78#include "llvm/IR/IntrinsicsAArch64.h"
79#include "llvm/IR/IntrinsicsAMDGPU.h"
80#include "llvm/IR/IntrinsicsWebAssembly.h"
113#define DEBUG_TYPE "isel"
121 cl::desc(
"Insert the experimental `assertalign` node."),
126 cl::desc(
"Generate low-precision inline sequences "
127 "for some float libcalls"),
133 cl::desc(
"Set the case probability threshold for peeling the case from a "
134 "switch statement. A value greater than 100 will void this "
154 const SDValue *Parts,
unsigned NumParts,
157 std::optional<CallingConv::ID> CC);
166 unsigned NumParts,
MVT PartVT,
EVT ValueVT,
const Value *V,
168 std::optional<CallingConv::ID> CC = std::nullopt,
169 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
173 PartVT, ValueVT, CC))
180 assert(NumParts > 0 &&
"No parts to assemble!");
191 unsigned RoundBits = PartBits * RoundParts;
192 EVT RoundVT = RoundBits == ValueBits ?
198 if (RoundParts > 2) {
202 PartVT, HalfVT, V, InChain);
204 Lo = DAG.
getNode(ISD::BITCAST,
DL, HalfVT, Parts[0]);
205 Hi = DAG.
getNode(ISD::BITCAST,
DL, HalfVT, Parts[1]);
213 if (RoundParts < NumParts) {
215 unsigned OddParts = NumParts - RoundParts;
218 OddVT, V, InChain, CC);
234 assert(ValueVT ==
EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
245 !PartVT.
isVector() &&
"Unexpected split");
257 if (PartEVT == ValueVT)
261 ValueVT.
bitsLT(PartEVT)) {
270 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
274 if (ValueVT.
bitsLT(PartEVT)) {
279 Val = DAG.
getNode(*AssertOp,
DL, PartEVT, Val,
294 llvm::Attribute::StrictFP)) {
296 DAG.
getVTList(ValueVT, MVT::Other), InChain, Val,
303 return DAG.
getNode(ISD::FP_EXTEND,
DL, ValueVT, Val);
308 if (PartEVT == MVT::x86mmx && ValueVT.
isInteger() &&
309 ValueVT.
bitsLT(PartEVT)) {
310 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i64, Val);
318 const Twine &ErrMsg) {
321 return Ctx.emitError(ErrMsg);
324 if (CI->isInlineAsm()) {
326 *CI, ErrMsg +
", possible invalid constraint for vector type"));
329 return Ctx.emitError(
I, ErrMsg);
338 const SDValue *Parts,
unsigned NumParts,
341 std::optional<CallingConv::ID> CallConv) {
343 assert(NumParts > 0 &&
"No parts to assemble!");
344 const bool IsABIRegCopy = CallConv.has_value();
353 unsigned NumIntermediates;
358 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT,
359 NumIntermediates, RegisterVT);
363 NumIntermediates, RegisterVT);
366 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
368 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
371 "Part type sizes don't match!");
375 if (NumIntermediates == NumParts) {
378 for (
unsigned i = 0; i != NumParts; ++i)
380 V, InChain, CallConv);
381 }
else if (NumParts > 0) {
384 assert(NumParts % NumIntermediates == 0 &&
385 "Must expand into a divisible number of parts!");
386 unsigned Factor = NumParts / NumIntermediates;
387 for (
unsigned i = 0; i != NumIntermediates; ++i)
389 IntermediateVT, V, InChain, CallConv);
404 DL, BuiltVectorTy,
Ops);
410 if (PartEVT == ValueVT)
416 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
426 "Cannot narrow, it would be a lossy transformation");
432 if (PartEVT == ValueVT)
435 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
439 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
450 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
456 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
457 }
else if (ValueVT.
bitsLT(PartEVT)) {
466 *DAG.
getContext(), V,
"non-trivial scalar-to-vector conversion");
475 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueSVT, Val);
497 std::optional<CallingConv::ID> CallConv);
504 unsigned NumParts,
MVT PartVT,
const Value *V,
505 std::optional<CallingConv::ID> CallConv = std::nullopt,
519 unsigned OrigNumParts = NumParts;
521 "Copying to an illegal type!");
527 EVT PartEVT = PartVT;
528 if (PartEVT == ValueVT) {
529 assert(NumParts == 1 &&
"No-op copy with multiple parts!");
538 assert(NumParts == 1 &&
"Do not know what to promote to!");
539 Val = DAG.
getNode(ISD::FP_EXTEND,
DL, PartVT, Val);
545 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
549 "Unknown mismatch!");
551 Val = DAG.
getNode(ExtendKind,
DL, ValueVT, Val);
552 if (PartVT == MVT::x86mmx)
553 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
557 assert(NumParts == 1 && PartEVT != ValueVT);
558 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
563 "Unknown mismatch!");
566 if (PartVT == MVT::x86mmx)
567 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
573 "Failed to tile the value with PartVT!");
576 if (PartEVT != ValueVT) {
578 "scalar-to-vector conversion failed");
579 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
587 if (NumParts & (NumParts - 1)) {
590 "Do not know what to expand to!");
592 unsigned RoundBits = RoundParts * PartBits;
593 unsigned OddParts = NumParts - RoundParts;
602 std::reverse(Parts + RoundParts, Parts + NumParts);
604 NumParts = RoundParts;
616 for (
unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617 for (
unsigned i = 0; i < NumParts; i += StepSize) {
618 unsigned ThisBits = StepSize * PartBits / 2;
621 SDValue &Part1 = Parts[i+StepSize/2];
628 if (ThisBits == PartBits && ThisVT != PartVT) {
629 Part0 = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Part0);
630 Part1 = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Part1);
636 std::reverse(Parts, Parts + OrigNumParts);
658 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
660 "Cannot widen to illegal type");
663 }
else if (PartEVT != ValueEVT) {
678 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
689 std::optional<CallingConv::ID> CallConv) {
693 const bool IsABIRegCopy = CallConv.has_value();
696 EVT PartEVT = PartVT;
697 if (PartEVT == ValueVT) {
701 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
736 Val = DAG.
getNode(ISD::FP_EXTEND,
DL, PartVT, Val);
743 "lossy conversion of vector to scalar type");
758 unsigned NumIntermediates;
762 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767 NumIntermediates, RegisterVT);
770 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
772 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
775 "Mixing scalable and fixed vectors when copying in parts");
777 std::optional<ElementCount> DestEltCnt;
787 if (ValueVT == BuiltVectorTy) {
791 Val = DAG.
getNode(ISD::BITCAST,
DL, BuiltVectorTy, Val);
811 for (
unsigned i = 0; i != NumIntermediates; ++i) {
826 if (NumParts == NumIntermediates) {
829 for (
unsigned i = 0; i != NumParts; ++i)
831 }
else if (NumParts > 0) {
834 assert(NumIntermediates != 0 &&
"division by zero");
835 assert(NumParts % NumIntermediates == 0 &&
836 "Must expand into a divisible number of parts!");
837 unsigned Factor = NumParts / NumIntermediates;
838 for (
unsigned i = 0; i != NumIntermediates; ++i)
846 if (
I.hasOperandBundlesOtherThan(AllowedBundles)) {
850 for (
unsigned i = 0, e =
I.getNumOperandBundles(); i != e; ++i) {
853 OS << LS << U.getTagName();
856 Twine(
"cannot lower ", Name)
862 EVT valuevt, std::optional<CallingConv::ID> CC)
868 std::optional<CallingConv::ID> CC) {
882 for (
unsigned i = 0; i != NumRegs; ++i)
883 Regs.push_back(Reg + i);
884 RegVTs.push_back(RegisterVT);
886 Reg = Reg.id() + NumRegs;
913 for (
unsigned i = 0; i != NumRegs; ++i) {
919 *Glue =
P.getValue(2);
922 Chain =
P.getValue(1);
950 EVT FromVT(MVT::Other);
954 }
else if (NumSignBits > 1) {
962 assert(FromVT != MVT::Other);
968 RegisterVT, ValueVT, V, Chain,
CallConv);
984 unsigned NumRegs =
Regs.size();
998 NumParts, RegisterVT, V,
CallConv, ExtendKind);
1004 for (
unsigned i = 0; i != NumRegs; ++i) {
1016 if (NumRegs == 1 || Glue)
1027 Chain = Chains[NumRegs-1];
1033 unsigned MatchingIdx,
const SDLoc &dl,
1035 std::vector<SDValue> &
Ops)
const {
1040 Flag.setMatchingOp(MatchingIdx);
1041 else if (!
Regs.empty() &&
Regs.front().isVirtual()) {
1049 Flag.setRegClass(RC->
getID());
1060 "No 1:1 mapping from clobbers to regs?");
1063 for (
unsigned I = 0, E =
ValueVTs.size();
I != E; ++
I) {
1068 "If we clobbered the stack pointer, MFI should know about it.");
1077 for (
unsigned i = 0; i != NumRegs; ++i) {
1078 assert(Reg <
Regs.size() &&
"Mismatch in # registers expected");
1090 unsigned RegCount = std::get<0>(CountAndVT);
1091 MVT RegisterVT = std::get<1>(CountAndVT);
1108 SL->init(
DAG.getTargetLoweringInfo(), TM,
DAG.getDataLayout());
1110 *
DAG.getMachineFunction().getFunction().getParent());
1115 UnusedArgNodeMap.clear();
1117 PendingExports.clear();
1118 PendingConstrainedFP.clear();
1119 PendingConstrainedFPStrict.clear();
1127 DanglingDebugInfoMap.clear();
1134 if (Pending.
empty())
1140 unsigned i = 0, e = Pending.
size();
1141 for (; i != e; ++i) {
1143 if (Pending[i].
getNode()->getOperand(0) == Root)
1151 if (Pending.
size() == 1)
1178 if (!PendingConstrainedFPStrict.empty()) {
1179 assert(PendingConstrainedFP.empty());
1180 updateRoot(PendingConstrainedFPStrict);
1193 if (!PendingConstrainedFP.empty()) {
1194 assert(PendingConstrainedFPStrict.empty());
1195 updateRoot(PendingConstrainedFP);
1199 return DAG.getRoot();
1207 PendingConstrainedFP.size() +
1208 PendingConstrainedFPStrict.size());
1210 PendingConstrainedFP.end());
1211 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1212 PendingConstrainedFPStrict.end());
1213 PendingConstrainedFP.clear();
1214 PendingConstrainedFPStrict.clear();
1221 PendingExports.append(PendingConstrainedFPStrict.begin(),
1222 PendingConstrainedFPStrict.end());
1223 PendingConstrainedFPStrict.clear();
1224 return updateRoot(PendingExports);
1231 assert(Variable &&
"Missing variable");
1238 <<
"dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1254 if (IsParameter && FINode) {
1256 SDV =
DAG.getFrameIndexDbgValue(Variable,
Expression, FINode->getIndex(),
1257 true,
DL, SDNodeOrder);
1262 FuncArgumentDbgValueKind::Declare,
N);
1265 SDV =
DAG.getDbgValue(Variable,
Expression,
N.getNode(),
N.getResNo(),
1266 true,
DL, SDNodeOrder);
1268 DAG.AddDbgValue(SDV, IsParameter);
1273 FuncArgumentDbgValueKind::Declare,
N)) {
1275 <<
" (could not emit func-arg dbg_value)\n");
1286 for (
auto It = FnVarLocs->locs_begin(&
I), End = FnVarLocs->locs_end(&
I);
1288 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1290 if (It->Values.isKillLocation(It->Expr)) {
1296 It->Values.hasArgList())) {
1299 FnVarLocs->getDILocalVariable(It->VariableID),
1300 It->Expr, Vals.
size() > 1, It->DL, SDNodeOrder);
1313 bool SkipDbgVariableRecords =
DAG.getFunctionVarLocs();
1316 for (
DbgRecord &DR :
I.getDbgRecordRange()) {
1318 assert(DLR->getLabel() &&
"Missing label");
1320 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1321 DAG.AddDbgLabel(SDV);
1325 if (SkipDbgVariableRecords)
1333 if (
FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1335 LLVM_DEBUG(
dbgs() <<
"SelectionDAG visiting dbg_declare: " << DVR
1344 if (Values.
empty()) {
1361 SDNodeOrder, IsVariadic)) {
1372 if (
I.isTerminator()) {
1373 HandlePHINodesInSuccessorBlocks(
I.getParent());
1380 bool NodeInserted =
false;
1381 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1382 MDNode *PCSectionsMD =
I.getMetadata(LLVMContext::MD_pcsections);
1383 MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra);
1384 if (PCSectionsMD || MMRA) {
1385 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1386 DAG, [&](
SDNode *) { NodeInserted =
true; });
1396 if (PCSectionsMD || MMRA) {
1397 auto It = NodeMap.find(&
I);
1398 if (It != NodeMap.end()) {
1400 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1402 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1403 }
else if (NodeInserted) {
1406 errs() <<
"warning: loosing !pcsections and/or !mmra metadata ["
1407 <<
I.getModule()->getName() <<
"]\n";
1416void SelectionDAGBuilder::visitPHI(
const PHINode &) {
1426#define HANDLE_INST(NUM, OPCODE, CLASS) \
1427 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1428#include "llvm/IR/Instruction.def"
1440 for (
const Value *V : Values) {
1465 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr,
DL, Order);
1470 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1471 DIVariable *DanglingVariable = DDI.getVariable();
1473 if (DanglingVariable == Variable && Expr->
fragmentsOverlap(DanglingExpr)) {
1475 << printDDI(
nullptr, DDI) <<
"\n");
1481 for (
auto &DDIMI : DanglingDebugInfoMap) {
1482 DanglingDebugInfoVector &DDIV = DDIMI.second;
1486 for (
auto &DDI : DDIV)
1487 if (isMatchingDbgValue(DDI))
1490 erase_if(DDIV, isMatchingDbgValue);
1498 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1499 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1502 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1503 for (
auto &DDI : DDIV) {
1506 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1509 assert(Variable->isValidLocationForIntrinsic(
DL) &&
1510 "Expected inlined-at fields to agree");
1519 if (!EmitFuncArgumentDbgValue(V, Variable, Expr,
DL,
1520 FuncArgumentDbgValueKind::Value, Val)) {
1522 << printDDI(V, DDI) <<
"\n");
1529 <<
"changing SDNodeOrder from " << DbgSDNodeOrder <<
" to "
1530 << ValSDNodeOrder <<
"\n");
1531 SDV = getDbgValue(Val, Variable, Expr,
DL,
1532 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1533 DAG.AddDbgValue(SDV,
false);
1537 <<
" in EmitFuncArgumentDbgValue\n");
1539 LLVM_DEBUG(
dbgs() <<
"Dropping debug info for " << printDDI(V, DDI)
1543 DAG.getConstantDbgValue(Variable, Expr,
Poison,
DL, DbgSDNodeOrder);
1544 DAG.AddDbgValue(SDV,
false);
1551 DanglingDebugInfo &DDI) {
1556 const Value *OrigV = V;
1560 unsigned SDOrder = DDI.getSDNodeOrder();
1564 bool StackValue =
true;
1589 if (!AdditionalValues.
empty())
1599 dbgs() <<
"Salvaged debug location info for:\n " << *Var <<
"\n"
1600 << *OrigV <<
"\nBy stripping back to:\n " << *V <<
"\n");
1608 assert(OrigV &&
"V shouldn't be null");
1610 auto *SDV =
DAG.getConstantDbgValue(Var, Expr,
Poison,
DL, SDNodeOrder);
1611 DAG.AddDbgValue(SDV,
false);
1613 << printDDI(OrigV, DDI) <<
"\n");
1630 unsigned Order,
bool IsVariadic) {
1635 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1640 for (
const Value *V : Values) {
1650 if (CE->getOpcode() == Instruction::IntToPtr) {
1669 N = UnusedArgNodeMap[V];
1674 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1675 FuncArgumentDbgValueKind::Value,
N))
1702 bool IsParamOfFunc =
1710 auto VMI =
FuncInfo.ValueMap.find(V);
1711 if (VMI !=
FuncInfo.ValueMap.end()) {
1716 V->getType(), std::nullopt);
1722 unsigned BitsToDescribe = 0;
1724 BitsToDescribe = *VarSize;
1726 BitsToDescribe = Fragment->SizeInBits;
1729 if (
Offset >= BitsToDescribe)
1732 unsigned RegisterSize = RegAndSize.second;
1733 unsigned FragmentSize = (
Offset + RegisterSize > BitsToDescribe)
1734 ? BitsToDescribe -
Offset
1737 Expr,
Offset, FragmentSize);
1741 Var, *FragmentExpr, RegAndSize.first,
false, DbgLoc, Order);
1742 DAG.AddDbgValue(SDV,
false);
1758 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1759 false, DbgLoc, Order, IsVariadic);
1760 DAG.AddDbgValue(SDV,
false);
1766 for (
auto &Pair : DanglingDebugInfoMap)
1767 for (
auto &DDI : Pair.second)
1778 if (It !=
FuncInfo.ValueMap.end()) {
1782 DAG.getDataLayout(), InReg, Ty,
1799 if (
N.getNode())
return N;
1859 return DAG.getSplatBuildVector(
1862 return DAG.getConstant(*CI,
DL, VT);
1871 getValue(CPA->getAddrDiscriminator()),
1872 getValue(CPA->getDiscriminator()));
1888 visit(CE->getOpcode(), *CE);
1890 assert(N1.
