39#include "llvm/IR/IntrinsicsAMDGPU.h"
40#include "llvm/IR/IntrinsicsR600.h"
50#define DEBUG_TYPE "si-lower"
56 cl::desc(
"Do not align and prefetch loops"),
60 "amdgpu-use-divergent-register-indexing",
cl::Hidden,
61 cl::desc(
"Use indirect register addressing for divergent indexes"),
75 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
76 for (
unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
78 return AMDGPU::SGPR0 + Reg;
193 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
194 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
195 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
196 MVT::i1, MVT::v32i32},
200 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
201 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
202 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
203 MVT::i1, MVT::v32i32},
272 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1},
Expand);
279 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
280 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
281 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
284 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
285 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32,
286 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
290 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
291 MVT::v3i16, MVT::v4i16, MVT::Other},
296 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64},
Expand);
312 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32,
313 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32,
314 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16,
315 MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32,
316 MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
317 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
318 MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32,
319 MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
351 for (
MVT Vec64 : {MVT::v2i64, MVT::v2f64}) {
365 for (
MVT Vec64 : {MVT::v3i64, MVT::v3f64}) {
379 for (
MVT Vec64 : {MVT::v4i64, MVT::v4f64}) {
393 for (
MVT Vec64 : {MVT::v8i64, MVT::v8f64}) {
407 for (
MVT Vec64 : {MVT::v16i64, MVT::v16f64}) {
422 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
431 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8,
432 MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16},
437 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32},
Custom);
441 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
442 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32,
443 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32,
444 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
525 {MVT::f32, MVT::f64},
Legal);
618 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16,
619 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16,
620 MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) {
756 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
760 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
764 {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
765 MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
784 {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
Custom);
787 {MVT::v4f16, MVT::v4i16, MVT::v4bf16, MVT::v8f16,
788 MVT::v8i16, MVT::v8bf16, MVT::v16f16, MVT::v16i16,
789 MVT::v16bf16, MVT::v32f16, MVT::v32i16, MVT::v32bf16},
792 for (
MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16})
800 for (
MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16})
816 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
836 {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8,
837 MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
838 MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16,
839 MVT::v32f16, MVT::v32bf16},
855 {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16},
Legal);
857 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
869 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
870 MVT::bf16, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::i128,
875 {MVT::v2f16, MVT::v2i16, MVT::v2bf16, MVT::v3f16,
876 MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v4bf16,
877 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::Other, MVT::f16,
878 MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
882 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v2bf16,
883 MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16,
884 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
885 MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
992 static const MCPhysReg RCRegs[] = {AMDGPU::MODE};
1005 EVT DestVT,
EVT SrcVT)
const {
1015 LLT DestTy,
LLT SrcTy)
const {
1016 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->
hasMadMixInsts()) ||
1017 (Opcode == TargetOpcode::G_FMA && Subtarget->
hasFmaMixInsts())) &&
1043 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
1045 return VT.
isInteger() ? MVT::i32 : MVT::f32;
1072 return (NumElts + 1) / 2;
1078 return NumElts * ((
Size + 31) / 32);
1087 unsigned &NumIntermediates,
MVT &RegisterVT)
const {
1096 if (ScalarVT == MVT::bf16) {
1097 RegisterVT = MVT::i32;
1098 IntermediateVT = MVT::v2bf16;
1100 RegisterVT = VT.
isInteger() ? MVT::v2i16 : MVT::v2f16;
1101 IntermediateVT = RegisterVT;
1103 NumIntermediates = (NumElts + 1) / 2;
1104 return NumIntermediates;
1109 IntermediateVT = RegisterVT;
1110 NumIntermediates = NumElts;
1111 return NumIntermediates;
1114 if (Size < 16 && Subtarget->has16BitInsts()) {
1116 RegisterVT = MVT::i16;
1117 IntermediateVT = ScalarVT;
1118 NumIntermediates = NumElts;
1119 return NumIntermediates;
1123 RegisterVT = MVT::i32;
1124 IntermediateVT = ScalarVT;
1125 NumIntermediates = NumElts;
1126 return NumIntermediates;
1130 RegisterVT = MVT::i32;
1131 IntermediateVT = RegisterVT;
1132 NumIntermediates = NumElts * ((
Size + 31) / 32);
1133 return NumIntermediates;
1138 Context,
CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1143 unsigned MaxNumLanes) {
1144 assert(MaxNumLanes != 0);
1147 if (
auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1148 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
1159 unsigned MaxNumLanes) {
1160 auto *ST = dyn_cast<StructType>(Ty);
1165 assert(ST->getNumContainedTypes() == 2 &&
1166 ST->getContainedType(1)->isIntegerTy(32));
1181 DL.getPointerSizeInBits(AS) == 192)
1191 DL.getPointerSizeInBits(AS) == 160) ||
1193 DL.getPointerSizeInBits(AS) == 192))
1201 unsigned IntrID)
const {
1203 if (CI.
hasMetadata(LLVMContext::MD_invariant_load))
1221 if (RsrcIntr->IsImage) {
1229 if (
auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->
getType())) {
1236 Info.ptrVal = RsrcArg;
1239 bool IsSPrefetch = IntrID == Intrinsic::amdgcn_s_buffer_prefetch_data;
1248 if (RsrcIntr->IsImage) {
1249 unsigned MaxNumLanes = 4;
1264 std::numeric_limits<unsigned>::max());
1274 if (RsrcIntr->IsImage) {
1275 unsigned DMask = cast<ConstantInt>(CI.
getArgOperand(1))->getZExtValue();
1295 if ((RsrcIntr->IsImage && BaseOpcode->
NoReturn) || IsSPrefetch) {
1297 Info.memVT = MVT::i32;
1304 case Intrinsic::amdgcn_raw_buffer_load_lds:
1305 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
1306 case Intrinsic::amdgcn_struct_buffer_load_lds:
1307 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
1308 unsigned Width = cast<ConstantInt>(CI.
getArgOperand(2))->getZExtValue();
1313 case Intrinsic::amdgcn_raw_atomic_buffer_load:
1314 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
1315 case Intrinsic::amdgcn_struct_atomic_buffer_load:
1316 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
1319 std::numeric_limits<unsigned>::max());
1329 case Intrinsic::amdgcn_ds_ordered_add:
1330 case Intrinsic::amdgcn_ds_ordered_swap: {
1343 case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
1344 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
1347 Info.ptrVal =
nullptr;
1352 case Intrinsic::amdgcn_ds_append:
1353 case Intrinsic::amdgcn_ds_consume: {
1366 case Intrinsic::amdgcn_global_atomic_csub: {
1375 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1385 case Intrinsic::amdgcn_global_atomic_fmin_num:
1386 case Intrinsic::amdgcn_global_atomic_fmax_num:
1387 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1388 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1389 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1390 case Intrinsic::amdgcn_atomic_cond_sub_u32: {
1400 case Intrinsic::amdgcn_global_load_tr_b64:
1401 case Intrinsic::amdgcn_global_load_tr_b128:
1402 case Intrinsic::amdgcn_ds_read_tr4_b64:
1403 case Intrinsic::amdgcn_ds_read_tr6_b96:
1404 case Intrinsic::amdgcn_ds_read_tr8_b64:
1405 case Intrinsic::amdgcn_ds_read_tr16_b64: {
1413 case Intrinsic::amdgcn_ds_gws_init:
1414 case Intrinsic::amdgcn_ds_gws_barrier:
1415 case Intrinsic::amdgcn_ds_gws_sema_v:
1416 case Intrinsic::amdgcn_ds_gws_sema_br:
1417 case Intrinsic::amdgcn_ds_gws_sema_p:
1418 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1428 Info.memVT = MVT::i32;
1432 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1438 case Intrinsic::amdgcn_global_load_lds: {
1440 unsigned Width = cast<ConstantInt>(CI.
getArgOperand(2))->getZExtValue();
1446 case Intrinsic::amdgcn_ds_bvh_stack_rtn: {
1456 Info.memVT = MVT::i32;
1463 case Intrinsic::amdgcn_s_prefetch_data: {
1478 case Intrinsic::amdgcn_addrspacecast_nonnull: {
1481 unsigned SrcAS =
I.getOperand(0)->getType()->getPointerAddressSpace();
1482 unsigned DstAS =
I.getType()->getPointerAddressSpace();
1494 Type *&AccessTy)
const {
1496 switch (
II->getIntrinsicID()) {
1497 case Intrinsic::amdgcn_atomic_cond_sub_u32:
1498 case Intrinsic::amdgcn_ds_append:
1499 case Intrinsic::amdgcn_ds_consume:
1500 case Intrinsic::amdgcn_ds_read_tr4_b64:
1501 case Intrinsic::amdgcn_ds_read_tr6_b96:
1502 case Intrinsic::amdgcn_ds_read_tr8_b64:
1503 case Intrinsic::amdgcn_ds_read_tr16_b64:
1504 case Intrinsic::amdgcn_ds_ordered_add:
1505 case Intrinsic::amdgcn_ds_ordered_swap:
1506 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1507 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1508 case Intrinsic::amdgcn_global_atomic_csub:
1509 case Intrinsic::amdgcn_global_atomic_fmax_num:
1510 case Intrinsic::amdgcn_global_atomic_fmin_num:
1511 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1512 case Intrinsic::amdgcn_global_load_tr_b64:
1513 case Intrinsic::amdgcn_global_load_tr_b128:
1514 Ptr =
II->getArgOperand(0);
1516 case Intrinsic::amdgcn_global_load_lds:
1517 Ptr =
II->getArgOperand(1);
1522 AccessTy =
II->getType();
1528 unsigned AddrSpace)
const {
1540 return AM.
Scale == 0 &&
1542 AM.
BaseOffs, AddrSpace, FlatVariant));
1562 return isLegalMUBUFAddressingMode(AM);
1565bool SITargetLowering::isLegalMUBUFAddressingMode(
const AddrMode &AM)
const {
1576 if (!
TII->isLegalMUBUFImmOffset(AM.BaseOffs))
1588 if (AM.HasBaseReg) {
1620 return isLegalMUBUFAddressingMode(AM);
1627 if (Ty->
isSized() &&
DL.getTypeStoreSize(Ty) < 4)
1677 : isLegalMUBUFAddressingMode(AM);
1724 unsigned Size,
unsigned AddrSpace,
Align Alignment,
1736 Align RequiredAlignment(
1739 Alignment < RequiredAlignment)
1760 RequiredAlignment =
Align(4);
1778 *IsFast = (Alignment >= RequiredAlignment) ? 64
1779 : (Alignment <
Align(4)) ? 32
1801 *IsFast = (Alignment >= RequiredAlignment) ? 96
1802 : (Alignment <
Align(4)) ? 32
1815 RequiredAlignment =
Align(8);
1826 *IsFast = (Alignment >= RequiredAlignment) ? 128
1827 : (Alignment <
Align(4)) ? 32
1844 *IsFast = (Alignment >= RequiredAlignment) ?
Size : 0;
1846 return Alignment >= RequiredAlignment ||
1855 bool AlignedBy4 = Alignment >=
Align(4);
1857 *IsFast = AlignedBy4;
1868 return Alignment >=
Align(4) ||
1882 return Size >= 32 && Alignment >=
Align(4);
1887 unsigned *IsFast)
const {
1889 Alignment, Flags, IsFast);
1899 if (
Op.size() >= 16 &&
1903 if (
Op.size() >= 8 &&
Op.isDstAligned(
Align(4)))
1911 const MemSDNode *MemNode = cast<MemSDNode>(
N);
1921 unsigned DestAS)
const {
1929 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1947 unsigned Index)
const {
1990 auto [InputPtrReg, RC, ArgTy] =
2000 Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
2006 const SDLoc &SL)
const {
2013 const SDLoc &SL)
const {
2016 std::optional<uint32_t> KnownSize =
2018 if (KnownSize.has_value())
2044 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
2053SDValue SITargetLowering::lowerKernargMemParameter(
2065 int64_t OffsetDiff =
Offset - AlignDownOffset;
2071 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
2081 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal,
Signed, Arg);
2091 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load,
Signed, Arg);
2139 ExtType, SL, VA.
getLocVT(), Chain, FIN,
2144SDValue SITargetLowering::getPreloadedValue(
2166 Reg = &WorkGroupIDX;
2167 RC = &AMDGPU::SReg_32RegClass;
2171 Reg = &WorkGroupIDY;
2172 RC = &AMDGPU::SReg_32RegClass;
2176 Reg = &WorkGroupIDZ;
2177 RC = &AMDGPU::SReg_32RegClass;
2208 for (
unsigned I = 0, E = Ins.size(), PSInputNum = 0;
I != E; ++
I) {
2212 "vector type argument should have been split");
2217 bool SkipArg = !Arg->
Used && !
Info->isPSInputAllocated(PSInputNum);
2225 "unexpected vector split in ps argument type");
2239 Info->markPSInputAllocated(PSInputNum);
2241 Info->markPSInputEnabled(PSInputNum);
2257 if (
Info.hasWorkItemIDX()) {
2267 if (
Info.hasWorkItemIDY()) {
2270 Info.setWorkItemIDY(
2273 unsigned Reg = AMDGPU::VGPR1;
2281 if (
Info.hasWorkItemIDZ()) {
2284 Info.setWorkItemIDZ(
2287 unsigned Reg = AMDGPU::VGPR2;
2307 if (RegIdx == ArgVGPRs.
size()) {
2314 unsigned Reg = ArgVGPRs[RegIdx];
2316 assert(Reg != AMDGPU::NoRegister);
2326 unsigned NumArgRegs) {
2329 if (RegIdx == ArgSGPRs.
size())
2332 unsigned Reg = ArgSGPRs[RegIdx];
2334 assert(Reg != AMDGPU::NoRegister);
2348 assert(Reg != AMDGPU::NoRegister);
2374 const unsigned Mask = 0x3ff;
2377 if (
Info.hasWorkItemIDX()) {
2379 Info.setWorkItemIDX(Arg);
2382 if (
Info.hasWorkItemIDY()) {
2384 Info.setWorkItemIDY(Arg);
2387 if (
Info.hasWorkItemIDZ())
2399 const unsigned Mask = 0x3ff;
2420 if (
Info.hasImplicitArgPtr())
2428 if (
Info.hasWorkGroupIDX())
2431 if (
Info.hasWorkGroupIDY())
2434 if (
Info.hasWorkGroupIDZ())
2437 if (
Info.hasLDSKernelId())
2449 MF.
addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2456 MF.
addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2462 MF.
addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2468 MF.
addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2483 MF.
addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2489 MF.
addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2495 MF.
addLiveIn(PrivateSegmentSizeReg, &AMDGPU::SGPR_32RegClass);
2512 bool InPreloadSequence =
true;
2514 bool AlignedForImplictArgs =
false;
2515 unsigned ImplicitArgOffset = 0;
2516 for (
auto &Arg :
F.args()) {
2517 if (!InPreloadSequence || !Arg.hasInRegAttr())
2520 unsigned ArgIdx = Arg.getArgNo();
2523 if (InIdx < Ins.size() &&
2524 (!Ins[InIdx].isOrigArg() || Ins[InIdx].getOrigArgIndex() != ArgIdx))
2527 for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() &&
2528 Ins[InIdx].getOrigArgIndex() == ArgIdx;
2530 assert(ArgLocs[ArgIdx].isMemLoc());
2531 auto &ArgLoc = ArgLocs[InIdx];
2533 unsigned ArgOffset = ArgLoc.getLocMemOffset();
2535 unsigned NumAllocSGPRs =
2536 alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32;
2539 if (Arg.hasAttribute(
"amdgpu-hidden-argument")) {
2540 if (!AlignedForImplictArgs) {
2542 alignTo(LastExplicitArgOffset,
2544 LastExplicitArgOffset;
2545 AlignedForImplictArgs =
true;
2547 ArgOffset += ImplicitArgOffset;
2551 if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) {
2552 assert(InIdx >= 1 &&
"No previous SGPR");
2553 Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back(
2554 Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]);
2558 unsigned Padding = ArgOffset - LastExplicitArgOffset;
2559 unsigned PaddingSGPRs =
alignTo(Padding, 4) / 4;
2562 InPreloadSequence =
false;
2568 TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32);
2570 Info.addPreloadedKernArg(
TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs);
2572 if (PreloadRegs->
size() > 1)
2573 RC = &AMDGPU::SGPR_32RegClass;
2574 for (
auto &Reg : *PreloadRegs) {
2580 LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset;
2589 if (
Info.hasLDSKernelId()) {
2591 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2600 bool IsShader)
const {
2608 assert(!HasArchitectedSGPRs &&
"Unhandled feature for the subtarget");
2610 unsigned CurrentUserSGPRs =
Info.getNumUserSGPRs();
2614 unsigned NumRequiredSystemSGPRs =
2615 Info.hasWorkGroupIDX() +
Info.hasWorkGroupIDY() +
2616 Info.hasWorkGroupIDZ() +
Info.hasWorkGroupInfo();
2617 for (
unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2619 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2624 if (!HasArchitectedSGPRs) {
2625 if (
Info.hasWorkGroupIDX()) {
2627 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2631 if (
Info.hasWorkGroupIDY()) {
2633 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2637 if (
Info.hasWorkGroupIDZ()) {
2639 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2644 if (
Info.hasWorkGroupInfo()) {
2646 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2650 if (
Info.hasPrivateSegmentWaveByteOffset()) {
2652 unsigned PrivateSegmentWaveByteOffsetReg;
2655 PrivateSegmentWaveByteOffsetReg =
2656 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2660 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2662 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2665 PrivateSegmentWaveByteOffsetReg =
Info.addPrivateSegmentWaveByteOffset();
2667 MF.
addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2668 CCInfo.
AllocateReg(PrivateSegmentWaveByteOffsetReg);
2672 Info.getNumPreloadedSGPRs() >= 16);
2687 if (HasStackObjects)
2688 Info.setHasNonSpillStackObjects(
true);
2693 HasStackObjects =
true;
2697 bool RequiresStackAccess = HasStackObjects || MFI.
hasCalls();
2699 if (!ST.enableFlatScratch()) {
2700 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.
getFunction())) {
2707 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2709 unsigned ReservedBufferReg =
TRI.reservedPrivateSegmentBufferReg(MF);
2719 Info.setScratchRSrcReg(ReservedBufferReg);
2738 if (!
MRI.isLiveIn(AMDGPU::SGPR32)) {
2739 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2746 for (
unsigned Reg : AMDGPU::SGPR_32RegClass) {
2747 if (!
MRI.isLiveIn(Reg)) {
2748 Info.setStackPtrOffsetReg(Reg);
2753 if (
Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2760 if (ST.getFrameLowering()->hasFP(MF)) {
2761 Info.setFrameOffsetReg(AMDGPU::SGPR33);
2767 return !
Info->isEntryFunction();
2777 const MCPhysReg *IStart =
TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2786 if (AMDGPU::SReg_64RegClass.
contains(*
I))
2787 RC = &AMDGPU::SGPR_64RegClass;
2788 else if (AMDGPU::SReg_32RegClass.
contains(*
I))
2789 RC = &AMDGPU::SGPR_32RegClass;
2795 Entry->addLiveIn(*
I);
2800 for (
auto *Exit : Exits)
2802 TII->get(TargetOpcode::COPY), *
I)
2820 Fn,
"unsupported non-compute shaders with HSA",
DL.getDebugLoc());
2839 !
Info->hasLDSKernelId() && !
Info->hasWorkItemIDX() &&
2840 !
Info->hasWorkItemIDY() && !
Info->hasWorkItemIDZ());
2848 !
Info->hasWorkGroupIDZ());
2867 if ((
Info->getPSInputAddr() & 0x7F) == 0 ||
2868 ((
Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11))) {
2871 Info->markPSInputAllocated(0);
2872 Info->markPSInputEnabled(0);
2883 unsigned PsInputBits =
Info->getPSInputAddr() &
Info->getPSInputEnable();
2884 if ((PsInputBits & 0x7F) == 0 ||
2885 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2888 }
else if (IsKernel) {
2891 Splits.
append(Ins.begin(), Ins.end());
2904 }
else if (!IsGraphics) {
2929 for (
unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2939 if (IsEntryFunc && VA.
isMemLoc()) {
2962 if (Arg.
isOrigArg() &&
Info->getArgInfo().PreloadKernArgs.count(i)) {
2966 int64_t OffsetDiff =
Offset - AlignDownOffset;
2973 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0];
2984 NewArg = convertArgType(DAG, VT, MemVT,
DL, ArgVal,
2985 Ins[i].Flags.isSExt(), &Ins[i]);
2993 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs;
2996 if (PreloadRegs.
size() == 1) {
2997 Register VReg =
MRI.getLiveInVirtReg(PreloadRegs[0]);
3002 TRI->getRegSizeInBits(*RC)));
3010 for (
auto Reg : PreloadRegs) {
3017 PreloadRegs.size()),
3034 NewArg = convertArgType(DAG, VT, MemVT,
DL, NewArg,
3035 Ins[i].Flags.isSExt(), &Ins[i]);
3047 "hidden argument in kernel signature was not preloaded",
3054 lowerKernargMemParameter(DAG, VT, MemVT,
DL, Chain,
Offset,
3055 Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
3060 dyn_cast<PointerType>(FType->
getParamType(Ins[i].getOrigArgIndex()));
3075 if (!IsEntryFunc && VA.
isMemLoc()) {
3076 SDValue Val = lowerStackParameter(DAG, VA,
DL, Chain, Arg);
3087 if (AMDGPU::VGPR_32RegClass.
contains(Reg))
3088 RC = &AMDGPU::VGPR_32RegClass;
3089 else if (AMDGPU::SGPR_32RegClass.
contains(Reg))
3090 RC = &AMDGPU::SGPR_32RegClass;
3150 Info->setBytesInStackArgArea(StackArgSize);
3152 return Chains.
empty() ? Chain
3168 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3174 unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
3175 for (
unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
3176 if (CCInfo.
isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
3199 bool IsWaveEnd =
Info->returnsVoid() && IsShader;
3217 for (
unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.
size();
I != E;
3218 ++
I, ++RealRVLocIdx) {
3222 SDValue Arg = OutVals[RealRVLocIdx];
3250 if (!
Info->isEntryFunction()) {
3256 if (AMDGPU::SReg_64RegClass.
contains(*
I))
3258 else if (AMDGPU::SReg_32RegClass.
contains(*
I))
3274 return DAG.
getNode(Opc,
DL, MVT::Other, RetOps);
3357 auto &ArgUsageInfo =
3359 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
3385 const auto [OutgoingArg, ArgRC, ArgTy] =
3390 const auto [IncomingArg, IncomingArgRC, Ty] =
3392 assert(IncomingArgRC == ArgRC);
3395 EVT ArgVT =
TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
3403 InputReg = getImplicitArgPtr(DAG,
DL);
3405 std::optional<uint32_t> Id =
3407 if (Id.has_value()) {
3418 if (OutgoingArg->isRegister()) {
3419 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3420 if (!CCInfo.
AllocateReg(OutgoingArg->getRegister()))
3423 unsigned SpecialArgOffset =
3434 auto [OutgoingArg, ArgRC, Ty] =
3437 std::tie(OutgoingArg, ArgRC, Ty) =
3440 std::tie(OutgoingArg, ArgRC, Ty) =
3455 const bool NeedWorkItemIDX = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-x");
3456 const bool NeedWorkItemIDY = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-y");
3457 const bool NeedWorkItemIDZ = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-z");
3489 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
3490 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
3501 : IncomingArgY ? *IncomingArgY
3508 if (OutgoingArg->isRegister()) {
3510 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3551 if (Callee->isDivergent())
3558 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
3562 if (!CallerPreserved)
3565 bool CCMatch = CallerCC == CalleeCC;
3578 if (Arg.hasByValAttr())
3592 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
3593 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3602 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3615 for (
const auto &[CCVA, ArgVal] :
zip_equal(ArgLocs, OutVals)) {
3617 if (!CCVA.isRegLoc())
3622 if (ArgVal->
isDivergent() &&
TRI->isSGPRPhysReg(CCVA.getLocReg())) {
3624 dbgs() <<
"Cannot tail call due to divergent outgoing argument in "
3653 if (IsChainCallConv) {
3657 RequestedExec = CLI.
Args.back();
3658 assert(RequestedExec.
Node &&
"No node for EXEC");
3663 assert(CLI.
Outs.back().OrigArgIndex == 2 &&
"Unexpected last arg");
3664 CLI.
Outs.pop_back();
3668 assert(CLI.
