (cfi address space)");
2463 AddressSpace = Token.integerValue().getZExtValue();
2464 lex();
2465 return false;
2466}
2467
2468bool MIParser::parseCFIEscapeValues(std::string &Values) {
2469 do {
2470 if (Token.isNot(MIToken::HexLiteral))
2471 return error("expected a hexadecimal literal");
2472 unsigned Value;
2473 if (getUnsigned(Value))
2474 return true;
2475 if (Value > UINT8_MAX)
2476 return error("expected a 8-bit integer (too large)");
2477 Values.push_back(static_cast<uint8_t>(Value));
2478 lex();
2479 } while (consumeIfPresent(MIToken::comma));
2480 return false;
2481}
2482
2483bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2484 auto Kind = Token.kind();
2485 lex();
2486 int Offset;
2487 Register Reg;
2488 unsigned AddressSpace;
2489 unsigned CFIIndex;
2490 switch (Kind) {
2492 if (parseCFIRegister(Reg))
2493 return true;
2494 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2495 break;
2497 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2498 parseCFIOffset(Offset))
2499 return true;
2500 CFIIndex =
2501 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2502 break;
2504 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2505 parseCFIOffset(Offset))
2506 return true;
2507 CFIIndex = MF.addFrameInst(
2509 break;
2511 if (parseCFIRegister(Reg))
2512 return true;
2513 CFIIndex =
2514 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2515 break;
2517 if (parseCFIOffset(Offset))
2518 return true;
2519 CFIIndex =
2520 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2521 break;
2523 if (parseCFIOffset(Offset))
2524 return true;
2525 CFIIndex = MF.addFrameInst(
2527 break;
2529 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2530 parseCFIOffset(Offset))
2531 return true;
2532 CFIIndex =
2533 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2534 break;
2536 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2537 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2538 parseCFIAddressSpace(AddressSpace))
2539 return true;
2540 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2541 nullptr, Reg, Offset, AddressSpace, SMLoc()));
2542 break;
2544 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2545 break;
2547 if (parseCFIRegister(Reg))
2548 return true;
2549 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2550 break;
2552 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2553 break;
2555 if (parseCFIRegister(Reg))
2556 return true;
2557 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2558 break;
2560 Register Reg2;
2561 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2562 parseCFIRegister(Reg2))
2563 return true;
2564
2565 CFIIndex =
2566 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2567 break;
2568 }
2570 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2571 break;
2573 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2574 break;
2576 std::string Values;
2577 if (parseCFIEscapeValues(Values))
2578 return true;
2579 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2580 break;
2581 }
2582 default:
2583 // TODO: Parse the other CFI operands.
2584 llvm_unreachable("The current token should be a cfi operand");
2585 }
2586 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2587 return false;
2588}
2589
2590bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2591 switch (Token.kind()) {
2592 case MIToken::NamedIRBlock: {
2593 BB = dyn_cast_or_null<BasicBlock>(
2594 F.getValueSymbolTable()->lookup(Token.stringValue()));
2595 if (!BB)
2596 return error(Twine("use of undefined IR block '") + Token.range() + "'");
2597 break;
2598 }
2599 case MIToken::IRBlock: {
2600 unsigned SlotNumber = 0;
2601 if (getUnsigned(SlotNumber))
2602 return true;
2603 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2604 if (!BB)
2605 return error(Twine("use of undefined IR block '%ir-block.") +
2606 Twine(SlotNumber) + "'");
2607 break;
2608 }
2609 default:
2610 llvm_unreachable("The current token should be an IR block reference");
2611 }
2612 return false;
2613}
2614
2615bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2617 lex();
2618 if (expectAndConsume(MIToken::lparen))
2619 return true;
2620 if (Token.isNot(MIToken::GlobalValue) &&
2621 Token.isNot(MIToken::NamedGlobalValue))
2622 return error("expected a global value");
2623 GlobalValue *GV = nullptr;
2624 if (parseGlobalValue(GV))
2625 return true;
2626 auto *F = dyn_cast<Function>(GV);
2627 if (!F)
2628 return error("expected an IR function reference");
2629 lex();
2630 if (expectAndConsume(MIToken::comma))
2631 return true;
2632 BasicBlock *BB = nullptr;
2633 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2634 return error("expected an IR block reference");
2635 if (parseIRBlock(BB, *F))
2636 return true;
2637 lex();
2638 if (expectAndConsume(MIToken::rparen))
2639 return true;
2640 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2641 if (parseOperandsOffset(Dest))
2642 return true;
2643 return false;
2644}
2645
2646bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2647 assert(Token.is(MIToken::kw_intrinsic));
2648 lex();
2649 if (expectAndConsume(MIToken::lparen))
2650 return error("expected syntax intrinsic(@llvm.whatever)");
2651
2652 if (Token.isNot(MIToken::NamedGlobalValue))
2653 return error("expected syntax intrinsic(@llvm.whatever)");
2654
2655 std::string Name = std::string(Token.stringValue());
2656 lex();
2657
2658 if (expectAndConsume(MIToken::rparen))
2659 return error("expected ')' to terminate intrinsic name");
2660
2661 // Find out what intrinsic we're dealing with, first try the global namespace
2662 // and then the target's private intrinsics if that fails.
