98void SelectionDAG::DAGNodeDeletedListener::anchor() {}
99void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101#define DEBUG_TYPE "selectiondag"
105 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
108 cl::desc(
"Number limit for gluing ld/st of memcpy."),
113 cl::desc(
"DAG combiner limit number of steps when searching DAG "
114 "for predecessor nodes"));
152 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
154 N->getValueType(0).getVectorElementType().getSizeInBits();
155 SplatVal = OptAPInt->
trunc(EltSize);
165 unsigned SplatBitSize;
167 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
172 const bool IsBigEndian =
false;
173 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
174 EltSize, IsBigEndian) &&
175 EltSize == SplatBitSize;
184 N =
N->getOperand(0).getNode();
193 unsigned i = 0, e =
N->getNumOperands();
196 while (i != e &&
N->getOperand(i).isUndef())
200 if (i == e)
return false;
212 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
213 if (OptAPInt->countr_one() < EltSize)
221 for (++i; i != e; ++i)
222 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 N =
N->getOperand(0).getNode();
239 bool IsAllUndef =
true;
252 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
253 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
254 if (OptAPInt->countr_zero() < EltSize)
302 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
304 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
305 if (EltSize <= NewEltSize)
309 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
314 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
327 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
328 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
330 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
341 if (
N->getNumOperands() == 0)
347 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
350template <
typename ConstNodeType>
352 std::function<
bool(ConstNodeType *)> Match,
353 bool AllowUndefs,
bool AllowTruncation) {
363 EVT SVT =
Op.getValueType().getScalarType();
364 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
365 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
372 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
387 bool AllowUndefs,
bool AllowTypeMismatch) {
388 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
394 return Match(LHSCst, RHSCst);
397 if (LHS.getOpcode() != RHS.getOpcode() ||
403 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
406 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
407 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
410 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
415 if (!Match(LHSCst, RHSCst))
452 switch (VecReduceOpcode) {
457 case ISD::VP_REDUCE_FADD:
458 case ISD::VP_REDUCE_SEQ_FADD:
462 case ISD::VP_REDUCE_FMUL:
463 case ISD::VP_REDUCE_SEQ_FMUL:
466 case ISD::VP_REDUCE_ADD:
469 case ISD::VP_REDUCE_MUL:
472 case ISD::VP_REDUCE_AND:
475 case ISD::VP_REDUCE_OR:
478 case ISD::VP_REDUCE_XOR:
481 case ISD::VP_REDUCE_SMAX:
484 case ISD::VP_REDUCE_SMIN:
487 case ISD::VP_REDUCE_UMAX:
490 case ISD::VP_REDUCE_UMIN:
493 case ISD::VP_REDUCE_FMAX:
496 case ISD::VP_REDUCE_FMIN:
499 case ISD::VP_REDUCE_FMAXIMUM:
502 case ISD::VP_REDUCE_FMINIMUM:
511#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
514#include "llvm/IR/VPIntrinsics.def"
522#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
523#define VP_PROPERTY_BINARYOP return true;
524#define END_REGISTER_VP_SDNODE(VPSD) break;
525#include "llvm/IR/VPIntrinsics.def"
534 case ISD::VP_REDUCE_ADD:
535 case ISD::VP_REDUCE_MUL:
536 case ISD::VP_REDUCE_AND:
537 case ISD::VP_REDUCE_OR:
538 case ISD::VP_REDUCE_XOR:
539 case ISD::VP_REDUCE_SMAX:
540 case ISD::VP_REDUCE_SMIN:
541 case ISD::VP_REDUCE_UMAX:
542 case ISD::VP_REDUCE_UMIN:
543 case ISD::VP_REDUCE_FMAX:
544 case ISD::VP_REDUCE_FMIN:
545 case ISD::VP_REDUCE_FMAXIMUM:
546 case ISD::VP_REDUCE_FMINIMUM:
547 case ISD::VP_REDUCE_FADD:
548 case ISD::VP_REDUCE_FMUL:
549 case ISD::VP_REDUCE_SEQ_FADD:
550 case ISD::VP_REDUCE_SEQ_FMUL:
560#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
563#include "llvm/IR/VPIntrinsics.def"
572#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
575#include "llvm/IR/VPIntrinsics.def"
585#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
586#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
587#define END_REGISTER_VP_SDNODE(VPOPC) break;
588#include "llvm/IR/VPIntrinsics.def"
597#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
598#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
599#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
600#include "llvm/IR/VPIntrinsics.def"
647 bool isIntegerLike) {
672 bool IsInteger =
Type.isInteger();
677 unsigned Op = Op1 | Op2;
693 bool IsInteger =
Type.isInteger();
728 ID.AddPointer(VTList.
VTs);
734 for (
const auto &
Op :
Ops) {
735 ID.AddPointer(
Op.getNode());
736 ID.AddInteger(
Op.getResNo());
743 for (
const auto &
Op :
Ops) {
744 ID.AddPointer(
Op.getNode());
745 ID.AddInteger(
Op.getResNo());
758 switch (
N->getOpcode()) {
767 ID.AddPointer(
C->getConstantIntValue());
768 ID.AddBoolean(
C->isOpaque());
832 ID.AddInteger(LD->getMemoryVT().getRawBits());
833 ID.AddInteger(LD->getRawSubclassData());
834 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
835 ID.AddInteger(LD->getMemOperand()->getFlags());
840 ID.AddInteger(ST->getMemoryVT().getRawBits());
841 ID.AddInteger(ST->getRawSubclassData());
842 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
843 ID.AddInteger(ST->getMemOperand()->getFlags());
854 case ISD::VP_LOAD_FF: {
856 ID.AddInteger(LD->getMemoryVT().getRawBits());
857 ID.AddInteger(LD->getRawSubclassData());
858 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
859 ID.AddInteger(LD->getMemOperand()->getFlags());
862 case ISD::VP_STORE: {
870 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
877 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
884 case ISD::VP_GATHER: {
892 case ISD::VP_SCATTER: {
991 ID.AddInteger(MN->getRawSubclassData());
992 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
993 ID.AddInteger(MN->getMemOperand()->getFlags());
994 ID.AddInteger(MN->getMemoryVT().getRawBits());
1017 if (
N->getValueType(0) == MVT::Glue)
1020 switch (
N->getOpcode()) {
1028 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1029 if (
N->getValueType(i) == MVT::Glue)
1046 if (
Node.use_empty())
1061 while (!DeadNodes.
empty()) {
1070 DUL->NodeDeleted(
N,
nullptr);
1073 RemoveNodeFromCSEMaps(
N);
1104 RemoveNodeFromCSEMaps(
N);
1108 DeleteNodeNotInCSEMaps(
N);
1111void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1112 assert(
N->getIterator() != AllNodes.begin() &&
1113 "Cannot delete the entry node!");
1114 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1123 assert(!(V->isVariadic() && isParameter));
1125 ByvalParmDbgValues.push_back(V);
1127 DbgValues.push_back(V);
1130 DbgValMap[
Node].push_back(V);
1134 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1135 if (
I == DbgValMap.end())
1137 for (
auto &Val:
I->second)
1138 Val->setIsInvalidated();
1142void SelectionDAG::DeallocateNode(
SDNode *
N) {
1165void SelectionDAG::verifyNode(
SDNode *
N)
const {
1166 switch (
N->getOpcode()) {
1168 if (
N->isTargetOpcode())
1172 EVT VT =
N->getValueType(0);
1173 assert(
N->getNumValues() == 1 &&
"Too many results!");
1175 "Wrong return type!");
1176 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1177 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1178 "Mismatched operand types!");
1180 "Wrong operand type!");
1182 "Wrong return type size");
1186 assert(
N->getNumValues() == 1 &&
"Too many results!");
1187 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1188 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1189 "Wrong number of operands!");
1190 EVT EltVT =
N->getValueType(0).getVectorElementType();
1191 for (
const SDUse &
Op :
N->ops()) {
1192 assert((
Op.getValueType() == EltVT ||
1193 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1194 EltVT.
bitsLE(
Op.getValueType()))) &&
1195 "Wrong operand type!");
1196 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1197 "Operands must all have the same type");
1209void SelectionDAG::InsertNode(SDNode *
N) {
1210 AllNodes.push_back(
N);
1212 N->PersistentId = NextPersistentId++;
1216 DUL->NodeInserted(
N);
1223bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1224 bool Erased =
false;
1225 switch (
N->getOpcode()) {
1229 "Cond code doesn't exist!");
1238 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1244 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1250 Erased = ExtendedValueTypeNodes.erase(VT);
1261 Erased = CSEMap.RemoveNode(
N);
1268 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1283SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1287 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1288 if (Existing !=
N) {
1299 DUL->NodeDeleted(
N, Existing);
1300 DeleteNodeNotInCSEMaps(
N);
1307 DUL->NodeUpdated(
N);
1314SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1320 FoldingSetNodeID
ID;
1323 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1325 Node->intersectFlagsWith(
N->getFlags());
1333SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1340 FoldingSetNodeID
ID;
1343 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1345 Node->intersectFlagsWith(
N->getFlags());
1358 FoldingSetNodeID
ID;
1361 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1363 Node->intersectFlagsWith(
N->getFlags());
1376 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1379 InsertNode(&EntryNode);
1391 SDAGISelPass = PassPtr;
1395 LibInfo = LibraryInfo;
1396 Libcalls = LibcallsInfo;
1397 Context = &MF->getFunction().getContext();
1402 FnVarLocs = VarLocs;
1406 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1408 OperandRecycler.clear(OperandAllocator);
1416void SelectionDAG::allnodes_clear() {
1417 assert(&*AllNodes.begin() == &EntryNode);
1418 AllNodes.remove(AllNodes.begin());
1419 while (!AllNodes.empty())
1420 DeallocateNode(&AllNodes.front());
1422 NextPersistentId = 0;
1428 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1430 switch (
N->getOpcode()) {
1435 "debug location. Use another overload.");
1442 const SDLoc &
DL,
void *&InsertPos) {
1443 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1445 switch (
N->getOpcode()) {
1451 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1458 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1459 N->setDebugLoc(
DL.getDebugLoc());
1468 OperandRecycler.clear(OperandAllocator);
1469 OperandAllocator.Reset();
1472 ExtendedValueTypeNodes.clear();
1473 ExternalSymbols.clear();
1474 TargetExternalSymbols.clear();
1480 EntryNode.UseList =
nullptr;
1481 InsertNode(&EntryNode);
1487 return VT.
bitsGT(
Op.getValueType())
1493std::pair<SDValue, SDValue>
1497 "Strict no-op FP extend/round not allowed.");
1504 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1508 return VT.
bitsGT(
Op.getValueType()) ?
1514 return VT.
bitsGT(
Op.getValueType()) ?
1520 return VT.
bitsGT(
Op.getValueType()) ?
1528 auto Type =
Op.getValueType();
1532 auto Size =
Op.getValueSizeInBits();
1543 auto Type =
Op.getValueType();
1547 auto Size =
Op.getValueSizeInBits();
1558 auto Type =
Op.getValueType();
1562 auto Size =
Op.getValueSizeInBits();
1576 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1580 EVT OpVT =
Op.getValueType();
1582 "Cannot getZeroExtendInReg FP types");
1584 "getZeroExtendInReg type should be vector iff the operand "
1588 "Vector element counts must match in getZeroExtendInReg");
1606 EVT OpVT =
Op.getValueType();
1608 "Cannot getVPZeroExtendInReg FP types");
1610 "getVPZeroExtendInReg type and operand type should be vector!");
1612 "Vector element counts must match in getZeroExtendInReg");
1651 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1662 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1664 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1673 switch (TLI->getBooleanContents(OpVT)) {
1684 bool isT,
bool isO) {
1690 bool isT,
bool isO) {
1691 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1695 EVT VT,
bool isT,
bool isO) {
1712 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1718 Elt = ConstantInt::get(*
getContext(), NewVal);
1730 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1737 "Can only handle an even split!");
1741 for (
unsigned i = 0; i != Parts; ++i)
1743 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1744 ViaEltVT, isT, isO));
1749 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1760 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1761 ViaEltVT, isT, isO));
1766 std::reverse(EltParts.
begin(), EltParts.
