98void SelectionDAG::DAGNodeDeletedListener::anchor() {}
99void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101#define DEBUG_TYPE "selectiondag"
105 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
108 cl::desc(
"Number limit for gluing ld/st of memcpy."),
113 cl::desc(
"DAG combiner limit number of steps when searching DAG "
114 "for predecessor nodes"));
152 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
154 N->getValueType(0).getVectorElementType().getSizeInBits();
155 SplatVal = OptAPInt->
trunc(EltSize);
165 unsigned SplatBitSize;
167 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
172 const bool IsBigEndian =
false;
173 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
174 EltSize, IsBigEndian) &&
175 EltSize == SplatBitSize;
183 while (
N->getOpcode() == ISD::BITCAST)
184 N =
N->getOperand(0).getNode();
193 unsigned i = 0, e =
N->getNumOperands();
196 while (i != e &&
N->getOperand(i).isUndef())
200 if (i == e)
return false;
212 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
213 if (OptAPInt->countr_one() < EltSize)
221 for (++i; i != e; ++i)
222 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
229 while (
N->getOpcode() == ISD::BITCAST)
230 N =
N->getOperand(0).getNode();
239 bool IsAllUndef =
true;
252 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
253 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
254 if (OptAPInt->countr_zero() < EltSize)
302 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
304 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
305 if (EltSize <= NewEltSize)
309 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
314 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
327 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
328 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
330 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
341 if (
N->getNumOperands() == 0)
347 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
350template <
typename ConstNodeType>
352 std::function<
bool(ConstNodeType *)> Match,
353 bool AllowUndefs,
bool AllowTruncation) {
363 EVT SVT =
Op.getValueType().getScalarType();
364 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
365 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
372 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
387 bool AllowUndefs,
bool AllowTypeMismatch) {
388 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
394 return Match(LHSCst, RHSCst);
397 if (LHS.getOpcode() != RHS.getOpcode() ||
403 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
406 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
407 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
410 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
415 if (!Match(LHSCst, RHSCst))
437 switch (VecReduceOpcode) {
440 case ISD::VECREDUCE_FADD:
441 case ISD::VECREDUCE_SEQ_FADD:
442 case ISD::VP_REDUCE_FADD:
443 case ISD::VP_REDUCE_SEQ_FADD:
445 case ISD::VECREDUCE_FMUL:
446 case ISD::VECREDUCE_SEQ_FMUL:
447 case ISD::VP_REDUCE_FMUL:
448 case ISD::VP_REDUCE_SEQ_FMUL:
450 case ISD::VECREDUCE_ADD:
451 case ISD::VP_REDUCE_ADD:
453 case ISD::VECREDUCE_MUL:
454 case ISD::VP_REDUCE_MUL:
456 case ISD::VECREDUCE_AND:
457 case ISD::VP_REDUCE_AND:
459 case ISD::VECREDUCE_OR:
460 case ISD::VP_REDUCE_OR:
462 case ISD::VECREDUCE_XOR:
463 case ISD::VP_REDUCE_XOR:
465 case ISD::VECREDUCE_SMAX:
466 case ISD::VP_REDUCE_SMAX:
468 case ISD::VECREDUCE_SMIN:
469 case ISD::VP_REDUCE_SMIN:
471 case ISD::VECREDUCE_UMAX:
472 case ISD::VP_REDUCE_UMAX:
474 case ISD::VECREDUCE_UMIN:
475 case ISD::VP_REDUCE_UMIN:
477 case ISD::VECREDUCE_FMAX:
478 case ISD::VP_REDUCE_FMAX:
480 case ISD::VECREDUCE_FMIN:
481 case ISD::VP_REDUCE_FMIN:
483 case ISD::VECREDUCE_FMAXIMUM:
484 case ISD::VP_REDUCE_FMAXIMUM:
485 return ISD::FMAXIMUM;
486 case ISD::VECREDUCE_FMINIMUM:
487 case ISD::VP_REDUCE_FMINIMUM:
488 return ISD::FMINIMUM;
496#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
499#include "llvm/IR/VPIntrinsics.def"
507#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
508#define VP_PROPERTY_BINARYOP return true;
509#define END_REGISTER_VP_SDNODE(VPSD) break;
510#include "llvm/IR/VPIntrinsics.def"
519 case ISD::VP_REDUCE_ADD:
520 case ISD::VP_REDUCE_MUL:
521 case ISD::VP_REDUCE_AND:
522 case ISD::VP_REDUCE_OR:
523 case ISD::VP_REDUCE_XOR:
524 case ISD::VP_REDUCE_SMAX:
525 case ISD::VP_REDUCE_SMIN:
526 case ISD::VP_REDUCE_UMAX:
527 case ISD::VP_REDUCE_UMIN:
528 case ISD::VP_REDUCE_FMAX:
529 case ISD::VP_REDUCE_FMIN:
530 case ISD::VP_REDUCE_FMAXIMUM:
531 case ISD::VP_REDUCE_FMINIMUM:
532 case ISD::VP_REDUCE_FADD:
533 case ISD::VP_REDUCE_FMUL:
534 case ISD::VP_REDUCE_SEQ_FADD:
535 case ISD::VP_REDUCE_SEQ_FMUL:
545#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
548#include "llvm/IR/VPIntrinsics.def"
557#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
560#include "llvm/IR/VPIntrinsics.def"
570#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
571#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
572#define END_REGISTER_VP_SDNODE(VPOPC) break;
573#include "llvm/IR/VPIntrinsics.def"
582#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
583#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
584#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
585#include "llvm/IR/VPIntrinsics.def"
632 bool isIntegerLike) {
657 bool IsInteger =
Type.isInteger();
662 unsigned Op = Op1 | Op2;
678 bool IsInteger =
Type.isInteger();
713 ID.AddPointer(VTList.
VTs);
719 for (
const auto &
Op :
Ops) {
720 ID.AddPointer(
Op.getNode());
721 ID.AddInteger(
Op.getResNo());
728 for (
const auto &
Op :
Ops) {
729 ID.AddPointer(
Op.getNode());
730 ID.AddInteger(
Op.getResNo());
743 switch (
N->getOpcode()) {
752 ID.AddPointer(
C->getConstantIntValue());
753 ID.AddBoolean(
C->isOpaque());
786 case ISD::PSEUDO_PROBE:
799 ID.AddInteger(CP->getAlign().value());
800 ID.AddInteger(CP->getOffset());
801 if (CP->isMachineConstantPoolEntry())
802 CP->getMachineCPVal()->addSelectionDAGCSEId(
ID);
804 ID.AddPointer(CP->getConstVal());
805 ID.AddInteger(CP->getTargetFlags());
817 ID.AddInteger(LD->getMemoryVT().getRawBits());
818 ID.AddInteger(LD->getRawSubclassData());
819 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
820 ID.AddInteger(LD->getMemOperand()->getFlags());
825 ID.AddInteger(ST->getMemoryVT().getRawBits());
826 ID.AddInteger(ST->getRawSubclassData());
827 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
828 ID.AddInteger(ST->getMemOperand()->getFlags());
839 case ISD::VP_LOAD_FF: {
841 ID.AddInteger(LD->getMemoryVT().getRawBits());
842 ID.AddInteger(LD->getRawSubclassData());
843 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
844 ID.AddInteger(LD->getMemOperand()->getFlags());
847 case ISD::VP_STORE: {
855 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
862 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
869 case ISD::VP_GATHER: {
877 case ISD::VP_SCATTER: {
909 case ISD::MSCATTER: {
917 case ISD::ATOMIC_CMP_SWAP:
918 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
919 case ISD::ATOMIC_SWAP:
920 case ISD::ATOMIC_LOAD_ADD:
921 case ISD::ATOMIC_LOAD_SUB:
922 case ISD::ATOMIC_LOAD_AND:
923 case ISD::ATOMIC_LOAD_CLR:
924 case ISD::ATOMIC_LOAD_OR:
925 case ISD::ATOMIC_LOAD_XOR:
926 case ISD::ATOMIC_LOAD_NAND:
927 case ISD::ATOMIC_LOAD_MIN:
928 case ISD::ATOMIC_LOAD_MAX:
929 case ISD::ATOMIC_LOAD_UMIN:
930 case ISD::ATOMIC_LOAD_UMAX:
931 case ISD::ATOMIC_LOAD:
932 case ISD::ATOMIC_STORE: {
946 case ISD::ADDRSPACECAST: {
968 case ISD::MDNODE_SDNODE:
976 ID.AddInteger(MN->getRawSubclassData());
977 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
978 ID.AddInteger(MN->getMemOperand()->getFlags());
979 ID.AddInteger(MN->getMemoryVT().getRawBits());
1002 if (
N->getValueType(0) == MVT::Glue)
1005 switch (
N->getOpcode()) {
1007 case ISD::HANDLENODE:
1013 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1014 if (
N->getValueType(i) == MVT::Glue)
1031 if (
Node.use_empty())
1046 while (!DeadNodes.
empty()) {
1055 DUL->NodeDeleted(
N,
nullptr);
1058 RemoveNodeFromCSEMaps(
N);
1089 RemoveNodeFromCSEMaps(
N);
1093 DeleteNodeNotInCSEMaps(
N);
1096void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1097 assert(
N->getIterator() != AllNodes.begin() &&
1098 "Cannot delete the entry node!");
1099 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1108 assert(!(V->isVariadic() && isParameter));
1110 ByvalParmDbgValues.push_back(V);
1112 DbgValues.push_back(V);
1115 DbgValMap[
Node].push_back(V);
1119 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1120 if (
I == DbgValMap.end())
1122 for (
auto &Val:
I->second)
1123 Val->setIsInvalidated();
1127void SelectionDAG::DeallocateNode(
SDNode *
N) {
1150void SelectionDAG::verifyNode(
SDNode *
N)
const {
1151 switch (
N->getOpcode()) {
1153 if (
N->isTargetOpcode())
1157 EVT VT =
N->getValueType(0);
1158 assert(
N->getNumValues() == 1 &&
"Too many results!");
1160 "Wrong return type!");
1161 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1162 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1163 "Mismatched operand types!");
1165 "Wrong operand type!");
1167 "Wrong return type size");
1171 assert(
N->getNumValues() == 1 &&
"Too many results!");
1172 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1173 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1174 "Wrong number of operands!");
1175 EVT EltVT =
N->getValueType(0).getVectorElementType();
1176 for (
const SDUse &
Op :
N->ops()) {
1177 assert((
Op.getValueType() == EltVT ||
1178 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1179 EltVT.
bitsLE(
Op.getValueType()))) &&
1180 "Wrong operand type!");
1181 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1182 "Operands must all have the same type");
1194void SelectionDAG::InsertNode(SDNode *
N) {
1195 AllNodes.push_back(
N);
1197 N->PersistentId = NextPersistentId++;
1201 DUL->NodeInserted(
N);
1208bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1209 bool Erased =
false;
1210 switch (
N->getOpcode()) {
1211 case ISD::HANDLENODE:
return false;
1214 "Cond code doesn't exist!");
1223 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1229 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1235 Erased = ExtendedValueTypeNodes.erase(VT);
1246 Erased = CSEMap.RemoveNode(
N);
1253 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1268SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1272 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1273 if (Existing !=
N) {
1284 DUL->NodeDeleted(
N, Existing);
1285 DeleteNodeNotInCSEMaps(
N);
1292 DUL->NodeUpdated(
N);
1299SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1305 FoldingSetNodeID
ID;
1308 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1310 Node->intersectFlagsWith(
N->getFlags());
1318SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1325 FoldingSetNodeID
ID;
1328 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1330 Node->intersectFlagsWith(
N->getFlags());
1343 FoldingSetNodeID
ID;
1346 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1348 Node->intersectFlagsWith(
N->getFlags());
1361 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1364 InsertNode(&EntryNode);
1375 SDAGISelPass = PassPtr;
1379 LibInfo = LibraryInfo;
1380 Context = &MF->getFunction().getContext();
1385 FnVarLocs = VarLocs;
1389 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1391 OperandRecycler.clear(OperandAllocator);
1399void SelectionDAG::allnodes_clear() {
1400 assert(&*AllNodes.begin() == &EntryNode);
1401 AllNodes.remove(AllNodes.begin());
1402 while (!AllNodes.empty())
1403 DeallocateNode(&AllNodes.front());
1405 NextPersistentId = 0;
1411 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1413 switch (
N->getOpcode()) {
1418 "debug location. Use another overload.");
1425 const SDLoc &
DL,
void *&InsertPos) {
1426 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1428 switch (
N->getOpcode()) {
1434 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1441 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1442 N->setDebugLoc(
DL.getDebugLoc());
1451 OperandRecycler.clear(OperandAllocator);
1452 OperandAllocator.Reset();
1455 ExtendedValueTypeNodes.clear();
1456 ExternalSymbols.clear();
1457 TargetExternalSymbols.clear();
1463 EntryNode.UseList =
nullptr;
1464 InsertNode(&EntryNode);
1470 return VT.
bitsGT(
Op.getValueType())
1476std::pair<SDValue, SDValue>
1480 "Strict no-op FP extend/round not allowed.");
1487 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1491 return VT.
bitsGT(
Op.getValueType()) ?
1497 return VT.
bitsGT(
Op.getValueType()) ?
1503 return VT.
bitsGT(
Op.getValueType()) ?