2663 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2666 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2667
2669 return error("unknown intrinsic name");
2671
2672 return false;
2673}
2674
2675bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2676 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2677 bool IsFloat = Token.is(MIToken::kw_floatpred);
2678 lex();
2679
2680 if (expectAndConsume(MIToken::lparen))
2681 return error("expected syntax intpred(whatever) or floatpred(whatever");
2682
2683 if (Token.isNot(MIToken::Identifier))
2684 return error("whatever");
2685
2686 CmpInst::Predicate Pred;
2687 if (IsFloat) {
2688 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2689 .Case("false", CmpInst::FCMP_FALSE)
2690 .Case("oeq", CmpInst::FCMP_OEQ)
2691 .Case("ogt", CmpInst::FCMP_OGT)
2692 .Case("oge", CmpInst::FCMP_OGE)
2693 .Case("olt", CmpInst::FCMP_OLT)
2694 .Case("ole", CmpInst::FCMP_OLE)
2695 .Case("one", CmpInst::FCMP_ONE)
2696 .Case("ord", CmpInst::FCMP_ORD)
2697 .Case("uno", CmpInst::FCMP_UNO)
2698 .Case("ueq", CmpInst::FCMP_UEQ)
2699 .Case("ugt", CmpInst::FCMP_UGT)
2700 .Case("uge", CmpInst::FCMP_UGE)
2701 .Case("ult", CmpInst::FCMP_ULT)
2702 .Case("ule", CmpInst::FCMP_ULE)
2703 .Case("une", CmpInst::FCMP_UNE)
2704 .Case("true", CmpInst::FCMP_TRUE)
2706 if (!CmpInst::isFPPredicate(Pred))
2707 return error("invalid floating-point predicate");
2708 } else {
2709 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2710 .Case("eq", CmpInst::ICMP_EQ)
2711 .Case("ne", CmpInst::ICMP_NE)
2712 .Case("sgt", CmpInst::ICMP_SGT)
2713 .Case("sge", CmpInst::ICMP_SGE)
2714 .Case("slt", CmpInst::ICMP_SLT)
2715 .Case("sle", CmpInst::ICMP_SLE)
2716 .Case("ugt", CmpInst::ICMP_UGT)
2717 .Case("uge", CmpInst::ICMP_UGE)
2718 .Case("ult", CmpInst::ICMP_ULT)
2719 .Case("ule", CmpInst::ICMP_ULE)
2721 if (!CmpInst::isIntPredicate(Pred))
2722 return error("invalid integer predicate");
2723 }
2724
2725 lex();
2727 if (expectAndConsume(MIToken::rparen))
2728 return error("predicate should be terminated by ')'.");
2729
2730 return false;
2731}
2732
2733bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2735
2736 lex();
2737 if (expectAndConsume(MIToken::lparen))
2738 return error("expected syntax shufflemask(<integer or undef>, ...)");
2739
2740 SmallVector<int, 32> ShufMask;
2741 do {
2742 if (Token.is(MIToken::kw_undef)) {
2743 ShufMask.push_back(-1);
2744 } else if (Token.is(MIToken::IntegerLiteral)) {
2745 const APSInt &Int = Token.integerValue();
2746 ShufMask.push_back(Int.getExtValue());
2747 } else
2748 return error("expected integer constant");
2749
2750 lex();
2751 } while (consumeIfPresent(MIToken::comma));
2752
2753 if (expectAndConsume(MIToken::rparen))
2754 return error("shufflemask should be terminated by ')'.");
2755
2756 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2757 Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2758 return false;
2759}
2760
2761bool MIParser::parseDbgInstrRefOperand(MachineOperand &Dest) {
2763
2764 lex();
2765 if (expectAndConsume(MIToken::lparen))
2766 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2767
2768 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2769 return error("expected unsigned integer for instruction index");
2770 uint64_t InstrIdx = Token.integerValue().getZExtValue();
2771 assert(InstrIdx <= std::numeric_limits<unsigned>::max() &&
2772 "Instruction reference's instruction index is too large");
2773 lex();
2774
2775 if (expectAndConsume(MIToken::comma))
2776 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2777
2778 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2779 return error("expected unsigned integer for operand index");
2780 uint64_t OpIdx = Token.integerValue().getZExtValue();
2781 assert(OpIdx <= std::numeric_limits<unsigned>::max() &&
2782 "Instruction reference's operand index is too large");
2783 lex();
2784
2785 if (expectAndConsume(MIToken::rparen))
2786 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2787
2788 Dest = MachineOperand::CreateDbgInstrRef(InstrIdx, OpIdx);
2789 return false;
2790}
2791
2792bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2794 lex();
2795 if (expectAndConsume(MIToken::lparen))
2796 return true;
2797 if (Token.isNot(MIToken::Identifier))
2798 return error("expected the name of the target index");
2799 int Index = 0;
2800 if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2801 return error("use of undefined target index '" + Token.stringValue() + "'");
2802 lex();
2803 if (expectAndConsume(MIToken::rparen))
2804 return true;
2805 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2806 if (parseOperandsOffset(Dest))
2807 return true;
2808 return false;
2809}
2810
2811bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2812 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2813 lex();
2814 if (expectAndConsume(MIToken::lparen))
2815 return true;
2816
2817 uint32_t *Mask = MF.allocateRegMask();
2818 do {
2819 if (Token.isNot(MIToken::rparen)) {
2820 if (Token.isNot(MIToken::NamedRegister))
2821 return error("expected a named register");
2822 Register Reg;
2823 if (parseNamedRegister(Reg))
2824 return true;
2825 lex();
2826 Mask[Reg / 32] |= 1U << (Reg % 32);
2827 }
2828
2829 // TODO: Report an error if the same register is used more than once.
2830 } while (consumeIfPresent(MIToken::comma));
2831
2832 if (expectAndConsume(MIToken::rparen))
2833 return true;
2834 Dest = MachineOperand::CreateRegMask(Mask);
2835 return false;
2836}
2837
2838bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2839 assert(Token.is(MIToken::kw_liveout));
2840 uint32_t *Mask = MF.allocateRegMask();
2841 lex();
2842 if (expectAndConsume(MIToken::lparen))
2843 return true;
2844 while (true) {
2845 if (Token.isNot(MIToken::NamedRegister))
2846 return error("expected a named register");
2847 Register Reg;
2848 if (parseNamedRegister(Reg))
2849 return true;
2850 lex();
2851 Mask[Reg / 32] |= 1U << (Reg % 32);
2852 // TODO: Report an error if the same register is used more than once.
2853 if (Token.isNot(MIToken::comma))
2854 break;
2855 lex();
2856 }
2857 if (expectAndConsume(MIToken::rparen))
2858 return true;
2860 return false;
2861}
2862
2863bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2864 MachineOperand &Dest,
2865 std::optional<unsigned> &TiedDefIdx) {
2866 switch (Token.kind()) {
2869 case MIToken::kw_def:
2870 case MIToken::kw_dead:
2871 case MIToken::kw_killed:
2872 case MIToken::kw_undef:
2881 return parseRegisterOperand(Dest, TiedDefIdx);
2883 return parseImmediateOperand(Dest);
2884 case MIToken::kw_half:
2885 case MIToken::kw_bfloat:
2886 case MIToken::kw_float:
2887 case MIToken::kw_double:
2889 case MIToken::kw_fp128:
2891 return parseFPImmediateOperand(Dest);
2893 return parseMBBOperand(Dest);
2895 return parseStackObjectOperand(Dest);
2897 return parseFixedStackObjectOperand(Dest);
2900 return parseGlobalAddressOperand(Dest);
2902 return parseConstantPoolIndexOperand(Dest);
2904 return parseJumpTableIndexOperand(Dest);
2906 return parseExternalSymbolOperand(Dest);
2907 case MIToken::MCSymbol:
2908 return parseMCSymbolOperand(Dest);
2910 return parseSubRegisterIndexOperand(Dest);
2911 case MIToken::md_diexpr:
2912 case MIToken::exclaim:
2913 return parseMetadataOperand(Dest);
2930 return parseCFIOperand(Dest);
2932 return parseBlockAddressOperand(Dest);
2934 return parseIntrinsicOperand(Dest);
2936 return parseTargetIndexOperand(Dest);
2938 return parseLiveoutRegisterMaskOperand(Dest);
2941 return parsePredicateOperand(Dest);
2943 return parseShuffleMaskOperand(Dest);
2945 return parseDbgInstrRefOperand(Dest);
2946 case MIToken::Error:
2947 return true;
2949 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2950 Dest = MachineOperand::CreateRegMask(RegMask);
2951 lex();
2952 break;
2953 } else if (Token.stringValue() == "CustomRegMask") {
2954 return parseCustomRegisterMaskOperand(Dest);
2955 } else
2956 return parseTypedImmediateOperand(Dest);
2957 case MIToken::dot: {
2958 const auto *TII = MF.getSubtarget().getInstrInfo();
2959 if (const auto *Formatter = TII->getMIRFormatter()) {
2960 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2961 }
2962 [[fallthrough]];
2963 }
2964 default:
2965 // FIXME: Parse the MCSymbol machine operand.