end());
1785 "APInt size does not match type size!");
1794 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1799 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1800 CSEMap.InsertNode(
N, IP);
1812 bool isT,
bool isO) {
1820 IsTarget, IsOpaque);
1852 EVT VT,
bool isTarget) {
1873 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1878 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1879 CSEMap.InsertNode(
N, IP);
1893 if (EltVT == MVT::f32)
1895 if (EltVT == MVT::f64)
1897 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1898 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1909 EVT VT, int64_t
Offset,
bool isTargetGA,
1910 unsigned TargetFlags) {
1911 assert((TargetFlags == 0 || isTargetGA) &&
1912 "Cannot set target flags on target-independent globals");
1930 ID.AddInteger(TargetFlags);
1932 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1935 auto *
N = newSDNode<GlobalAddressSDNode>(
1936 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1937 CSEMap.InsertNode(
N, IP);
1951 auto *
N = newSDNode<DeactivationSymbolSDNode>(GV, VTs);
1952 CSEMap.InsertNode(
N, IP);
1964 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1967 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1968 CSEMap.InsertNode(
N, IP);
1974 unsigned TargetFlags) {
1975 assert((TargetFlags == 0 || isTarget) &&
1976 "Cannot set target flags on target-independent jump tables");
1982 ID.AddInteger(TargetFlags);
1984 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1987 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1988 CSEMap.InsertNode(
N, IP);
2002 bool isTarget,
unsigned TargetFlags) {
2003 assert((TargetFlags == 0 || isTarget) &&
2004 "Cannot set target flags on target-independent globals");
2013 ID.AddInteger(Alignment->value());
2016 ID.AddInteger(TargetFlags);
2018 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2021 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2023 CSEMap.InsertNode(
N, IP);
2032 bool isTarget,
unsigned TargetFlags) {
2033 assert((TargetFlags == 0 || isTarget) &&
2034 "Cannot set target flags on target-independent globals");
2041 ID.AddInteger(Alignment->value());
2043 C->addSelectionDAGCSEId(
ID);
2044 ID.AddInteger(TargetFlags);
2046 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2049 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2051 CSEMap.InsertNode(
N, IP);
2061 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2064 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2065 CSEMap.InsertNode(
N, IP);
2072 ValueTypeNodes.size())
2079 N = newSDNode<VTSDNode>(VT);
2085 SDNode *&
N = ExternalSymbols[Sym];
2087 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2101 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2107 unsigned TargetFlags) {
2109 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2111 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2117 EVT VT,
unsigned TargetFlags) {
2123 if ((
unsigned)
Cond >= CondCodeNodes.size())
2124 CondCodeNodes.resize(
Cond+1);
2126 if (!CondCodeNodes[
Cond]) {
2127 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2128 CondCodeNodes[
Cond] =
N;
2137 "APInt size does not match type size!");
2155template <
typename Ty>
2157 EVT VT, Ty Quantity) {
2158 if (Quantity.isScalable())
2162 return DAG.
getConstant(Quantity.getKnownMinValue(),
DL, VT);
2188 const APInt &StepVal) {
2212 "Must have the same number of vector elements as mask elements!");
2214 "Invalid VECTOR_SHUFFLE");
2222 int NElts = Mask.size();
2224 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2225 "Index out of range");
2233 for (
int i = 0; i != NElts; ++i)
2234 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2241 if (TLI->hasVectorBlend()) {
2250 for (
int i = 0; i < NElts; ++i) {
2251 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2255 if (UndefElements[MaskVec[i] -
Offset]) {
2261 if (!UndefElements[i])
2266 BlendSplat(N1BV, 0);
2268 BlendSplat(N2BV, NElts);
2273 bool AllLHS =
true, AllRHS =
true;
2275 for (
int i = 0; i != NElts; ++i) {
2276 if (MaskVec[i] >= NElts) {
2281 }
else if (MaskVec[i] >= 0) {
2285 if (AllLHS && AllRHS)
2287 if (AllLHS && !N2Undef)
2300 bool Identity =
true, AllSame =
true;
2301 for (
int i = 0; i != NElts; ++i) {
2302 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2303 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2305 if (Identity && NElts)
2338 if (AllSame && SameNumElts) {
2339 EVT BuildVT = BV->getValueType(0);
2356 for (
int i = 0; i != NElts; ++i)
2357 ID.AddInteger(MaskVec[i]);
2360 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2366 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2369 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2371 createOperands(
N,
Ops);
2373 CSEMap.InsertNode(
N, IP);
2394 ID.AddInteger(Reg.id());
2396 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2399 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2400 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2401 CSEMap.InsertNode(
N, IP);
2409 ID.AddPointer(RegMask);
2411 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2414 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2415 CSEMap.InsertNode(
N, IP);
2430 ID.AddPointer(Label);
2432 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2437 createOperands(
N,
Ops);
2439 CSEMap.InsertNode(
N, IP);
2445 int64_t
Offset,
bool isTarget,
2446 unsigned TargetFlags) {
2454 ID.AddInteger(TargetFlags);
2456 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2459 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2460 CSEMap.InsertNode(
N, IP);
2471 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2474 auto *
N = newSDNode<SrcValueSDNode>(V);
2475 CSEMap.InsertNode(
N, IP);
2486 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2489 auto *
N = newSDNode<MDNodeSDNode>(MD);
2490 CSEMap.InsertNode(
N, IP);
2496 if (VT == V.getValueType())
2503 unsigned SrcAS,
unsigned DestAS) {
2508 ID.AddInteger(SrcAS);
2509 ID.AddInteger(DestAS);
2512 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2516 VTs, SrcAS, DestAS);
2517 createOperands(
N,
Ops);
2519 CSEMap.InsertNode(
N, IP);
2531 EVT OpTy =
Op.getValueType();
2533 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2542 EVT VT =
Node->getValueType(0);
2551 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2589 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2591 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2599 if (RedAlign > StackAlign) {
2602 unsigned NumIntermediates;
2603 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2604 NumIntermediates, RegisterVT);
2606 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2607 if (RedAlign2 < RedAlign)
2608 RedAlign = RedAlign2;
2613 RedAlign = std::min(RedAlign, StackAlign);
2628 false,
nullptr, StackID);
2643 "Don't know how to choose the maximum size when creating a stack "
2652 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2660 auto GetUndefBooleanConstant = [&]() {
2662 TLI->getBooleanContents(OpVT) ==
2699 return GetUndefBooleanConstant();
2704 return GetUndefBooleanConstant();
2713 const APInt &C2 = N2C->getAPIntValue();
2715 const APInt &C1 = N1C->getAPIntValue();
2725 if (N1CFP && N2CFP) {
2730 return GetUndefBooleanConstant();
2735 return GetUndefBooleanConstant();
2741 return GetUndefBooleanConstant();
2746 return GetUndefBooleanConstant();
2751 return GetUndefBooleanConstant();
2757 return GetUndefBooleanConstant();
2784 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2786 return getSetCC(dl, VT, N2, N1, SwappedCond);
2787 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2802 return GetUndefBooleanConstant();
2813 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2822 unsigned Opc =
Op.getOpcode();
2831 return (NoFPClass & TestMask) == TestMask;
2838 return Op->getFlags().hasNoNaNs();
2864 unsigned Depth)
const {
2872 const APInt &DemandedElts,
2873 unsigned Depth)
const {
2880 unsigned Depth )
const {
2886 unsigned Depth)
const {
2891 const APInt &DemandedElts,
2892 unsigned Depth)
const {
2893 EVT VT =
Op.getValueType();
2900 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2901 if (!DemandedElts[EltIdx])
2905 KnownZeroElements.
setBit(EltIdx);
2907 return KnownZeroElements;
2917 unsigned Opcode = V.getOpcode();
2918 EVT VT = V.getValueType();
2921 "scalable demanded bits are ignored");
2933 UndefElts = V.getOperand(0).isUndef()
2942 APInt UndefLHS, UndefRHS;
2951 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
2952 UndefElts = UndefLHS | UndefRHS;
2965 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
2982 for (
unsigned i = 0; i != NumElts; ++i) {
2988 if (!DemandedElts[i])
2990 if (Scl && Scl !=
Op)
3001 for (
int i = 0; i != (int)NumElts; ++i) {
3007 if (!DemandedElts[i])
3009 if (M < (
int)NumElts)
3012 DemandedRHS.
setBit(M - NumElts);
3024 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
3026 return (SrcElts.popcount() == 1) ||
3028 (SrcElts & SrcUndefs).
isZero());
3030 if (!DemandedLHS.
isZero())
3031 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3032 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3038 if (Src.getValueType().isScalableVector())
3040 uint64_t Idx = V.getConstantOperandVal(1);
3041 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3043 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3045 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3056 if (Src.getValueType().isScalableVector())
3060 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3062 UndefElts = UndefSrcElts.
trunc(NumElts);
3069 EVT SrcVT = Src.getValueType();
3079 if ((
BitWidth % SrcBitWidth) == 0) {
3081 unsigned Scale =
BitWidth / SrcBitWidth;
3083 APInt ScaledDemandedElts =
3085 for (
unsigned I = 0;
I != Scale; ++
I) {
3089 SubDemandedElts &= ScaledDemandedElts;
3093 if (!SubUndefElts.
isZero())
3107 EVT VT = V.getValueType();
3117 (AllowUndefs || !UndefElts);
3123 EVT VT = V.getValueType();
3124 unsigned Opcode = V.getOpcode();
3145 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3160 if (!SVN->isSplat())
3162 int Idx = SVN->getSplatIndex();
3163 int NumElts = V.getValueType().getVectorNumElements();
3164 SplatIdx = Idx % NumElts;
3165 return V.getOperand(Idx / NumElts);
3177 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3180 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3181 if (LegalSVT.
bitsLT(SVT))
3189std::optional<ConstantRange>
3191 unsigned Depth)
const {
3194 "Unknown shift node");
3196 unsigned BitWidth = V.getScalarValueSizeInBits();
3199 const APInt &ShAmt = Cst->getAPIntValue();
3201 return std::nullopt;
3206 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3207 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3208 if (!DemandedElts[i])
3212 MinAmt = MaxAmt =
nullptr;
3215 const APInt &ShAmt = SA->getAPIntValue();
3217 return std::nullopt;
3218 if (!MinAmt || MinAmt->
ugt(ShAmt))
3220 if (!MaxAmt || MaxAmt->ult(ShAmt))
3223 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3224 "Failed to find matching min/max shift amounts");
3225 if (MinAmt && MaxAmt)
3235 return std::nullopt;
3238std::optional<unsigned>
3240 unsigned Depth)
const {
3243 "Unknown shift node");
3244 if (std::optional<ConstantRange> AmtRange =
3246 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3247 return ShAmt->getZExtValue();
3248 return std::nullopt;
3251std::optional<unsigned>
3253 EVT VT = V.getValueType();
3260std::optional<unsigned>
3262 unsigned Depth)
const {
3265 "Unknown shift node");
3266 if (std::optional<ConstantRange> AmtRange =
3268 return AmtRange->getUnsignedMin().getZExtValue();
3269 return std::nullopt;
3272std::optional<unsigned>
3274 EVT VT = V.getValueType();
3281std::optional<unsigned>
3283 unsigned Depth)
const {
3286 "Unknown shift node");
3287 if (std::optional<ConstantRange> AmtRange =
3289 return AmtRange->getUnsignedMax().getZExtValue();
3290 return std::nullopt;
3293std::optional<unsigned>
3295 EVT VT = V.getValueType();
3306 EVT VT =
Op.getValueType();
3321 unsigned Depth)
const {
3322 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3326 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3336 assert((!
Op.getValueType().isFixedLengthVector() ||
3337 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3338 "Unexpected vector size");
3343 unsigned Opcode =
Op.getOpcode();
3351 "Expected SPLAT_VECTOR implicit truncation");
3358 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3360 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3367 const APInt &Step =
Op.getConstantOperandAPInt(0);
3376 const APInt MinNumElts =
3382 .
umul_ov(MinNumElts, Overflow);
3386 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3394 assert(!
Op.getValueType().isScalableVector());
3397 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3398 if (!DemandedElts[i])
3407 "Expected BUILD_VECTOR implicit truncation");
3431 assert(!
Op.getValueType().isScalableVector());
3434 APInt DemandedLHS, DemandedRHS;
3438 DemandedLHS, DemandedRHS))
3443 if (!!DemandedLHS) {
3451 if (!!DemandedRHS) {
3460 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3465 if (
Op.getValueType().isScalableVector())
3469 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3471 unsigned NumSubVectors =
Op.getNumOperands();
3472 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3474 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3475 if (!!DemandedSub) {
3487 if (
Op.getValueType().isScalableVector())
3494 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3496 APInt DemandedSrcElts = DemandedElts;
3497 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3500 if (!!DemandedSubElts) {
3505 if (!!DemandedSrcElts) {
3515 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3518 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3519 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3524 if (
Op.getValueType().isScalableVector())
3528 if (DemandedElts != 1)
3539 if (
Op.getValueType().isScalableVector())
3559 if ((
BitWidth % SubBitWidth) == 0) {
3566 unsigned SubScale =
BitWidth / SubBitWidth;
3567 APInt SubDemandedElts(NumElts * SubScale, 0);
3568 for (
unsigned i = 0; i != NumElts; ++i)
3569 if (DemandedElts[i])
3570 SubDemandedElts.
setBit(i * SubScale);
3572 for (
unsigned i = 0; i != SubScale; ++i) {
3575 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3576 Known.
insertBits(Known2, SubBitWidth * Shifts);
3581 if ((SubBitWidth %
BitWidth) == 0) {
3582 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3587 unsigned SubScale = SubBitWidth /
BitWidth;
3588 APInt SubDemandedElts =
3593 for (
unsigned i = 0; i != NumElts; ++i)
3594 if (DemandedElts[i]) {
3595 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3626 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3630 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3636 if (
Op->getFlags().hasNoSignedWrap() &&
3637 Op.getOperand(0) ==
Op.getOperand(1) &&
3664 unsigned SignBits1 =
3668 unsigned SignBits0 =
3674 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3677 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3678 if (
Op.getResNo() == 0)
3685 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3688 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3689 if (
Op.getResNo() == 0)
3742 if (
Op.getResNo() != 1)
3748 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3757 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3759 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3769 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3770 bool NSW =
Op->getFlags().hasNoSignedWrap();
3777 if (std::optional<unsigned> ShMinAmt =
3786 Op->getFlags().hasExact());
3789 if (std::optional<unsigned> ShMinAmt =
3797 Op->getFlags().hasExact());
3803 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3818 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3824 DemandedElts,
Depth + 1);
3845 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3848 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3849 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3852 Known = Known2.
concat(Known);
3866 if (
Op.getResNo() == 0)
3897 unsigned MinRedundantSignBits =
3901 Known =
Range.toKnownBits();
3931 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3936 !