getNode() &&
"visit didn't populate the NodeMap!");
1896 for (
const Use &U :
C->operands()) {
1902 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1903 Constants.push_back(
SDValue(Val, i));
1912 for (
uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1916 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1925 if (
C->getType()->isStructTy() ||
C->getType()->isArrayTy()) {
1927 "Unknown struct or array constant!");
1931 unsigned NumElts = ValueVTs.
size();
1935 for (
unsigned i = 0; i != NumElts; ++i) {
1936 EVT EltVT = ValueVTs[i];
1938 Constants[i] =
DAG.getUNDEF(EltVT);
1949 return DAG.getBlockAddress(BA, VT);
1952 return getValue(Equiv->getGlobalValue());
1957 if (VT == MVT::aarch64svcount) {
1958 assert(
C->isNullValue() &&
"Can only zero this target type!");
1964 assert(
C->isNullValue() &&
"Can only zero this target type!");
1981 for (
unsigned i = 0; i != NumElements; ++i)
2009 return DAG.getFrameIndex(
2017 std::optional<CallingConv::ID> CallConv;
2019 if (CB && !CB->isInlineAsm())
2020 CallConv = CB->getCallingConv();
2023 Inst->getType(), CallConv);
2037void SelectionDAGBuilder::visitCatchPad(
const CatchPadInst &
I) {
2050 if (IsMSVCCXX || IsCoreCLR)
2056 MachineBasicBlock *TargetMBB =
FuncInfo.getMBB(
I.getSuccessor());
2057 FuncInfo.MBB->addSuccessor(TargetMBB);
2064 if (TargetMBB != NextBlock(
FuncInfo.MBB) ||
2073 DAG.getMachineFunction().setHasEHContTarget(
true);
2079 Value *ParentPad =
I.getCatchSwitchParentPad();
2082 SuccessorColor = &
FuncInfo.Fn->getEntryBlock();
2085 assert(SuccessorColor &&
"No parent funclet for catchret!");
2086 MachineBasicBlock *SuccessorColorMBB =
FuncInfo.getMBB(SuccessorColor);
2087 assert(SuccessorColorMBB &&
"No MBB for SuccessorColor!");
2092 DAG.getBasicBlock(SuccessorColorMBB));
2096void SelectionDAGBuilder::visitCleanupPad(
const CleanupPadInst &CPI) {
2102 FuncInfo.MBB->setIsEHFuncletEntry();
2103 FuncInfo.MBB->setIsCleanupFuncletEntry();
2132 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2138 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2139 UnwindDests.back().first->setIsEHScopeEntry();
2142 UnwindDests.back().first->setIsEHFuncletEntry();
2146 for (
const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2147 UnwindDests.emplace_back(FuncInfo.
getMBB(CatchPadBB), Prob);
2149 if (IsMSVCCXX || IsCoreCLR)
2150 UnwindDests.back().first->setIsEHFuncletEntry();
2152 UnwindDests.back().first->setIsEHScopeEntry();
2154 NewEHPadBB = CatchSwitch->getUnwindDest();
2160 if (BPI && NewEHPadBB)
2162 EHPadBB = NewEHPadBB;
2169 auto UnwindDest =
I.getUnwindDest();
2170 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
2171 BranchProbability UnwindDestProb =
2176 for (
auto &UnwindDest : UnwindDests) {
2177 UnwindDest.first->setIsEHPad();
2178 addSuccessorWithProb(
FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2180 FuncInfo.MBB->normalizeSuccProbs();
2183 MachineBasicBlock *CleanupPadMBB =
2184 FuncInfo.getMBB(
I.getCleanupPad()->getParent());
2190void SelectionDAGBuilder::visitCatchSwitch(
const CatchSwitchInst &CSI) {
2194void SelectionDAGBuilder::visitRet(
const ReturnInst &
I) {
2195 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
2196 auto &
DL =
DAG.getDataLayout();
2208 if (
I.getParent()->getTerminatingDeoptimizeCall()) {
2225 SmallVector<uint64_t, 4>
Offsets;
2228 unsigned NumValues = ValueVTs.
size();
2231 Align BaseAlign =
DL.getPrefTypeAlign(
I.getOperand(0)->getType());
2232 for (
unsigned i = 0; i != NumValues; ++i) {
2239 if (MemVTs[i] != ValueVTs[i])
2241 Chains[i] =
DAG.getStore(
2249 MVT::Other, Chains);
2250 }
else if (
I.getNumOperands() != 0) {
2253 unsigned NumValues =
Types.size();
2257 const Function *
F =
I.getParent()->getParent();
2260 I.getOperand(0)->getType(),
F->getCallingConv(),
2264 if (
F->getAttributes().hasRetAttr(Attribute::SExt))
2266 else if (
F->getAttributes().hasRetAttr(Attribute::ZExt))
2269 LLVMContext &
Context =
F->getContext();
2270 bool RetInReg =
F->getAttributes().hasRetAttr(Attribute::InReg);
2272 for (
unsigned j = 0;
j != NumValues; ++
j) {
2285 &Parts[0], NumParts, PartVT, &
I, CC, ExtendKind);
2288 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2292 if (
I.getOperand(0)->getType()->isPointerTy()) {
2294 Flags.setPointerAddrSpace(
2298 if (NeedsRegBlock) {
2299 Flags.setInConsecutiveRegs();
2300 if (j == NumValues - 1)
2301 Flags.setInConsecutiveRegsLast();
2309 else if (
F->getAttributes().hasRetAttr(Attribute::NoExt))
2312 for (
unsigned i = 0; i < NumParts; ++i) {
2315 VT, Types[j], 0, 0));
2325 const Function *
F =
I.getParent()->getParent();
2327 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2329 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2330 Flags.setSwiftError();
2342 bool isVarArg =
DAG.getMachineFunction().getFunction().isVarArg();
2344 DAG.getMachineFunction().getFunction().getCallingConv();
2345 Chain =
DAG.getTargetLoweringInfo().LowerReturn(
2350 "LowerReturn didn't return a valid chain!");
2361 if (V->getType()->isEmptyTy())
2365 if (VMI !=
FuncInfo.ValueMap.end()) {
2367 "Unused value assigned virtual registers!");
2380 if (
FuncInfo.isExportedInst(V))
return;
2392 if (VI->getParent() == FromBB)
2418 const BasicBlock *SrcBB = Src->getBasicBlock();
2419 const BasicBlock *DstBB = Dst->getBasicBlock();
2423 auto SuccSize = std::max<uint32_t>(
succ_size(SrcBB), 1);
2433 Src->addSuccessorWithoutProb(Dst);
2436 Prob = getEdgeProbability(Src, Dst);
2437 Src->addSuccessor(Dst, Prob);
2443 return I->getParent() == BB;
2467 if (CurBB == SwitchBB ||
2473 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2478 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2480 if (TM.Options.NoNaNsFPMath)
2484 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1),
nullptr,
2486 SL->SwitchCases.push_back(CB);
2495 SL->SwitchCases.push_back(CB);
2503 unsigned Depth = 0) {
2512 if (Necessary !=
nullptr) {
2515 if (Necessary->contains(
I))
2534 if (
I.getNumSuccessors() != 2)
2537 if (!
I.isConditional())
2549 if (BPI !=
nullptr) {
2555 std::optional<bool> Likely;
2558 else if (BPI->
isEdgeHot(
I.getParent(), IfFalse))
2562 if (
Opc == (*Likely ? Instruction::And : Instruction::Or))
2574 if (CostThresh <= 0)
2592 const auto &TLI =
DAG.getTargetLoweringInfo();
2599 Value *BrCond =
I.getCondition();
2600 auto ShouldCountInsn = [&RhsDeps, &BrCond](
const Instruction *Ins) {
2601 for (
const auto *U : Ins->users()) {
2604 if (UIns != BrCond && !RhsDeps.
contains(UIns))
2617 for (
unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2619 for (
const auto &InsPair : RhsDeps) {
2620 if (!ShouldCountInsn(InsPair.first)) {
2621 ToDrop = InsPair.first;
2625 if (ToDrop ==
nullptr)
2627 RhsDeps.erase(ToDrop);
2630 for (
const auto &InsPair : RhsDeps) {
2638 if (CostOfIncluding > CostThresh)
2664 const Value *BOpOp0, *BOpOp1;
2678 if (BOpc == Instruction::And)
2679 BOpc = Instruction::Or;
2680 else if (BOpc == Instruction::Or)
2681 BOpc = Instruction::And;
2687 bool BOpIsInOrAndTree = BOpc && BOpc ==
Opc && BOp->
hasOneUse();
2692 TProb, FProb, InvertCond);
2702 if (
Opc == Instruction::Or) {
2723 auto NewTrueProb = TProb / 2;
2724 auto NewFalseProb = TProb / 2 + FProb;
2727 NewFalseProb, InvertCond);
2734 Probs[1], InvertCond);
2736 assert(
Opc == Instruction::And &&
"Unknown merge op!");
2756 auto NewTrueProb = TProb + FProb / 2;
2757 auto NewFalseProb = FProb / 2;
2760 NewFalseProb, InvertCond);
2767 Probs[1], InvertCond);
2776 if (Cases.size() != 2)
return true;
2780 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2781 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2782 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2783 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2789 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2790 Cases[0].CC == Cases[1].CC &&
2793 if (Cases[0].CC ==
ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2795 if (Cases[0].CC ==
ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2802void SelectionDAGBuilder::visitBr(
const BranchInst &
I) {
2808 if (
I.isUnconditional()) {
2814 if (Succ0MBB != NextBlock(BrMBB) ||
2827 const Value *CondVal =
I.getCondition();
2828 MachineBasicBlock *Succ1MBB =
FuncInfo.getMBB(
I.getSuccessor(1));
2847 bool IsUnpredictable =
I.hasMetadata(LLVMContext::MD_unpredictable);
2849 if (!
DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2852 const Value *BOp0, *BOp1;
2855 Opcode = Instruction::And;
2857 Opcode = Instruction::Or;
2864 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2865 Opcode, BOp0, BOp1))) {
2867 getEdgeProbability(BrMBB, Succ0MBB),
2868 getEdgeProbability(BrMBB, Succ1MBB),
2873 assert(
SL->SwitchCases[0].ThisBB == BrMBB &&
"Unexpected lowering!");
2877 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i) {
2884 SL->SwitchCases.erase(
SL->SwitchCases.begin());
2890 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i)
2891 FuncInfo.MF->erase(
SL->SwitchCases[i].ThisBB);
2893 SL->SwitchCases.clear();
2899 nullptr, Succ0MBB, Succ1MBB, BrMBB,
getCurSDLoc(),
2920 if (CB.
TrueBB != NextBlock(SwitchBB)) {
2927 auto &TLI =
DAG.getTargetLoweringInfo();
2951 Cond =
DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.
CC);
2963 Cond =
DAG.getSetCC(dl, MVT::i1, CmpOp,
DAG.getConstant(
High, dl, VT),
2967 VT, CmpOp,
DAG.getConstant(
Low, dl, VT));
2968 Cond =
DAG.getSetCC(dl, MVT::i1, SUB,
2983 if (CB.
TrueBB == NextBlock(SwitchBB)) {
2999 BrCond =
DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3002 DAG.setRoot(BrCond);
3008 assert(JT.SL &&
"Should set SDLoc for SelectionDAG!");
3009 assert(JT.Reg &&
"Should lower JT Header first!");
3010 EVT PTy =
DAG.getTargetLoweringInfo().getJumpTableRegTy(
DAG.getDataLayout());
3012 SDValue Table =
DAG.getJumpTable(JT.JTI, PTy);
3013 SDValue BrJumpTable =
DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3014 Index.getValue(1), Table, Index);
3015 DAG.setRoot(BrJumpTable);
3023 assert(JT.SL &&
"Should set SDLoc for SelectionDAG!");
3024 const SDLoc &dl = *JT.SL;
3030 DAG.getConstant(JTH.
First, dl, VT));
3045 JT.Reg = JumpTableReg;
3053 Sub.getValueType()),
3056 SDValue BrCond =
DAG.getNode(ISD::BRCOND, dl,
3057 MVT::Other, CopyTo, CMP,
3058 DAG.getBasicBlock(JT.Default));
3061 if (JT.MBB != NextBlock(SwitchBB))
3062 BrCond =
DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3063 DAG.getBasicBlock(JT.MBB));
3065 DAG.setRoot(BrCond);
3068 if (JT.MBB != NextBlock(SwitchBB))
3069 DAG.setRoot(
DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3070 DAG.getBasicBlock(JT.MBB)));
3072 DAG.setRoot(CopyTo);
3095 if (PtrTy != PtrMemTy)
3111 auto &
DL =
DAG.getDataLayout();
3120 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3127 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3140 assert(GuardCheckFn &&
"Guard check function is null");
3151 Entry.IsInReg =
true;
3152 Args.push_back(Entry);
3158 getValue(GuardCheckFn), std::move(Args));
3160 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
3161 DAG.setRoot(Result.second);
3173 Guard =
DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3179 Guard =
DAG.getPOISON(PtrMemTy);
3189 SDValue BrCond =
DAG.getNode(ISD::BRCOND, dl,
3222 auto &
DL =
DAG.getDataLayout();
3230 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3236 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3251 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3252 Entry.IsInReg =
true;
3253 Args.push_back(Entry);
3259 getValue(GuardCheckFn), std::move(Args));
3265 Chain = TLI.
makeLibCall(
DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3273 Chain =
DAG.getNode(ISD::TRAP,
getCurSDLoc(), MVT::Other, Chain);
3288 DAG.getNode(
ISD::SUB, dl, VT, SwitchOp,
DAG.getConstant(
B.First, dl, VT));
3292 bool UsePtrType =
false;
3316 if (!
B.FallthroughUnreachable)
3317 addSuccessorWithProb(SwitchBB,
B.Default,
B.DefaultProb);
3318 addSuccessorWithProb(SwitchBB,
MBB,
B.Prob);
3322 if (!
B.FallthroughUnreachable) {
3330 Root =
DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3331 DAG.getBasicBlock(
B.Default));
3335 if (
MBB != NextBlock(SwitchBB))
3336 Root =
DAG.getNode(ISD::BR, dl, MVT::Other, Root,
DAG.getBasicBlock(
MBB));
3353 if (PopCount == 1) {
3360 }
else if (PopCount == BB.