2966 return error("expected a machine operand");
2967 }
2968 return false;
2969}
2970
2971bool MIParser::parseMachineOperandAndTargetFlags(
2972 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2973 std::optional<unsigned> &TiedDefIdx) {
2974 unsigned TF = 0;
2975 bool HasTargetFlags = false;
2976 if (Token.is(MIToken::kw_target_flags)) {
2977 HasTargetFlags = true;
2978 lex();
2979 if (expectAndConsume(MIToken::lparen))
2980 return true;
2981 if (Token.isNot(MIToken::Identifier))
2982 return error("expected the name of the target flag");
2983 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2984 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2985 return error("use of undefined target flag '" + Token.stringValue() +
2986 "'");
2987 }
2988 lex();
2989 while (Token.is(MIToken::comma)) {
2990 lex();
2991 if (Token.isNot(MIToken::Identifier))
2992 return error("expected the name of the target flag");
2993 unsigned BitFlag = 0;
2994 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2995 return error("use of undefined target flag '" + Token.stringValue() +
2996 "'");
2997 // TODO: Report an error when using a duplicate bit target flag.
2998 TF |= BitFlag;
2999 lex();
3000 }
3001 if (expectAndConsume(MIToken::rparen))
3002 return true;
3003 }
3004 auto Loc = Token.location();
3005 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
3006 return true;
3007 if (!HasTargetFlags)
3008 return false;
3009 if (Dest.isReg())
3010 return error(Loc, "register operands can't have target flags");
3011 Dest.setTargetFlags(TF);
3012 return false;
3013}
3014
3015bool MIParser::parseOffset(int64_t &Offset) {
3016 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
3017 return false;
3018 StringRef Sign = Token.range();
3019 bool IsNegative = Token.is(MIToken::minus);
3020 lex();
3021 if (Token.isNot(MIToken::IntegerLiteral))
3022 return error("expected an integer literal after '" + Sign + "'");
3023 if (Token.integerValue().getSignificantBits() > 64)
3024 return error("expected 64-bit integer (too large)");
3025 Offset = Token.integerValue().getExtValue();
3026 if (IsNegative)
3027 Offset = -Offset;
3028 lex();
3029 return false;
3030}
3031
3032bool MIParser::parseIRBlockAddressTaken(BasicBlock *&BB) {
3034 lex();
3035 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
3036 return error("expected basic block after 'ir_block_address_taken'");
3037
3038 if (parseIRBlock(BB, MF.getFunction()))
3039 return true;
3040
3041 lex();
3042 return false;
3043}
3044
3045bool MIParser::parseAlignment(uint64_t &Alignment) {
3046 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
3047 lex();
3048 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3049 return error("expected an integer literal after 'align'");
3050 if (getUint64(Alignment))
3051 return true;
3052 lex();
3053
3054 if (!isPowerOf2_64(Alignment))
3055 return error("expected a power-of-2 literal after 'align'");
3056
3057 return false;
3058}
3059
3060bool MIParser::parseAddrspace(unsigned &Addrspace) {
3061 assert(Token.is(MIToken::kw_addrspace));
3062 lex();
3063 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3064 return error("expected an integer literal after 'addrspace'");
3065 if (getUnsigned(Addrspace))
3066 return true;
3067 lex();
3068 return false;
3069}
3070
3071bool MIParser::parseOperandsOffset(MachineOperand &Op) {
3072 int64_t Offset = 0;
3073 if (parseOffset(Offset))
3074 return true;
3075 Op.setOffset(Offset);
3076 return false;
3077}
3078
3079static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
3080 const Value *&V, ErrorCallbackType ErrCB) {
3081 switch (Token.kind()) {
3082 case MIToken::NamedIRValue: {
3083 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
3084 break;
3085 }
3086 case MIToken::IRValue: {
3087 unsigned SlotNumber = 0;
3088 if (getUnsigned(Token, SlotNumber, ErrCB))
3089 return true;
3090 V = PFS.getIRValue(SlotNumber);
3091 break;
3092 }
3094 case MIToken::GlobalValue: {
3095 GlobalValue *GV = nullptr;
3096 if (parseGlobalValue(Token, PFS, GV, ErrCB))
3097 return true;
3098 V = GV;
3099 break;
3100 }
3102 const Constant *C = nullptr;
3103 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
3104 return true;
3105 V = C;
3106 break;
3107 }
3109 V = nullptr;
3110 return false;
3111 default:
3112 llvm_unreachable("The current token should be an IR block reference");
3113 }
3114 if (!V)
3115 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
3116 return false;
3117}
3118
3119bool MIParser::parseIRValue(const Value *&V) {
3120 return ::parseIRValue(
3121 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3122 return error(Loc, Msg);
3123 });
3124}
3125
3126bool MIParser::getUint64(uint64_t &Result) {
3127 if (Token.hasIntegerValue()) {
3128 if (Token.integerValue().getActiveBits() > 64)
3129 return error("expected 64-bit integer (too large)");
3130 Result = Token.integerValue().getZExtValue();
3131 return false;
3132 }
3133 if (Token.is(MIToken::HexLiteral)) {
3134 APInt A;
3135 if (getHexUint(A))
3136 return true;
3137 if (A.getBitWidth() > 64)
3138 return error("expected 64-bit integer (too large)");
3139 Result = A.getZExtValue();
3140 return false;
3141 }
3142 return true;
3143}
3144
3145bool MIParser::getHexUint(APInt &Result) {
3146 return ::getHexUint(Token, Result);
3147}
3148
3149bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3150 const auto OldFlags = Flags;
3151 switch (Token.kind()) {
3154 break;
3157 break;
3160 break;
3163 break;
3166 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3167 return error("use of undefined target MMO flag '" + Token.stringValue() +
3168 "'");
3169 Flags |= TF;
3170 break;
3171 }
3172 default:
3173 llvm_unreachable("The current token should be a memory operand flag");
3174 }
3175 if (OldFlags == Flags)
3176 // We know that the same flag is specified more than once when the flags
3177 // weren't modified.
3178 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3179 lex();
3180 return false;
3181}
3182
3183bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3184 switch (Token.kind()) {
3185 case MIToken::kw_stack:
3186 PSV = MF.getPSVManager().getStack();
3187 break;
3188 case MIToken::kw_got:
3189 PSV = MF.getPSVManager().getGOT();
3190 break;
3192 PSV = MF.getPSVManager().getJumpTable();
3193 break;
3195 PSV = MF.getPSVManager().getConstantPool();
3196 break;
3198 int FI;
3199 if (parseFixedStackFrameIndex(FI))
3200 return true;
3201 PSV = MF.getPSVManager().getFixedStack(FI);
3202 // The token was already consumed, so use return here instead of break.
3203 return false;
3204 }
3205 case MIToken::StackObject: {
3206 int FI;
3207 if (parseStackFrameIndex(FI))
3208 return true;
3209 PSV = MF.getPSVManager().getFixedStack(FI);
3210 // The token was already consumed, so use return here instead of break.
