LLVM API Documentation

SelectionDAGNodes.h
Go to the documentation of this file.
00001 //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file declares the SDNode class and derived classes, which are used to
00011 // represent the nodes and operations present in a SelectionDAG.  These nodes
00012 // and operations are machine code level operations, with some similarities to
00013 // the GCC RTL representation.
00014 //
00015 // Clients should include the SelectionDAG.h file instead of this file directly.
00016 //
00017 //===----------------------------------------------------------------------===//
00018 
00019 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
00020 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
00021 
00022 #include "llvm/ADT/iterator_range.h"
00023 #include "llvm/ADT/BitVector.h"
00024 #include "llvm/ADT/FoldingSet.h"
00025 #include "llvm/ADT/GraphTraits.h"
00026 #include "llvm/ADT/STLExtras.h"
00027 #include "llvm/ADT/SmallPtrSet.h"
00028 #include "llvm/ADT/SmallVector.h"
00029 #include "llvm/ADT/ilist_node.h"
00030 #include "llvm/CodeGen/ISDOpcodes.h"
00031 #include "llvm/CodeGen/MachineMemOperand.h"
00032 #include "llvm/CodeGen/ValueTypes.h"
00033 #include "llvm/IR/Constants.h"
00034 #include "llvm/IR/DebugLoc.h"
00035 #include "llvm/IR/Instructions.h"
00036 #include "llvm/Support/DataTypes.h"
00037 #include "llvm/Support/MathExtras.h"
00038 #include <cassert>
00039 
00040 namespace llvm {
00041 
00042 class SelectionDAG;
00043 class GlobalValue;
00044 class MachineBasicBlock;
00045 class MachineConstantPoolValue;
00046 class SDNode;
00047 class Value;
00048 class MCSymbol;
00049 template <typename T> struct DenseMapInfo;
00050 template <typename T> struct simplify_type;
00051 template <typename T> struct ilist_traits;
00052 
00053 /// isBinOpWithFlags - Returns true if the opcode is a binary operation
00054 /// with flags.
00055 static bool isBinOpWithFlags(unsigned Opcode) {
00056   switch (Opcode) {
00057   case ISD::SDIV:
00058   case ISD::UDIV:
00059   case ISD::SRA:
00060   case ISD::SRL:
00061   case ISD::MUL:
00062   case ISD::ADD:
00063   case ISD::SUB:
00064   case ISD::SHL:
00065     return true;
00066   default:
00067     return false;
00068   }
00069 }
00070 
00071 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
00072                     bool force = false);
00073 
00074 /// SDVTList - This represents a list of ValueType's that has been intern'd by
00075 /// a SelectionDAG.  Instances of this simple value class are returned by
00076 /// SelectionDAG::getVTList(...).
00077 ///
00078 struct SDVTList {
00079   const EVT *VTs;
00080   unsigned int NumVTs;
00081 };
00082 
00083 namespace ISD {
00084   /// Node predicates
00085 
00086   /// isBuildVectorAllOnes - Return true if the specified node is a
00087   /// BUILD_VECTOR where all of the elements are ~0 or undef.
00088   bool isBuildVectorAllOnes(const SDNode *N);
00089 
00090   /// isBuildVectorAllZeros - Return true if the specified node is a
00091   /// BUILD_VECTOR where all of the elements are 0 or undef.
00092   bool isBuildVectorAllZeros(const SDNode *N);
00093 
00094   /// \brief Return true if the specified node is a BUILD_VECTOR node of
00095   /// all ConstantSDNode or undef.
00096   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
00097 
00098   /// isScalarToVector - Return true if the specified node is a
00099   /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
00100   /// element is not an undef.
00101   bool isScalarToVector(const SDNode *N);
00102 
00103   /// allOperandsUndef - Return true if the node has at least one operand
00104   /// and all operands of the specified node are ISD::UNDEF.
00105   bool allOperandsUndef(const SDNode *N);
00106 }  // end llvm:ISD namespace
00107 
00108 //===----------------------------------------------------------------------===//
00109 /// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
00110 /// values as the result of a computation.  Many nodes return multiple values,
00111 /// from loads (which define a token and a return value) to ADDC (which returns
00112 /// a result and a carry value), to calls (which may return an arbitrary number
00113 /// of values).
00114 ///
00115 /// As such, each use of a SelectionDAG computation must indicate the node that
00116 /// computes it as well as which return value to use from that node.  This pair
00117 /// of information is represented with the SDValue value type.
00118 ///
00119 class SDValue {
00120   friend struct DenseMapInfo<SDValue>;
00121 
00122   SDNode *Node;       // The node defining the value we are using.
00123   unsigned ResNo;     // Which return value of the node we are using.
00124 public:
00125   SDValue() : Node(nullptr), ResNo(0) {}
00126   SDValue(SDNode *node, unsigned resno);
00127 
00128   /// get the index which selects a specific result in the SDNode
00129   unsigned getResNo() const { return ResNo; }
00130 
00131   /// get the SDNode which holds the desired result
00132   SDNode *getNode() const { return Node; }
00133 
00134   /// set the SDNode
00135   void setNode(SDNode *N) { Node = N; }
00136 
00137   inline SDNode *operator->() const { return Node; }
00138 
00139   bool operator==(const SDValue &O) const {
00140     return Node == O.Node && ResNo == O.ResNo;
00141   }
00142   bool operator!=(const SDValue &O) const {
00143     return !operator==(O);
00144   }
00145   bool operator<(const SDValue &O) const {
00146     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
00147   }
00148   LLVM_EXPLICIT operator bool() const {
00149     return Node != nullptr;
00150   }
00151 
00152   SDValue getValue(unsigned R) const {
00153     return SDValue(Node, R);
00154   }
00155 
00156   // isOperandOf - Return true if this node is an operand of N.
00157   bool isOperandOf(SDNode *N) const;
00158 
00159   /// getValueType - Return the ValueType of the referenced return value.
00160   ///
00161   inline EVT getValueType() const;
00162 
00163   /// Return the simple ValueType of the referenced return value.
00164   MVT getSimpleValueType() const {
00165     return getValueType().getSimpleVT();
00166   }
00167 
00168   /// getValueSizeInBits - Returns the size of the value in bits.
00169   ///
00170   unsigned getValueSizeInBits() const {
00171     return getValueType().getSizeInBits();
00172   }
00173 
00174   unsigned getScalarValueSizeInBits() const {
00175     return getValueType().getScalarType().getSizeInBits();
00176   }
00177 
00178   // Forwarding methods - These forward to the corresponding methods in SDNode.
00179   inline unsigned getOpcode() const;
00180   inline unsigned getNumOperands() const;
00181   inline const SDValue &getOperand(unsigned i) const;
00182   inline uint64_t getConstantOperandVal(unsigned i) const;
00183   inline bool isTargetMemoryOpcode() const;
00184   inline bool isTargetOpcode() const;
00185   inline bool isMachineOpcode() const;
00186   inline unsigned getMachineOpcode() const;
00187   inline const DebugLoc getDebugLoc() const;
00188   inline void dump() const;
00189   inline void dumpr() const;
00190 
00191   /// reachesChainWithoutSideEffects - Return true if this operand (which must
00192   /// be a chain) reaches the specified operand without crossing any
00193   /// side-effecting instructions.  In practice, this looks through token
00194   /// factors and non-volatile loads.  In order to remain efficient, this only
00195   /// looks a couple of nodes in, it does not do an exhaustive search.
00196   bool reachesChainWithoutSideEffects(SDValue Dest,
00197                                       unsigned Depth = 2) const;
00198 
00199   /// use_empty - Return true if there are no nodes using value ResNo
00200   /// of Node.
00201   ///
00202   inline bool use_empty() const;
00203 
00204   /// hasOneUse - Return true if there is exactly one node using value
00205   /// ResNo of Node.
00206   ///
00207   inline bool hasOneUse() const;
00208 };
00209 
00210 
00211 template<> struct DenseMapInfo<SDValue> {
00212   static inline SDValue getEmptyKey() {
00213     SDValue V;
00214     V.ResNo = -1U;
00215     return V;
00216   }
00217   static inline SDValue getTombstoneKey() {
00218     SDValue V;
00219     V.ResNo = -2U;
00220     return V;
00221   }
00222   static unsigned getHashValue(const SDValue &Val) {
00223     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
00224             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
00225   }
00226   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
00227     return LHS == RHS;
00228   }
00229 };
00230 template <> struct isPodLike<SDValue> { static const bool value = true; };
00231 
00232 
00233 /// simplify_type specializations - Allow casting operators to work directly on
00234 /// SDValues as if they were SDNode*'s.
00235 template<> struct simplify_type<SDValue> {
00236   typedef SDNode* SimpleType;
00237   static SimpleType getSimplifiedValue(SDValue &Val) {
00238     return Val.getNode();
00239   }
00240 };
00241 template<> struct simplify_type<const SDValue> {
00242   typedef /*const*/ SDNode* SimpleType;
00243   static SimpleType getSimplifiedValue(const SDValue &Val) {
00244     return Val.getNode();
00245   }
00246 };
00247 
00248 /// SDUse - Represents a use of a SDNode. This class holds an SDValue,
00249 /// which records the SDNode being used and the result number, a
00250 /// pointer to the SDNode using the value, and Next and Prev pointers,
00251 /// which link together all the uses of an SDNode.
00252 ///
00253 class SDUse {
00254   /// Val - The value being used.
00255   SDValue Val;
00256   /// User - The user of this value.
00257   SDNode *User;
00258   /// Prev, Next - Pointers to the uses list of the SDNode referred by
00259   /// this operand.
00260   SDUse **Prev, *Next;
00261 
00262   SDUse(const SDUse &U) LLVM_DELETED_FUNCTION;
00263   void operator=(const SDUse &U) LLVM_DELETED_FUNCTION;
00264 
00265 public:
00266   SDUse() : Val(), User(nullptr), Prev(nullptr), Next(nullptr) {}
00267 
00268   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
00269   operator const SDValue&() const { return Val; }
00270 
00271   /// If implicit conversion to SDValue doesn't work, the get() method returns
00272   /// the SDValue.