Range) {
3368 DAG.getConstant(1, dl, VT), ShiftOp);
3372 VT, SwitchVal,
DAG.getConstant(
B.Mask, dl, VT));
3379 addSuccessorWithProb(SwitchBB,
B.TargetBB,
B.ExtraProb);
3381 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3389 Cmp,
DAG.getBasicBlock(
B.TargetBB));
3392 if (NextMBB != NextBlock(SwitchBB))
3393 BrAnd =
DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3394 DAG.getBasicBlock(NextMBB));
3399void SelectionDAGBuilder::visitInvoke(
const InvokeInst &
I) {
3417 const Value *Callee(
I.getCalledOperand());
3420 visitInlineAsm(
I, EHPadBB);
3425 case Intrinsic::donothing:
3427 case Intrinsic::seh_try_begin:
3428 case Intrinsic::seh_scope_begin:
3429 case Intrinsic::seh_try_end:
3430 case Intrinsic::seh_scope_end:
3436 case Intrinsic::experimental_patchpoint_void:
3437 case Intrinsic::experimental_patchpoint:
3438 visitPatchpoint(
I, EHPadBB);
3440 case Intrinsic::experimental_gc_statepoint:
3446 case Intrinsic::wasm_throw: {
3448 std::array<SDValue, 4>
Ops = {
3459 case Intrinsic::wasm_rethrow: {
3460 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3461 std::array<SDValue, 2>
Ops = {
3470 }
else if (
I.hasDeoptState()) {
3491 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
3492 BranchProbability EHPadBBProb =
3498 addSuccessorWithProb(InvokeMBB, Return);
3499 for (
auto &UnwindDest : UnwindDests) {
3500 UnwindDest.first->setIsEHPad();
3501 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3507 DAG.getBasicBlock(Return)));
3510void SelectionDAGBuilder::visitCallBr(
const CallBrInst &
I) {
3511 MachineBasicBlock *CallBrMBB =
FuncInfo.MBB;
3518 assert(
I.isInlineAsm() &&
"Only know how to handle inlineasm callbr");
3523 SmallPtrSet<BasicBlock *, 8> Dests;
3524 Dests.
insert(
I.getDefaultDest());
3529 for (BasicBlock *Dest :
I.getIndirectDests()) {
3531 Target->setIsInlineAsmBrIndirectTarget();
3537 Target->setLabelMustBeEmitted();
3539 if (Dests.
insert(Dest).second)
3547 DAG.getBasicBlock(Return)));
3550void SelectionDAGBuilder::visitResume(
const ResumeInst &RI) {
3551 llvm_unreachable(
"SelectionDAGBuilder shouldn't visit resume instructions!");
3554void SelectionDAGBuilder::visitLandingPad(
const LandingPadInst &LP) {
3556 "Call to landingpad not in landing pad!");
3560 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3576 assert(ValueVTs.
size() == 2 &&
"Only two-valued landingpads are supported");
3581 if (
FuncInfo.ExceptionPointerVirtReg) {
3582 Ops[0] =
DAG.getZExtOrTrunc(
3583 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3590 Ops[1] =
DAG.getZExtOrTrunc(
3591 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3598 DAG.getVTList(ValueVTs),
Ops);
3606 if (JTB.first.HeaderBB ==
First)
3607 JTB.first.HeaderBB =
Last;
3620 for (
unsigned i = 0, e =
I.getNumSuccessors(); i != e; ++i) {
3622 bool Inserted =
Done.insert(BB).second;
3627 addSuccessorWithProb(IndirectBrMBB, Succ);
3637 if (!
I.shouldLowerToTrap(
DAG.getTarget().Options.TrapUnreachable,
3638 DAG.getTarget().Options.NoTrapAfterNoreturn))
3644void SelectionDAGBuilder::visitUnary(
const User &
I,
unsigned Opcode) {
3647 Flags.copyFMF(*FPOp);
3655void SelectionDAGBuilder::visitBinary(
const User &
I,
unsigned Opcode) {
3658 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3659 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3662 Flags.setExact(ExactOp->isExact());
3664 Flags.setDisjoint(DisjointOp->isDisjoint());
3666 Flags.copyFMF(*FPOp);
3675void SelectionDAGBuilder::visitShift(
const User &
I,
unsigned Opcode) {
3679 EVT ShiftTy =
DAG.getTargetLoweringInfo().getShiftAmountTy(
3684 if (!
I.getType()->isVectorTy() && Op2.
getValueType() != ShiftTy) {
3686 "Unexpected shift type");
3696 if (
const OverflowingBinaryOperator *OFBinOp =
3698 nuw = OFBinOp->hasNoUnsignedWrap();
3699 nsw = OFBinOp->hasNoSignedWrap();
3701 if (
const PossiblyExactOperator *ExactOp =
3703 exact = ExactOp->isExact();
3706 Flags.setExact(exact);
3707 Flags.setNoSignedWrap(nsw);
3708 Flags.setNoUnsignedWrap(nuw);
3714void SelectionDAGBuilder::visitSDiv(
const User &
I) {
3725void SelectionDAGBuilder::visitICmp(
const ICmpInst &
I) {
3731 auto &TLI =
DAG.getTargetLoweringInfo();
3744 Flags.setSameSign(
I.hasSameSign());
3745 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3747 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3752void SelectionDAGBuilder::visitFCmp(
const FCmpInst &
I) {
3759 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3763 Flags.copyFMF(*FPMO);
3764 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3766 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3775 return isa<SelectInst>(V);
3779void SelectionDAGBuilder::visitSelect(
const User &
I) {
3783 unsigned NumValues = ValueVTs.
size();
3784 if (NumValues == 0)
return;
3794 bool IsUnaryAbs =
false;
3795 bool Negate =
false;
3799 Flags.copyFMF(*FPOp);
3801 Flags.setUnpredictable(
3806 EVT VT = ValueVTs[0];
3807 LLVMContext &Ctx = *
DAG.getContext();
3808 auto &TLI =
DAG.getTargetLoweringInfo();
3818 bool UseScalarMinMax = VT.
isVector() &&
3827 switch (SPR.Flavor) {
3833 switch (SPR.NaNBehavior) {
3846 switch (SPR.NaNBehavior) {
3890 for (
unsigned i = 0; i != NumValues; ++i) {
3896 Values[i] =
DAG.getNegative(Values[i], dl, VT);
3899 for (
unsigned i = 0; i != NumValues; ++i) {
3903 Values[i] =
DAG.getNode(
3910 DAG.getVTList(ValueVTs), Values));
3913void SelectionDAGBuilder::visitTrunc(
const User &
I) {
3916 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3920 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3921 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3927void SelectionDAGBuilder::visitZExt(
const User &
I) {
3931 auto &TLI =
DAG.getTargetLoweringInfo();
3936 Flags.setNonNeg(PNI->hasNonNeg());
3941 if (
Flags.hasNonNeg() &&
3950void SelectionDAGBuilder::visitSExt(
const User &
I) {
3954 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3959void SelectionDAGBuilder::visitFPTrunc(
const User &
I) {
3965 Flags.copyFMF(*TruncInst);
3966 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3969 DAG.getTargetConstant(
3974void SelectionDAGBuilder::visitFPExt(
const User &
I) {
3977 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3982void SelectionDAGBuilder::visitFPToUI(
const User &
I) {
3985 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3990void SelectionDAGBuilder::visitFPToSI(
const User &
I) {
3993 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3998void SelectionDAGBuilder::visitUIToFP(
const User &
I) {
4001 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4005 Flags.setNonNeg(PNI->hasNonNeg());
4010void SelectionDAGBuilder::visitSIToFP(
const User &
I) {
4013 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4018void SelectionDAGBuilder::visitPtrToAddr(
const User &
I) {
4021 const auto &TLI =
DAG.getTargetLoweringInfo();
4029void SelectionDAGBuilder::visitPtrToInt(
const User &
I) {
4033 auto &TLI =
DAG.getTargetLoweringInfo();
4034 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4043void SelectionDAGBuilder::visitIntToPtr(
const User &
I) {
4047 auto &TLI =
DAG.getTargetLoweringInfo();
4055void SelectionDAGBuilder::visitBitCast(
const User &
I) {
4058 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4063 if (DestVT !=
N.getValueType())
4071 setValue(&
I,
DAG.getConstant(
C->getValue(), dl, DestVT,
false,
4077void SelectionDAGBuilder::visitAddrSpaceCast(
const User &
I) {
4078 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4079 const Value *SV =
I.getOperand(0);
4084 unsigned DestAS =
I.getType()->getPointerAddressSpace();
4086 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4092void SelectionDAGBuilder::visitInsertElement(
const User &
I) {
4093 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4100 InVec, InVal, InIdx));
4103void SelectionDAGBuilder::visitExtractElement(
const User &
I) {
4104 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4113void SelectionDAGBuilder::visitShuffleVector(
const User &
I) {
4118 Mask = SVI->getShuffleMask();
4122 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4126 if (
all_of(Mask, [](
int Elem) {
return Elem == 0; }) &&
4131 DAG.getVectorIdxConstant(0,
DL));
4142 unsigned MaskNumElts =
Mask.size();
4144 if (SrcNumElts == MaskNumElts) {
4150 if (SrcNumElts < MaskNumElts) {
4154 if (MaskNumElts % SrcNumElts == 0) {
4158 unsigned NumConcat = MaskNumElts / SrcNumElts;
4159 bool IsConcat =
true;
4160 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4161 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4167 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4168 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4169 ConcatSrcs[i / SrcNumElts] != (
int)(Idx / SrcNumElts))) {
4174 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4181 for (
auto Src : ConcatSrcs) {
4194 unsigned PaddedMaskNumElts =
alignTo(MaskNumElts, SrcNumElts);
4195 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4211 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4212 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4214 if (Idx >= (
int)SrcNumElts)
4215 Idx -= SrcNumElts - PaddedMaskNumElts;
4223 if (MaskNumElts != PaddedMaskNumElts)
4225 DAG.getVectorIdxConstant(0,
DL));
4231 assert(SrcNumElts > MaskNumElts);
4235 int StartIdx[2] = {-1, -1};
4236 bool CanExtract =
true;
4237 for (
int Idx : Mask) {
4242 if (Idx >= (
int)SrcNumElts) {
4250 int NewStartIdx =
alignDown(Idx, MaskNumElts);
4251 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4252 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4256 StartIdx[Input] = NewStartIdx;
4259 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4265 for (
unsigned Input = 0; Input < 2; ++Input) {
4266 SDValue &Src = Input == 0 ? Src1 : Src2;
4267 if (StartIdx[Input] < 0)
4268 Src =
DAG.getUNDEF(VT);
4271 DAG.getVectorIdxConstant(StartIdx[Input],
DL));
4276 SmallVector<int, 8> MappedOps(Mask);
4277 for (
int &Idx : MappedOps) {
4278 if (Idx >= (
int)SrcNumElts)
4279 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4284 setValue(&
I,
DAG.getVectorShuffle(VT,
DL, Src1, Src2, MappedOps));
4293 for (
int Idx : Mask) {
4297 Res =
DAG.getUNDEF(EltVT);
4299 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4300 if (Idx >= (
int)SrcNumElts) Idx -= SrcNumElts;
4303 DAG.getVectorIdxConstant(Idx,
DL));
4313 ArrayRef<unsigned> Indices =
I.getIndices();
4314 const Value *Op0 =
I.getOperand(0);
4316 Type *AggTy =
I.getType();
4323 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4329 unsigned NumAggValues = AggValueVTs.
size();
4330 unsigned NumValValues = ValValueVTs.
size();
4334 if (!NumAggValues) {
4342 for (; i != LinearIndex; ++i)
4343 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4348 for (; i != LinearIndex + NumValValues; ++i)
4349 Values[i] = FromUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4353 for (; i != NumAggValues; ++i)
4354 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4358 DAG.getVTList(AggValueVTs), Values));
4362 ArrayRef<unsigned> Indices =
I.getIndices();
4363 const Value *Op0 =
I.getOperand(0);
4365 Type *ValTy =
I.getType();
4370 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4374 unsigned NumValValues = ValValueVTs.
size();
4377 if (!NumValValues) {
4386 for (
unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4387 Values[i - LinearIndex] =
4393 DAG.getVTList(ValValueVTs), Values));
4396void SelectionDAGBuilder::visitGetElementPtr(
const User &
I) {
4397 Value *Op0 =
I.getOperand(0);
4403 auto &TLI =
DAG.getTargetLoweringInfo();
4408 bool IsVectorGEP =
I.getType()->isVectorTy();
4409 ElementCount VectorElementCount =
4415 const Value *Idx = GTI.getOperand();
4416 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4421 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(
Field);
4431 N =
DAG.getMemBasePlusOffset(
4432 N,
DAG.getConstant(
Offset, dl,
N.getValueType()), dl, Flags);
4438 unsigned IdxSize =
DAG.getDataLayout().getIndexSizeInBits(AS);
4440 TypeSize ElementSize =
4441 GTI.getSequentialElementStride(
DAG.getDataLayout());
4446 bool ElementScalable = ElementSize.
isScalable();
4452 C =
C->getSplatValue();
4455 if (CI && CI->isZero())
4457 if (CI && !ElementScalable) {
4458 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4461 if (
N.getValueType().isVector())
4462 OffsVal =
DAG.getConstant(
4465 OffsVal =
DAG.getConstant(Offs, dl, IdxTy);
4472 Flags.setNoUnsignedWrap(
true);
4475 OffsVal =
DAG.getSExtOrTrunc(OffsVal, dl,
N.getValueType());
4477 N =
DAG.getMemBasePlusOffset(
N, OffsVal, dl, Flags);
4485 if (
N.getValueType().isVector()) {
4487 VectorElementCount);
4488 IdxN =
DAG.getSplat(VT, dl, IdxN);
4492 N =
DAG.getSplat(VT, dl,
N);
4498 IdxN =
DAG.getSExtOrTrunc(IdxN, dl,
N.getValueType());
4500 SDNodeFlags ScaleFlags;
4509 if (ElementScalable) {
4510 EVT VScaleTy =
N.getValueType().getScalarType();
4512 ISD::VSCALE, dl, VScaleTy,
4513 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4514 if (
N.getValueType().isVector())
4515 VScale =
DAG.getSplatVector(
N.getValueType(), dl, VScale);
4516 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, VScale,
4521 if (ElementMul != 1) {
4522 if (ElementMul.isPowerOf2()) {
4523 unsigned Amt = ElementMul.logBase2();
4526 DAG.getShiftAmountConstant(Amt,
N.getValueType(), dl),
4529 SDValue Scale =
DAG.getConstant(ElementMul.getZExtValue(), dl,
4531 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, Scale,
4541 SDNodeFlags AddFlags;
4545 N =
DAG.getMemBasePlusOffset(
N, IdxN, dl, AddFlags);
4549 if (IsVectorGEP && !
N.getValueType().isVector()) {
4551 N =
DAG.getSplat(VT, dl,
N);
4562 N =
DAG.getPtrExtendInReg(
N, dl, PtrMemTy);
4567void SelectionDAGBuilder::visitAlloca(
const AllocaInst &
I) {
4574 Type *Ty =
I.getAllocatedType();
4575 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4576 auto &
DL =
DAG.getDataLayout();
4577 TypeSize TySize =
DL.getTypeAllocSize(Ty);
4578 MaybeAlign Alignment = std::max(
DL.getPrefTypeAlign(Ty),
I.getAlign());
4584 AllocSize =
DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4587 AllocSize =
DAG.getNode(
ISD::MUL, dl, IntPtr, AllocSize,
4588 DAG.getVScale(dl, IntPtr,
4594 AllocSize =
DAG.getNode(
ISD::MUL, dl, IntPtr, AllocSize,
4595 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4601 Align StackAlign =
DAG.getSubtarget().getFrameLowering()->getStackAlign();
4602 if (*Alignment <= StackAlign)
4603 Alignment = std::nullopt;
4605 const uint64_t StackAlignMask = StackAlign.
value() - 1U;
4610 DAG.getConstant(StackAlignMask, dl, IntPtr),
4615 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4619 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4621 SDValue DSA =
DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs,
Ops);
4629 return I.getMetadata(LLVMContext::MD_range);
4634 if (std::optional<ConstantRange> CR = CB->getRange())
4638 return std::nullopt;
4641void SelectionDAGBuilder::visitLoad(
const LoadInst &
I) {
4643 return visitAtomicLoad(
I);
4645 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4646 const Value *SV =
I.getOperand(0);
4651 if (Arg->hasSwiftErrorAttr())
4652 return visitLoadFromSwiftError(
I);
4656 if (Alloca->isSwiftError())
4657 return visitLoadFromSwiftError(
I);
4663 Type *Ty =
I.getType();
4667 unsigned NumValues = ValueVTs.
size();
4671 Align Alignment =
I.getAlign();
4672 AAMDNodes AAInfo =
I.getAAMetadata();
4674 bool isVolatile =
I.isVolatile();
4679 bool ConstantMemory =
false;
4686 BatchAA->pointsToConstantMemory(MemoryLocation(
4691 Root =
DAG.getEntryNode();
4692 ConstantMemory =
true;
4696 Root =
DAG.getRoot();
4707 unsigned ChainI = 0;
4708 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4724 MachinePointerInfo PtrInfo =
4726 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4727 : MachinePointerInfo();
4730 SDValue L =
DAG.getLoad(MemVTs[i], dl, Root,
A, PtrInfo, Alignment,
4731 MMOFlags, AAInfo, Ranges);
4732 Chains[ChainI] =
L.getValue(1);
4734 if (MemVTs[i] != ValueVTs[i])
4735 L =
DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4740 if (!ConstantMemory) {
4750 DAG.getVTList(ValueVTs), Values));
4753void SelectionDAGBuilder::visitStoreToSwiftError(
const StoreInst &
I) {
4754 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4755 "call visitStoreToSwiftError when backend supports swifterror");
4758 SmallVector<uint64_t, 4>
Offsets;
4759 const Value *SrcV =
I.getOperand(0);
4761 SrcV->
getType(), ValueVTs,
nullptr, &Offsets, 0);
4762 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4763 "expect a single EVT for swifterror");
4772 SDValue(Src.getNode(), Src.getResNo()));
4773 DAG.setRoot(CopyNode);
4776void SelectionDAGBuilder::visitLoadFromSwiftError(
const LoadInst &
I) {
4777 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4778 "call visitLoadFromSwiftError when backend supports swifterror");
4781 !