3211 return false;
3212 }
3214 lex();
3215 switch (Token.kind()) {
3218 GlobalValue *GV = nullptr;
3219 if (parseGlobalValue(GV))
3220 return true;
3221 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3222 break;
3223 }
3225 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3226 MF.createExternalSymbolName(Token.stringValue()));
3227 break;
3228 default:
3229 return error(
3230 "expected a global value or an external symbol after 'call-entry'");
3231 }
3232 break;
3233 case MIToken::kw_custom: {
3234 lex();
3235 const auto *TII = MF.getSubtarget().getInstrInfo();
3236 if (const auto *Formatter = TII->getMIRFormatter()) {
3237 if (Formatter->parseCustomPseudoSourceValue(
3238 Token.stringValue(), MF, PFS, PSV,
3239 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3240 return error(Loc, Msg);
3241 }))
3242 return true;
3243 } else
3244 return error("unable to parse target custom pseudo source value");
3245 break;
3246 }
3247 default:
3248 llvm_unreachable("The current token should be pseudo source value");
3249 }
3250 lex();
3251 return false;
3252}
3253
3254bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3255 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3256 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3257 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3258 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3259 const PseudoSourceValue *PSV = nullptr;
3260 if (parseMemoryPseudoSourceValue(PSV))
3261 return true;
3262 int64_t Offset = 0;
3263 if (parseOffset(Offset))
3264 return true;
3265 Dest = MachinePointerInfo(PSV, Offset);
3266 return false;
3267 }
3268 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3269 Token.isNot(MIToken::GlobalValue) &&
3270 Token.isNot(MIToken::NamedGlobalValue) &&
3271 Token.isNot(MIToken::QuotedIRValue) &&
3272 Token.isNot(MIToken::kw_unknown_address))
3273 return error("expected an IR value reference");
3274 const Value *V = nullptr;
3275 if (parseIRValue(V))
3276 return true;
3277 if (V && !V->getType()->isPointerTy())
3278 return error("expected a pointer IR value");
3279 lex();
3280 int64_t Offset = 0;
3281 if (parseOffset(Offset))
3282 return true;
3283 Dest = MachinePointerInfo(V, Offset);
3284 return false;
3285}
3286
3287bool MIParser::parseOptionalScope(LLVMContext &Context,
3288 SyncScope::ID &SSID) {
3289 SSID = SyncScope::System;
3290 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3291 lex();
3292 if (expectAndConsume(MIToken::lparen))
3293 return error("expected '(' in syncscope");
3294
3295 std::string SSN;
3296 if (parseStringConstant(SSN))
3297 return true;
3298
3299 SSID = Context.getOrInsertSyncScopeID(SSN);
3300 if (expectAndConsume(MIToken::rparen))
3301 return error("expected ')' in syncscope");
3302 }
3303
3304 return false;
3305}
3306
3307bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3309 if (Token.isNot(MIToken::Identifier))
3310 return false;
3311
3312 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3313 .Case("unordered", AtomicOrdering::Unordered)
3314 .Case("monotonic", AtomicOrdering::Monotonic)
3315 .Case("acquire", AtomicOrdering::Acquire)
3316 .Case("release", AtomicOrdering::Release)
3320
3321 if (Order != AtomicOrdering::NotAtomic) {
3322 lex();
3323 return false;
3324 }
3325
3326 return error("expected an atomic scope, ordering or a size specification");
3327}
3328
3329bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3330 if (expectAndConsume(MIToken::lparen))
3331 return true;
3333 while (Token.isMemoryOperandFlag()) {
3334 if (parseMemoryOperandFlag(Flags))
3335 return true;
3336 }
3337 if (Token.isNot(MIToken::Identifier) ||
3338 (Token.stringValue() != "load" && Token.stringValue() != "store"))
3339 return error("expected 'load' or 'store' memory operation");
3340 if (Token.stringValue() == "load")
3342 else
3344 lex();
3345
3346 // Optional 'store' for operands that both load and store.
3347 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3349 lex();
3350 }
3351
3352 // Optional synchronization scope.
3353 SyncScope::ID SSID;
3354 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3355 return true;
3356
3357 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3358 AtomicOrdering Order, FailureOrder;
3359 if (parseOptionalAtomicOrdering(Order))
3360 return true;
3361
3362 if (parseOptionalAtomicOrdering(FailureOrder))
3363 return true;
3364
3366 if (Token.isNot(MIToken::IntegerLiteral) &&
3367 Token.isNot(MIToken::kw_unknown_size) &&
3368 Token.isNot(MIToken::lparen))
3369 return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3370 "memory operation");
3371
3373 if (Token.is(MIToken::IntegerLiteral)) {
3374 if (getUint64(Size))
3375 return true;
3376
3377 // Convert from bytes to bits for storage.
3379 lex();
3380 } else if (Token.is(MIToken::kw_unknown_size)) {
3382 lex();
3383 } else {
3384 if (expectAndConsume(MIToken::lparen))
3385 return true;
3386 if (parseLowLevelType(Token.location(), MemoryType))
3387 return true;
3388 if (expectAndConsume(MIToken::rparen))
3389 return true;
3390
3391 Size = MemoryType.getSizeInBytes();
3392 }
3393
3395 if (Token.is(MIToken::Identifier)) {
3396 const char *Word =
3399 ? "on"
3400 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3401 if (Token.stringValue() != Word)
3402 return error(Twine("expected '") + Word + "'");
3403 lex();
3404
3405 if (parseMachinePointerInfo(Ptr))
3406 return true;
3407 }
3408 uint64_t BaseAlignment =
3410 AAMDNodes AAInfo;
3411 MDNode *Range = nullptr;
3412 while (consumeIfPresent(MIToken::comma)) {
3413 switch (Token.kind()) {
3414 case MIToken::kw_align: {
3415 // align is printed if it is different than size.
3416 uint64_t Alignment;
3417 if (parseAlignment(Alignment))
3418 return true;
3419 if (Ptr.Offset & (Alignment - 1)) {
3420 // MachineMemOperand::getAlign never returns a value greater than the
3421 // alignment of offset, so this just guards against hand-written MIR
3422 // that specifies a large "align" value when it should probably use
3423 // "basealign" instead.
3424 return error("specified alignment is more aligned than offset");
3425 }
3426 BaseAlignment = Alignment;
3427 break;
3428 }
3430 // basealign is printed if it is different than align.
3431 if (parseAlignment(BaseAlignment))
3432 return true;
3433 break;
3435 if (parseAddrspace(Ptr.AddrSpace))
3436 return true;
3437 break;
3438 case MIToken::md_tbaa:
3439 lex();
3440 if (parseMDNode(AAInfo.TBAA))
3441 return true;
3442 break;
3444 lex();
3445 if (parseMDNode(AAInfo.Scope))
3446 return true;
3447 break;
3449 lex();
3450 if (parseMDNode(AAInfo.NoAlias))
3451 return true;
3452 break;
3453 case MIToken::md_range:
3454 lex();
3455 if (parseMDNode(Range))
3456 return true;
3457 break;
3458 // TODO: Report an error on duplicate metadata nodes.