Op.getValueType().isScalableVector()) {
3949 for (
unsigned i = 0; i != NumElts; ++i) {
3950 if (!DemandedElts[i])
3960 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3979 }
else if (
Op.getResNo() == 0) {
3980 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
3981 KnownBits KnownScalarMemory(ScalarMemorySize);
3982 if (
const MDNode *MD = LD->getRanges())
3993 Known = KnownScalarMemory;
4000 if (
Op.getValueType().isScalableVector())
4002 EVT InVT =
Op.getOperand(0).getValueType();
4014 if (
Op.getValueType().isScalableVector())
4016 EVT InVT =
Op.getOperand(0).getValueType();
4032 if (
Op.getValueType().isScalableVector())
4034 EVT InVT =
Op.getOperand(0).getValueType();
4069 Known.
Zero |= (~InMask);
4070 Known.
One &= (~Known.Zero);
4090 if ((NoFPClass & NegativeTestMask) == NegativeTestMask) {
4096 if ((NoFPClass & PositiveTestMask) == PositiveTestMask) {
4113 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4114 Flags.hasNoUnsignedWrap(), Known, Known2);
4121 if (
Op.getResNo() == 1) {
4123 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4132 "We only compute knownbits for the difference here.");
4139 Borrow = Borrow.
trunc(1);
4153 if (
Op.getResNo() == 1) {
4155 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4164 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4174 Carry = Carry.
trunc(1);
4210 const unsigned Index =
Op.getConstantOperandVal(1);
4211 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4218 Known = Known.
trunc(EltBitWidth);
4234 Known = Known.
trunc(EltBitWidth);
4240 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4250 if (
Op.getValueType().isScalableVector())
4259 bool DemandedVal =
true;
4260 APInt DemandedVecElts = DemandedElts;
4262 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4263 unsigned EltIdx = CEltNo->getZExtValue();
4264 DemandedVal = !!DemandedElts[EltIdx];
4272 if (!!DemandedVecElts) {
4290 Known = Known2.
abs();
4323 if (CstLow && CstHigh) {
4328 const APInt &ValueHigh = CstHigh->getAPIntValue();
4329 if (ValueLow.
sle(ValueHigh)) {
4332 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4355 if (IsMax && CstLow) {
4385 if (
Op.getResNo() == 0) {
4387 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4388 KnownBits KnownScalarMemory(ScalarMemorySize);
4389 if (
const MDNode *MD = AT->getRanges())
4392 switch (AT->getExtensionType()) {
4400 switch (TLI->getExtendForAtomicOps()) {
4413 Known = KnownScalarMemory;
4421 if (
Op.getResNo() == 1) {
4426 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4447 if (
Op.getResNo() == 0) {
4449 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4471 if (
Op.getValueType().isScalableVector())
4475 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4617 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4625 if (
C &&
C->getAPIntValue() == 1)
4635 if (
C &&
C->getAPIntValue().isSignMask())
4647 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4648 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4656 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4694 return C1->getValueAPF().getExactLog2Abs() >= 0;
4703 EVT VT =
Op.getValueType();
4715 unsigned Depth)
const {
4716 EVT VT =
Op.getValueType();
4721 unsigned FirstAnswer = 1;
4724 "DemandedElts for scalable vectors must be 1 to represent all lanes");
4727 const APInt &Val =
C->getAPIntValue();
4737 unsigned Opcode =
Op.getOpcode();
4742 return VTBits-Tmp+1;
4756 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4758 if (NumSrcSignBits > (NumSrcBits - VTBits))
4759 return NumSrcSignBits - (NumSrcBits - VTBits);
4765 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4766 if (!DemandedElts[i])
4773 APInt T =
C->getAPIntValue().trunc(VTBits);
4774 Tmp2 =
T.getNumSignBits();
4778 if (
SrcOp.getValueSizeInBits() != VTBits) {
4780 "Expected BUILD_VECTOR implicit truncation");
4781 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4782 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4785 Tmp = std::min(Tmp, Tmp2);
4796 Tmp = std::min(Tmp, Tmp2);
4803 APInt DemandedLHS, DemandedRHS;
4807 DemandedLHS, DemandedRHS))
4810 Tmp = std::numeric_limits<unsigned>::max();
4813 if (!!DemandedRHS) {
4815 Tmp = std::min(Tmp, Tmp2);
4820 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4836 if (VTBits == SrcBits)
4842 if ((SrcBits % VTBits) == 0) {
4845 unsigned Scale = SrcBits / VTBits;
4846 APInt SrcDemandedElts =
4856 for (
unsigned i = 0; i != NumElts; ++i)
4857 if (DemandedElts[i]) {
4858 unsigned SubOffset = i % Scale;
4859 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4860 SubOffset = SubOffset * VTBits;
4861 if (Tmp <= SubOffset)
4863 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4873 return VTBits - Tmp + 1;
4875 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4882 return std::max(Tmp, Tmp2);
4887 EVT SrcVT = Src.getValueType();
4895 if (std::optional<unsigned> ShAmt =
4897 Tmp = std::min(Tmp + *ShAmt, VTBits);
4900 if (std::optional<ConstantRange> ShAmtRange =
4902 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4903 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4914 unsigned SizeDifference =
4916 if (SizeDifference <= MinShAmt) {
4917 Tmp = SizeDifference +
4920 return Tmp - MaxShAmt;
4926 return Tmp - MaxShAmt;
4936 FirstAnswer = std::min(Tmp, Tmp2);
4946 if (Tmp == 1)
return 1;
4948 return std::min(Tmp, Tmp2);
4951 if (Tmp == 1)
return 1;
4953 return std::min(Tmp, Tmp2);
4965 if (CstLow && CstHigh) {
4970 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4971 return std::min(Tmp, Tmp2);
4980 return std::min(Tmp, Tmp2);
4988 return std::min(Tmp, Tmp2);
4992 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
5003 if (
Op.getResNo() != 1)
5009 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
5017 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
5019 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
5034 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
5038 RotAmt = (VTBits - RotAmt) % VTBits;
5042 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
5049 if (Tmp == 1)
return 1;
5054 if (CRHS->isAllOnes()) {
5060 if ((Known.
Zero | 1).isAllOnes())
5070 if (Tmp2 == 1)
return 1;
5074 return std::min(Tmp, Tmp2) - 1;
5077 if (Tmp2 == 1)
return 1;
5082 if (CLHS->isZero()) {
5087 if ((Known.
Zero | 1).isAllOnes())
5101 if (Tmp == 1)
return 1;
5102 return std::min(Tmp, Tmp2) - 1;
5106 if (SignBitsOp0 == 1)
5109 if (SignBitsOp1 == 1)
5111 unsigned OutValidBits =
5112 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5113 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5121 return std::min(Tmp, Tmp2);
5130 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5132 if (NumSrcSignBits > (NumSrcBits - VTBits))
5133 return NumSrcSignBits - (NumSrcBits - VTBits);
5140 const int BitWidth =
Op.getValueSizeInBits();
5141 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5145 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5160 bool DemandedVal =
true;
5161 APInt DemandedVecElts = DemandedElts;
5163 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5164 unsigned EltIdx = CEltNo->getZExtValue();
5165 DemandedVal = !!DemandedElts[EltIdx];
5168 Tmp = std::numeric_limits<unsigned>::max();
5174 Tmp = std::min(Tmp, Tmp2);
5176 if (!!DemandedVecElts) {
5178 Tmp = std::min(Tmp, Tmp2);
5180 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5190 const unsigned BitWidth =
Op.getValueSizeInBits();
5191 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5204 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5214 APInt DemandedSrcElts;
5215 if (Src.getValueType().isScalableVector())
5216 DemandedSrcElts =
APInt(1, 1);
5219 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5220 DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5229 Tmp = std::numeric_limits<unsigned>::max();
5230 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5232 unsigned NumSubVectors =
Op.getNumOperands();
5233 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5235 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5239 Tmp = std::min(Tmp, Tmp2);
5241 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5252 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5254 APInt DemandedSrcElts = DemandedElts;
5255 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5257 Tmp = std::numeric_limits<unsigned>::max();
5258 if (!!DemandedSubElts) {
5263 if (!!DemandedSrcElts) {
5265 Tmp = std::min(Tmp, Tmp2);
5267 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5272 if (
Op.getResNo() != 0)
5276 if (
const MDNode *Ranges = LD->getRanges()) {
5277 if (DemandedElts != 1)
5282 switch (LD->getExtensionType()) {
5300 unsigned ExtType = LD->getExtensionType();
5305 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5306 return VTBits - Tmp + 1;
5308 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5309 return VTBits - Tmp;
5311 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5314 Type *CstTy = Cst->getType();
5319 for (
unsigned i = 0; i != NumElts; ++i) {
5320 if (!DemandedElts[i])
5325 Tmp = std::min(Tmp,
Value.getNumSignBits());
5329 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5330 Tmp = std::min(Tmp,
Value.getNumSignBits());
5362 if (
Op.getResNo() == 0) {
5363 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5369 switch (AT->getExtensionType()) {
5373 return VTBits - Tmp + 1;
5375 return VTBits - Tmp;
5380 return VTBits - Tmp + 1;
5382 return VTBits - Tmp;
5397 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5399 FirstAnswer = std::max(FirstAnswer, NumBits);
5410 unsigned Depth)
const {
5412 return Op.getScalarValueSizeInBits() - SignBits + 1;
5416 const APInt &DemandedElts,
5417 unsigned Depth)
const {
5419 return Op.getScalarValueSizeInBits() - SignBits + 1;
5423 unsigned Depth)
const {
5428 EVT VT =
Op.getValueType();
5436 const APInt &DemandedElts,
5438 unsigned Depth)
const {
5439 unsigned Opcode =
Op.getOpcode();
5468 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5469 if (!DemandedElts[i])
5479 if (Src.getValueType().isScalableVector())
5482 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5483 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5489 if (
Op.getValueType().isScalableVector())
5494 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5496 APInt DemandedSrcElts = DemandedElts;
5497 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5511 EVT SrcVT = Src.getValueType();
5515 IndexC->getZExtValue());
5530 if (DemandedElts[IndexC->getZExtValue()] &&
5533 APInt InVecDemandedElts = DemandedElts;
5534 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5535 if (!!InVecDemandedElts &&
5560 APInt DemandedLHS, DemandedRHS;
5563 DemandedElts, DemandedLHS, DemandedRHS,
5566 if (!DemandedLHS.
isZero() &&
5570 if (!DemandedRHS.
isZero() &&
5618 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5619 PoisonOnly, Depth + 1);
5631 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5644 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5650 unsigned Depth)
const {
5651 EVT VT =
Op.getValueType();
5661 unsigned Depth)
const {
5662 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5665 unsigned Opcode =
Op.getOpcode();
5746 if (
Op.getOperand(0).getValueType().isInteger())
5753 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5755 return (
unsigned)CCCode & 0x10U;
5804 EVT VecVT =
Op.getOperand(0).getValueType();
5813 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5814 if (Elt < 0 && DemandedElts[Idx])
5826 return TLI->canCreateUndefOrPoisonForTargetNode(
5836 unsigned Opcode =
Op.getOpcode();
5838 return Op->getFlags().hasDisjoint() ||
5851 unsigned Depth)
const {
5852 EVT VT =
Op.getValueType();
5865 bool SNaN,
unsigned Depth)
const {
5866 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5877 return !
C->getValueAPF().isNaN() ||
5878 (SNaN && !
C->getValueAPF().isSignaling());
5881 unsigned Opcode =
Op.getOpcode();
5983 EVT SrcVT = Src.getValueType();
5987 Idx->getZExtValue());
5994 if (Src.getValueType().isFixedLengthVector()) {
5995 unsigned Idx =
Op.getConstantOperandVal(1);
5996 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5997 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
6007 unsigned Idx =
Op.getConstantOperandVal(2);
6013 APInt DemandedMask =
6015 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6018 bool NeverNaN =
true;
6019 if (!DemandedSrcElts.
isZero())
6022 if (NeverNaN && !DemandedSubElts.
isZero())
6031 unsigned NumElts =
Op.getNumOperands();
6032 for (
unsigned I = 0;
I != NumElts; ++
I)
6033 if (DemandedElts[
I] &&
6050 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
6059 assert(
Op.getValueType().isFloatingPoint() &&
6060 "Floating point type expected");
6071 assert(!
Op.getValueType().isFloatingPoint() &&
6072 "Floating point types unsupported - use isKnownNeverZeroFloat");
6081 switch (
Op.getOpcode()) {
6095 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6099 if (ValKnown.