Outs.back().OrigArgIndex == 2 &&
"Exec wasn't split up");
3669 CLI.
Outs.pop_back();
3674 "Haven't popped all the pieces of the EXEC mask");
3685 bool IsSibCall =
false;
3699 "unsupported call to variadic function ");
3707 "unsupported required tail call to function ");
3712 Outs, OutVals, Ins, DAG);
3716 "site marked musttail or on llvm.amdgcn.cs.chain");
3723 if (!TailCallOpt && IsTailCall)
3769 if (!IsSibCall || IsChainCallConv) {
3776 RegsToPass.emplace_back(IsChainCallConv
3777 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
3778 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
3785 const unsigned NumSpecialInputs = RegsToPass.size();
3787 MVT PtrVT = MVT::i32;
3790 for (
unsigned i = 0, e = ArgLocs.
size(); i != e; ++i) {
3818 RegsToPass.push_back(std::pair(VA.
getLocReg(), Arg));
3826 int32_t
Offset = LocMemOffset;
3833 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize()
3839 ? Flags.getNonZeroByValAlign()
3866 if (Outs[i].Flags.isByVal()) {
3868 DAG.
getConstant(Outs[i].Flags.getByValSize(),
DL, MVT::i32);
3871 Outs[i].Flags.getNonZeroByValAlign(),
3873 nullptr, std::nullopt, DstInfo,
3879 DAG.
getStore(Chain,
DL, Arg, DstAddr, DstInfo, Alignment);
3885 if (!MemOpChains.
empty())
3901 unsigned ArgIdx = 0;
3902 for (
auto [Reg, Val] : RegsToPass) {
3903 if (ArgIdx++ >= NumSpecialInputs &&
3904 (IsChainCallConv || !Val->
isDivergent()) &&
TRI->isSGPRPhysReg(Reg)) {
3930 if (IsTailCall && !IsSibCall) {
3935 std::vector<SDValue> Ops({Chain});
3941 Ops.push_back(Callee);
3958 Ops.push_back(Callee);
3969 if (IsChainCallConv)
3970 Ops.push_back(RequestedExec.
Node);
3974 for (
auto &[Reg, Val] : RegsToPass)
3978 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
3979 assert(Mask &&
"Missing call preserved mask for calling convention");
3989 MVT::Glue, GlueOps),
3994 Ops.push_back(InGlue);
4011 return DAG.
getNode(OPC,
DL, MVT::Other, Ops);
4016 Chain = Call.getValue(0);
4017 InGlue = Call.getValue(1);
4019 uint64_t CalleePopBytes = NumBytes;
4040 EVT VT =
Op.getValueType();
4050 Align Alignment = cast<ConstantSDNode>(
Op.getOperand(2))->getAlignValue();
4054 "Stack grows upwards for AMDGPU");
4056 Chain = BaseAddr.getValue(1);
4058 if (Alignment > StackAlign) {
4061 uint64_t StackAlignMask = ScaledAlignment - 1;
4068 assert(
Size.getValueType() == MVT::i32 &&
"Size must be 32-bit");
4070 if (isa<ConstantSDNode>(
Size)) {
4101 if (
Op.getValueType() != MVT::i32)
4120 assert(
Op.getValueType() == MVT::i32);
4129 Op.getOperand(0), IntrinID, GetRoundBothImm);
4163 SDValue RoundModeTimesNumBits =
4183 TableEntry, EnumOffset);
4197 if (
auto *ConstMode = dyn_cast<ConstantSDNode>(NewMode)) {
4199 static_cast<uint32_t>(ConstMode->getZExtValue()),
4211 if (UseReducedTable) {
4217 SDValue RoundModeTimesNumBits =
4237 SDValue RoundModeTimesNumBits =
4246 NewMode = TruncTable;
4255 ReadFirstLaneID, NewMode);
4268 IntrinID, RoundBothImm, NewMode);
4274 if (
Op->isDivergent())
4293 SDValue Src =
Op.getOperand(IsStrict ? 1 : 0);
4294 EVT SrcVT = Src.getValueType();
4303 EVT DstVT =
Op.getValueType();
4312 if (
Op.getValueType() != MVT::i64)
4326 Op.getOperand(0), IntrinID, ModeHwRegImm);
4328 Op.getOperand(0), IntrinID, TrapHwRegImm);
4342 if (
Op.getOperand(1).getValueType() != MVT::i64)
4354 ReadFirstLaneID, NewModeReg);
4356 ReadFirstLaneID, NewTrapReg);
4358 unsigned ModeHwReg =
4361 unsigned TrapHwReg =
4369 IntrinID, ModeHwRegImm, NewModeReg);
4372 IntrinID, TrapHwRegImm, NewTrapReg);
4379 .
Case(
"m0", AMDGPU::M0)
4380 .
Case(
"exec", AMDGPU::EXEC)
4381 .
Case(
"exec_lo", AMDGPU::EXEC_LO)
4382 .
Case(
"exec_hi", AMDGPU::EXEC_HI)
4383 .
Case(
"flat_scratch", AMDGPU::FLAT_SCR)
4384 .
Case(
"flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
4385 .
Case(
"flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
4388 if (Reg == AMDGPU::NoRegister) {
4396 "\" for subtarget."));
4401 case AMDGPU::EXEC_LO:
4402 case AMDGPU::EXEC_HI:
4403 case AMDGPU::FLAT_SCR_LO:
4404 case AMDGPU::FLAT_SCR_HI:
4409 case AMDGPU::FLAT_SCR:
4428 MI.setDesc(
TII->getKillTerminatorFromPseudo(
MI.getOpcode()));
4437static std::pair<MachineBasicBlock *, MachineBasicBlock *>
4459 auto Next = std::next(
I);
4472 return std::pair(LoopBB, RemainderBB);
4479 auto I =
MI.getIterator();
4480 auto E = std::next(
I);
4502 Src->setIsKill(
false);
4512 BuildMI(*LoopBB, LoopBB->begin(),
DL,
TII->get(AMDGPU::S_SETREG_IMM32_B32))
4518 Register Reg =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
4521 BuildMI(*LoopBB,
I,
DL,
TII->get(AMDGPU::S_GETREG_B32), Reg)
4545 unsigned InitReg,
unsigned ResultReg,
unsigned PhiReg,
4546 unsigned InitSaveExecReg,
int Offset,
bool UseGPRIdxMode,
4555 Register PhiExec =
MRI.createVirtualRegister(BoolRC);
4556 Register NewExec =
MRI.createVirtualRegister(BoolRC);
4557 Register CurrentIdxReg =
MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4558 Register CondReg =
MRI.createVirtualRegister(BoolRC);
4566 BuildMI(LoopBB,
I,
DL,
TII->get(TargetOpcode::PHI), PhiExec)
4573 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
4577 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
4583 TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
4584 : AMDGPU::S_AND_SAVEEXEC_B64),
4588 MRI.setSimpleHint(NewExec, CondReg);
4590 if (UseGPRIdxMode) {
4592 SGPRIdxReg = CurrentIdxReg;
4594 SGPRIdxReg =
MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4595 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
4602 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4605 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
4612 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4615 TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
4616 : AMDGPU::S_XOR_B64_term),
4640 unsigned InitResultReg,
unsigned PhiReg,
int Offset,
4641 bool UseGPRIdxMode,
Register &SGPRIdxReg) {
4649 const auto *BoolXExecRC =
TRI->getWaveMaskRegClass();
4651 Register SaveExec =
MRI.createVirtualRegister(BoolXExecRC);
4652 Register TmpExec =
MRI.createVirtualRegister(BoolXExecRC);
4653 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4654 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
4669 InitResultReg, DstReg, PhiReg, TmpExec,
4670 Offset, UseGPRIdxMode, SGPRIdxReg);
4676 LoopBB->removeSuccessor(RemainderBB);
4678 LoopBB->addSuccessor(LandingPad);
4689static std::pair<unsigned, int>
4693 int NumElts =
TRI.getRegSizeInBits(*SuperRC) / 32;
4698 return std::pair(AMDGPU::sub0,
Offset);
4712 assert(
Idx->getReg() != AMDGPU::NoRegister);
4736 return Idx->getReg();
4738 Register Tmp =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
4755 Register SrcReg =
TII->getNamedOperand(
MI, AMDGPU::OpName::src)->getReg();
4756 int Offset =
TII->getNamedOperand(
MI, AMDGPU::OpName::offset)->getImm();
4765 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
4768 if (
TII->getRegisterInfo().isSGPRClass(IdxRC)) {
4772 if (UseGPRIdxMode) {
4779 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
true);
4792 MI.eraseFromParent();
4801 Register PhiReg =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4802 Register InitReg =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4808 UseGPRIdxMode, SGPRIdxReg);
4812 if (UseGPRIdxMode) {
4814 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
true);
4816 BuildMI(*LoopBB, InsPt,
DL, GPRIDXDesc, Dst)
4821 BuildMI(*LoopBB, InsPt,
DL,
TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
4826 MI.eraseFromParent();
4843 int Offset =
TII->getNamedOperand(
MI, AMDGPU::OpName::offset)->getImm();
4853 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
4855 if (
Idx->getReg() == AMDGPU::NoRegister) {
4866 MI.eraseFromParent();
4871 if (
TII->getRegisterInfo().isSGPRClass(IdxRC)) {
4875 if (UseGPRIdxMode) {
4879 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
false);
4888 const MCInstrDesc &MovRelDesc =
TII->getIndirectRegWriteMovRelPseudo(
4889 TRI.getRegSizeInBits(*VecRC), 32,
false);
4895 MI.eraseFromParent();
4905 Register PhiReg =
MRI.createVirtualRegister(VecRC);
4909 UseGPRIdxMode, SGPRIdxReg);
4912 if (UseGPRIdxMode) {
4914 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
false);
4916 BuildMI(*LoopBB, InsPt,
DL, GPRIDXDesc, Dst)
4922 const MCInstrDesc &MovRelDesc =
TII->getIndirectRegWriteMovRelPseudo(
4923 TRI.getRegSizeInBits(*VecRC), 32,
false);
4924 BuildMI(*LoopBB, InsPt,
DL, MovRelDesc, Dst)
4930 MI.eraseFromParent();
4945 bool isSGPR =
TRI->isSGPRClass(
MRI.getRegClass(SrcReg));
4976 Register LoopIterator =
MRI.createVirtualRegister(WaveMaskRegClass);
4977 Register InitalValReg =
MRI.createVirtualRegister(DstRegClass);
4979 Register AccumulatorReg =
MRI.createVirtualRegister(DstRegClass);
4980 Register ActiveBitsReg =
MRI.createVirtualRegister(WaveMaskRegClass);
4981 Register NewActiveBitsReg =
MRI.createVirtualRegister(WaveMaskRegClass);
4983 Register FF1Reg =
MRI.createVirtualRegister(DstRegClass);
4984 Register LaneValueReg =
MRI.createVirtualRegister(DstRegClass);
4986 bool IsWave32 = ST.isWave32();
4987 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
4988 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4993 (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0;
4996 BuildMI(BB,
I,
DL,
TII->get(AMDGPU::S_MOV_B32), InitalValReg)
5004 I = ComputeLoop->end();
5006 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::PHI), AccumulatorReg)
5010 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::PHI), ActiveBitsReg)
5011 .
addReg(TmpSReg->getOperand(0).getReg())
5015 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
5016 auto FF1 =
BuildMI(*ComputeLoop,
I,
DL,
TII->get(SFFOpc), FF1Reg)
5017 .
addReg(ActiveBits->getOperand(0).getReg());
5018 auto LaneValue =
BuildMI(*ComputeLoop,
I,
DL,
5019 TII->get(AMDGPU::V_READLANE_B32), LaneValueReg)
5021 .
addReg(FF1->getOperand(0).getReg());
5022 auto NewAccumulator =
BuildMI(*ComputeLoop,
I,
DL,
TII->get(Opc), DstReg)
5024 .
addReg(LaneValue->getOperand(0).getReg());
5027 unsigned BITSETOpc =
5028 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
5029 auto NewActiveBits =
5030 BuildMI(*ComputeLoop,
I,
DL,
TII->get(BITSETOpc), NewActiveBitsReg)
5031 .
addReg(FF1->getOperand(0).getReg())
5032 .
addReg(ActiveBits->getOperand(0).getReg());
5035 Accumulator.addReg(NewAccumulator->getOperand(0).getReg())
5036 .addMBB(ComputeLoop);
5037 ActiveBits.addReg(NewActiveBits->getOperand(0).getReg())
5038 .addMBB(ComputeLoop);
5041 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
5043 .
addReg(NewActiveBits->getOperand(0).getReg())
5045 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::S_CBRANCH_SCC1))
5050 MI.eraseFromParent();
5062 switch (
MI.getOpcode()) {
5063 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
5065 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
5067 case AMDGPU::S_UADDO_PSEUDO:
5068 case AMDGPU::S_USUBO_PSEUDO: {
5075 unsigned Opc = (
MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
5077 : AMDGPU::S_SUB_I32;
5088 MI.eraseFromParent();
5091 case AMDGPU::S_ADD_U64_PSEUDO:
5092 case AMDGPU::S_SUB_U64_PSEUDO: {
5101 bool IsAdd = (
MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
5103 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64;
5113 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5114 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5117 MI,
MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5119 MI,
MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5122 MI,
MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5124 MI,
MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5126 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
5127 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
5140 MI.eraseFromParent();
5143 case AMDGPU::V_ADD_U64_PSEUDO:
5144 case AMDGPU::V_SUB_U64_PSEUDO: {
5150 bool IsAdd = (
MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
5156 if (IsAdd && ST.hasLshlAddB64()) {
5162 TII->legalizeOperands(*
Add);
5163 MI.eraseFromParent();
5167 const auto *CarryRC =
TRI->getWaveMaskRegClass();
5169 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5170 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5172 Register CarryReg =
MRI.createVirtualRegister(CarryRC);
5173 Register DeadCarryReg =
MRI.createVirtualRegister(CarryRC);
5177 : &AMDGPU::VReg_64RegClass;
5180 : &AMDGPU::VReg_64RegClass;
5183 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
5185 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
5188 MI,
MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
5190 MI,
MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
5193 MI,
MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
5195 MI,
MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
5198 IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
5205 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
5219 TII->legalizeOperands(*LoHalf);
5220 TII->legalizeOperands(*HiHalf);
5221 MI.eraseFromParent();
5224 case AMDGPU::S_ADD_CO_PSEUDO:
5225 case AMDGPU::S_SUB_CO_PSEUDO: {
5239 unsigned Opc = (
MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
5240 ? AMDGPU::S_ADDC_U32
5241 : AMDGPU::S_SUBB_U32;
5243 Register RegOp0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5244 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
5249 Register RegOp1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5250 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
5254 Register RegOp2 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5256 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
5262 unsigned WaveSize =
TRI->getRegSizeInBits(*Src2RC);
5263 assert(WaveSize == 64 || WaveSize == 32);
5265 if (WaveSize == 64) {
5266 if (ST.hasScalarCompareEq64()) {
5272 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
5274 MII,
MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
5276 MII,
MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
5277 Register Src2_32 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5279 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::S_OR_B32), Src2_32)
5300 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
5306 MI.eraseFromParent();
5309 case AMDGPU::SI_INIT_M0: {
5311 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
5312 .
add(
MI.getOperand(0));
5313 MI.eraseFromParent();
5316 case AMDGPU::GET_GROUPSTATICSIZE: {
5321 .
add(
MI.getOperand(0))
5323 MI.eraseFromParent();
5326 case AMDGPU::GET_SHADERCYCLESHILO: {
5340 using namespace AMDGPU::Hwreg;
5341 Register RegHi1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5343 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
5344 Register RegLo1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5346 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32));
5347 Register RegHi2 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5349 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
5353 Register RegLo =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5358 .
add(
MI.getOperand(0))
5363 MI.eraseFromParent();
5366 case AMDGPU::SI_INDIRECT_SRC_V1:
5367 case AMDGPU::SI_INDIRECT_SRC_V2:
5368 case AMDGPU::SI_INDIRECT_SRC_V4:
5369 case AMDGPU::SI_INDIRECT_SRC_V8:
5370 case AMDGPU::SI_INDIRECT_SRC_V9:
5371 case AMDGPU::SI_INDIRECT_SRC_V10:
5372 case AMDGPU::SI_INDIRECT_SRC_V11:
5373 case AMDGPU::SI_INDIRECT_SRC_V12:
5374 case AMDGPU::SI_INDIRECT_SRC_V16:
5375 case AMDGPU::SI_INDIRECT_SRC_V32:
5377 case AMDGPU::SI_INDIRECT_DST_V1:
5378 case AMDGPU::SI_INDIRECT_DST_V2:
5379 case AMDGPU::SI_INDIRECT_DST_V4:
5380 case AMDGPU::SI_INDIRECT_DST_V8:
5381 case AMDGPU::SI_INDIRECT_DST_V9:
5382 case AMDGPU::SI_INDIRECT_DST_V10:
5383 case AMDGPU::SI_INDIRECT_DST_V11:
5384 case AMDGPU::SI_INDIRECT_DST_V12:
5385 case AMDGPU::SI_INDIRECT_DST_V16:
5386 case AMDGPU::SI_INDIRECT_DST_V32:
5388 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
5389 case AMDGPU::SI_KILL_I1_PSEUDO:
5391 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
5400 Register SrcCond =
MI.getOperand(3).getReg();
5402 Register DstLo =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5403 Register DstHi =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5404 const auto *CondRC =
TRI->getWaveMaskRegClass();
5405 Register SrcCondCopy =
MRI.createVirtualRegister(CondRC);
5409 : &AMDGPU::VReg_64RegClass;
5412 : &AMDGPU::VReg_64RegClass;
5415 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
5417 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
5420 MI,
MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
5422 MI,
MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
5425 MI,
MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
5427 MI,
MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
5448 MI.eraseFromParent();
5451 case AMDGPU::SI_BR_UNDEF: {
5455 .
add(
MI.getOperand(0));
5457 MI.eraseFromParent();
5460 case AMDGPU::ADJCALLSTACKUP:
5461 case AMDGPU::ADJCALLSTACKDOWN: {
5468 case AMDGPU::SI_CALL_ISEL: {
5472 unsigned ReturnAddrReg =
TII->getRegisterInfo().getReturnAddressReg(*MF);
5475 MIB =
BuildMI(*BB,
MI,
DL,
TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
5481 MI.eraseFromParent();
5484 case AMDGPU::V_ADD_CO_U32_e32:
5485 case AMDGPU::V_SUB_CO_U32_e32:
5486 case AMDGPU::V_SUBREV_CO_U32_e32: {
5489 unsigned Opc =
MI.getOpcode();
5491 bool NeedClampOperand =
false;
5492 if (
TII->pseudoToMCOpcode(Opc) == -1) {
5494 NeedClampOperand =
true;
5498 if (
TII->isVOP3(*
I)) {
5503 I.add(
MI.getOperand(1)).add(
MI.getOperand(2));
5504 if (NeedClampOperand)
5507 TII->legalizeOperands(*
I);
5509 MI.eraseFromParent();
5512 case AMDGPU::V_ADDC_U32_e32:
5513 case AMDGPU::V_SUBB_U32_e32:
5514 case AMDGPU::V_SUBBREV_U32_e32:
5517 TII->legalizeOperands(
MI);
5519 case AMDGPU::DS_GWS_INIT:
5520 case AMDGPU::DS_GWS_SEMA_BR:
5521 case AMDGPU::DS_GWS_BARRIER:
5522 TII->enforceOperandRCAlignment(
MI, AMDGPU::OpName::data0);
5524 case AMDGPU::DS_GWS_SEMA_V:
5525 case AMDGPU::DS_GWS_SEMA_P:
5526 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
5534 case AMDGPU::S_SETREG_B32: {
5549 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
5550 const unsigned SetMask = WidthMask <<
Offset;
5553 unsigned SetDenormOp = 0;
5554 unsigned SetRoundOp = 0;
5562 SetRoundOp = AMDGPU::S_ROUND_MODE;
5563 SetDenormOp = AMDGPU::S_DENORM_MODE;
5565 SetRoundOp = AMDGPU::S_ROUND_MODE;
5567 SetDenormOp = AMDGPU::S_DENORM_MODE;
5570 if (SetRoundOp || SetDenormOp) {
5573 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
5574 unsigned ImmVal = Def->getOperand(1).getImm();
5588 MI.eraseFromParent();
5597 MI.setDesc(
TII->get(AMDGPU::S_SETREG_B32_mode));
5601 case AMDGPU::S_INVERSE_BALLOT_U32:
5602 case AMDGPU::S_INVERSE_BALLOT_U64:
5605 MI.setDesc(
TII->get(AMDGPU::COPY));
5607 case AMDGPU::ENDPGM_TRAP: {
5610 MI.setDesc(
TII->get(AMDGPU::S_ENDPGM));
5630 MI.eraseFromParent();
5633 case AMDGPU::SIMULATED_TRAP: {
5637 TII->insertSimulatedTrap(
MRI, *BB,
MI,
MI.getDebugLoc());
5638 MI.eraseFromParent();
5675 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
5791 EVT VT =
N->getValueType(0);
5795 if (VT == MVT::f16) {
5811 unsigned Opc =
Op.getOpcode();
5812 EVT VT =
Op.getValueType();
5813 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
5814 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
5815 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5816 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
5831 unsigned Opc =
Op.getOpcode();
5832 EVT VT =
Op.getValueType();
5833 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
5834 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
5835 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5836 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
5844 DAG.
getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
Op->getFlags());
5846 DAG.
getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
Op->getFlags());
5853 unsigned Opc =
Op.getOpcode();
5854 EVT VT =
Op.getValueType();
5855 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
5856 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
5857 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5858 VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 ||
5859 VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 ||
5860 VT == MVT::v32bf16);
5865 : std::pair(Op0, Op0);
5874 DAG.
getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
Op->getFlags());
5876 DAG.
getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
Op->getFlags());
5882 switch (
Op.getOpcode()) {
5886 return LowerBRCOND(
Op, DAG);
5888 return LowerRETURNADDR(
Op, DAG);
5891 assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) &&
5892 "Load should return a value and a chain");
5896 EVT VT =
Op.getValueType();
5898 return lowerFSQRTF32(
Op, DAG);
5900 return lowerFSQRTF64(
Op, DAG);
5905 return LowerTrig(
Op, DAG);
5907 return LowerSELECT(
Op, DAG);
5909 return LowerFDIV(
Op, DAG);
5911 return LowerFFREXP(
Op, DAG);
5913 return LowerATOMIC_CMP_SWAP(
Op, DAG);
5915 return LowerSTORE(
Op, DAG);
5919 return LowerGlobalAddress(MFI,
Op, DAG);
5922 return LowerINTRINSIC_WO_CHAIN(
Op, DAG);
5924 return LowerINTRINSIC_W_CHAIN(
Op, DAG);
5926 return LowerINTRINSIC_VOID(
Op, DAG);
5928 return lowerADDRSPACECAST(
Op, DAG);
5930 return lowerINSERT_SUBVECTOR(
Op, DAG);
5932 return lowerINSERT_VECTOR_ELT(
Op, DAG);
5934 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
5936 return lowerVECTOR_SHUFFLE(
Op, DAG);
5938 return lowerSCALAR_TO_VECTOR(
Op, DAG);
5940 return lowerBUILD_VECTOR(
Op, DAG);
5943 return lowerFP_ROUND(
Op, DAG);
5945 return lowerTRAP(
Op, DAG);
5947 return lowerDEBUGTRAP(
Op, DAG);
5956 return lowerFMINNUM_FMAXNUM(
Op, DAG);
5959 return lowerFLDEXP(
Op, DAG);
5988 return lowerMUL(
Op, DAG);
5991 return lowerXMULO(
Op, DAG);
5994 return lowerXMUL_LOHI(
Op, DAG);
6027 EVT FittingLoadVT = LoadVT;
6059SDValue SITargetLowering::adjustLoadValueType(
unsigned Opcode,
MemSDNode *M,
6062 bool IsIntrinsic)
const {
6066 EVT LoadVT =
M->getValueType(0);
6068 EVT EquivLoadVT = LoadVT;
6086 M->getMemoryVT(),
M->getMemOperand());
6097 EVT LoadVT =
M->getValueType(0);
6103 assert(
M->getNumValues() == 2 ||
M->getNumValues() == 3);
6104 bool IsTFE =
M->getNumValues() == 3;
6117 return handleByteShortBufferLoads(DAG, LoadVT,
DL, Ops,
M->getMemOperand(),
6121 return getMemIntrinsicNode(Opc,
DL,
M->getVTList(), Ops, IntVT,
6122 M->getMemOperand(), DAG);
6127 SDValue MemNode = getMemIntrinsicNode(Opc,
DL, VTList, Ops, CastVT,
6128 M->getMemOperand(), DAG);
6136 EVT VT =
N->getValueType(0);
6137 unsigned CondCode =
N->getConstantOperandVal(3);
6148 EVT CmpVT =
LHS.getValueType();
6149 if (CmpVT == MVT::i16 && !TLI.