3459 default:
3460 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3461 "'!noalias' or '!range'");
3462 }
3463 }
3464 if (expectAndConsume(MIToken::rparen))
3465 return true;
3466 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3467 AAInfo, Range, SSID, Order, FailureOrder);
3468 return false;
3469}
3470
3471bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3473 Token.is(MIToken::kw_post_instr_symbol)) &&
3474 "Invalid token for a pre- post-instruction symbol!");
3475 lex();
3476 if (Token.isNot(MIToken::MCSymbol))
3477 return error("expected a symbol after 'pre-instr-symbol'");
3478 Symbol = getOrCreateMCSymbol(Token.stringValue());
3479 lex();
3480 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3481 Token.is(MIToken::lbrace))
3482 return false;
3483 if (Token.isNot(MIToken::comma))
3484 return error("expected ',' before the next machine operand");
3485 lex();
3486 return false;
3487}
3488
3489bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3491 "Invalid token for a heap alloc marker!");
3492 lex();
3493 if (parseMDNode(Node))
3494 return true;
3495 if (!Node)
3496 return error("expected a MDNode after 'heap-alloc-marker'");
3497 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3498 Token.is(MIToken::lbrace))
3499 return false;
3500 if (Token.isNot(MIToken::comma))
3501 return error("expected ',' before the next machine operand");
3502 lex();
3503 return false;
3504}
3505
3506bool MIParser::parsePCSections(MDNode *&Node) {
3507 assert(Token.is(MIToken::kw_pcsections) &&
3508 "Invalid token for a PC sections!");
3509 lex();
3510 if (parseMDNode(Node))
3511 return true;
3512 if (!Node)
3513 return error("expected a MDNode after 'pcsections'");
3514 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3515 Token.is(MIToken::lbrace))
3516 return false;
3517 if (Token.isNot(MIToken::comma))
3518 return error("expected ',' before the next machine operand");
3519 lex();
3520 return false;
3521}
3522
3524 const Function &F,
3525 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3526 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3528 for (const auto &BB : F) {
3529 if (BB.hasName())
3530 continue;
3531 int Slot = MST.getLocalSlot(&BB);
3532 if (Slot == -1)
3533 continue;
3534 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3535 }
3536}
3537
3539 unsigned Slot,
3540 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3541 return Slots2BasicBlocks.lookup(Slot);
3542}
3543
3544const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3545 if (Slots2BasicBlocks.empty())
3546 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3547 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3548}
3549
3550const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3551 if (&F == &MF.getFunction())
3552 return getIRBlock(Slot);
3553 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3554 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3555 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3556}
3557
3558MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3559 // FIXME: Currently we can't recognize temporary or local symbols and call all
3560 // of the appropriate forms to create them. However, this handles basic cases
3561 // well as most of the special aspects are recognized by a prefix on their
3562 // name, and the input names should already be unique. For test cases, keeping
3563 // the symbol name out of the symbol table isn't terribly important.
3564 return MF.getContext().getOrCreateSymbol(Name);
3565}
3566
3567bool MIParser::parseStringConstant(std::string &Result) {
3568 if (Token.isNot(MIToken::StringConstant))
3569 return error("expected string constant");
3570 Result = std::string(Token.stringValue());
3571 lex();
3572 return false;
3573}
3574
3576 StringRef Src,
3578 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3579}
3580
3583 return MIParser(PFS, Error, Src).parseBasicBlocks();
3584}
3585
3589 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3590}
3591
3593 Register &Reg, StringRef Src,
3595 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3596}
3597
3599 Register &Reg, StringRef Src,
3601 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3602}
3603
3605 VRegInfo *&Info, StringRef Src,
3607 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3608}
3609
3611 int &FI, StringRef Src,
3613 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3614}
3615
3617 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3618 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3619}
3620
3622 SMRange SrcRange, SMDiagnostic &Error) {
3623 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3624}
3625
3627 PerFunctionMIParsingState &PFS, const Value *&V,
3628 ErrorCallbackType ErrorCallback) {
3629 MIToken Token;
3630 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3631 ErrorCallback(Loc, Msg);
3632 });
3633 V = nullptr;
3634
3635 return ::parseIRValue(Token, PFS, V, ErrorCallback);
3636}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
This file defines the StringMap class.
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
std::string Name
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define RegName(no)
A common definition of LaneBitmask for use in TableGen and CodeGen.
Implement a low-level type suitable for MachineInstr level instruction selection.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static const char * printImplicitRegisterFlag(const MachineOperand &MO)
Definition: MIParser.cpp:1409
static const BasicBlock * getIRBlockFromSlot(unsigned Slot, const DenseMap< unsigned, const BasicBlock * > &Slots2BasicBlocks)
Definition: MIParser.cpp:3538
static std::string getRegisterName(const TargetRegisterInfo *TRI, Register Reg)
Definition: MIParser.cpp:1414
static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, PerFunctionMIParsingState &PFS, const Constant *&C, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:1878
static void initSlots2Values(const Function &F, DenseMap< unsigned, const Value * > &Slots2Values)
Creates the mapping from slot numbers to function's unnamed IR values.
Definition: MIParser.cpp:352
static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, const Value *&V, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:3079
static bool verifyScalarSize(uint64_t Size)
Definition: MIParser.cpp:1907
static bool getUnsigned(const MIToken &Token, unsigned &Result, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:2069
static bool getHexUint(const MIToken &Token, APInt &Result)
Definition: MIParser.cpp:2052
static bool verifyVectorElementCount(uint64_t NumElts)
Definition: MIParser.cpp:1911
static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, DenseMap< unsigned, const Value * > &Slots2Values)
Definition: MIParser.cpp:343
static void initSlots2BasicBlocks(const Function &F, DenseMap< unsigned, const BasicBlock * > &Slots2BasicBlocks)
Definition: MIParser.cpp:3523
function_ref< bool(StringRef::iterator Loc, const Twine &)> ErrorCallbackType
Definition: MIParser.cpp:614
static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, ArrayRef< ParsedMachineOperand > Operands)
Return true if the parsed machine operands contain a given machine operand.
Definition: MIParser.cpp:1421
static bool parseGlobalValue(const MIToken &Token, PerFunctionMIParsingState &PFS, GlobalValue *&GV, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:2177
static bool verifyAddrSpace(uint64_t AddrSpace)
Definition: MIParser.cpp:1915
mir Rename Register Operands
unsigned const TargetRegisterInfo * TRI
unsigned Reg
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
Module.h This file contains the declarations for the Module class.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, uint32_t &Attributes)
Parse Input that contains metadata.
This file defines the SmallVector class.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
#define error(X)
Class for arbitrary precision integers.
Definition: APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1500
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:455
An arbitrary precision integer that knows its signedness.