00273   const SDValue &get() const { return Val; }
00274 
00275   /// getUser - This returns the SDNode that contains this Use.
00276   SDNode *getUser() { return User; }
00277 
00278   /// getNext - Get the next SDUse in the use list.
00279   SDUse *getNext() const { return Next; }
00280 
00281   /// getNode - Convenience function for get().getNode().
00282   SDNode *getNode() const { return Val.getNode(); }
00283   /// getResNo - Convenience function for get().getResNo().
00284   unsigned getResNo() const { return Val.getResNo(); }
00285   /// getValueType - Convenience function for get().getValueType().
00286   EVT getValueType() const { return Val.getValueType(); }
00287 
00288   /// operator== - Convenience function for get().operator==
00289   bool operator==(const SDValue &V) const {
00290     return Val == V;
00291   }
00292 
00293   /// operator!= - Convenience function for get().operator!=
00294   bool operator!=(const SDValue &V) const {
00295     return Val != V;
00296   }
00297 
00298   /// operator< - Convenience function for get().operator<
00299   bool operator<(const SDValue &V) const {
00300     return Val < V;
00301   }
00302 
00303 private:
00304   friend class SelectionDAG;
00305   friend class SDNode;
00306 
00307   void setUser(SDNode *p) { User = p; }
00308 
00309   /// set - Remove this use from its existing use list, assign it the
00310   /// given value, and add it to the new value's node's use list.
00311   inline void set(const SDValue &V);
00312   /// setInitial - like set, but only supports initializing a newly-allocated
00313   /// SDUse with a non-null value.
00314   inline void setInitial(const SDValue &V);
00315   /// setNode - like set, but only sets the Node portion of the value,
00316   /// leaving the ResNo portion unmodified.
00317   inline void setNode(SDNode *N);
00318 
00319   void addToList(SDUse **List) {
00320     Next = *List;
00321     if (Next) Next->Prev = &Next;
00322     Prev = List;
00323     *List = this;
00324   }
00325 
00326   void removeFromList() {
00327     *Prev = Next;
00328     if (Next) Next->Prev = Prev;
00329   }
00330 };
00331 
00332 /// simplify_type specializations - Allow casting operators to work directly on
00333 /// SDValues as if they were SDNode*'s.
00334 template<> struct simplify_type<SDUse> {
00335   typedef SDNode* SimpleType;
00336   static SimpleType getSimplifiedValue(SDUse &Val) {
00337     return Val.getNode();
00338   }
00339 };
00340 
00341 
00342 /// SDNode - Represents one node in the SelectionDAG.
00343 ///
00344 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
00345 private:
00346   /// NodeType - The operation that this node performs.
00347   ///
00348   int16_t NodeType;
00349 
00350   /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
00351   /// then they will be delete[]'d when the node is destroyed.
00352   uint16_t OperandsNeedDelete : 1;
00353 
00354   /// HasDebugValue - This tracks whether this node has one or more dbg_value
00355   /// nodes corresponding to it.
00356   uint16_t HasDebugValue : 1;
00357 
00358 protected:
00359   /// SubclassData - This member is defined by this class, but is not used for
00360   /// anything.  Subclasses can use it to hold whatever state they find useful.
00361   /// This field is initialized to zero by the ctor.
00362   uint16_t SubclassData : 14;
00363 
00364 private:
00365   /// NodeId - Unique id per SDNode in the DAG.
00366   int NodeId;
00367 
00368   /// OperandList - The values that are used by this operation.
00369   ///
00370   SDUse *OperandList;
00371 
00372   /// ValueList - The types of the values this node defines.  SDNode's may
00373   /// define multiple values simultaneously.
00374   const EVT *ValueList;
00375 
00376   /// UseList - List of uses for this SDNode.
00377   SDUse *UseList;
00378 
00379   /// NumOperands/NumValues - The number of entries in the Operand/Value list.
00380   unsigned short NumOperands, NumValues;
00381 
00382   /// debugLoc - source line information.
00383   DebugLoc debugLoc;
00384 
00385   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
00386   // original LLVM instructions.
00387   // This is used for turning off scheduling, because we'll forgo
00388   // the normal scheduling algorithms and output the instructions according to
00389   // this ordering.
00390   unsigned IROrder;
00391 
00392   /// getValueTypeList - Return a pointer to the specified value type.
00393   static const EVT *getValueTypeList(EVT VT);
00394 
00395   friend class SelectionDAG;
00396   friend struct ilist_traits<SDNode>;
00397 
00398 public:
00399   //===--------------------------------------------------------------------===//
00400   //  Accessors
00401   //
00402 
00403   /// getOpcode - Return the SelectionDAG opcode value for this node. For
00404   /// pre-isel nodes (those for which isMachineOpcode returns false), these
00405   /// are the opcode values in the ISD and <target>ISD namespaces. For
00406   /// post-isel opcodes, see getMachineOpcode.
00407   unsigned getOpcode()  const { return (unsigned short)NodeType; }
00408 
00409   /// isTargetOpcode - Test if this node has a target-specific opcode (in the
00410   /// <target>ISD namespace).
00411   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
00412 
00413   /// isTargetMemoryOpcode - Test if this node has a target-specific
00414   /// memory-referencing opcode (in the <target>ISD namespace and
00415   /// greater than FIRST_TARGET_MEMORY_OPCODE).
00416   bool isTargetMemoryOpcode() const {
00417     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
00418   }
00419 
00420   /// Test if this node is a memory intrinsic (with valid pointer information).
00421   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
00422   /// non-memory intrinsics (with chains) that are not really instances of
00423   /// MemSDNode. For such nodes, we need some extra state to determine the
00424   /// proper classof relationship.
00425   bool isMemIntrinsic() const {
00426     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
00427             NodeType == ISD::INTRINSIC_VOID) && ((SubclassData >> 13) & 1);
00428   }
00429 
00430   /// isMachineOpcode - Test if this node has a post-isel opcode, directly
00431   /// corresponding to a MachineInstr opcode.
00432   bool isMachineOpcode() const { return NodeType < 0; }
00433 
00434   /// getMachineOpcode - This may only be called if isMachineOpcode returns
00435   /// true. It returns the MachineInstr opcode value that the node's opcode
00436   /// corresponds to.
00437   unsigned getMachineOpcode() const {
00438     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
00439     return ~NodeType;
00440   }
00441 
00442   /// getHasDebugValue - get this bit.
00443   bool getHasDebugValue() const { return HasDebugValue; }
00444 
00445   /// setHasDebugValue - set this bit.
00446   void setHasDebugValue(bool b) { HasDebugValue = b; }
00447 
00448   /// use_empty - Return true if there are no uses of this node.
00449   ///
00450   bool use_empty() const { return UseList == nullptr; }
00451 
00452   /// hasOneUse - Return true if there is exactly one use of this node.
00453   ///
00454   bool hasOneUse() const {
00455     return !use_empty() && std::next(use_begin()) == use_end();
00456   }
00457 
00458   /// use_size - Return the number of uses of this node. This method takes
00459   /// time proportional to the number of uses.
00460   ///
00461   size_t use_size() const { return std::distance(use_begin(), use_end()); }
00462 
00463   /// getNodeId - Return the unique node id.
00464   ///
00465   int getNodeId() const { return NodeId; }
00466 
00467   /// setNodeId - Set unique node id.
00468   void setNodeId(int Id) { NodeId = Id; }
00469 
00470   /// getIROrder - Return the node ordering.
00471   ///
00472   unsigned getIROrder() const { return IROrder; }
00473 
00474   /// setIROrder - Set the node ordering.
00475   ///
00476   void setIROrder(unsigned Order) { IROrder = Order; }
00477 
00478   /// getDebugLoc - Return the source location info.
00479   const DebugLoc getDebugLoc() const { return debugLoc; }
00480 
00481   /// setDebugLoc - Set source location info.  Try to avoid this, putting
00482   /// it in the constructor is preferable.
00483   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
00484 
00485   /// use_iterator - This class provides iterator support for SDUse
00486   /// operands that use a specific SDNode.
00487   class use_iterator
00488     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
00489     SDUse *Op;
00490     explicit use_iterator(SDUse *op) : Op(op) {
00491     }
00492     friend class SDNode;
00493   public:
00494     typedef std::iterator<std::forward_iterator_tag,
00495                           SDUse, ptrdiff_t>::reference reference;
00496     typedef std::iterator<std::forward_iterator_tag,
00497                           SDUse, ptrdiff_t>::pointer pointer;
00498 
00499     use_iterator(const use_iterator &I) : Op(I.Op) {}
00500     use_iterator() : Op(nullptr) {}
00501 
00502     bool operator==(const use_iterator &x) const {
00503       return Op == x.Op;
00504     }
00505     bool operator!=(const use_iterator &x) const {
00506       return !operator==(x);
00507     }
00508 
00509     /// atEnd - return true if this iterator is at the end of uses list.
00510     bool atEnd() const { return Op == nullptr; }
00511 
00512     // Iterator traversal: forward iteration only.
00513     use_iterator &operator++() {          // Preincrement
00514       assert(Op && "Cannot increment end iterator!");
00515       Op = Op->getNext();
00516       return *this;
00517     }
00518 
00519     use_iterator operator++(int) {        // Postincrement
00520       use_iterator tmp = *this; ++*this; return tmp;
00521     }
00522 
00523     /// Retrieve a pointer to the current user node.
00524     SDNode *operator*() const {
00525       assert(Op && "Cannot dereference end iterator!");
00526       return Op->getUser();
00527     }
00528 
00529     SDNode *operator->() const { return operator*(); }
00530 
00531     SDUse &getUse() const { return *Op; }
00532 
00533     /// getOperandNo - Retrieve the operand # of this use in its user.
00534     ///
00535     unsigned getOperandNo() const {
00536       assert(Op && "Cannot dereference end iterator!");
00537       return (unsigned)(Op - Op->getUser()->OperandList);
00538     }
00539   };
00540 
00541   /// use_begin/use_end - Provide iteration support to walk over all uses
00542   /// of an SDNode.