I.hasMetadata(LLVMContext::MD_nontemporal) &&
4782 !
I.hasMetadata(LLVMContext::MD_invariant_load) &&
4783 "Support volatile, non temporal, invariant for load_from_swift_error");
4785 const Value *SV =
I.getOperand(0);
4786 Type *Ty =
I.getType();
4789 !
BatchAA->pointsToConstantMemory(MemoryLocation(
4791 I.getAAMetadata()))) &&
4792 "load_from_swift_error should not be constant memory");
4795 SmallVector<uint64_t, 4>
Offsets;
4797 ValueVTs,
nullptr, &Offsets, 0);
4798 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4799 "expect a single EVT for swifterror");
4809void SelectionDAGBuilder::visitStore(
const StoreInst &
I) {
4811 return visitAtomicStore(
I);
4813 const Value *SrcV =
I.getOperand(0);
4814 const Value *PtrV =
I.getOperand(1);
4816 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4821 if (Arg->hasSwiftErrorAttr())
4822 return visitStoreToSwiftError(
I);
4826 if (Alloca->isSwiftError())
4827 return visitStoreToSwiftError(
I);
4834 SrcV->
getType(), ValueVTs, &MemVTs, &Offsets);
4835 unsigned NumValues = ValueVTs.
size();
4848 Align Alignment =
I.getAlign();
4849 AAMDNodes AAInfo =
I.getAAMetadata();
4853 unsigned ChainI = 0;
4854 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4864 MachinePointerInfo PtrInfo =
4866 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4867 : MachinePointerInfo();
4871 if (MemVTs[i] != ValueVTs[i])
4872 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4874 DAG.getStore(Root, dl, Val,
Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4875 Chains[ChainI] = St;
4881 DAG.setRoot(StoreNode);
4884void SelectionDAGBuilder::visitMaskedStore(
const CallInst &
I,
4885 bool IsCompressing) {
4888 Value *Src0Operand =
I.getArgOperand(0);
4889 Value *PtrOperand =
I.getArgOperand(1);
4890 Value *MaskOperand =
I.getArgOperand(2);
4891 Align Alignment =
I.getParamAlign(1).valueOrOne();
4901 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
4904 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
4905 MachinePointerInfo(PtrOperand), MMOFlags,
4908 const auto &TLI =
DAG.getTargetLoweringInfo();
4913 I.getArgOperand(0)->getType(),
true)
4919 DAG.setRoot(StoreNode);
4945 assert(
Ptr->getType()->isVectorTy() &&
"Unexpected pointer type");
4949 C =
C->getSplatValue();
4963 if (!
GEP ||
GEP->getParent() != CurBB)
4966 if (
GEP->getNumOperands() != 2)
4969 const Value *BasePtr =
GEP->getPointerOperand();
4970 const Value *IndexVal =
GEP->getOperand(
GEP->getNumOperands() - 1);
4976 TypeSize ScaleVal =
DL.getTypeAllocSize(
GEP->getResultElementType());
4981 if (ScaleVal != 1 &&
4993void SelectionDAGBuilder::visitMaskedScatter(
const CallInst &
I) {
4997 const Value *
Ptr =
I.getArgOperand(1);
5001 Align Alignment =
I.getParamAlign(1).valueOrOne();
5002 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5010 unsigned AS =
Ptr->getType()->getScalarType()->getPointerAddressSpace();
5011 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5021 EVT IdxVT =
Index.getValueType();
5029 SDValue Scatter =
DAG.getMaskedScatter(
DAG.getVTList(MVT::Other), VT, sdl,
5031 DAG.setRoot(Scatter);
5035void SelectionDAGBuilder::visitMaskedLoad(
const CallInst &
I,
bool IsExpanding) {
5038 Value *PtrOperand =
I.getArgOperand(0);
5039 Value *MaskOperand =
I.getArgOperand(1);
5040 Value *Src0Operand =
I.getArgOperand(2);
5041 Align Alignment =
I.getParamAlign(0).valueOrOne();
5049 AAMDNodes AAInfo =
I.getAAMetadata();
5056 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
5059 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
5062 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5063 MachinePointerInfo(PtrOperand), MMOFlags,
5066 const auto &TLI =
DAG.getTargetLoweringInfo();
5078 DAG.getMaskedLoad(VT, sdl, InChain,
Ptr,
Offset, Mask, Src0, VT, MMO,
5085void SelectionDAGBuilder::visitMaskedGather(
const CallInst &
I) {
5089 const Value *
Ptr =
I.getArgOperand(0);
5093 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5095 Align Alignment =
I.getParamAlign(0).valueOrOne();
5105 unsigned AS =
Ptr->getType()->getScalarType()->getPointerAddressSpace();
5106 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5118 EVT IdxVT =
Index.getValueType();
5127 DAG.getMaskedGather(
DAG.getVTList(VT, MVT::Other), VT, sdl,
Ops, MMO,
5143 SDVTList VTs =
DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5145 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5148 MachineFunction &MF =
DAG.getMachineFunction();
5150 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5151 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, SuccessOrdering,
5154 SDValue L =
DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5155 dl, MemVT, VTs, InChain,
5163 DAG.setRoot(OutChain);
5166void SelectionDAGBuilder::visitAtomicRMW(
const AtomicRMWInst &
I) {
5169 switch (
I.getOperation()) {
5187 NT = ISD::ATOMIC_LOAD_FMAXIMUM;
5190 NT = ISD::ATOMIC_LOAD_FMINIMUM;
5193 NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5196 NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5199 NT = ISD::ATOMIC_LOAD_USUB_COND;
5202 NT = ISD::ATOMIC_LOAD_USUB_SAT;
5211 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5214 MachineFunction &MF =
DAG.getMachineFunction();
5216 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5217 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, Ordering);
5220 DAG.getAtomic(NT, dl, MemVT, InChain,
5227 DAG.setRoot(OutChain);
5230void SelectionDAGBuilder::visitFence(
const FenceInst &
I) {
5232 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5235 Ops[1] =
DAG.getTargetConstant((
unsigned)
I.getOrdering(), dl,
5237 Ops[2] =
DAG.getTargetConstant(
I.getSyncScopeID(), dl,
5244void SelectionDAGBuilder::visitAtomicLoad(
const LoadInst &
I) {
5251 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5262 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5263 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5264 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5274 L =
DAG.getPtrExtOrTrunc(L, dl, VT);
5277 DAG.setRoot(OutChain);
5280void SelectionDAGBuilder::visitAtomicStore(
const StoreInst &
I) {
5288 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5298 MachineFunction &MF =
DAG.getMachineFunction();
5300 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5301 I.getAlign(), AAMDNodes(),
nullptr, SSID, Ordering);
5305 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5309 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val,
Ptr, MMO);
5312 DAG.setRoot(OutChain);
5320std::pair<bool, bool>
5321SelectionDAGBuilder::getTargetIntrinsicCallProperties(
const CallBase &
I) {
5323 bool HasChain = !
F->doesNotAccessMemory();
5325 HasChain &&
F->onlyReadsMemory() &&
F->willReturn() &&
F->doesNotThrow();
5327 return {HasChain, OnlyLoad};
5331 const CallBase &
I,
bool HasChain,
bool OnlyLoad,
5333 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5340 Ops.push_back(
DAG.getRoot());
5353 for (
unsigned i = 0, e =
I.arg_size(); i != e; ++i) {
5354 const Value *Arg =
I.getArgOperand(i);
5355 if (!
I.paramHasAttr(i, Attribute::ImmArg)) {
5363 assert(CI->getBitWidth() <= 64 &&
5364 "large intrinsic immediates not handled");
5365 Ops.push_back(
DAG.getTargetConstant(*CI, SDLoc(), VT));
5372 if (std::optional<OperandBundleUse> Bundle =
5374 Value *Token = Bundle->Inputs[0].get();
5376 assert(
Ops.back().getValueType() != MVT::Glue &&
5377 "Did not expect another glue node here.");
5379 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5380 Ops.push_back(ConvControlToken);
5388 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5396 return DAG.getVTList(ValueVTs);
5400SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5423 if (
I.getType()->isVoidTy())
5438void SelectionDAGBuilder::visitTargetIntrinsic(
const CallInst &
I,
5440 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(
I);
5443 TargetLowering::IntrinsicInfo
Info;
5444 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5445 bool IsTgtMemIntrinsic =
5449 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &
Info :
nullptr);
5450 SDVTList VTs = getTargetIntrinsicVTList(
I, HasChain);
5455 Flags.copyFMF(*FPMO);
5456 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
5463 if (IsTgtMemIntrinsic) {
5468 MachinePointerInfo MPI;
5470 MPI = MachinePointerInfo(
Info.ptrVal,
Info.offset);
5471 else if (
Info.fallbackAddressSpace)
5472 MPI = MachinePointerInfo(*
Info.fallbackAddressSpace);
5473 EVT MemVT =
Info.memVT;
5475 if (
Size.hasValue() && !
Size.getValue())
5477 Align Alignment =
Info.align.value_or(
DAG.getEVTAlign(MemVT));
5478 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5479 MPI,
Info.flags,
Size, Alignment,
I.getAAMetadata(),
nullptr,
5484 Result = getTargetNonMemIntrinsicNode(*
I.getType(), HasChain,
Ops, VTs);
5487 Result = handleTargetIntrinsicRet(
I, HasChain, OnlyLoad, Result);
5503 return DAG.
getNode(ISD::BITCAST, dl, MVT::f32, t2);
5544 SDValue TwoToFractionalPartOfX;
5612 SDValue t13 = DAG.
getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5613 return DAG.
getNode(ISD::BITCAST, dl, MVT::f32,
5621 if (
Op.getValueType() == MVT::f32 &&
5636 return DAG.
getNode(ISD::FEXP, dl,
Op.getValueType(),
Op, Flags);
5645 if (
Op.getValueType() == MVT::f32 &&
5735 return DAG.
getNode(ISD::FLOG, dl,
Op.getValueType(),
Op, Flags);
5744 if (
Op.getValueType() == MVT::f32 &&
5828 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5832 return DAG.
getNode(ISD::FLOG2, dl,
Op.getValueType(),
Op, Flags);
5841 if (
Op.getValueType() == MVT::f32 &&
5918 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5922 return DAG.
getNode(ISD::FLOG10, dl,
Op.getValueType(),
Op, Flags);
5929 if (
Op.getValueType() == MVT::f32 &&
5934 return DAG.
getNode(ISD::FEXP2, dl,
Op.getValueType(),
Op, Flags);
5942 bool IsExp10 =
false;
5943 if (
LHS.getValueType() == MVT::f32 &&
RHS.getValueType() == MVT::f32 &&
5947 IsExp10 = LHSC->isExactlyValue(Ten);
5974 unsigned Val = RHSC->getSExtValue();
6003 CurSquare, CurSquare);
6008 if (RHSC->getSExtValue() < 0)
6022 EVT VT =
LHS.getValueType();
6045 if ((ScaleInt > 0 || (Saturating &&
Signed)) &&
6049 Opcode, VT, ScaleInt);
6084 switch (
N.getOpcode()) {
6088 Op.getValueType().getSizeInBits());
6113bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6120 MachineFunction &MF =
DAG.getMachineFunction();
6121 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
6125 auto MakeVRegDbgValue = [&](
Register Reg, DIExpression *FragExpr,
6130 auto &Inst =
TII->get(TargetOpcode::DBG_INSTR_REF);
6137 auto *NewDIExpr = FragExpr;
6144 return BuildMI(MF,
DL, Inst,
false, MOs, Variable, NewDIExpr);
6147 auto &Inst =
TII->get(TargetOpcode::DBG_VALUE);
6148 return BuildMI(MF,
DL, Inst, Indirect,
Reg, Variable, FragExpr);
6152 if (Kind == FuncArgumentDbgValueKind::Value) {
6157 if (!IsInEntryBlock)
6173 bool VariableIsFunctionInputArg =
Variable->isParameter() &&
6174 !
DL->getInlinedAt();
6176 if (!IsInPrologue && !VariableIsFunctionInputArg)
6210 if (VariableIsFunctionInputArg) {
6212 if (ArgNo >=
FuncInfo.DescribedArgs.size())
6213 FuncInfo.DescribedArgs.resize(ArgNo + 1,
false);
6214 else if (!IsInPrologue &&
FuncInfo.DescribedArgs.test(ArgNo))
6215 return !NodeMap[
V].getNode();
6220 bool IsIndirect =
false;
6221 std::optional<MachineOperand>
Op;
6223 int FI =
FuncInfo.getArgumentFrameIndex(Arg);
6224 if (FI != std::numeric_limits<int>::max())
6228 if (!
Op &&
N.getNode()) {
6231 if (ArgRegsAndSizes.
size() == 1)
6232 Reg = ArgRegsAndSizes.
front().first;
6235 MachineRegisterInfo &RegInfo = MF.
getRegInfo();
6242 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6246 if (!
Op &&
N.getNode()) {
6250 if (FrameIndexSDNode *FINode =
6260 for (
const auto &RegAndSize : SplitRegs) {
6264 int RegFragmentSizeInBits = RegAndSize.second;
6266 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6269 if (
Offset >= ExprFragmentSizeInBits)
6273 if (
Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6274 RegFragmentSizeInBits = ExprFragmentSizeInBits -
Offset;
6279 Expr,
Offset, RegFragmentSizeInBits);
6280 Offset += RegAndSize.second;
6283 if (!FragmentExpr) {
6284 SDDbgValue *SDV =
DAG.getConstantDbgValue(
6286 DAG.AddDbgValue(SDV,
false);
6289 MachineInstr *NewMI =
6290 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6291 Kind != FuncArgumentDbgValueKind::Value);
6292 FuncInfo.ArgDbgValues.push_back(NewMI);
6299 if (VMI !=
FuncInfo.ValueMap.end()) {
6300 const auto &TLI =
DAG.getTargetLoweringInfo();
6301 RegsForValue RFV(
V->getContext(), TLI,
DAG.getDataLayout(), VMI->second,
6302 V->getType(), std::nullopt);
6303 if (RFV.occupiesMultipleRegs()) {
6304 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6309 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6310 }
else if (ArgRegsAndSizes.