1511 auto Type =
Op.getValueType();
1515 auto Size =
Op.getValueSizeInBits();
1526 auto Type =
Op.getValueType();
1530 auto Size =
Op.getValueSizeInBits();
1541 auto Type =
Op.getValueType();
1545 auto Size =
Op.getValueSizeInBits();
1559 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1563 EVT OpVT =
Op.getValueType();
1565 "Cannot getZeroExtendInReg FP types");
1567 "getZeroExtendInReg type should be vector iff the operand "
1571 "Vector element counts must match in getZeroExtendInReg");
1583 EVT OpVT =
Op.getValueType();
1585 "Cannot getVPZeroExtendInReg FP types");
1587 "getVPZeroExtendInReg type and operand type should be vector!");
1589 "Vector element counts must match in getZeroExtendInReg");
1628 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1639 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1641 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1650 switch (TLI->getBooleanContents(OpVT)) {
1661 bool isT,
bool isO) {
1667 bool isT,
bool isO) {
1668 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1672 EVT VT,
bool isT,
bool isO) {
1689 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1695 Elt = ConstantInt::get(*
getContext(), NewVal);
1707 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1714 "Can only handle an even split!");
1718 for (
unsigned i = 0; i != Parts; ++i)
1720 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1721 ViaEltVT, isT, isO));
1726 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1737 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1738 ViaEltVT, isT, isO));
1743 std::reverse(EltParts.
begin(), EltParts.
end());
1762 "APInt size does not match type size!");
1771 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1776 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1777 CSEMap.InsertNode(
N, IP);
1789 bool isT,
bool isO) {
1797 IsTarget, IsOpaque);
1829 EVT VT,
bool isTarget) {
1850 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1855 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1856 CSEMap.InsertNode(
N, IP);
1870 if (EltVT == MVT::f32)
1872 if (EltVT == MVT::f64)
1874 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1875 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1886 EVT VT, int64_t
Offset,
bool isTargetGA,
1887 unsigned TargetFlags) {
1888 assert((TargetFlags == 0 || isTargetGA) &&
1889 "Cannot set target flags on target-independent globals");
1907 ID.AddInteger(TargetFlags);
1909 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1912 auto *
N = newSDNode<GlobalAddressSDNode>(
1913 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1914 CSEMap.InsertNode(
N, IP);
1926 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1929 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1930 CSEMap.InsertNode(
N, IP);
1936 unsigned TargetFlags) {
1937 assert((TargetFlags == 0 || isTarget) &&
1938 "Cannot set target flags on target-independent jump tables");
1944 ID.AddInteger(TargetFlags);
1946 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1949 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1950 CSEMap.InsertNode(
N, IP);
1958 return getNode(ISD::JUMP_TABLE_DEBUG_INFO,
DL, MVT::Glue, Chain,
1964 bool isTarget,
unsigned TargetFlags) {
1965 assert((TargetFlags == 0 || isTarget) &&
1966 "Cannot set target flags on target-independent globals");
1975 ID.AddInteger(Alignment->value());
1978 ID.AddInteger(TargetFlags);
1980 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1983 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
1985 CSEMap.InsertNode(
N, IP);
1994 bool isTarget,
unsigned TargetFlags) {
1995 assert((TargetFlags == 0 || isTarget) &&
1996 "Cannot set target flags on target-independent globals");
2003 ID.AddInteger(Alignment->value());
2005 C->addSelectionDAGCSEId(
ID);
2006 ID.AddInteger(TargetFlags);
2008 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2011 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2013 CSEMap.InsertNode(
N, IP);
2023 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2026 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2027 CSEMap.InsertNode(
N, IP);
2034 ValueTypeNodes.size())
2041 N = newSDNode<VTSDNode>(VT);
2047 SDNode *&
N = ExternalSymbols[Sym];
2049 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2058 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2064 unsigned TargetFlags) {
2066 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2074 if ((
unsigned)
Cond >= CondCodeNodes.size())
2075 CondCodeNodes.resize(
Cond+1);
2077 if (!CondCodeNodes[
Cond]) {
2078 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2079 CondCodeNodes[
Cond] =
N;
2087 bool ConstantFold) {
2089 "APInt size does not match type size!");
2106 bool ConstantFold) {
2107 if (EC.isScalable())
2120 const APInt &StepVal) {
2144 "Must have the same number of vector elements as mask elements!");
2146 "Invalid VECTOR_SHUFFLE");
2154 int NElts = Mask.size();
2156 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2157 "Index out of range");
2165 for (
int i = 0; i != NElts; ++i)
2166 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2173 if (TLI->hasVectorBlend()) {
2182 for (
int i = 0; i < NElts; ++i) {
2183 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2187 if (UndefElements[MaskVec[i] -
Offset]) {
2193 if (!UndefElements[i])
2198 BlendSplat(N1BV, 0);
2200 BlendSplat(N2BV, NElts);
2205 bool AllLHS =
true, AllRHS =
true;
2207 for (
int i = 0; i != NElts; ++i) {
2208 if (MaskVec[i] >= NElts) {
2213 }
else if (MaskVec[i] >= 0) {
2217 if (AllLHS && AllRHS)
2219 if (AllLHS && !N2Undef)
2232 bool Identity =
true, AllSame =
true;
2233 for (
int i = 0; i != NElts; ++i) {
2234 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2235 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2237 if (Identity && NElts)
2246 while (V.getOpcode() == ISD::BITCAST)
2270 if (AllSame && SameNumElts) {
2271 EVT BuildVT = BV->getValueType(0);
2278 NewBV =
getNode(ISD::BITCAST, dl, VT, NewBV);
2288 for (
int i = 0; i != NElts; ++i)
2289 ID.AddInteger(MaskVec[i]);
2292 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2298 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2301 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2303 createOperands(
N,
Ops);
2305 CSEMap.InsertNode(
N, IP);
2326 ID.AddInteger(Reg.id());
2328 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2331 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2332 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2333 CSEMap.InsertNode(
N, IP);
2341 ID.AddPointer(RegMask);
2343 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2346 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2347 CSEMap.InsertNode(
N, IP);
2362 ID.AddPointer(Label);
2364 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2369 createOperands(
N,
Ops);
2371 CSEMap.InsertNode(
N, IP);
2377 int64_t
Offset,
bool isTarget,
2378 unsigned TargetFlags) {
2386 ID.AddInteger(TargetFlags);
2388 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2391 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2392 CSEMap.InsertNode(
N, IP);
2403 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2406 auto *
N = newSDNode<SrcValueSDNode>(V);
2407 CSEMap.InsertNode(
N, IP);
2418 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2421 auto *
N = newSDNode<MDNodeSDNode>(MD);
2422 CSEMap.InsertNode(
N, IP);
2428 if (VT == V.getValueType())
2435 unsigned SrcAS,
unsigned DestAS) {
2440 ID.AddInteger(SrcAS);
2441 ID.AddInteger(DestAS);
2444 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2448 VTs, SrcAS, DestAS);
2449 createOperands(
N,
Ops);
2451 CSEMap.InsertNode(
N, IP);
2463 EVT OpTy =
Op.getValueType();
2465 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2474 EVT VT =
Node->getValueType(0);
2483 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2521 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2523 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2531 if (RedAlign > StackAlign) {
2534 unsigned NumIntermediates;
2535 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2536 NumIntermediates, RegisterVT);
2538 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2539 if (RedAlign2 < RedAlign)
2540 RedAlign = RedAlign2;
2545 RedAlign = std::min(RedAlign, StackAlign);
2560 false,
nullptr, StackID);
2575 "Don't know how to choose the maximum size when creating a stack "
2584 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2592 auto GetUndefBooleanConstant = [&]() {
2594 TLI->getBooleanContents(OpVT) ==
2631 return GetUndefBooleanConstant();
2636 return GetUndefBooleanConstant();
2645 const APInt &C2 = N2C->getAPIntValue();
2647 const APInt &C1 = N1C->getAPIntValue();
2657 if (N1CFP && N2CFP) {
2662 return GetUndefBooleanConstant();
2667 return GetUndefBooleanConstant();
2673 return GetUndefBooleanConstant();
2678 return GetUndefBooleanConstant();
2683 return GetUndefBooleanConstant();
2689 return GetUndefBooleanConstant();
2716 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2718 return getSetCC(dl, VT, N2, N1, SwappedCond);
2719 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2734 return GetUndefBooleanConstant();
2745 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2753 unsigned Opc =
Op.getOpcode();
2762 return (NoFPClass & TestMask) == TestMask;
2764 case ISD::ARITH_FENCE:
2769 return Op->getFlags().hasNoNaNs();
2781 unsigned Depth)
const {
2789 const APInt &DemandedElts,
2790 unsigned Depth)
const {
2797 unsigned Depth )
const {
2803 unsigned Depth)
const {
2808 const APInt &DemandedElts,
2809 unsigned Depth)
const {
2810 EVT VT =
Op.getValueType();
2817 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2818 if (!DemandedElts[EltIdx])
2822 KnownZeroElements.
setBit(EltIdx);
2824 return KnownZeroElements;
2834 unsigned Opcode = V.getOpcode();
2835 EVT VT = V.getValueType();
2838 "scalable demanded bits are ignored");
2850 UndefElts = V.getOperand(0).isUndef()
2859 APInt UndefLHS, UndefRHS;
2868 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
2869 UndefElts = UndefLHS | UndefRHS;
2882 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
2899 for (
unsigned i = 0; i != NumElts; ++i) {
2905 if (!DemandedElts[i])
2907 if (Scl && Scl !=
Op)
2918 for (
int i = 0; i != (int)NumElts; ++i) {
2924 if (!DemandedElts[i])
2926 if (M < (
int)NumElts)
2929 DemandedRHS.
setBit(M - NumElts);
2941 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
2943 return (SrcElts.popcount() == 1) ||
2945 (SrcElts & SrcUndefs).
isZero());
2947 if (!DemandedLHS.
isZero())
2948 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2949 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2955 if (Src.getValueType().isScalableVector())
2957 uint64_t Idx = V.getConstantOperandVal(1);
2958 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2960 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
2962 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
2973 if (Src.getValueType().isScalableVector())
2977 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
2979 UndefElts = UndefSrcElts.
trunc(NumElts);
2984 case ISD::BITCAST: {
2986 EVT SrcVT = Src.getValueType();
2996 if ((
BitWidth % SrcBitWidth) == 0) {
2998 unsigned Scale =
BitWidth / SrcBitWidth;
3000 APInt ScaledDemandedElts =
3002 for (
unsigned I = 0;
I != Scale; ++
I) {
3006 SubDemandedElts &= ScaledDemandedElts;
3010 if (!SubUndefElts.
isZero())
3024 EVT VT = V.getValueType();
3034 (AllowUndefs || !UndefElts);
3040 EVT VT = V.getValueType();
3041 unsigned Opcode = V.getOpcode();
3062 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3077 if (!SVN->isSplat())
3079 int Idx = SVN->getSplatIndex();
3080 int NumElts = V.getValueType().getVectorNumElements();
3081 SplatIdx = Idx % NumElts;
3082 return V.getOperand(Idx / NumElts);
3094 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3097 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3098 if (LegalSVT.
bitsLT(SVT))
3106std::optional<ConstantRange>
3108 unsigned Depth)
const {
3111 "Unknown shift node");
3113 unsigned BitWidth = V.getScalarValueSizeInBits();
3116 const APInt &ShAmt = Cst->getAPIntValue();
3118 return std::nullopt;
3123 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3124 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3125 if (!DemandedElts[i])
3129 MinAmt = MaxAmt =
nullptr;
3132 const APInt &ShAmt = SA->getAPIntValue();
3134 return std::nullopt;
3135 if (!MinAmt || MinAmt->
ugt(ShAmt))
3137 if (!MaxAmt || MaxAmt->ult(ShAmt))
3140 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3141 "Failed to find matching min/max shift amounts");
3142 if (MinAmt && MaxAmt)
3152 return std::nullopt;
3155std::optional<unsigned>
3157 unsigned Depth)
const {
3160 "Unknown shift node");
3161 if (std::optional<ConstantRange> AmtRange =
3163 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3164 return ShAmt->getZExtValue();
3165 return std::nullopt;
3168std::optional<unsigned>
3170 EVT VT = V.getValueType();
3177std::optional<unsigned>
3179 unsigned Depth)
const {
3182 "Unknown shift node");
3183 if (std::optional<ConstantRange> AmtRange =
3185 return AmtRange->getUnsignedMin().getZExtValue();
3186 return std::nullopt;
3189std::optional<unsigned>
3191 EVT VT = V.getValueType();
3198std::optional<unsigned>
3200 unsigned Depth)
const {
3203 "Unknown shift node");
3204 if (std::optional<ConstantRange> AmtRange =
3206 return AmtRange->getUnsignedMax().getZExtValue();
3207 return std::nullopt;
3210std::optional<unsigned>
3212 EVT VT = V.getValueType();
3223 EVT VT =
Op.getValueType();
3238 unsigned Depth)
const {
3239 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3243 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3253 assert((!
Op.getValueType().isFixedLengthVector() ||
3254 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3255 "Unexpected vector size");
3260 unsigned Opcode =
Op.getOpcode();
3268 "Expected SPLAT_VECTOR implicit truncation");
3275 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3277 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3284 const APInt &Step =
Op.getConstantOperandAPInt(0);
3293 const APInt MinNumElts =
3299 .
umul_ov(MinNumElts, Overflow);
3303 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3311 assert(!
Op.getValueType().isScalableVector());
3314 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3315 if (!DemandedElts[i])
3324 "Expected BUILD_VECTOR implicit truncation");
3348 assert(!