00543 
00544   use_iterator use_begin() const {
00545     return use_iterator(UseList);
00546   }
00547 
00548   static use_iterator use_end() { return use_iterator(nullptr); }
00549 
00550   inline iterator_range<use_iterator> uses() {
00551     return iterator_range<use_iterator>(use_begin(), use_end());
00552   }
00553   inline iterator_range<use_iterator> uses() const {
00554     return iterator_range<use_iterator>(use_begin(), use_end());
00555   }
00556 
00557   /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
00558   /// indicated value.  This method ignores uses of other values defined by this
00559   /// operation.
00560   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
00561 
00562   /// hasAnyUseOfValue - Return true if there are any use of the indicated
00563   /// value. This method ignores uses of other values defined by this operation.
00564   bool hasAnyUseOfValue(unsigned Value) const;
00565 
00566   /// isOnlyUserOf - Return true if this node is the only use of N.
00567   ///
00568   bool isOnlyUserOf(SDNode *N) const;
00569 
00570   /// isOperandOf - Return true if this node is an operand of N.
00571   ///
00572   bool isOperandOf(SDNode *N) const;
00573 
00574   /// isPredecessorOf - Return true if this node is a predecessor of N.
00575   /// NOTE: Implemented on top of hasPredecessor and every bit as
00576   /// expensive. Use carefully.
00577   bool isPredecessorOf(const SDNode *N) const {
00578     return N->hasPredecessor(this);
00579   }
00580 
00581   /// hasPredecessor - Return true if N is a predecessor of this node.
00582   /// N is either an operand of this node, or can be reached by recursively
00583   /// traversing up the operands.
00584   /// NOTE: This is an expensive method. Use it carefully.
00585   bool hasPredecessor(const SDNode *N) const;
00586 
00587   /// hasPredecesorHelper - Return true if N is a predecessor of this node.
00588   /// N is either an operand of this node, or can be reached by recursively
00589   /// traversing up the operands.
00590   /// In this helper the Visited and worklist sets are held externally to
00591   /// cache predecessors over multiple invocations. If you want to test for
00592   /// multiple predecessors this method is preferable to multiple calls to
00593   /// hasPredecessor. Be sure to clear Visited and Worklist if the DAG
00594   /// changes.
00595   /// NOTE: This is still very expensive. Use carefully.
00596   bool hasPredecessorHelper(const SDNode *N,
00597                             SmallPtrSetImpl<const SDNode *> &Visited,
00598                             SmallVectorImpl<const SDNode *> &Worklist) const;
00599 
00600   /// getNumOperands - Return the number of values used by this operation.
00601   ///
00602   unsigned getNumOperands() const { return NumOperands; }
00603 
00604   /// getConstantOperandVal - Helper method returns the integer value of a
00605   /// ConstantSDNode operand.
00606   uint64_t getConstantOperandVal(unsigned Num) const;
00607 
00608   const SDValue &getOperand(unsigned Num) const {
00609     assert(Num < NumOperands && "Invalid child # of SDNode!");
00610     return OperandList[Num];
00611   }
00612 
00613   typedef SDUse* op_iterator;
00614   op_iterator op_begin() const { return OperandList; }
00615   op_iterator op_end() const { return OperandList+NumOperands; }
00616   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
00617 
00618   SDVTList getVTList() const {
00619     SDVTList X = { ValueList, NumValues };
00620     return X;
00621   }
00622 
00623   /// getGluedNode - If this node has a glue operand, return the node
00624   /// to which the glue operand points. Otherwise return NULL.
00625   SDNode *getGluedNode() const {
00626     if (getNumOperands() != 0 &&
00627       getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
00628       return getOperand(getNumOperands()-1).getNode();
00629     return nullptr;
00630   }
00631 
00632   // If this is a pseudo op, like copyfromreg, look to see if there is a
00633   // real target node glued to it.  If so, return the target node.
00634   const SDNode *getGluedMachineNode() const {
00635     const SDNode *FoundNode = this;
00636 
00637     // Climb up glue edges until a machine-opcode node is found, or the
00638     // end of the chain is reached.
00639     while (!FoundNode->isMachineOpcode()) {
00640       const SDNode *N = FoundNode->getGluedNode();
00641       if (!N) break;
00642       FoundNode = N;
00643     }
00644 
00645     return FoundNode;
00646   }
00647 
00648   /// getGluedUser - If this node has a glue value with a user, return
00649   /// the user (there is at most one). Otherwise return NULL.
00650   SDNode *getGluedUser() const {
00651     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
00652       if (UI.getUse().get().getValueType() == MVT::Glue)
00653         return *UI;
00654     return nullptr;
00655   }
00656 
00657   /// getNumValues - Return the number of values defined/returned by this
00658   /// operator.
00659   ///
00660   unsigned getNumValues() const { return NumValues; }
00661 
00662   /// getValueType - Return the type of a specified result.
00663   ///
00664   EVT getValueType(unsigned ResNo) const {
00665     assert(ResNo < NumValues && "Illegal result number!");
00666     return ValueList[ResNo];
00667   }
00668 
00669   /// Return the type of a specified result as a simple type.
00670   ///
00671   MVT getSimpleValueType(unsigned ResNo) const {
00672     return getValueType(ResNo).getSimpleVT();
00673   }
00674 
00675   /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
00676   ///
00677   unsigned getValueSizeInBits(unsigned ResNo) const {
00678     return getValueType(ResNo).getSizeInBits();
00679   }
00680 
00681   typedef const EVT* value_iterator;
00682   value_iterator value_begin() const { return ValueList; }
00683   value_iterator value_end() const { return ValueList+NumValues; }
00684 
00685   /// getOperationName - Return the opcode of this operation for printing.
00686   ///
00687   std::string getOperationName(const SelectionDAG *G = nullptr) const;
00688   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
00689   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
00690   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
00691   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
00692   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
00693 
00694   /// printrFull - Print a SelectionDAG node and all children down to
00695   /// the leaves.  The given SelectionDAG allows target-specific nodes
00696   /// to be printed in human-readable form.  Unlike printr, this will
00697   /// print the whole DAG, including children that appear multiple
00698   /// times.
00699   ///
00700   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
00701 
00702   /// printrWithDepth - Print a SelectionDAG node and children up to
00703   /// depth "depth."  The given SelectionDAG allows target-specific
00704   /// nodes to be printed in human-readable form.  Unlike printr, this
00705   /// will print children that appear multiple times wherever they are
00706   /// used.
00707   ///
00708   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
00709                        unsigned depth = 100) const;
00710 
00711 
00712   /// dump - Dump this node, for debugging.
00713   void dump() const;
00714 
00715   /// dumpr - Dump (recursively) this node and its use-def subgraph.
00716   void dumpr() const;
00717 
00718   /// dump - Dump this node, for debugging.
00719   /// The given SelectionDAG allows target-specific nodes to be printed
00720   /// in human-readable form.
00721   void dump(const SelectionDAG *G) const;
00722 
00723   /// dumpr - Dump (recursively) this node and its use-def subgraph.
00724   /// The given SelectionDAG allows target-specific nodes to be printed
00725   /// in human-readable form.
00726   void dumpr(const SelectionDAG *G) const;
00727 
00728   /// dumprFull - printrFull to dbgs().  The given SelectionDAG allows
00729   /// target-specific nodes to be printed in human-readable form.
00730   /// Unlike dumpr, this will print the whole DAG, including children
00731   /// that appear multiple times.
00732   ///
00733   void dumprFull(const SelectionDAG *G = nullptr) const;
00734 
00735   /// dumprWithDepth - printrWithDepth to dbgs().  The given
00736   /// SelectionDAG allows target-specific nodes to be printed in
00737   /// human-readable form.  Unlike dumpr, this will print children
00738   /// that appear multiple times wherever they are used.
00739   ///
00740   void dumprWithDepth(const SelectionDAG *G = nullptr,
00741                       unsigned depth = 100) const;
00742 
00743   /// Profile - Gather unique data for the node.
00744   ///
00745   void Profile(FoldingSetNodeID &ID) const;
00746 
00747   /// addUse - This method should only be used by the SDUse class.
00748   ///
00749   void addUse(SDUse &U) { U.addToList(&UseList); }
00750 
00751 protected:
00752   static SDVTList getSDVTList(EVT VT) {
00753     SDVTList Ret = { getValueTypeList(VT), 1 };
00754     return Ret;
00755   }
00756 
00757   SDNode(unsigned Opc, unsigned Order, const DebugLoc dl, SDVTList VTs,
00758          ArrayRef<SDValue> Ops)
00759     : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
00760       SubclassData(0), NodeId(-1),
00761       OperandList(Ops.size() ? new SDUse[Ops.size()] : nullptr),
00762       ValueList(VTs.VTs), UseList(nullptr),
00763       NumOperands(Ops.size()), NumValues(VTs.NumVTs),
00764       debugLoc(dl), IROrder(Order) {
00765     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
00766     assert(NumOperands == Ops.size() &&
00767            "NumOperands wasn't wide enough for its operands!");
00768     assert(NumValues == VTs.NumVTs &&
00769            "NumValues wasn't wide enough for its operands!");
00770     for (unsigned i = 0; i != Ops.size(); ++i) {
00771       assert(OperandList && "no operands available");
00772       OperandList[i].setUser(this);
00773       OperandList[i].setInitial(Ops[i]);
00774     }
00775     checkForCycles(this);
00776   }
00777 
00778   /// This constructor adds no operands itself; operands can be
00779   /// set later with InitOperands.
00780   SDNode(unsigned Opc, unsigned Order, const DebugLoc dl, SDVTList VTs)
00781     : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
00782       SubclassData(0), NodeId(-1), OperandList(nullptr), ValueList(VTs.VTs),
00783       UseList(nullptr), NumOperands(0), NumValues(VTs.NumVTs), debugLoc(dl),
00784       IROrder(Order) {
00785     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
00786     assert(NumValues == VTs.NumVTs &&
00787            "NumValues wasn't wide enough for its operands!");
00788   }
00789 
00790   /// InitOperands - Initialize the operands list of this with 1 operand.