size() > 1) {
6313 splitMultiRegDbgValue(ArgRegsAndSizes);
6322 "Expected inlined-at fields to agree");
6323 MachineInstr *NewMI =
nullptr;
6326 NewMI = MakeVRegDbgValue(
Op->getReg(), Expr, IsIndirect);
6328 NewMI =
BuildMI(MF,
DL,
TII->get(TargetOpcode::DBG_VALUE),
true, *
Op,
6332 FuncInfo.ArgDbgValues.push_back(NewMI);
6341 unsigned DbgSDNodeOrder) {
6353 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6354 false, dl, DbgSDNodeOrder);
6356 return DAG.getDbgValue(Variable, Expr,
N.getNode(),
N.getResNo(),
6357 false, dl, DbgSDNodeOrder);
6362 case Intrinsic::smul_fix:
6364 case Intrinsic::umul_fix:
6366 case Intrinsic::smul_fix_sat:
6368 case Intrinsic::umul_fix_sat:
6370 case Intrinsic::sdiv_fix:
6372 case Intrinsic::udiv_fix:
6374 case Intrinsic::sdiv_fix_sat:
6376 case Intrinsic::udiv_fix_sat:
6389 "expected call_preallocated_setup Value");
6390 for (
const auto *U : PreallocatedSetup->
users()) {
6392 const Function *Fn = UseCall->getCalledFunction();
6393 if (!Fn || Fn->
getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6403bool SelectionDAGBuilder::visitEntryValueDbgValue(
6413 auto ArgIt =
FuncInfo.ValueMap.find(Arg);
6414 if (ArgIt ==
FuncInfo.ValueMap.end()) {
6416 dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6417 "couldn't find an associated register for the Argument\n");
6420 Register ArgVReg = ArgIt->getSecond();
6422 for (
auto [PhysReg, VirtReg] :
FuncInfo.RegInfo->liveins())
6423 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6424 SDDbgValue *SDV =
DAG.getVRegDbgValue(
6425 Variable, Expr, PhysReg,
false , DbgLoc, SDNodeOrder);
6426 DAG.AddDbgValue(SDV,
false );
6429 LLVM_DEBUG(
dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6430 "couldn't find a physical register\n");
6435void SelectionDAGBuilder::visitConvergenceControl(
const CallInst &
I,
6438 switch (Intrinsic) {
6439 case Intrinsic::experimental_convergence_anchor:
6440 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6442 case Intrinsic::experimental_convergence_entry:
6443 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6445 case Intrinsic::experimental_convergence_loop: {
6447 auto *Token = Bundle->Inputs[0].get();
6448 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6455void SelectionDAGBuilder::visitVectorHistogram(
const CallInst &
I,
6456 unsigned IntrinsicID) {
6459 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6460 "Tried to lower unsupported histogram type");
6462 Value *
Ptr =
I.getOperand(0);
6466 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6467 DataLayout TargetDL =
DAG.getDataLayout();
6469 Align Alignment =
DAG.getEVTAlign(VT);
6480 unsigned AS =
Ptr->getType()->getScalarType()->getPointerAddressSpace();
6482 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
6483 MachinePointerInfo(AS),
6494 EVT IdxVT =
Index.getValueType();
6501 SDValue ID =
DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6504 SDValue Histogram =
DAG.getMaskedHistogram(
DAG.getVTList(MVT::Other), VT, sdl,
6508 DAG.setRoot(Histogram);
6511void SelectionDAGBuilder::visitVectorExtractLastActive(
const CallInst &
I,
6513 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6514 "Tried lowering invalid vector extract last");
6516 const DataLayout &Layout =
DAG.getDataLayout();
6520 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6524 SDValue Idx =
DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6530 EVT BoolVT =
Mask.getValueType().getScalarType();
6531 SDValue AnyActive =
DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6532 Result =
DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6539void SelectionDAGBuilder::visitIntrinsicCall(
const CallInst &
I,
6541 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6548 Flags.copyFMF(*FPOp);
6550 switch (Intrinsic) {
6553 visitTargetIntrinsic(
I, Intrinsic);
6555 case Intrinsic::vscale: {
6560 case Intrinsic::vastart: visitVAStart(
I);
return;
6561 case Intrinsic::vaend: visitVAEnd(
I);
return;
6562 case Intrinsic::vacopy: visitVACopy(
I);
return;
6563 case Intrinsic::returnaddress:
6568 case Intrinsic::addressofreturnaddress:
6573 case Intrinsic::sponentry:
6578 case Intrinsic::frameaddress:
6583 case Intrinsic::read_volatile_register:
6584 case Intrinsic::read_register: {
6585 Value *
Reg =
I.getArgOperand(0);
6591 DAG.getVTList(VT, MVT::Other), Chain,
RegName);
6596 case Intrinsic::write_register: {
6597 Value *
Reg =
I.getArgOperand(0);
6598 Value *RegValue =
I.getArgOperand(1);
6606 case Intrinsic::memcpy:
6607 case Intrinsic::memcpy_inline: {
6613 "memcpy_inline needs constant size");
6615 Align DstAlign = MCI.getDestAlign().valueOrOne();
6616 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6617 Align Alignment = std::min(DstAlign, SrcAlign);
6618 bool isVol = MCI.isVolatile();
6622 SDValue MC =
DAG.getMemcpy(Root, sdl, Dst, Src,
Size, Alignment, isVol,
6623 MCI.isForceInlined(), &
I, std::nullopt,
6624 MachinePointerInfo(
I.getArgOperand(0)),
6625 MachinePointerInfo(
I.getArgOperand(1)),
6627 updateDAGForMaybeTailCall(MC);
6630 case Intrinsic::memset:
6631 case Intrinsic::memset_inline: {
6637 "memset_inline needs constant size");
6639 Align DstAlign = MSII.getDestAlign().valueOrOne();
6640 bool isVol = MSII.isVolatile();
6643 Root, sdl, Dst, Value,
Size, DstAlign, isVol, MSII.isForceInlined(),
6644 &
I, MachinePointerInfo(
I.getArgOperand(0)),
I.getAAMetadata());
6645 updateDAGForMaybeTailCall(MC);
6648 case Intrinsic::memmove: {
6654 Align DstAlign = MMI.getDestAlign().valueOrOne();
6655 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6656 Align Alignment = std::min(DstAlign, SrcAlign);
6657 bool isVol = MMI.isVolatile();
6661 SDValue MM =
DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &
I,
6663 MachinePointerInfo(
I.getArgOperand(0)),
6664 MachinePointerInfo(
I.getArgOperand(1)),
6666 updateDAGForMaybeTailCall(MM);
6669 case Intrinsic::memcpy_element_unordered_atomic: {
6675 Type *LengthTy =
MI.getLength()->getType();
6676 unsigned ElemSz =
MI.getElementSizeInBytes();
6680 isTC, MachinePointerInfo(
MI.getRawDest()),
6681 MachinePointerInfo(
MI.getRawSource()));
6682 updateDAGForMaybeTailCall(MC);
6685 case Intrinsic::memmove_element_unordered_atomic: {
6691 Type *LengthTy =
MI.getLength()->getType();
6692 unsigned ElemSz =
MI.getElementSizeInBytes();
6696 isTC, MachinePointerInfo(
MI.getRawDest()),
6697 MachinePointerInfo(
MI.getRawSource()));
6698 updateDAGForMaybeTailCall(MC);
6701 case Intrinsic::memset_element_unordered_atomic: {
6707 Type *LengthTy =
MI.getLength()->getType();
6708 unsigned ElemSz =
MI.getElementSizeInBytes();
6712 isTC, MachinePointerInfo(
MI.getRawDest()));
6713 updateDAGForMaybeTailCall(MC);
6716 case Intrinsic::call_preallocated_setup: {
6718 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6719 SDValue Res =
DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6725 case Intrinsic::call_preallocated_arg: {
6727 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6734 ISD::PREALLOCATED_ARG, sdl,
6741 case Intrinsic::eh_typeid_for: {
6744 unsigned TypeID =
DAG.getMachineFunction().getTypeIDFor(GV);
6745 Res =
DAG.getConstant(
TypeID, sdl, MVT::i32);
6750 case Intrinsic::eh_return_i32:
6751 case Intrinsic::eh_return_i64:
6752 DAG.getMachineFunction().setCallsEHReturn(
true);
6759 case Intrinsic::eh_unwind_init:
6760 DAG.getMachineFunction().setCallsUnwindInit(
true);
6762 case Intrinsic::eh_dwarf_cfa:
6767 case Intrinsic::eh_sjlj_callsite: {
6769 assert(
FuncInfo.getCurrentCallSite() == 0 &&
"Overlapping call sites!");
6774 case Intrinsic::eh_sjlj_functioncontext: {
6776 MachineFrameInfo &MFI =
DAG.getMachineFunction().getFrameInfo();
6779 int FI =
FuncInfo.StaticAllocaMap[FnCtx];
6783 case Intrinsic::eh_sjlj_setjmp: {
6788 DAG.getVTList(MVT::i32, MVT::Other),
Ops);
6790 DAG.setRoot(
Op.getValue(1));
6793 case Intrinsic::eh_sjlj_longjmp:
6797 case Intrinsic::eh_sjlj_setup_dispatch:
6801 case Intrinsic::masked_gather:
6802 visitMaskedGather(
I);
6804 case Intrinsic::masked_load:
6807 case Intrinsic::masked_scatter:
6808 visitMaskedScatter(
I);
6810 case Intrinsic::masked_store:
6811 visitMaskedStore(
I);
6813 case Intrinsic::masked_expandload:
6814 visitMaskedLoad(
I,
true );
6816 case Intrinsic::masked_compressstore:
6817 visitMaskedStore(
I,
true );
6819 case Intrinsic::powi:
6823 case Intrinsic::log:
6826 case Intrinsic::log2:
6830 case Intrinsic::log10:
6834 case Intrinsic::exp:
6837 case Intrinsic::exp2:
6841 case Intrinsic::pow:
6845 case Intrinsic::sqrt:
6846 case Intrinsic::fabs:
6847 case Intrinsic::sin:
6848 case Intrinsic::cos:
6849 case Intrinsic::tan:
6850 case Intrinsic::asin:
6851 case Intrinsic::acos:
6852 case Intrinsic::atan:
6853 case Intrinsic::sinh:
6854 case Intrinsic::cosh:
6855 case Intrinsic::tanh:
6856 case Intrinsic::exp10:
6857 case Intrinsic::floor:
6858 case Intrinsic::ceil:
6859 case Intrinsic::trunc:
6860 case Intrinsic::rint:
6861 case Intrinsic::nearbyint:
6862 case Intrinsic::round:
6863 case Intrinsic::roundeven:
6864 case Intrinsic::canonicalize: {
6867 switch (Intrinsic) {
6869 case Intrinsic::sqrt: Opcode = ISD::FSQRT;
break;
6870 case Intrinsic::fabs: Opcode = ISD::FABS;
break;
6871 case Intrinsic::sin: Opcode = ISD::FSIN;
break;
6872 case Intrinsic::cos: Opcode = ISD::FCOS;
break;
6873 case Intrinsic::tan: Opcode = ISD::FTAN;
break;
6874 case Intrinsic::asin: Opcode = ISD::FASIN;
break;
6875 case Intrinsic::acos: Opcode = ISD::FACOS;
break;
6876 case Intrinsic::atan: Opcode = ISD::FATAN;
break;
6877 case Intrinsic::sinh: Opcode = ISD::FSINH;
break;
6878 case Intrinsic::cosh: Opcode = ISD::FCOSH;
break;
6879 case Intrinsic::tanh: Opcode = ISD::FTANH;
break;
6880 case Intrinsic::exp10: Opcode = ISD::FEXP10;
break;
6881 case Intrinsic::floor: Opcode = ISD::FFLOOR;
break;
6882 case Intrinsic::ceil: Opcode = ISD::FCEIL;
break;
6883 case Intrinsic::trunc: Opcode = ISD::FTRUNC;
break;
6884 case Intrinsic::rint: Opcode = ISD::FRINT;
break;
6885 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT;
break;
6886 case Intrinsic::round: Opcode = ISD::FROUND;
break;
6887 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN;
break;
6893 getValue(
I.getArgOperand(0)).getValueType(),
6897 case Intrinsic::atan2:
6899 getValue(
I.getArgOperand(0)).getValueType(),
6903 case Intrinsic::lround:
6904 case Intrinsic::llround:
6905 case Intrinsic::lrint:
6906 case Intrinsic::llrint: {
6909 switch (Intrinsic) {
6911 case Intrinsic::lround: Opcode = ISD::LROUND;
break;
6912 case Intrinsic::llround: Opcode = ISD::LLROUND;
break;
6913 case Intrinsic::lrint: Opcode = ISD::LRINT;
break;
6914 case Intrinsic::llrint: Opcode = ISD::LLRINT;
break;
6923 case Intrinsic::minnum:
6925 getValue(
I.getArgOperand(0)).getValueType(),
6929 case Intrinsic::maxnum:
6931 getValue(
I.getArgOperand(0)).getValueType(),
6935 case Intrinsic::minimum:
6937 getValue(
I.getArgOperand(0)).getValueType(),
6941 case Intrinsic::maximum:
6943 getValue(
I.getArgOperand(0)).getValueType(),
6947 case Intrinsic::minimumnum:
6949 getValue(
I.getArgOperand(0)).getValueType(),
6953 case Intrinsic::maximumnum:
6955 getValue(
I.getArgOperand(0)).getValueType(),
6959 case Intrinsic::copysign:
6961 getValue(
I.getArgOperand(0)).getValueType(),
6965 case Intrinsic::ldexp:
6967 getValue(
I.getArgOperand(0)).getValueType(),
6971 case Intrinsic::modf:
6972 case Intrinsic::sincos:
6973 case Intrinsic::sincospi:
6974 case Intrinsic::frexp: {
6976 switch (Intrinsic) {
6979 case Intrinsic::sincos:
6980 Opcode = ISD::FSINCOS;
6982 case Intrinsic::sincospi:
6983 Opcode = ISD::FSINCOSPI;
6985 case Intrinsic::modf:
6986 Opcode = ISD::FMODF;
6988 case Intrinsic::frexp:
6989 Opcode = ISD::FFREXP;
6994 SDVTList VTs =
DAG.getVTList(ValueVTs);
6996 &
I,
DAG.getNode(Opcode, sdl, VTs,
getValue(
I.getArgOperand(0)), Flags));
6999 case Intrinsic::arithmetic_fence: {
7001 getValue(
I.getArgOperand(0)).getValueType(),
7005 case Intrinsic::fma:
7011#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7012 case Intrinsic::INTRINSIC:
7013#include "llvm/IR/ConstrainedOps.def"
7016#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7017#include "llvm/IR/VPIntrinsics.def"
7020 case Intrinsic::fptrunc_round: {
7024 std::optional<RoundingMode> RoundMode =
7032 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
7037 DAG.getTargetConstant((
int)*RoundMode, sdl, MVT::i32));
7042 case Intrinsic::fmuladd: {
7047 getValue(
I.getArgOperand(0)).getValueType(),
7054 getValue(
I.getArgOperand(0)).getValueType(),
7070 case Intrinsic::convert_to_fp16:
7074 DAG.getTargetConstant(0, sdl,
7077 case Intrinsic::convert_from_fp16:
7080 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7083 case Intrinsic::fptosi_sat: {
7090 case Intrinsic::fptoui_sat: {
7097 case Intrinsic::set_rounding:
7098 Res =
DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7103 case Intrinsic::is_fpclass: {
7104 const DataLayout DLayout =
DAG.getDataLayout();
7106 EVT ArgVT = TLI.
getValueType(DLayout,
I.getArgOperand(0)->getType());
7109 MachineFunction &MF =
DAG.getMachineFunction();
7113 Flags.setNoFPExcept(
7114 !
F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7130 case Intrinsic::get_fpenv: {
7131 const DataLayout DLayout =
DAG.getDataLayout();
7133 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7139 ISD::GET_FPENV, sdl,
7148 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7151 Chain =
DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7152 Res =
DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7158 case Intrinsic::set_fpenv: {
7159 const DataLayout DLayout =
DAG.getDataLayout();
7162 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7167 Chain =
DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7175 Chain =
DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7177 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7180 Chain =
DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7185 case Intrinsic::reset_fpenv:
7186 DAG.setRoot(
DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other,
getRoot()));
7188 case Intrinsic::get_fpmode:
7190 ISD::GET_FPMODE, sdl,
7197 case Intrinsic::set_fpmode:
7198 Res =
DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {
DAG.getRoot()},
7202 case Intrinsic::reset_fpmode: {
7203 Res =
DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other,
getRoot());
7207 case Intrinsic::pcmarker: {
7209 DAG.setRoot(
DAG.getNode(ISD::PCMARKER, sdl, MVT::Other,
getRoot(), Tmp));
7212 case Intrinsic::readcyclecounter: {
7214 Res =
DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7215 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7220 case Intrinsic::readsteadycounter: {
7222 Res =
DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7223 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7228 case Intrinsic::bitreverse:
7230 getValue(
I.getArgOperand(0)).getValueType(),
7233 case Intrinsic::bswap:
7235 getValue(
I.getArgOperand(0)).getValueType(),
7238 case Intrinsic::cttz: {
7246 case Intrinsic::ctlz: {
7254 case Intrinsic::ctpop: {
7260 case Intrinsic::fshl:
7261 case Intrinsic::fshr: {
7262 bool IsFSHL =
Intrinsic == Intrinsic::fshl;
7266 EVT VT =
X.getValueType();
7277 case Intrinsic::sadd_sat: {
7283 case Intrinsic::uadd_sat: {
7289 case Intrinsic::ssub_sat: {
7295 case Intrinsic::usub_sat: {
7301 case Intrinsic::sshl_sat: {
7307 case Intrinsic::ushl_sat: {
7313 case Intrinsic::smul_fix:
7314 case Intrinsic::umul_fix:
7315 case Intrinsic::smul_fix_sat:
7316 case Intrinsic::umul_fix_sat: {
7324 case Intrinsic::sdiv_fix:
7325 case Intrinsic::udiv_fix:
7326 case Intrinsic::sdiv_fix_sat:
7327 case Intrinsic::udiv_fix_sat: {
7332 Op1, Op2, Op3,
DAG, TLI));
7335 case Intrinsic::smax: {
7341 case Intrinsic::smin: {
7347 case Intrinsic::umax: {
7353 case Intrinsic::umin: {
7359 case Intrinsic::abs: {
7365 case Intrinsic::scmp: {
7372 case Intrinsic::ucmp: {
7379 case Intrinsic::stacksave: {
7382 Res =
DAG.getNode(ISD::STACKSAVE, sdl,
DAG.getVTList(VT, MVT::Other),
Op);
7387 case Intrinsic::stackrestore:
7389 DAG.setRoot(
DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other,
getRoot(), Res));
7391 case Intrinsic::get_dynamic_area_offset: {
7394 Res =
DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl,
DAG.getVTList(ResTy),
7400 case Intrinsic::stackguard: {
7401 MachineFunction &MF =
DAG.getMachineFunction();
7407 Res =
DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7411 LLVMContext &Ctx = *
DAG.getContext();
7412 Ctx.
diagnose(DiagnosticInfoGeneric(
"unable to lower stackguard"));
7419 MachinePointerInfo(
Global, 0), Align,
7428 case Intrinsic::stackprotector: {
7430 MachineFunction &MF =
DAG.getMachineFunction();
7450 Chain, sdl, Src, FIN,
7457 case Intrinsic::objectsize:
7460 case Intrinsic::is_constant:
7463 case Intrinsic::annotation:
7464 case Intrinsic::ptr_annotation:
7465 case Intrinsic::launder_invariant_group:
7466 case Intrinsic::strip_invariant_group:
7471 case Intrinsic::type_test:
7472 case Intrinsic::public_type_test:
7476 case Intrinsic::assume:
7477 case Intrinsic::experimental_noalias_scope_decl:
7478 case Intrinsic::var_annotation:
7479 case Intrinsic::sideeffect:
7484 case Intrinsic::codeview_annotation: {
7486 MachineFunction &MF =
DAG.getMachineFunction();
7490 Res =
DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl,
getRoot(), Label);
7495 case Intrinsic::init_trampoline: {
7503 Ops[4] =
DAG.getSrcValue(
I.getArgOperand(0));
7506 Res =
DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other,
Ops);
7511 case Intrinsic::adjust_trampoline:
7516 case Intrinsic::gcroot: {
7517 assert(
DAG.getMachineFunction().getFunction().hasGC() &&
7518 "only valid in functions with gc specified, enforced by Verifier");
7520 const Value *Alloca =
I.getArgOperand(0)->stripPointerCasts();
7527 case Intrinsic::gcread:
7528 case Intrinsic::gcwrite:
7530 case Intrinsic::get_rounding:
7536 case Intrinsic::expect:
7537 case Intrinsic::expect_with_probability:
7543 case Intrinsic::ubsantrap:
7544 case Intrinsic::debugtrap:
7545 case Intrinsic::trap: {
7546 StringRef TrapFuncName =
7547 I.getAttributes().getFnAttr(
"trap-func-name").getValueAsString();
7548 if (TrapFuncName.