One[0])
6159 if (
Op->getFlags().hasExact())
6175 if (
Op->getFlags().hasExact())
6180 if (
Op->getFlags().hasNoUnsignedWrap())
6191 std::optional<bool> ne =
6198 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6209 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6223 return !C1->isNegative();
6225 switch (
Op.getOpcode()) {
6239 assert(
Use.getValueType().isFloatingPoint());
6243 switch (
User->getOpcode()) {
6251 return OperandNo == 0;
6272 if (
Op->use_size() > 2)
6275 [&](
const SDUse &
Use) { return canIgnoreSignBitOfZero(Use); });
6280 if (
A ==
B)
return true;
6285 if (CA->isZero() && CB->isZero())
return true;
6320 NotOperand = NotOperand->getOperand(0);
6322 if (
Other == NotOperand)
6325 return NotOperand ==
Other->getOperand(0) ||
6326 NotOperand ==
Other->getOperand(1);
6332 A =
A->getOperand(0);
6335 B =
B->getOperand(0);
6338 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6339 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6345 assert(
A.getValueType() ==
B.getValueType() &&
6346 "Values must have the same type");
6368 "BUILD_VECTOR cannot be used with scalable types");
6370 "Incorrect element count in BUILD_VECTOR!");
6378 bool IsIdentity =
true;
6379 for (
int i = 0; i !=
NumOps; ++i) {
6382 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6384 Ops[i].getConstantOperandAPInt(1) != i) {
6388 IdentitySrc =
Ops[i].getOperand(0);
6401 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6404 return Ops[0].getValueType() ==
Op.getValueType();
6406 "Concatenation of vectors with inconsistent value types!");
6409 "Incorrect element count in vector concatenation!");
6411 if (
Ops.size() == 1)
6422 bool IsIdentity =
true;
6423 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6425 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6427 Op.getOperand(0).getValueType() != VT ||
6428 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6429 Op.getConstantOperandVal(1) != IdentityIndex) {
6433 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6434 "Unexpected identity source vector for concat of extracts");
6435 IdentitySrc =
Op.getOperand(0);
6438 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6454 EVT OpVT =
Op.getValueType();
6470 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6494 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6497 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6498 CSEMap.InsertNode(
N, IP);
6510 Flags = Inserter->getFlags();
6511 return getNode(Opcode,
DL, VT, N1, Flags);
6562 "STEP_VECTOR can only be used with scalable types");
6565 "Unexpected step operand");
6586 "Invalid FP cast!");
6590 "Vector element count mismatch!");
6608 "Invalid SIGN_EXTEND!");
6610 "SIGN_EXTEND result type type should be vector iff the operand "
6615 "Vector element count mismatch!");
6638 unsigned NumSignExtBits =
6649 "Invalid ZERO_EXTEND!");
6651 "ZERO_EXTEND result type type should be vector iff the operand "
6656 "Vector element count mismatch!");
6694 "Invalid ANY_EXTEND!");
6696 "ANY_EXTEND result type type should be vector iff the operand "
6701 "Vector element count mismatch!");
6726 "Invalid TRUNCATE!");
6728 "TRUNCATE result type type should be vector iff the operand "
6733 "Vector element count mismatch!");
6760 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6762 "The input must be the same size or smaller than the result.");
6765 "The destination vector type must have fewer lanes than the input.");
6775 "BSWAP types must be a multiple of 16 bits!");
6789 "Cannot BITCAST between types of different sizes!");
6802 "Illegal SCALAR_TO_VECTOR node!");
6859 "Wrong operand type!");
6866 if (VT != MVT::Glue) {
6870 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6871 E->intersectFlagsWith(Flags);
6875 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6877 createOperands(
N,
Ops);
6878 CSEMap.InsertNode(
N, IP);
6880 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6881 createOperands(
N,
Ops);
6915 if (!C2.getBoolValue())
6919 if (!C2.getBoolValue())
6923 if (!C2.getBoolValue())
6927 if (!C2.getBoolValue())
6953 return std::nullopt;
6958 bool IsUndef1,
const APInt &C2,
6960 if (!(IsUndef1 || IsUndef2))
6968 return std::nullopt;
6976 if (!TLI->isOffsetFoldingLegal(GA))
6981 int64_t
Offset = C2->getSExtValue();
7001 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
7008 [](
SDValue V) { return V.isUndef() ||
7009 isNullConstant(V); });
7047 const APInt &Val =
C->getAPIntValue();
7051 C->isTargetOpcode(),
C->isOpaque());
7058 C->isTargetOpcode(),
C->isOpaque());
7063 C->isTargetOpcode(),
C->isOpaque());
7065 C->isTargetOpcode(),
C->isOpaque());
7111 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7113 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7115 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7117 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7178 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7181 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7184 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7187 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7190 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7191 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7208 if (C1->isOpaque() || C2->isOpaque())
7211 std::optional<APInt> FoldAttempt =
7212 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7218 "Can't fold vectors ops with scalar operands");
7226 if (TLI->isCommutativeBinOp(Opcode))
7242 const APInt &Val = C1->getAPIntValue();
7243 return SignExtendInReg(Val, VT);
7256 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7264 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7275 if (C1 && C2 && C3) {
7276 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7278 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7279 &V3 = C3->getAPIntValue();
7295 if (C1 && C2 && C3) {
7316 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7329 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7330 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7334 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7345 BVEltVT = BV1->getOperand(0).getValueType();
7348 BVEltVT = BV2->getOperand(0).getValueType();
7354 DstBits, RawBits, DstUndefs,
7357 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7375 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7376 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7381 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7382 return !
Op.getValueType().isVector() ||
7383 Op.getValueType().getVectorElementCount() == NumElts;
7386 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7412 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7424 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7427 EVT InSVT =
Op.getValueType().getScalarType();
7470 if (LegalSVT != SVT)
7471 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7485 if (
Ops.size() != 2)
7496 if (N1CFP && N2CFP) {
7551 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7574 if (SrcEltVT == DstEltVT)
7582 if (SrcBitSize == DstBitSize) {
7587 if (
Op.getValueType() != SrcEltVT)
7630 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7631 if (UndefElements[
I])
7652 ID.AddInteger(
A.value());
7655 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7659 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7660 createOperands(
N, {Val});
7662 CSEMap.InsertNode(
N, IP);
7674 Flags = Inserter->getFlags();
7675 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7680 if (!TLI->isCommutativeBinOp(Opcode))
7689 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7703 "Operand is DELETED_NODE!");
7719 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7723 if (N1 == N2)
return N1;
7739 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7741 N1.
getValueType() == VT &&
"Binary operator types must match!");
7744 if (N2CV && N2CV->
isZero())
7754 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7756 N1.
getValueType() == VT &&
"Binary operator types must match!");
7766 if (N2CV && N2CV->
isZero())
7780 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7782 N1.
getValueType() == VT &&
"Binary operator types must match!");
7785 if (N2CV && N2CV->
isZero())
7789 const APInt &N2CImm = N2C->getAPIntValue();
7803 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7805 N1.
getValueType() == VT &&
"Binary operator types must match!");
7818 "Types of operands of UCMP/SCMP must match");
7820 "Operands and return type of must both be scalars or vectors");
7824 "Result and operands must have the same number of elements");
7830 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7832 N1.
getValueType() == VT &&
"Binary operator types must match!");
7836 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7838 N1.
getValueType() == VT &&
"Binary operator types must match!");
7844 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7846 N1.
getValueType() == VT &&
"Binary operator types must match!");
7852 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7854 N1.
getValueType() == VT &&
"Binary operator types must match!");
7865 N1.
getValueType() == VT &&
"Binary operator types must match!");
7873 "Invalid FCOPYSIGN!");
7878 const APInt &ShiftImm = N2C->getAPIntValue();
7892 "Shift operators return type must be the same as their first arg");
7894 "Shifts only work on integers");
7896 "Vector shift amounts must be in the same as their first arg");
7903 "Invalid use of small shift amount with oversized value!");
7910 if (N2CV && N2CV->
isZero())
7916 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7922 "AssertNoFPClass is used for a non-floating type");
7927 "FPClassTest value too large");
7936 "Cannot *_EXTEND_INREG FP types");
7938 "AssertSExt/AssertZExt type should be the vector element type "
7939 "rather than the vector type!");
7948 "Cannot *_EXTEND_INREG FP types");
7950 "SIGN_EXTEND_INREG type should be vector iff the operand "
7954 "Vector element counts must match in SIGN_EXTEND_INREG");
7956 if (
EVT == VT)
return N1;
7964 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7968 "Vector element counts must match in FP_TO_*INT_SAT");
7970 "Type to saturate to must be a scalar.");
7977 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7978 element type of the vector.");
8000 N2C->getZExtValue() % Factor);
8009 "BUILD_VECTOR used for scalable vectors");
8032 if (N1Op2C && N2C) {
8062 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
8066 "Wrong types for EXTRACT_ELEMENT!");
8077 unsigned Shift = ElementSize * N2C->getZExtValue();
8078 const APInt &Val = N1C->getAPIntValue();
8085 "Extract subvector VTs must be vectors!");
8087 "Extract subvector VTs must have the same element type!");
8089 "Cannot extract a scalable vector from a fixed length vector!");
8092 "Extract subvector must be from larger vector to smaller vector!");
8093 assert(N2C &&
"Extract subvector index must be a constant");
8097 "Extract subvector overflow!");
8098 assert(N2C->getAPIntValue().getBitWidth() ==
8100 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8102 "Extract index is not a multiple of the output vector length");
8117 return N1.
getOperand(N2C->getZExtValue() / Factor);
8158 if (TLI->isCommutativeBinOp(Opcode)) {
8237 if (VT != MVT::Glue) {
8241 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8242 E->intersectFlagsWith(Flags);
8246 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8248 createOperands(
N,
Ops);
8249 CSEMap.InsertNode(
N, IP);
8251 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8252 createOperands(
N,
Ops);
8265 Flags = Inserter->getFlags();
8266 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8275 "Operand is DELETED_NODE!");
8294 "SETCC operands must have the same type!");
8296 "SETCC type should be vector iff the operand type is vector!");
8299 "SETCC vector element counts must match!");
8322 "INSERT_VECTOR_ELT vector type mismatch");
8324 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8327 "INSERT_VECTOR_ELT fp scalar type mismatch");
8330 "INSERT_VECTOR_ELT int scalar size mismatch");
8376 "Dest and insert subvector source types must match!");
8378 "Insert subvector VTs must be vectors!");
8380 "Insert subvector VTs must have the same element type!");
8382 "Cannot insert a scalable vector into a fixed length vector!");
8385 "Insert subvector must be from smaller vector to larger vector!");
8387 "Insert subvector index must be constant");
8391 "Insert subvector overflow!");
8394 "Constant index for INSERT_SUBVECTOR has an invalid size");
8438 case ISD::VP_TRUNCATE:
8439 case ISD::VP_SIGN_EXTEND:
8440 case ISD::VP_ZERO_EXTEND:
8449 assert(VT == VecVT &&
"Vector and result type don't match.");
8451 "All inputs must be vectors.");
8452 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8454 "Vector and mask must have same number of elements.");
8469 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8470 "node to have the same type!");
8472 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8473 "the same type as its result!");
8476 "Expected the element count of the second and third operands of the "
8477 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8478 "element count of the first operand and the result!");
8480 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8481 "node to have an element type which is the same as or smaller than "
8482 "the element type of the first operand and result!");
8504 if (VT != MVT::Glue) {
8508 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8509 E->intersectFlagsWith(Flags);
8513 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8515 createOperands(
N,
Ops);
8516 CSEMap.InsertNode(
N, IP);
8518 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8519 createOperands(
N,
Ops);
8539 Flags = Inserter->getFlags();
8540 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8555 Flags = Inserter->getFlags();
8556 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8573 if (FI->getIndex() < 0)
8588 assert(
C->getAPIntValue().getBitWidth() == 8);
8593 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8598 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8614 if (VT !=
Value.getValueType())
8627 if (Slice.Array ==
nullptr) {
8636 unsigned NumVTBytes = NumVTBits / 8;
8637 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8639 APInt Val(NumVTBits, 0);
8641 for (
unsigned i = 0; i != NumBytes; ++i)
8644 for (
unsigned i = 0; i != NumBytes; ++i)
8645 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8668 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8683 else if (Src->isAnyAdd() &&
8687 SrcDelta = Src.getConstantOperandVal(1);
8693 SrcDelta +
G->getOffset());
8709 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8710 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8712 for (
unsigned i = From; i < To; ++i) {
8714 GluedLoadChains.
push_back(OutLoadChains[i]);
8721 for (
unsigned i = From; i < To; ++i) {
8724 ST->getBasePtr(), ST->getMemoryVT(),
8725 ST->getMemOperand());
8747 std::vector<EVT> MemOps;
8748 bool DstAlignCanChange =
false;
8754 DstAlignCanChange =
true;
8756 if (!SrcAlign || Alignment > *SrcAlign)
8757 SrcAlign = Alignment;
8758 assert(SrcAlign &&
"SrcAlign must be set");
8762 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8764 const MemOp Op = isZeroConstant
8768 *SrcAlign, isVol, CopyFromConstant);
8774 if (DstAlignCanChange) {
8775 Type *Ty = MemOps[0].getTypeForEVT(
C);
8776 Align NewAlign =
DL.getABITypeAlign(Ty);
8782 if (!
TRI->hasStackRealignment(MF))
8784 NewAlign = std::min(NewAlign, *StackAlign);
8786 if (NewAlign > Alignment) {
8790 Alignment = NewAlign;
8800 BatchAA && SrcVal &&
8808 unsigned NumMemOps = MemOps.size();
8810 for (
unsigned i = 0; i != NumMemOps; ++i) {
8815 if (VTSize >
Size) {
8818 assert(i == NumMemOps-1 && i != 0);
8819 SrcOff -= VTSize -
Size;
8820 DstOff -= VTSize -
Size;
8823 if (CopyFromConstant &&
8831 if (SrcOff < Slice.Length) {
8833 SubSlice.
move(SrcOff);
8836 SubSlice.
Array =
nullptr;
8838 SubSlice.
Length = VTSize;
8841 if (
Value.getNode()) {
8845 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8850 if (!Store.getNode()) {
8859 bool isDereferenceable =
8862 if (isDereferenceable)
8877 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8887 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8889 if (NumLdStInMemcpy) {
8895 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8901 if (NumLdStInMemcpy <= GluedLdStLimit) {
8903 NumLdStInMemcpy, OutLoadChains,
8906 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8907 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8908 unsigned GlueIter = 0;
8911 if (RemainingLdStInMemcpy) {
8913 DAG, dl, OutChains, NumLdStInMemcpy - RemainingLdStInMemcpy,
8914 NumLdStInMemcpy, OutLoadChains, OutStoreChains);
8917 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8918 unsigned IndexFrom = NumLdStInMemcpy - RemainingLdStInMemcpy -
8919 GlueIter - GluedLdStLimit;
8920 unsigned IndexTo = NumLdStInMemcpy - RemainingLdStInMemcpy - GlueIter;
8922 OutLoadChains, OutStoreChains);
8923 GlueIter += GluedLdStLimit;
8934 bool isVol,
bool AlwaysInline,
8948 std::vector<EVT> MemOps;
8949 bool DstAlignCanChange =
false;
8955 DstAlignCanChange =
true;
8957 if (!SrcAlign || Alignment > *SrcAlign)
8958 SrcAlign = Alignment;
8959 assert(SrcAlign &&
"SrcAlign must be set");
8969 if (DstAlignCanChange) {
8970 Type *Ty = MemOps[0].getTypeForEVT(
C);
8971 Align NewAlign =
DL.getABITypeAlign(Ty);
8977 if (!