isTypeLegal(MVT::i16)) {
6150 unsigned PromoteOp =
6170 EVT VT =
N->getValueType(0);
6172 unsigned CondCode =
N->getConstantOperandVal(3);
6181 if (CmpVT == MVT::f16 && !TLI.
isTypeLegal(CmpVT)) {
6199 EVT VT =
N->getValueType(0);
6206 Src.getOperand(1), Src.getOperand(2));
6217 Exec = AMDGPU::EXEC_LO;
6219 Exec = AMDGPU::EXEC;
6236 EVT VT =
N->getValueType(0);
6238 unsigned IID =
N->getConstantOperandVal(0);
6239 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
6240 IID == Intrinsic::amdgcn_permlanex16;
6241 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
6242 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
6246 unsigned SplitSize = 32;
6247 if (IID == Intrinsic::amdgcn_update_dpp && (ValSize % 64 == 0) &&
6248 ST->hasDPALU_DPP() &&
6256 case Intrinsic::amdgcn_permlane16:
6257 case Intrinsic::amdgcn_permlanex16:
6258 case Intrinsic::amdgcn_update_dpp:
6263 case Intrinsic::amdgcn_writelane:
6266 case Intrinsic::amdgcn_readlane:
6267 case Intrinsic::amdgcn_set_inactive:
6268 case Intrinsic::amdgcn_set_inactive_chain_arg:
6269 case Intrinsic::amdgcn_mov_dpp8:
6272 case Intrinsic::amdgcn_readfirstlane:
6273 case Intrinsic::amdgcn_permlane64:
6283 if (
SDNode *GL =
N->getGluedNode()) {
6285 GL = GL->getOperand(0).getNode();
6295 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
6296 IID == Intrinsic::amdgcn_mov_dpp8 ||
6297 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
6298 Src1 =
N->getOperand(2);
6299 if (IID == Intrinsic::amdgcn_writelane ||
6300 IID == Intrinsic::amdgcn_update_dpp || IsPermLane16)
6301 Src2 =
N->getOperand(3);
6304 if (ValSize == SplitSize) {
6314 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
6319 if (IID == Intrinsic::amdgcn_writelane) {
6324 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, MVT::i32);
6326 return IsFloat ? DAG.
getBitcast(VT, Trunc) : Trunc;
6329 if (ValSize % SplitSize != 0)
6333 EVT VT =
N->getValueType(0);
6337 unsigned NumOperands =
N->getNumOperands();
6339 SDNode *GL =
N->getGluedNode();
6344 for (
unsigned i = 0; i != NE; ++i) {
6345 for (
unsigned j = 0, e = GL ? NumOperands - 1 : NumOperands; j != e;
6347 SDValue Operand =
N->getOperand(j);
6377 if (SplitSize == 32) {
6379 return unrollLaneOp(LaneOp.
getNode());
6385 unsigned SubVecNumElt =
6389 SDValue Src0SubVec, Src1SubVec, Src2SubVec;
6390 for (
unsigned i = 0, EltIdx = 0; i < ValSize / SplitSize; i++) {
6394 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive ||
6399 if (IID == Intrinsic::amdgcn_writelane)
6404 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16
6405 ? createLaneOp(Src0SubVec, Src1SubVec, Src2, SubVecVT)
6406 : createLaneOp(Src0SubVec, Src1, Src2SubVec, SubVecVT));
6407 EltIdx += SubVecNumElt;
6421 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
6424 if (IID == Intrinsic::amdgcn_writelane)
6427 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VecVT);
6435 switch (
N->getOpcode()) {
6447 unsigned IID =
N->getConstantOperandVal(0);
6449 case Intrinsic::amdgcn_make_buffer_rsrc:
6450 Results.push_back(lowerPointerAsRsrcIntrin(
N, DAG));
6452 case Intrinsic::amdgcn_cvt_pkrtz: {
6461 case Intrinsic::amdgcn_cvt_pknorm_i16:
6462 case Intrinsic::amdgcn_cvt_pknorm_u16:
6463 case Intrinsic::amdgcn_cvt_pk_i16:
6464 case Intrinsic::amdgcn_cvt_pk_u16: {
6470 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
6472 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
6474 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
6479 EVT VT =
N->getValueType(0);
6488 case Intrinsic::amdgcn_s_buffer_load: {
6500 EVT VT =
Op.getValueType();
6501 assert(VT == MVT::i8 &&
"Expected 8-bit s_buffer_load intrinsics.\n");
6513 if (!
Offset->isDivergent()) {
6532 LoadVal = handleByteShortBufferLoads(DAG, VT,
DL, Ops, MMO);
6544 for (
unsigned I = 0;
I < Res.getNumOperands();
I++) {
6545 Results.push_back(Res.getOperand(
I));
6549 Results.push_back(Res.getValue(1));
6558 EVT VT =
N->getValueType(0);
6563 EVT SelectVT = NewVT;
6564 if (NewVT.
bitsLT(MVT::i32)) {
6567 SelectVT = MVT::i32;
6573 if (NewVT != SelectVT)
6579 if (
N->getValueType(0) != MVT::v2f16)
6591 if (
N->getValueType(0) != MVT::v2f16)
6603 if (
N->getValueType(0) != MVT::f16)
6618 if (U.get() !=
Value)
6621 if (U.getUser()->getOpcode() == Opcode)
6627unsigned SITargetLowering::isCFIntrinsic(
const SDNode *
Intr)
const {
6629 switch (
Intr->getConstantOperandVal(1)) {
6630 case Intrinsic::amdgcn_if:
6632 case Intrinsic::amdgcn_else:
6634 case Intrinsic::amdgcn_loop:
6636 case Intrinsic::amdgcn_end_cf:
6683 SDNode *
Intr = BRCOND.getOperand(1).getNode();
6696 assert(BR &&
"brcond missing unconditional branch user");
6697 Target = BR->getOperand(1);
6700 unsigned CFNode = isCFIntrinsic(
Intr);
6719 Ops.
append(
Intr->op_begin() + (HaveChain ? 2 : 1),
Intr->op_end());
6743 for (
unsigned i = 1, e =
Intr->getNumValues() - 1; i != e; ++i) {
6756 Intr->getOperand(0));
6762 MVT VT =
Op.getSimpleValueType();
6765 if (
Op.getConstantOperandVal(0) != 0)
6771 if (
Info->isEntryFunction())
6788 return Op.getValueType().bitsLE(VT)
6795 assert(
Op.getValueType() == MVT::f16 &&
6796 "Do not know how to custom lower FP_ROUND for non-f16 type");
6799 EVT SrcVT = Src.getValueType();
6800 if (SrcVT != MVT::f64)
6816 EVT VT =
Op.getValueType();
6819 bool IsIEEEMode =
Info->getMode().IEEE;
6828 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
6836 EVT VT =
Op.getValueType();
6840 EVT ExpVT =
Exp.getValueType();
6841 if (ExpVT == MVT::i16)
6862 {
Op.getOperand(0),
Op.getOperand(1), TruncExp});
6869 switch (
Op->getOpcode()) {
6899 DAGCombinerInfo &DCI)
const {
6900 const unsigned Opc =
Op.getOpcode();
6908 :
Op->getOperand(0).getValueType();
6911 if (DCI.isBeforeLegalizeOps() ||
6915 auto &DAG = DCI.DAG;
6921 LHS =
Op->getOperand(1);
6922 RHS =
Op->getOperand(2);
6924 LHS =
Op->getOperand(0);
6925 RHS =
Op->getOperand(1);
6956 EVT VT =
Op.getValueType();
6962 assert(VT == MVT::i64 &&
"The following code is a special for s_mul_u64");
6989 if (
Op->isDivergent())
7002 if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32)
7004 DAG.
getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0);
7007 if (Op0SignBits >= 33 && Op1SignBits >= 33)
7009 DAG.
getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0);
7015 EVT VT =
Op.getValueType();
7022 const APInt &
C = RHSC->getAPIntValue();
7024 if (
C.isPowerOf2()) {
7026 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
7053 if (
Op->isDivergent()) {
7070 return lowerTrapEndpgm(
Op, DAG);
7073 : lowerTrapHsaQueuePtr(
Op, DAG);
7083SITargetLowering::loadImplicitKernelArgument(
SelectionDAG &DAG,
MVT VT,
7085 ImplicitParameter Param)
const {
7105 loadImplicitKernelArgument(DAG, MVT::i64, SL,
Align(8),
QUEUE_PTR);
7111 if (UserSGPR == AMDGPU::NoRegister) {
7153 "debugtrap handler not supported",
7166SDValue SITargetLowering::getSegmentAperture(
unsigned AS,
const SDLoc &
DL,
7170 ? AMDGPU::SRC_SHARED_BASE
7171 : AMDGPU::SRC_PRIVATE_BASE;
7194 {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)}));
7203 return loadImplicitKernelArgument(DAG, MVT::i32,
DL,
Align(4), Param);
7209 if (UserSGPR == AMDGPU::NoRegister) {
7239 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
7240 isa<BasicBlockSDNode>(Val))
7243 if (
auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
7244 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
7258 unsigned DestAS, SrcAS;
7260 bool IsNonNull =
false;
7261 if (
const auto *ASC = dyn_cast<AddrSpaceCastSDNode>(
Op)) {
7262 SrcAS = ASC->getSrcAddressSpace();
7263 Src = ASC->getOperand(0);
7264 DestAS = ASC->getDestAddressSpace();
7267 Op.getConstantOperandVal(0) ==
7268 Intrinsic::amdgcn_addrspacecast_nonnull);
7269 Src =
Op->getOperand(1);
7270 SrcAS =
Op->getConstantOperandVal(2);
7271 DestAS =
Op->getConstantOperandVal(3);
7286 unsigned NullVal =
TM.getNullPointerValue(DestAS);
7300 SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG);
7308 unsigned NullVal =
TM.getNullPointerValue(SrcAS);
7320 Op.getValueType() == MVT::i64) {
7329 Src.getValueType() == MVT::i64)
7353 EVT InsVT =
Ins.getValueType();
7356 unsigned IdxVal =
Idx->getAsZExtVal();
7361 assert(InsNumElts % 2 == 0 &&
"expect legal vector types");
7366 EVT NewInsVT = InsNumElts == 2 ? MVT::i32
7368 MVT::i32, InsNumElts / 2);
7373 for (
unsigned I = 0;
I != InsNumElts / 2; ++
I) {
7375 if (InsNumElts == 2) {
7388 for (
unsigned I = 0;
I != InsNumElts; ++
I) {
7410 auto *KIdx = dyn_cast<ConstantSDNode>(
Idx);
7411 if (NumElts == 4 && EltSize == 16 && KIdx) {
7422 unsigned Idx = KIdx->getZExtValue();
7423 bool InsertLo =
Idx < 2;
7440 if (isa<ConstantSDNode>(
Idx))
7446 assert(VecSize <= 64 &&
"Expected target vector size to be <= 64 bits");
7452 const auto EltMask = maskTrailingOnes<uint64_t>(EltSize);
7481 EVT ResultVT =
Op.getValueType();
7494 if (
SDValue Combined = performExtractVectorEltCombine(
Op.getNode(), DCI))
7497 if (VecSize == 128 || VecSize == 256 || VecSize == 512) {
7501 if (VecSize == 128) {
7509 }
else if (VecSize == 256) {
7512 for (
unsigned P = 0;
P < 4; ++
P) {
7518 Parts[0], Parts[1]));
7520 Parts[2], Parts[3]));
7526 for (
unsigned P = 0;
P < 8; ++
P) {
7533 Parts[0], Parts[1], Parts[2], Parts[3]));
7536 Parts[4], Parts[5], Parts[6], Parts[7]));
7539 EVT IdxVT =
Idx.getValueType();
7556 Src = DAG.
getBitcast(Src.getValueType().changeTypeToInteger(), Src);
7571 if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) {
7581 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
7587 EVT ResultVT =
Op.getValueType();
7591 int SrcNumElts =
Op.getOperand(0).getValueType().getVectorNumElements();
7607 int VecIdx =
Idx < SrcNumElts ? 0 : 1;
7608 int EltIdx =
Idx < SrcNumElts ?
Idx :
Idx - SrcNumElts;
7616 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
7617 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
7618 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
7619 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
7638 EVT ResultVT =
Op.getValueType();
7654 EVT VT =
Op.getValueType();
7656 if (VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16) {
7691 for (
unsigned P = 0;
P < NumParts; ++
P) {
7693 PartVT, SL, {
Op.getOperand(
P * 2),
Op.getOperand(
P * 2 + 1)});
7726 assert(isInt<32>(
Offset + 4) &&
"32-bit offset is expected!");
7764 EVT PtrVT =
Op.getValueType();
7780 assert(PtrVT == MVT::i32 &&
"32-bit pointer is expected.");
7852 SDValue Param = lowerKernargMemParameter(
7862 "non-hsa intrinsic with hsa target",
7871 "intrinsic not supported on subtarget",
7881 unsigned NumElts = Elts.
size();
7883 if (NumElts <= 12) {
7892 for (
unsigned i = 0; i < Elts.
size(); ++i) {
7898 for (
unsigned i = Elts.
size(); i < NumElts; ++i)
7899 VecElts[i] = DAG.
getUNDEF(MVT::f32);
7908 EVT SrcVT = Src.getValueType();
7929 bool Unpacked,
bool IsD16,
int DMaskPop,
7930 int NumVDataDwords,
bool IsAtomicPacked16Bit,
7934 EVT ReqRetVT = ResultTypes[0];
7936 int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit)
7937 ? (ReqRetNumElts + 1) / 2
7940 int MaskPopDwords = (!IsD16 || Unpacked) ? DMaskPop : (DMaskPop + 1) / 2;
7951 if (DMaskPop > 0 &&
Data.getValueType() != MaskPopVT) {
7962 if (DataDwordVT.
isVector() && !IsAtomicPacked16Bit)
7964 NumDataDwords - MaskPopDwords);
7969 EVT LegalReqRetVT = ReqRetVT;
7971 if (!
Data.getValueType().isInteger())
7973 Data.getValueType().changeTypeToInteger(),
Data);
7994 if (Result->getNumValues() == 1)
8001 SDValue *LWE,
bool &IsTexFail) {
8002 auto *TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.
getNode());
8021 unsigned DimIdx,
unsigned EndIdx,
8022 unsigned NumGradients) {
8024 for (
unsigned I = DimIdx;
I < EndIdx;
I++) {
8032 if (((
I + 1) >= EndIdx) ||
8033 ((NumGradients / 2) % 2 == 1 && (
I == DimIdx + (NumGradients / 2) - 1 ||
8034 I == DimIdx + NumGradients - 1))) {
8035 if (
Addr.getValueType() != MVT::i16)
8056 unsigned IntrOpcode =
Intr->BaseOpcode;
8067 int NumVDataDwords = 0;
8068 bool AdjustRetType =
false;
8069 bool IsAtomicPacked16Bit =
false;
8072 const unsigned ArgOffset = WithChain ? 2 : 1;
8075 unsigned DMaskLanes = 0;
8077 if (BaseOpcode->Atomic) {
8078 VData =
Op.getOperand(2);
8080 IsAtomicPacked16Bit =
8081 (
Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
8082 Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
8085 if (BaseOpcode->AtomicX2) {
8092 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
8093 DMask = Is64Bit ? 0xf : 0x3;
8094 NumVDataDwords = Is64Bit ? 4 : 2;
8096 DMask = Is64Bit ? 0x3 : 0x1;
8097 NumVDataDwords = Is64Bit ? 2 : 1;
8100 DMask =
Op->getConstantOperandVal(ArgOffset +
Intr->DMaskIndex);
8103 if (BaseOpcode->Store) {
8104 VData =
Op.getOperand(2);
8112 VData = handleD16VData(VData, DAG,
true);
8116 }
else if (!BaseOpcode->NoReturn) {
8129 (!LoadVT.
isVector() && DMaskLanes > 1))
8137 NumVDataDwords = (DMaskLanes + 1) / 2;
8139 NumVDataDwords = DMaskLanes;
8141 AdjustRetType =
true;
8145 unsigned VAddrEnd = ArgOffset +
Intr->VAddrEnd;
8150 Op.getOperand(ArgOffset +
Intr->GradientStart).getSimpleValueType();
8152 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
8153 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
8155 VAddrVT =
Op.getOperand(ArgOffset +
Intr->CoordStart).getSimpleValueType();
8157 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
8158 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
8161 for (
unsigned I =
Intr->VAddrStart; I < Intr->GradientStart;
I++) {
8162 if (IsA16 && (
Op.getOperand(ArgOffset +
I).getValueType() == MVT::f16)) {
8163 assert(
I ==
Intr->BiasIndex &&
"Got unexpected 16-bit extra argument");
8168 {
Op.getOperand(ArgOffset +
I), DAG.
getUNDEF(MVT::f16)});
8172 "Bias needs to be converted to 16 bit in A16 mode");
8177 if (BaseOpcode->Gradients && !
ST->hasG16() && (IsA16 != IsG16)) {
8181 dbgs() <<
"Failed to lower image intrinsic: 16 bit addresses "
8182 "require 16 bit args for both gradients and addresses");
8187 if (!
ST->hasA16()) {
8188 LLVM_DEBUG(
dbgs() <<
"Failed to lower image intrinsic: Target does not "
8189 "support 16 bit addresses\n");
8199 if (BaseOpcode->Gradients && IsG16 &&
ST->hasG16()) {
8203 IntrOpcode = G16MappingInfo->
G16;
8211 ArgOffset +
Intr->GradientStart,
8212 ArgOffset +
Intr->CoordStart,
Intr->NumGradients);
8214 for (
unsigned I = ArgOffset +
Intr->GradientStart;
8215 I < ArgOffset + Intr->CoordStart;
I++)
8222 ArgOffset +
Intr->CoordStart, VAddrEnd,
8226 for (
unsigned I = ArgOffset +
Intr->CoordStart;
I < VAddrEnd;
I++)
8244 const unsigned NSAMaxSize =
ST->getNSAMaxSize(BaseOpcode->Sampler);
8245 const bool HasPartialNSAEncoding =
ST->hasPartialNSAEncoding();
8246 const bool UseNSA =
ST->hasNSAEncoding() &&
8247 VAddrs.
size() >=
ST->getNSAThreshold(MF) &&
8248 (VAddrs.
size() <= NSAMaxSize || HasPartialNSAEncoding);
8249 const bool UsePartialNSA =
8250 UseNSA && HasPartialNSAEncoding && VAddrs.
size() > NSAMaxSize;
8253 if (UsePartialNSA) {
8255 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
8256 }
else if (!UseNSA) {
8263 if (!BaseOpcode->Sampler) {
8267 Op.getConstantOperandVal(ArgOffset +
Intr->UnormIndex);
8269 Unorm = UnormConst ? True : False;
8274 SDValue TexFail =
Op.getOperand(ArgOffset +
Intr->TexFailCtrlIndex);
8275 bool IsTexFail =
false;
8276 if (!
parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
8287 NumVDataDwords += 1;
8288 AdjustRetType =
true;
8293 if (AdjustRetType) {
8296 if (DMaskLanes == 0 && !BaseOpcode->Store) {
8299 if (isa<MemSDNode>(
Op))
8305 MVT::i32, NumVDataDwords)
8308 ResultTypes[0] = NewVT;
8309 if (ResultTypes.size() == 3) {
8313 ResultTypes.erase(&ResultTypes[1]);
8317 unsigned CPol =
Op.getConstantOperandVal(ArgOffset +
Intr->CachePolicyIndex);
8318 if (BaseOpcode->Atomic)
8325 if (BaseOpcode->Store || BaseOpcode->Atomic)
8327 if (UsePartialNSA) {
8336 if (RsrcVT != MVT::v4i32 && RsrcVT != MVT::v8i32)
8339 if (BaseOpcode->Sampler) {
8348 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
8352 ST->hasFeature(AMDGPU::FeatureR128A16)
8362 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
8366 if (BaseOpcode->HasD16)
8368 if (isa<MemSDNode>(
Op))
8371 int NumVAddrDwords =
8377 NumVDataDwords, NumVAddrDwords);
8378 }
else if (IsGFX11Plus) {
8380 UseNSA ? AMDGPU::MIMGEncGfx11NSA
8381 : AMDGPU::MIMGEncGfx11Default,
8382 NumVDataDwords, NumVAddrDwords);
8383 }
else if (IsGFX10Plus) {
8385 UseNSA ? AMDGPU::MIMGEncGfx10NSA
8386 : AMDGPU::MIMGEncGfx10Default,
8387 NumVDataDwords, NumVAddrDwords);
8391 NumVDataDwords, NumVAddrDwords);
8394 "requested image instruction is not supported on this GPU");
8399 NumVDataDwords, NumVAddrDwords);
8402 NumVDataDwords, NumVAddrDwords);
8408 if (
auto *
MemOp = dyn_cast<MemSDNode>(
Op)) {
8413 if (BaseOpcode->AtomicX2) {
8418 if (BaseOpcode->NoReturn)
8422 NumVDataDwords, IsAtomicPacked16Bit,
DL);
8440 if (!