00791   void InitOperands(SDUse *Ops, const SDValue &Op0) {
00792     Ops[0].setUser(this);
00793     Ops[0].setInitial(Op0);
00794     NumOperands = 1;
00795     OperandList = Ops;
00796     checkForCycles(this);
00797   }
00798 
00799   /// InitOperands - Initialize the operands list of this with 2 operands.
00800   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
00801     Ops[0].setUser(this);
00802     Ops[0].setInitial(Op0);
00803     Ops[1].setUser(this);
00804     Ops[1].setInitial(Op1);
00805     NumOperands = 2;
00806     OperandList = Ops;
00807     checkForCycles(this);
00808   }
00809 
00810   /// InitOperands - Initialize the operands list of this with 3 operands.
00811   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
00812                     const SDValue &Op2) {
00813     Ops[0].setUser(this);
00814     Ops[0].setInitial(Op0);
00815     Ops[1].setUser(this);
00816     Ops[1].setInitial(Op1);
00817     Ops[2].setUser(this);
00818     Ops[2].setInitial(Op2);
00819     NumOperands = 3;
00820     OperandList = Ops;
00821     checkForCycles(this);
00822   }
00823 
00824   /// InitOperands - Initialize the operands list of this with 4 operands.
00825   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
00826                     const SDValue &Op2, const SDValue &Op3) {
00827     Ops[0].setUser(this);
00828     Ops[0].setInitial(Op0);
00829     Ops[1].setUser(this);
00830     Ops[1].setInitial(Op1);
00831     Ops[2].setUser(this);
00832     Ops[2].setInitial(Op2);
00833     Ops[3].setUser(this);
00834     Ops[3].setInitial(Op3);
00835     NumOperands = 4;
00836     OperandList = Ops;
00837     checkForCycles(this);
00838   }
00839 
00840   /// InitOperands - Initialize the operands list of this with N operands.
00841   void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
00842     for (unsigned i = 0; i != N; ++i) {
00843       Ops[i].setUser(this);
00844       Ops[i].setInitial(Vals[i]);
00845     }
00846     NumOperands = N;
00847     assert(NumOperands == N &&
00848            "NumOperands wasn't wide enough for its operands!");
00849     OperandList = Ops;
00850     checkForCycles(this);
00851   }
00852 
00853   /// DropOperands - Release the operands and set this node to have
00854   /// zero operands.
00855   void DropOperands();
00856 };
00857 
00858 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
00859 /// into SDNode creation functions.
00860 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
00861 /// from the original Instruction, and IROrder is the ordinal position of
00862 /// the instruction.
00863 /// When an SDNode is created after the DAG is being built, both DebugLoc and
00864 /// the IROrder are propagated from the original SDNode.
00865 /// So SDLoc class provides two constructors besides the default one, one to
00866 /// be used by the DAGBuilder, the other to be used by others.
00867 class SDLoc {
00868 private:
00869   // Ptr could be used for either Instruction* or SDNode*. It is used for
00870   // Instruction* if IROrder is not -1.
00871   const void *Ptr;
00872   int IROrder;
00873 
00874 public:
00875   SDLoc() : Ptr(nullptr), IROrder(0) {}
00876   SDLoc(const SDNode *N) : Ptr(N), IROrder(-1) {
00877     assert(N && "null SDNode");
00878   }
00879   SDLoc(const SDValue V) : Ptr(V.getNode()), IROrder(-1) {
00880     assert(Ptr && "null SDNode");
00881   }
00882   SDLoc(const Instruction *I, int Order) : Ptr(I), IROrder(Order) {
00883     assert(Order >= 0 && "bad IROrder");
00884   }
00885   unsigned getIROrder() {
00886     if (IROrder >= 0 || Ptr == nullptr) {
00887       return (unsigned)IROrder;
00888     }
00889     const SDNode *N = (const SDNode*)(Ptr);
00890     return N->getIROrder();
00891   }
00892   DebugLoc getDebugLoc() {
00893     if (!Ptr) {
00894       return DebugLoc();
00895     }
00896     if (IROrder >= 0) {
00897       const Instruction *I = (const Instruction*)(Ptr);
00898       return I->getDebugLoc();
00899     }
00900     const SDNode *N = (const SDNode*)(Ptr);
00901     return N->getDebugLoc();
00902   }
00903 };
00904 
00905 
00906 // Define inline functions from the SDValue class.
00907 
00908 inline SDValue::SDValue(SDNode *node, unsigned resno)
00909     : Node(node), ResNo(resno) {
00910   assert((!Node || ResNo < Node->getNumValues()) &&
00911          "Invalid result number for the given node!");
00912   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
00913 }
00914 
00915 inline unsigned SDValue::getOpcode() const {
00916   return Node->getOpcode();
00917 }
00918 inline EVT SDValue::getValueType() const {
00919   return Node->getValueType(ResNo);
00920 }
00921 inline unsigned SDValue::getNumOperands() const {
00922   return Node->getNumOperands();
00923 }
00924 inline const SDValue &SDValue::getOperand(unsigned i) const {
00925   return Node->getOperand(i);
00926 }
00927 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
00928   return Node->getConstantOperandVal(i);
00929 }
00930 inline bool SDValue::isTargetOpcode() const {
00931   return Node->isTargetOpcode();
00932 }
00933 inline bool SDValue::isTargetMemoryOpcode() const {
00934   return Node->isTargetMemoryOpcode();
00935 }
00936 inline bool SDValue::isMachineOpcode() const {
00937   return Node->isMachineOpcode();
00938 }
00939 inline unsigned SDValue::getMachineOpcode() const {
00940   return Node->getMachineOpcode();
00941 }
00942 inline bool SDValue::use_empty() const {
00943   return !Node->hasAnyUseOfValue(ResNo);
00944 }
00945 inline bool SDValue::hasOneUse() const {
00946   return Node->hasNUsesOfValue(1, ResNo);
00947 }
00948 inline const DebugLoc SDValue::getDebugLoc() const {
00949   return Node->getDebugLoc();
00950 }
00951 inline void SDValue::dump() const {
00952   return Node->dump();
00953 }
00954 inline void SDValue::dumpr() const {
00955   return Node->dumpr();
00956 }
00957 // Define inline functions from the SDUse class.
00958 
00959 inline void SDUse::set(const SDValue &V) {
00960   if (Val.getNode()) removeFromList();
00961   Val = V;
00962   if (V.getNode()) V.getNode()->addUse(*this);
00963 }
00964 
00965 inline void SDUse::setInitial(const SDValue &V) {
00966   Val = V;
00967   V.getNode()->addUse(*this);
00968 }
00969 
00970 inline void SDUse::setNode(SDNode *N) {
00971   if (Val.getNode()) removeFromList();
00972   Val.setNode(N);
00973   if (N) N->addUse(*this);
00974 }
00975 
00976 /// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
00977 /// to allow co-allocation of node operands with the node itself.
00978 class UnarySDNode : public SDNode {
00979   SDUse Op;
00980 public:
00981   UnarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
00982               SDValue X)
00983     : SDNode(Opc, Order, dl, VTs) {
00984     InitOperands(&Op, X);
00985   }
00986 };
00987 
00988 /// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
00989 /// to allow co-allocation of node operands with the node itself.
00990 class BinarySDNode : public SDNode {
00991   SDUse Ops[2];
00992 public:
00993   BinarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
00994                SDValue X, SDValue Y)
00995     : SDNode(Opc, Order, dl, VTs) {
00996     InitOperands(Ops, X, Y);
00997   }
00998 };
00999 
01000 /// BinaryWithFlagsSDNode - This class is an extension of BinarySDNode
01001 /// used from those opcodes that have associated extra flags.
01002 class BinaryWithFlagsSDNode : public BinarySDNode {
01003   enum { NUW = (1 << 0), NSW = (1 << 1), EXACT = (1 << 2) };
01004 
01005 public:
01006   BinaryWithFlagsSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
01007                         SDValue X, SDValue Y)
01008       : BinarySDNode(Opc, Order, dl, VTs, X, Y) {}
01009   /// getRawSubclassData - Return the SubclassData value, which contains an
01010   /// encoding of the flags.
01011   /// This function should be used to add subclass data to the NodeID value.
01012   unsigned getRawSubclassData() const { return SubclassData; }
01013   void setHasNoUnsignedWrap(bool b) {
01014     SubclassData = (SubclassData & ~NUW) | (b ? NUW : 0);
01015   }
01016   void setHasNoSignedWrap(bool b) {
01017     SubclassData = (SubclassData & ~NSW) | (b ? NSW : 0);
01018   }
01019   void setIsExact(bool b) {
01020     SubclassData = (SubclassData & ~EXACT) | (b ? EXACT : 0);
01021   }
01022   bool hasNoUnsignedWrap() const { return SubclassData & NUW; }
01023   bool hasNoSignedWrap() const { return SubclassData & NSW; }
01024   bool isExact() const { return SubclassData & EXACT; }
01025   static bool classof(const SDNode *N) {
01026     return isBinOpWithFlags(N->getOpcode());
01027   }
01028 };
01029 
01030 /// TernarySDNode - This class is used for three-operand SDNodes. This is solely
01031 /// to allow co-allocation of node operands with the node itself.
01032 class TernarySDNode : public SDNode {
01033   SDUse Ops[3];
01034 public:
01035   TernarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
01036                 SDValue X, SDValue Y, SDValue Z)
01037     : SDNode(Opc, Order, dl, VTs) {
01038     InitOperands(Ops, X, Y, Z);
01039   }
01040 };
01041 
01042 
01043 /// HandleSDNode - This class is used to form a handle around another node that
01044 /// is persistent and is updated across invocations of replaceAllUsesWith on its
01045 /// operand.  This node should be directly created by end-users and not added to
01046 /// the AllNodes list.