TRI->hasStackRealignment(MF))
8979 NewAlign = std::min(NewAlign, *StackAlign);
8981 if (NewAlign > Alignment) {
8985 Alignment = NewAlign;
8999 unsigned NumMemOps = MemOps.size();
9000 for (
unsigned i = 0; i < NumMemOps; i++) {
9005 bool isDereferenceable =
9008 if (isDereferenceable)
9014 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
9021 for (
unsigned i = 0; i < NumMemOps; i++) {
9027 Chain, dl, LoadValues[i],
9029 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
9069 std::vector<EVT> MemOps;
9070 bool DstAlignCanChange =
false;
9077 DstAlignCanChange =
true;
9083 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9087 if (DstAlignCanChange) {
9090 Align NewAlign =
DL.getABITypeAlign(Ty);
9096 if (!
TRI->hasStackRealignment(MF))
9098 NewAlign = std::min(NewAlign, *StackAlign);
9100 if (NewAlign > Alignment) {
9104 Alignment = NewAlign;
9110 unsigned NumMemOps = MemOps.size();
9113 EVT LargestVT = MemOps[0];
9114 for (
unsigned i = 1; i < NumMemOps; i++)
9115 if (MemOps[i].bitsGT(LargestVT))
9116 LargestVT = MemOps[i];
9123 for (
unsigned i = 0; i < NumMemOps; i++) {
9126 if (VTSize >
Size) {
9129 assert(i == NumMemOps-1 && i != 0);
9130 DstOff -= VTSize -
Size;
9137 if (VT.
bitsLT(LargestVT)) {
9157 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9184 bool AllowReturnsFirstArg) {
9190 AllowReturnsFirstArg &&
9194static std::pair<SDValue, SDValue>
9201 if (LCImpl == RTLIB::Unsupported)
9213 CI->
getType(), Callee, std::move(Args))
9226 RTLIB::STRSTR,
this, TLI);
9229std::pair<SDValue, SDValue>
9232 RTLIB::LibcallImpl MemcmpImpl = Libcalls->getLibcallImpl(RTLIB::MEMCMP);
9233 if (MemcmpImpl == RTLIB::Unsupported)
9249 Libcalls->getLibcallImplCallingConv(MemcmpImpl),
9255 return TLI->LowerCallTo(CLI);
9262 RTLIB::LibcallImpl LCImpl = Libcalls->getLibcallImpl(RTLIB::STRCPY);
9263 if (LCImpl == RTLIB::Unsupported)
9276 Libcalls->getLibcallImplCallingConv(LCImpl), CI->
getType(),
9281 return TLI->LowerCallTo(CLI);
9288 RTLIB::LibcallImpl StrlenImpl = Libcalls->getLibcallImpl(RTLIB::STRLEN);
9289 if (StrlenImpl == RTLIB::Unsupported)
9302 .
setLibCallee(Libcalls->getLibcallImplCallingConv(StrlenImpl),
9309 return TLI->LowerCallTo(CLI);
9314 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9323 if (ConstantSize->
isZero())
9327 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9328 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9329 if (Result.getNode())
9336 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9337 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9338 DstPtrInfo, SrcPtrInfo);
9339 if (Result.getNode())
9346 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9348 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9349 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9364 Args.emplace_back(Dst, PtrTy);
9365 Args.emplace_back(Src, PtrTy);
9369 bool IsTailCall =
false;
9370 RTLIB::LibcallImpl MemCpyImpl = TLI->getMemcpyImpl();
9372 if (OverrideTailCall.has_value()) {
9373 IsTailCall = *OverrideTailCall;
9375 bool LowersToMemcpy = MemCpyImpl == RTLIB::impl_memcpy;
9382 Libcalls->getLibcallImplCallingConv(MemCpyImpl),
9383 Dst.getValueType().getTypeForEVT(*
getContext()),
9389 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9390 return CallResult.second;
9395 Type *SizeTy,
unsigned ElemSz,
9402 Args.emplace_back(Dst, ArgTy);
9403 Args.emplace_back(Src, ArgTy);
9404 Args.emplace_back(
Size, SizeTy);
9406 RTLIB::Libcall LibraryCall =
9408 RTLIB::LibcallImpl LibcallImpl = Libcalls->getLibcallImpl(LibraryCall);
9409 if (LibcallImpl == RTLIB::Unsupported)
9416 Libcalls->getLibcallImplCallingConv(LibcallImpl),
9423 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9424 return CallResult.second;
9430 std::optional<bool> OverrideTailCall,
9440 if (ConstantSize->
isZero())
9444 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9445 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9446 if (Result.getNode())
9454 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9455 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9456 if (Result.getNode())
9469 Args.emplace_back(Dst, PtrTy);
9470 Args.emplace_back(Src, PtrTy);
9475 RTLIB::LibcallImpl MemmoveImpl = Libcalls->getLibcallImpl(RTLIB::MEMMOVE);
9477 bool IsTailCall =
false;
9478 if (OverrideTailCall.has_value()) {
9479 IsTailCall = *OverrideTailCall;
9481 bool LowersToMemmove = MemmoveImpl == RTLIB::impl_memmove;
9488 Libcalls->getLibcallImplCallingConv(MemmoveImpl),
9489 Dst.getValueType().getTypeForEVT(*
getContext()),
9495 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9496 return CallResult.second;
9501 Type *SizeTy,
unsigned ElemSz,
9508 Args.emplace_back(Dst, IntPtrTy);
9509 Args.emplace_back(Src, IntPtrTy);
9510 Args.emplace_back(
Size, SizeTy);
9512 RTLIB::Libcall LibraryCall =
9514 RTLIB::LibcallImpl LibcallImpl = Libcalls->getLibcallImpl(LibraryCall);
9515 if (LibcallImpl == RTLIB::Unsupported)
9522 Libcalls->getLibcallImplCallingConv(LibcallImpl),
9529 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9530 return CallResult.second;
9535 bool isVol,
bool AlwaysInline,
9544 if (ConstantSize->
isZero())
9549 isVol,
false, DstPtrInfo, AAInfo);
9551 if (Result.getNode())
9558 SDValue Result = TSI->EmitTargetCodeForMemset(
9559 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9560 if (Result.getNode())
9567 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9570 isVol,
true, DstPtrInfo, AAInfo);
9572 "getMemsetStores must return a valid sequence when AlwaysInline");
9586 RTLIB::LibcallImpl BzeroImpl = Libcalls->getLibcallImpl(RTLIB::BZERO);
9587 bool UseBZero = BzeroImpl != RTLIB::Unsupported &&
isNullConstant(Src);
9593 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9598 RTLIB::LibcallImpl MemsetImpl = Libcalls->getLibcallImpl(RTLIB::MEMSET);
9602 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9603 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9604 CLI.
setLibCallee(Libcalls->getLibcallImplCallingConv(MemsetImpl),
9605 Dst.getValueType().getTypeForEVT(Ctx),
9610 RTLIB::LibcallImpl MemsetImpl = Libcalls->getLibcallImpl(RTLIB::MEMSET);
9611 bool LowersToMemset = MemsetImpl == RTLIB::impl_memset;
9622 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9623 return CallResult.second;
9628 Type *SizeTy,
unsigned ElemSz,
9635 Args.emplace_back(
Size, SizeTy);
9637 RTLIB::Libcall LibraryCall =
9639 RTLIB::LibcallImpl LibcallImpl = Libcalls->getLibcallImpl(LibraryCall);
9640 if (LibcallImpl == RTLIB::Unsupported)
9647 Libcalls->getLibcallImplCallingConv(LibcallImpl),
9654 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9655 return CallResult.second;
9665 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9666 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9671 E->refineAlignment(MMO);
9672 E->refineRanges(MMO);
9677 VTList, MemVT, MMO, ExtType);
9678 createOperands(
N,
Ops);
9680 CSEMap.InsertNode(
N, IP);
9717 "Invalid Atomic Op");
9737 if (
Ops.size() == 1)
9752 if (
Size.hasValue() && !
Size.getValue())
9757 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9769 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9771 "Opcode is not a memory-accessing opcode!");
9775 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9778 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9779 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9784 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9790 VTList, MemVT, MMO);
9791 createOperands(
N,
Ops);
9793 CSEMap.InsertNode(
N, IP);
9796 VTList, MemVT, MMO);
9797 createOperands(
N,
Ops);
9806 SDValue Chain,
int FrameIndex) {
9817 ID.AddInteger(FrameIndex);
9819 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9824 createOperands(
N,
Ops);
9825 CSEMap.InsertNode(
N, IP);
9841 ID.AddInteger(Index);
9843 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9846 auto *
N = newSDNode<PseudoProbeSDNode>(
9848 createOperands(
N,
Ops);
9849 CSEMap.InsertNode(
N, IP);
9903 "Invalid chain type");
9915 Alignment, AAInfo, Ranges);
9916 return getLoad(AM, ExtType, VT, dl, Chain, Ptr,
Offset, MemVT, MMO);
9926 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9930 "Should only be an extending load, not truncating!");
9932 "Cannot convert from FP to Int or Int -> FP!");
9934 "Cannot use an ext load to convert to or from a vector!");
9937 "Cannot use an ext load to change the number of vector elements!");
9944 "Range metadata and load type must match!");
9955 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9956 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9961 E->refineAlignment(MMO);
9962 E->refineRanges(MMO);
9966 ExtType, MemVT, MMO);
9967 createOperands(
N,
Ops);
9969 CSEMap.InsertNode(
N, IP);
9983 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
10001 MemVT, Alignment, MMOFlags, AAInfo);
10016 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10019 LD->getMemOperand()->getFlags() &
10022 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
10023 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
10042 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
10043 return getStore(Chain, dl, Val, Ptr, MMO);
10056 bool IsTruncating) {
10060 IsTruncating =
false;
10061 }
else if (!IsTruncating) {
10062 assert(VT == SVT &&
"No-truncating store from different memory type!");
10065 "Should only be a truncating store, not extending!");
10068 "Cannot use trunc store to convert to or from a vector!");
10071 "Cannot use trunc store to change the number of vector elements!");
10082 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
10083 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
10086 void *IP =
nullptr;
10087 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10092 IsTruncating, SVT, MMO);
10093 createOperands(
N,
Ops);
10095 CSEMap.InsertNode(
N, IP);
10108 "Invalid chain type");
10118 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10133 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
10135 ST->getMemoryVT(), ST->getMemOperand(), AM,
10136 ST->isTruncatingStore());
10144 const MDNode *Ranges,
bool IsExpanding) {
10155 Alignment, AAInfo, Ranges);
10156 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr,
Offset, Mask, EVL, MemVT,
10165 bool IsExpanding) {
10167 assert(Mask.getValueType().getVectorElementCount() ==
10169 "Vector width mismatch between mask and data");
10180 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10181 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10184 void *IP =
nullptr;
10186 E->refineAlignment(MMO);
10187 E->refineRanges(MMO);
10191 ExtType, IsExpanding, MemVT, MMO);
10192 createOperands(
N,
Ops);
10194 CSEMap.InsertNode(
N, IP);
10207 bool IsExpanding) {
10210 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10219 Mask, EVL, VT, MMO, IsExpanding);
10228 const AAMDNodes &AAInfo,
bool IsExpanding) {
10231 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10241 EVL, MemVT, MMO, IsExpanding);
10248 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10251 LD->getMemOperand()->getFlags() &
10254 LD->getChain(),
Base,
Offset, LD->getMask(),
10255 LD->getVectorLength(), LD->getPointerInfo(),
10256 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10257 nullptr, LD->isExpandingLoad());
10264 bool IsCompressing) {
10266 assert(Mask.getValueType().getVectorElementCount() ==
10268 "Vector width mismatch between mask and data");
10278 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10279 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10282 void *IP =
nullptr;
10283 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10288 IsTruncating, IsCompressing, MemVT, MMO);
10289 createOperands(
N,
Ops);
10291 CSEMap.InsertNode(
N, IP);
10304 bool IsCompressing) {
10315 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10324 bool IsCompressing) {
10331 false, IsCompressing);
10334 "Should only be a truncating store, not extending!");
10337 "Cannot use trunc store to convert to or from a vector!");
10340 "Cannot use trunc store to change the number of vector elements!");
10344 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10348 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10352 void *IP =
nullptr;
10353 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10360 createOperands(
N,
Ops);
10362 CSEMap.InsertNode(
N, IP);
10373 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10376 Offset, ST->getMask(), ST->getVectorLength()};
10379 ID.AddInteger(ST->getMemoryVT().getRawBits());
10380 ID.AddInteger(ST->getRawSubclassData());
10381 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10382 ID.AddInteger(ST->getMemOperand()->getFlags());
10383 void *IP =
nullptr;
10384 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10387 auto *
N = newSDNode<VPStoreSDNode>(
10389 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10390 createOperands(
N,
Ops);
10392 CSEMap.InsertNode(
N, IP);
10412 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10413 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10416 void *IP =
nullptr;
10417 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10423 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10424 ExtType, IsExpanding, MemVT, MMO);
10425 createOperands(
N,
Ops);
10426 CSEMap.InsertNode(
N, IP);
10437 bool IsExpanding) {
10440 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10449 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10458 bool IsTruncating,
bool IsCompressing) {
10468 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10469 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10471 void *IP =
nullptr;
10472 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10476 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10477 VTs, AM, IsTruncating,
10478 IsCompressing, MemVT, MMO);
10479 createOperands(
N,
Ops);
10481 CSEMap.InsertNode(
N, IP);
10493 bool IsCompressing) {
10500 false, IsCompressing);
10503 "Should only be a truncating store, not extending!");
10506 "Cannot use trunc store to convert to or from a vector!");
10509 "Cannot use trunc store to change the number of vector elements!");
10513 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10517 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10520 void *IP =
nullptr;
10521 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10525 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10527 IsCompressing, SVT, MMO);
10528 createOperands(
N,
Ops);
10530 CSEMap.InsertNode(
N, IP);
10540 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10545 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10549 void *IP =
nullptr;
10550 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10556 VT, MMO, IndexType);
10557 createOperands(
N,
Ops);
10559 assert(