Offset->isDivergent()) {
8485 return handleByteShortBufferLoads(DAG, VT,
DL, Ops, MMO);
8489 unsigned NumLoads = 1;
8495 if (NumElts == 8 || NumElts == 16) {
8496 NumLoads = NumElts / 4;
8504 setBufferOffsets(
Offset, DAG, &Ops[3],
8505 NumLoads > 1 ?
Align(16 * NumLoads) :
Align(4));
8508 for (
unsigned i = 0; i < NumLoads; ++i) {
8514 if (NumElts == 8 || NumElts == 16)
8561 EVT VT =
Op.getValueType();
8563 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
8567 switch (IntrinsicID) {
8568 case Intrinsic::amdgcn_implicit_buffer_ptr: {
8571 return getPreloadedValue(DAG, *MFI, VT,
8574 case Intrinsic::amdgcn_dispatch_ptr:
8575 case Intrinsic::amdgcn_queue_ptr: {
8578 MF.
getFunction(),
"unsupported hsa intrinsic without hsa target",
8584 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr
8587 return getPreloadedValue(DAG, *MFI, VT, RegID);
8589 case Intrinsic::amdgcn_implicitarg_ptr: {
8591 return getImplicitArgPtr(DAG,
DL);
8592 return getPreloadedValue(DAG, *MFI, VT,
8595 case Intrinsic::amdgcn_kernarg_segment_ptr: {
8601 return getPreloadedValue(DAG, *MFI, VT,
8604 case Intrinsic::amdgcn_dispatch_id: {
8607 case Intrinsic::amdgcn_rcp:
8609 case Intrinsic::amdgcn_rsq:
8611 case Intrinsic::amdgcn_rsq_legacy:
8615 case Intrinsic::amdgcn_rcp_legacy:
8619 case Intrinsic::amdgcn_rsq_clamp: {
8633 case Intrinsic::r600_read_ngroups_x:
8637 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
8640 case Intrinsic::r600_read_ngroups_y:
8644 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
8647 case Intrinsic::r600_read_ngroups_z:
8651 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
8654 case Intrinsic::r600_read_global_size_x:
8658 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
8661 case Intrinsic::r600_read_global_size_y:
8665 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
8668 case Intrinsic::r600_read_global_size_z:
8672 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
8675 case Intrinsic::r600_read_local_size_x:
8679 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
8681 case Intrinsic::r600_read_local_size_y:
8685 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
8687 case Intrinsic::r600_read_local_size_z:
8691 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
8693 case Intrinsic::amdgcn_workgroup_id_x:
8694 return getPreloadedValue(DAG, *MFI, VT,
8696 case Intrinsic::amdgcn_workgroup_id_y:
8697 return getPreloadedValue(DAG, *MFI, VT,
8699 case Intrinsic::amdgcn_workgroup_id_z:
8700 return getPreloadedValue(DAG, *MFI, VT,
8702 case Intrinsic::amdgcn_wave_id:
8703 return lowerWaveID(DAG,
Op);
8704 case Intrinsic::amdgcn_lds_kernel_id: {
8706 return getLDSKernelId(DAG,
DL);
8707 return getPreloadedValue(DAG, *MFI, VT,
8710 case Intrinsic::amdgcn_workitem_id_x:
8711 return lowerWorkitemID(DAG,
Op, 0, MFI->getArgInfo().WorkItemIDX);
8712 case Intrinsic::amdgcn_workitem_id_y:
8713 return lowerWorkitemID(DAG,
Op, 1, MFI->getArgInfo().WorkItemIDY);
8714 case Intrinsic::amdgcn_workitem_id_z:
8715 return lowerWorkitemID(DAG,
Op, 2, MFI->getArgInfo().WorkItemIDZ);
8716 case Intrinsic::amdgcn_wavefrontsize:
8719 case Intrinsic::amdgcn_s_buffer_load: {
8720 unsigned CPol =
Op.getConstantOperandVal(3);
8727 return lowerSBuffer(VT,
DL,
Op.getOperand(1),
Op.getOperand(2),
8728 Op.getOperand(3), DAG);
8730 case Intrinsic::amdgcn_fdiv_fast:
8731 return lowerFDIV_FAST(
Op, DAG);
8732 case Intrinsic::amdgcn_sin:
8735 case Intrinsic::amdgcn_cos:
8738 case Intrinsic::amdgcn_mul_u24:
8741 case Intrinsic::amdgcn_mul_i24:
8745 case Intrinsic::amdgcn_log_clamp: {
8751 case Intrinsic::amdgcn_fract:
8754 case Intrinsic::amdgcn_class:
8757 case Intrinsic::amdgcn_div_fmas:
8759 Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
8761 case Intrinsic::amdgcn_div_fixup:
8763 Op.getOperand(2),
Op.getOperand(3));
8765 case Intrinsic::amdgcn_div_scale: {
8778 SDValue Src0 =
Param->isAllOnes() ? Numerator : Denominator;
8781 Denominator, Numerator);
8783 case Intrinsic::amdgcn_icmp: {
8785 if (
Op.getOperand(1).getValueType() == MVT::i1 &&
8786 Op.getConstantOperandVal(2) == 0 &&
8791 case Intrinsic::amdgcn_fcmp: {
8794 case Intrinsic::amdgcn_ballot:
8796 case Intrinsic::amdgcn_fmed3:
8798 Op.getOperand(2),
Op.getOperand(3));
8799 case Intrinsic::amdgcn_fdot2:
8801 Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
8802 case Intrinsic::amdgcn_fmul_legacy:
8805 case Intrinsic::amdgcn_sffbh:
8807 case Intrinsic::amdgcn_sbfe:
8809 Op.getOperand(2),
Op.getOperand(3));
8810 case Intrinsic::amdgcn_ubfe:
8812 Op.getOperand(2),
Op.getOperand(3));
8813 case Intrinsic::amdgcn_cvt_pkrtz:
8814 case Intrinsic::amdgcn_cvt_pknorm_i16:
8815 case Intrinsic::amdgcn_cvt_pknorm_u16:
8816 case Intrinsic::amdgcn_cvt_pk_i16:
8817 case Intrinsic::amdgcn_cvt_pk_u16: {
8819 EVT VT =
Op.getValueType();
8822 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
8824 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
8826 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
8828 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
8834 return DAG.
getNode(Opcode,
DL, VT,
Op.getOperand(1),
Op.getOperand(2));
8837 DAG.
getNode(Opcode,
DL, MVT::i32,
Op.getOperand(1),
Op.getOperand(2));
8840 case Intrinsic::amdgcn_fmad_ftz:
8842 Op.getOperand(2),
Op.getOperand(3));
8844 case Intrinsic::amdgcn_if_break:
8846 Op->getOperand(1),
Op->getOperand(2)),
8849 case Intrinsic::amdgcn_groupstaticsize: {
8861 case Intrinsic::amdgcn_is_shared:
8862 case Intrinsic::amdgcn_is_private: {
8864 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared)
8867 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
8875 case Intrinsic::amdgcn_perm:
8877 Op.getOperand(2),
Op.getOperand(3));
8878 case Intrinsic::amdgcn_reloc_constant: {
8882 auto *RelocSymbol = cast<GlobalVariable>(
8888 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
8889 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
8890 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
8891 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
8892 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
8893 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
8894 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
8895 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
8896 if (
Op.getOperand(4).getValueType() == MVT::i32)
8902 Op.getOperand(0),
Op.getOperand(1),
Op.getOperand(2),
8903 Op.getOperand(3), IndexKeyi32);
8905 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
8906 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
8907 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
8908 if (
Op.getOperand(6).getValueType() == MVT::i32)
8914 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
8915 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
8916 IndexKeyi32, Op.getOperand(7)});
8918 case Intrinsic::amdgcn_addrspacecast_nonnull:
8919 return lowerADDRSPACECAST(
Op, DAG);
8920 case Intrinsic::amdgcn_readlane:
8921 case Intrinsic::amdgcn_readfirstlane:
8922 case Intrinsic::amdgcn_writelane:
8923 case Intrinsic::amdgcn_permlane16:
8924 case Intrinsic::amdgcn_permlanex16:
8925 case Intrinsic::amdgcn_permlane64:
8926 case Intrinsic::amdgcn_set_inactive:
8927 case Intrinsic::amdgcn_set_inactive_chain_arg:
8928 case Intrinsic::amdgcn_mov_dpp8:
8929 case Intrinsic::amdgcn_update_dpp:
8934 return lowerImage(
Op, ImageDimIntr, DAG,
false);
8945 return DAG.
getRegister(AMDGPU::SGPR_NULL, MVT::i32);
8951 unsigned NewOpcode)
const {
8955 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
8956 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
8970 auto *
M = cast<MemSDNode>(
Op);
8974 M->getMemOperand());
8979 unsigned NewOpcode)
const {
8983 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
8984 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
8998 auto *
M = cast<MemSDNode>(
Op);
9002 M->getMemOperand());
9007 unsigned IntrID =
Op.getConstantOperandVal(1);
9011 case Intrinsic::amdgcn_ds_ordered_add:
9012 case Intrinsic::amdgcn_ds_ordered_swap: {
9017 unsigned IndexOperand =
M->getConstantOperandVal(7);
9018 unsigned WaveRelease =
M->getConstantOperandVal(8);
9019 unsigned WaveDone =
M->getConstantOperandVal(9);
9021 unsigned OrderedCountIndex = IndexOperand & 0x3f;
9022 IndexOperand &= ~0x3f;
9023 unsigned CountDw = 0;
9026 CountDw = (IndexOperand >> 24) & 0xf;
9027 IndexOperand &= ~(0xf << 24);
9029 if (CountDw < 1 || CountDw > 4) {
9031 "ds_ordered_count: dword count must be between 1 and 4");
9038 if (WaveDone && !WaveRelease)
9041 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
9042 unsigned ShaderType =
9044 unsigned Offset0 = OrderedCountIndex << 2;
9045 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (
Instruction << 4);
9048 Offset1 |= (CountDw - 1) << 6;
9051 Offset1 |= ShaderType << 2;
9053 unsigned Offset = Offset0 | (Offset1 << 8);
9060 M->getVTList(), Ops,
M->getMemoryVT(),
9061 M->getMemOperand());
9063 case Intrinsic::amdgcn_raw_buffer_load:
9064 case Intrinsic::amdgcn_raw_ptr_buffer_load:
9065 case Intrinsic::amdgcn_raw_atomic_buffer_load:
9066 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
9067 case Intrinsic::amdgcn_raw_buffer_load_format:
9068 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
9069 const bool IsFormat =
9070 IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
9071 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
9073 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
9074 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(3), DAG);
9087 auto *
M = cast<MemSDNode>(
Op);
9088 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
9090 case Intrinsic::amdgcn_struct_buffer_load:
9091 case Intrinsic::amdgcn_struct_ptr_buffer_load:
9092 case Intrinsic::amdgcn_struct_buffer_load_format:
9093 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
9094 case Intrinsic::amdgcn_struct_atomic_buffer_load:
9095 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
9096 const bool IsFormat =
9097 IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
9098 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
9100 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
9101 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
9114 return lowerIntrinsicLoad(cast<MemSDNode>(
Op), IsFormat, DAG, Ops);
9116 case Intrinsic::amdgcn_raw_tbuffer_load:
9117 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
9119 EVT LoadVT =
Op.getValueType();
9120 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
9121 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(3), DAG);
9140 Op->getVTList(), Ops, LoadVT,
M->getMemOperand(),
9143 case Intrinsic::amdgcn_struct_tbuffer_load:
9144 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
9146 EVT LoadVT =
Op.getValueType();
9147 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
9148 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
9167 Op->getVTList(), Ops, LoadVT,
M->getMemOperand(),
9170 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
9171 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
9173 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
9174 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
9175 return lowerStructBufferAtomicIntrin(
Op, DAG,
9177 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
9178 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
9180 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
9181 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
9182 return lowerStructBufferAtomicIntrin(
Op, DAG,
9184 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
9185 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
9187 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
9188 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
9189 return lowerStructBufferAtomicIntrin(
Op, DAG,
9191 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
9192 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
9194 case Intrinsic::amdgcn_raw_buffer_atomic_add:
9195 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
9197 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
9198 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
9200 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
9201 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
9203 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
9204 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
9206 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
9207 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
9209 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
9210 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
9212 case Intrinsic::amdgcn_raw_buffer_atomic_and:
9213 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
9215 case Intrinsic::amdgcn_raw_buffer_atomic_or:
9216 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
9218 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
9219 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
9221 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
9222 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
9224 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
9225 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
9227 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
9228 return lowerRawBufferAtomicIntrin(
Op, DAG,
9230 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
9231 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
9232 return lowerStructBufferAtomicIntrin(
Op, DAG,
9234 case Intrinsic::amdgcn_struct_buffer_atomic_add:
9235 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
9237 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
9238 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
9240 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
9241 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
9242 return lowerStructBufferAtomicIntrin(
Op, DAG,
9244 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
9245 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
9246 return lowerStructBufferAtomicIntrin(
Op, DAG,
9248 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
9249 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
9250 return lowerStructBufferAtomicIntrin(
Op, DAG,
9252 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
9253 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
9254 return lowerStructBufferAtomicIntrin(
Op, DAG,
9256 case Intrinsic::amdgcn_struct_buffer_atomic_and:
9257 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
9259 case Intrinsic::amdgcn_struct_buffer_atomic_or:
9260 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
9262 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
9263 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
9265 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
9266 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
9268 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
9269 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
9271 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
9272 return lowerStructBufferAtomicIntrin(
Op, DAG,
9275 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
9276 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
9277 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(4), DAG);
9278 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
9292 EVT VT =
Op.getValueType();
9293 auto *
M = cast<MemSDNode>(
Op);
9296 Op->getVTList(), Ops, VT,
9297 M->getMemOperand());
9299 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
9300 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
9301 SDValue Rsrc = bufferRsrcPtrToVector(
Op->getOperand(4), DAG);
9302 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(6), DAG);
9316 EVT VT =
Op.getValueType();
9317 auto *
M = cast<MemSDNode>(
Op);
9320 Op->getVTList(), Ops, VT,
9321 M->getMemOperand());
9323 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
9325 SDValue NodePtr =
M->getOperand(2);
9326 SDValue RayExtent =
M->getOperand(3);
9327 SDValue RayOrigin =
M->getOperand(4);
9329 SDValue RayInvDir =
M->getOperand(6);
9347 const unsigned NumVDataDwords = 4;
9348 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
9349 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
9353 const unsigned BaseOpcodes[2][2] = {
9354 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
9355 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
9356 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
9360 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
9361 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
9362 : AMDGPU::MIMGEncGfx10NSA,
9363 NumVDataDwords, NumVAddrDwords);
9367 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
9368 : AMDGPU::MIMGEncGfx10Default,
9369 NumVDataDwords, NumVAddrDwords);
9375 auto packLanes = [&DAG, &Ops, &
DL](
SDValue Op,
bool IsAligned) {
9378 if (Lanes[0].getValueSizeInBits() == 32) {
9379 for (
unsigned I = 0;
I < 3; ++
I)
9398 if (UseNSA && IsGFX11Plus) {
9406 for (
unsigned I = 0;
I < 3; ++
I) {
9409 {DirLanes[I], InvDirLanes[I]})));
9424 packLanes(RayOrigin,
true);
9425 packLanes(RayDir,
true);
9426 packLanes(RayInvDir,
false);
9431 if (NumVAddrDwords > 12) {
9451 case Intrinsic::amdgcn_global_atomic_fmin_num:
9452 case Intrinsic::amdgcn_global_atomic_fmax_num:
9453 case Intrinsic::amdgcn_flat_atomic_fmin_num:
9454 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
9461 unsigned Opcode = 0;
9463 case Intrinsic::amdgcn_global_atomic_fmin_num:
9464 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
9468 case Intrinsic::amdgcn_global_atomic_fmax_num:
9469 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
9477 Ops,
M->getMemOperand());
9479 case Intrinsic::amdgcn_s_get_barrier_state:
9480 case Intrinsic::amdgcn_s_get_named_barrier_state: {
9485 if (isa<ConstantSDNode>(
Op->getOperand(2))) {
9486 uint64_t BarID = cast<ConstantSDNode>(
Op->getOperand(2))->getZExtValue();
9487 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state)
9488 BarID = (BarID >> 4) & 0x3F;
9489 Opc = AMDGPU::S_GET_BARRIER_STATE_IMM;
9494 Opc = AMDGPU::S_GET_BARRIER_STATE_M0;
9495 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state) {
9515 return lowerImage(
Op, ImageDimIntr, DAG,
true);
9523SDValue SITargetLowering::getMemIntrinsicNode(
unsigned Opcode,
const SDLoc &
DL,
9533 bool IsTFE = VTList.
NumVTs == 3;
9536 unsigned NumOpDWords = NumValueDWords + 1;
9541 SDValue Op = getMemIntrinsicNode(Opcode,
DL, OpDWordsVTList, Ops,
9542 OpDWordsVT, OpDWordsMMO, DAG);
9557 (VT == MVT::v3i32 || VT == MVT::v3f32)) {
9563 WidenedMemVT, WidenedMMO);
9573 bool ImageStore)
const {
9608 for (
unsigned I = 0;
I < Elts.
size() / 2;
I += 1) {
9614 if ((NumElements % 2) == 1) {
9616 unsigned I = Elts.
size() / 2;
9632 if (NumElements == 3) {
9653 unsigned IntrinsicID =
Op.getConstantOperandVal(1);
9656 switch (IntrinsicID) {
9657 case Intrinsic::amdgcn_exp_compr: {
9661 "intrinsic not supported on subtarget",
DL.getDebugLoc());
9684 unsigned Opc =
Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
9687 case Intrinsic::amdgcn_s_barrier:
9688 case Intrinsic::amdgcn_s_barrier_signal:
9689 case Intrinsic::amdgcn_s_barrier_wait: {
9692 unsigned WGSize =
ST.getFlatWorkGroupSizes(MF.
getFunction()).second;
9693 if (WGSize <=
ST.getWavefrontSize()) {
9696 if (IntrinsicID == Intrinsic::amdgcn_s_barrier_signal)
9697 return Op.getOperand(0);
9700 MVT::Other,
Op.getOperand(0)),
9705 if (
ST.hasSplitBarriers() && IntrinsicID == Intrinsic::amdgcn_s_barrier) {
9711 MVT::Other, K,
Op.getOperand(0)),
9723 case Intrinsic::amdgcn_struct_tbuffer_store:
9724 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
9728 VData = handleD16VData(VData, DAG);
9729 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
9730 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
9748 M->getMemoryVT(),
M->getMemOperand());
9751 case Intrinsic::amdgcn_raw_tbuffer_store:
9752 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
9756 VData = handleD16VData(VData, DAG);
9757 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
9758 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
9776 M->getMemoryVT(),
M->getMemOperand());
9779 case Intrinsic::amdgcn_raw_buffer_store:
9780 case Intrinsic::amdgcn_raw_ptr_buffer_store:
9781 case Intrinsic::amdgcn_raw_buffer_store_format:
9782 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
9783 const bool IsFormat =
9784 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
9785 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
9792 VData = handleD16VData(VData, DAG);
9802 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
9803 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
9823 return handleByteShortBufferStores(DAG, VDataVT,
DL, Ops, M);
9826 M->getMemoryVT(),
M->getMemOperand());
9829 case Intrinsic::amdgcn_struct_buffer_store:
9830 case Intrinsic::amdgcn_struct_ptr_buffer_store:
9831 case Intrinsic::amdgcn_struct_buffer_store_format:
9832 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
9833 const bool IsFormat =
9834 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
9835 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
9843 VData = handleD16VData(VData, DAG);
9853 auto Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
9854 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
9875 return handleByteShortBufferStores(DAG, VDataType,
DL, Ops, M);
9878 M->getMemoryVT(),
M->getMemOperand());
9880 case Intrinsic::amdgcn_raw_buffer_load_lds:
9881 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
9882 case Intrinsic::amdgcn_struct_buffer_load_lds:
9883 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
9887 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
9888 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
9889 unsigned OpOffset = HasVIndex ? 1 : 0;
9890 SDValue VOffset =
Op.getOperand(5 + OpOffset);
9892 unsigned Size =
Op->getConstantOperandVal(4);
9898 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
9899 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
9900 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
9901 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
9904 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
9905 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
9906 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
9907 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
9910 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
9911 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
9912 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
9913 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
9918 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_BOTHEN
9919 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_IDXEN
9920 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFEN
9921 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFSET;
9926 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_BOTHEN
9927 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_IDXEN
9928 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFEN
9929 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFSET;
9937 if (HasVIndex && HasVOffset)
9943 else if (HasVOffset)
9946 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
9951 unsigned Aux =
Op.getConstantOperandVal(8 + OpOffset);
9963 auto *
M = cast<MemSDNode>(
Op);
9990 case Intrinsic::amdgcn_global_load_lds: {
9992 unsigned Size =
Op->getConstantOperandVal(4);
9997 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
10000 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
10003 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
10008 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX3;
10013 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX4;
10017 auto *
M = cast<MemSDNode>(
Op);
10030 if (
LHS->isDivergent())
10034 RHS.getOperand(0).getValueType() == MVT::i32) {
10037 VOffset =
RHS.getOperand(0);
10042 if (!
Addr->isDivergent()) {
10059 LoadPtrI.
Offset =
Op->getConstantOperandVal(5);
10079 case Intrinsic::amdgcn_end_cf:
10081 Op->getOperand(2), Chain),
10083 case Intrinsic::amdgcn_s_barrier_init:
10084 case Intrinsic::amdgcn_s_barrier_signal_var: {
10091 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_s_barrier_init
10092 ? AMDGPU::S_BARRIER_INIT_M0
10093 : AMDGPU::S_BARRIER_SIGNAL_M0;
10108 constexpr unsigned ShAmt = 16;
10120 case Intrinsic::amdgcn_s_barrier_join: {
10127 if (isa<ConstantSDNode>(BarOp)) {
10128 uint64_t BarVal = cast<ConstantSDNode>(BarOp)->getZExtValue();
10129 Opc = AMDGPU::S_BARRIER_JOIN_IMM;
10132 unsigned BarID = (BarVal >> 4) & 0x3F;
10137 Opc = AMDGPU::S_BARRIER_JOIN_M0;
10153 case Intrinsic::amdgcn_s_prefetch_data: {
10156 return Op.getOperand(0);
10159 case Intrinsic::amdgcn_s_buffer_prefetch_data: {
10161 Chain, bufferRsrcPtrToVector(
Op.getOperand(2), DAG),
10168 Op->getVTList(), Ops,
M->getMemoryVT(),
10169 M->getMemOperand());
10174 return lowerImage(
Op, ImageDimIntr, DAG,
true);
10187std::pair<SDValue, SDValue>
10194 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
10197 C1 = cast<ConstantSDNode>(N0.
getOperand(1));
10211 unsigned Overflow = ImmOffset & ~MaxImm;
10212 ImmOffset -= Overflow;
10213 if ((int32_t)Overflow < 0) {
10214 Overflow += ImmOffset;
10219 auto OverflowVal = DAG.
getConstant(Overflow,
DL, MVT::i32);
10223 SDValue Ops[] = {N0, OverflowVal};
10238void SITargetLowering::setBufferOffsets(
SDValue CombinedOffset,
10240 Align Alignment)
const {
10243 if (
auto *
C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
10246 if (
TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
10257 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
10259 TII->splitMUBUFOffset(
Offset, SOffset, ImmOffset, Alignment)) {
10276SDValue SITargetLowering::bufferRsrcPtrToVector(
SDValue MaybePointer,
10279 return MaybePointer;
10293 SDValue NumRecords =
Op->getOperand(3);
10296 auto [LowHalf, HighHalf] = DAG.
SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
10299 std::optional<uint32_t> ConstStride = std::nullopt;
10300 if (
auto *ConstNode = dyn_cast<ConstantSDNode>(Stride))
10301 ConstStride = ConstNode->getZExtValue();
10304 if (!ConstStride || *ConstStride != 0) {
10307 ShiftedStride = DAG.
getConstant(*ConstStride << 16, Loc, MVT::i32);
10318 NewHighHalf, NumRecords, Flags);
10328 bool IsTFE)
const {
10338 SDValue Op = getMemIntrinsicNode(Opc,
DL, VTs, Ops, MVT::v2i32, OpMMO, DAG);
10366 if (VDataType == MVT::f16 || VDataType == MVT::bf16)
10370 Ops[1] = BufferStoreExt;
10375 M->getMemOperand());
10400 DAGCombinerInfo &DCI)
const {
10416 if ((MemVT.
isSimple() && !DCI.isAfterLegalizeDAG()) ||
10423 "unexpected vector extload");
10436 "unexpected fp extload");
10454 DCI.AddToWorklist(Cvt.
getNode());
10459 DCI.AddToWorklist(Cvt.
getNode());
10470 if (
Info.isEntryFunction())
10471 return Info.getUserSGPRInfo().hasFlatScratchInit();
10479 EVT MemVT =
Load->getMemoryVT();
10492 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
10520 assert(
Op.getValueType().getVectorElementType() == MVT::i32 &&
10521 "Custom lowering for non-i32 vectors hasn't been implemented.");
10524 unsigned AS =
Load->getAddressSpace();
10548 Alignment >=
Align(4) && NumElements < 32) {
10562 if (NumElements > 4)
10581 if (NumElements > 2)
10586 if (NumElements > 4)
10598 auto Flags =
Load->getMemOperand()->getFlags();
10600 Load->getAlign(), Flags, &
Fast) &&
10609 MemVT, *
Load->getMemOperand())) {
10618 EVT VT =
Op.getValueType();
10655 EVT VT =
Op.getValueType();
10658 bool AllowInaccurateRcp =
10665 if (!AllowInaccurateRcp && VT != MVT::f16)
10668 if (CLHS->isExactlyValue(1.0)) {
10685 if (CLHS->isExactlyValue(-1.0)) {
10694 if (!AllowInaccurateRcp && (VT != MVT::f16 || !