01047 class HandleSDNode : public SDNode {
01048   SDUse Op;
01049 public:
01050   explicit HandleSDNode(SDValue X)
01051     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
01052     InitOperands(&Op, X);
01053   }
01054   ~HandleSDNode();
01055   const SDValue &getValue() const { return Op; }
01056 };
01057 
01058 class AddrSpaceCastSDNode : public UnarySDNode {
01059 private:
01060   unsigned SrcAddrSpace;
01061   unsigned DestAddrSpace;
01062 
01063 public:
01064   AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT, SDValue X,
01065                       unsigned SrcAS, unsigned DestAS);
01066 
01067   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
01068   unsigned getDestAddressSpace() const { return DestAddrSpace; }
01069 
01070   static bool classof(const SDNode *N) {
01071     return N->getOpcode() == ISD::ADDRSPACECAST;
01072   }
01073 };
01074 
01075 /// Abstact virtual class for operations for memory operations
01076 class MemSDNode : public SDNode {
01077 private:
01078   // MemoryVT - VT of in-memory value.
01079   EVT MemoryVT;
01080 
01081 protected:
01082   /// MMO - Memory reference information.
01083   MachineMemOperand *MMO;
01084 
01085 public:
01086   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
01087             EVT MemoryVT, MachineMemOperand *MMO);
01088 
01089   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
01090             ArrayRef<SDValue> Ops, EVT MemoryVT, MachineMemOperand *MMO);
01091 
01092   bool readMem() const { return MMO->isLoad(); }
01093   bool writeMem() const { return MMO->isStore(); }
01094 
01095   /// Returns alignment and volatility of the memory access
01096   unsigned getOriginalAlignment() const {
01097     return MMO->getBaseAlignment();
01098   }
01099   unsigned getAlignment() const {
01100     return MMO->getAlignment();
01101   }
01102 
01103   /// getRawSubclassData - Return the SubclassData value, which contains an
01104   /// encoding of the volatile flag, as well as bits used by subclasses. This
01105   /// function should only be used to compute a FoldingSetNodeID value.
01106   unsigned getRawSubclassData() const {
01107     return SubclassData;
01108   }
01109 
01110   // We access subclass data here so that we can check consistency
01111   // with MachineMemOperand information.
01112   bool isVolatile() const { return (SubclassData >> 5) & 1; }
01113   bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
01114   bool isInvariant() const { return (SubclassData >> 7) & 1; }
01115 
01116   AtomicOrdering getOrdering() const {
01117     return AtomicOrdering((SubclassData >> 8) & 15);
01118   }
01119   SynchronizationScope getSynchScope() const {
01120     return SynchronizationScope((SubclassData >> 12) & 1);
01121   }
01122 
01123   // Returns the offset from the location of the access.
01124   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
01125 
01126   /// Returns the AA info that describes the dereference.
01127   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
01128 
01129   /// Returns the Ranges that describes the dereference.
01130   const MDNode *getRanges() const { return MMO->getRanges(); }
01131 
01132   /// getMemoryVT - Return the type of the in-memory value.
01133   EVT getMemoryVT() const { return MemoryVT; }
01134 
01135   /// getMemOperand - Return a MachineMemOperand object describing the memory
01136   /// reference performed by operation.
01137   MachineMemOperand *getMemOperand() const { return MMO; }
01138 
01139   const MachinePointerInfo &getPointerInfo() const {
01140     return MMO->getPointerInfo();
01141   }
01142 
01143   /// getAddressSpace - Return the address space for the associated pointer
01144   unsigned getAddressSpace() const {
01145     return getPointerInfo().getAddrSpace();
01146   }
01147 
01148   /// refineAlignment - Update this MemSDNode's MachineMemOperand information
01149   /// to reflect the alignment of NewMMO, if it has a greater alignment.
01150   /// This must only be used when the new alignment applies to all users of
01151   /// this MachineMemOperand.
01152   void refineAlignment(const MachineMemOperand *NewMMO) {
01153     MMO->refineAlignment(NewMMO);
01154   }
01155 
01156   const SDValue &getChain() const { return getOperand(0); }
01157   const SDValue &getBasePtr() const {
01158     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
01159   }
01160 
01161   // Methods to support isa and dyn_cast
01162   static bool classof(const SDNode *N) {
01163     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
01164     // with either an intrinsic or a target opcode.
01165     return N->getOpcode() == ISD::LOAD                ||
01166            N->getOpcode() == ISD::STORE               ||
01167            N->getOpcode() == ISD::PREFETCH            ||
01168            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
01169            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
01170            N->getOpcode() == ISD::ATOMIC_SWAP         ||
01171            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
01172            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
01173            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
01174            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
01175            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
01176            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
01177            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
01178            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
01179            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
01180            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
01181            N->getOpcode() == ISD::ATOMIC_LOAD         ||
01182            N->getOpcode() == ISD::ATOMIC_STORE        ||
01183            N->getOpcode() == ISD::MLOAD               ||
01184            N->getOpcode() == ISD::MSTORE              ||
01185            N->isMemIntrinsic()                        ||
01186            N->isTargetMemoryOpcode();
01187   }
01188 };
01189 
01190 /// AtomicSDNode - A SDNode reprenting atomic operations.
01191 ///
01192 class AtomicSDNode : public MemSDNode {
01193   SDUse Ops[4];
01194 
01195   /// For cmpxchg instructions, the ordering requirements when a store does not
01196   /// occur.
01197   AtomicOrdering FailureOrdering;
01198 
01199   void InitAtomic(AtomicOrdering SuccessOrdering,
01200                   AtomicOrdering FailureOrdering,
01201                   SynchronizationScope SynchScope) {
01202     // This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
01203     assert((SuccessOrdering & 15) == SuccessOrdering &&
01204            "Ordering may not require more than 4 bits!");
01205     assert((FailureOrdering & 15) == FailureOrdering &&
01206            "Ordering may not require more than 4 bits!");
01207     assert((SynchScope & 1) == SynchScope &&
01208            "SynchScope may not require more than 1 bit!");
01209     SubclassData |= SuccessOrdering << 8;
01210     SubclassData |= SynchScope << 12;
01211     this->FailureOrdering = FailureOrdering;
01212     assert(getSuccessOrdering() == SuccessOrdering &&
01213            "Ordering encoding error!");
01214     assert(getFailureOrdering() == FailureOrdering &&
01215            "Ordering encoding error!");
01216     assert(getSynchScope() == SynchScope && "Synch-scope encoding error!");
01217   }
01218 
01219 public:
01220   // Opc:   opcode for atomic
01221   // VTL:    value type list
01222   // Chain:  memory chain for operaand
01223   // Ptr:    address to update as a SDValue
01224   // Cmp:    compare value
01225   // Swp:    swap value
01226   // SrcVal: address to update as a Value (used for MemOperand)
01227   // Align:  alignment of memory
01228   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
01229                EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp,
01230                MachineMemOperand *MMO, AtomicOrdering Ordering,
01231                SynchronizationScope SynchScope)
01232       : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
01233     InitAtomic(Ordering, Ordering, SynchScope);
01234     InitOperands(Ops, Chain, Ptr, Cmp, Swp);
01235   }
01236   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
01237                EVT MemVT,
01238                SDValue Chain, SDValue Ptr,
01239                SDValue Val, MachineMemOperand *MMO,
01240                AtomicOrdering Ordering, SynchronizationScope SynchScope)
01241     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
01242     InitAtomic(Ordering, Ordering, SynchScope);
01243     InitOperands(Ops, Chain, Ptr, Val);
01244   }
01245   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
01246                EVT MemVT,
01247                SDValue Chain, SDValue Ptr,
01248                MachineMemOperand *MMO,
01249                AtomicOrdering Ordering, SynchronizationScope SynchScope)
01250     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
01251     InitAtomic(Ordering, Ordering, SynchScope);
01252     InitOperands(Ops, Chain, Ptr);
01253   }
01254   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL, EVT MemVT,
01255                const SDValue* AllOps, SDUse *DynOps, unsigned NumOps,
01256                MachineMemOperand *MMO,
01257                AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
01258                SynchronizationScope SynchScope)
01259     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
01260     InitAtomic(SuccessOrdering, FailureOrdering, SynchScope);
01261     assert((DynOps || NumOps <= array_lengthof(Ops)) &&
01262            "Too many ops for internal storage!");
01263     InitOperands(DynOps ? DynOps : Ops, AllOps, NumOps);
01264   }
01265 
01266   const SDValue &getBasePtr() const { return getOperand(1); }
01267   const SDValue &getVal() const { return getOperand(2); }
01268 
01269   AtomicOrdering getSuccessOrdering() const {
01270     return getOrdering();
01271   }
01272 
01273   // Not quite enough room in SubclassData for everything, so failure gets its
01274   // own field.
01275   AtomicOrdering getFailureOrdering() const {
01276     return FailureOrdering;
01277   }
01278 
01279   bool isCompareAndSwap() const {
01280     unsigned Op = getOpcode();
01281     return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
01282   }
01283 
01284   // Methods to support isa and dyn_cast
01285   static bool classof(const SDNode *N) {
01286     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
01287            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
01288            N->getOpcode() == ISD::ATOMIC_SWAP         ||
01289            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
01290            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
01291            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
01292            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
01293            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
01294            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
01295            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
01296            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
01297            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
01298            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
01299            N->getOpcode() == ISD::ATOMIC_LOAD         ||
01300            N->getOpcode() == ISD::ATOMIC_STORE;
01301   }
01302 };
01303 
01304 /// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
01305 /// memory and need an associated MachineMemOperand. Its opcode may be
01306 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
01307 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
01308 class MemIntrinsicSDNode : public MemSDNode {
01309 public:
01310   MemIntrinsicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
01311                      ArrayRef<SDValue> Ops, EVT MemoryVT,
01312                      MachineMemOperand *MMO)
01313     : MemSDNode(Opc, Order, dl, VTs, Ops, MemoryVT, MMO) {
01314     SubclassData |= 1u << 13;
01315   }
01316 
01317   // Methods to support isa and dyn_cast
01318   static bool classof(const SDNode *N) {
01319     // We lower some target intrinsics to their target opcode
01320     // early a node with a target opcode can be of this class
01321     return N->isMemIntrinsic()             ||
01322            N->getOpcode() == ISD::PREFETCH ||
01323            N->isTargetMemoryOpcode();
01324   }
01325 };
01326 
01327 /// ShuffleVectorSDNode - This SDNode is used to implement the code generator
01328 /// support for the llvm IR shufflevector instruction.  It combines elements
01329 /// from two input vectors into a new input vector, with the selection and
01330 /// ordering of elements determined by an array of integers, referred to as
01331 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
01332 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
01333 /// An index of -1 is treated as undef, such that the code generator may put
01334 /// any value in the corresponding element of the result.