N->getMask().getValueType().getVectorElementCount() ==
10560 N->getValueType(0).getVectorElementCount() &&
10561 "Vector width mismatch between mask and data");
10562 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10563 N->getValueType(0).getVectorElementCount().isScalable() &&
10564 "Scalable flags of index and data do not match");
10566 N->getIndex().getValueType().getVectorElementCount(),
10567 N->getValueType(0).getVectorElementCount()) &&
10568 "Vector width mismatch between index and data");
10570 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10571 "Scale should be a constant power of 2");
10573 CSEMap.InsertNode(
N, IP);
10584 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10589 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10593 void *IP =
nullptr;
10594 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10599 VT, MMO, IndexType);
10600 createOperands(
N,
Ops);
10602 assert(
N->getMask().getValueType().getVectorElementCount() ==
10603 N->getValue().getValueType().getVectorElementCount() &&
10604 "Vector width mismatch between mask and data");
10606 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10607 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10608 "Scalable flags of index and data do not match");
10610 N->getIndex().getValueType().getVectorElementCount(),
10611 N->getValue().getValueType().getVectorElementCount()) &&
10612 "Vector width mismatch between index and data");
10614 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10615 "Scale should be a constant power of 2");
10617 CSEMap.InsertNode(
N, IP);
10632 "Unindexed masked load with an offset!");
10639 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10640 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10643 void *IP =
nullptr;
10644 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10649 AM, ExtTy, isExpanding, MemVT, MMO);
10650 createOperands(
N,
Ops);
10652 CSEMap.InsertNode(
N, IP);
10663 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10665 Offset, LD->getMask(), LD->getPassThru(),
10666 LD->getMemoryVT(), LD->getMemOperand(), AM,
10667 LD->getExtensionType(), LD->isExpandingLoad());
10675 bool IsCompressing) {
10677 "Invalid chain type");
10680 "Unindexed masked store with an offset!");
10687 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10688 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10691 void *IP =
nullptr;
10692 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10698 IsTruncating, IsCompressing, MemVT, MMO);
10699 createOperands(
N,
Ops);
10701 CSEMap.InsertNode(
N, IP);
10712 assert(ST->getOffset().isUndef() &&
10713 "Masked store is already a indexed store!");
10715 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10716 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10724 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10729 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10730 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10733 void *IP =
nullptr;
10734 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10740 VTs, MemVT, MMO, IndexType, ExtTy);
10741 createOperands(
N,
Ops);
10743 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10744 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10745 assert(
N->getMask().getValueType().getVectorElementCount() ==
10746 N->getValueType(0).getVectorElementCount() &&
10747 "Vector width mismatch between mask and data");
10748 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10749 N->getValueType(0).getVectorElementCount().isScalable() &&
10750 "Scalable flags of index and data do not match");
10752 N->getIndex().getValueType().getVectorElementCount(),
10753 N->getValueType(0).getVectorElementCount()) &&
10754 "Vector width mismatch between index and data");
10756 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10757 "Scale should be a constant power of 2");
10759 CSEMap.InsertNode(
N, IP);
10771 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10776 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10777 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10780 void *IP =
nullptr;
10781 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10787 VTs, MemVT, MMO, IndexType, IsTrunc);
10788 createOperands(
N,
Ops);
10790 assert(
N->getMask().getValueType().getVectorElementCount() ==
10791 N->getValue().getValueType().getVectorElementCount() &&
10792 "Vector width mismatch between mask and data");
10794 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10795 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10796 "Scalable flags of index and data do not match");
10798 N->getIndex().getValueType().getVectorElementCount(),
10799 N->getValue().getValueType().getVectorElementCount()) &&
10800 "Vector width mismatch between index and data");
10802 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10803 "Scale should be a constant power of 2");
10805 CSEMap.InsertNode(
N, IP);
10816 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10821 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10822 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10825 void *IP =
nullptr;
10826 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10832 VTs, MemVT, MMO, IndexType);
10833 createOperands(
N,
Ops);
10835 assert(
N->getMask().getValueType().getVectorElementCount() ==
10836 N->getIndex().getValueType().getVectorElementCount() &&
10837 "Vector width mismatch between mask and data");
10839 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10840 "Scale should be a constant power of 2");
10841 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10843 CSEMap.InsertNode(
N, IP);
10858 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10862 void *IP =
nullptr;
10863 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10867 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10869 createOperands(
N,
Ops);
10871 CSEMap.InsertNode(
N, IP);
10886 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10890 void *IP =
nullptr;
10891 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10896 createOperands(
N,
Ops);
10898 CSEMap.InsertNode(
N, IP);
10913 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10917 void *IP =
nullptr;
10918 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10923 createOperands(
N,
Ops);
10925 CSEMap.InsertNode(
N, IP);
10936 if (
Cond.isUndef())
10971 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10977 if (
X.getValueType().getScalarType() == MVT::i1)
10990 bool HasNan = (XC && XC->
getValueAPF().isNaN()) ||
10992 bool HasInf = (XC && XC->
getValueAPF().isInfinity()) ||
10995 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10998 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
11021 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
11036 switch (
Ops.size()) {
11037 case 0:
return getNode(Opcode,
DL, VT);
11047 return getNode(Opcode,
DL, VT, NewOps);
11054 Flags = Inserter->getFlags();
11062 case 0:
return getNode(Opcode,
DL, VT);
11063 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
11070 for (
const auto &
Op :
Ops)
11072 "Operand is DELETED_NODE!");
11089 "LHS and RHS of condition must have same type!");
11091 "True and False arms of SelectCC must have same type!");
11093 "select_cc node must be of same type as true and false value!");
11097 "Expected select_cc with vector result to have the same sized "
11098 "comparison type!");
11103 "LHS/RHS of comparison should match types!");
11109 Opcode = ISD::VP_XOR;
11114 Opcode = ISD::VP_AND;
11116 case ISD::VP_REDUCE_MUL:
11119 Opcode = ISD::VP_REDUCE_AND;
11121 case ISD::VP_REDUCE_ADD:
11124 Opcode = ISD::VP_REDUCE_XOR;
11126 case ISD::VP_REDUCE_SMAX:
11127 case ISD::VP_REDUCE_UMIN:
11131 Opcode = ISD::VP_REDUCE_AND;
11133 case ISD::VP_REDUCE_SMIN:
11134 case ISD::VP_REDUCE_UMAX:
11138 Opcode = ISD::VP_REDUCE_OR;
11146 if (VT != MVT::Glue) {
11149 void *IP =
nullptr;
11151 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11152 E->intersectFlagsWith(Flags);
11156 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11157 createOperands(
N,
Ops);
11159 CSEMap.InsertNode(
N, IP);
11161 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11162 createOperands(
N,
Ops);
11165 N->setFlags(Flags);
11176 Flags = Inserter->getFlags();
11190 Flags = Inserter->getFlags();
11200 for (
const auto &
Op :
Ops)
11202 "Operand is DELETED_NODE!");
11211 "Invalid add/sub overflow op!");
11213 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11214 Ops[0].getValueType() == VTList.
VTs[0] &&
11215 "Binary operator types must match!");
11222 if (N2CV && N2CV->
isZero()) {
11253 "Invalid add/sub overflow op!");
11255 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11256 Ops[0].getValueType() == VTList.
VTs[0] &&
11257 Ops[2].getValueType() == VTList.
VTs[1] &&
11258 "Binary operator types must match!");
11262 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11264 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11265 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11266 "Binary operator types must match!");
11272 unsigned OutWidth = Width * 2;
11273 APInt Val = LHS->getAPIntValue();
11276 Val = Val.
sext(OutWidth);
11277 Mul =
Mul.sext(OutWidth);
11279 Val = Val.
zext(OutWidth);
11280 Mul =
Mul.zext(OutWidth);
11292 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11294 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11302 DL, VTList.
VTs[1]);
11310 "Invalid STRICT_FP_EXTEND!");
11312 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11314 "STRICT_FP_EXTEND result type should be vector iff the operand "
11315 "type is vector!");
11318 Ops[1].getValueType().getVectorElementCount()) &&
11319 "Vector element count mismatch!");
11321 "Invalid fpext node, dst <= src!");
11324 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11326 "STRICT_FP_ROUND result type should be vector iff the operand "
11327 "type is vector!");
11330 Ops[1].getValueType().getVectorElementCount()) &&
11331 "Vector element count mismatch!");
11333 Ops[1].getValueType().isFloatingPoint() &&
11336 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11337 "Invalid STRICT_FP_ROUND!");
11343 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11346 void *IP =
nullptr;
11347 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11348 E->intersectFlagsWith(Flags);
11352 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11353 createOperands(
N,
Ops);
11354 CSEMap.InsertNode(
N, IP);
11356 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11357 createOperands(
N,
Ops);
11360 N->setFlags(Flags);
11407 return makeVTList(&(*EVTs.insert(VT).first), 1);
11416 void *IP =
nullptr;
11419 EVT *Array = Allocator.Allocate<
EVT>(2);
11422 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11423 VTListMap.InsertNode(Result, IP);
11425 return Result->getSDVTList();
11435 void *IP =
nullptr;
11438 EVT *Array = Allocator.Allocate<
EVT>(3);
11442 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11443 VTListMap.InsertNode(Result, IP);
11445 return Result->getSDVTList();
11456 void *IP =
nullptr;
11459 EVT *Array = Allocator.Allocate<
EVT>(4);
11464 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11465 VTListMap.InsertNode(Result, IP);
11467 return Result->getSDVTList();
11471 unsigned NumVTs = VTs.
size();
11473 ID.AddInteger(NumVTs);
11474 for (
unsigned index = 0; index < NumVTs; index++) {
11475 ID.AddInteger(VTs[index].getRawBits());
11478 void *IP =
nullptr;
11481 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11483 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11484 VTListMap.InsertNode(Result, IP);
11486 return Result->getSDVTList();
11497 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11500 if (
Op ==
N->getOperand(0))
return N;
11503 void *InsertPos =
nullptr;
11504 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11509 if (!RemoveNodeFromCSEMaps(
N))
11510 InsertPos =
nullptr;
11513 N->OperandList[0].set(
Op);
11517 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11522 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11525 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11529 void *InsertPos =
nullptr;
11530 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11535 if (!RemoveNodeFromCSEMaps(
N))
11536 InsertPos =
nullptr;
11539 if (
N->OperandList[0] != Op1)
11540 N->OperandList[0].set(Op1);
11541 if (
N->OperandList[1] != Op2)
11542 N->OperandList[1].set(Op2);
11546 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11566 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11574 "Update with wrong number of operands");
11577 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11581 void *InsertPos =
nullptr;
11582 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11587 if (!RemoveNodeFromCSEMaps(
N))
11588 InsertPos =
nullptr;
11591 for (
unsigned i = 0; i !=
NumOps; ++i)
11592 if (
N->OperandList[i] !=
Ops[i])
11593 N->OperandList[i].set(
Ops[i]);
11597 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11614 if (NewMemRefs.
empty()) {
11620 if (NewMemRefs.
size() == 1) {
11621 N->MemRefs = NewMemRefs[0];
11627 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11629 N->MemRefs = MemRefsBuffer;
11630 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11702 New->setNodeId(-1);
11722 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11723 N->setIROrder(Order);
11746 void *IP =
nullptr;
11747 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11751 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11754 if (!RemoveNodeFromCSEMaps(
N))
11759 N->ValueList = VTs.
VTs;
11769 if (Used->use_empty())
11770 DeadNodeSet.
insert(Used);
11775 MN->clearMemRefs();
11779 createOperands(
N,
Ops);
11783 if (!DeadNodeSet.
empty()) {
11785 for (
SDNode *
N : DeadNodeSet)
11786 if (
N->use_empty())
11792 CSEMap.InsertNode(
N, IP);
11797 unsigned OrigOpc =
Node->getOpcode();
11802#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11803 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11804#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11805 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11806#include "llvm/IR/ConstrainedOps.def"
11809 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11817 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11818 Ops.push_back(
Node->getOperand(i));
11935 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11937 void *IP =
nullptr;
11943 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11949 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11950 createOperands(
N,
Ops);
11953 CSEMap.InsertNode(
N, IP);
11966 VT, Operand, SRIdxVal);
11976 VT, Operand, Subreg, SRIdxVal);
11984 bool AllowCommute) {
11987 Flags = Inserter->getFlags();
11994 bool AllowCommute) {
11995 if (VTList.