Op.getValueType().isScalableVector());
3351 APInt DemandedLHS, DemandedRHS;
3355 DemandedLHS, DemandedRHS))
3360 if (!!DemandedLHS) {
3368 if (!!DemandedRHS) {
3377 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3382 if (
Op.getValueType().isScalableVector())
3386 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3388 unsigned NumSubVectors =
Op.getNumOperands();
3389 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3391 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3392 if (!!DemandedSub) {
3404 if (
Op.getValueType().isScalableVector())
3411 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3413 APInt DemandedSrcElts = DemandedElts;
3414 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3417 if (!!DemandedSubElts) {
3422 if (!!DemandedSrcElts) {
3432 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3435 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3436 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3441 if (
Op.getValueType().isScalableVector())
3445 if (DemandedElts != 1)
3455 case ISD::BITCAST: {
3456 if (
Op.getValueType().isScalableVector())
3476 if ((
BitWidth % SubBitWidth) == 0) {
3483 unsigned SubScale =
BitWidth / SubBitWidth;
3484 APInt SubDemandedElts(NumElts * SubScale, 0);
3485 for (
unsigned i = 0; i != NumElts; ++i)
3486 if (DemandedElts[i])
3487 SubDemandedElts.
setBit(i * SubScale);
3489 for (
unsigned i = 0; i != SubScale; ++i) {
3492 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3493 Known.
insertBits(Known2, SubBitWidth * Shifts);
3498 if ((SubBitWidth %
BitWidth) == 0) {
3499 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3504 unsigned SubScale = SubBitWidth /
BitWidth;
3505 APInt SubDemandedElts =
3510 for (
unsigned i = 0; i != NumElts; ++i)
3511 if (DemandedElts[i]) {
3512 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3543 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3547 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3553 if (
Op->getFlags().hasNoSignedWrap() &&
3554 Op.getOperand(0) ==
Op.getOperand(1) &&
3581 unsigned SignBits1 =
3585 unsigned SignBits0 =
3591 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3594 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3595 if (
Op.getResNo() == 0)
3602 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3605 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3606 if (
Op.getResNo() == 0)
3659 if (
Op.getResNo() != 1)
3665 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3674 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3676 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3686 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3687 bool NSW =
Op->getFlags().hasNoSignedWrap();
3694 if (std::optional<unsigned> ShMinAmt =
3703 Op->getFlags().hasExact());
3706 if (std::optional<unsigned> ShMinAmt =
3714 Op->getFlags().hasExact());
3720 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3735 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3741 DemandedElts,
Depth + 1);
3762 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3765 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3766 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3769 Known = Known2.
concat(Known);
3783 if (
Op.getResNo() == 0)
3828 (Opcode == ISD::MGATHER)
3840 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3845 !
Op.getValueType().isScalableVector()) {
3858 for (
unsigned i = 0; i != NumElts; ++i) {
3859 if (!DemandedElts[i])
3869 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3888 }
else if (
Op.getResNo() == 0) {
3889 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
3890 KnownBits KnownScalarMemory(ScalarMemorySize);
3891 if (
const MDNode *MD = LD->getRanges())
3902 Known = KnownScalarMemory;
3909 if (
Op.getValueType().isScalableVector())
3911 EVT InVT =
Op.getOperand(0).getValueType();
3923 if (
Op.getValueType().isScalableVector())
3925 EVT InVT =
Op.getOperand(0).getValueType();
3941 if (
Op.getValueType().isScalableVector())
3943 EVT InVT =
Op.getOperand(0).getValueType();
3963 Known.
Zero |= (~InMask);
3964 Known.
One &= (~Known.Zero);
3984 if ((NoFPClass & NegativeTestMask) == NegativeTestMask) {
3990 if ((NoFPClass & PositiveTestMask) == PositiveTestMask) {
4007 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4008 Flags.hasNoUnsignedWrap(), Known, Known2);
4015 if (
Op.getResNo() == 1) {
4017 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4026 "We only compute knownbits for the difference here.");
4033 Borrow = Borrow.
trunc(1);
4047 if (
Op.getResNo() == 1) {
4049 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4058 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4068 Carry = Carry.
trunc(1);
4104 const unsigned Index =
Op.getConstantOperandVal(1);
4105 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4112 Known = Known.
trunc(EltBitWidth);
4128 Known = Known.
trunc(EltBitWidth);
4134 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4144 if (
Op.getValueType().isScalableVector())
4153 bool DemandedVal =
true;
4154 APInt DemandedVecElts = DemandedElts;
4156 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4157 unsigned EltIdx = CEltNo->getZExtValue();
4158 DemandedVal = !!DemandedElts[EltIdx];
4166 if (!!DemandedVecElts) {
4184 Known = Known2.
abs();
4217 if (CstLow && CstHigh) {
4222 const APInt &ValueHigh = CstHigh->getAPIntValue();
4223 if (ValueLow.
sle(ValueHigh)) {
4226 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4249 if (IsMax && CstLow) {
4277 case ISD::ATOMIC_LOAD: {
4279 if (
Op.getResNo() == 0) {
4281 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4282 KnownBits KnownScalarMemory(ScalarMemorySize);
4283 if (
const MDNode *MD = AT->getRanges())
4286 switch (AT->getExtensionType()) {
4294 switch (TLI->getExtendForAtomicOps()) {
4307 Known = KnownScalarMemory;
4314 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4315 if (
Op.getResNo() == 1) {
4320 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4327 case ISD::ATOMIC_CMP_SWAP:
4328 case ISD::ATOMIC_SWAP:
4329 case ISD::ATOMIC_LOAD_ADD:
4330 case ISD::ATOMIC_LOAD_SUB:
4331 case ISD::ATOMIC_LOAD_AND:
4332 case ISD::ATOMIC_LOAD_CLR:
4333 case ISD::ATOMIC_LOAD_OR:
4334 case ISD::ATOMIC_LOAD_XOR:
4335 case ISD::ATOMIC_LOAD_NAND:
4336 case ISD::ATOMIC_LOAD_MIN:
4337 case ISD::ATOMIC_LOAD_MAX:
4338 case ISD::ATOMIC_LOAD_UMIN:
4339 case ISD::ATOMIC_LOAD_UMAX: {
4341 if (
Op.getResNo() == 0) {
4343 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4365 if (
Op.getValueType().isScalableVector())
4369 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4511 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4519 if (
C &&
C->getAPIntValue() == 1)
4529 if (
C &&
C->getAPIntValue().isSignMask())
4541 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4542 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4550 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4588 return C1->getValueAPF().getExactLog2Abs() >= 0;
4597 EVT VT =
Op.getValueType();
4609 unsigned Depth)
const {
4610 EVT VT =
Op.getValueType();
4615 unsigned FirstAnswer = 1;
4618 const APInt &Val =
C->getAPIntValue();
4628 unsigned Opcode =
Op.getOpcode();
4633 return VTBits-Tmp+1;
4647 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4649 if (NumSrcSignBits > (NumSrcBits - VTBits))
4650 return NumSrcSignBits - (NumSrcBits - VTBits);
4656 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4657 if (!DemandedElts[i])
4664 APInt T =
C->getAPIntValue().trunc(VTBits);
4665 Tmp2 =
T.getNumSignBits();
4669 if (
SrcOp.getValueSizeInBits() != VTBits) {
4671 "Expected BUILD_VECTOR implicit truncation");
4672 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4673 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4676 Tmp = std::min(Tmp, Tmp2);
4687 Tmp = std::min(Tmp, Tmp2);
4694 APInt DemandedLHS, DemandedRHS;
4698 DemandedLHS, DemandedRHS))
4701 Tmp = std::numeric_limits<unsigned>::max();
4704 if (!!DemandedRHS) {
4706 Tmp = std::min(Tmp, Tmp2);
4711 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4715 case ISD::BITCAST: {
4727 if (VTBits == SrcBits)
4733 if ((SrcBits % VTBits) == 0) {
4736 unsigned Scale = SrcBits / VTBits;
4737 APInt SrcDemandedElts =
4747 for (
unsigned i = 0; i != NumElts; ++i)
4748 if (DemandedElts[i]) {
4749 unsigned SubOffset = i % Scale;
4750 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4751 SubOffset = SubOffset * VTBits;
4752 if (Tmp <= SubOffset)
4754 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4764 return VTBits - Tmp + 1;
4766 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4773 return std::max(Tmp, Tmp2);
4778 EVT SrcVT = Src.getValueType();
4786 if (std::optional<unsigned> ShAmt =
4788 Tmp = std::min(Tmp + *ShAmt, VTBits);
4791 if (std::optional<ConstantRange> ShAmtRange =
4793 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4794 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4802 EVT ExtVT = Ext.getValueType();
4803 SDValue Extendee = Ext.getOperand(0);
4805 unsigned SizeDifference =
4807 if (SizeDifference <= MinShAmt) {
4808 Tmp = SizeDifference +
4811 return Tmp - MaxShAmt;
4817 return Tmp - MaxShAmt;
4827 FirstAnswer = std::min(Tmp, Tmp2);
4837 if (Tmp == 1)
return 1;
4839 return std::min(Tmp, Tmp2);
4842 if (Tmp == 1)
return 1;
4844 return std::min(Tmp, Tmp2);
4856 if (CstLow && CstHigh) {
4861 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4862 return std::min(Tmp, Tmp2);
4871 return std::min(Tmp, Tmp2);
4879 return std::min(Tmp, Tmp2);
4883 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
4894 if (
Op.getResNo() != 1)
4900 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
4908 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
4910 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
4925 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
4929 RotAmt = (VTBits - RotAmt) % VTBits;
4933 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
4940 if (Tmp == 1)
return 1;
4945 if (CRHS->isAllOnes()) {
4951 if ((Known.
Zero | 1).isAllOnes())
4961 if (Tmp2 == 1)
return 1;
4965 return std::min(Tmp, Tmp2) - 1;
4968 if (Tmp2 == 1)
return 1;
4973 if (CLHS->isZero()) {
4978 if ((Known.
Zero | 1).isAllOnes())
4992 if (Tmp == 1)
return 1;
4993 return std::min(Tmp, Tmp2) - 1;
4997 if (SignBitsOp0 == 1)
5000 if (SignBitsOp1 == 1)
5002 unsigned OutValidBits =
5003 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5004 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5012 return std::min(Tmp, Tmp2);
5021 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5023 if (NumSrcSignBits > (NumSrcBits - VTBits))
5024 return NumSrcSignBits - (NumSrcBits - VTBits);
5031 const int BitWidth =
Op.getValueSizeInBits();
5032 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5036 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5051 bool DemandedVal =
true;
5052 APInt DemandedVecElts = DemandedElts;
5054 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5055 unsigned EltIdx = CEltNo->getZExtValue();
5056 DemandedVal = !!DemandedElts[EltIdx];
5059 Tmp = std::numeric_limits<unsigned>::max();
5065 Tmp = std::min(Tmp, Tmp2);
5067 if (!!DemandedVecElts) {
5069 Tmp = std::min(Tmp, Tmp2);
5071 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5082 const unsigned BitWidth =
Op.getValueSizeInBits();
5083 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5096 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5106 if (Src.getValueType().isScalableVector())
5109 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5110 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5118 Tmp = std::numeric_limits<unsigned>::max();
5119 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5121 unsigned NumSubVectors =
Op.getNumOperands();
5122 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5124 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5128 Tmp = std::min(Tmp, Tmp2);
5130 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5141 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5143 APInt DemandedSrcElts = DemandedElts;
5144 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5146 Tmp = std::numeric_limits<unsigned>::max();
5147 if (!!DemandedSubElts) {
5152 if (!!DemandedSrcElts) {
5154 Tmp = std::min(Tmp, Tmp2);
5156 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5161 if (
const MDNode *Ranges = LD->getRanges()) {
5162 if (DemandedElts != 1)
5167 switch (LD->getExtensionType()) {
5187 case ISD::ATOMIC_CMP_SWAP:
5188 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5189 case ISD::ATOMIC_SWAP:
5190 case ISD::ATOMIC_LOAD_ADD:
5191 case ISD::ATOMIC_LOAD_SUB:
5192 case ISD::ATOMIC_LOAD_AND:
5193 case ISD::ATOMIC_LOAD_CLR:
5194 case ISD::ATOMIC_LOAD_OR:
5195 case ISD::ATOMIC_LOAD_XOR:
5196 case ISD::ATOMIC_LOAD_NAND:
5197 case ISD::ATOMIC_LOAD_MIN:
5198 case ISD::ATOMIC_LOAD_MAX:
5199 case ISD::ATOMIC_LOAD_UMIN:
5200 case ISD::ATOMIC_LOAD_UMAX:
5201 case ISD::ATOMIC_LOAD: {
5204 if (
Op.getResNo() == 0) {
5205 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5210 if (
Op->getOpcode() == ISD::ATOMIC_LOAD) {
5211 switch (AT->getExtensionType()) {
5215 return VTBits - Tmp + 1;
5217 return VTBits - Tmp;
5222 return VTBits - Tmp + 1;
5224 return VTBits - Tmp;
5231 if (
Op.getResNo() == 0) {
5234 unsigned ExtType = LD->getExtensionType();
5238 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5239 return VTBits - Tmp + 1;
5241 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5242 return VTBits - Tmp;
5244 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5247 Type *CstTy = Cst->getType();
5252 for (
unsigned i = 0; i != NumElts; ++i) {
5253 if (!DemandedElts[i])
5258 Tmp = std::min(Tmp,
Value.getNumSignBits());
5262 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5263 Tmp = std::min(Tmp,
Value.getNumSignBits());
5287 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5289 FirstAnswer = std::max(FirstAnswer, NumBits);
5300 unsigned Depth)
const {
5302 return Op.getScalarValueSizeInBits() - SignBits + 1;
5306 const APInt &DemandedElts,
5307 unsigned Depth)
const {
5309 return Op.getScalarValueSizeInBits() - SignBits + 1;
5313 unsigned Depth)
const {
5318 EVT VT =
Op.getValueType();
5326 const APInt &DemandedElts,
5328 unsigned Depth)
const {
5329 unsigned Opcode =
Op.getOpcode();
5358 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5359 if (!DemandedElts[i])
5369 if (Src.getValueType().isScalableVector())
5372 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5373 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5379 if (
Op.getValueType().isScalableVector())
5384 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5386 APInt DemandedSrcElts = DemandedElts;
5387 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5401 EVT SrcVT = Src.getValueType();
5405 IndexC->getZExtValue());
5420 if (DemandedElts[IndexC->getZExtValue()] &&
5423 APInt InVecDemandedElts = DemandedElts;
5424 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5425 if (!!InVecDemandedElts &&
5450 APInt DemandedLHS, DemandedRHS;
5453 DemandedElts, DemandedLHS, DemandedRHS,
5456 if (!DemandedLHS.
isZero() &&
5460 if (!DemandedRHS.
isZero() &&
5508 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5509 PoisonOnly, Depth + 1);
5521 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5534 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5540 unsigned Depth)
const {
5541 EVT VT =
Op.getValueType();
5551 unsigned Depth)
const {
5552 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5555 unsigned Opcode =
Op.getOpcode();
5635 if (
Op.getOperand(0).getValueType().isInteger())
5642 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5644 return (
unsigned)CCCode & 0x10U;
5664 case ISD::FP_EXTEND:
5690 EVT VecVT =
Op.getOperand(0).getValueType();
5699 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5700 if (Elt < 0 && DemandedElts[Idx])
5709 return TLI->canCreateUndefOrPoisonForTargetNode(
5719 unsigned Opcode =
Op.getOpcode();
5721 return Op->getFlags().hasDisjoint() ||
5734 unsigned Depth)
const {
5735 EVT VT =
Op.getValueType();
5748 bool SNaN,
unsigned Depth)
const {
5749 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5760 return !