01335 class ShuffleVectorSDNode : public SDNode {
01336   SDUse Ops[2];
01337 
01338   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
01339   // is freed when the SelectionDAG object is destroyed.
01340   const int *Mask;
01341 protected:
01342   friend class SelectionDAG;
01343   ShuffleVectorSDNode(EVT VT, unsigned Order, DebugLoc dl, SDValue N1,
01344                       SDValue N2, const int *M)
01345     : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {
01346     InitOperands(Ops, N1, N2);
01347   }
01348 public:
01349 
01350   ArrayRef<int> getMask() const {
01351     EVT VT = getValueType(0);
01352     return makeArrayRef(Mask, VT.getVectorNumElements());
01353   }
01354   int getMaskElt(unsigned Idx) const {
01355     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
01356     return Mask[Idx];
01357   }
01358 
01359   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
01360   int  getSplatIndex() const {
01361     assert(isSplat() && "Cannot get splat index for non-splat!");
01362     EVT VT = getValueType(0);
01363     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
01364       if (Mask[i] >= 0)
01365         return Mask[i];
01366     }
01367     llvm_unreachable("Splat with all undef indices?");
01368   }
01369   static bool isSplatMask(const int *Mask, EVT VT);
01370 
01371   static bool classof(const SDNode *N) {
01372     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
01373   }
01374 };
01375 
01376 class ConstantSDNode : public SDNode {
01377   const ConstantInt *Value;
01378   friend class SelectionDAG;
01379   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
01380     : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
01381              0, DebugLoc(), getSDVTList(VT)), Value(val) {
01382     SubclassData |= (uint16_t)isOpaque;
01383   }
01384 public:
01385 
01386   const ConstantInt *getConstantIntValue() const { return Value; }
01387   const APInt &getAPIntValue() const { return Value->getValue(); }
01388   uint64_t getZExtValue() const { return Value->getZExtValue(); }
01389   int64_t getSExtValue() const { return Value->getSExtValue(); }
01390 
01391   bool isOne() const { return Value->isOne(); }
01392   bool isNullValue() const { return Value->isNullValue(); }
01393   bool isAllOnesValue() const { return Value->isAllOnesValue(); }
01394 
01395   bool isOpaque() const { return SubclassData & 1; }
01396 
01397   static bool classof(const SDNode *N) {
01398     return N->getOpcode() == ISD::Constant ||
01399            N->getOpcode() == ISD::TargetConstant;
01400   }
01401 };
01402 
01403 class ConstantFPSDNode : public SDNode {
01404   const ConstantFP *Value;
01405   friend class SelectionDAG;
01406   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
01407     : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
01408              0, DebugLoc(), getSDVTList(VT)), Value(val) {
01409   }
01410 public:
01411 
01412   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
01413   const ConstantFP *getConstantFPValue() const { return Value; }
01414 
01415   /// isZero - Return true if the value is positive or negative zero.
01416   bool isZero() const { return Value->isZero(); }
01417 
01418   /// isNaN - Return true if the value is a NaN.
01419   bool isNaN() const { return Value->isNaN(); }
01420 
01421   /// isExactlyValue - We don't rely on operator== working on double values, as
01422   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
01423   /// As such, this method can be used to do an exact bit-for-bit comparison of
01424   /// two floating point values.
01425 
01426   /// We leave the version with the double argument here because it's just so
01427   /// convenient to write "2.0" and the like.  Without this function we'd
01428   /// have to duplicate its logic everywhere it's called.
01429   bool isExactlyValue(double V) const {
01430     bool ignored;
01431     APFloat Tmp(V);
01432     Tmp.convert(Value->getValueAPF().getSemantics(),
01433                 APFloat::rmNearestTiesToEven, &ignored);
01434     return isExactlyValue(Tmp);
01435   }
01436   bool isExactlyValue(const APFloat& V) const;
01437 
01438   static bool isValueValidForType(EVT VT, const APFloat& Val);
01439 
01440   static bool classof(const SDNode *N) {
01441     return N->getOpcode() == ISD::ConstantFP ||
01442            N->getOpcode() == ISD::TargetConstantFP;
01443   }
01444 };
01445 
01446 class GlobalAddressSDNode : public SDNode {
01447   const GlobalValue *TheGlobal;
01448   int64_t Offset;
01449   unsigned char TargetFlags;
01450   friend class SelectionDAG;
01451   GlobalAddressSDNode(unsigned Opc, unsigned Order, DebugLoc DL,
01452                       const GlobalValue *GA, EVT VT, int64_t o,
01453                       unsigned char TargetFlags);
01454 public:
01455 
01456   const GlobalValue *getGlobal() const { return TheGlobal; }
01457   int64_t getOffset() const { return Offset; }
01458   unsigned char getTargetFlags() const { return TargetFlags; }
01459   // Return the address space this GlobalAddress belongs to.
01460   unsigned getAddressSpace() const;
01461 
01462   static bool classof(const SDNode *N) {
01463     return N->getOpcode() == ISD::GlobalAddress ||
01464            N->getOpcode() == ISD::TargetGlobalAddress ||
01465            N->getOpcode() == ISD::GlobalTLSAddress ||
01466            N->getOpcode() == ISD::TargetGlobalTLSAddress;
01467   }
01468 };
01469 
01470 class FrameIndexSDNode : public SDNode {
01471   int FI;
01472   friend class SelectionDAG;
01473   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
01474     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
01475       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
01476   }
01477 public:
01478 
01479   int getIndex() const { return FI; }
01480 
01481   static bool classof(const SDNode *N) {
01482     return N->getOpcode() == ISD::FrameIndex ||
01483            N->getOpcode() == ISD::TargetFrameIndex;
01484   }
01485 };
01486 
01487 class JumpTableSDNode : public SDNode {
01488   int JTI;
01489   unsigned char TargetFlags;
01490   friend class SelectionDAG;
01491   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
01492     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
01493       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
01494   }
01495 public:
01496 
01497   int getIndex() const { return JTI; }
01498   unsigned char getTargetFlags() const { return TargetFlags; }
01499 
01500   static bool classof(const SDNode *N) {
01501     return N->getOpcode() == ISD::JumpTable ||
01502            N->getOpcode() == ISD::TargetJumpTable;
01503   }
01504 };
01505 
01506 class ConstantPoolSDNode : public SDNode {
01507   union {
01508     const Constant *ConstVal;
01509     MachineConstantPoolValue *MachineCPVal;
01510   } Val;
01511   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
01512   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
01513   unsigned char TargetFlags;
01514   friend class SelectionDAG;
01515   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
01516                      unsigned Align, unsigned char TF)
01517     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
01518              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
01519              TargetFlags(TF) {
01520     assert(Offset >= 0 && "Offset is too large");
01521     Val.ConstVal = c;
01522   }
01523   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
01524                      EVT VT, int o, unsigned Align, unsigned char TF)
01525     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
01526              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
01527              TargetFlags(TF) {
01528     assert(Offset >= 0 && "Offset is too large");
01529     Val.MachineCPVal = v;
01530     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
01531   }
01532 public:
01533 
01534   bool isMachineConstantPoolEntry() const {
01535     return Offset < 0;
01536   }
01537 
01538   const Constant *getConstVal() const {
01539     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
01540     return Val.ConstVal;
01541   }
01542 
01543   MachineConstantPoolValue *getMachineCPVal() const {
01544     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
01545     return Val.MachineCPVal;
01546   }
01547 
01548   int getOffset() const {
01549     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
01550   }
01551 
01552   // Return the alignment of this constant pool object, which is either 0 (for
01553   // default alignment) or the desired value.
01554   unsigned getAlignment() const { return Alignment; }
01555   unsigned char getTargetFlags() const { return TargetFlags; }
01556 
01557   Type *getType() const;
01558 
01559   static bool classof(const SDNode *N) {
01560     return N->getOpcode() == ISD::ConstantPool ||
01561            N->getOpcode() == ISD::TargetConstantPool;
01562   }
01563 };
01564 
01565 /// Completely target-dependent object reference.
01566 class TargetIndexSDNode : public SDNode {
01567   unsigned char TargetFlags;
01568   int Index;
01569   int64_t Offset;
01570   friend class SelectionDAG;
01571 public:
01572 
01573   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
01574     : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
01575       TargetFlags(TF), Index(Idx), Offset(Ofs) {}
01576 public:
01577 
01578   unsigned char getTargetFlags() const { return TargetFlags; }
01579   int getIndex() const { return Index; }
01580   int64_t getOffset() const { return Offset; }
01581 
01582   static bool classof(const SDNode *N) {
01583     return N->getOpcode() == ISD::TargetIndex;
01584   }
01585 };
01586 
01587 class BasicBlockSDNode : public SDNode {
01588   MachineBasicBlock *MBB;
01589   friend class SelectionDAG;
01590   /// Debug info is meaningful and potentially useful here, but we create
01591   /// blocks out of order when they're jumped to, which makes it a bit
01592   /// harder.  Let's see if we need it first.
01593   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
01594     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
01595   {}
01596 public:
01597 
01598   MachineBasicBlock *getBasicBlock() const { return MBB; }
01599 
01600   static bool classof(const SDNode *N) {
01601     return N->getOpcode() == ISD::BasicBlock;
01602   }
01603 };
01604 
01605 /// BuildVectorSDNode - A "pseudo-class" with methods for operating on
01606 /// BUILD_VECTORs.