VTs[VTList.
NumVTs - 1] == MVT::Glue)
12001 void *IP =
nullptr;
12002 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP)) {
12003 E->intersectFlagsWith(Flags);
12012 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
12021 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
12024 void *IP =
nullptr;
12025 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
12035 SDNode *
N,
unsigned R,
bool IsIndirect,
12038 "Expected inlined-at fields to agree");
12039 return new (DbgInfo->getAlloc())
12041 {}, IsIndirect,
DL, O,
12051 "Expected inlined-at fields to agree");
12052 return new (DbgInfo->getAlloc())
12065 "Expected inlined-at fields to agree");
12077 "Expected inlined-at fields to agree");
12078 return new (DbgInfo->getAlloc())
12080 Dependencies, IsIndirect,
DL, O,
12089 "Expected inlined-at fields to agree");
12090 return new (DbgInfo->getAlloc())
12092 {}, IsIndirect,
DL, O,
12100 unsigned O,
bool IsVariadic) {
12102 "Expected inlined-at fields to agree");
12103 return new (DbgInfo->getAlloc())
12104 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
12105 DL, O, IsVariadic);
12109 unsigned OffsetInBits,
unsigned SizeInBits,
12110 bool InvalidateDbg) {
12113 assert(FromNode && ToNode &&
"Can't modify dbg values");
12118 if (From == To || FromNode == ToNode)
12130 if (Dbg->isInvalidated())
12138 auto NewLocOps = Dbg->copyLocationOps();
12140 NewLocOps.begin(), NewLocOps.end(),
12142 bool Match = Op == FromLocOp;
12152 auto *Expr = Dbg->getExpression();
12158 if (
auto FI = Expr->getFragmentInfo())
12159 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12168 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12171 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12172 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12173 Dbg->isVariadic());
12176 if (InvalidateDbg) {
12178 Dbg->setIsInvalidated();
12179 Dbg->setIsEmitted();
12185 "Transferred DbgValues should depend on the new SDNode");
12191 if (!
N.getHasDebugValue())
12194 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12202 if (DV->isInvalidated())
12204 switch (
N.getOpcode()) {
12214 Offset =
N.getConstantOperandVal(1);
12217 if (!RHSConstant && DV->isIndirect())
12224 auto *DIExpr = DV->getExpression();
12225 auto NewLocOps = DV->copyLocationOps();
12227 size_t OrigLocOpsSize = NewLocOps.size();
12228 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12233 NewLocOps[i].getSDNode() != &
N)
12244 const auto *TmpDIExpr =
12252 NewLocOps.push_back(RHS);
12261 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12263 auto AdditionalDependencies = DV->getAdditionalDependencies();
12265 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12266 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12268 DV->setIsInvalidated();
12269 DV->setIsEmitted();
12271 N0.
getNode()->dumprFull(
this);
12272 dbgs() <<
" into " << *DIExpr <<
'\n');
12279 TypeSize ToSize =
N.getValueSizeInBits(0);
12283 auto NewLocOps = DV->copyLocationOps();
12285 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12287 NewLocOps[i].getSDNode() != &
N)
12299 DV->getAdditionalDependencies(), DV->isIndirect(),
12300 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12303 DV->setIsInvalidated();
12304 DV->setIsEmitted();
12306 dbgs() <<
" into " << *DbgExpression <<
'\n');
12313 assert((!Dbg->getSDNodes().empty() ||
12316 return Op.getKind() == SDDbgOperand::FRAMEIX;
12318 "Salvaged DbgValue should depend on a new SDNode");
12327 "Expected inlined-at fields to agree");
12328 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12343 while (UI != UE &&
N == UI->
getUser())
12351 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12364 "Cannot replace with this method!");
12365 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12380 RAUWUpdateListener Listener(*
this, UI, UE);
12385 RemoveNodeFromCSEMaps(
User);
12400 AddModifiedNodeToCSEMaps(
User);
12416 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12419 "Cannot use this version of ReplaceAllUsesWith!");
12427 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12429 assert((i < To->getNumValues()) &&
"Invalid To location");
12438 RAUWUpdateListener Listener(*
this, UI, UE);
12443 RemoveNodeFromCSEMaps(
User);
12459 AddModifiedNodeToCSEMaps(
User);
12476 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12486 RAUWUpdateListener Listener(*
this, UI, UE);
12491 RemoveNodeFromCSEMaps(
User);
12497 bool To_IsDivergent =
false;
12512 AddModifiedNodeToCSEMaps(
User);
12525 if (From == To)
return;
12541 RAUWUpdateListener Listener(*
this, UI, UE);
12544 bool UserRemovedFromCSEMaps =
false;
12561 if (!UserRemovedFromCSEMaps) {
12562 RemoveNodeFromCSEMaps(
User);
12563 UserRemovedFromCSEMaps =
true;
12573 if (!UserRemovedFromCSEMaps)
12578 AddModifiedNodeToCSEMaps(
User);
12597bool operator<(
const UseMemo &L,
const UseMemo &R) {
12598 return (intptr_t)L.User < (intptr_t)R.User;
12605 SmallVectorImpl<UseMemo> &
Uses;
12607 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12608 for (UseMemo &Memo :
Uses)
12609 if (Memo.User ==
N)
12610 Memo.User =
nullptr;
12614 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12615 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12622 switch (
Node->getOpcode()) {
12634 if (TLI->isSDNodeAlwaysUniform(
N)) {
12635 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12636 "Conflicting divergence information!");
12639 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12641 for (
const auto &
Op :
N->ops()) {
12642 EVT VT =
Op.getValueType();
12645 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12657 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12658 N->SDNodeBits.IsDivergent = IsDivergent;
12661 }
while (!Worklist.
empty());
12664void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12666 Order.reserve(AllNodes.size());
12668 unsigned NOps =
N.getNumOperands();
12671 Order.push_back(&
N);
12673 for (
size_t I = 0;
I != Order.size(); ++
I) {
12675 for (
auto *U :
N->users()) {
12676 unsigned &UnsortedOps = Degree[U];
12677 if (0 == --UnsortedOps)
12678 Order.push_back(U);
12683#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12684void SelectionDAG::VerifyDAGDivergence() {
12685 std::vector<SDNode *> TopoOrder;
12686 CreateTopologicalOrder(TopoOrder);
12687 for (
auto *
N : TopoOrder) {
12689 "Divergence bit inconsistency detected");
12712 for (
unsigned i = 0; i != Num; ++i) {
12713 unsigned FromResNo = From[i].
getResNo();
12716 if (
Use.getResNo() == FromResNo) {
12718 Uses.push_back(Memo);
12725 RAUOVWUpdateListener Listener(*
this,
Uses);
12727 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12728 UseIndex != UseIndexEnd; ) {
12734 if (
User ==
nullptr) {
12740 RemoveNodeFromCSEMaps(
User);
12747 unsigned i =
Uses[UseIndex].Index;
12752 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12756 AddModifiedNodeToCSEMaps(
User);
12764 unsigned DAGSize = 0;
12780 unsigned Degree =
N.getNumOperands();
12783 N.setNodeId(DAGSize++);
12785 if (Q != SortedPos)
12786 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12787 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12791 N.setNodeId(Degree);
12803 unsigned Degree =
P->getNodeId();
12804 assert(Degree != 0 &&
"Invalid node degree");
12808 P->setNodeId(DAGSize++);
12809 if (
P->getIterator() != SortedPos)
12810 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12811 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12815 P->setNodeId(Degree);
12818 if (
Node.getIterator() == SortedPos) {
12822 dbgs() <<
"Overran sorted position:\n";
12824 dbgs() <<
"Checking if this is due to cycles\n";
12831 assert(SortedPos == AllNodes.end() &&
12832 "Topological sort incomplete!");
12834 "First node in topological sort is not the entry token!");
12835 assert(AllNodes.front().getNodeId() == 0 &&
12836 "First node in topological sort has non-zero id!");
12837 assert(AllNodes.front().getNumOperands() == 0 &&
12838 "First node in topological sort has operands!");
12839 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12840 "Last node in topologic sort has unexpected id!");
12841 assert(AllNodes.back().use_empty() &&
12842 "Last node in topologic sort has users!");
12849 SortedNodes.
clear();
12856 unsigned NumOperands =
N.getNumOperands();
12857 if (NumOperands == 0)
12861 RemainingOperands[&
N] = NumOperands;
12866 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12867 const SDNode *
N = SortedNodes[i];
12868 for (
const SDNode *U :
N->users()) {
12873 unsigned &NumRemOperands = RemainingOperands[U];
12874 assert(NumRemOperands &&
"Invalid number of remaining operands");
12876 if (!NumRemOperands)
12881 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12883 "First node in topological sort is not the entry token");
12884 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12885 "First node in topological sort has operands");
12891 for (
SDNode *SD : DB->getSDNodes()) {
12894 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12895 SD->setHasDebugValue(
true);
12897 DbgInfo->add(DB, isParameter);
12910 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12911 return NewMemOpChain;
12914 OldChain, NewMemOpChain);
12917 return TokenFactor;
12936 if (OutFunction !=
nullptr)
12944 std::string ErrorStr;
12946 ErrorFormatter <<
"Undefined external symbol ";
12947 ErrorFormatter <<
'"' << Symbol <<
'"';
12957 return Const !=
nullptr && Const->isZero();
12966 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12971 return Const !=
nullptr && Const->isAllOnes();
12976 return Const !=
nullptr && Const->isOne();
12981 return Const !=
nullptr && Const->isMinSignedValue();
12985 unsigned OperandNo) {
12990 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12996 return Const.isZero();
12998 return Const.isOne();
13001 return Const.isAllOnes();
13003 return Const.isMinSignedValue();
13005 return Const.isMaxSignedValue();
13010 return OperandNo == 1 && Const.isZero();
13013 return OperandNo == 1 && Const.isOne();
13018 return ConstFP->isZero() &&
13019 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
13021 return OperandNo == 1 && ConstFP->isZero() &&
13022 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
13024 return ConstFP->isExactlyValue(1.0);
13026 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
13030 EVT VT = V.getValueType();
13032 APFloat NeutralAF = !Flags.hasNoNaNs()
13034 : !Flags.hasNoInfs()
13040 return ConstFP->isExactlyValue(NeutralAF);
13054 while (V.getOpcode() ==
ISD::BITCAST && V.getOperand(0).hasOneUse())
13073 !DemandedElts[IndexC->getZExtValue()]) {
13092 unsigned NumBits = V.getScalarValueSizeInBits();
13095 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
13099 bool AllowTruncation) {
13100 EVT VT =
N.getValueType();
13109 bool AllowTruncation) {
13116 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
13118 EVT CVT = CN->getValueType(0);
13119 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
13120 if (AllowTruncation || CVT == VecEltVT)
13127 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
13132 if (CN && (UndefElements.
none() || AllowUndefs)) {
13134 EVT NSVT =
N.getValueType().getScalarType();
13135 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
13136 if (AllowTruncation || (CVT == NSVT))
13145 EVT VT =
N.getValueType();
13153 const APInt &DemandedElts,
13154 bool AllowUndefs) {
13161 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13163 if (CN && (UndefElements.
none() || AllowUndefs))
13178 return C &&
C->isZero();
13184 return C &&
C->isOne();
13189 return C &&
C->isExactlyValue(1.0);
13194 unsigned BitWidth =
N.getScalarValueSizeInBits();
13196 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13202 APInt(
C->getAPIntValue().getBitWidth(), 1));
13208 return C &&
C->isZero();
13213 return C &&
C->isZero();
13222 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13232 (!
MMO->getType().isValid() ||
13246 std::vector<EVT> VTs;
13259const EVT *SDNode::getValueTypeList(
MVT VT) {
13260 static EVTArray SimpleVTArray;
13263 return &SimpleVTArray.VTs[VT.
SimpleTy];
13272 if (U.getResNo() ==
Value)
13310 return any_of(
N->op_values(),
13311 [
this](
SDValue Op) { return this == Op.getNode(); });
13325 unsigned Depth)
const {
13326 if (*
this == Dest)
return true;
13330 if (
Depth == 0)
return false;
13350 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13356 if (Ld->isUnordered())
13357 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13370 this->Flags &= Flags;
13376 bool AllowPartials) {
13391 unsigned CandidateBinOp =
Op.getOpcode();
13392 if (
Op.getValueType().isFloatingPoint()) {
13394 switch (CandidateBinOp) {
13396 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13406 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13407 if (!AllowPartials || !