C->getValueAPF().isNaN() ||
5761 (SNaN && !
C->getValueAPF().isSignaling());
5764 unsigned Opcode =
Op.getOpcode();
5797 case ISD::FROUNDEVEN:
5803 case ISD::FNEARBYINT:
5817 case ISD::FP_EXTEND:
5839 case ISD::FMINIMUMNUM:
5840 case ISD::FMAXIMUMNUM: {
5846 case ISD::FMINNUM_IEEE:
5847 case ISD::FMAXNUM_IEEE: {
5858 case ISD::FMAXIMUM: {
5866 EVT SrcVT = Src.getValueType();
5870 Idx->getZExtValue());
5877 if (Src.getValueType().isFixedLengthVector()) {
5878 unsigned Idx =
Op.getConstantOperandVal(1);
5879 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5880 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5890 unsigned Idx =
Op.getConstantOperandVal(2);
5896 APInt DemandedMask =
5898 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
5901 bool NeverNaN =
true;
5902 if (!DemandedSrcElts.
isZero())
5905 if (NeverNaN && !DemandedSubElts.
isZero())
5914 unsigned NumElts =
Op.getNumOperands();
5915 for (
unsigned I = 0;
I != NumElts; ++
I)
5916 if (DemandedElts[
I] &&
5933 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
5942 assert(
Op.getValueType().isFloatingPoint() &&
5943 "Floating point type expected");
5954 assert(!
Op.getValueType().isFloatingPoint() &&
5955 "Floating point types unsupported - use isKnownNeverZeroFloat");
5964 switch (
Op.getOpcode()) {
5978 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
5982 if (ValKnown.
One[0])
6042 if (
Op->getFlags().hasExact())
6058 if (
Op->getFlags().hasExact())
6063 if (
Op->getFlags().hasNoUnsignedWrap())
6074 std::optional<bool> ne =
6081 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6092 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6106 return !C1->isNegative();
6108 switch (
Op.getOpcode()) {
6123 if (
A ==
B)
return true;
6128 if (CA->isZero() && CB->isZero())
return true;
6163 NotOperand = NotOperand->getOperand(0);
6165 if (
Other == NotOperand)
6168 return NotOperand ==
Other->getOperand(0) ||
6169 NotOperand ==
Other->getOperand(1);
6175 A =
A->getOperand(0);
6178 B =
B->getOperand(0);
6181 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6182 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6188 assert(
A.getValueType() ==
B.getValueType() &&
6189 "Values must have the same type");
6211 "BUILD_VECTOR cannot be used with scalable types");
6213 "Incorrect element count in BUILD_VECTOR!");
6221 bool IsIdentity =
true;
6222 for (
int i = 0; i !=
NumOps; ++i) {
6225 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6227 Ops[i].getConstantOperandAPInt(1) != i) {
6231 IdentitySrc =
Ops[i].getOperand(0);
6244 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6247 return Ops[0].getValueType() ==
Op.getValueType();
6249 "Concatenation of vectors with inconsistent value types!");
6252 "Incorrect element count in vector concatenation!");
6254 if (
Ops.size() == 1)
6265 bool IsIdentity =
true;
6266 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6268 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6270 Op.getOperand(0).getValueType() != VT ||
6271 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6272 Op.getConstantOperandVal(1) != IdentityIndex) {
6276 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6277 "Unexpected identity source vector for concat of extracts");
6278 IdentitySrc =
Op.getOperand(0);
6281 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6297 EVT OpVT =
Op.getValueType();
6313 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6337 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6340 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6341 CSEMap.InsertNode(
N, IP);
6353 Flags = Inserter->getFlags();
6354 return getNode(Opcode,
DL, VT, N1, Flags);
6372 case ISD::FP_EXTEND:
6375 case ISD::FP_TO_FP16:
6376 case ISD::FP_TO_BF16:
6383 case ISD::FP16_TO_FP:
6384 case ISD::BF16_TO_FP:
6405 "STEP_VECTOR can only be used with scalable types");
6408 "Unexpected step operand");
6427 case ISD::FP_EXTEND:
6429 "Invalid FP cast!");
6433 "Vector element count mismatch!");
6451 "Invalid SIGN_EXTEND!");
6453 "SIGN_EXTEND result type type should be vector iff the operand "
6458 "Vector element count mismatch!");
6481 unsigned NumSignExtBits =
6492 "Invalid ZERO_EXTEND!");
6494 "ZERO_EXTEND result type type should be vector iff the operand "
6499 "Vector element count mismatch!");
6537 "Invalid ANY_EXTEND!");
6539 "ANY_EXTEND result type type should be vector iff the operand "
6544 "Vector element count mismatch!");
6569 "Invalid TRUNCATE!");
6571 "TRUNCATE result type type should be vector iff the operand "
6576 "Vector element count mismatch!");
6603 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6605 "The input must be the same size or smaller than the result.");
6608 "The destination vector type must have fewer lanes than the input.");
6618 "BSWAP types must be a multiple of 16 bits!");
6632 "Cannot BITCAST between types of different sizes!");
6634 if (OpOpcode == ISD::BITCAST)
6645 "Illegal SCALAR_TO_VECTOR node!");
6660 if (OpOpcode == ISD::FNEG)
6664 if (OpOpcode == ISD::FNEG)
6679 case ISD::VECREDUCE_ADD:
6681 return getNode(ISD::VECREDUCE_XOR,
DL, VT, N1);
6683 case ISD::VECREDUCE_SMIN:
6684 case ISD::VECREDUCE_UMAX:
6686 return getNode(ISD::VECREDUCE_OR,
DL, VT, N1);
6688 case ISD::VECREDUCE_SMAX:
6689 case ISD::VECREDUCE_UMIN:
6691 return getNode(ISD::VECREDUCE_AND,
DL, VT, N1);
6702 "Wrong operand type!");
6709 if (VT != MVT::Glue) {
6713 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6714 E->intersectFlagsWith(Flags);
6718 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6720 createOperands(
N,
Ops);
6721 CSEMap.InsertNode(
N, IP);
6723 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6724 createOperands(
N,
Ops);
6758 if (!C2.getBoolValue())
6762 if (!C2.getBoolValue())
6766 if (!C2.getBoolValue())
6770 if (!C2.getBoolValue())
6790 return std::nullopt;
6795 bool IsUndef1,
const APInt &C2,
6797 if (!(IsUndef1 || IsUndef2))
6805 return std::nullopt;
6813 if (!TLI->isOffsetFoldingLegal(GA))
6818 int64_t
Offset = C2->getSExtValue();
6838 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6845 [](
SDValue V) { return V.isUndef() ||
6846 isNullConstant(V); });
6884 const APInt &Val =
C->getAPIntValue();
6888 C->isTargetOpcode(),
C->isOpaque());
6895 C->isTargetOpcode(),
C->isOpaque());
6900 C->isTargetOpcode(),
C->isOpaque());
6902 C->isTargetOpcode(),
C->isOpaque());
6930 case ISD::FP16_TO_FP:
6931 case ISD::BF16_TO_FP: {
6948 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
6950 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
6952 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
6954 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
6988 case ISD::FP_EXTEND: {
7007 case ISD::FP_TO_FP16:
7008 case ISD::FP_TO_BF16: {
7015 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7018 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7021 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7024 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7027 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7028 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7034 if (Opcode == ISD::BITCAST)
7045 if (C1->isOpaque() || C2->isOpaque())
7048 std::optional<APInt> FoldAttempt =
7049 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7055 "Can't fold vectors ops with scalar operands");
7063 if (TLI->isCommutativeBinOp(Opcode))
7079 const APInt &Val = C1->getAPIntValue();
7080 return SignExtendInReg(Val, VT);
7093 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7101 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7112 if (C1 && C2 && C3) {
7113 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7115 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7116 &V3 = C3->getAPIntValue();
7132 if (C1 && C2 && C3) {
7153 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7154 (
Ops[0].getOpcode() == ISD::BITCAST ||
7155 Ops[1].getOpcode() == ISD::BITCAST)) {
7166 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7167 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7171 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7182 BVEltVT = BV1->getOperand(0).getValueType();
7185 BVEltVT = BV2->getOperand(0).getValueType();
7191 DstBits, RawBits, DstUndefs,
7194 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7212 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7213 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7218 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7219 return !
Op.getValueType().isVector() ||
7220 Op.getValueType().getVectorElementCount() == NumElts;
7223 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7249 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7261 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7264 EVT InSVT =
Op.getValueType().getScalarType();
7307 if (LegalSVT != SVT)
7308 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7322 if (
Ops.size() != 2)
7333 if (N1CFP && N2CFP) {
7363 case ISD::FMINIMUMNUM:
7365 case ISD::FMAXIMUMNUM:
7384 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7407 if (SrcEltVT == DstEltVT)
7415 if (SrcBitSize == DstBitSize) {
7420 if (
Op.getValueType() != SrcEltVT)
7463 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7464 if (UndefElements[
I])
7485 ID.AddInteger(
A.value());
7488 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7492 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7493 createOperands(
N, {Val});
7495 CSEMap.InsertNode(
N, IP);
7507 Flags = Inserter->getFlags();
7508 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7513 if (!TLI->isCommutativeBinOp(Opcode))
7522 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7536 "Operand is DELETED_NODE!");
7552 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7556 if (N1 == N2)
return N1;
7572 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7574 N1.
getValueType() == VT &&
"Binary operator types must match!");
7577 if (N2CV && N2CV->
isZero())
7587 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7589 N1.
getValueType() == VT &&
"Binary operator types must match!");
7599 if (N2CV && N2CV->
isZero())
7613 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7615 N1.
getValueType() == VT &&
"Binary operator types must match!");
7618 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7620 const APInt &N2CImm = N2C->getAPIntValue();
7634 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7636 N1.
getValueType() == VT &&
"Binary operator types must match!");
7649 "Types of operands of UCMP/SCMP must match");
7651 "Operands and return type of must both be scalars or vectors");
7655 "Result and operands must have the same number of elements");
7661 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7663 N1.
getValueType() == VT &&
"Binary operator types must match!");
7667 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7669 N1.
getValueType() == VT &&
"Binary operator types must match!");
7675 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7677 N1.
getValueType() == VT &&
"Binary operator types must match!");
7683 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7685 N1.
getValueType() == VT &&
"Binary operator types must match!");
7696 N1.
getValueType() == VT &&
"Binary operator types must match!");
7704 "Invalid FCOPYSIGN!");
7707 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7709 const APInt &ShiftImm = N2C->getAPIntValue();
7721 "Shift operators return type must be the same as their first arg");
7723 "Shifts only work on integers");
7725 "Vector shift amounts must be in the same as their first arg");
7732 "Invalid use of small shift amount with oversized value!");
7739 if (N2CV && N2CV->
isZero())
7745 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7751 "AssertNoFPClass is used for a non-floating type");
7756 "FPClassTest value too large");
7765 "Cannot *_EXTEND_INREG FP types");
7767 "AssertSExt/AssertZExt type should be the vector element type "
7768 "rather than the vector type!");
7777 "Cannot *_EXTEND_INREG FP types");
7779 "SIGN_EXTEND_INREG type should be vector iff the operand "
7783 "Vector element counts must match in SIGN_EXTEND_INREG");
7785 if (
EVT == VT)
return N1;
7793 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7797 "Vector element counts must match in FP_TO_*INT_SAT");
7799 "Type to saturate to must be a scalar.");
7806 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7807 element type of the vector.");
7829 N2C->getZExtValue() % Factor);
7838 "BUILD_VECTOR used for scalable vectors");
7861 if (N1Op2C && N2C) {
7891 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
7895 "Wrong types for EXTRACT_ELEMENT!");
7906 unsigned Shift = ElementSize * N2C->getZExtValue();
7907 const APInt &Val = N1C->getAPIntValue();
7914 "Extract subvector VTs must be vectors!");
7916 "Extract subvector VTs must have the same element type!");
7918 "Cannot extract a scalable vector from a fixed length vector!");
7921 "Extract subvector must be from larger vector to smaller vector!");
7922 assert(N2C &&
"Extract subvector index must be a constant");
7926 "Extract subvector overflow!");
7927 assert(N2C->getAPIntValue().getBitWidth() ==
7929 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
7931 "Extract index is not a multiple of the output vector length");
7946 return N1.