empty()) {
7549 switch (Intrinsic) {
7550 case Intrinsic::trap:
7551 DAG.setRoot(
DAG.getNode(ISD::TRAP, sdl, MVT::Other,
getRoot()));
7553 case Intrinsic::debugtrap:
7554 DAG.setRoot(
DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other,
getRoot()));
7556 case Intrinsic::ubsantrap:
7558 ISD::UBSANTRAP, sdl, MVT::Other,
getRoot(),
7559 DAG.getTargetConstant(
7565 DAG.addNoMergeSiteInfo(
DAG.getRoot().getNode(),
7566 I.hasFnAttr(Attribute::NoMerge));
7570 if (Intrinsic == Intrinsic::ubsantrap) {
7571 Value *Arg =
I.getArgOperand(0);
7575 TargetLowering::CallLoweringInfo CLI(
DAG);
7576 CLI.setDebugLoc(sdl).setChain(
getRoot()).setLibCallee(
7578 DAG.getExternalSymbol(TrapFuncName.
data(),
7581 CLI.NoMerge =
I.hasFnAttr(Attribute::NoMerge);
7587 case Intrinsic::allow_runtime_check:
7588 case Intrinsic::allow_ubsan_check:
7592 case Intrinsic::uadd_with_overflow:
7593 case Intrinsic::sadd_with_overflow:
7594 case Intrinsic::usub_with_overflow:
7595 case Intrinsic::ssub_with_overflow:
7596 case Intrinsic::umul_with_overflow:
7597 case Intrinsic::smul_with_overflow: {
7599 switch (Intrinsic) {
7601 case Intrinsic::uadd_with_overflow:
Op =
ISD::UADDO;
break;
7602 case Intrinsic::sadd_with_overflow:
Op =
ISD::SADDO;
break;
7603 case Intrinsic::usub_with_overflow:
Op =
ISD::USUBO;
break;
7604 case Intrinsic::ssub_with_overflow:
Op =
ISD::SSUBO;
break;
7605 case Intrinsic::umul_with_overflow:
Op =
ISD::UMULO;
break;
7606 case Intrinsic::smul_with_overflow:
Op =
ISD::SMULO;
break;
7612 EVT OverflowVT = MVT::i1;
7617 SDVTList VTs =
DAG.getVTList(ResultVT, OverflowVT);
7621 case Intrinsic::prefetch: {
7634 ISD::PREFETCH, sdl,
DAG.getVTList(MVT::Other),
Ops,
7636 std::nullopt, Flags);
7642 DAG.setRoot(Result);
7645 case Intrinsic::lifetime_start:
7646 case Intrinsic::lifetime_end: {
7647 bool IsStart = (
Intrinsic == Intrinsic::lifetime_start);
7653 if (!LifetimeObject)
7658 auto SI =
FuncInfo.StaticAllocaMap.find(LifetimeObject);
7659 if (SI ==
FuncInfo.StaticAllocaMap.end())
7663 Res =
DAG.getLifetimeNode(IsStart, sdl,
getRoot(), FrameIndex);
7667 case Intrinsic::pseudoprobe: {
7675 case Intrinsic::invariant_start:
7680 case Intrinsic::invariant_end:
7683 case Intrinsic::clear_cache: {
7688 {InputChain, StartVal, EndVal});
7693 case Intrinsic::donothing:
7694 case Intrinsic::seh_try_begin:
7695 case Intrinsic::seh_scope_begin:
7696 case Intrinsic::seh_try_end:
7697 case Intrinsic::seh_scope_end:
7700 case Intrinsic::experimental_stackmap:
7703 case Intrinsic::experimental_patchpoint_void:
7704 case Intrinsic::experimental_patchpoint:
7707 case Intrinsic::experimental_gc_statepoint:
7710 case Intrinsic::experimental_gc_result:
7713 case Intrinsic::experimental_gc_relocate:
7716 case Intrinsic::instrprof_cover:
7718 case Intrinsic::instrprof_increment:
7720 case Intrinsic::instrprof_timestamp:
7722 case Intrinsic::instrprof_value_profile:
7724 case Intrinsic::instrprof_mcdc_parameters:
7726 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7728 case Intrinsic::localescape: {
7729 MachineFunction &MF =
DAG.getMachineFunction();
7730 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
7734 for (
unsigned Idx = 0,
E =
I.arg_size(); Idx <
E; ++Idx) {
7740 "can only escape static allocas");
7745 TII->get(TargetOpcode::LOCAL_ESCAPE))
7753 case Intrinsic::localrecover: {
7755 MachineFunction &MF =
DAG.getMachineFunction();
7761 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7765 Value *
FP =
I.getArgOperand(1);
7771 SDValue OffsetSym =
DAG.getMCSymbol(FrameAllocSym, PtrVT);
7776 SDValue Add =
DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7782 case Intrinsic::fake_use: {
7783 Value *
V =
I.getArgOperand(0);
7788 auto FakeUseValue = [&]() ->
SDValue {
7802 if (!FakeUseValue || FakeUseValue.isUndef())
7805 Ops[1] = FakeUseValue;
7810 DAG.setRoot(
DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other,
Ops));
7814 case Intrinsic::reloc_none: {
7819 DAG.getTargetExternalSymbol(
7821 DAG.setRoot(
DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other,
Ops));
7825 case Intrinsic::eh_exceptionpointer:
7826 case Intrinsic::eh_exceptioncode: {
7832 SDValue N =
DAG.getCopyFromReg(
DAG.getEntryNode(), sdl, VReg, PtrVT);
7833 if (Intrinsic == Intrinsic::eh_exceptioncode)
7834 N =
DAG.getZExtOrTrunc(
N, sdl, MVT::i32);
7838 case Intrinsic::xray_customevent: {
7841 const auto &Triple =
DAG.getTarget().getTargetTriple();
7850 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7852 Ops.push_back(LogEntryVal);
7853 Ops.push_back(StrSizeVal);
7854 Ops.push_back(Chain);
7860 MachineSDNode *MN =
DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7863 DAG.setRoot(patchableNode);
7867 case Intrinsic::xray_typedevent: {
7870 const auto &Triple =
DAG.getTarget().getTargetTriple();
7882 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7884 Ops.push_back(LogTypeId);
7885 Ops.push_back(LogEntryVal);
7886 Ops.push_back(StrSizeVal);
7887 Ops.push_back(Chain);
7893 MachineSDNode *MN =
DAG.getMachineNode(
7894 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys,
Ops);
7896 DAG.setRoot(patchableNode);
7900 case Intrinsic::experimental_deoptimize:
7903 case Intrinsic::stepvector:
7906 case Intrinsic::vector_reduce_fadd:
7907 case Intrinsic::vector_reduce_fmul:
7908 case Intrinsic::vector_reduce_add:
7909 case Intrinsic::vector_reduce_mul:
7910 case Intrinsic::vector_reduce_and:
7911 case Intrinsic::vector_reduce_or:
7912 case Intrinsic::vector_reduce_xor:
7913 case Intrinsic::vector_reduce_smax:
7914 case Intrinsic::vector_reduce_smin:
7915 case Intrinsic::vector_reduce_umax:
7916 case Intrinsic::vector_reduce_umin:
7917 case Intrinsic::vector_reduce_fmax:
7918 case Intrinsic::vector_reduce_fmin:
7919 case Intrinsic::vector_reduce_fmaximum:
7920 case Intrinsic::vector_reduce_fminimum:
7921 visitVectorReduce(
I, Intrinsic);
7924 case Intrinsic::icall_branch_funnel: {
7930 I.getArgOperand(1),
Offset,
DAG.getDataLayout()));
7933 "llvm.icall.branch.funnel operand must be a GlobalValue");
7934 Ops.push_back(
DAG.getTargetGlobalAddress(
Base, sdl, MVT::i64, 0));
7936 struct BranchFunnelTarget {
7942 for (
unsigned Op = 1,
N =
I.arg_size();
Op !=
N;
Op += 2) {
7945 if (ElemBase !=
Base)
7947 "to the same GlobalValue");
7953 "llvm.icall.branch.funnel operand must be a GlobalValue");
7959 [](
const BranchFunnelTarget &
T1,
const BranchFunnelTarget &T2) {
7960 return T1.Offset < T2.Offset;
7963 for (
auto &
T : Targets) {
7964 Ops.push_back(
DAG.getTargetConstant(
T.Offset, sdl, MVT::i32));
7965 Ops.push_back(
T.Target);
7968 Ops.push_back(
DAG.getRoot());
7969 SDValue N(
DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7978 case Intrinsic::wasm_landingpad_index:
7984 case Intrinsic::aarch64_settag:
7985 case Intrinsic::aarch64_settag_zero: {
7986 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
7987 bool ZeroMemory =
Intrinsic == Intrinsic::aarch64_settag_zero;
7990 getValue(
I.getArgOperand(1)), MachinePointerInfo(
I.getArgOperand(0)),
7996 case Intrinsic::amdgcn_cs_chain: {
8001 Type *RetTy =
I.getType();
8011 for (
unsigned Idx : {2, 3, 1}) {
8012 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
8014 Arg.setAttributes(&
I, Idx);
8015 Args.push_back(Arg);
8018 assert(Args[0].IsInReg &&
"SGPR args should be marked inreg");
8019 assert(!Args[1].IsInReg &&
"VGPR args should not be marked inreg");
8020 Args[2].IsInReg =
true;
8023 for (
unsigned Idx = 4; Idx <
I.arg_size(); ++Idx) {
8024 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
8026 Arg.setAttributes(&
I, Idx);
8027 Args.push_back(Arg);
8030 TargetLowering::CallLoweringInfo CLI(
DAG);
8033 .setCallee(CC, RetTy, Callee, std::move(Args))
8036 .setConvergent(
I.isConvergent());
8038 std::pair<SDValue, SDValue>
Result =
8042 "Should've lowered as tail call");
8047 case Intrinsic::amdgcn_call_whole_wave: {
8049 bool isTailCall =
I.isTailCall();
8052 for (
unsigned Idx = 1; Idx <
I.arg_size(); ++Idx) {
8053 TargetLowering::ArgListEntry Arg(
getValue(
I.getArgOperand(Idx)),
8054 I.getArgOperand(Idx)->getType());
8055 Arg.setAttributes(&
I, Idx);
8062 Args.push_back(Arg);
8067 auto *Token = Bundle->Inputs[0].get();
8068 ConvControlToken =
getValue(Token);
8071 TargetLowering::CallLoweringInfo CLI(
DAG);
8075 getValue(
I.getArgOperand(0)), std::move(Args))
8079 .setConvergent(
I.isConvergent())
8080 .setConvergenceControlToken(ConvControlToken);
8083 std::pair<SDValue, SDValue>
Result =
8086 if (
Result.first.getNode())
8090 case Intrinsic::ptrmask: {
8106 auto HighOnes =
DAG.getNode(
8107 ISD::SHL, sdl, PtrVT,
DAG.getAllOnesConstant(sdl, PtrVT),
8108 DAG.getShiftAmountConstant(
Mask.getValueType().getFixedSizeInBits(),
8111 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8112 }
else if (
Mask.getValueType() != PtrVT)
8113 Mask =
DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8119 case Intrinsic::threadlocal_address: {
8123 case Intrinsic::get_active_lane_mask: {
8127 EVT ElementVT =
Index.getValueType();
8130 setValue(&
I,
DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8138 SDValue VectorIndex =
DAG.getSplat(VecTy, sdl, Index);
8139 SDValue VectorTripCount =
DAG.getSplat(VecTy, sdl, TripCount);
8140 SDValue VectorStep =
DAG.getStepVector(sdl, VecTy);
8143 SDValue SetCC =
DAG.getSetCC(sdl, CCVT, VectorInduction,
8148 case Intrinsic::experimental_get_vector_length: {
8150 "Expected positive VF");
8155 EVT CountVT =
Count.getValueType();
8158 visitTargetIntrinsic(
I, Intrinsic);
8167 if (CountVT.
bitsLT(VT)) {
8172 SDValue MaxEVL =
DAG.getElementCount(sdl, CountVT,
8182 case Intrinsic::vector_partial_reduce_add: {
8190 case Intrinsic::vector_partial_reduce_fadd: {
8194 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.
getValueType(), Acc,
8198 case Intrinsic::experimental_cttz_elts: {
8201 EVT OpVT =
Op.getValueType();
8204 visitTargetIntrinsic(
I, Intrinsic);
8220 ConstantRange VScaleRange(1,
true);
8249 case Intrinsic::vector_insert: {
8257 if (
Index.getValueType() != VectorIdxTy)
8258 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8265 case Intrinsic::vector_extract: {
8273 if (
Index.getValueType() != VectorIdxTy)
8274 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8280 case Intrinsic::experimental_vector_match: {
8286 EVT ResVT =
Mask.getValueType();
8292 visitTargetIntrinsic(
I, Intrinsic);
8298 for (
unsigned i = 0; i < SearchSize; ++i) {
8301 DAG.getVectorIdxConstant(i, sdl));
8310 case Intrinsic::vector_reverse:
8311 visitVectorReverse(
I);
8313 case Intrinsic::vector_splice:
8314 visitVectorSplice(
I);
8316 case Intrinsic::callbr_landingpad:
8317 visitCallBrLandingPad(
I);
8319 case Intrinsic::vector_interleave2:
8320 visitVectorInterleave(
I, 2);
8322 case Intrinsic::vector_interleave3:
8323 visitVectorInterleave(
I, 3);
8325 case Intrinsic::vector_interleave4:
8326 visitVectorInterleave(
I, 4);
8328 case Intrinsic::vector_interleave5:
8329 visitVectorInterleave(
I, 5);
8331 case Intrinsic::vector_interleave6:
8332 visitVectorInterleave(
I, 6);
8334 case Intrinsic::vector_interleave7:
8335 visitVectorInterleave(
I, 7);
8337 case Intrinsic::vector_interleave8:
8338 visitVectorInterleave(
I, 8);
8340 case Intrinsic::vector_deinterleave2:
8341 visitVectorDeinterleave(
I, 2);
8343 case Intrinsic::vector_deinterleave3:
8344 visitVectorDeinterleave(
I, 3);
8346 case Intrinsic::vector_deinterleave4:
8347 visitVectorDeinterleave(
I, 4);
8349 case Intrinsic::vector_deinterleave5:
8350 visitVectorDeinterleave(
I, 5);
8352 case Intrinsic::vector_deinterleave6:
8353 visitVectorDeinterleave(
I, 6);
8355 case Intrinsic::vector_deinterleave7:
8356 visitVectorDeinterleave(
I, 7);
8358 case Intrinsic::vector_deinterleave8:
8359 visitVectorDeinterleave(
I, 8);
8361 case Intrinsic::experimental_vector_compress:
8363 getValue(
I.getArgOperand(0)).getValueType(),
8368 case Intrinsic::experimental_convergence_anchor:
8369 case Intrinsic::experimental_convergence_entry:
8370 case Intrinsic::experimental_convergence_loop:
8371 visitConvergenceControl(
I, Intrinsic);
8373 case Intrinsic::experimental_vector_histogram_add: {
8374 visitVectorHistogram(
I, Intrinsic);
8377 case Intrinsic::experimental_vector_extract_last_active: {
8378 visitVectorExtractLastActive(
I, Intrinsic);
8381 case Intrinsic::loop_dependence_war_mask:
8387 case Intrinsic::loop_dependence_raw_mask:
8396void SelectionDAGBuilder::pushFPOpOutChain(
SDValue Result,
8412 PendingConstrainedFP.push_back(OutChain);
8415 PendingConstrainedFPStrict.push_back(OutChain);
8420void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8434 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8436 SDVTList VTs =
DAG.getVTList(VT, MVT::Other);
8440 Flags.setNoFPExcept(
true);
8443 Flags.copyFMF(*FPOp);
8448#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8449 case Intrinsic::INTRINSIC: \
8450 Opcode = ISD::STRICT_##DAGN; \
8452#include "llvm/IR/ConstrainedOps.def"
8453 case Intrinsic::experimental_constrained_fmuladd: {
8460 pushFPOpOutChain(
Mul, EB);
8483 if (TM.Options.NoNaNsFPMath)
8491 pushFPOpOutChain(Result, EB);
8498 std::optional<unsigned> ResOPC;
8500 case Intrinsic::vp_ctlz: {
8502 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8505 case Intrinsic::vp_cttz: {
8507 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8510 case Intrinsic::vp_cttz_elts: {
8512 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8515#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8516 case Intrinsic::VPID: \
8517 ResOPC = ISD::VPSD; \
8519#include "llvm/IR/VPIntrinsics.def"
8524 "Inconsistency: no SDNode available for this VPIntrinsic!");
8526 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8527 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8529 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8530 : ISD::VP_REDUCE_FMUL;
8536void SelectionDAGBuilder::visitVPLoad(
8548 Alignment =
DAG.getEVTAlign(VT);
8551 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8552 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8555 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8556 MachinePointerInfo(PtrOperand), MMOFlags,
8558 LD =
DAG.getLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8565void SelectionDAGBuilder::visitVPLoadFF(
8568 assert(OpValues.