Definition: APSInt.h:23
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1871
static BranchProbability getRaw(uint32_t N)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:757
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:760
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:774
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:786
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:787
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:763
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:772
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:761
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:762
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:781
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:780
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:784
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:771
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:765
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:768
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:782
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:769
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:764
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:766
@ ICMP_EQ
equal
Definition: InstrTypes.h:778
@ ICMP_NE
not equal
Definition: InstrTypes.h:779
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:785
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:773
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:783
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:770
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:759
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:767
bool isFPPredicate() const
Definition: InstrTypes.h:864
bool isIntPredicate() const
Definition: InstrTypes.h:865
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
A debug info location.
Definition: DebugLoc.h:33
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:202
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition: TypeSize.h:317
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static Intrinsic::ID lookupIntrinsicID(StringRef Name)
This does the actual lookup of an intrinsic ID which matches the given function name.
Definition: Function.cpp:956
ValueSymbolTable * getValueSymbolTable()
getSymbolTable() - Return the symbol table if any, otherwise nullptr.
Definition: Function.h:808
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Return an array that contains the direct target flag values and their names.
ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const override
Return an array that contains the bitmask target flag values and their names.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
Definition: LowLevelType.h:64
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
Definition: LowLevelType.h:57
static constexpr LLT token()
Get a low-level token; just a scalar with zero bits (or no size).
Definition: LowLevelType.h:49
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
SyncScope::ID getOrInsertSyncScopeID(StringRef SSN)
getOrInsertSyncScopeID - Maps synchronization scope name to synchronization scope ID.
static MCCFIInstruction createDefCfaRegister(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_def_cfa_register modifies a rule for computing CFA.
Definition: MCDwarf.h:565
static MCCFIInstruction createOffset(MCSymbol *L, unsigned Register, int Offset, SMLoc Loc={})
.cfi_offset Previous value of Register is saved at offset Offset from CFA.
Definition: MCDwarf.h:600
static MCCFIInstruction createUndefined(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_undefined From now on the previous value of Register can't be restored anymore.
Definition: MCDwarf.h:640
static MCCFIInstruction cfiDefCfaOffset(MCSymbol *L, int Offset, SMLoc Loc={})
.cfi_def_cfa_offset modifies a rule for computing CFA.
Definition: MCDwarf.h:573
static MCCFIInstruction createRelOffset(MCSymbol *L, unsigned Register, int Offset, SMLoc Loc={})
.cfi_rel_offset Previous value of Register is saved at offset Offset from the current CFA register.
Definition: MCDwarf.h:608
static MCCFIInstruction createRestore(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_restore says that the rule for Register is now the same as it was at the beginning of the functi...
Definition: MCDwarf.h:633
static MCCFIInstruction createRegister(MCSymbol *L, unsigned Register1, unsigned Register2, SMLoc Loc={})
.cfi_register Previous value of Register1 is saved in register Register2.
Definition: MCDwarf.h:615
static MCCFIInstruction createLLVMDefAspaceCfa(MCSymbol *L, unsigned Register, int Offset, unsigned AddressSpace, SMLoc Loc)
.cfi_llvm_def_aspace_cfa defines the rule for computing the CFA to be the result of evaluating the DW...
Definition: MCDwarf.h:590
static MCCFIInstruction createNegateRAState(MCSymbol *L, SMLoc Loc={})
.cfi_negate_ra_state AArch64 negate RA state.
Definition: MCDwarf.h:626
static MCCFIInstruction createRememberState(MCSymbol *L, SMLoc Loc={})
.cfi_remember_state Save all current rules for all registers.
Definition: MCDwarf.h:653
static MCCFIInstruction cfiDefCfa(MCSymbol *L, unsigned Register, int Offset, SMLoc Loc={})
.cfi_def_cfa defines a rule for computing CFA as: take address from Register and add Offset to it.
Definition: MCDwarf.h:558
static MCCFIInstruction createAdjustCfaOffset(MCSymbol *L, int Adjustment, SMLoc Loc={})
.cfi_adjust_cfa_offset Same as .cfi_def_cfa_offset, but Offset is a relative value that is added/subt...
Definition: MCDwarf.h:581
static MCCFIInstruction createEscape(MCSymbol *L, StringRef Vals, SMLoc Loc={}, StringRef Comment="")
.cfi_escape Allows the user to add arbitrary bytes to the unwind info.
Definition: MCDwarf.h:664
static MCCFIInstruction createWindowSave(MCSymbol *L, SMLoc Loc={})
.cfi_window_save SPARC register window is saved.
Definition: MCDwarf.h:621
static MCCFIInstruction createRestoreState(MCSymbol *L, SMLoc Loc={})
.cfi_restore_state Restore the previously saved state.
Definition: MCDwarf.h:658
static MCCFIInstruction createSameValue(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_same_value Current value of Register is the same as in the previous frame.
Definition: MCDwarf.h:647
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
ArrayRef< MCPhysReg > implicit_defs() const
Return a list of registers that are potentially written by any instance of this machine instruction.
Definition: MCInstrDesc.h:579
bool isCall() const
Return true if the instruction is a call.
Definition: MCInstrDesc.h:288
ArrayRef< MCPhysReg > implicit_uses() const
Return a list of registers that are potentially read by any instance of this machine instruction.
Definition: MCInstrDesc.h:565
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
Metadata node.
Definition: Metadata.h:1067
void replaceAllUsesWith(Metadata *MD)
RAUW a temporary.
Definition: Metadata.h:1264
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1541
static MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:600
static MDTuple * getDistinct(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Return a distinct node.
Definition: Metadata.h:1509
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1498
static TempMDTuple getTemporary(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Return a temporary node.
Definition: Metadata.h:1518
MIRFormater - Interface to format MIR operand based on target.
Definition: MIRFormatter.h:32
virtual bool parseImmMnemonic(const unsigned OpCode, const unsigned OpIdx, StringRef Src, int64_t &Imm, ErrorCallbackType ErrorCallback) const
Implement target specific parsing of immediate mnemonics.
Definition: MIRFormatter.h:50
static bool parseIRValue(StringRef Src, MachineFunction &MF, PerFunctionMIParsingState &PFS, const Value *&V, ErrorCallbackType ErrorCallback)
Helper functions to parse IR value from MIR serialization format which will be useful for target spec...
Definition: MIParser.cpp:3626
void setBBID(const UniqueBBID &V)
Sets the fixed BBID of this basic block.
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
void setAddressTakenIRBlock(BasicBlock *BB)
Set this block to reflect that it corresponds to an IR-level basic block with a BlockAddress.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
void setAlignment(Align A)
Set alignment of the basic block.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void setSectionID(MBBSectionID V)
Sets the section ID for this basic block.
void setIsInlineAsmBrIndirectTarget(bool V=true)
Indicates if this is the indirect dest of an INLINEASM_BR.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
void setIsEHPad(bool V=true)
Indicates the block is a landing pad.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
void setFlag(MIFlag Flag)
Set a MI flag.