getOperand(N2C->getZExtValue() / Factor);
7987 if (TLI->isCommutativeBinOp(Opcode)) {
8066 if (VT != MVT::Glue) {
8070 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8071 E->intersectFlagsWith(Flags);
8075 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8077 createOperands(
N,
Ops);
8078 CSEMap.InsertNode(
N, IP);
8080 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8081 createOperands(
N,
Ops);
8094 Flags = Inserter->getFlags();
8095 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8104 "Operand is DELETED_NODE!");
8123 "SETCC operands must have the same type!");
8125 "SETCC type should be vector iff the operand type is vector!");
8128 "SETCC vector element counts must match!");
8148 "INSERT_VECTOR_ELT vector type mismatch");
8150 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8153 "INSERT_VECTOR_ELT fp scalar type mismatch");
8156 "INSERT_VECTOR_ELT int scalar size mismatch");
8202 "Dest and insert subvector source types must match!");
8204 "Insert subvector VTs must be vectors!");
8206 "Insert subvector VTs must have the same element type!");
8208 "Cannot insert a scalable vector into a fixed length vector!");
8211 "Insert subvector must be from smaller vector to larger vector!");
8213 "Insert subvector index must be constant");
8217 "Insert subvector overflow!");
8220 "Constant index for INSERT_SUBVECTOR has an invalid size");
8264 case ISD::VP_TRUNCATE:
8265 case ISD::VP_SIGN_EXTEND:
8266 case ISD::VP_ZERO_EXTEND:
8275 assert(VT == VecVT &&
"Vector and result type don't match.");
8277 "All inputs must be vectors.");
8278 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8280 "Vector and mask must have same number of elements.");
8287 case ISD::PARTIAL_REDUCE_UMLA:
8288 case ISD::PARTIAL_REDUCE_SMLA:
8289 case ISD::PARTIAL_REDUCE_SUMLA:
8290 case ISD::PARTIAL_REDUCE_FMLA: {
8295 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8296 "node to have the same type!");
8298 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8299 "the same type as its result!");
8302 "Expected the element count of the second and third operands of the "
8303 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8304 "element count of the first operand and the result!");
8306 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8307 "node to have an element type which is the same as or smaller than "
8308 "the element type of the first operand and result!");
8330 if (VT != MVT::Glue) {
8334 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8335 E->intersectFlagsWith(Flags);
8339 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8341 createOperands(
N,
Ops);
8342 CSEMap.InsertNode(
N, IP);
8344 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8345 createOperands(
N,
Ops);
8365 Flags = Inserter->getFlags();
8366 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8381 Flags = Inserter->getFlags();
8382 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8399 if (FI->getIndex() < 0)
8414 assert(
C->getAPIntValue().getBitWidth() == 8);
8419 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8424 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8440 if (VT !=
Value.getValueType())
8453 if (Slice.Array ==
nullptr) {
8456 return DAG.
getNode(ISD::BITCAST, dl, VT,
8462 unsigned NumVTBytes = NumVTBits / 8;
8463 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8465 APInt Val(NumVTBits, 0);
8467 for (
unsigned i = 0; i != NumBytes; ++i)
8470 for (
unsigned i = 0; i != NumBytes; ++i)
8471 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8490 APInt(
Base.getValueSizeInBits().getFixedValue(),
8491 Offset.getKnownMinValue()));
8502 EVT BasePtrVT =
Ptr.getValueType();
8503 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8518 else if (Src->isAnyAdd() &&
8522 SrcDelta = Src.getConstantOperandVal(1);
8528 SrcDelta +
G->getOffset());
8544 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8545 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8547 for (
unsigned i = From; i < To; ++i) {
8549 GluedLoadChains.
push_back(OutLoadChains[i]);
8556 for (
unsigned i = From; i < To; ++i) {
8559 ST->getBasePtr(), ST->getMemoryVT(),
8560 ST->getMemOperand());
8582 std::vector<EVT> MemOps;
8583 bool DstAlignCanChange =
false;
8589 DstAlignCanChange =
true;
8591 if (!SrcAlign || Alignment > *SrcAlign)
8592 SrcAlign = Alignment;
8593 assert(SrcAlign &&
"SrcAlign must be set");
8597 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8599 const MemOp Op = isZeroConstant
8603 *SrcAlign, isVol, CopyFromConstant);
8609 if (DstAlignCanChange) {
8610 Type *Ty = MemOps[0].getTypeForEVT(
C);
8611 Align NewAlign =
DL.getABITypeAlign(Ty);
8617 if (!
TRI->hasStackRealignment(MF))
8619 NewAlign = std::min(NewAlign, *StackAlign);
8621 if (NewAlign > Alignment) {
8625 Alignment = NewAlign;
8635 BatchAA && SrcVal &&
8643 unsigned NumMemOps = MemOps.size();
8645 for (
unsigned i = 0; i != NumMemOps; ++i) {
8650 if (VTSize >
Size) {
8653 assert(i == NumMemOps-1 && i != 0);
8654 SrcOff -= VTSize -
Size;
8655 DstOff -= VTSize -
Size;
8658 if (CopyFromConstant &&
8666 if (SrcOff < Slice.Length) {
8668 SubSlice.
move(SrcOff);
8671 SubSlice.
Array =
nullptr;
8673 SubSlice.
Length = VTSize;
8676 if (
Value.getNode()) {
8680 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8685 if (!Store.getNode()) {
8694 bool isDereferenceable =
8697 if (isDereferenceable)
8712 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8722 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8724 if (NumLdStInMemcpy) {
8730 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8736 if (NumLdStInMemcpy <= GluedLdStLimit) {
8738 NumLdStInMemcpy, OutLoadChains,
8741 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8742 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8743 unsigned GlueIter = 0;
8745 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8746 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8747 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8750 OutLoadChains, OutStoreChains);
8751 GlueIter += GluedLdStLimit;
8755 if (RemainingLdStInMemcpy) {
8757 RemainingLdStInMemcpy, OutLoadChains,
8769 bool isVol,
bool AlwaysInline,
8783 std::vector<EVT> MemOps;
8784 bool DstAlignCanChange =
false;
8790 DstAlignCanChange =
true;
8792 if (!SrcAlign || Alignment > *SrcAlign)
8793 SrcAlign = Alignment;
8794 assert(SrcAlign &&
"SrcAlign must be set");
8804 if (DstAlignCanChange) {
8805 Type *Ty = MemOps[0].getTypeForEVT(
C);
8806 Align NewAlign =
DL.getABITypeAlign(Ty);
8812 if (!
TRI->hasStackRealignment(MF))
8814 NewAlign = std::min(NewAlign, *StackAlign);
8816 if (NewAlign > Alignment) {
8820 Alignment = NewAlign;
8834 unsigned NumMemOps = MemOps.size();
8835 for (
unsigned i = 0; i < NumMemOps; i++) {
8840 bool isDereferenceable =
8843 if (isDereferenceable)
8849 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8856 for (
unsigned i = 0; i < NumMemOps; i++) {
8862 Chain, dl, LoadValues[i],
8864 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8904 std::vector<EVT> MemOps;
8905 bool DstAlignCanChange =
false;
8912 DstAlignCanChange =
true;
8918 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
8922 if (DstAlignCanChange) {
8925 Align NewAlign =
DL.getABITypeAlign(Ty);
8931 if (!
TRI->hasStackRealignment(MF))
8933 NewAlign = std::min(NewAlign, *StackAlign);
8935 if (NewAlign > Alignment) {
8939 Alignment = NewAlign;
8945 unsigned NumMemOps = MemOps.size();
8948 EVT LargestVT = MemOps[0];
8949 for (
unsigned i = 1; i < NumMemOps; i++)
8950 if (MemOps[i].bitsGT(LargestVT))
8951 LargestVT = MemOps[i];
8958 for (
unsigned i = 0; i < NumMemOps; i++) {
8961 if (VTSize >
Size) {
8964 assert(i == NumMemOps-1 && i != 0);
8965 DstOff -= VTSize -
Size;
8972 if (VT.
bitsLT(LargestVT)) {
8987 SDValue TailValue = DAG.
getNode(ISD::BITCAST, dl, SVT, MemSetValue);
8992 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9019 bool AllowReturnsFirstArg) {
9025 AllowReturnsFirstArg &&
9029std::pair<SDValue, SDValue>
9032 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9049 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9055 return TLI->LowerCallTo(CLI);
9062 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9082 return TLI->LowerCallTo(CLI);
9087 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9096 if (ConstantSize->
isZero())
9100 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9101 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9102 if (Result.getNode())
9109 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9110 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9111 DstPtrInfo, SrcPtrInfo);
9112 if (Result.getNode())
9119 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9121 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9122 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9137 Args.emplace_back(Dst, PtrTy);
9138 Args.emplace_back(Src, PtrTy);
9142 bool IsTailCall =
false;
9143 RTLIB::LibcallImpl MemCpyImpl = TLI->getMemcpyImpl();
9145 if (OverrideTailCall.has_value()) {
9146 IsTailCall = *OverrideTailCall;
9148 bool LowersToMemcpy = MemCpyImpl == RTLIB::impl_memcpy;
9155 TLI->getLibcallImplCallingConv(MemCpyImpl),
9156 Dst.getValueType().getTypeForEVT(*
getContext()),
9163 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9164 return CallResult.second;
9169 Type *SizeTy,
unsigned ElemSz,
9176 Args.emplace_back(Dst, ArgTy);
9177 Args.emplace_back(Src, ArgTy);
9178 Args.emplace_back(
Size, SizeTy);
9180 RTLIB::Libcall LibraryCall =
9182 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9196 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9197 return CallResult.second;
9203 std::optional<bool> OverrideTailCall,
9213 if (ConstantSize->
isZero())
9217 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9218 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9219 if (Result.getNode())
9227 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9228 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9229 if (Result.getNode())
9242 Args.emplace_back(Dst, PtrTy);
9243 Args.emplace_back(Src, PtrTy);
9248 RTLIB::LibcallImpl MemmoveImpl = TLI->getLibcallImpl(RTLIB::MEMMOVE);
9250 bool IsTailCall =
false;
9251 if (OverrideTailCall.has_value()) {
9252 IsTailCall = *OverrideTailCall;
9254 bool LowersToMemmove = MemmoveImpl == RTLIB::impl_memmove;
9261 TLI->getLibcallImplCallingConv(MemmoveImpl),
9262 Dst.getValueType().getTypeForEVT(*
getContext()),
9269 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9270 return CallResult.second;
9275 Type *SizeTy,
unsigned ElemSz,
9282 Args.emplace_back(Dst, IntPtrTy);
9283 Args.emplace_back(Src, IntPtrTy);
9284 Args.emplace_back(
Size, SizeTy);
9286 RTLIB::Libcall LibraryCall =
9288 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9302 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9303 return CallResult.second;
9308 bool isVol,
bool AlwaysInline,
9317 if (ConstantSize->
isZero())
9322 isVol,
false, DstPtrInfo, AAInfo);
9324 if (Result.getNode())
9331 SDValue Result = TSI->EmitTargetCodeForMemset(
9332 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9333 if (Result.getNode())
9340 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9343 isVol,
true, DstPtrInfo, AAInfo);
9345 "getMemsetStores must return a valid sequence when AlwaysInline");
9366 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9373 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9374 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9375 CLI.
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9376 Dst.getValueType().getTypeForEVT(Ctx),
9378 TLI->getPointerTy(
DL)),
9382 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9383 bool LowersToMemset = MemsetImpl == RTLIB::impl_memset;
9394 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9395 return CallResult.second;
9400 Type *SizeTy,
unsigned ElemSz,
9407 Args.emplace_back(
Size, SizeTy);
9409 RTLIB::Libcall LibraryCall =
9411 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9425 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9426 return CallResult.second;
9436 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9437 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9442 E->refineAlignment(MMO);
9443 E->refineRanges(MMO);
9448 VTList, MemVT, MMO, ExtType);
9449 createOperands(
N,
Ops);
9451 CSEMap.InsertNode(
N, IP);
9462 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9463 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9473 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9474 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9475 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9476 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9477 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9478 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9479 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9480 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9481 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9482 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9483 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9484 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9485 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9486 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9487 Opcode == ISD::ATOMIC_STORE) &&
9488 "Invalid Atomic Op");
9503 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs,
Ops, MMO, ExtType);
9508 if (
Ops.size() == 1)
9523 if (
Size.hasValue() && !