01607 class BuildVectorSDNode : public SDNode {
01608   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
01609   explicit BuildVectorSDNode() LLVM_DELETED_FUNCTION;
01610 public:
01611   /// isConstantSplat - Check if this is a constant splat, and if so, find the
01612   /// smallest element size that splats the vector.  If MinSplatBits is
01613   /// nonzero, the element size must be at least that large.  Note that the
01614   /// splat element may be the entire vector (i.e., a one element vector).
01615   /// Returns the splat element value in SplatValue.  Any undefined bits in
01616   /// that value are zero, and the corresponding bits in the SplatUndef mask
01617   /// are set.  The SplatBitSize value is set to the splat element size in
01618   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
01619   /// undefined.  isBigEndian describes the endianness of the target.
01620   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
01621                        unsigned &SplatBitSize, bool &HasAnyUndefs,
01622                        unsigned MinSplatBits = 0,
01623                        bool isBigEndian = false) const;
01624 
01625   /// \brief Returns the splatted value or a null value if this is not a splat.
01626   ///
01627   /// If passed a non-null UndefElements bitvector, it will resize it to match
01628   /// the vector width and set the bits where elements are undef.
01629   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
01630 
01631   /// \brief Returns the splatted constant or null if this is not a constant
01632   /// splat.
01633   ///
01634   /// If passed a non-null UndefElements bitvector, it will resize it to match
01635   /// the vector width and set the bits where elements are undef.
01636   ConstantSDNode *
01637   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
01638 
01639   /// \brief Returns the splatted constant FP or null if this is not a constant
01640   /// FP splat.
01641   ///
01642   /// If passed a non-null UndefElements bitvector, it will resize it to match
01643   /// the vector width and set the bits where elements are undef.
01644   ConstantFPSDNode *
01645   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
01646 
01647   bool isConstant() const;
01648 
01649   static inline bool classof(const SDNode *N) {
01650     return N->getOpcode() == ISD::BUILD_VECTOR;
01651   }
01652 };
01653 
01654 /// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
01655 /// used when the SelectionDAG needs to make a simple reference to something
01656 /// in the LLVM IR representation.
01657 ///
01658 class SrcValueSDNode : public SDNode {
01659   const Value *V;
01660   friend class SelectionDAG;
01661   /// Create a SrcValue for a general value.
01662   explicit SrcValueSDNode(const Value *v)
01663     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
01664 
01665 public:
01666   /// getValue - return the contained Value.
01667   const Value *getValue() const { return V; }
01668 
01669   static bool classof(const SDNode *N) {
01670     return N->getOpcode() == ISD::SRCVALUE;
01671   }
01672 };
01673 
01674 class MDNodeSDNode : public SDNode {
01675   const MDNode *MD;
01676   friend class SelectionDAG;
01677   explicit MDNodeSDNode(const MDNode *md)
01678   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
01679   {}
01680 public:
01681 
01682   const MDNode *getMD() const { return MD; }
01683 
01684   static bool classof(const SDNode *N) {
01685     return N->getOpcode() == ISD::MDNODE_SDNODE;
01686   }
01687 };
01688 
01689 class RegisterSDNode : public SDNode {
01690   unsigned Reg;
01691   friend class SelectionDAG;
01692   RegisterSDNode(unsigned reg, EVT VT)
01693     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {
01694   }
01695 public:
01696 
01697   unsigned getReg() const { return Reg; }
01698 
01699   static bool classof(const SDNode *N) {
01700     return N->getOpcode() == ISD::Register;
01701   }
01702 };
01703 
01704 class RegisterMaskSDNode : public SDNode {
01705   // The memory for RegMask is not owned by the node.
01706   const uint32_t *RegMask;
01707   friend class SelectionDAG;
01708   RegisterMaskSDNode(const uint32_t *mask)
01709     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
01710       RegMask(mask) {}
01711 public:
01712 
01713   const uint32_t *getRegMask() const { return RegMask; }
01714 
01715   static bool classof(const SDNode *N) {
01716     return N->getOpcode() == ISD::RegisterMask;
01717   }
01718 };
01719 
01720 class BlockAddressSDNode : public SDNode {
01721   const BlockAddress *BA;
01722   int64_t Offset;
01723   unsigned char TargetFlags;
01724   friend class SelectionDAG;
01725   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
01726                      int64_t o, unsigned char Flags)
01727     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
01728              BA(ba), Offset(o), TargetFlags(Flags) {
01729   }
01730 public:
01731   const BlockAddress *getBlockAddress() const { return BA; }
01732   int64_t getOffset() const { return Offset; }
01733   unsigned char getTargetFlags() const { return TargetFlags; }
01734 
01735   static bool classof(const SDNode *N) {
01736     return N->getOpcode() == ISD::BlockAddress ||
01737            N->getOpcode() == ISD::TargetBlockAddress;
01738   }
01739 };
01740 
01741 class EHLabelSDNode : public SDNode {
01742   SDUse Chain;
01743   MCSymbol *Label;
01744   friend class SelectionDAG;
01745   EHLabelSDNode(unsigned Order, DebugLoc dl, SDValue ch, MCSymbol *L)
01746     : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {
01747     InitOperands(&Chain, ch);
01748   }
01749 public:
01750   MCSymbol *getLabel() const { return Label; }
01751 
01752   static bool classof(const SDNode *N) {
01753     return N->getOpcode() == ISD::EH_LABEL;
01754   }
01755 };
01756 
01757 class ExternalSymbolSDNode : public SDNode {
01758   const char *Symbol;
01759   unsigned char TargetFlags;
01760 
01761   friend class SelectionDAG;
01762   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
01763     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
01764              0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
01765   }
01766 public:
01767 
01768   const char *getSymbol() const { return Symbol; }
01769   unsigned char getTargetFlags() const { return TargetFlags; }
01770 
01771   static bool classof(const SDNode *N) {
01772     return N->getOpcode() == ISD::ExternalSymbol ||
01773            N->getOpcode() == ISD::TargetExternalSymbol;
01774   }
01775 };
01776 
01777 class CondCodeSDNode : public SDNode {
01778   ISD::CondCode Condition;
01779   friend class SelectionDAG;
01780   explicit CondCodeSDNode(ISD::CondCode Cond)
01781     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
01782       Condition(Cond) {
01783   }
01784 public:
01785 
01786   ISD::CondCode get() const { return Condition; }
01787 
01788   static bool classof(const SDNode *N) {
01789     return N->getOpcode() == ISD::CONDCODE;
01790   }
01791 };
01792 
01793 /// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
01794 /// future and most targets don't support it.
01795 class CvtRndSatSDNode : public SDNode {
01796   ISD::CvtCode CvtCode;
01797   friend class SelectionDAG;
01798   explicit CvtRndSatSDNode(EVT VT, unsigned Order, DebugLoc dl,
01799                            ArrayRef<SDValue> Ops, ISD::CvtCode Code)
01800     : SDNode(ISD::CONVERT_RNDSAT, Order, dl, getSDVTList(VT), Ops),
01801       CvtCode(Code) {
01802     assert(Ops.size() == 5 && "wrong number of operations");
01803   }
01804 public:
01805   ISD::CvtCode getCvtCode() const { return CvtCode; }
01806 
01807   static bool classof(const SDNode *N) {
01808     return N->getOpcode() == ISD::CONVERT_RNDSAT;
01809   }
01810 };
01811 
01812 /// VTSDNode - This class is used to represent EVT's, which are used
01813 /// to parameterize some operations.
01814 class VTSDNode : public SDNode {
01815   EVT ValueType;
01816   friend class SelectionDAG;
01817   explicit VTSDNode(EVT VT)
01818     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
01819       ValueType(VT) {
01820   }
01821 public:
01822 
01823   EVT getVT() const { return ValueType; }
01824 
01825   static bool classof(const SDNode *N) {
01826     return N->getOpcode() == ISD::VALUETYPE;
01827   }
01828 };
01829 
01830 /// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
01831 ///
01832 class LSBaseSDNode : public MemSDNode {
01833   //! Operand array for load and store
01834   /*!
01835     \note Moving this array to the base class captures more
01836     common functionality shared between LoadSDNode and
01837     StoreSDNode
01838    */
01839   SDUse Ops[4];
01840 public:
01841   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
01842                SDValue *Operands, unsigned numOperands,
01843                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
01844                MachineMemOperand *MMO)
01845     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
01846     SubclassData |= AM << 2;
01847     assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
01848     InitOperands(Ops, Operands, numOperands);
01849     assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
01850            "Only indexed loads and stores have a non-undef offset operand");
01851   }
01852 
01853   const SDValue &getOffset() const {
01854     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
01855   }
01856 
01857   /// getAddressingMode - Return the addressing mode for this load or store:
01858   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
01859   ISD::MemIndexedMode getAddressingMode() const {
01860     return ISD::MemIndexedMode((SubclassData >> 2) & 7);
01861   }
01862 
01863   /// isIndexed - Return true if this is a pre/post inc/dec load/store.
01864   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
01865 
01866   /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
01867   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
01868 
01869   static bool classof(const SDNode *N) {
01870     return N->getOpcode() == ISD::LOAD ||
01871            N->getOpcode() == ISD::STORE;
01872   }
01873 };
01874 
01875 /// LoadSDNode - This class is used to represent ISD::LOAD nodes.
01876 ///
01877 class LoadSDNode : public LSBaseSDNode {
01878   friend class SelectionDAG;
01879   LoadSDNode(SDValue *ChainPtrOff, unsigned Order, DebugLoc dl, SDVTList VTs,
01880              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
01881              MachineMemOperand *MMO)
01882     : LSBaseSDNode(ISD::LOAD, Order, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) {
01883     SubclassData |= (unsigned short)ETy;
01884     assert(getExtensionType() == ETy && "LoadExtType encoding error!");
01885     assert(readMem() && "Load MachineMemOperand is not a load!");
01886     assert(!writeMem() && "Load MachineMemOperand is a store!");
01887   }
01888 public:
01889 
01890   /// getExtensionType - Return whether this is a plain node,
01891   /// or one of the varieties of value-extending loads.