Op)
13409 EVT OpVT =
Op.getValueType();
13412 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13431 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13433 for (
unsigned i = 0; i < Stages; ++i) {
13434 unsigned MaskEnd = (1 << i);
13436 if (
Op.getOpcode() != CandidateBinOp)
13437 return PartialReduction(PrevOp, MaskEnd);
13453 return PartialReduction(PrevOp, MaskEnd);
13456 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13457 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13458 return PartialReduction(PrevOp, MaskEnd);
13465 while (
Op.getOpcode() == CandidateBinOp) {
13466 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13475 if (NumSrcElts != (2 * NumElts))
13490 EVT VT =
N->getValueType(0);
13499 else if (NE > ResNE)
13502 if (
N->getNumValues() == 2) {
13505 EVT VT1 =
N->getValueType(1);
13509 for (i = 0; i != NE; ++i) {
13510 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13511 SDValue Operand =
N->getOperand(j);
13519 SDValue EltOp =
getNode(
N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13524 for (; i < ResNE; ++i) {
13536 assert(
N->getNumValues() == 1 &&
13537 "Can't unroll a vector with multiple results!");
13543 for (i= 0; i != NE; ++i) {
13544 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13545 SDValue Operand =
N->getOperand(j);
13553 Operands[j] = Operand;
13557 switch (
N->getOpcode()) {
13585 ASC->getSrcAddressSpace(),
13586 ASC->getDestAddressSpace()));
13592 for (; i < ResNE; ++i)
13601 unsigned Opcode =
N->getOpcode();
13605 "Expected an overflow opcode");
13607 EVT ResVT =
N->getValueType(0);
13608 EVT OvVT =
N->getValueType(1);
13617 else if (NE > ResNE)
13629 for (
unsigned i = 0; i < NE; ++i) {
13630 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13653 if (LD->isVolatile() ||
Base->isVolatile())
13656 if (!LD->isSimple())
13658 if (LD->isIndexed() ||
Base->isIndexed())
13660 if (LD->getChain() !=
Base->getChain())
13662 EVT VT = LD->getMemoryVT();
13670 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13671 return (Dist * (int64_t)Bytes ==
Offset);
13680 int64_t GVOffset = 0;
13681 if (TLI->isGAPlusOffset(Ptr.
getNode(), GV, GVOffset)) {
13692 int FrameIdx = INT_MIN;
13693 int64_t FrameOffset = 0;
13695 FrameIdx = FI->getIndex();
13703 if (FrameIdx != INT_MIN) {
13708 return std::nullopt;
13718 "Split node must be a scalar type");
13723 return std::make_pair(
Lo,
Hi);
13732 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13736 return std::make_pair(LoVT, HiVT);
13744 bool *HiIsEmpty)
const {
13754 "Mixing fixed width and scalable vectors when enveloping a type");
13759 *HiIsEmpty =
false;
13767 return std::make_pair(LoVT, HiVT);
13772std::pair<SDValue, SDValue>
13777 "Splitting vector with an invalid mixture of fixed and scalable "
13780 N.getValueType().getVectorMinNumElements() &&
13781 "More vector elements requested than available!");
13790 return std::make_pair(
Lo,
Hi);
13797 EVT VT =
N.getValueType();
13799 "Expecting the mask to be an evenly-sized vector");
13804 return std::make_pair(
Lo,
Hi);
13809 EVT VT =
N.getValueType();
13817 unsigned Start,
unsigned Count,
13819 EVT VT =
Op.getValueType();
13822 if (EltVT ==
EVT())
13825 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13837 return Val.MachineCPVal->getType();
13838 return Val.ConstVal->getType();
13842 unsigned &SplatBitSize,
13843 bool &HasAnyUndefs,
13844 unsigned MinSplatBits,
13845 bool IsBigEndian)
const {
13849 if (MinSplatBits > VecWidth)
13854 SplatValue =
APInt(VecWidth, 0);
13855 SplatUndef =
APInt(VecWidth, 0);
13862 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13865 for (
unsigned j = 0; j <
NumOps; ++j) {
13866 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13868 unsigned BitPos = j * EltWidth;
13871 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13873 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13875 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13882 HasAnyUndefs = (SplatUndef != 0);
13885 while (VecWidth > 8) {
13890 unsigned HalfSize = VecWidth / 2;
13897 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13898 MinSplatBits > HalfSize)
13901 SplatValue = HighValue | LowValue;
13902 SplatUndef = HighUndef & LowUndef;
13904 VecWidth = HalfSize;
13913 SplatBitSize = VecWidth;
13920 if (UndefElements) {
13921 UndefElements->
clear();
13928 for (
unsigned i = 0; i !=
NumOps; ++i) {
13929 if (!DemandedElts[i])
13932 if (
Op.isUndef()) {
13934 (*UndefElements)[i] =
true;
13935 }
else if (!Splatted) {
13937 }
else if (Splatted !=
Op) {
13943 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13945 "Can only have a splat without a constant for all undefs.");
13962 if (UndefElements) {
13963 UndefElements->
clear();
13974 (*UndefElements)[
I] =
true;
13977 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13978 Sequence.append(SeqLen,
SDValue());
13979 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13980 if (!DemandedElts[
I])
13982 SDValue &SeqOp = Sequence[
I % SeqLen];
13984 if (
Op.isUndef()) {
13989 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13995 if (!Sequence.empty())
13999 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
14040 const APFloat &APF = CN->getValueAPF();
14046 return IntVal.exactLogBase2();
14052 bool IsLittleEndian,
unsigned DstEltSizeInBits,
14060 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
14061 "Invalid bitcast scale");
14066 BitVector SrcUndeElements(NumSrcOps,
false);
14068 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
14070 if (
Op.isUndef()) {
14071 SrcUndeElements.
set(
I);
14076 assert((CInt || CFP) &&
"Unknown constant");
14077 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
14078 : CFP->getValueAPF().bitcastToAPInt();
14082 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
14083 SrcBitElements, UndefElements, SrcUndeElements);
14088 unsigned DstEltSizeInBits,
14093 unsigned NumSrcOps = SrcBitElements.
size();
14094 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
14095 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
14096 "Invalid bitcast scale");
14097 assert(NumSrcOps == SrcUndefElements.
size() &&
14098 "Vector size mismatch");
14100 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
14101 DstUndefElements.
clear();
14102 DstUndefElements.
resize(NumDstOps,
false);
14106 if (SrcEltSizeInBits <= DstEltSizeInBits) {
14107 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
14108 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
14109 DstUndefElements.
set(
I);
14110 APInt &DstBits = DstBitElements[
I];
14111 for (
unsigned J = 0; J != Scale; ++J) {
14112 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
14113 if (SrcUndefElements[Idx])
14115 DstUndefElements.
reset(
I);
14116 const APInt &SrcBits = SrcBitElements[Idx];
14118 "Illegal constant bitwidths");
14119 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
14126 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
14127 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
14128 if (SrcUndefElements[
I]) {
14129 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
14132 const APInt &SrcBits = SrcBitElements[
I];
14133 for (
unsigned J = 0; J != Scale; ++J) {
14134 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
14135 APInt &DstBits = DstBitElements[Idx];
14136 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
14143 unsigned Opc =
Op.getOpcode();
14150std::optional<std::pair<APInt, APInt>>
14154 return std::nullopt;
14158 return std::nullopt;
14165 return std::nullopt;
14167 for (
unsigned i = 2; i <
NumOps; ++i) {
14169 return std::nullopt;
14172 if (Val != (Start + (Stride * i)))
14173 return std::nullopt;
14176 return std::make_pair(Start, Stride);
14182 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14192 for (
int Idx = Mask[i]; i != e; ++i)
14193 if (Mask[i] >= 0 && Mask[i] != Idx)
14201 SDValue N,
bool AllowOpaques)
const {
14205 return AllowOpaques || !
C->isOpaque();
14214 TLI->isOffsetFoldingLegal(GA))
14242 return std::nullopt;
14244 EVT VT =
N->getValueType(0);
14246 switch (TLI->getBooleanContents(
N.getValueType())) {
14252 return std::nullopt;
14258 return std::nullopt;
14266 assert(!
Node->OperandList &&
"Node already has operands");
14268 "too many operands to fit into SDNode");
14269 SDUse *
Ops = OperandRecycler.allocate(
14272 bool IsDivergent =
false;
14273 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14275 Ops[
I].setInitial(Vals[
I]);
14276 EVT VT =
Ops[
I].getValueType();
14279 if (VT != MVT::Other &&
14282 IsDivergent =
true;
14287 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14288 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14289 Node->SDNodeBits.IsDivergent = IsDivergent;
14297 while (Vals.
size() > Limit) {
14298 unsigned SliceIdx = Vals.
size() - Limit;
14374 const SDLoc &DLoc) {
14378 RTLIB::LibcallImpl LibcallImpl =
14379 Libcalls->getLibcallImpl(
static_cast<RTLIB::Libcall
>(LibFunc));
14380 if (LibcallImpl == RTLIB::Unsupported)
14387 Libcalls->getLibcallImplCallingConv(LibcallImpl),
14389 return TLI->LowerCallTo(CLI).second;
14393 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14394 auto I = SDEI.find(From);
14395 if (
I == SDEI.end())
14400 NodeExtraInfo NEI =
I->second;
14409 SDEI[To] = std::move(NEI);
14426 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14427 if (MaxDepth == 0) {
14433 if (!FromReach.
insert(
N).second)
14436 Self(Self,
Op.getNode(), MaxDepth - 1);
14441 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14444 if (!Visited.
insert(
N).second)
14449 if (
N == To &&
Op.getNode() == EntrySDN) {
14454 if (!Self(Self,
Op.getNode()))
14468 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14469 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14474 for (
const SDNode *
N : StartFrom)
14475 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14479 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14487 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14488 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14490 SDEI[To] = std::move(NEI);
14504 if (!Visited.
insert(
N).second) {
14505 errs() <<
"Detected cycle in SelectionDAG\n";
14506 dbgs() <<
"Offending node:\n";
14507 N->dumprFull(DAG);
dbgs() <<
"\n";
14523 bool check = force;
14524#ifdef EXPENSIVE_CHECKS
14528 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getFixedOrScalableQuantity(SelectionDAG &DAG, const SDLoc &DL, EVT VT, Ty Quantity)
static std::pair< SDValue, SDValue > getRuntimeCallSDValueHelper(SDValue Chain, const SDLoc &dl, TargetLowering::ArgListTy &&Args, const CallInst *CI, RTLIB::Libcall Call, SelectionDAG *DAG, const TargetLowering *TLI)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardZero
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
MachineConstantPoolValue * getMachineCPVal() const
bool isMachineConstantPoolEntry() const
const Constant * getConstVal() const
LLVM_ABI Type * getType() const
unsigned getTargetFlags() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Tracks which library functions to use for a particular subtarget.
LLVM_ABI CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall.
LLVM_ABI RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Return the lowering's selection of implementation call for Call.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
virtual void addSelectionDAGCSEId(FoldingSetNodeID &ID)=0
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC)
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, const LibcallLoweringInfo *LibcallsInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI bool canIgnoreSignBitOfZero(const SDUse &Use) const
Check if a use of a float value is insensitive to signed zeros.
LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero, for a floating-point value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
LLVM_ABI std::pair< SDValue, SDValue > getStrcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, const CallInst *CI)
Lower a strcpy operation into a target library call and return the resulting chain and call result as...
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getMaskFromElementCount(const SDLoc &DL, EVT VT, ElementCount Len)
Return a vector with the first 'Len' lanes set to true and remaining lanes set to false.
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
const LibcallLoweringInfo & getLibcalls() const
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI std::pair< SDValue, SDValue > getStrstr(SDValue Chain, const SDLoc &dl, SDValue S0, SDValue S1, const CallInst *CI)
Lower a strstr operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getDeactivationSymbol(const GlobalValue *GV)
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt clmulr(const APInt &LHS, const APInt &RHS)
Perform a reversed carry-less multiply.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
LLVM_ABI APInt clmul(const APInt &LHS, const APInt &RHS)
Perform a carry-less multiply, also known as XOR multiplication, and return low-bits.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
LLVM_ABI APInt clmulh(const APInt &LHS, const APInt &RHS)
Perform a carry-less multiply, and return high-bits.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ MDNODE_SDNODE
MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to reference metadata in the IR.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ PTRADD
PTRADD represents pointer arithmetic semantics, for targets that opt in using shouldPreservePtrArith(...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ MLOAD
Masked load and store - consecutive vector load and store operations with additional mask operand tha...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ JUMP_TABLE_DEBUG_INFO
JUMP_TABLE_DEBUG_INFO - Jumptable debug info.
@ BSWAP
Byte Swap and Counting operators.
@ DEACTIVATION_SYMBOL
Untyped node storing deactivation symbol reference (DeactivationSymbolSDNode).
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ CLMUL
Carry-less multiplication operations.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SRCVALUE
SRCVALUE - This is a node type that holds a Value* that is used to make reference to a value in the L...
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ CTLS
Count leading redundant sign bits.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, OFFSET) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by OFFSET elements an...
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ LIFETIME_START
This corresponds to the llvm.lifetime.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ MGATHER
Masked gather and scatter - load and store operations for a vector of random addresses with additiona...
@ HANDLENODE
HANDLENODE node - Used as a handle for various purposes.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ PSEUDO_PROBE
Pseudo probe for AutoFDO, as a place holder in a basic block to improve the sample counts quality.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, OFFSET) - Shifts CONCAT_VECTORS(VEC1,VEC2) right by OFFSET elements a...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ EXPERIMENTAL_VECTOR_HISTOGRAM
Experimental vector histogram intrinsic Operands: Input Chain, Inc, Mask, Base, Index,...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI NodeType getOppositeSignednessMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns the corresponding opcode with the opposi...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant (+/-)0.0 floating-point value or a splatted vector thereof (wi...
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
LLVM_ABI KnownBits truncSSat(unsigned BitWidth) const
Truncate with signed saturation (signed input -> signed output)
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
LLVM_ABI KnownBits truncUSat(unsigned BitWidth) const
Truncate with unsigned saturation (unsigned input -> unsigned output)
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
LLVM_ABI KnownBits truncSSatU(unsigned BitWidth) const
Truncate with signed saturation to unsigned (signed input -> unsigned output)
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
static StringRef getLibcallImplName(RTLIB::LibcallImpl CallImpl)
Get the libcall routine name for the specified libcall implementation.
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)