Size.getValue())
9528 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9539 Opcode == ISD::PREFETCH ||
9540 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9542 "Opcode is not a memory-accessing opcode!");
9546 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9549 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9550 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9555 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9561 VTList, MemVT, MMO);
9562 createOperands(
N,
Ops);
9564 CSEMap.InsertNode(
N, IP);
9567 VTList, MemVT, MMO);
9568 createOperands(
N,
Ops);
9577 SDValue Chain,
int FrameIndex) {
9578 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9588 ID.AddInteger(FrameIndex);
9590 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9595 createOperands(
N,
Ops);
9596 CSEMap.InsertNode(
N, IP);
9606 const unsigned Opcode = ISD::PSEUDO_PROBE;
9612 ID.AddInteger(Index);
9614 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9617 auto *
N = newSDNode<PseudoProbeSDNode>(
9619 createOperands(
N,
Ops);
9620 CSEMap.InsertNode(
N, IP);
9674 "Invalid chain type");
9686 Alignment, AAInfo, Ranges);
9697 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9701 "Should only be an extending load, not truncating!");
9703 "Cannot convert from FP to Int or Int -> FP!");
9705 "Cannot use an ext load to convert to or from a vector!");
9708 "Cannot use an ext load to change the number of vector elements!");
9715 "Range metadata and load type must match!");
9726 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9727 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9732 E->refineAlignment(MMO);
9733 E->refineRanges(MMO);
9737 ExtType, MemVT, MMO);
9738 createOperands(
N,
Ops);
9740 CSEMap.InsertNode(
N, IP);
9754 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9772 MemVT, Alignment, MMOFlags, AAInfo);
9787 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9790 LD->getMemOperand()->getFlags() &
9793 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9794 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9813 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9827 bool IsTruncating) {
9831 IsTruncating =
false;
9832 }
else if (!IsTruncating) {
9833 assert(VT == SVT &&
"No-truncating store from different memory type!");
9836 "Should only be a truncating store, not extending!");
9839 "Cannot use trunc store to convert to or from a vector!");
9842 "Cannot use trunc store to change the number of vector elements!");
9853 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9854 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9858 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9863 IsTruncating, SVT, MMO);
9864 createOperands(
N,
Ops);
9866 CSEMap.InsertNode(
N, IP);
9879 "Invalid chain type");
9889 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
9904 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
9906 ST->getMemoryVT(), ST->getMemOperand(), AM,
9907 ST->isTruncatingStore());
9915 const MDNode *Ranges,
bool IsExpanding) {
9928 Alignment, AAInfo, Ranges);
9929 return getLoadVP(AM, ExtType, VT, dl, Chain,
Ptr,
Offset, Mask, EVL, MemVT,
9948 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
9949 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9954 E->refineAlignment(MMO);
9955 E->refineRanges(MMO);
9959 ExtType, IsExpanding, MemVT, MMO);
9960 createOperands(
N,
Ops);
9962 CSEMap.InsertNode(
N, IP);
9978 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
9987 Mask, EVL, VT, MMO, IsExpanding);
9996 const AAMDNodes &AAInfo,
bool IsExpanding) {
9999 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10009 EVL, MemVT, MMO, IsExpanding);
10016 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10019 LD->getMemOperand()->getFlags() &
10022 LD->getChain(),
Base,
Offset, LD->getMask(),
10023 LD->getVectorLength(), LD->getPointerInfo(),
10024 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10025 nullptr, LD->isExpandingLoad());
10032 bool IsCompressing) {
10042 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10043 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10046 void *IP =
nullptr;
10047 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10052 IsTruncating, IsCompressing, MemVT, MMO);
10053 createOperands(
N,
Ops);
10055 CSEMap.InsertNode(
N, IP);
10068 bool IsCompressing) {
10079 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10088 bool IsCompressing) {
10095 false, IsCompressing);
10098 "Should only be a truncating store, not extending!");
10101 "Cannot use trunc store to convert to or from a vector!");
10104 "Cannot use trunc store to change the number of vector elements!");
10112 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10116 void *IP =
nullptr;
10117 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10124 createOperands(
N,
Ops);
10126 CSEMap.InsertNode(
N, IP);
10137 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10140 Offset, ST->getMask(), ST->getVectorLength()};
10143 ID.AddInteger(ST->getMemoryVT().getRawBits());
10144 ID.AddInteger(ST->getRawSubclassData());
10145 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10146 ID.AddInteger(ST->getMemOperand()->getFlags());
10147 void *IP =
nullptr;
10148 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10151 auto *
N = newSDNode<VPStoreSDNode>(
10153 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10154 createOperands(
N,
Ops);
10156 CSEMap.InsertNode(
N, IP);
10176 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10177 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10180 void *IP =
nullptr;
10181 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10187 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10188 ExtType, IsExpanding, MemVT, MMO);
10189 createOperands(
N,
Ops);
10190 CSEMap.InsertNode(
N, IP);
10201 bool IsExpanding) {
10204 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10213 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10222 bool IsTruncating,
bool IsCompressing) {
10232 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10233 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10235 void *IP =
nullptr;
10236 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10240 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10241 VTs, AM, IsTruncating,
10242 IsCompressing, MemVT, MMO);
10243 createOperands(
N,
Ops);
10245 CSEMap.InsertNode(
N, IP);
10257 bool IsCompressing) {
10264 false, IsCompressing);
10267 "Should only be a truncating store, not extending!");
10270 "Cannot use trunc store to convert to or from a vector!");
10273 "Cannot use trunc store to change the number of vector elements!");
10277 SDValue Ops[] = {Chain, Val,
Ptr, Undef, Stride, Mask, EVL};
10281 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10284 void *IP =
nullptr;
10285 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10289 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10291 IsCompressing, SVT, MMO);
10292 createOperands(
N,
Ops);
10294 CSEMap.InsertNode(
N, IP);
10304 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10309 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10313 void *IP =
nullptr;
10314 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10320 VT, MMO, IndexType);
10321 createOperands(
N,
Ops);
10323 assert(
N->getMask().getValueType().getVectorElementCount() ==
10324 N->getValueType(0).getVectorElementCount() &&
10325 "Vector width mismatch between mask and data");
10326 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10327 N->getValueType(0).getVectorElementCount().isScalable() &&
10328 "Scalable flags of index and data do not match");
10330 N->getIndex().getValueType().getVectorElementCount(),
10331 N->getValueType(0).getVectorElementCount()) &&
10332 "Vector width mismatch between index and data");
10334 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10335 "Scale should be a constant power of 2");
10337 CSEMap.InsertNode(
N, IP);
10348 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10353 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10357 void *IP =
nullptr;
10358 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10363 VT, MMO, IndexType);
10364 createOperands(
N,
Ops);
10366 assert(
N->getMask().getValueType().getVectorElementCount() ==
10367 N->getValue().getValueType().getVectorElementCount() &&
10368 "Vector width mismatch between mask and data");
10370 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10371 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10372 "Scalable flags of index and data do not match");
10374 N->getIndex().getValueType().getVectorElementCount(),
10375 N->getValue().getValueType().getVectorElementCount()) &&
10376 "Vector width mismatch between index and data");
10378 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10379 "Scale should be a constant power of 2");
10381 CSEMap.InsertNode(
N, IP);
10396 "Unindexed masked load with an offset!");
10403 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10404 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10407 void *IP =
nullptr;
10408 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10413 AM, ExtTy, isExpanding, MemVT, MMO);
10414 createOperands(
N,
Ops);
10416 CSEMap.InsertNode(
N, IP);
10427 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10429 Offset, LD->getMask(), LD->getPassThru(),
10430 LD->getMemoryVT(), LD->getMemOperand(), AM,
10431 LD->getExtensionType(), LD->isExpandingLoad());
10439 bool IsCompressing) {
10441 "Invalid chain type");
10444 "Unindexed masked store with an offset!");
10451 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10452 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10455 void *IP =
nullptr;
10456 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10462 IsTruncating, IsCompressing, MemVT, MMO);
10463 createOperands(
N,
Ops);
10465 CSEMap.InsertNode(
N, IP);
10476 assert(ST->getOffset().isUndef() &&
10477 "Masked store is already a indexed store!");
10479 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10480 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10488 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10493 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10494 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10497 void *IP =
nullptr;
10498 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10504 VTs, MemVT, MMO, IndexType, ExtTy);
10505 createOperands(
N,
Ops);
10507 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10508 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10509 assert(
N->getMask().getValueType().getVectorElementCount() ==
10510 N->getValueType(0).getVectorElementCount() &&
10511 "Vector width mismatch between mask and data");
10512 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10513 N->getValueType(0).getVectorElementCount().isScalable() &&
10514 "Scalable flags of index and data do not match");
10516 N->getIndex().getValueType().getVectorElementCount(),
10517 N->getValueType(0).getVectorElementCount()) &&
10518 "Vector width mismatch between index and data");
10520 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10521 "Scale should be a constant power of 2");
10523 CSEMap.InsertNode(
N, IP);
10535 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10540 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10541 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10544 void *IP =
nullptr;
10545 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10551 VTs, MemVT, MMO, IndexType, IsTrunc);
10552 createOperands(
N,
Ops);
10554 assert(
N->getMask().getValueType().getVectorElementCount() ==
10555 N->getValue().getValueType().getVectorElementCount() &&
10556 "Vector width mismatch between mask and data");
10558 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10559 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10560 "Scalable flags of index and data do not match");
10562 N->getIndex().getValueType().getVectorElementCount(),
10563 N->getValue().getValueType().getVectorElementCount()) &&
10564 "Vector width mismatch between index and data");
10566 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10567 "Scale should be a constant power of 2");
10569 CSEMap.InsertNode(
N, IP);
10580 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10585 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10586 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10589 void *IP =
nullptr;
10590 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10596 VTs, MemVT, MMO, IndexType);
10597 createOperands(
N,
Ops);
10599 assert(
N->getMask().getValueType().getVectorElementCount() ==
10600 N->getIndex().getValueType().getVectorElementCount() &&
10601 "Vector width mismatch between mask and data");
10603 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10604 "Scale should be a constant power of 2");
10605 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10607 CSEMap.InsertNode(
N, IP);
10622 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10626 void *IP =
nullptr;
10627 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10631 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10633 createOperands(
N,
Ops);
10635 CSEMap.InsertNode(
N, IP);
10650 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10651 ISD::GET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10654 void *IP =
nullptr;
10655 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10658 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.
getIROrder(),
10660 createOperands(
N,
Ops);
10662 CSEMap.InsertNode(
N, IP);
10677 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10678 ISD::SET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10681 void *IP =
nullptr;
10682 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10685 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.
getIROrder(),
10687 createOperands(
N,
Ops);
10689 CSEMap.InsertNode(
N, IP);
10700 if (
Cond.isUndef())
10735 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10741 if (
X.getValueType().getScalarType() == MVT::i1)
10754 bool HasNan = (XC && XC->
getValueAPF().isNaN()) ||
10756 bool HasInf = (XC && XC->
getValueAPF().isInfinity()) ||
10759 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10762 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10785 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10800 switch (
Ops.size()) {
10801 case 0:
return getNode(Opcode,
DL, VT);
10811 return getNode(Opcode,
DL, VT, NewOps);
10818 Flags = Inserter->getFlags();
10826 case 0:
return getNode(Opcode,
DL, VT);
10827 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10834 for (
const auto &
Op :
Ops)
10836 "Operand is DELETED_NODE!");
10853 "LHS and RHS of condition must have same type!");
10855 "True and False arms of SelectCC must have same type!");
10857 "select_cc node must be of same type as true and false value!");
10861 "Expected select_cc with vector result to have the same sized "
10862 "comparison type!");
10867 "LHS/RHS of comparison should match types!");
10873 Opcode = ISD::VP_XOR;
10878 Opcode = ISD::VP_AND;
10880 case ISD::VP_REDUCE_MUL:
10883 Opcode = ISD::VP_REDUCE_AND;
10885 case ISD::VP_REDUCE_ADD:
10888 Opcode = ISD::VP_REDUCE_XOR;
10890 case ISD::VP_REDUCE_SMAX:
10891 case ISD::VP_REDUCE_UMIN:
10895 Opcode = ISD::VP_REDUCE_AND;
10897 case ISD::VP_REDUCE_SMIN:
10898 case ISD::VP_REDUCE_UMAX:
10902 Opcode = ISD::VP_REDUCE_OR;
10910 if (VT != MVT::Glue) {
10913 void *IP =
nullptr;
10915 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10916 E->intersectFlagsWith(Flags);
10920 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
10921 createOperands(
N,
Ops);
10923 CSEMap.InsertNode(
N, IP);
10925 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
10926 createOperands(
N,
Ops);
10929 N->setFlags(Flags);
10940 Flags = Inserter->getFlags();
10954 Flags = Inserter->getFlags();
10964 for (
const auto &
Op :
Ops)
10966 "Operand is DELETED_NODE!");
10975 "Invalid add/sub overflow op!");
10977 Ops[0].getValueType() ==
Ops[1].getValueType() &&
10978 Ops[0].getValueType() == VTList.
VTs[0] &&
10979 "Binary operator types must match!");
10986 if (N2CV && N2CV->
isZero()) {
11017 "Invalid add/sub overflow op!");
11019 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11020 Ops[0].getValueType() == VTList.
VTs[0] &&
11021 Ops[2].getValueType() == VTList.
VTs[1] &&
11022 "Binary operator types must match!");
11026 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11028 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11029 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11030 "Binary operator types must match!");
11036 unsigned OutWidth = Width * 2;
11037 APInt Val = LHS->getAPIntValue();
11040 Val = Val.
sext(OutWidth);
11041 Mul =
Mul.sext(OutWidth);
11043 Val = Val.
zext(OutWidth);
11044 Mul =
Mul.zext(OutWidth);
11055 case ISD::FFREXP: {
11056 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11058 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11066 DL, VTList.