Flags.hasAllowReciprocal()))
10708 EVT VT =
Op.getValueType();
10711 bool AllowInaccurateDiv =
10713 if (!AllowInaccurateDiv)
10734 return DAG.
getNode(Opcode, SL, VT,
A,
B, Flags);
10748 return DAG.
getNode(Opcode, SL, VTList,
10757 return DAG.
getNode(Opcode, SL, VT, {
A,
B,
C}, Flags);
10771 return DAG.
getNode(Opcode, SL, VTList,
10777 if (
SDValue FastLowered = lowerFastUnsafeFDIV(
Op, DAG))
10778 return FastLowered;
10798 unsigned FMADOpCode =
10808 SDValue Err = DAG.
getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
10810 Quot = DAG.
getNode(FMADOpCode, SL, MVT::f32, Err, Rcp, Quot,
Op->getFlags());
10811 Err = DAG.
getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
10834 const APFloat K0Val(0x1p+96f);
10837 const APFloat K1Val(0x1p-32f);
10864 assert(ST->hasDenormModeInst() &&
"Requires S_DENORM_MODE");
10865 uint32_t DPDenormModeDefault =
Info->getMode().fpDenormModeDPValue();
10866 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
10871 if (
SDValue FastLowered = lowerFastUnsafeFDIV(
Op, DAG))
10872 return FastLowered;
10879 Flags.setNoFPExcept(
true);
10900 using namespace AMDGPU::Hwreg;
10901 const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2);
10909 const bool HasDynamicDenormals =
10915 if (!PreservesDenormals) {
10923 if (HasDynamicDenormals) {
10927 SavedDenormMode =
SDValue(GetReg, 0);
10935 const SDValue EnableDenormValue =
10942 const SDValue EnableDenormValue =
10944 EnableDenorm = DAG.
getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
10945 {EnableDenormValue,
BitField, Glue});
10955 ApproxRcp, One, NegDivScale0, Flags);
10958 ApproxRcp, Fma0, Flags);
10964 NumeratorScaled,
Mul, Flags);
10970 NumeratorScaled, Fma3, Flags);
10972 if (!PreservesDenormals) {
10980 DisableDenormValue, Fma4.
getValue(2))
10983 assert(HasDynamicDenormals == (
bool)SavedDenormMode);
10984 const SDValue DisableDenormValue =
10985 HasDynamicDenormals
10990 AMDGPU::S_SETREG_B32, SL, MVT::Other,
11001 {Fma4, Fma1, Fma3, Scale},
Flags);
11007 if (
SDValue FastLowered = lowerFastUnsafeFDIV64(
Op, DAG))
11008 return FastLowered;
11076 EVT VT =
Op.getValueType();
11078 if (VT == MVT::f32)
11079 return LowerFDIV32(
Op, DAG);
11081 if (VT == MVT::f64)
11082 return LowerFDIV64(
Op, DAG);
11084 if (VT == MVT::f16)
11085 return LowerFDIV16(
Op, DAG);
11094 EVT ResultExpVT =
Op->getValueType(1);
11095 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
11125 if (VT == MVT::i1) {
11129 Store->getBasePtr(), MVT::i1,
Store->getMemOperand());
11133 Store->getValue().getValueType().getScalarType() == MVT::i32);
11135 unsigned AS =
Store->getAddressSpace();
11154 if (NumElements > 4)
11161 VT, *
Store->getMemOperand()))
11171 if (NumElements > 2)
11175 if (NumElements > 4 ||
11184 auto Flags =
Store->getMemOperand()->getFlags();
11219 MVT VT =
Op.getValueType().getSimpleVT();
11390 EVT VT =
Op.getValueType();
11407 switch (
Op.getOpcode()) {
11434 EVT VT =
Op.getValueType();
11442 Op->getVTList(), Ops, VT,
11451SITargetLowering::performUCharToFloatCombine(
SDNode *
N,
11452 DAGCombinerInfo &DCI)
const {
11453 EVT VT =
N->getValueType(0);
11455 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
11462 EVT SrcVT = Src.getValueType();
11468 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
11471 DCI.AddToWorklist(Cvt.
getNode());
11474 if (ScalarVT != MVT::f32) {
11486 DAGCombinerInfo &DCI)
const {
11487 SDValue MagnitudeOp =
N->getOperand(0);
11488 SDValue SignOp =
N->getOperand(1);
11544SDValue SITargetLowering::performSHLPtrCombine(
SDNode *
N,
unsigned AddrSpace,
11546 DAGCombinerInfo &DCI)
const {
11576 AM.HasBaseReg =
true;
11577 AM.BaseOffs =
Offset.getSExtValue();
11582 EVT VT =
N->getValueType(0);
11588 Flags.setNoUnsignedWrap(
11589 N->getFlags().hasNoUnsignedWrap() &&
11599 switch (
N->getOpcode()) {
11610 DAGCombinerInfo &DCI)
const {
11619 SDValue NewPtr = performSHLPtrCombine(
Ptr.getNode(),
N->getAddressSpace(),
11620 N->getMemoryVT(), DCI);
11624 NewOps[PtrIdx] = NewPtr;
11633 return (Opc ==
ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
11634 (Opc ==
ISD::OR && (Val == 0xffffffff || Val == 0)) ||
11643SDValue SITargetLowering::splitBinaryBitConstantOp(
11644 DAGCombinerInfo &DCI,
const SDLoc &SL,
unsigned Opc,
SDValue LHS,
11664 if (V.getValueType() != MVT::i1)
11666 switch (V.getOpcode()) {
11685 if (!(
C & 0x000000ff))
11686 ZeroByteMask |= 0x000000ff;
11687 if (!(
C & 0x0000ff00))
11688 ZeroByteMask |= 0x0000ff00;
11689 if (!(
C & 0x00ff0000))
11690 ZeroByteMask |= 0x00ff0000;
11691 if (!(
C & 0xff000000))
11692 ZeroByteMask |= 0xff000000;
11693 uint32_t NonZeroByteMask = ~ZeroByteMask;
11694 if ((NonZeroByteMask &
C) != NonZeroByteMask)
11707 assert(V.getValueSizeInBits() == 32);
11709 if (V.getNumOperands() != 2)
11718 switch (V.getOpcode()) {
11723 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
11728 return (0x03020100 & ~ConstMask) | ConstMask;
11735 return uint32_t((0x030201000c0c0c0cull <<
C) >> 32);
11741 return uint32_t(0x0c0c0c0c03020100ull >>
C);
11748 DAGCombinerInfo &DCI)
const {
11749 if (DCI.isBeforeLegalize())
11753 EVT VT =
N->getValueType(0);
11758 if (VT == MVT::i64 && CRHS) {
11764 if (CRHS && VT == MVT::i32) {
11773 if (
auto *CShift = dyn_cast<ConstantSDNode>(
LHS->getOperand(1))) {
11774 unsigned Shift = CShift->getZExtValue();
11776 unsigned Offset = NB + Shift;
11777 if ((
Offset & (Bits - 1)) == 0) {
11795 isa<ConstantSDNode>(
LHS.getOperand(2))) {
11801 Sel = (
LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
11816 if (
Y.getOpcode() !=
ISD::FABS ||
Y.getOperand(0) !=
X ||
11821 if (
X !=
LHS.getOperand(1))
11826 dyn_cast<ConstantFPSDNode>(
RHS.getOperand(1));
11859 (
RHS.getOperand(0) ==
LHS.getOperand(0) &&
11860 LHS.getOperand(0) ==
LHS.getOperand(1))) {
11862 unsigned NewMask = LCC ==
ISD::SETO ?
Mask->getZExtValue() & ~OrdMask
11863 :
Mask->getZExtValue() & OrdMask;
11884 N->isDivergent() &&
TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
11887 if (LHSMask != ~0u && RHSMask != ~0u) {
11890 if (LHSMask > RHSMask) {
11897 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
11898 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
11901 if (!(LHSUsedLanes & RHSUsedLanes) &&
11904 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
11911 for (
unsigned I = 0;
I < 32;
I += 8) {
11913 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
11914 Mask &= (0x0c <<
I) & 0xffffffff;
11972static const std::optional<ByteProvider<SDValue>>
11974 unsigned Depth = 0) {
11977 return std::nullopt;
11979 if (
Op.getValueSizeInBits() < 8)
11980 return std::nullopt;
11982 if (
Op.getValueType().isVector())
11985 switch (
Op->getOpcode()) {
11996 auto *VTSign = cast<VTSDNode>(
Op->getOperand(1));
11997 NarrowVT = VTSign->getVT();
12000 return std::nullopt;
12003 if (SrcIndex >= NarrowByteWidth)
12004 return std::nullopt;
12010 auto *ShiftOp = dyn_cast<ConstantSDNode>(
Op->getOperand(1));
12012 return std::nullopt;
12014 uint64_t BitShift = ShiftOp->getZExtValue();
12016 if (BitShift % 8 != 0)
12017 return std::nullopt;
12019 SrcIndex += BitShift / 8;
12037static const std::optional<ByteProvider<SDValue>>
12039 unsigned StartingIndex = 0) {
12043 return std::nullopt;
12045 unsigned BitWidth =
Op.getScalarValueSizeInBits();
12047 return std::nullopt;
12049 return std::nullopt;
12051 bool IsVec =
Op.getValueType().isVector();
12052 switch (
Op.getOpcode()) {
12055 return std::nullopt;
12060 return std::nullopt;
12064 return std::nullopt;
12067 if (!
LHS->isConstantZero() && !
RHS->isConstantZero())
12068 return std::nullopt;
12069 if (!
LHS ||
LHS->isConstantZero())
12071 if (!
RHS ||
RHS->isConstantZero())
12073 return std::nullopt;
12078 return std::nullopt;
12080 auto *BitMaskOp = dyn_cast<ConstantSDNode>(
Op->getOperand(1));
12082 return std::nullopt;
12084 uint32_t BitMask = BitMaskOp->getZExtValue();
12086 uint32_t IndexMask = 0xFF << (Index * 8);
12088 if ((IndexMask & BitMask) != IndexMask) {
12091 if (IndexMask & BitMask)
12092 return std::nullopt;
12101 return std::nullopt;
12104 auto *ShiftOp = dyn_cast<ConstantSDNode>(
Op->getOperand(2));
12105 if (!ShiftOp ||
Op.getValueType().isVector())
12106 return std::nullopt;
12108 uint64_t BitsProvided =
Op.getValueSizeInBits();
12109 if (BitsProvided % 8 != 0)
12110 return std::nullopt;
12112 uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided);
12114 return std::nullopt;
12116 uint64_t ConcatSizeInBytes = BitsProvided / 4;
12117 uint64_t ByteShift = BitShift / 8;
12119 uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes;
12120 uint64_t BytesProvided = BitsProvided / 8;
12121 SDValue NextOp =
Op.getOperand(NewIndex >= BytesProvided ? 0 : 1);
12122 NewIndex %= BytesProvided;
12129 return std::nullopt;
12131 auto *ShiftOp = dyn_cast<ConstantSDNode>(
Op->getOperand(1));
12133 return std::nullopt;
12135 uint64_t BitShift = ShiftOp->getZExtValue();
12137 return std::nullopt;
12139 auto BitsProvided =
Op.getScalarValueSizeInBits();
12140 if (BitsProvided % 8 != 0)
12141 return std::nullopt;
12143 uint64_t BytesProvided = BitsProvided / 8;
12144 uint64_t ByteShift = BitShift / 8;
12149 return BytesProvided - ByteShift > Index
12157 return std::nullopt;
12159 auto *ShiftOp = dyn_cast<ConstantSDNode>(
Op->getOperand(1));
12161 return std::nullopt;
12163 uint64_t BitShift = ShiftOp->getZExtValue();
12164 if (BitShift % 8 != 0)
12165 return std::nullopt;
12166 uint64_t ByteShift = BitShift / 8;
12172 return Index < ByteShift
12175 Depth + 1, StartingIndex);
12184 return std::nullopt;
12191 auto *VTSign = cast<VTSDNode>(
Op->getOperand(1));
12192 NarrowBitWidth = VTSign->getVT().getSizeInBits();
12194 if (NarrowBitWidth % 8 != 0)
12195 return std::nullopt;
12196 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
12198 if (Index >= NarrowByteWidth)
12200 ? std::optional<ByteProvider<SDValue>>(
12208 return std::nullopt;
12212 if (NarrowByteWidth >= Index) {
12217 return std::nullopt;
12224 return std::nullopt;
12228 auto *L = cast<LoadSDNode>(
Op.getNode());
12230 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
12231 if (NarrowBitWidth % 8 != 0)
12232 return std::nullopt;
12233 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
12238 if (Index >= NarrowByteWidth) {
12240 ? std::optional<ByteProvider<SDValue>>(
12245 if (NarrowByteWidth > Index) {
12249 return std::nullopt;
12254 return std::nullopt;
12257 Depth + 1, StartingIndex);
12261 auto *IdxOp = dyn_cast<ConstantSDNode>(
Op->getOperand(1));
12263 return std::nullopt;
12264 auto VecIdx = IdxOp->getZExtValue();
12265 auto ScalarSize =
Op.getScalarValueSizeInBits();
12266 if (ScalarSize < 32)
12267 Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index;
12269 StartingIndex, Index);
12274 return std::nullopt;
12276 auto *PermMask = dyn_cast<ConstantSDNode>(
Op->getOperand(2));
12278 return std::nullopt;
12281 (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8);
12282 if (IdxMask > 0x07 && IdxMask != 0x0c)
12283 return std::nullopt;
12285 auto NextOp =
Op.getOperand(IdxMask > 0x03 ? 0 : 1);
12286 auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask;
12288 return IdxMask != 0x0c ?
calculateSrcByte(NextOp, StartingIndex, NextIndex)
12294 return std::nullopt;
12309 return !OpVT.
isVector() && OpVT.getSizeInBits() == 16;
12313 auto ExtType = cast<LoadSDNode>(L)->getExtensionType();
12316 auto MemVT = L->getMemoryVT();
12319 return L->getMemoryVT().getSizeInBits() == 16;
12329 int Low8 = Mask & 0xff;
12330 int Hi8 = (Mask & 0xff00) >> 8;
12332 assert(Low8 < 8 && Hi8 < 8);
12334 bool IsConsecutive = (Hi8 - Low8 == 1);
12339 bool Is16Aligned = !(Low8 % 2);
12341 return IsConsecutive && Is16Aligned;
12349 int Low16 = PermMask & 0xffff;
12350 int Hi16 = (PermMask & 0xffff0000) >> 16;
12360 auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 ||
12362 if (!OtherOpIs16Bit)
12370 unsigned DWordOffset) {
12373 auto TypeSize = Src.getValueSizeInBits().getFixedValue();
12375 assert(Src.getValueSizeInBits().isKnownMultipleOf(8));
12380 if (Src.getValueType().isVector()) {
12381 auto ScalarTySize = Src.getScalarValueSizeInBits();
12382 auto ScalarTy = Src.getValueType().getScalarType();
12383 if (ScalarTySize == 32) {
12387 if (ScalarTySize > 32) {
12390 DAG.
getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32));
12391 auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32));
12398 assert(ScalarTySize < 32);
12399 auto NumElements =
TypeSize / ScalarTySize;
12400 auto Trunc32Elements = (ScalarTySize * NumElements) / 32;
12401 auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize;
12402 auto NumElementsIn32 = 32 / ScalarTySize;
12403 auto NumAvailElements = DWordOffset < Trunc32Elements
12405 : NumElements - NormalizedTrunc;
12418 auto ShiftVal = 32 * DWordOffset;
12426 [[maybe_unused]]
EVT VT =
N->getValueType(0);
12431 for (
int i = 0; i < 4; i++) {
12433 std::optional<ByteProvider<SDValue>>
P =
12436 if (!
P ||
P->isConstantZero())
12441 if (PermNodes.
size() != 4)
12444 std::pair<unsigned, unsigned> FirstSrc(0, PermNodes[0].SrcOffset / 4);
12445 std::optional<std::pair<unsigned, unsigned>> SecondSrc;
12447 for (
size_t i = 0; i < PermNodes.
size(); i++) {
12448 auto PermOp = PermNodes[i];
12451 int SrcByteAdjust = 4;
12455 if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) ||
12456 ((PermOp.SrcOffset / 4) != FirstSrc.second)) {
12458 if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) ||
12459 ((PermOp.SrcOffset / 4) != SecondSrc->second))
12463 SecondSrc = {i, PermNodes[i].SrcOffset / 4};
12464 assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8));
12467 assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8);
12469 PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8);
12472 SDValue Op = *PermNodes[FirstSrc.first].Src;
12474 assert(
Op.getValueSizeInBits() == 32);
12478 int Low16 = PermMask & 0xffff;
12479 int Hi16 = (PermMask & 0xffff0000) >> 16;
12481 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
12482 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
12485 if (WellFormedLow && WellFormedHi)
12489 SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src :
Op;
12498 assert(
Op.getValueType().isByteSized() &&
12516 DAGCombinerInfo &DCI)
const {
12521 EVT VT =
N->getValueType(0);
12522 if (VT == MVT::i1) {
12527 if (Src !=
RHS.getOperand(0))
12532 if (!CLHS || !CRHS)
12536 static const uint32_t MaxMask = 0x3ff;
12551 isa<ConstantSDNode>(
LHS.getOperand(2))) {
12556 Sel |=
LHS.getConstantOperandVal(2);
12565 N->isDivergent() &&
TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
12569 auto usesCombinedOperand = [](
SDNode *OrUse) {
12572 !OrUse->getValueType(0).isVector())
12576 for (
auto *VUser : OrUse->users()) {
12577 if (!VUser->getValueType(0).isVector())
12584 if (VUser->getOpcode() == VectorwiseOp)
12590 if (!
any_of(
N->users(), usesCombinedOperand))
12596 if (LHSMask != ~0u && RHSMask != ~0u) {
12599 if (LHSMask > RHSMask) {
12606 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
12607 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
12610 if (!(LHSUsedLanes & RHSUsedLanes) &&
12613 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
12615 LHSMask &= ~RHSUsedLanes;
12616 RHSMask &= ~LHSUsedLanes;
12618 LHSMask |= LHSUsedLanes & 0x04040404;
12628 if (LHSMask == ~0u || RHSMask == ~0u) {
12634 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
12649 if (SrcVT == MVT::i32) {
12654 DCI.AddToWorklist(LowOr.
getNode());
12655 DCI.AddToWorklist(HiBits.getNode());
12663 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(
N->getOperand(1));
12666 N->getOperand(0), CRHS))
12674 DAGCombinerInfo &DCI)
const {
12675 if (
SDValue RV = reassociateScalarOps(
N, DCI.DAG))
12684 EVT VT =
N->getValueType(0);
12685 if (CRHS && VT == MVT::i64) {
12707 LHS->getOperand(0), FNegLHS, FNegRHS);
12716 DAGCombinerInfo &DCI)
const {
12721 EVT VT =
N->getValueType(0);
12722 if (VT != MVT::i32)
12726 if (Src.getValueType() != MVT::i16)
12733SITargetLowering::performSignExtendInRegCombine(
SDNode *
N,
12734 DAGCombinerInfo &DCI)
const {
12736 auto *VTSign = cast<VTSDNode>(
N->getOperand(1));
12741 VTSign->getVT() == MVT::i8) ||
12743 VTSign->getVT() == MVT::i16))) {
12745 "s_buffer_load_{u8, i8} are supported "
12746 "in GFX12 (or newer) architectures.");
12747 EVT VT = Src.getValueType();
12752 SDVTList ResList = DCI.DAG.getVTList(MVT::i32);
12758 auto *
M = cast<MemSDNode>(Src);
12759 SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode(
12760 Opc,
DL, ResList, Ops,
M->getMemoryVT(),
M->getMemOperand());
12765 VTSign->getVT() == MVT::i8) ||
12767 VTSign->getVT() == MVT::i16)) &&
12769 auto *
M = cast<MemSDNode>(Src);
12770 SDValue Ops[] = {Src.getOperand(0),
12776 Src.getOperand(6), Src.getOperand(7)};
12779 DCI.DAG.getVTList(MVT::i32, Src.getOperand(0).getValueType());
12783 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(
12784 Opc,
SDLoc(
N), ResList, Ops,
M->getMemoryVT(),
M->getMemOperand());
12785 return DCI.DAG.getMergeValues(
12792 DAGCombinerInfo &DCI)
const {
12800 if (
N->getOperand(0).isUndef())
12807 DAGCombinerInfo &DCI)
const {
12808 EVT VT =
N->getValueType(0);
12833 unsigned MaxDepth)
const {
12834 unsigned Opcode =
Op.getOpcode();
12838 if (
auto *CFP = dyn_cast<ConstantFPSDNode>(
Op)) {
12839 const auto &
F = CFP->getValueAPF();
12840 if (
F.isNaN() &&
F.isSignaling())
12842 if (!
F.isDenormal())
12905 if (
Op.getValueType() == MVT::i32) {
12910 if (
auto *
RHS = dyn_cast<ConstantSDNode>(
Op.getOperand(1))) {
12911 if (
RHS->getZExtValue() == 0xffff0000) {
12921 return Op.getValueType().getScalarType() != MVT::f16;
12989 if (
Op.getValueType() == MVT::i16) {
13000 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
13002 switch (IntrinsicID) {
13003 case Intrinsic::amdgcn_cvt_pkrtz:
13004 case Intrinsic::amdgcn_cubeid:
13005 case Intrinsic::amdgcn_frexp_mant:
13006 case Intrinsic::amdgcn_fdot2:
13007 case Intrinsic::amdgcn_rcp:
13008 case Intrinsic::amdgcn_rsq:
13009 case Intrinsic::amdgcn_rsq_clamp:
13010 case Intrinsic::amdgcn_rcp_legacy:
13011 case Intrinsic::amdgcn_rsq_legacy:
13012 case Intrinsic::amdgcn_trig_preop:
13013 case Intrinsic::amdgcn_log:
13014 case Intrinsic::amdgcn_exp2:
13015 case Intrinsic::amdgcn_sqrt:
13033 unsigned MaxDepth)
const {
13036 unsigned Opcode =
MI->getOpcode();
13038 if (Opcode == AMDGPU::G_FCANONICALIZE)
13041 std::optional<FPValueAndVReg> FCR;
13044 if (FCR->Value.isSignaling())
13046 if (!FCR->Value.isDenormal())
13057 case AMDGPU::G_FADD:
13058 case AMDGPU::G_FSUB:
13059 case AMDGPU::G_FMUL:
13060 case AMDGPU::G_FCEIL:
13061 case AMDGPU::G_FFLOOR:
13062 case AMDGPU::G_FRINT:
13063 case AMDGPU::G_FNEARBYINT:
13064 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
13065 case AMDGPU::G_INTRINSIC_TRUNC:
13066 case AMDGPU::G_INTRINSIC_ROUNDEVEN:
13067 case AMDGPU::G_FMA:
13068 case AMDGPU::G_FMAD:
13069 case AMDGPU::G_FSQRT:
13070 case AMDGPU::G_FDIV:
13071 case AMDGPU::G_FREM:
13072 case AMDGPU::G_FPOW:
13073 case AMDGPU::G_FPEXT:
13074 case AMDGPU::G_FLOG:
13075 case AMDGPU::G_FLOG2:
13076 case AMDGPU::G_FLOG10:
13077 case AMDGPU::G_FPTRUNC:
13078 case AMDGPU::G_AMDGPU_RCP_IFLAG:
13079 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
13080 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
13081 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
13082 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
13084 case AMDGPU::G_FNEG:
13085 case AMDGPU::G_FABS:
13086 case AMDGPU::G_FCOPYSIGN:
13088 case AMDGPU::G_FMINNUM:
13089 case AMDGPU::G_FMAXNUM:
13090 case AMDGPU::G_FMINNUM_IEEE:
13091 case AMDGPU::G_FMAXNUM_IEEE:
13092 case AMDGPU::G_FMINIMUM:
13093 case AMDGPU::G_FMAXIMUM: {
13101 case AMDGPU::G_BUILD_VECTOR:
13106 case AMDGPU::G_INTRINSIC:
13107 case AMDGPU::G_INTRINSIC_CONVERGENT:
13109 case Intrinsic::amdgcn_fmul_legacy:
13110 case Intrinsic::amdgcn_fmad_ftz:
13111 case Intrinsic::amdgcn_sqrt:
13112 case Intrinsic::amdgcn_fmed3:
13113 case Intrinsic::amdgcn_sin:
13114 case Intrinsic::amdgcn_cos:
13115 case Intrinsic::amdgcn_log:
13116 case Intrinsic::amdgcn_exp2:
13117 case Intrinsic::amdgcn_log_clamp:
13118 case Intrinsic::amdgcn_rcp:
13119 case Intrinsic::amdgcn_rcp_legacy:
13120 case Intrinsic::amdgcn_rsq:
13121 case Intrinsic::amdgcn_rsq_clamp:
13122 case Intrinsic::amdgcn_rsq_legacy:
13123 case Intrinsic::amdgcn_div_scale:
13124 case Intrinsic::amdgcn_div_fmas:
13125 case Intrinsic::amdgcn_div_fixup:
13126 case Intrinsic::amdgcn_fract:
13127 case Intrinsic::amdgcn_cvt_pkrtz:
13128 case Intrinsic::amdgcn_cubeid:
13129 case Intrinsic::amdgcn_cubema:
13130 case Intrinsic::amdgcn_cubesc:
13131 case Intrinsic::amdgcn_cubetc:
13132 case Intrinsic::amdgcn_frexp_mant:
13133 case Intrinsic::amdgcn_fdot2:
13134 case Intrinsic::amdgcn_trig_preop:
13153 if (
C.isDenormal()) {
13167 if (
C.isSignaling()) {
13186 return Op.isUndef() || isa<ConstantFPSDNode>(
Op);
13190SITargetLowering::performFCanonicalizeCombine(
SDNode *
N,
13191 DAGCombinerInfo &DCI)
const {
13194 EVT VT =
N->getValueType(0);
13203 EVT VT =
N->getValueType(0);
13204 return getCanonicalConstantFP(DAG,
SDLoc(
N), VT, CFP->getValueAPF());
13220 EVT EltVT =
Lo.getValueType();
13223 for (
unsigned I = 0;
I != 2; ++
I) {
13227 getCanonicalConstantFP(DAG, SL, EltVT, CFP->getValueAPF());
13228 }
else if (
Op.isUndef()) {
13240 if (isa<ConstantFPSDNode>(NewElts[1]))
13241 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1])
13247 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0])
13299 if (!MinK || !MaxK)
13312 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->
hasMed3_16()))
13313 return DAG.
getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
13354 if (
Info->getMode().DX10Clamp) {
13363 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->
hasMed3_16())) {
13395 return (VT == MVT::f32) || (VT == MVT::f16 && Subtarget.
hasMin3Max3_16());
13404 return (VT == MVT::i32) || (VT == MVT::i16 && Subtarget.
hasMin3Max3_16());
13413 DAGCombinerInfo &DCI)
const {
13416 EVT VT =
N->getValueType(0);
13417 unsigned Opc =
N->getOpcode();
13446 if (
SDValue Med3 = performIntMed3ImmCombine(
13451 if (
SDValue Med3 = performIntMed3ImmCombine(
13457 if (
SDValue Med3 = performIntMed3ImmCombine(
13462 if (
SDValue Med3 = performIntMed3ImmCombine(
13472 (VT == MVT::f32 || VT == MVT::f64 ||
13476 if (
SDValue Res = performFPMed3ImmCombine(DAG,
SDLoc(
N), Op0, Op1))
13487 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
13488 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
13497 DAGCombinerInfo &DCI)
const {
13498 EVT VT =
N->getValueType(0);
13521 if (
Info->getMode().DX10Clamp) {
13524 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
13527 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
13530 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
13541 DAGCombinerInfo &DCI)
const {
13545 return DCI.DAG.getUNDEF(
N->getValueType(0));
13553 bool IsDivergentIdx,
13558 unsigned VecSize = EltSize * NumElem;
13561 if (VecSize <= 64 && EltSize < 32)
13570 if (IsDivergentIdx)
13574 unsigned NumInsts = NumElem +
13575 ((EltSize + 31) / 32) * NumElem ;
13580 return NumInsts <= 16;
13585 return NumInsts <= 15;
13592 if (isa<ConstantSDNode>(
Idx))
13606SITargetLowering::performExtractVectorEltCombine(
SDNode *
N,
13607 DAGCombinerInfo &DCI)
const {
13613 EVT ResVT =
N->getValueType(0);
13632 if (Vec.
hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
13660 DCI.AddToWorklist(Elt0.
getNode());
13661 DCI.AddToWorklist(Elt1.
getNode());
13683 if (!DCI.isBeforeLegalize())
13689 auto *
Idx = dyn_cast<ConstantSDNode>(
N->getOperand(1));
13690 if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.
isByteSized() &&
13691 VecSize > 32 && VecSize % 32 == 0 &&
Idx) {
13694 unsigned BitIndex =
Idx->getZExtValue() * VecEltSize;
13695 unsigned EltIdx = BitIndex / 32;
13696 unsigned LeftoverBitIdx = BitIndex % 32;
13700 DCI.AddToWorklist(Cast.
getNode());
13704 DCI.AddToWorklist(Elt.
getNode());
13707 DCI.AddToWorklist(Srl.
getNode());
13711 DCI.AddToWorklist(Trunc.
getNode());
13713 if (VecEltVT == ResVT) {
13725SITargetLowering::performInsertVectorEltCombine(
SDNode *
N,
13726 DAGCombinerInfo &DCI)
const {
13740 EVT IdxVT =
Idx.getValueType();
13757 Src.getOperand(0).getValueType() == MVT::f16) {
13758 return Src.getOperand(0);
13761 if (
auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) {
13762 APFloat Val = CFP->getValueAPF();
13763 bool LosesInfo =
true;
13773 DAGCombinerInfo &DCI)
const {
13775 "combine only useful on gfx8");
13777 SDValue TruncSrc =
N->getOperand(0);
13778 EVT VT =
N->getValueType(0);
13779 if (VT != MVT::f16)
13817unsigned SITargetLowering::getFusedOpcode(
const SelectionDAG &DAG,
13819 const SDNode *N1)
const {
13824 if (((VT == MVT::f32 &&
13826 (VT == MVT::f16 && Subtarget->
hasMadF16() &&
13846 EVT VT =
N->getValueType(0);
13847 if (VT != MVT::i32 && VT != MVT::i64)
13853 unsigned Opc =
N->getOpcode();
13876 return DAG.
getNode(Opc, SL, VT, Add1, Op2);
13908 if (!Const ||
Hi_32(Const->getZExtValue()) != -1)
13927 DAGCombinerInfo &DCI)
const {
13931 EVT VT =
N->getValueType(0);
13941 if (!
N->isDivergent() && Subtarget->
hasSMulHi())
13945 if (NumBits <= 32 || NumBits > 64)
13957 unsigned NumUsers = 0;
13985 bool MulSignedLo =
false;
13986 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
13995 if (VT != MVT::i64) {
14018 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
14020 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
14021 auto [AccumLo, AccumHi] = DAG.
SplitScalar(Accum, SL, MVT::i32, MVT::i32);
14023 if (!MulLHSUnsigned32) {
14030 if (!MulRHSUnsigned32) {
14041 if (VT != MVT::i64)
14047SITargetLowering::foldAddSub64WithZeroLowBitsTo32(
SDNode *
N,
14048 DAGCombinerInfo &DCI)
const {
14050 auto *CRHS = dyn_cast<ConstantSDNode>(RHS);
14074 DAG.
getNode(
N->getOpcode(), SL, MVT::i32,
Hi, ConstHi32,
N->getFlags());
14085static std::optional<ByteProvider<SDValue>>
14088 if (!Byte0 || Byte0->isConstantZero()) {
14089 return std::nullopt;
14092 if (Byte1 && !Byte1->isConstantZero()) {
14093 return std::nullopt;
14099 unsigned FirstCs =
First & 0x0c0c0c0c;
14100 unsigned SecondCs = Second & 0x0c0c0c0c;
14101 unsigned FirstNoCs =
First & ~0x0c0c0c0c;
14102 unsigned SecondNoCs = Second & ~0x0c0c0c0c;
14104 assert((FirstCs & 0xFF) | (SecondCs & 0xFF));
14105 assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00));
14106 assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000));
14107 assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000));
14109 return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs);
14133 for (
int BPI = 0; BPI < 2; BPI++) {
14136 BPP = {Src1, Src0};
14138 unsigned ZeroMask = 0x0c0c0c0c;
14139 unsigned FMask = 0xFF << (8 * (3 - Step));
14141 unsigned FirstMask =
14142 (BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
14143 unsigned SecondMask =
14144 (BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
14148 int FirstGroup = -1;
14149 for (
int I = 0;
I < 2;
I++) {
14151 auto MatchesFirst = [&BPP](
DotSrc &IterElt) {
14152 return IterElt.SrcOp == *BPP.first.Src &&
14153 (IterElt.DWordOffset == (BPP.first.SrcOffset / 4));
14163 if (FirstGroup != -1) {
14165 auto MatchesSecond = [&BPP](
DotSrc &IterElt) {
14166 return IterElt.SrcOp == *BPP.second.Src &&
14167 (IterElt.DWordOffset == (BPP.second.SrcOffset / 4));
14173 Srcs.
push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4});
14181 unsigned ZeroMask = 0x0c0c0c0c;
14182 unsigned FMask = 0xFF << (8 * (3 - Step));
14186 ((Src0.
SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
14190 ((Src1.
SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
14199 if (Srcs.
size() == 1) {
14200 auto *Elt = Srcs.
begin();
14204 if (Elt->PermMask == 0x3020100)
14211 auto *FirstElt = Srcs.
begin();
14212 auto *SecondElt = std::next(FirstElt);
14219 auto FirstMask = FirstElt->PermMask;
14220 auto SecondMask = SecondElt->PermMask;
14222 unsigned FirstCs = FirstMask & 0x0c0c0c0c;
14223 unsigned FirstPlusFour = FirstMask | 0x04040404;
14226 FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs;
14238 FirstElt = std::next(SecondElt);
14239 if (FirstElt == Srcs.
end())
14242 SecondElt = std::next(FirstElt);
14245 if (SecondElt == Srcs.
end()) {
14251 DAG.
getConstant(FirstElt->PermMask, SL, MVT::i32)));
14257 return Perms.
size() == 2
14263 for (
auto &[EntryVal, EntryMask, EntryOffset] : Srcs) {
14264 EntryMask = EntryMask >> ((4 - ChainLength) * 8);
14265 auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000;
14266 EntryMask += ZeroMask;
14271 auto Opcode =
Op.getOpcode();
14277static std::optional<bool>
14288 bool S0IsSigned = Known0.countMinLeadingOnes() > 0;
14291 bool S1IsSigned = Known1.countMinLeadingOnes() > 0;
14293 assert(!(S0IsUnsigned && S0IsSigned));
14294 assert(!(S1IsUnsigned && S1IsSigned));
14302 if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned))
14308 if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned))
14309 return std::nullopt;
14321 if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) ||
14322 ((S1IsSigned && !(S0IsSigned || S0IsUnsigned))))
14327 if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned)))
14333 if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) ||
14334 ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned))))
14335 return std::nullopt;
14341 DAGCombinerInfo &DCI)
const {
14343 EVT VT =
N->getValueType(0);
14350 if (
SDValue Folded = tryFoldToMad64_32(
N, DCI))
14355 if (
SDValue V = reassociateScalarOps(
N, DAG)) {
14359 if (VT == MVT::i64) {
14360 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
14367 std::optional<bool> IsSigned;
14373 int ChainLength = 0;
14374 for (
int I = 0;
I < 4;
I++) {
14375 auto MulIdx =
isMul(LHS) ? 0 :
isMul(RHS) ? 1 : -1;
14378 auto Src0 =
handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0));
14381 auto Src1 =
handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1));
14386 TempNode->getOperand(MulIdx), *Src0, *Src1,
14387 TempNode->getOperand(MulIdx)->getOperand(0),
14388 TempNode->getOperand(MulIdx)->getOperand(1), DAG);
14392 IsSigned = *IterIsSigned;
14393 if (*IterIsSigned != *IsSigned)
14396 auto AddIdx = 1 - MulIdx;
14399 if (
I == 2 &&
isMul(TempNode->getOperand(AddIdx))) {
14400 Src2s.
push_back(TempNode->getOperand(AddIdx));
14410 TempNode->getOperand(AddIdx), *Src0, *Src1,
14411 TempNode->getOperand(AddIdx)->getOperand(0),
14412 TempNode->getOperand(AddIdx)->getOperand(1), DAG);
14416 if (*IterIsSigned != *IsSigned)
14420 ChainLength =
I + 2;
14424 TempNode = TempNode->getOperand(AddIdx);
14426 ChainLength =
I + 1;
14427 if (TempNode->getNumOperands() < 2)
14429 LHS = TempNode->getOperand(0);
14430 RHS = TempNode->getOperand(1);
14433 if (ChainLength < 2)
14439 if (ChainLength < 4) {
14449 bool UseOriginalSrc =
false;
14450 if (ChainLength == 4 && Src0s.
size() == 1 && Src1s.
size() == 1 &&
14451 Src0s.
begin()->PermMask == Src1s.
begin()->PermMask &&
14452 Src0s.
begin()->SrcOp.getValueSizeInBits() >= 32 &&
14453 Src1s.
begin()->SrcOp.getValueSizeInBits() >= 32) {
14455 auto Src0Mask = Src0s.
begin()->PermMask;
14456 SrcBytes.
push_back(Src0Mask & 0xFF000000);
14457 bool UniqueEntries =
true;
14458 for (
auto I = 1;
I < 4;
I++) {
14459 auto NextByte = Src0Mask & (0xFF << ((3 -
I) * 8));
14462 UniqueEntries =
false;
14468 if (UniqueEntries) {
14469 UseOriginalSrc =
true;
14471 auto *FirstElt = Src0s.
begin();
14475 auto *SecondElt = Src1s.
begin();
14477 SecondElt->DWordOffset);
14486 if (!UseOriginalSrc) {
14493 DAG.
getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32);
14496 : Intrinsic::amdgcn_udot4,
14506 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
14511 unsigned Opc =
LHS.getOpcode();
14516 Opc =
RHS.getOpcode();
14523 auto Cond =
RHS.getOperand(0);
14531 return DAG.
getNode(Opc, SL, VTList, Args);
14545 DAGCombinerInfo &DCI)
const {
14547 EVT VT =
N->getValueType(0);
14549 if (VT == MVT::i64) {
14550 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
14554 if (VT != MVT::i32)
14563 unsigned Opc =
RHS.getOpcode();
14570 auto Cond =
RHS.getOperand(0);
14578 return DAG.
getNode(Opc, SL, VTList, Args);
14593SITargetLowering::performAddCarrySubCarryCombine(
SDNode *
N,
14594 DAGCombinerInfo &DCI)
const {
14596 if (
N->getValueType(0) != MVT::i32)
14607 unsigned LHSOpc =
LHS.getOpcode();
14608 unsigned Opc =
N->getOpcode();
14618 DAGCombinerInfo &DCI)
const {
14623 EVT VT =
N->getValueType(0);
14635 if (
A ==
LHS.getOperand(1)) {
14636 unsigned FusedOp = getFusedOpcode(DAG,
N,
LHS.getNode());
14637 if (FusedOp != 0) {
14639 return DAG.
getNode(FusedOp, SL, VT,
A, Two, RHS);
14647 if (
A ==
RHS.getOperand(1)) {
14648 unsigned FusedOp = getFusedOpcode(DAG,
N,
RHS.getNode());
14649 if (FusedOp != 0) {
14651 return DAG.
getNode(FusedOp, SL, VT,
A, Two, LHS);
14660 DAGCombinerInfo &DCI)
const {
14666 EVT VT =
N->getValueType(0);
14679 if (
A ==
LHS.getOperand(1)) {
14680 unsigned FusedOp = getFusedOpcode(DAG,
N,
LHS.getNode());
14681 if (FusedOp != 0) {
14685 return DAG.
getNode(FusedOp, SL, VT,
A, Two, NegRHS);
14694 if (
A ==
RHS.getOperand(1)) {
14695 unsigned FusedOp = getFusedOpcode(DAG,
N,
RHS.getNode());
14696 if (FusedOp != 0) {
14698 return DAG.
getNode(FusedOp, SL, VT,
A, NegTwo, LHS);
14707 DAGCombinerInfo &DCI)
const {
14710 EVT VT =
N->getValueType(0);
14724 bool IsNegative =
false;
14725 if (CLHS->isExactlyValue(1.0) ||
14726 (IsNegative = CLHS->isExactlyValue(-1.0))) {
14742 DAGCombinerInfo &DCI)
const {
14744 EVT VT =
N->getValueType(0);
14758 if ((ScalarVT == MVT::f64 || ScalarVT == MVT::f32 || ScalarVT == MVT::f16) &&
14773 if (ScalarVT == MVT::f32 &&
14779 if (TrueNodeExpVal == INT_MIN)
14782 if (FalseNodeExpVal == INT_MIN)
14802 DAGCombinerInfo &DCI)
const {
14804 EVT VT =
N->getValueType(0);
14825 (
N->getFlags().hasAllowContract() &&
14826 FMA->getFlags().hasAllowContract())) {
14860 if (Vec1 == Vec2 || Vec3 == Vec4)
14866 if ((Vec1 == Vec3 && Vec2 == Vec4) || (Vec1 == Vec4 && Vec2 == Vec3)) {
14875 DAGCombinerInfo &DCI)
const {
14881 EVT VT =
LHS.getValueType();
14884 auto *CRHS = dyn_cast<ConstantSDNode>(RHS);
14886 CRHS = dyn_cast<ConstantSDNode>(LHS);
14910 return LHS.getOperand(0);
14916 isa<ConstantSDNode>(
LHS.getOperand(1)) &&
14917 isa<ConstantSDNode>(
LHS.getOperand(2)) &&
14918 LHS.getConstantOperandVal(1) !=
LHS.getConstantOperandVal(2) &&
14925 const APInt &CT =
LHS.getConstantOperandAPInt(1);
14926 const APInt &CF =
LHS.getConstantOperandAPInt(2);
14934 return LHS.getOperand(0);
14938 if (VT != MVT::f32 && VT != MVT::f64 &&
14954 const unsigned IsInfMask =
14956 const unsigned IsFiniteMask =
14970SITargetLowering::performCvtF32UByteNCombine(
SDNode *
N,
14971 DAGCombinerInfo &DCI)
const {
14989 if (
auto *
C = dyn_cast<ConstantSDNode>(Shift.
getOperand(1))) {
14993 unsigned ShiftOffset = 8 *
Offset;
14995 ShiftOffset -=
C->getZExtValue();
14997 ShiftOffset +=
C->getZExtValue();
14999 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
15001 MVT::f32, Shifted);
15012 DCI.AddToWorklist(
N);
15019 return DAG.
getNode(
N->getOpcode(), SL, MVT::f32, DemandedSrc);
15025 DAGCombinerInfo &DCI)
const {
15035 return DCI.DAG.getConstantFP(Zero,
SDLoc(
N),
N->getValueType(0));
15038 APFloat One(
F.getSemantics(),
"1.0");
15040 return DCI.DAG.getConstantFP(One,
SDLoc(
N),
N->getValueType(0));
15047 switch (
N->getOpcode()) {
15063 if (
auto Res = promoteUniformOpToI32(
SDValue(
N, 0), DCI))
15073 switch (
N->getOpcode()) {
15075 return performAddCombine(
N, DCI);
15077 return performSubCombine(
N, DCI);
15080 return performAddCarrySubCarryCombine(
N, DCI);
15082 return performFAddCombine(
N, DCI);
15084 return performFSubCombine(
N, DCI);
15086 return performFDivCombine(
N, DCI);
15088 return performFMulCombine(
N, DCI);
15090 return performSetCCCombine(
N, DCI);
15103 return performMinMaxCombine(
N, DCI);
15105 return performFMACombine(
N, DCI);
15107 return performAndCombine(
N, DCI);
15109 return performOrCombine(
N, DCI);
15112 if (
N->getValueType(0) == MVT::i32 &&
N->isDivergent() &&
15113 TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
15119 return performXorCombine(
N, DCI);
15121 return performZeroExtendCombine(
N, DCI);
15123 return performSignExtendInRegCombine(
N, DCI);
15125 return performClassCombine(
N, DCI);
15127 return performFCanonicalizeCombine(
N, DCI);
15129 return performRcpCombine(
N, DCI);
15144 return performUCharToFloatCombine(
N, DCI);
15146 return performFCopySignCombine(
N, DCI);
15151 return performCvtF32UByteNCombine(
N, DCI);
15153 return performFMed3Combine(
N, DCI);
15155 return performCvtPkRTZCombine(
N, DCI);
15157 return performClampCombine(
N, DCI);
15160 EVT VT =
N->getValueType(0);
15163 if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) {
15166 EVT EltVT = Src.getValueType();
15167 if (EltVT != MVT::i16)
15177 return performExtractVectorEltCombine(
N, DCI);
15179 return performInsertVectorEltCombine(
N, DCI);
15181 return performFPRoundCombine(
N, DCI);
15183 if (
SDValue Widened = widenLoad(cast<LoadSDNode>(
N), DCI))
15189 if (
MemSDNode *MemNode = dyn_cast<MemSDNode>(
N))
15190 return performMemSDNodeCombine(MemNode, DCI);
15221 unsigned Opcode =
Node->getMachineOpcode();
15225 if (D16Idx >= 0 &&
Node->getConstantOperandVal(D16Idx))
15230 unsigned DmaskIdx =
15232 unsigned OldDmask =
Node->getConstantOperandVal(DmaskIdx);
15233 unsigned NewDmask = 0;
15236 bool UsesTFC = ((int(TFEIdx) >= 0 &&
Node->getConstantOperandVal(TFEIdx)) ||
15237 (
int(LWEIdx) >= 0 &&
Node->getConstantOperandVal(LWEIdx)))
15240 unsigned TFCLane = 0;
15241 bool HasChain =
Node->getNumValues() > 1;
15243 if (OldDmask == 0) {
15251 TFCLane = OldBitsSet;
15258 if (
Use.getResNo() != 0)
15264 if (!
User->isMachineOpcode() ||
15265 User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
15277 if (UsesTFC && Lane == TFCLane) {
15282 for (
unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
15284 Dmask &= ~(1 << Comp);
15292 NewDmask |= 1 << Comp;
15297 bool NoChannels = !NewDmask;
15304 if (OldBitsSet == 1)
15310 if (NewDmask == OldDmask)
15319 unsigned NewChannels = BitsSet + UsesTFC;
15323 assert(NewOpcode != -1 &&
15324 NewOpcode !=
static_cast<int>(
Node->getMachineOpcode()) &&
15325 "failed to find equivalent MIMG op");
15333 MVT SVT =
Node->getValueType(0).getVectorElementType().getSimpleVT();
15335 MVT ResultVT = NewChannels == 1
15338 : NewChannels == 5 ? 8
15352 if (NewChannels == 1) {
15362 for (
unsigned i = 0,
Idx = AMDGPU::sub0; i < 5; ++i) {
15367 if (i || !NoChannels)
15372 if (NewUser !=
User) {
15382 Idx = AMDGPU::sub1;
15385 Idx = AMDGPU::sub2;
15388 Idx = AMDGPU::sub3;
15391 Idx = AMDGPU::sub4;
15402 Op =
Op.getOperand(0);
15404 return isa<FrameIndexSDNode>(
Op);
15414 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
15415 SDValue SrcVal = Node->getOperand(2);
15423 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
15425 SDNode *Glued = Node->getGluedNode();
15427 Node->getOperand(0), SL, VReg, SrcVal,
15433 return ToResultReg.
getNode();
15438 for (
unsigned i = 0; i < Node->getNumOperands(); ++i) {
15446 Node->getOperand(i).getValueType(),
15447 Node->getOperand(i)),
15459 unsigned Opcode = Node->getMachineOpcode();
15461 if (
TII->isImage(Opcode) && !
TII->get(Opcode).mayStore() &&
15462 !
TII->isGather4(Opcode) &&
15464 return adjustWritemask(Node, DAG);
15467 if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) {
15473 case AMDGPU::V_DIV_SCALE_F32_e64:
15474 case AMDGPU::V_DIV_SCALE_F64_e64: {
15478 SDValue Src0 = Node->getOperand(1);
15479 SDValue Src1 = Node->getOperand(3);
15480 SDValue Src2 = Node->getOperand(5);
15484 (Src0 == Src1 || Src0 == Src2))
15541 unsigned InitIdx = 0;
15543 if (
TII->isImage(
MI)) {
15551 unsigned TFEVal = TFE ? TFE->
getImm() : 0;
15552 unsigned LWEVal = LWE ? LWE->
getImm() : 0;
15553 unsigned D16Val = D16 ? D16->getImm() : 0;
15555 if (!TFEVal && !LWEVal)
15566 assert(MO_Dmask &&
"Expected dmask operand in instruction");
15568 unsigned dmask = MO_Dmask->
getImm();
15575 InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
15581 TRI.getRegSizeInBits(*
TII->getOpRegClass(
MI, DstIdx)) / 32;
15582 if (DstSize < InitIdx)
15585 InitIdx =
TRI.getRegSizeInBits(*
TII->getOpRegClass(
MI, DstIdx)) / 32;
15593 Register PrevDst =
MRI.cloneVirtualRegister(
MI.getOperand(DstIdx).getReg());
15594 unsigned NewDst = 0;
15603 for (; SizeLeft; SizeLeft--, CurrIdx++) {
15604 NewDst =
MRI.createVirtualRegister(
TII->getOpRegClass(
MI, DstIdx));
15624 MI.tieOperands(DstIdx,
MI.getNumOperands() - 1);
15637 if (
TII->isVOP3(
MI.getOpcode())) {
15639 TII->legalizeOperandsVOP3(
MRI,
MI);
15644 if (!
MI.getDesc().operands().empty()) {
15645 unsigned Opc =
MI.getOpcode();
15646 bool HasAGPRs =
Info->mayNeedAGPRs();
15654 if ((
I == Src2Idx) && (HasAGPRs))
15657 if (!
Op.isReg() || !
Op.getReg().isVirtual())
15659 auto *RC =
TRI->getRegClassForReg(
MRI,
Op.getReg());
15660 if (!
TRI->hasAGPRs(RC))
15662 auto *Src =
MRI.getUniqueVRegDef(
Op.getReg());
15663 if (!Src || !Src->isCopy() ||
15664 !