Definition: MachineInstr.h:403
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
static MachineOperand CreateMCSymbol(MCSymbol *Sym, unsigned TargetFlags=0)
static MachineOperand CreateES(const char *SymName, unsigned TargetFlags=0)
static MachineOperand CreateFPImm(const ConstantFP *CFP)
bool isImplicit() const
static MachineOperand CreateCFIIndex(unsigned CFIIndex)
static MachineOperand CreateRegMask(const uint32_t *Mask)
CreateRegMask - Creates a register mask operand referencing Mask.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
static MachineOperand CreateCImm(const ConstantInt *CI)
static MachineOperand CreateMetadata(const MDNode *Meta)
static MachineOperand CreatePredicate(unsigned Pred)
static MachineOperand CreateImm(int64_t Val)
static MachineOperand CreateShuffleMask(ArrayRef< int > Mask)
static MachineOperand CreateJTI(unsigned Idx, unsigned TargetFlags=0)
static MachineOperand CreateDbgInstrRef(unsigned InstrIdx, unsigned OpIdx)
static MachineOperand CreateRegLiveOut(const uint32_t *Mask)
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateBA(const BlockAddress *BA, int64_t Offset, unsigned TargetFlags=0)
void setTargetFlags(unsigned F)
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned TargetFlags=0)
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateTargetIndex(unsigned Idx, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0)
static MachineOperand CreateIntrinsicID(Intrinsic::ID ID)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createIncompleteVirtualRegister(StringRef Name="")
Creates a new virtual register that has no register class, register bank or size assigned yet.
This interface provides simple read-only access to a block of memory, and provides simple methods for...
Definition: MemoryBuffer.h:51
virtual StringRef getBufferIdentifier() const
Return an identifier for this buffer, typically the filename it was read from.
Definition: MemoryBuffer.h:76
const char * getBufferEnd() const
Definition: MemoryBuffer.h:67
const char * getBufferStart() const
Definition: MemoryBuffer.h:66
Root of the metadata hierarchy.
Definition: Metadata.h:62
Manage lifetime of a slot tracker for printing IR.
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
Definition: AsmWriter.cpp:916
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition: AsmWriter.cpp:902
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Special value supplied for machine level alias analysis.
Holds all the information related to register banks.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
unsigned getNumRegBanks() const
Get the total number of register banks.
This class implements the register bank concept.
Definition: RegisterBank.h:28
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Instances of this class encapsulate one diagnostic report, allowing printing to a raw_ostream as a ca...
Definition: SourceMgr.h:281
Represents a location in source code.
Definition: SMLoc.h:23
static SMLoc getFromPointer(const char *Ptr)
Definition: SMLoc.h:36
Represents a range in source code.
Definition: SMLoc.h:48
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
This owns the files read by a parser, handles include stacks, and handles diagnostic wrangling.
Definition: SourceMgr.h:31
unsigned getMainFileID() const
Definition: SourceMgr.h:132
const MemoryBuffer * getMemoryBuffer(unsigned i) const
Definition: SourceMgr.h:125
SMDiagnostic GetMessage(SMLoc Loc, DiagKind Kind, const Twine &Msg, ArrayRef< SMRange > Ranges={}, ArrayRef< SMFixIt > FixIts={}) const
Return an SMDiagnostic at the specified location with the specified string.
Definition: SourceMgr.cpp:274
bool empty() const
Definition: StringMap.h:103
iterator end()
Definition: StringMap.h:220
iterator find(StringRef Key)
Definition: StringMap.h:233
bool insert(MapEntryTy *KeyValue)
insert - Insert the specified key/value pair into the map.
Definition: StringMap.h:308
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:215
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:556
StringRef drop_front(size_t N=1) const
Return a StringRef equal to 'this' but with the first N elements dropped.
Definition: StringRef.h:594
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:137
char front() const
front - Get the first character in the string.
Definition: StringRef.h:140
std::string lower() const
Definition: StringRef.cpp:111
static constexpr size_t npos
Definition: StringRef.h:52
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
TargetIntrinsicInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const RegisterBankInfo * getRegBankInfo() const
If the information for the register banks is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
Target - Wrapper for Target specific information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:17
Value * lookup(StringRef Name) const
This method finds the value with the given Name in the the symbol table.
LLVM Value Representation.
Definition: Value.h:74
bool hasName() const
Definition: Value.h:261
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Debug
Register 'use' is for debugging purpose.
@ Dead
Unused definition.
@ Renamable
Register that may be renamed.
@ Define
Register definition.
@ InternalRead
Register reads a value that is defined inside the same instruction or bundle.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ EarlyClobber
Register definition happens before uses.
@ System
Synchronized with respect to all concurrently executing threads.
Definition: LLVMContext.h:57
Reg
All possible values of the reg field in the ModR/M byte.
std::optional< const char * > toString(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract a string value from it.
support::ulittle32_t Word
Definition: IRSymtab.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool parseStackObjectReference(PerFunctionMIParsingState &PFS, int &FI, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3610
bool parseMDNode(PerFunctionMIParsingState &PFS, MDNode *&Node, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3616
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
StringRef lexMIToken(StringRef Source, MIToken &Token, function_ref< void(StringRef::iterator, const Twine &)> ErrorCallback)
Consume a single machine instruction token in the given source and return the remaining source string...
AddressSpace
Definition: NVPTXBaseInfo.h:21
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
bool parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, StringRef Src, SMDiagnostic &Error)
Parse the machine basic block definitions, and skip the machine instructions.
Definition: MIParser.cpp:3575
void guessSuccessors(const MachineBasicBlock &MBB, SmallVectorImpl< MachineBasicBlock * > &Result, bool &IsFallthrough)
Determine a possible list of successors of a basic block based on the basic block machine operand bei...
Definition: MIRPrinter.cpp:625
bool parseMBBReference(PerFunctionMIParsingState &PFS, MachineBasicBlock *&MBB, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3586
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition: MathExtras.h:394
DIExpression * parseDIExpressionBodyAtBeginning(StringRef Asm, unsigned &Read, SMDiagnostic &Err, const Module &M, const SlotMapping *Slots)
Definition: Parser.cpp:229
AtomicOrdering
Atomic ordering for LLVM's memory model.
bool parseMachineInstructions(PerFunctionMIParsingState &PFS, StringRef Src, SMDiagnostic &Error)
Parse the machine instructions.
Definition: MIParser.cpp:3581
bool parseRegisterReference(PerFunctionMIParsingState &PFS, Register &Reg, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3592
Constant * parseConstantValue(StringRef Asm, SMDiagnostic &Err, const Module &M, const SlotMapping *Slots=nullptr)
Parse a type and a constant value in the given string.
Definition: Parser.cpp:188
bool parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, SMRange SourceRange, SMDiagnostic &Error)
Definition: MIParser.cpp:3621
bool parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, VRegInfo *&Info, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3604
bool parseNamedRegisterReference(PerFunctionMIParsingState &PFS, Register &Reg, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3598
RegisterKind Kind
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
MDNode * Scope
The tag for alias scope specification (used with noalias).
Definition: Metadata.h:783
MDNode * TBAA
The tag for type-based alias analysis.
Definition: Metadata.h:777
MDNode * NoAlias
The tag specifying the noalias scope.
Definition: Metadata.h:786
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
static constexpr LaneBitmask getAll()
Definition: LaneBitmask.h:82
static const MBBSectionID ExceptionSectionID
static const MBBSectionID ColdSectionID
A token produced by the machine instruction lexer.