VTs[1]);
11074 "Invalid STRICT_FP_EXTEND!");
11076 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11078 "STRICT_FP_EXTEND result type should be vector iff the operand "
11079 "type is vector!");
11082 Ops[1].getValueType().getVectorElementCount()) &&
11083 "Vector element count mismatch!");
11085 "Invalid fpext node, dst <= src!");
11088 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11090 "STRICT_FP_ROUND result type should be vector iff the operand "
11091 "type is vector!");
11094 Ops[1].getValueType().getVectorElementCount()) &&
11095 "Vector element count mismatch!");
11097 Ops[1].getValueType().isFloatingPoint() &&
11100 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11101 "Invalid STRICT_FP_ROUND!");
11107 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11110 void *IP =
nullptr;
11111 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11112 E->intersectFlagsWith(Flags);
11116 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11117 createOperands(
N,
Ops);
11118 CSEMap.InsertNode(
N, IP);
11120 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11121 createOperands(
N,
Ops);
11124 N->setFlags(Flags);
11171 return makeVTList(&(*EVTs.insert(VT).first), 1);
11180 void *IP =
nullptr;
11183 EVT *Array = Allocator.Allocate<
EVT>(2);
11186 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11187 VTListMap.InsertNode(Result, IP);
11189 return Result->getSDVTList();
11199 void *IP =
nullptr;
11202 EVT *Array = Allocator.Allocate<
EVT>(3);
11206 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11207 VTListMap.InsertNode(Result, IP);
11209 return Result->getSDVTList();
11220 void *IP =
nullptr;
11223 EVT *Array = Allocator.Allocate<
EVT>(4);
11228 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11229 VTListMap.InsertNode(Result, IP);
11231 return Result->getSDVTList();
11235 unsigned NumVTs = VTs.
size();
11237 ID.AddInteger(NumVTs);
11238 for (
unsigned index = 0; index < NumVTs; index++) {
11239 ID.AddInteger(VTs[index].getRawBits());
11242 void *IP =
nullptr;
11245 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11247 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11248 VTListMap.InsertNode(Result, IP);
11250 return Result->getSDVTList();
11261 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11264 if (
Op ==
N->getOperand(0))
return N;
11267 void *InsertPos =
nullptr;
11268 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11273 if (!RemoveNodeFromCSEMaps(
N))
11274 InsertPos =
nullptr;
11277 N->OperandList[0].set(
Op);
11281 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11286 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11289 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11293 void *InsertPos =
nullptr;
11294 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11299 if (!RemoveNodeFromCSEMaps(
N))
11300 InsertPos =
nullptr;
11303 if (
N->OperandList[0] != Op1)
11304 N->OperandList[0].set(Op1);
11305 if (
N->OperandList[1] != Op2)
11306 N->OperandList[1].set(Op2);
11310 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11330 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11338 "Update with wrong number of operands");
11341 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11345 void *InsertPos =
nullptr;
11346 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11351 if (!RemoveNodeFromCSEMaps(
N))
11352 InsertPos =
nullptr;
11355 for (
unsigned i = 0; i !=
NumOps; ++i)
11356 if (
N->OperandList[i] !=
Ops[i])
11357 N->OperandList[i].set(
Ops[i]);
11361 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11378 if (NewMemRefs.
empty()) {
11384 if (NewMemRefs.
size() == 1) {
11385 N->MemRefs = NewMemRefs[0];
11391 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11393 N->MemRefs = MemRefsBuffer;
11394 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11466 New->setNodeId(-1);
11486 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11487 N->setIROrder(Order);
11510 void *IP =
nullptr;
11511 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11515 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11518 if (!RemoveNodeFromCSEMaps(
N))
11523 N->ValueList = VTs.
VTs;
11533 if (Used->use_empty())
11534 DeadNodeSet.
insert(Used);
11539 MN->clearMemRefs();
11543 createOperands(
N,
Ops);
11547 if (!DeadNodeSet.
empty()) {
11549 for (
SDNode *
N : DeadNodeSet)
11550 if (
N->use_empty())
11556 CSEMap.InsertNode(
N, IP);
11561 unsigned OrigOpc =
Node->getOpcode();
11566#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11567 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11568#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11569 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11570#include "llvm/IR/ConstrainedOps.def"
11573 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11581 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11582 Ops.push_back(
Node->getOperand(i));
11699 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11701 void *IP =
nullptr;
11707 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11713 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11714 createOperands(
N,
Ops);
11717 CSEMap.InsertNode(
N, IP);
11730 VT, Operand, SRIdxVal);
11740 VT, Operand, Subreg, SRIdxVal);
11748 bool AllowCommute) {
11751 Flags = Inserter->getFlags();
11758 bool AllowCommute) {
11759 if (VTList.
VTs[VTList.
NumVTs - 1] == MVT::Glue)
11765 void *IP =
nullptr;
11766 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP)) {
11767 E->intersectFlagsWith(Flags);
11776 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11785 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11788 void *IP =
nullptr;
11789 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11799 SDNode *
N,
unsigned R,
bool IsIndirect,
11802 "Expected inlined-at fields to agree");
11803 return new (DbgInfo->getAlloc())
11805 {}, IsIndirect,
DL, O,
11815 "Expected inlined-at fields to agree");
11816 return new (DbgInfo->getAlloc())
11829 "Expected inlined-at fields to agree");
11841 "Expected inlined-at fields to agree");
11842 return new (DbgInfo->getAlloc())
11844 Dependencies, IsIndirect,
DL, O,
11853 "Expected inlined-at fields to agree");
11854 return new (DbgInfo->getAlloc())
11856 {}, IsIndirect,
DL, O,
11864 unsigned O,
bool IsVariadic) {
11866 "Expected inlined-at fields to agree");
11867 return new (DbgInfo->getAlloc())
11868 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11869 DL, O, IsVariadic);
11873 unsigned OffsetInBits,
unsigned SizeInBits,
11874 bool InvalidateDbg) {
11877 assert(FromNode && ToNode &&
"Can't modify dbg values");
11882 if (From == To || FromNode == ToNode)
11894 if (Dbg->isInvalidated())
11902 auto NewLocOps = Dbg->copyLocationOps();
11904 NewLocOps.begin(), NewLocOps.end(),
11906 bool Match = Op == FromLocOp;
11916 auto *Expr = Dbg->getExpression();
11922 if (
auto FI = Expr->getFragmentInfo())
11923 if (OffsetInBits + SizeInBits > FI->SizeInBits)
11932 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
11935 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
11936 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
11937 Dbg->isVariadic());
11940 if (InvalidateDbg) {
11942 Dbg->setIsInvalidated();
11943 Dbg->setIsEmitted();
11949 "Transferred DbgValues should depend on the new SDNode");
11955 if (!
N.getHasDebugValue())
11958 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
11966 if (DV->isInvalidated())
11968 switch (
N.getOpcode()) {
11978 Offset =
N.getConstantOperandVal(1);
11981 if (!RHSConstant && DV->isIndirect())
11988 auto *DIExpr = DV->getExpression();
11989 auto NewLocOps = DV->copyLocationOps();
11991 size_t OrigLocOpsSize = NewLocOps.size();
11992 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
11997 NewLocOps[i].getSDNode() != &
N)
12008 const auto *TmpDIExpr =
12016 NewLocOps.push_back(RHS);
12025 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12027 auto AdditionalDependencies = DV->getAdditionalDependencies();
12029 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12030 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12032 DV->setIsInvalidated();
12033 DV->setIsEmitted();
12035 N0.
getNode()->dumprFull(
this);
12036 dbgs() <<
" into " << *DIExpr <<
'\n');
12043 TypeSize ToSize =
N.getValueSizeInBits(0);
12047 auto NewLocOps = DV->copyLocationOps();
12049 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12051 NewLocOps[i].getSDNode() != &
N)
12063 DV->getAdditionalDependencies(), DV->isIndirect(),
12064 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12067 DV->setIsInvalidated();
12068 DV->setIsEmitted();
12070 dbgs() <<
" into " << *DbgExpression <<
'\n');
12077 assert((!Dbg->getSDNodes().empty() ||
12080 return Op.getKind() == SDDbgOperand::FRAMEIX;
12082 "Salvaged DbgValue should depend on a new SDNode");
12091 "Expected inlined-at fields to agree");
12092 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12107 while (UI != UE &&
N == UI->
getUser())
12115 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12128 "Cannot replace with this method!");
12129 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12144 RAUWUpdateListener Listener(*
this, UI, UE);
12149 RemoveNodeFromCSEMaps(
User);
12164 AddModifiedNodeToCSEMaps(
User);
12180 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12183 "Cannot use this version of ReplaceAllUsesWith!");
12191 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12193 assert((i < To->getNumValues()) &&
"Invalid To location");
12202 RAUWUpdateListener Listener(*
this, UI, UE);
12207 RemoveNodeFromCSEMaps(
User);
12223 AddModifiedNodeToCSEMaps(
User);
12240 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12250 RAUWUpdateListener Listener(*
this, UI, UE);
12255 RemoveNodeFromCSEMaps(
User);
12261 bool To_IsDivergent =
false;
12275 AddModifiedNodeToCSEMaps(
User);
12288 if (From == To)
return;
12304 RAUWUpdateListener Listener(*
this, UI, UE);
12307 bool UserRemovedFromCSEMaps =
false;
12324 if (!UserRemovedFromCSEMaps) {
12325 RemoveNodeFromCSEMaps(
User);
12326 UserRemovedFromCSEMaps =
true;
12336 if (!UserRemovedFromCSEMaps)
12341 AddModifiedNodeToCSEMaps(
User);
12360bool operator<(
const UseMemo &L,
const UseMemo &R) {
12361 return (intptr_t)L.User < (intptr_t)R.User;
12368 SmallVectorImpl<UseMemo> &
Uses;
12370 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12371 for (UseMemo &Memo :
Uses)
12372 if (Memo.User ==
N)
12373 Memo.User =
nullptr;
12377 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12378 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12385 switch (
Node->getOpcode()) {
12397 if (TLI->isSDNodeAlwaysUniform(
N)) {
12398 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12399 "Conflicting divergence information!");
12402 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12404 for (
const auto &
Op :
N->ops()) {
12405 EVT VT =
Op.getValueType();
12408 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12420 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12421 N->SDNodeBits.IsDivergent = IsDivergent;
12424 }
while (!Worklist.
empty());
12427void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12429 Order.reserve(AllNodes.size());
12431 unsigned NOps =
N.getNumOperands();
12434 Order.push_back(&
N);
12436 for (
size_t I = 0;
I != Order.size(); ++
I) {
12438 for (
auto *U :
N->users()) {
12439 unsigned &UnsortedOps = Degree[U];
12440 if (0 == --UnsortedOps)
12441 Order.push_back(U);
12446#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12447void SelectionDAG::VerifyDAGDivergence() {
12448 std::vector<SDNode *> TopoOrder;
12449 CreateTopologicalOrder(TopoOrder);
12450 for (
auto *
N : TopoOrder) {
12452 "Divergence bit inconsistency detected");
12475 for (
unsigned i = 0; i != Num; ++i) {
12476 unsigned FromResNo = From[i].
getResNo();
12479 if (
Use.getResNo() == FromResNo) {
12481 Uses.push_back(Memo);
12488 RAUOVWUpdateListener Listener(*
this,
Uses);
12490 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12491 UseIndex != UseIndexEnd; ) {
12497 if (
User ==
nullptr) {
12503 RemoveNodeFromCSEMaps(
User);
12510 unsigned i =
Uses[UseIndex].Index;
12515 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12519 AddModifiedNodeToCSEMaps(
User);
12527 unsigned DAGSize = 0;
12543 unsigned Degree =
N.getNumOperands();
12546 N.setNodeId(DAGSize++);
12548 if (Q != SortedPos)
12549 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12550 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12554 N.setNodeId(Degree);
12566 unsigned Degree =
P->getNodeId();
12567 assert(Degree != 0 &&
"Invalid node degree");
12571 P->setNodeId(DAGSize++);
12572 if (
P->getIterator() != SortedPos)
12573 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12574 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12578 P->setNodeId(Degree);
12581 if (
Node.getIterator() == SortedPos) {
12585 dbgs() <<
"Overran sorted position:\n";
12587 dbgs() <<
"Checking if this is due to cycles\n";
12594 assert(SortedPos == AllNodes.end() &&
12595 "Topological sort incomplete!");
12597 "First node in topological sort is not the entry token!");
12598 assert(AllNodes.front().getNodeId() == 0 &&
12599 "First node in topological sort has non-zero id!");
12600 assert(AllNodes.front().getNumOperands() == 0 &&
12601 "First node in topological sort has operands!");
12602 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12603 "Last node in topologic sort has unexpected id!");
12604 assert(AllNodes.back().use_empty() &&
12605 "Last node in topologic sort has users!");
12612 SortedNodes.
clear();
12619 unsigned NumOperands =
N.getNumOperands();
12620 if (NumOperands == 0)
12624 RemainingOperands[&
N] = NumOperands;
12629 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12630 const SDNode *
N = SortedNodes[i];
12631 for (
const SDNode *U :
N->users()) {
12634 if (U->getOpcode() == ISD::HANDLENODE)
12636 unsigned &NumRemOperands = RemainingOperands[U];
12637 assert(NumRemOperands &&
"Invalid number of remaining operands");
12639 if (!NumRemOperands)
12644 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12646 "First node in topological sort is not the entry token");
12647 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12648 "First node in topological sort has operands");
12654 for (
SDNode *SD : DB->getSDNodes()) {
12657 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12658 SD->setHasDebugValue(
true);
12660 DbgInfo->add(DB, isParameter);
12673 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12674 return NewMemOpChain;
12677 OldChain, NewMemOpChain);
12680 return TokenFactor;
12699 if (OutFunction !=
nullptr)
12707 std::string ErrorStr;
12709 ErrorFormatter <<
"Undefined external symbol ";
12710 ErrorFormatter <<
'"' << Symbol <<
'"';
12720 return Const !=
nullptr && Const->isZero();
12729 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12734 return Const !=
nullptr && Const->isAllOnes();
12739 return Const !=
nullptr && Const->isOne();
12744 return Const !=
nullptr && Const->isMinSignedValue();
12748 unsigned OperandNo) {
12753 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12759 return Const.isZero();
12761 return Const.isOne();
12764 return Const.isAllOnes();
12766 return Const.isMinSignedValue();
12768 return Const.isMaxSignedValue();
12773 return OperandNo == 1 && Const.isZero();
12776 return OperandNo == 1 && Const.isOne();
12781 return ConstFP->isZero() &&
12782 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12784 return OperandNo == 1 && ConstFP->isZero() &&
12785 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12787 return ConstFP->isExactlyValue(1.0);
12789 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12791 case ISD::FMAXNUM: {
12793 EVT VT = V.getValueType();
12795 APFloat NeutralAF = !Flags.hasNoNaNs()
12797 : !Flags.hasNoInfs()
12800 if (Opcode == ISD::FMAXNUM)
12803 return ConstFP->isExactlyValue(NeutralAF);
12811 while (V.getOpcode() == ISD::BITCAST)
12817 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12836 !DemandedElts[IndexC->getZExtValue()]) {
12855 unsigned NumBits = V.getScalarValueSizeInBits();
12858 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12862 bool AllowTruncation) {
12863 EVT VT =
N.getValueType();
12872 bool AllowTruncation) {
12879 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
12881 EVT CVT = CN->getValueType(0);
12882 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
12883 if (AllowTruncation || CVT == VecEltVT)
12890 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12895 if (CN && (UndefElements.