TRI->isSGPRReg(
MRI, Src->getOperand(1).getReg()))
15666 auto *NewRC =
TRI->getEquivalentVGPRClass(RC);
15670 MRI.setRegClass(
Op.getReg(), NewRC);
15673 if (
TII->isMAI(
MI)) {
15679 AMDGPU::OpName::scale_src0);
15680 if (Src0Idx != -1) {
15682 AMDGPU::OpName::scale_src1);
15683 if (
TII->usesConstantBus(
MRI,
MI, Src0Idx) &&
15684 TII->usesConstantBus(
MRI,
MI, Src1Idx))
15685 TII->legalizeOpWithMove(
MI, Src1Idx);
15693 if (
auto *Src2 =
TII->getNamedOperand(
MI, AMDGPU::OpName::src2)) {
15694 if (Src2->isReg() && Src2->getReg().isVirtual()) {
15695 auto *RC =
TRI->getRegClassForReg(
MRI, Src2->getReg());
15696 if (
TRI->isVectorSuperClass(RC)) {
15697 auto *NewRC =
TRI->getEquivalentAGPRClass(RC);
15698 MRI.setRegClass(Src2->getReg(), NewRC);
15699 if (Src2->isTied())
15700 MRI.setRegClass(
MI.getOperand(0).getReg(), NewRC);
15709 if (
TII->isImage(
MI))
15710 TII->enforceOperandRCAlignment(
MI, AMDGPU::OpName::vaddr);
15784std::pair<unsigned, const TargetRegisterClass *>
15791 if (Constraint.
size() == 1) {
15793 switch (Constraint[0]) {
15800 RC = &AMDGPU::SReg_32RegClass;
15803 RC = &AMDGPU::SGPR_64RegClass;
15808 return std::pair(0U,
nullptr);
15815 RC = &AMDGPU::VGPR_32RegClass;
15820 return std::pair(0U,
nullptr);
15829 RC = &AMDGPU::AGPR_32RegClass;
15834 return std::pair(0U,
nullptr);
15843 return std::pair(0U, RC);
15848 if (
RegName.consume_front(
"v")) {
15849 RC = &AMDGPU::VGPR_32RegClass;
15850 }
else if (
RegName.consume_front(
"s")) {
15851 RC = &AMDGPU::SGPR_32RegClass;
15852 }
else if (
RegName.consume_front(
"a")) {
15853 RC = &AMDGPU::AGPR_32RegClass;
15858 if (
RegName.consume_front(
"[")) {
15869 return std::pair(0U,
nullptr);
15872 RC =
TRI->getVGPRClassForBitWidth(Width);
15874 RC =
TRI->getSGPRClassForBitWidth(Width);
15876 RC =
TRI->getAGPRClassForBitWidth(Width);
15878 Reg =
TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
15879 return std::pair(Reg, RC);
15885 return std::pair(0U,
nullptr);
15887 if (!
Failed && Idx < RC->getNumRegs())
15895 Ret.second =
TRI->getPhysRegBaseClass(Ret.first);
15901 if (Constraint.
size() == 1) {
15902 switch (Constraint[0]) {
15912 }
else if (Constraint ==
"DA" || Constraint ==
"DB") {
15920 if (Constraint.
size() == 1) {
15921 switch (Constraint[0]) {
15938 Val = Val & maskTrailingOnes<uint64_t>(
Size);
15945 std::vector<SDValue> &Ops,
15960 unsigned Size =
Op.getScalarValueSizeInBits();
15968 Val =
C->getSExtValue();
15972 Val =
C->getValueAPF().bitcastToAPInt().getSExtValue();
15978 if (
Op.getOperand(0).isUndef() ||
Op.getOperand(1).isUndef())
15981 Val =
C->getSExtValue();
15985 Val =
C->getValueAPF().bitcastToAPInt().getSExtValue();
15995 if (Constraint.
size() == 1) {
15996 switch (Constraint[0]) {
16000 return isInt<16>(Val);
16004 return isInt<32>(Val);
16011 }
else if (Constraint.
size() == 2) {
16012 if (Constraint ==
"DA") {
16013 int64_t HiBits =
static_cast<int32_t
>(Val >> 32);
16014 int64_t LoBits =
static_cast<int32_t
>(Val);
16018 if (Constraint ==
"DB") {
16026 unsigned MaxSize)
const {
16027 unsigned Size = std::min<unsigned>(
Op.getScalarValueSizeInBits(), MaxSize);
16030 MVT VT =
Op.getSimpleValueType();
16055 switch (UnalignedClassID) {
16056 case AMDGPU::VReg_64RegClassID:
16057 return AMDGPU::VReg_64_Align2RegClassID;
16058 case AMDGPU::VReg_96RegClassID:
16059 return AMDGPU::VReg_96_Align2RegClassID;
16060 case AMDGPU::VReg_128RegClassID:
16061 return AMDGPU::VReg_128_Align2RegClassID;
16062 case AMDGPU::VReg_160RegClassID:
16063 return AMDGPU::VReg_160_Align2RegClassID;
16064 case AMDGPU::VReg_192RegClassID:
16065 return AMDGPU::VReg_192_Align2RegClassID;
16066 case AMDGPU::VReg_224RegClassID:
16067 return AMDGPU::VReg_224_Align2RegClassID;
16068 case AMDGPU::VReg_256RegClassID:
16069 return AMDGPU::VReg_256_Align2RegClassID;
16070 case AMDGPU::VReg_288RegClassID:
16071 return AMDGPU::VReg_288_Align2RegClassID;
16072 case AMDGPU::VReg_320RegClassID:
16073 return AMDGPU::VReg_320_Align2RegClassID;
16074 case AMDGPU::VReg_352RegClassID:
16075 return AMDGPU::VReg_352_Align2RegClassID;
16076 case AMDGPU::VReg_384RegClassID:
16077 return AMDGPU::VReg_384_Align2RegClassID;
16078 case AMDGPU::VReg_512RegClassID:
16079 return AMDGPU::VReg_512_Align2RegClassID;
16080 case AMDGPU::VReg_1024RegClassID:
16081 return AMDGPU::VReg_1024_Align2RegClassID;
16082 case AMDGPU::AReg_64RegClassID:
16083 return AMDGPU::AReg_64_Align2RegClassID;
16084 case AMDGPU::AReg_96RegClassID:
16085 return AMDGPU::AReg_96_Align2RegClassID;
16086 case AMDGPU::AReg_128RegClassID:
16087 return AMDGPU::AReg_128_Align2RegClassID;
16088 case AMDGPU::AReg_160RegClassID:
16089 return AMDGPU::AReg_160_Align2RegClassID;
16090 case AMDGPU::AReg_192RegClassID:
16091 return AMDGPU::AReg_192_Align2RegClassID;
16092 case AMDGPU::AReg_256RegClassID:
16093 return AMDGPU::AReg_256_Align2RegClassID;
16094 case AMDGPU::AReg_512RegClassID:
16095 return AMDGPU::AReg_512_Align2RegClassID;
16096 case AMDGPU::AReg_1024RegClassID:
16097 return AMDGPU::AReg_1024_Align2RegClassID;
16113 if (
Info->isEntryFunction()) {
16120 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
16122 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
16123 :
TRI->getAlignedHighSGPRForRC(MF, 2,
16124 &AMDGPU::SGPR_64RegClass);
16125 Info->setSGPRForEXECCopy(SReg);
16128 Info->getStackPtrOffsetReg()));
16129 if (
Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
16130 MRI.replaceRegWith(AMDGPU::SP_REG,
Info->getStackPtrOffsetReg());
16134 if (
Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
16135 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG,
Info->getScratchRSrcReg());
16137 if (
Info->getFrameOffsetReg() != AMDGPU::FP_REG)
16138 MRI.replaceRegWith(AMDGPU::FP_REG,
Info->getFrameOffsetReg());
16140 Info->limitOccupancy(MF);
16142 if (ST.isWave32() && !MF.
empty()) {
16143 for (
auto &
MBB : MF) {
16144 for (
auto &
MI :
MBB) {
16145 TII->fixImplicitOperands(
MI);
16155 if (ST.needsAlignedVGPRs()) {
16156 for (
unsigned I = 0, E =
MRI.getNumVirtRegs();
I != E; ++
I) {
16162 if (NewClassID != -1)
16163 MRI.setRegClass(Reg,
TRI->getRegClass(NewClassID));
16172 const APInt &DemandedElts,
16174 unsigned Depth)
const {
16176 unsigned Opc =
Op.getOpcode();
16179 unsigned IID =
Op.getConstantOperandVal(0);
16181 case Intrinsic::amdgcn_mbcnt_lo:
16182 case Intrinsic::amdgcn_mbcnt_hi: {
16188 IID == Intrinsic::amdgcn_mbcnt_lo ? ST.getWavefrontSizeLog2() : 5);
16198 Op, Known, DemandedElts, DAG,
Depth);
16213 unsigned MaxValue =
16222 switch (
MI->getOpcode()) {
16223 case AMDGPU::G_INTRINSIC:
16224 case AMDGPU::G_INTRINSIC_CONVERGENT: {
16227 case Intrinsic::amdgcn_workitem_id_x:
16230 case Intrinsic::amdgcn_workitem_id_y:
16233 case Intrinsic::amdgcn_workitem_id_z:
16236 case Intrinsic::amdgcn_mbcnt_lo:
16237 case Intrinsic::amdgcn_mbcnt_hi: {
16249 case Intrinsic::amdgcn_groupstaticsize: {
16260 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
16263 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
16266 case AMDGPU::G_AMDGPU_SMED3:
16267 case AMDGPU::G_AMDGPU_UMED3: {
16268 auto [Dst, Src0, Src1, Src2] =
MI->getFirst4Regs();
16295 unsigned Depth)
const {
16297 if (
auto *GI = dyn_cast<GIntrinsic>(
MI)) {
16303 if (
MaybeAlign RetAlign = Attrs.getRetAlignment())
16330 if (Header->getAlignment() != PrefAlign)
16331 return Header->getAlignment();
16333 unsigned LoopSize = 0;
16341 LoopSize +=
TII->getInstSizeInBytes(
MI);
16342 if (LoopSize > 192)
16347 if (LoopSize <= 64)
16350 if (LoopSize <= 128)
16351 return CacheLineAlign;
16357 auto I = Exit->getFirstNonDebugInstr();
16358 if (
I != Exit->end() &&
I->getOpcode() == AMDGPU::S_INST_PREFETCH)
16359 return CacheLineAlign;
16368 if (PreTerm == Pre->
begin() ||
16369 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
16373 auto ExitHead = Exit->getFirstNonDebugInstr();
16374 if (ExitHead == Exit->end() ||
16375 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
16380 return CacheLineAlign;
16388 N =
N->getOperand(0).getNode();
16398 switch (
N->getOpcode()) {
16406 if (Reg.isPhysical() ||
MRI.isLiveIn(Reg))
16407 return !
TRI->isSGPRReg(
MRI, Reg);
16409 if (
const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
16413 return !
TRI->isSGPRReg(
MRI, Reg);
16417 unsigned AS = L->getAddressSpace();
16448 if (
auto *
A = dyn_cast<AtomicSDNode>(
N)) {
16450 return A->readMem() &&
A->writeMem();
16485 unsigned Depth)
const {
16490 if (
Info->getMode().DX10Clamp)
16502 if (RMW->
hasMetadata(
"amdgpu.ignore.denormal.mode"))
16522 <<
"Hardware instruction generated for atomic "
16524 <<
" operation at memory scope " << MemScope;
16528 if (
auto *VT = dyn_cast<FixedVectorType>(Ty)) {
16529 Type *EltTy = VT->getElementType();
16530 return VT->getNumElements() == 2 &&
16549 if (
auto *
IT = dyn_cast<IntegerType>(Ty)) {
16550 unsigned BW =
IT->getBitWidth();
16551 return BW == 32 || BW == 64;
16563 if (
PointerType *PT = dyn_cast<PointerType>(Ty)) {
16565 unsigned BW =
DL.getPointerSizeInBits(PT->getAddressSpace());
16566 return BW == 32 || BW == 64;
16573 return VT->getNumElements() == 2 &&
16574 VT->getElementType()->getPrimitiveSizeInBits() == 16;
16584 bool HasSystemScope) {
16591 if (HasSystemScope) {
16598 return RMW->
hasMetadata(
"amdgpu.no.fine.grained.memory");
16611 const MDNode *NoaliasAddrSpaceMD =
16612 I->getMetadata(LLVMContext::MD_noalias_addrspace);
16613 if (!NoaliasAddrSpaceMD)
16616 for (
unsigned I = 0, E = NoaliasAddrSpaceMD->
getNumOperands() / 2;
I != E;
16618 auto *
Low = mdconst::extract<ConstantInt>(
16621 auto *
High = mdconst::extract<ConstantInt>(
16643 DL.getTypeSizeInBits(RMW->
getType()) == 64 &&
16656 bool HasSystemScope =
16843 if (HasSystemScope)
16895 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
16896 return Subtarget->
isWave64() ? &AMDGPU::SReg_64RegClass
16897 : &AMDGPU::SReg_32RegClass;
16898 if (!
TRI->isSGPRClass(RC) && !isDivergent)
16899 return TRI->getEquivalentSGPRClass(RC);
16900 if (
TRI->isSGPRClass(RC) && isDivergent)
16901 return TRI->getEquivalentVGPRClass(RC);
16913 unsigned WaveSize) {
16918 if (!
IT ||
IT->getBitWidth() != WaveSize)
16921 if (!isa<Instruction>(V))
16923 if (!Visited.
insert(V).second)
16925 bool Result =
false;
16926 for (
const auto *U : V->users()) {
16927 if (
const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
16928 if (V == U->getOperand(1)) {
16929 switch (Intrinsic->getIntrinsicID()) {
16933 case Intrinsic::amdgcn_if_break:
16934 case Intrinsic::amdgcn_if:
16935 case Intrinsic::amdgcn_else:
16940 if (V == U->getOperand(0)) {
16941 switch (Intrinsic->getIntrinsicID()) {
16945 case Intrinsic::amdgcn_end_cf:
16946 case Intrinsic::amdgcn_loop:
16952 Result =
hasCFUser(U, Visited, WaveSize);
16961 const Value *V)
const {
16962 if (
const CallInst *CI = dyn_cast<CallInst>(V)) {
16963 if (CI->isInlineAsm()) {
16972 for (
auto &TC : TargetConstraints) {
17014 return MRI.hasOneNonDBGUse(N0);
17021 if (
I.getMetadata(
"amdgpu.noclobber"))
17023 if (
I.getMetadata(
"amdgpu.last.use"))
17033 if (!Def->isMachineOpcode())
17043 if (
II.isCompare() &&
II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
17044 PhysReg = AMDGPU::SCC;
17046 TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
17055 if (!
I->hasOneUse())
17061 switch (
I->getOpcode()) {
17062 case Instruction::FMul: {
17063 if (
User->getOpcode() != Instruction::FSub &&
17064 User->getOpcode() != Instruction::FAdd)
17069 return ((!
I->hasAllowContract() || !
User->hasAllowContract()) &&
17128 auto *RMW = dyn_cast<AtomicRMWInst>(AI);
17139 Alignment = RMW->getAlign();
17154 RMW->getType()->isFloatTy();
17157 bool ReturnValueIsUsed = !AI->
use_empty();
17166 if (FullFlatEmulation) {
17177 std::prev(BB->
end())->eraseFromParent();
17180 Value *LoadedShared =
nullptr;
17181 if (FullFlatEmulation) {
17183 Intrinsic::amdgcn_is_shared, {}, {
Addr},
nullptr,
"is.shared");
17184 Builder.
CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
17192 LoadedShared = Clone;
17199 Intrinsic::amdgcn_is_private, {}, {
Addr},
nullptr,
"is.private");
17207 Value *LoadedPrivate;
17210 RMW->getType(), CastToPrivate, RMW->getAlign(),
"loaded.private");
17213 LoadedPrivate, RMW->getValOperand());
17217 auto [ResultLoad, Equal] =
17232 if (FullFlatEmulation) {
17242 if (!FullFlatEmulation) {
17247 MDNode *RangeNotPrivate =
17250 LoadedGlobal->
setMetadata(LLVMContext::MD_noalias_addrspace,
17258 if (ReturnValueIsUsed) {
17261 if (FullFlatEmulation)
17276 if (
const auto *ConstVal = dyn_cast<Constant>(AI->
getValOperand());
17277 ConstVal && ConstVal->isNullValue()) {
static bool isMul(MachineInstr *MI)
unsigned const MachineRegisterInfo * MRI
static unsigned getIntrinsicID(const SDNode *N)
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls)
Return true if the calling convention is one that we can guarantee TCO for.
static bool mayTailCallThisCC(CallingConv::ID CC)
Return true if we might ever do TCO for calls with this calling convention.
static constexpr std::pair< ImplicitArgumentMask, StringLiteral > ImplicitAttrs[]
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static bool parseTexFail(uint64_t TexFailCtrl, bool &TFE, bool &LWE, bool &IsTexFail)
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Function Alias Analysis Results
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define LLVM_ATTRIBUTE_UNUSED
static std::optional< SDByteProvider > calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, std::optional< uint64_t > VectorIndex, unsigned StartingIndex=0)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
Utilities for dealing with flags related to floating point properties and mode controls.
AMD GCN specific subclass of TargetSubtarget.
Provides analysis for querying information about KnownBits during GISel passes.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
static bool isUndef(ArrayRef< int > Mask)
iv Induction Variable Users
Contains matchers for matching SSA Machine Instructions.
mir Rename Register Operands
unsigned const TargetRegisterInfo * TRI
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static constexpr Register SPReg
const SmallVectorImpl< MachineOperand > & Cond
static void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
#define FP_DENORM_FLUSH_NONE
#define FP_DENORM_FLUSH_IN_FLUSH_OUT
static void reservePrivateMemoryRegs(const TargetMachine &TM, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info)
static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, const SDLoc &DL, SelectionDAG &DAG, bool Unpacked)
static MachineBasicBlock * emitIndirectSrc(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF)
static bool isAtomicRMWLegalIntTy(Type *Ty)
static bool flatInstrMayAccessPrivate(const Instruction *I)
Return if a flat address space atomicrmw can access private memory.
static std::pair< unsigned, int > computeIndirectRegAndOffset(const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, unsigned VecReg, int Offset)
static bool denormalModeIsFlushAllF32(const MachineFunction &MF)
static bool addresses16Bits(int Mask)
static bool isClampZeroToOne(SDValue A, SDValue B)
static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc, EVT VT)
static unsigned findFirstFreeSGPR(CCState &CCInfo)
static uint32_t getPermuteMask(SDValue V)
static SDValue lowerLaneOp(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static int getAlignedAGPRClassID(unsigned UnalignedClassID)
static void processPSInputArgs(SmallVectorImpl< ISD::InputArg > &Splits, CallingConv::ID CallConv, ArrayRef< ISD::InputArg > Ins, BitVector &Skipped, FunctionType *FType, SIMachineFunctionInfo *Info)
static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, const GCNSubtarget *Subtarget)
static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, ISD::LoadExtType ExtType, SDValue Op, const SDLoc &SL, EVT VT)
static bool globalMemoryFPAtomicIsLegal(const GCNSubtarget &Subtarget, const AtomicRMWInst *RMW, bool HasSystemScope)
static void fixMasks(SmallVectorImpl< DotSrc > &Srcs, unsigned ChainLength)
static TargetLowering::AtomicExpansionKind atomicSupportedIfLegalIntType(const AtomicRMWInst *RMW)
static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src)
Return the source of an fp_extend from f16 to f32, or a converted FP constant.
static bool isAtomicRMWLegalXChgTy(const AtomicRMWInst *RMW)
static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val)
static cl::opt< bool > DisableLoopAlignment("amdgpu-disable-loop-alignment", cl::desc("Do not align and prefetch loops"), cl::init(false))
static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src, unsigned DWordOffset)
static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, unsigned InitResultReg, unsigned PhiReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static bool isImmConstraint(StringRef Constraint)
static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, SDValue Src, int ExtraElts)
static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static bool hasCFUser(const Value *V, SmallPtrSet< const Value *, 16 > &Visited, unsigned WaveSize)
static OptimizationRemark emitAtomicRMWLegalRemark(const AtomicRMWInst *RMW)
static unsigned SubIdx2Lane(unsigned Idx)
Helper function for adjustWritemask.
static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, const SIMachineFunctionInfo &Info)
static MachineBasicBlock * lowerWaveReduce(MachineInstr &MI, MachineBasicBlock &BB, const GCNSubtarget &ST, unsigned Opc)
static bool elementPairIsContiguous(ArrayRef< int > Mask, int Elt)
static bool isV2BF16(Type *Ty)
static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, const TargetRegisterClass *RC, unsigned NumArgRegs)
static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue N0, SDValue N1, SDValue N2, bool Signed)
static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL, SmallVectorImpl< DotSrc > &Srcs, bool IsSigned, bool IsAny)
static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, SDValue &OtherOp)
static void placeSources(ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, SmallVectorImpl< DotSrc > &Src0s, SmallVectorImpl< DotSrc > &Src1s, int Step)
static EVT memVTFromLoadIntrReturn(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, const DebugLoc &DL, const MachineOperand &Idx, unsigned InitReg, unsigned ResultReg, unsigned PhiReg, unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isFrameIndexOp(SDValue Op)
static ConstantFPSDNode * getSplatConstantFP(SDValue Op)
static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg)
static bool isExtendedFrom16Bits(SDValue &Operand)
static std::optional< bool > checkDot4MulSignedness(const SDValue &N, ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, const SDValue &S0Op, const SDValue &S1Op, const SelectionDAG &DAG)
static bool vectorEltWillFoldAway(SDValue Op)
static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, const SIMachineFunctionInfo *Info, const GCNSubtarget *ST)
static uint32_t getConstantPermuteMask(uint32_t C)
static MachineBasicBlock * emitIndirectDst(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask=~0u, ArgDescriptor Arg=ArgDescriptor())
static std::pair< MachineBasicBlock *, MachineBasicBlock * > splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop)
static unsigned getBasePtrIndex(const MemSDNode *N)
MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset by the chain and intrinsi...
static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, KnownBits &Known, unsigned Dim)
static LLVM_ATTRIBUTE_UNUSED bool isCopyFromRegOfInlineAsm(const SDNode *N)
static void allocateFixedSGPRInputImpl(CCState &CCInfo, const TargetRegisterClass *RC, MCRegister Reg)
static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, ArrayRef< EVT > ResultTypes, bool IsTexFail, bool Unpacked, bool IsD16, int DMaskPop, int NumVDataDwords, bool IsAtomicPacked16Bit, const SDLoc &DL)
static std::optional< ByteProvider< SDValue > > handleMulOperand(const SDValue &MulOperand)
static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static Register getIndirectSGPRIdx(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static EVT memVTFromLoadIntrData(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc)
static unsigned getExtOpcodeForPromotedOp(SDValue Op)
static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val)
static SDValue tryFoldMADwithSRL(SelectionDAG &DAG, const SDLoc &SL, SDValue MulLHS, SDValue MulRHS, SDValue AddRHS)
static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, ArrayRef< SDValue > Elts)
static SDNode * findUser(SDValue Value, unsigned Opcode)
Helper function for LowerBRCOND.
static unsigned addPermMasks(unsigned First, unsigned Second)
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue C, SDValue GlueChain, SDNodeFlags Flags)
static bool isV2F16OrV2BF16(Type *Ty)
static bool atomicIgnoresDenormalModeOrFPModeIsFTZ(const AtomicRMWInst *RMW)
static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue GlueChain, SDNodeFlags Flags)
static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, const SDLoc &DL, int64_t Offset, EVT PtrVT, unsigned GAFlags=SIInstrInfo::MO_NONE)
static cl::opt< bool > UseDivergentRegisterIndexing("amdgpu-use-divergent-register-indexing", cl::Hidden, cl::desc("Use indirect register addressing for divergent indexes"), cl::init(false))
static const std::optional< ByteProvider< SDValue > > calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex=0, unsigned Depth=0)
static bool isV2F16(Type *Ty)
static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg)
SI DAG Lowering interface definition.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Interface definition for SIRegisterInfo.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static constexpr int Concat[]
static const AMDGPUFunctionArgInfo FixedABIFunctionInfo
void setFuncArgInfo(const Function &F, const AMDGPUFunctionArgInfo &ArgInfo)
static bool isUniformMMO(const MachineMemOperand *MMO)
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
uint32_t getLDSSize() const
void setUsesDynamicLDS(bool DynLDS)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
bool isEntryFunction() const
Align getAlignmentForImplicitArgPtr() const
bool hasMadMacF32Insts() const
bool hasCvtPkF16F32Inst() const
bool useRealTrue16Insts() const
Return true if real (non-fake) variants of True16 instructions using 16-bit registers should be code-...
bool hasBF16ConversionInsts() const
unsigned getMaxWorkitemID(const Function &Kernel, unsigned Dimension) const
Return the maximum workitem ID value in the function, for the given (0, 1, 2) dimension.
bool hasMadMixInsts() const
unsigned getWavefrontSizeLog2() const
bool has16BitInsts() const
bool isAmdHsaOrMesa(const Function &F) const
bool hasFastFMAF32() const
bool hasTrigReducedRange() const
unsigned getExplicitKernelArgOffset() const
Returns the offset in bytes from the start of the input buffer of the first explicit kernel argument.
unsigned getWavefrontSize() const
bool hasInv2PiInlineImm() const
bool hasVOP3PInsts() const
static unsigned numBitsSigned(SDValue Op, SelectionDAG &DAG)
SDValue SplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Split a vector load into 2 loads of half the vector.
void analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins) const
The SelectionDAGBuilder will automatically promote function arguments with illegal types.