Definition: MILexer.h:26
TokenKind kind() const
Definition: MILexer.h:202
bool hasIntegerValue() const
Definition: MILexer.h:242
bool is(TokenKind K) const
Definition: MILexer.h:229
StringRef stringValue() const
Return the token's string value.
Definition: MILexer.h:238
@ kw_target_flags
Definition: MILexer.h:109
@ kw_landing_pad
Definition: MILexer.h:123
@ kw_blockaddress
Definition: MILexer.h:99
@ kw_pre_instr_symbol
Definition: MILexer.h:131
@ md_alias_scope
Definition: MILexer.h:150
@ NamedGlobalValue
Definition: MILexer.h:164
@ kw_call_frame_size
Definition: MILexer.h:142
@ SubRegisterIndex
Definition: MILexer.h:182
@ kw_frame_setup
Definition: MILexer.h:63
@ kw_cfi_aarch64_negate_ra_sign_state
Definition: MILexer.h:98
@ ConstantPoolItem
Definition: MILexer.h:175
@ kw_cfi_llvm_def_aspace_cfa
Definition: MILexer.h:91
@ MachineBasicBlock
Definition: MILexer.h:161
@ kw_dbg_instr_ref
Definition: MILexer.h:82
@ NamedVirtualRegister
Definition: MILexer.h:159
@ kw_early_clobber
Definition: MILexer.h:59
@ kw_cfi_offset
Definition: MILexer.h:84
@ kw_unpredictable
Definition: MILexer.h:77
@ FloatingPointLiteral
Definition: MILexer.h:171
@ kw_debug_use
Definition: MILexer.h:60
@ kw_cfi_window_save
Definition: MILexer.h:97
@ kw_constant_pool
Definition: MILexer.h:119
@ kw_frame_destroy
Definition: MILexer.h:64
@ kw_cfi_undefined
Definition: MILexer.h:96
@ StringConstant
Definition: MILexer.h:183
@ MachineBasicBlockLabel
Definition: MILexer.h:160
@ kw_cfi_restore
Definition: MILexer.h:94
@ kw_non_temporal
Definition: MILexer.h:111
@ kw_cfi_register
Definition: MILexer.h:92
@ kw_inlineasm_br_indirect_target
Definition: MILexer.h:124
@ kw_cfi_rel_offset
Definition: MILexer.h:85
@ kw_ehfunclet_entry
Definition: MILexer.h:125
@ kw_cfi_def_cfa_register
Definition: MILexer.h:86
@ FixedStackObject
Definition: MILexer.h:163
@ kw_cfi_same_value
Definition: MILexer.h:83
@ kw_target_index
Definition: MILexer.h:101
@ kw_cfi_adjust_cfa_offset
Definition: MILexer.h:88
@ kw_dereferenceable
Definition: MILexer.h:55
@ kw_implicit_define
Definition: MILexer.h:52
@ kw_cfi_def_cfa
Definition: MILexer.h:90
@ kw_cfi_escape
Definition: MILexer.h:89
@ VirtualRegister
Definition: MILexer.h:174
@ kw_cfi_def_cfa_offset
Definition: MILexer.h:87
@ kw_machine_block_address_taken
Definition: MILexer.h:141
@ kw_renamable
Definition: MILexer.h:61
@ ExternalSymbol
Definition: MILexer.h:166
@ kw_unknown_size
Definition: MILexer.h:138
@ IntegerLiteral
Definition: MILexer.h:170
@ kw_cfi_remember_state
Definition: MILexer.h:93
@ kw_debug_instr_number
Definition: MILexer.h:81
@ kw_post_instr_symbol
Definition: MILexer.h:132
@ kw_cfi_restore_state
Definition: MILexer.h:95
@ kw_nofpexcept
Definition: MILexer.h:76
@ kw_ir_block_address_taken
Definition: MILexer.h:140
@ kw_unknown_address
Definition: MILexer.h:139
@ JumpTableIndex
Definition: MILexer.h:176
@ kw_shufflemask
Definition: MILexer.h:130
@ kw_debug_location
Definition: MILexer.h:80
@ kw_noconvergent
Definition: MILexer.h:143
@ kw_heap_alloc_marker
Definition: MILexer.h:133
StringRef range() const
Definition: MILexer.h:235
StringRef::iterator location() const
Definition: MILexer.h:233
const APSInt & integerValue() const
Definition: MILexer.h:240
This class contains a discriminated union of information about pointers in memory operands,...
VRegInfo & getVRegInfo(Register Num)
Definition: MIParser.cpp:320
const SlotMapping & IRSlots
Definition: MIParser.h:168
const Value * getIRValue(unsigned Slot)
Definition: MIParser.cpp:365
DenseMap< unsigned, MachineBasicBlock * > MBBSlots
Definition: MIParser.h:174
StringMap< VRegInfo * > VRegInfosNamed
Definition: MIParser.h:176
DenseMap< unsigned, const Value * > Slots2Values
Maps from slot numbers to function's unnamed values.
Definition: MIParser.h:183
PerFunctionMIParsingState(MachineFunction &MF, SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &Target)
Definition: MIParser.cpp:315
DenseMap< Register, VRegInfo * > VRegInfos
Definition: MIParser.h:175
VRegInfo & getVRegInfoNamed(StringRef RegName)
Definition: MIParser.cpp:331
BumpPtrAllocator Allocator
Definition: MIParser.h:165
bool getDirectTargetFlag(StringRef Name, unsigned &Flag)
Try to convert a name of a direct target flag to the corresponding target flag.
Definition: MIParser.cpp:218
const RegisterBank * getRegBank(StringRef Name)
Check if the given identifier is a name of a register bank.
Definition: MIParser.cpp:308
bool parseInstrName(StringRef InstrName, unsigned &OpCode)
Try to convert an instruction name to an opcode.
Definition: MIParser.cpp:139
unsigned getSubRegIndex(StringRef Name)
Check if the given identifier is a name of a subregister index.
Definition: MIParser.cpp:179
bool getTargetIndex(StringRef Name, int &Index)
Try to convert a name of target index to the corresponding target index.
Definition: MIParser.cpp:197
void setTarget(const TargetSubtargetInfo &NewSubtarget)
Definition: MIParser.cpp:82
bool getRegisterByName(StringRef RegName, Register &Reg)
Try to convert a register name to a register number.
Definition: MIParser.cpp:120
bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag)
Try to convert a name of a MachineMemOperand target flag to the corresponding target flag.
Definition: MIParser.cpp:261
bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag)
Try to convert a name of a bitmask target flag to the corresponding target flag.
Definition: MIParser.cpp:240
const TargetRegisterClass * getRegClass(StringRef Name)
Check if the given identifier is a name of a register class.
Definition: MIParser.cpp:301
const uint32_t * getRegMask(StringRef Identifier)
Check if the given identifier is a name of a register mask.
Definition: MIParser.cpp:162
This struct contains the mappings from the slot numbers to unnamed metadata nodes,...
Definition: SlotMapping.h:33
NumberedValues< GlobalValue * > GlobalValues
Definition: SlotMapping.h:34
Definition: regcomp.c:192