01892   ISD::LoadExtType getExtensionType() const {
01893     return ISD::LoadExtType(SubclassData & 3);
01894   }
01895 
01896   const SDValue &getBasePtr() const { return getOperand(1); }
01897   const SDValue &getOffset() const { return getOperand(2); }
01898 
01899   static bool classof(const SDNode *N) {
01900     return N->getOpcode() == ISD::LOAD;
01901   }
01902 };
01903 
01904 /// StoreSDNode - This class is used to represent ISD::STORE nodes.
01905 ///
01906 class StoreSDNode : public LSBaseSDNode {
01907   friend class SelectionDAG;
01908   StoreSDNode(SDValue *ChainValuePtrOff, unsigned Order, DebugLoc dl,
01909               SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
01910               MachineMemOperand *MMO)
01911     : LSBaseSDNode(ISD::STORE, Order, dl, ChainValuePtrOff, 4,
01912                    VTs, AM, MemVT, MMO) {
01913     SubclassData |= (unsigned short)isTrunc;
01914     assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
01915     assert(!readMem() && "Store MachineMemOperand is a load!");
01916     assert(writeMem() && "Store MachineMemOperand is not a store!");
01917   }
01918 public:
01919 
01920   /// isTruncatingStore - Return true if the op does a truncation before store.
01921   /// For integers this is the same as doing a TRUNCATE and storing the result.
01922   /// For floats, it is the same as doing an FP_ROUND and storing the result.
01923   bool isTruncatingStore() const { return SubclassData & 1; }
01924 
01925   const SDValue &getValue() const { return getOperand(1); }
01926   const SDValue &getBasePtr() const { return getOperand(2); }
01927   const SDValue &getOffset() const { return getOperand(3); }
01928 
01929   static bool classof(const SDNode *N) {
01930     return N->getOpcode() == ISD::STORE;
01931   }
01932 };
01933 
01934 /// MaskedLoadStoreSDNode - This is a base class is used to represent MLOAD and
01935 /// MSTORE nodes
01936 ///
01937 class MaskedLoadStoreSDNode : public MemSDNode {
01938   // Operands
01939   SDUse Ops[4];
01940 public:
01941   friend class SelectionDAG;
01942   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
01943                    SDValue *Operands, unsigned numOperands, 
01944                    SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
01945     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
01946     InitOperands(Ops, Operands, numOperands);
01947   }
01948 
01949   // In the both nodes address is Op1, mask is Op2:
01950   // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
01951   // MaskedStoreSDNode (Chain, ptr, mask, data)
01952   // Mask is a vector of i1 elements
01953   const SDValue &getBasePtr() const { return getOperand(1); }
01954   const SDValue &getMask() const    { return getOperand(2); }
01955 
01956   static bool classof(const SDNode *N) {
01957     return N->getOpcode() == ISD::MLOAD ||
01958            N->getOpcode() == ISD::MSTORE;
01959   }
01960 };
01961 
01962 /// MaskedLoadSDNode - This class is used to represent an MLOAD node
01963 ///
01964 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
01965 public:
01966   friend class SelectionDAG;
01967   MaskedLoadSDNode(unsigned Order, DebugLoc dl,
01968                    SDValue *Operands, unsigned numOperands, 
01969                    SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
01970     : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, Operands, numOperands,
01971                             VTs, MemVT, MMO) 
01972   {}
01973 
01974   const SDValue &getSrc0() const { return getOperand(3); }
01975   static bool classof(const SDNode *N) {
01976     return N->getOpcode() == ISD::MLOAD;
01977   }
01978 };
01979 
01980 /// MaskedStoreSDNode - This class is used to represent an MSTORE node
01981 ///
01982 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
01983 
01984 public:
01985   friend class SelectionDAG;
01986   MaskedStoreSDNode(unsigned Order, DebugLoc dl,
01987                    SDValue *Operands, unsigned numOperands, 
01988                    SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
01989     : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, Operands, numOperands,
01990                             VTs, MemVT, MMO) 
01991   {}
01992 
01993   const SDValue &getData() const { return getOperand(3); }
01994 
01995   static bool classof(const SDNode *N) {
01996     return N->getOpcode() == ISD::MSTORE;
01997   }
01998 };
01999 
02000 /// MachineSDNode - An SDNode that represents everything that will be needed
02001 /// to construct a MachineInstr. These nodes are created during the
02002 /// instruction selection proper phase.
02003 ///
02004 class MachineSDNode : public SDNode {
02005 public:
02006   typedef MachineMemOperand **mmo_iterator;
02007 
02008 private:
02009   friend class SelectionDAG;
02010   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc DL, SDVTList VTs)
02011     : SDNode(Opc, Order, DL, VTs), MemRefs(nullptr), MemRefsEnd(nullptr) {}
02012 
02013   /// LocalOperands - Operands for this instruction, if they fit here. If
02014   /// they don't, this field is unused.
02015   SDUse LocalOperands[4];
02016 
02017   /// MemRefs - Memory reference descriptions for this instruction.
02018   mmo_iterator MemRefs;
02019   mmo_iterator MemRefsEnd;
02020 
02021 public:
02022   mmo_iterator memoperands_begin() const { return MemRefs; }
02023   mmo_iterator memoperands_end() const { return MemRefsEnd; }
02024   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
02025 
02026   /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
02027   /// list. This does not transfer ownership.
02028   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
02029     for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
02030       assert(*MMI && "Null mem ref detected!");
02031     MemRefs = NewMemRefs;
02032     MemRefsEnd = NewMemRefsEnd;
02033   }
02034 
02035   static bool classof(const SDNode *N) {
02036     return N->isMachineOpcode();
02037   }
02038 };
02039 
02040 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
02041                                             SDNode, ptrdiff_t> {
02042   const SDNode *Node;
02043   unsigned Operand;
02044 
02045   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
02046 public:
02047   bool operator==(const SDNodeIterator& x) const {
02048     return Operand == x.Operand;
02049   }
02050   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
02051 
02052   const SDNodeIterator &operator=(const SDNodeIterator &I) {
02053     assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
02054     Operand = I.Operand;
02055     return *this;
02056   }
02057 
02058   pointer operator*() const {
02059     return Node->getOperand(Operand).getNode();
02060   }
02061   pointer operator->() const { return operator*(); }
02062 
02063   SDNodeIterator& operator++() {                // Preincrement
02064     ++Operand;
02065     return *this;
02066   }
02067   SDNodeIterator operator++(int) { // Postincrement
02068     SDNodeIterator tmp = *this; ++*this; return tmp;
02069   }
02070   size_t operator-(SDNodeIterator Other) const {
02071     assert(Node == Other.Node &&
02072            "Cannot compare iterators of two different nodes!");
02073     return Operand - Other.Operand;
02074   }
02075 
02076   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
02077   static SDNodeIterator end  (const SDNode *N) {
02078     return SDNodeIterator(N, N->getNumOperands());
02079   }
02080 
02081   unsigned getOperand() const { return Operand; }
02082   const SDNode *getNode() const { return Node; }
02083 };
02084 
02085 template <> struct GraphTraits<SDNode*> {
02086   typedef SDNode NodeType;
02087   typedef SDNodeIterator ChildIteratorType;
02088   static inline NodeType *getEntryNode(SDNode *N) { return N; }
02089   static inline ChildIteratorType child_begin(NodeType *N) {
02090     return SDNodeIterator::begin(N);
02091   }
02092   static inline ChildIteratorType child_end(NodeType *N) {
02093     return SDNodeIterator::end(N);
02094   }
02095 };
02096 
02097 /// LargestSDNode - The largest SDNode class.
02098 ///
02099 typedef AtomicSDNode LargestSDNode;
02100 
02101 /// MostAlignedSDNode - The SDNode class with the greatest alignment
02102 /// requirement.
02103 ///
02104 typedef GlobalAddressSDNode MostAlignedSDNode;
02105 
02106 namespace ISD {
02107   /// isNormalLoad - Returns true if the specified node is a non-extending
02108   /// and unindexed load.
02109   inline bool isNormalLoad(const SDNode *N) {
02110     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
02111     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
02112       Ld->getAddressingMode() == ISD::UNINDEXED;
02113   }
02114 
02115   /// isNON_EXTLoad - Returns true if the specified node is a non-extending
02116   /// load.
02117   inline bool isNON_EXTLoad(const SDNode *N) {
02118     return isa<LoadSDNode>(N) &&
02119       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
02120   }
02121 
02122   /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
02123   ///
02124   inline bool isEXTLoad(const SDNode *N) {
02125     return isa<LoadSDNode>(N) &&
02126       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
02127   }
02128 
02129   /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
02130   ///
02131   inline bool isSEXTLoad(const SDNode *N) {
02132     return isa<LoadSDNode>(N) &&
02133       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
02134   }
02135 
02136   /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
02137   ///
02138   inline bool isZEXTLoad(const SDNode *N) {
02139     return isa<LoadSDNode>(N) &&
02140       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
02141   }
02142 
02143   /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
02144   ///
02145   inline bool isUNINDEXEDLoad(const SDNode *N) {
02146     return isa<LoadSDNode>(N) &&
02147       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
02148   }
02149 
02150   /// isNormalStore - Returns true if the specified node is a non-truncating
02151   /// and unindexed store.
02152   inline bool isNormalStore(const SDNode *N) {
02153     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
02154     return St && !St->isTruncatingStore() &&
02155       St->getAddressingMode() == ISD::UNINDEXED;
02156   }
02157 
02158   /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
02159   /// store.
02160   inline bool isNON_TRUNCStore(const SDNode *N) {
02161     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
02162   }
02163 
02164   /// isTRUNCStore - Returns true if the specified node is a truncating
02165   /// store.
02166   inline bool isTRUNCStore(const SDNode *N) {
02167     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
02168   }
02169 
02170   /// isUNINDEXEDStore - Returns true if the specified node is an
02171   /// unindexed store.
02172   inline bool isUNINDEXEDStore(const SDNode *N) {
02173     return isa<StoreSDNode>(N) &&
02174       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
02175   }
02176 }
02177 
02178 } // end llvm namespace
02179 
02180 #endif