SDValue storeStackInputValue(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, SDValue ArgVal, int64_t Offset) const
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue splitBinaryBitConstantOpImpl(DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, uint32_t ValLo, uint32_t ValHi) const
Split the 64-bit value LHS into two 32-bit components, and perform the binary operation Opc to it wit...
SDValue lowerUnhandledCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals, StringRef Reason) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const
static bool needsDenormHandlingF32(const SelectionDAG &DAG, SDValue Src, SDNodeFlags Flags)
uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const
Helper function that returns the byte offset of the given type of implicit parameter.
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const
SDValue loadInputValue(SelectionDAG &DAG, const TargetRegisterClass *RC, EVT VT, const SDLoc &SL, const ArgDescriptor &Arg) const
static EVT getEquivalentMemType(LLVMContext &Context, EVT VT)
SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT, const SDLoc &SL, bool RawReg=false) const
Helper function that adds Reg to the LiveIn list of the DAG's MachineFunction.
SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const
Split a vector store into 2 stores of half the vector.
std::pair< SDValue, SDValue > split64BitValue(SDValue Op, SelectionDAG &DAG) const
Return 64-bit value Op as two 32-bit integers.
static CCAssignFn * CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg)
static CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg)
Selects the correct CCAssignFn for a given CallingConvention value.
static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold=4)
bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
static unsigned numBitsUnsigned(SDValue Op, SelectionDAG &DAG)
static bool allowApproxFunc(const SelectionDAG &DAG, SDNodeFlags Flags)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
SDValue performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const
static bool shouldFoldFNegIntoSrc(SDNode *FNeg, SDValue FNegSrc)
bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const override
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue WidenOrSplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Widen a suitably aligned v3 load.
SDValue getHiHalf64(SDValue Op, SelectionDAG &DAG) const
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
LLVM_READONLY int getExactLog2Abs() const
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned countr_zero() const
Count the number of trailing zero bits.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
This class represents an incoming formal argument to a Function.
bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
const Function * getParent() const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getNewValOperand()
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Value * getCompareOperand()
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Min
*p = old <signed v ? old : v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
void setOperation(BinOp Operation)
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
static StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
This is an SDNode representing atomic operations.
bool isCompareAndSwap() const
Returns true if this SDNode represents cmpxchg atomic operation, false otherwise.
MemoryEffects getMemoryEffects() const
Returns memory effects of the function.
bool getValueAsBool() const
Return the attribute's value as a boolean.
LLVM Basic Block Representation.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
const Function * getParent() const
Return the enclosing method, or null if none.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
Represents known origin of an individual byte in combine pattern.
static ByteProvider getConstantZero()
static ByteProvider getSrc(std::optional< ISelOp > Val, int64_t ByteOffset, int64_t VectorOffset)
std::optional< ISelOp > Src
CCState - This class holds information needed while lowering arguments and return values.
MachineFunction & getMachineFunction() const
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
static bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn)
Returns true if the results of the two calling conventions are compatible.
void AnalyzeCallResult(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeCallResult - Analyze the return values of a call, incorporating info about the passed values i...
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
bool CheckReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
CheckReturn - Analyze the return values of a function, returning true if the return can be performed ...
void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeReturn - Analyze the returned values of a return, incorporating info about the result values i...
int64_t AllocateStack(unsigned Size, Align Alignment)
AllocateStack - Allocate a chunk of stack space with the specified size and alignment.
void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
bool isAllocated(MCRegister Reg) const
isAllocated - Return true if the specified register (or an alias) is allocated.
void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
bool isFPPredicate() const
bool isIntPredicate() const
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isInfinity() const
Return true if the value is an infinity.
This is the shared class of boolean and integer constants.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Diagnostic information for unsupported feature in backend.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
iterator_range< arg_iterator > args()
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Argument * getArg(unsigned i) const
bool hasMemoryAtomicFaddF32DenormalSupport() const
bool hasD16Images() const
bool hasMinimum3Maximum3F32() const
bool useVGPRIndexMode() const
bool hasAtomicDsPkAdd16Insts() const
bool hasImageStoreD16Bug() const
bool hasUsableDivScaleConditionOutput() const
Condition output from div_scale is usable.
bool hasUsableDSOffset() const
True if the offset field of DS instructions works as expected.
bool hasAtomicFMinFMaxF64FlatInsts() const
bool hasDot7Insts() const
bool hasApertureRegs() const
bool hasFlatInstOffsets() const
bool hasAtomicFMinFMaxF32FlatInsts() const
bool hasCompressedExport() const
Return true if the target's EXP instruction has the COMPR flag, which affects the meaning of the EN (...
bool hasGFX90AInsts() const
bool hasBCNT(unsigned Size) const
bool hasLDSLoadB96_B128() const
Returns true if the target supports global_load_lds_dwordx3/global_load_lds_dwordx4 or buffer_load_dw...
bool supportsAgentScopeFineGrainedRemoteMemoryAtomics() const
bool hasMultiDwordFlatScratchAddressing() const
bool hasArchitectedSGPRs() const
bool hasDenormModeInst() const
bool hasPrivEnabledTrap2NopBug() const
bool hasUnalignedDSAccessEnabled() const
const SIInstrInfo * getInstrInfo() const override
bool hasDot1Insts() const
bool hasAtomicFaddRtnInsts() const
Align getStackAlignment() const
bool hasScalarSubwordLoads() const
bool enableFlatScratch() const
bool hasDwordx3LoadStores() const
bool hasFlatScrRegister() const
bool supportsGetDoorbellID() const
bool hasFlatAtomicFaddF32Inst() const
bool hasKernargPreload() const
const SIRegisterInfo * getRegisterInfo() const override
unsigned getMaxNumVGPRs(unsigned WavesPerEU) const
bool hasMinimum3Maximum3PKF16() const
bool hasLDSMisalignedBug() const
bool hasUserSGPRInit16Bug() const
TrapHandlerAbi getTrapHandlerAbi() const
const SIFrameLowering * getFrameLowering() const override
bool hasMinimum3Maximum3F16() const
bool hasAtomicFMinFMaxF32GlobalInsts() const
bool hasRestrictedSOffset() const
bool hasMin3Max3_16() const
bool hasGFX10_AEncoding() const
bool hasPackedFP32Ops() const
bool hasFullRate64Ops() const
bool isTrapHandlerEnabled() const
bool hasLDSFPAtomicAddF64() const
bool hasFlatGlobalInsts() const
bool getScalarizeGlobalBehavior() const
bool hasScalarSMulU64() const
unsigned getKnownHighZeroBitsForFrameIndex() const
Return the number of high bits known to be zero for a frame index.
bool hasShaderCyclesHiLoRegisters() const
bool hasNSAEncoding() const
bool hasSMemRealTime() const
bool usePRTStrictNull() const
bool hasAtomicFMinFMaxF64GlobalInsts() const
bool hasUnalignedScratchAccessEnabled() const
bool hasAtomicFlatPkAdd16Insts() const
bool hasUnalignedBufferAccessEnabled() const
unsigned getMaxPrivateElementSize(bool ForBufferRSrc=false) const
bool hasImageGather4D16Bug() const
bool hasDot10Insts() const
bool supportsMinMaxDenormModes() const
bool hasAtomicFaddInsts() const
unsigned getNSAMaxSize(bool HasSampler=false) const
bool hasAtomicBufferGlobalPkAddF16NoRtnInsts() const
bool hasAtomicBufferPkAddBF16Inst() const
bool hasAtomicFaddNoRtnInsts() const
bool hasFlatBufferGlobalAtomicFaddF64Inst() const
bool hasScalarDwordx3Loads() const
bool hasLDSFPAtomicAddF32() const
bool haveRoundOpsF64() const
Have v_trunc_f64, v_ceil_f64, v_rndne_f64.
bool hasDot8Insts() const
bool hasDS96AndDS128() const
bool useFlatForGlobal() const
Generation getGeneration() const
bool hasAtomicBufferGlobalPkAddF16Insts() const
bool hasScalarAddSub64() const
bool hasUnpackedD16VMem() const
bool hasAtomicGlobalPkAddBF16Inst() const
bool hasIEEEMinMax() const
bool hasFmaMixInsts() const
bool hasPackedTID() const
bool hasAddNoCarry() const
bool hasGWSAutoReplay() const
bool hasKernargSegmentPtr() const
bool hasDispatchID() const
bool hasPrivateSegmentBuffer() const
unsigned getNumFreeUserSGPRs()
bool hasImplicitBufferPtr() const
bool hasPrivateSegmentSize() const
bool hasDispatchPtr() const
bool hasFlatScratchInit() const
virtual void computeKnownBitsImpl(Register R, KnownBits &Known, const APInt &DemandedElts, unsigned Depth=0)
const MachineFunction & getMachineFunction() const
int64_t getOffset() const
unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool hasExternalLinkage() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
BasicBlock::iterator GetInsertPoint() const
BasicBlock * GetInsertBlock() const
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
LLVMContext & getContext() const
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
StoreInst * CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, bool isVolatile=false)
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const Function * getFunction() const
Return the function this instruction belongs to.
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
Class to represent integer types.
A wrapper class for inspecting calls to intrinsic functions.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
This is an important class for using LLVM in a threaded context.
std::optional< StringRef > getSyncScopeName(SyncScope::ID Id) const
getSyncScopeName - Returns the name of a SyncScope::ID registered with LLVMContext,...
void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
SyncScope::ID getOrInsertSyncScopeID(StringRef SSN)
getOrInsertSyncScopeID - Maps synchronization scope name to synchronization scope ID.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
Describe properties that are true of each instruction in the target description file.
Wrapper class representing physical registers. Should be passed by value.
MDNode * createRange(const APInt &Lo, const APInt &Hi)
Return metadata describing the range [Lo, Hi).
const MDOperand & getOperand(unsigned I) const
unsigned getNumOperands() const
Return number of MDNode operands.
Helper class for constructing bundles of MachineInstrs.
MachineBasicBlock::instr_iterator begin() const
Return an iterator to the first bundled instruction.
uint64_t getScalarSizeInBits() const
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
Align getAlignment() const
Return alignment of the basic block.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
bool hasCalls() const
Return true if the current function has any function calls.
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
bool hasStackObjects() const
Return true if there are any stack objects in this function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
Align getBaseAlign() const
Return the minimum known alignment in bytes of the base address, without the offset.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setReg(Register Reg)
Change the register this operand corresponds to.
static MachineOperand CreateImm(int64_t Val)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This is an abstract virtual class for memory operations.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
A Module instance is used to store all the information related to an LLVM module.
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isMachineOpcode() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getMachineOpcode() const
unsigned getOpcode() const
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
static unsigned getDSShaderTypeValue(const MachineFunction &MF)
bool isLegalFLATOffset(int64_t Offset, unsigned AddrSpace, uint64_t FlatVariant) const
Returns if Offset is legal for the subtarget as the offset to a FLAT encoded instruction.
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool hasWorkGroupIDZ() const
SIModeRegisterDefaults getMode() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
unsigned getBytesInStackArgArea() const
const AMDGPUGWSResourcePseudoSourceValue * getGWSPSV(const AMDGPUTargetMachine &TM)
static unsigned getSubRegFromChannel(unsigned Channel, unsigned NumRegs=1)
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
static bool isVGPRClass(const TargetRegisterClass *RC)
static bool isSGPRClass(const TargetRegisterClass *RC)
static bool isAGPRClass(const TargetRegisterClass *RC)
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
bool isTypeDesirableForOp(unsigned Op, EVT VT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDNode * PostISelFolding(MachineSDNode *N, SelectionDAG &DAG) const override
Fold the instructions after selecting them.
SDValue splitTernaryVectorOp(SDValue Op, SelectionDAG &DAG) const
MachineSDNode * wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const override
Allows the target to handle physreg-carried dependency in target-specific way.
EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override
Returns the target specific optimal type for load and store operations as a result of memset,...
bool requiresUniformRegister(MachineFunction &MF, const Value *V) const override
Allows target to decide about the register class of the specific value that is live outside the defin...
bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const override
Returns true if be combined with to form an ISD::FMAD.
AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const override
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
void bundleInstWithWaitcnt(MachineInstr &MI) const
Insert MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
MVT getPointerTy(const DataLayout &DL, unsigned AS) const override
Map address space 7 to MVT::v5i32 because that's its in-memory representation.
bool denormalsEnabledForType(const SelectionDAG &DAG, EVT VT) const
void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const override
Insert explicit copies in entry and exit blocks.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
SDNode * legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const
Legalize target independent instructions (e.g.
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
SDValue lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const
const GCNSubtarget * getSubtarget() const
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
bool shouldEmitGOTReloc(const GlobalValue *GV) const
bool isCanonicalized(SelectionDAG &DAG, SDValue Op, unsigned MaxDepth=5) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
SDValue splitUnaryVectorOp(SDValue Op, SelectionDAG &DAG) const
SDValue lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const
void allocateSpecialInputSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const override
void allocateHSAUserSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
ArrayRef< MCPhysReg > getRoundingControlRegisters() const override
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint, return the type of constraint it is for this target.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent) const override
Return the register class that should be used for the specified value type.
void AddMemOpInit(MachineInstr &MI) const
MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const override
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
bool isLegalGlobalAddressingMode(const AddrMode &AM) const
void computeKnownBitsForFrameIndex(int FrameIdx, KnownBits &Known, const MachineFunction &MF) const override
Determine which of the bits of FrameIndex FIOp are known to be 0.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Return true if it is beneficial to convert a load of a constant to just the constant itself.
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
bool getAsmOperandConstVal(SDValue Op, uint64_t &Val) const
bool isShuffleMaskLegal(ArrayRef< int >, EVT) const override
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
LLT getPreferredShiftAmountTy(LLT Ty) const override
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue lowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
void allocateSpecialInputVGPRsFixed(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments in fixed registers.
LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
MachineBasicBlock * emitGWSMemViolTestLoop(MachineInstr &MI, MachineBasicBlock *BB) const
bool getAddrModeArguments(const IntrinsicInst *I, SmallVectorImpl< Value * > &Ops, Type *&AccessTy) const override
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
bool checkAsmConstraintValA(SDValue Op, uint64_t Val, unsigned MaxSize=64) const
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool shouldEmitFixup(const GlobalValue *GV) const
MachineBasicBlock * splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const
void emitExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) const override
Perform a cmpxchg expansion using a target-specific method.
bool hasMemSDNodeUser(SDNode *N) const
bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const override
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SmallVectorImpl< ISD::InputArg > &Ins, SelectionDAG &DAG) const
bool isMemOpHasNoClobberedMemOperand(const SDNode *N) const
bool isLegalFlatAddressingMode(const AddrMode &AM, unsigned AddrSpace) const
SDValue LowerCallResult(SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals, bool isThisReturn, SDValue ThisVal) const
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override
Assign the register class depending on the number of bits set in the writemask.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void allocateSpecialInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments at the end of allocated user arguments.
void finalizeLowering(MachineFunction &MF) const override
Execute target specific actions to finalize target lowering.
static bool isNonGlobalAddrSpace(unsigned AS)
void emitExpandAtomicAddrSpacePredicate(Instruction *AI) const
MachineSDNode * buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const
Return a resource descriptor with the 'Add TID' bit enabled The TID (Thread ID) is multiplied by the ...
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
bool mayBeEmittedAsTailCall(const CallInst *) const override
Return true if the target may be able emit the call instruction as a tail call.
void passSpecialInputs(CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info, SmallVectorImpl< std::pair< unsigned, SDValue > > &RegsToPass, SmallVectorImpl< SDValue > &MemOpChains, SDValue Chain) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool checkAsmConstraintVal(SDValue Op, StringRef Constraint, uint64_t Val) const
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
static bool shouldExpandVectorDynExt(unsigned EltSize, unsigned NumElem, bool IsDivergentIdx, const GCNSubtarget *Subtarget)
Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be expanded into a set of cmp...
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool supportSplitCSR(MachineFunction *MF) const override
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const override
LLT handling variant.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const
SITargetLowering(const TargetMachine &tm, const GCNSubtarget &STI)
bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
bool shouldEmitPCReloc(const GlobalValue *GV) const
void initializeSplitCSR(MachineBasicBlock *Entry) const override
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
void allocateSpecialEntryInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocatePreloadKernArgSGPRs(CCState &CCInfo, SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ISD::InputArg > &Ins, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
bool isProfitableToHoist(Instruction *I) const override
Check if it is profitable to hoist instruction in then/else to if.
SDValue copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const
bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &MF, unsigned IntrinsicID) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue splitBinaryVectorOp(SDValue Op, SelectionDAG &DAG) const
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine the known alignment for the pointer value R.
MVT getPointerMemTy(const DataLayout &DL, unsigned AS) const override
Similarly, the in-memory representation of a p7 is {p8, i32}, aka v8i32 when padding is added.
void allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF, SIMachineFunctionInfo &Info, CallingConv::ID CallConv, bool IsShader) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
bool isKnownNeverSNaN(SDValue Op, unsigned Depth=0) const
SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
const Pass * getPass() const
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), AAResults *AA=nullptr)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getRegister(Register Reg, EVT VT)
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node's operand with EXTRACT_SUBVECTOR and return the low/high part.
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
const TargetMachine & getTarget() const
SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
bool isKnownNeverNaN(SDValue Op, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
SDValue getRegisterMask(const uint32_t *RegMask)
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
SDValue getCondCode(ISD::CondCode Cond)
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=0, const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
This class is used to represent ISD::STORE nodes.
A wrapper around a string literal that serves as a proxy for constructing global tables of StringRefs...
StringRef - Represent a constant reference to a string, i.e.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
Information about stack frame layout on the target.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
Primary interface to the complete machine description for the target machine.
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
const Triple & getTargetTriple() const
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
unsigned getID() const
Return the register class ID number.
MCRegister getRegister(unsigned i) const
Return the specified register in the class.
int getCopyCost() const
Return the cost of copying a value between two registers in this class.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
OSType getOS() const
Get the parsed operating system type of this triple.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
const fltSemantics & getFltSemantics() const
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFunctionTy() const
True if this is an instance of FunctionType.
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A Use represents the edge between a Value definition and its users.
User * getUser() const
Returns the User that contains this Use.
unsigned getOperandNo() const
Return the operand # of this use in its User.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
void takeName(Value *V)
Transfer the name from V to this value.
Type * getElementType() const
constexpr bool isZero() const
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ STREAMOUT_REGISTER
Internal address spaces. Can be freely renumbered.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
@ BUFFER_ATOMIC_COND_SUB_U32
@ TBUFFER_LOAD_FORMAT_D16
@ TBUFFER_STORE_FORMAT_D16
@ BUFFER_STORE_FORMAT_D16
@ CLAMP
CLAMP value between 0.0 and 1.0.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
LLVM_READONLY const MIMGG16MappingInfo * getMIMGG16MappingInfo(unsigned G)
LLVM_READONLY int getGlobalSaddrOp(uint16_t Opcode)
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
LLVM_READNONE bool isLegalDPALU_DPPControl(unsigned DC)
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isFlatGlobalAddrSpace(unsigned AS)
LLVM_READONLY int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
const uint64_t FltRoundToHWConversionTable
bool isGFX12Plus(const MCSubtargetInfo &STI)
bool isEntryFunctionCC(CallingConv::ID CC)
LLVM_READNONE bool isKernel(CallingConv::ID CC)
bool isGFX11(const MCSubtargetInfo &STI)
bool isCompute(CallingConv::ID cc)
unsigned getAMDHSACodeObjectVersion(const Module &M)
bool isChainCC(CallingConv::ID CC)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, uint64_t NamedIdx)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
bool getMUBUFTfe(unsigned Opc)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
bool isShader(CallingConv::ID cc)
bool isGFX10Plus(const MCSubtargetInfo &STI)
LLVM_READONLY int getVOPe64(uint16_t Opcode)
@ TowardZeroF32_TowardNegativeF64
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
uint32_t decodeFltRoundToHWConversionTable(uint32_t FltRounds)
Read the hardware rounding mode equivalent of a AMDGPUFltRounds value.
bool isExtendedGlobalAddrSpace(unsigned AS)
LLVM_READONLY const MIMGDimInfo * getMIMGDimInfo(unsigned DimEnum)
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const RsrcIntrinsic * lookupRsrcIntrinsic(unsigned Intr)
bool isGraphics(CallingConv::ID cc)
const uint64_t FltRoundConversionTable
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SET_FPENV
Sets the current floating-point environment.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SET_ROUNDING
Set rounding mode.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ BR
Control flow instructions. These all have token chains.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ SMULO
Same for multiplication.
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ INLINEASM_BR
INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ INLINEASM
INLINEASM - Represents an inline asm block.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ BRCOND
BRCOND - Conditional branch.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
AttributeList getAttributes(LLVMContext &C, ID id)
Return the attributes for an intrinsic.
Function * getDeclarationIfExists(Module *M, ID id, ArrayRef< Type * > Tys, FunctionType *FT=nullptr)
This version supports overloaded intrinsics.
GFCstOrSplatGFCstMatch m_GFCstOrSplat(std::optional< FPValueAndVReg > &FPValReg)
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ System
Synchronized with respect to all concurrently executing threads.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
finalizeBundle - Finalize a machine instruction bundle which includes a sequence of instructions star...
int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
int popcount(T Value) noexcept
Count the number of set bits in a value.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
std::pair< Value *, Value * > buildCmpXchgValue(IRBuilderBase &Builder, Value *Ptr, Value *Cmp, Value *Val, Align Alignment)
Emit IR to implement the given cmpxchg operation on values in registers, returning the new value.
SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
testing::Matcher< const detail::ErrorHolder & > Failed()
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool isReleaseOrStronger(AtomicOrdering AO)
static const MachineMemOperand::Flags MONoClobber
Mark the MMO of a uniform load if there are no potentially clobbering stores on any path from the sta...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
bool isBoolSGPR(SDValue V)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Value * buildAtomicRMWValue(AtomicRMWInst::BinOp Op, IRBuilderBase &Builder, Value *Loaded, Value *Val)
Emit IR to implement the given atomicrmw operation on values in registers, returning the new value.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
unsigned getUndefRegState(bool B)
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
int64_t minIntN(int64_t N)
Gets the minimum value for a N-bit signed integer.
ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
static const MachineMemOperand::Flags MOLastUse
Mark the MMO of a load as the last use.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
ArgDescriptor WorkItemIDZ
ArgDescriptor WorkItemIDY
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(PreloadedValue Value) const
ArgDescriptor WorkItemIDX
static constexpr uint64_t encode(Fields... Values)
static std::tuple< typename Fields::ValueType... > decode(uint64_t Encoded)
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEhalf() LLVM_READNONE
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
static ArgDescriptor createStack(unsigned Offset, unsigned Mask=~0u)
MCRegister getRegister() const
static ArgDescriptor createArg(const ArgDescriptor &Arg, unsigned Mask)
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
Helper struct shared between Function Specialization and SCCP Solver.
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
EVT changeElementType(EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
uint64_t getScalarSizeInBits() const
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
unsigned getPointerAddrSpace() const
unsigned getByValSize() const
bool isUnknown() const
Returns true if we don't know any bits.
void resetAll()
Resets the known state of all bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
int64_t Offset
Offset - This is an offset from the base Value*.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
static MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasAllowContract() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
bool DX10Clamp
Used by the vector ALU to force DX10-style treatment of NaNs: when set, clamp NaN to zero; otherwise,...
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SDValue ConvergenceControlToken
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalize() const