none() || AllowUndefs)) {
12897 EVT NSVT =
N.getValueType().getScalarType();
12898 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
12899 if (AllowTruncation || (CVT == NSVT))
12908 EVT VT =
N.getValueType();
12916 const APInt &DemandedElts,
12917 bool AllowUndefs) {
12924 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12926 if (CN && (UndefElements.
none() || AllowUndefs))
12941 return C &&
C->isZero();
12947 return C &&
C->isOne();
12952 return C &&
C->isExactlyValue(1.0);
12957 unsigned BitWidth =
N.getScalarValueSizeInBits();
12959 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
12965 APInt(
C->getAPIntValue().getBitWidth(), 1));
12971 return C &&
C->isZero();
12976 return C &&
C->isZero();
12985 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
12995 (!
MMO->getType().isValid() ||
13009 std::vector<EVT> VTs;
13022const EVT *SDNode::getValueTypeList(
MVT VT) {
13023 static EVTArray SimpleVTArray;
13026 return &SimpleVTArray.VTs[VT.
SimpleTy];
13035 if (U.getResNo() ==
Value)
13073 return any_of(
N->op_values(),
13074 [
this](
SDValue Op) { return this == Op.getNode(); });
13088 unsigned Depth)
const {
13089 if (*
this == Dest)
return true;
13093 if (
Depth == 0)
return false;
13113 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13119 if (Ld->isUnordered())
13120 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13133 this->Flags &= Flags;
13139 bool AllowPartials) {
13154 unsigned CandidateBinOp =
Op.getOpcode();
13155 if (
Op.getValueType().isFloatingPoint()) {
13157 switch (CandidateBinOp) {
13159 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13169 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13170 if (!AllowPartials || !
Op)
13172 EVT OpVT =
Op.getValueType();
13175 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13194 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13196 for (
unsigned i = 0; i < Stages; ++i) {
13197 unsigned MaskEnd = (1 << i);
13199 if (
Op.getOpcode() != CandidateBinOp)
13200 return PartialReduction(PrevOp, MaskEnd);
13216 return PartialReduction(PrevOp, MaskEnd);
13219 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13220 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13221 return PartialReduction(PrevOp, MaskEnd);
13228 while (
Op.getOpcode() == CandidateBinOp) {
13229 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13238 if (NumSrcElts != (2 * NumElts))
13253 EVT VT =
N->getValueType(0);
13262 else if (NE > ResNE)
13265 if (
N->getNumValues() == 2) {
13268 EVT VT1 =
N->getValueType(1);
13272 for (i = 0; i != NE; ++i) {
13273 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13274 SDValue Operand =
N->getOperand(j);
13282 SDValue EltOp =
getNode(
N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13287 for (; i < ResNE; ++i) {
13299 assert(
N->getNumValues() == 1 &&
13300 "Can't unroll a vector with multiple results!");
13306 for (i= 0; i != NE; ++i) {
13307 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13308 SDValue Operand =
N->getOperand(j);
13316 Operands[j] = Operand;
13320 switch (
N->getOpcode()) {
13345 case ISD::ADDRSPACECAST: {
13348 ASC->getSrcAddressSpace(),
13349 ASC->getDestAddressSpace()));
13355 for (; i < ResNE; ++i)
13364 unsigned Opcode =
N->getOpcode();
13368 "Expected an overflow opcode");
13370 EVT ResVT =
N->getValueType(0);
13371 EVT OvVT =
N->getValueType(1);
13380 else if (NE > ResNE)
13392 for (
unsigned i = 0; i < NE; ++i) {
13393 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13416 if (LD->isVolatile() ||
Base->isVolatile())
13419 if (!LD->isSimple())
13421 if (LD->isIndexed() ||
Base->isIndexed())
13423 if (LD->getChain() !=
Base->getChain())
13425 EVT VT = LD->getMemoryVT();
13433 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13434 return (Dist * (int64_t)Bytes ==
Offset);
13443 int64_t GVOffset = 0;
13444 if (TLI->isGAPlusOffset(
Ptr.getNode(), GV, GVOffset)) {
13455 int FrameIdx = INT_MIN;
13456 int64_t FrameOffset = 0;
13458 FrameIdx = FI->getIndex();
13463 FrameOffset =
Ptr.getConstantOperandVal(1);
13466 if (FrameIdx != INT_MIN) {
13471 return std::nullopt;
13481 "Split node must be a scalar type");
13486 return std::make_pair(
Lo,
Hi);
13495 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13499 return std::make_pair(LoVT, HiVT);
13507 bool *HiIsEmpty)
const {
13517 "Mixing fixed width and scalable vectors when enveloping a type");
13522 *HiIsEmpty =
false;
13530 return std::make_pair(LoVT, HiVT);
13535std::pair<SDValue, SDValue>
13540 "Splitting vector with an invalid mixture of fixed and scalable "
13543 N.getValueType().getVectorMinNumElements() &&
13544 "More vector elements requested than available!");
13553 return std::make_pair(
Lo,
Hi);
13560 EVT VT =
N.getValueType();
13562 "Expecting the mask to be an evenly-sized vector");
13570 return std::make_pair(
Lo,
Hi);
13575 EVT VT =
N.getValueType();
13583 unsigned Start,
unsigned Count,
13585 EVT VT =
Op.getValueType();
13588 if (EltVT ==
EVT())
13591 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13603 return Val.MachineCPVal->getType();
13604 return Val.ConstVal->getType();
13608 unsigned &SplatBitSize,
13609 bool &HasAnyUndefs,
13610 unsigned MinSplatBits,
13611 bool IsBigEndian)
const {
13615 if (MinSplatBits > VecWidth)
13620 SplatValue =
APInt(VecWidth, 0);
13621 SplatUndef =
APInt(VecWidth, 0);
13628 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13631 for (
unsigned j = 0; j <
NumOps; ++j) {
13632 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13634 unsigned BitPos = j * EltWidth;
13637 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13639 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13641 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13648 HasAnyUndefs = (SplatUndef != 0);
13651 while (VecWidth > 8) {
13656 unsigned HalfSize = VecWidth / 2;
13663 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13664 MinSplatBits > HalfSize)
13667 SplatValue = HighValue | LowValue;
13668 SplatUndef = HighUndef & LowUndef;
13670 VecWidth = HalfSize;
13679 SplatBitSize = VecWidth;
13686 if (UndefElements) {
13687 UndefElements->
clear();
13694 for (
unsigned i = 0; i !=
NumOps; ++i) {
13695 if (!DemandedElts[i])
13698 if (
Op.isUndef()) {
13700 (*UndefElements)[i] =
true;
13701 }
else if (!Splatted) {
13703 }
else if (Splatted !=
Op) {
13709 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13711 "Can only have a splat without a constant for all undefs.");
13728 if (UndefElements) {
13729 UndefElements->
clear();
13740 (*UndefElements)[
I] =
true;
13743 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13744 Sequence.append(SeqLen,
SDValue());
13745 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13746 if (!DemandedElts[
I])
13748 SDValue &SeqOp = Sequence[
I % SeqLen];
13750 if (
Op.isUndef()) {
13755 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13761 if (!Sequence.empty())
13765 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13806 const APFloat &APF = CN->getValueAPF();
13812 return IntVal.exactLogBase2();
13818 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13826 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13827 "Invalid bitcast scale");
13832 BitVector SrcUndeElements(NumSrcOps,
false);
13834 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13836 if (
Op.isUndef()) {
13837 SrcUndeElements.
set(
I);
13842 assert((CInt || CFP) &&
"Unknown constant");
13843 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13844 : CFP->getValueAPF().bitcastToAPInt();
13848 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13849 SrcBitElements, UndefElements, SrcUndeElements);
13854 unsigned DstEltSizeInBits,
13859 unsigned NumSrcOps = SrcBitElements.
size();
13860 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13861 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13862 "Invalid bitcast scale");
13863 assert(NumSrcOps == SrcUndefElements.
size() &&
13864 "Vector size mismatch");
13866 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13867 DstUndefElements.
clear();
13868 DstUndefElements.
resize(NumDstOps,
false);
13872 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13873 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13874 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13875 DstUndefElements.
set(
I);
13876 APInt &DstBits = DstBitElements[
I];
13877 for (
unsigned J = 0; J != Scale; ++J) {
13878 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13879 if (SrcUndefElements[Idx])
13881 DstUndefElements.
reset(
I);
13882 const APInt &SrcBits = SrcBitElements[Idx];
13884 "Illegal constant bitwidths");
13885 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
13892 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13893 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13894 if (SrcUndefElements[
I]) {
13895 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
13898 const APInt &SrcBits = SrcBitElements[
I];
13899 for (
unsigned J = 0; J != Scale; ++J) {
13900 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13901 APInt &DstBits = DstBitElements[Idx];
13902 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13909 unsigned Opc =
Op.getOpcode();
13916std::optional<std::pair<APInt, APInt>>
13920 return std::nullopt;
13924 return std::nullopt;
13931 return std::nullopt;
13933 for (
unsigned i = 2; i <
NumOps; ++i) {
13935 return std::nullopt;
13938 if (Val != (Start + (Stride * i)))
13939 return std::nullopt;
13942 return std::make_pair(Start, Stride);
13948 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13958 for (
int Idx = Mask[i]; i != e; ++i)
13959 if (Mask[i] >= 0 && Mask[i] != Idx)
13967 SDValue N,
bool AllowOpaques)
const {
13971 return AllowOpaques || !
C->isOpaque();
13980 TLI->isOffsetFoldingLegal(GA))
14008 return std::nullopt;
14010 EVT VT =
N->getValueType(0);
14012 switch (TLI->getBooleanContents(
N.getValueType())) {
14018 return std::nullopt;
14024 return std::nullopt;
14032 assert(!
Node->OperandList &&
"Node already has operands");
14034 "too many operands to fit into SDNode");
14035 SDUse *
Ops = OperandRecycler.allocate(
14038 bool IsDivergent =
false;
14039 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14041 Ops[
I].setInitial(Vals[
I]);
14042 EVT VT =
Ops[
I].getValueType();
14045 if (VT != MVT::Other &&
14048 IsDivergent =
true;
14053 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14054 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14055 Node->SDNodeBits.IsDivergent = IsDivergent;
14063 while (Vals.
size() > Limit) {
14064 unsigned SliceIdx = Vals.
size() - Limit;
14099 case ISD::FMAXNUM: {
14105 if (Opcode == ISD::FMAXNUM)
14110 case ISD::FMINIMUM:
14111 case ISD::FMAXIMUM: {
14116 if (Opcode == ISD::FMAXIMUM)
14140 const SDLoc &DLoc) {
14144 RTLIB::Libcall LC =
static_cast<RTLIB::Libcall
>(
LibFunc);
14151 return TLI->LowerCallTo(CLI).second;
14155 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14156 auto I = SDEI.find(From);
14157 if (
I == SDEI.end())
14162 NodeExtraInfo NEI =
I->second;
14171 SDEI[To] = std::move(NEI);
14188 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14189 if (MaxDepth == 0) {
14195 if (!FromReach.
insert(
N).second)
14198 Self(Self,
Op.getNode(), MaxDepth - 1);
14203 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14206 if (!Visited.
insert(
N).second)
14211 if (
N == To &&
Op.getNode() == EntrySDN) {
14216 if (!Self(Self,
Op.getNode()))
14230 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14231 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14236 for (
const SDNode *
N : StartFrom)
14237 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14241 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14249 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14250 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14252 SDEI[To] = std::move(NEI);
14266 if (!Visited.
insert(
N).second) {
14267 errs() <<
"Detected cycle in SelectionDAG\n";
14268 dbgs() <<
"Offending node:\n";
14269 N->dumprFull(DAG);
dbgs() <<
"\n";
14285 bool check = force;
14286#ifdef EXPENSIVE_CHECKS
14290 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardZero
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
bool isMachineConstantPoolEntry() const
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero, for a floating-point value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant (+/-)0.0 floating-point value or a splatted vector thereof (wi...
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)