size() == 3 &&
"Unexpected number of operands");
8578 Alignment =
DAG.getEVTAlign(VT);
8581 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8582 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8585 LD =
DAG.getLoadFFVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8590 setValue(&VPIntrin,
DAG.getMergeValues({LD.getValue(0), Trunc},
DL));
8593void SelectionDAGBuilder::visitVPGather(
8597 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8609 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8611 *Alignment, AAInfo, Ranges);
8621 EVT IdxVT =
Index.getValueType();
8627 LD =
DAG.getGatherVP(
8628 DAG.getVTList(VT, MVT::Other), VT,
DL,
8629 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8635void SelectionDAGBuilder::visitVPStore(
8639 EVT VT = OpValues[0].getValueType();
8644 Alignment =
DAG.getEVTAlign(VT);
8647 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8650 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8651 MachinePointerInfo(PtrOperand), MMOFlags,
8660void SelectionDAGBuilder::visitVPScatter(
8663 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8665 EVT VT = OpValues[0].getValueType();
8675 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8677 *Alignment, AAInfo);
8687 EVT IdxVT =
Index.getValueType();
8693 ST =
DAG.getScatterVP(
DAG.getVTList(MVT::Other), VT,
DL,
8694 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8695 OpValues[2], OpValues[3]},
8701void SelectionDAGBuilder::visitVPStridedLoad(
8713 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8715 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8718 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8720 *Alignment, AAInfo, Ranges);
8722 SDValue LD =
DAG.getStridedLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1],
8723 OpValues[2], OpValues[3], MMO,
8731void SelectionDAGBuilder::visitVPStridedStore(
8735 EVT VT = OpValues[0].getValueType();
8741 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8744 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8746 *Alignment, AAInfo);
8750 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8758void SelectionDAGBuilder::visitVPCmp(
const VPCmpIntrinsic &VPIntrin) {
8759 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8770 if (TM.Options.NoNaNsFPMath)
8783 "Unexpected target EVL type");
8786 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8789 DAG.getSetCCVP(
DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8792void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8800 return visitVPCmp(*CmpI);
8803 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8805 SDVTList VTs =
DAG.getVTList(ValueVTs);
8811 "Unexpected target EVL type");
8815 for (
unsigned I = 0;
I < VPIntrin.
arg_size(); ++
I) {
8817 if (
I == EVLParamPos)
8824 SDNodeFlags SDFlags;
8832 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8834 case ISD::VP_LOAD_FF:
8835 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8837 case ISD::VP_GATHER:
8838 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8840 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8841 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8844 visitVPStore(VPIntrin, OpValues);
8846 case ISD::VP_SCATTER:
8847 visitVPScatter(VPIntrin, OpValues);
8849 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8850 visitVPStridedStore(VPIntrin, OpValues);
8852 case ISD::VP_FMULADD: {
8853 assert(OpValues.
size() == 5 &&
"Unexpected number of operands");
8854 SDNodeFlags SDFlags;
8859 setValue(&VPIntrin,
DAG.getNode(ISD::VP_FMA,
DL, VTs, OpValues, SDFlags));
8862 ISD::VP_FMUL,
DL, VTs,
8863 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8865 DAG.getNode(ISD::VP_FADD,
DL, VTs,
8866 {
Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8871 case ISD::VP_IS_FPCLASS: {
8872 const DataLayout DLayout =
DAG.getDataLayout();
8874 auto Constant = OpValues[1]->getAsZExtVal();
8877 {OpValues[0],
Check, OpValues[2], OpValues[3]});
8881 case ISD::VP_INTTOPTR: {
8892 case ISD::VP_PTRTOINT: {
8894 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8907 case ISD::VP_CTLZ_ZERO_UNDEF:
8909 case ISD::VP_CTTZ_ZERO_UNDEF:
8910 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8911 case ISD::VP_CTTZ_ELTS: {
8913 DAG.getNode(Opcode,
DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8923 MachineFunction &MF =
DAG.getMachineFunction();
8931 unsigned CallSiteIndex =
FuncInfo.getCurrentCallSite();
8932 if (CallSiteIndex) {
8946 assert(BeginLabel &&
"BeginLabel should've been set");
8948 MachineFunction &MF =
DAG.getMachineFunction();
8960 assert(
II &&
"II should've been set");
8971std::pair<SDValue, SDValue>
8985 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
8988 "Non-null chain expected with non-tail call!");
8989 assert((Result.second.getNode() || !Result.first.getNode()) &&
8990 "Null value expected with tail call!");
8992 if (!Result.second.getNode()) {
8999 PendingExports.clear();
9001 DAG.setRoot(Result.second);
9019 if (!isMustTailCall &&
9020 Caller->getFnAttribute(
"disable-tail-calls").getValueAsBool())
9026 if (
DAG.getTargetLoweringInfo().supportSwiftError() &&
9027 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9036 bool isTailCall,
bool isMustTailCall,
9039 auto &
DL =
DAG.getDataLayout();
9046 const Value *SwiftErrorVal =
nullptr;
9053 const Value *V = *
I;
9056 if (V->getType()->isEmptyTy())
9061 Entry.setAttributes(&CB,
I - CB.
arg_begin());
9073 Args.push_back(Entry);
9084 Value *V = Bundle->Inputs[0];
9086 Entry.IsCFGuardTarget =
true;
9087 Args.push_back(Entry);
9100 "Target doesn't support calls with kcfi operand bundles.");
9108 auto *Token = Bundle->Inputs[0].get();
9109 ConvControlToken =
getValue(Token);
9115 .
setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9127 "This target doesn't support calls with ptrauth operand bundles.");
9131 std::pair<SDValue, SDValue> Result =
lowerInvokable(CLI, EHPadBB);
9133 if (Result.first.getNode()) {
9147 DAG.setRoot(CopyNode);
9163 LoadTy, Builder.DAG.getDataLayout()))
9164 return Builder.getValue(LoadCst);
9170 bool ConstantMemory =
false;
9173 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9174 Root = Builder.DAG.getEntryNode();
9175 ConstantMemory =
true;
9178 Root = Builder.DAG.getRoot();
9183 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
Ptr,
9186 if (!ConstantMemory)
9187 Builder.PendingLoads.push_back(LoadVal.
getValue(1));
9193void SelectionDAGBuilder::processIntegerCallValue(
const Instruction &
I,
9196 EVT VT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9207bool SelectionDAGBuilder::visitMemCmpBCmpCall(
const CallInst &
I) {
9208 const Value *
LHS =
I.getArgOperand(0), *
RHS =
I.getArgOperand(1);
9209 const Value *
Size =
I.getArgOperand(2);
9212 EVT CallVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9218 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9222 if (Res.first.getNode()) {
9223 processIntegerCallValue(
I, Res.first,
true);
9237 auto hasFastLoadsAndCompare = [&](
unsigned NumBits) {
9238 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
9260 switch (NumBitsToCompare) {
9272 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9285 LoadL =
DAG.getBitcast(CmpVT, LoadL);
9286 LoadR =
DAG.getBitcast(CmpVT, LoadR);
9290 processIntegerCallValue(
I, Cmp,
false);
9299bool SelectionDAGBuilder::visitMemChrCall(
const CallInst &
I) {
9300 const Value *Src =
I.getArgOperand(0);
9301 const Value *
Char =
I.getArgOperand(1);
9302 const Value *
Length =
I.getArgOperand(2);
9304 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9305 std::pair<SDValue, SDValue> Res =
9308 MachinePointerInfo(Src));
9309 if (Res.first.getNode()) {
9323bool SelectionDAGBuilder::visitMemPCpyCall(
const CallInst &
I) {
9328 Align DstAlign =
DAG.InferPtrAlign(Dst).valueOrOne();
9329 Align SrcAlign =
DAG.InferPtrAlign(Src).valueOrOne();
9331 Align Alignment = std::min(DstAlign, SrcAlign);
9340 Root, sdl, Dst, Src,
Size, Alignment,
false,
false,
nullptr,
9341 std::nullopt, MachinePointerInfo(
I.getArgOperand(0)),
9342 MachinePointerInfo(
I.getArgOperand(1)),
I.getAAMetadata());
9344 "** memcpy should not be lowered as TailCall in mempcpy context **");
9348 Size =
DAG.getSExtOrTrunc(
Size, sdl, Dst.getValueType());
9361bool SelectionDAGBuilder::visitStrCpyCall(
const CallInst &
I,
bool isStpcpy) {
9362 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9364 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9365 std::pair<SDValue, SDValue> Res =
9368 MachinePointerInfo(Arg0),
9369 MachinePointerInfo(Arg1), isStpcpy);
9370 if (Res.first.getNode()) {
9372 DAG.setRoot(Res.second);
9384bool SelectionDAGBuilder::visitStrCmpCall(
const CallInst &
I) {
9385 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9387 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9388 std::pair<SDValue, SDValue> Res =
9391 MachinePointerInfo(Arg0),
9392 MachinePointerInfo(Arg1));
9393 if (Res.first.getNode()) {
9394 processIntegerCallValue(
I, Res.first,
true);
9407bool SelectionDAGBuilder::visitStrLenCall(
const CallInst &
I) {
9408 const Value *Arg0 =
I.getArgOperand(0);
9410 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9413 if (Res.first.getNode()) {
9414 processIntegerCallValue(
I, Res.first,
false);
9427bool SelectionDAGBuilder::visitStrNLenCall(
const CallInst &
I) {
9428 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9430 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9431 std::pair<SDValue, SDValue> Res =
9434 MachinePointerInfo(Arg0));
9435 if (Res.first.getNode()) {
9436 processIntegerCallValue(
I, Res.first,
false);
9449bool SelectionDAGBuilder::visitUnaryFloatCall(
const CallInst &
I,
9452 if (!
I.onlyReadsMemory())
9469bool SelectionDAGBuilder::visitBinaryFloatCall(
const CallInst &
I,
9472 if (!
I.onlyReadsMemory())
9485void SelectionDAGBuilder::visitCall(
const CallInst &
I) {
9487 if (
I.isInlineAsm()) {
9494 if (Function *
F =
I.getCalledFunction()) {
9495 if (
F->isDeclaration()) {
9497 if (
unsigned IID =
F->getIntrinsicID()) {
9498 visitIntrinsicCall(
I, IID);
9507 if (!
I.isNoBuiltin() && !
I.isStrictFP() && !
F->hasLocalLinkage() &&
9508 F->hasName() &&
LibInfo->getLibFunc(*
F, Func) &&
9509 LibInfo->hasOptimizedCodeGen(Func)) {
9513 if (visitMemCmpBCmpCall(
I))
9516 case LibFunc_copysign:
9517 case LibFunc_copysignf:
9518 case LibFunc_copysignl:
9521 if (
I.onlyReadsMemory()) {
9532 if (visitUnaryFloatCall(
I, ISD::FABS))
9538 if (visitBinaryFloatCall(
I, ISD::FMINNUM))
9544 if (visitBinaryFloatCall(
I, ISD::FMAXNUM))
9547 case LibFunc_fminimum_num:
9548 case LibFunc_fminimum_numf:
9549 case LibFunc_fminimum_numl:
9550 if (visitBinaryFloatCall(
I, ISD::FMINIMUMNUM))
9553 case LibFunc_fmaximum_num:
9554 case LibFunc_fmaximum_numf:
9555 case LibFunc_fmaximum_numl:
9556 if (visitBinaryFloatCall(
I, ISD::FMAXIMUMNUM))
9562 if (visitUnaryFloatCall(
I, ISD::FSIN))
9568 if (visitUnaryFloatCall(
I, ISD::FCOS))
9574 if (visitUnaryFloatCall(
I, ISD::FTAN))
9580 if (visitUnaryFloatCall(
I, ISD::FASIN))
9586 if (visitUnaryFloatCall(
I, ISD::FACOS))
9592 if (visitUnaryFloatCall(
I, ISD::FATAN))
9596 case LibFunc_atan2f:
9597 case LibFunc_atan2l:
9598 if (visitBinaryFloatCall(
I, ISD::FATAN2))
9604 if (visitUnaryFloatCall(
I, ISD::FSINH))
9610 if (visitUnaryFloatCall(
I, ISD::FCOSH))
9616 if (visitUnaryFloatCall(
I, ISD::FTANH))
9622 case LibFunc_sqrt_finite:
9623 case LibFunc_sqrtf_finite:
9624 case LibFunc_sqrtl_finite:
9625 if (visitUnaryFloatCall(
I, ISD::FSQRT))
9629 case LibFunc_floorf:
9630 case LibFunc_floorl:
9631 if (visitUnaryFloatCall(
I, ISD::FFLOOR))
9634 case LibFunc_nearbyint:
9635 case LibFunc_nearbyintf:
9636 case LibFunc_nearbyintl:
9637 if (visitUnaryFloatCall(
I, ISD::FNEARBYINT))
9643 if (visitUnaryFloatCall(
I, ISD::FCEIL))
9649 if (visitUnaryFloatCall(
I, ISD::FRINT))
9653 case LibFunc_roundf:
9654 case LibFunc_roundl:
9655 if (visitUnaryFloatCall(
I, ISD::FROUND))
9659 case LibFunc_truncf:
9660 case LibFunc_truncl:
9661 if (visitUnaryFloatCall(
I, ISD::FTRUNC))
9667 if (visitUnaryFloatCall(
I, ISD::FLOG2))
9673 if (visitUnaryFloatCall(
I, ISD::FEXP2))
9677 case LibFunc_exp10f:
9678 case LibFunc_exp10l:
9679 if (visitUnaryFloatCall(
I, ISD::FEXP10))
9683 case LibFunc_ldexpf:
9684 case LibFunc_ldexpl:
9685 if (visitBinaryFloatCall(
I, ISD::FLDEXP))
9688 case LibFunc_memcmp:
9689 if (visitMemCmpBCmpCall(
I))
9692 case LibFunc_mempcpy:
9693 if (visitMemPCpyCall(
I))
9696 case LibFunc_memchr:
9697 if (visitMemChrCall(
I))
9700 case LibFunc_strcpy:
9701 if (visitStrCpyCall(
I,
false))
9704 case LibFunc_stpcpy:
9705 if (visitStrCpyCall(
I,
true))
9708 case LibFunc_strcmp:
9709 if (visitStrCmpCall(
I))
9712 case LibFunc_strlen:
9713 if (visitStrLenCall(
I))
9716 case LibFunc_strnlen:
9717 if (visitStrNLenCall(
I))
9741 if (
I.hasDeoptState())
9758 const Value *Discriminator = PAB->Inputs[1];
9760 assert(
Key->getType()->isIntegerTy(32) &&
"Invalid ptrauth key");
9761 assert(Discriminator->getType()->isIntegerTy(64) &&
9762 "Invalid ptrauth discriminator");
9767 if (CalleeCPA->isKnownCompatibleWith(
Key, Discriminator,
9768 DAG.getDataLayout()))
9808 for (
const auto &Code : Codes)
9823 SDISelAsmOperandInfo &MatchingOpInfo,
9825 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9831 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9833 OpInfo.ConstraintVT);
9834 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9836 MatchingOpInfo.ConstraintVT);
9837 const bool OutOpIsIntOrFP =
9838 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9839 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9840 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9841 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9844 " with a matching output constraint of"
9845 " incompatible type!");
9847 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9854 SDISelAsmOperandInfo &OpInfo,
9867 const Value *OpVal = OpInfo.CallOperandVal;
9885 DL.getPrefTypeAlign(Ty),
false,
9888 Chain = DAG.
getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9891 OpInfo.CallOperand = StackSlot;
9904static std::optional<unsigned>
9906 SDISelAsmOperandInfo &OpInfo,
9907 SDISelAsmOperandInfo &RefOpInfo) {
9918 return std::nullopt;
9922 unsigned AssignedReg;
9925 &
TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9928 return std::nullopt;
9933 const MVT RegVT = *
TRI.legalclasstypes_begin(*RC);
9935 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9944 !
TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9949 if (RegVT.
getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9954 OpInfo.CallOperand =
9955 DAG.
getNode(ISD::BITCAST,
DL, RegVT, OpInfo.CallOperand);
9956 OpInfo.ConstraintVT = RegVT;
9960 }
else if (RegVT.
isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9963 OpInfo.CallOperand =
9964 DAG.
getNode(ISD::BITCAST,
DL, VT, OpInfo.CallOperand);
9965 OpInfo.ConstraintVT = VT;
9972 if (OpInfo.isMatchingInputConstraint())
9973 return std::nullopt;
9975 EVT ValueVT = OpInfo.ConstraintVT;
9976 if (OpInfo.ConstraintVT == MVT::Other)
9980 unsigned NumRegs = 1;
9981 if (OpInfo.ConstraintVT != MVT::Other)
9996 I = std::find(
I, RC->
end(), AssignedReg);
9997 if (
I == RC->
end()) {
10000 return {AssignedReg};
10004 for (; NumRegs; --NumRegs, ++
I) {
10005 assert(
I != RC->
end() &&
"Ran out of registers to allocate!");
10010 OpInfo.AssignedRegs =
RegsForValue(Regs, RegVT, ValueVT);
10011 return std::nullopt;
10016 const std::vector<SDValue> &AsmNodeOperands) {
10019 for (; OperandNo; --OperandNo) {
10021 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10024 (
F.isRegDefKind() ||
F.isRegDefEarlyClobberKind() ||
F.isMemKind()) &&
10025 "Skipped past definitions?");
10026 CurOp +=
F.getNumOperandRegisters() + 1;
10034 unsigned Flags = 0;
10037 explicit ExtraFlags(
const CallBase &
Call) {
10039 if (
IA->hasSideEffects())
10041 if (
IA->isAlignStack())
10048 void update(
const TargetLowering::AsmOperandInfo &OpInfo) {
10064 unsigned get()
const {
return Flags; }
10087void SelectionDAGBuilder::visitInlineAsm(
const CallBase &
Call,
10094 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10096 DAG.getDataLayout(),
DAG.getSubtarget().getRegisterInfo(),
Call);
10100 bool HasSideEffect =
IA->hasSideEffects();
10101 ExtraFlags ExtraInfo(
Call);
10103 for (
auto &
T : TargetConstraints) {
10104 ConstraintOperands.
push_back(SDISelAsmOperandInfo(
T));
10105 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.
back();
10107 if (OpInfo.CallOperandVal)
10108 OpInfo.CallOperand =
getValue(OpInfo.CallOperandVal);
10110 if (!HasSideEffect)
10111 HasSideEffect = OpInfo.hasMemory(TLI);
10123 return emitInlineAsmError(
Call,
"constraint '" + Twine(
T.ConstraintCode) +
10124 "' expects an integer constant "
10127 ExtraInfo.update(
T);
10135 if (EmitEHLabels) {
10136 assert(EHPadBB &&
"InvokeInst must have an EHPadBB");
10140 if (IsCallBr || EmitEHLabels) {
10148 if (EmitEHLabels) {
10149 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10154 IA->collectAsmStrs(AsmStrs);
10157 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10165 if (OpInfo.hasMatchingInput()) {
10166 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10197 if (OpInfo.isIndirect &&
isFunction(OpInfo.CallOperand) &&
10200 OpInfo.isIndirect =
false;
10207 !OpInfo.isIndirect) {
10208 assert((OpInfo.isMultipleAlternative ||
10210 "Can only indirectify direct input operands!");
10216 OpInfo.CallOperandVal =
nullptr;
10219 OpInfo.isIndirect =
true;
10225 std::vector<SDValue> AsmNodeOperands;
10226 AsmNodeOperands.push_back(
SDValue());
10227 AsmNodeOperands.push_back(
DAG.getTargetExternalSymbol(
10234 AsmNodeOperands.push_back(
DAG.getMDNode(SrcLoc));
10238 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10243 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10245 SDISelAsmOperandInfo &RefOpInfo =
10246 OpInfo.isMatchingInputConstraint()
10247 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10249 const auto RegError =
10252 const MachineFunction &MF =
DAG.getMachineFunction();
10254 const char *
RegName =
TRI.getName(*RegError);
10255 emitInlineAsmError(
Call,
"register '" + Twine(
RegName) +
10256 "' allocated for constraint '" +
10257 Twine(OpInfo.ConstraintCode) +
10258 "' does not match required type");
10262 auto DetectWriteToReservedRegister = [&]() {
10263 const MachineFunction &MF =
DAG.getMachineFunction();
10268 emitInlineAsmError(
Call,
"write to reserved register '" +
10277 !OpInfo.isMatchingInputConstraint())) &&
10278 "Only address as input operand is allowed.");
10280 switch (OpInfo.Type) {
10286 "Failed to convert memory constraint code to constraint id.");
10290 OpFlags.setMemConstraint(ConstraintID);
10291 AsmNodeOperands.push_back(
DAG.getTargetConstant(OpFlags,
getCurSDLoc(),
10293 AsmNodeOperands.push_back(OpInfo.CallOperand);
10298 if (OpInfo.AssignedRegs.
Regs.empty()) {
10299 emitInlineAsmError(
10300 Call,
"couldn't allocate output register for constraint '" +
10301 Twine(OpInfo.ConstraintCode) +
"'");
10305 if (DetectWriteToReservedRegister())
10319 SDValue InOperandVal = OpInfo.CallOperand;
10321 if (OpInfo.isMatchingInputConstraint()) {
10326 InlineAsm::Flag
Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10327 if (
Flag.isRegDefKind() ||
Flag.isRegDefEarlyClobberKind()) {
10328 if (OpInfo.isIndirect) {
10330 emitInlineAsmError(
Call,
"inline asm not supported yet: "
10331 "don't know how to handle tied "
10332 "indirect register inputs");
10337 MachineFunction &MF =
DAG.getMachineFunction();
10342 MVT RegVT =
R->getSimpleValueType(0);
10343 const TargetRegisterClass *RC =
10346 :
TRI.getMinimalPhysRegClass(TiedReg);
10347 for (
unsigned i = 0, e =
Flag.getNumOperandRegisters(); i != e; ++i)
10350 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.
getValueType());
10354 MatchedRegs.getCopyToRegs(InOperandVal,
DAG, dl, Chain, &Glue, &
Call);
10356 OpInfo.getMatchedOperand(), dl,
DAG,
10361 assert(
Flag.isMemKind() &&
"Unknown matching constraint!");
10362 assert(
Flag.getNumOperandRegisters() == 1 &&
10363 "Unexpected number of operands");
10366 Flag.clearMemConstraint();
10367 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10368 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10370 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10381 std::vector<SDValue>
Ops;
10387 emitInlineAsmError(
Call,
"value out of range for constraint '" +
10388 Twine(OpInfo.ConstraintCode) +
"'");
10392 emitInlineAsmError(
Call,
10393 "invalid operand for inline asm constraint '" +
10394 Twine(OpInfo.ConstraintCode) +
"'");
10400 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10407 assert((OpInfo.isIndirect ||
10409 "Operand must be indirect to be a mem!");
10412 "Memory operands expect pointer values");
10417 "Failed to convert memory constraint code to constraint id.");
10421 ResOpType.setMemConstraint(ConstraintID);
10422 AsmNodeOperands.push_back(
DAG.getTargetConstant(ResOpType,
10425 AsmNodeOperands.push_back(InOperandVal);
10433 "Failed to convert memory constraint code to constraint id.");
10437 SDValue AsmOp = InOperandVal;
10441 AsmOp =
DAG.getTargetGlobalAddress(GA->getGlobal(),
getCurSDLoc(),
10447 ResOpType.setMemConstraint(ConstraintID);
10449 AsmNodeOperands.push_back(
10452 AsmNodeOperands.push_back(AsmOp);
10458 emitInlineAsmError(
Call,
"unknown asm constraint '" +
10459 Twine(OpInfo.ConstraintCode) +
"'");
10464 if (OpInfo.isIndirect) {
10465 emitInlineAsmError(
10466 Call,
"Don't know how to handle indirect register inputs yet "
10467 "for constraint '" +
10468 Twine(OpInfo.ConstraintCode) +
"'");
10473 if (OpInfo.AssignedRegs.
Regs.empty()) {
10474 emitInlineAsmError(
Call,
10475 "couldn't allocate input reg for constraint '" +
10476 Twine(OpInfo.ConstraintCode) +
"'");
10480 if (DetectWriteToReservedRegister())
10489 0, dl,
DAG, AsmNodeOperands);
10495 if (!OpInfo.AssignedRegs.
Regs.empty())
10505 if (Glue.
getNode()) AsmNodeOperands.push_back(Glue);
10507 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10509 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10521 ResultTypes = StructResult->elements();
10522 else if (!CallResultType->
isVoidTy())
10523 ResultTypes =
ArrayRef(CallResultType);
10525 auto CurResultType = ResultTypes.
begin();
10526 auto handleRegAssign = [&](
SDValue V) {
10527 assert(CurResultType != ResultTypes.
end() &&
"Unexpected value");
10528 assert((*CurResultType)->isSized() &&
"Unexpected unsized type");
10529 EVT ResultVT = TLI.
getValueType(
DAG.getDataLayout(), *CurResultType);
10541 if (ResultVT !=
V.getValueType() &&
10544 else if (ResultVT !=
V.getValueType() && ResultVT.
isInteger() &&
10545 V.getValueType().isInteger()) {
10551 assert(ResultVT ==
V.getValueType() &&
"Asm result value mismatch!");
10557 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10561 if (OpInfo.AssignedRegs.
Regs.empty())
10564 switch (OpInfo.ConstraintType) {
10568 Chain, &Glue, &
Call);
10580 assert(
false &&
"Unexpected unknown constraint");
10584 if (OpInfo.isIndirect) {
10585 const Value *
Ptr = OpInfo.CallOperandVal;
10586 assert(
Ptr &&
"Expected value CallOperandVal for indirect asm operand");
10588 MachinePointerInfo(
Ptr));
10595 handleRegAssign(V);
10597 handleRegAssign(Val);
10603 if (!ResultValues.
empty()) {
10604 assert(CurResultType == ResultTypes.
end() &&
10605 "Mismatch in number of ResultTypes");
10607 "Mismatch in number of output operands in asm result");
10610 DAG.getVTList(ResultVTs), ResultValues);
10615 if (!OutChains.
empty())
10618 if (EmitEHLabels) {
10623 if (ResultValues.
empty() || HasSideEffect || !OutChains.
empty() || IsCallBr ||
10625 DAG.setRoot(Chain);
10628void SelectionDAGBuilder::emitInlineAsmError(
const CallBase &
Call,
10629 const Twine &Message) {
10630 LLVMContext &Ctx = *
DAG.getContext();
10634 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10638 if (ValueVTs.
empty())
10642 for (
const EVT &VT : ValueVTs)
10643 Ops.push_back(
DAG.getUNDEF(VT));
10648void SelectionDAGBuilder::visitVAStart(
const CallInst &
I) {
10652 DAG.getSrcValue(
I.getArgOperand(0))));
10655void SelectionDAGBuilder::visitVAArg(
const VAArgInst &
I) {
10656 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10657 const DataLayout &
DL =
DAG.getDataLayout();
10661 DL.getABITypeAlign(
I.getType()).value());
10662 DAG.setRoot(
V.getValue(1));
10664 if (
I.getType()->isPointerTy())
10665 V =
DAG.getPtrExtOrTrunc(
10670void SelectionDAGBuilder::visitVAEnd(
const CallInst &
I) {
10674 DAG.getSrcValue(
I.getArgOperand(0))));
10677void SelectionDAGBuilder::visitVACopy(
const CallInst &
I) {
10682 DAG.getSrcValue(
I.getArgOperand(0)),
10683 DAG.getSrcValue(
I.getArgOperand(1))));
10689 std::optional<ConstantRange> CR =
getRange(
I);
10691 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10694 APInt Lo = CR->getUnsignedMin();
10695 if (!
Lo.isMinValue())
10698 APInt Hi = CR->getUnsignedMax();
10699 unsigned Bits = std::max(
Hi.getActiveBits(),
10707 DAG.getValueType(SmallVT));
10708 unsigned NumVals =
Op.getNode()->getNumValues();
10714 Ops.push_back(ZExt);
10715 for (
unsigned I = 1;
I != NumVals; ++
I)
10716 Ops.push_back(
Op.getValue(
I));
10718 return DAG.getMergeValues(
Ops,
SL);
10729 unsigned ArgIdx,
unsigned NumArgs,
SDValue Callee,
Type *ReturnTy,
10732 Args.reserve(NumArgs);
10736 for (
unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10737 ArgI != ArgE; ++ArgI) {
10738 const Value *V =
Call->getOperand(ArgI);
10740 assert(!V->getType()->isEmptyTy() &&
"Empty type passed to intrinsic.");
10743 Entry.setAttributes(
Call, ArgI);
10744 Args.push_back(Entry);
10749 .
setCallee(
Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10778 for (
unsigned I = StartIdx;
I <
Call.arg_size();
I++) {
10787 Ops.push_back(Builder.getValue(
Call.getArgOperand(
I)));
10793void SelectionDAGBuilder::visitStackmap(
const CallInst &CI) {
10819 Ops.push_back(Chain);
10820 Ops.push_back(InGlue);
10827 assert(
ID.getValueType() == MVT::i64);
10829 DAG.getTargetConstant(
ID->getAsZExtVal(),
DL,
ID.getValueType());
10830 Ops.push_back(IDConst);
10836 Ops.push_back(ShadConst);
10842 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
10843 Chain =
DAG.getNode(ISD::STACKMAP,
DL, NodeTys,
Ops);
10846 Chain =
DAG.getCALLSEQ_END(Chain, 0, 0, InGlue,
DL);
10851 DAG.setRoot(Chain);
10854 FuncInfo.MF->getFrameInfo().setHasStackMap();
10858void SelectionDAGBuilder::visitPatchpoint(
const CallBase &CB,
10875 Callee =
DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10878 Callee =
DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10879 SDLoc(SymbolicCallee),
10880 SymbolicCallee->getValueType(0));
10890 "Not enough arguments provided to the patchpoint intrinsic");
10893 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10897 TargetLowering::CallLoweringInfo CLI(
DAG);
10902 SDNode *CallEnd =
Result.second.getNode();
10903 if (CallEnd->
getOpcode() == ISD::EH_LABEL)
10911 "Expected a callseq node.");
10913 bool HasGlue =
Call->getGluedNode();
10938 Ops.push_back(Callee);
10944 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10945 Ops.push_back(
DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10948 Ops.push_back(
DAG.getTargetConstant((
unsigned)CC, dl, MVT::i32));
10953 for (
unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i !=
e; ++i)
10964 if (IsAnyRegCC && HasDef) {
10966 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10969 assert(ValueVTs.
size() == 1 &&
"Expected only one return value type.");
10974 NodeTys =
DAG.getVTList(ValueVTs);
10976 NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
10979 SDValue PPV =
DAG.getNode(ISD::PATCHPOINT, dl, NodeTys,
Ops);
10993 if (IsAnyRegCC && HasDef) {
10996 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11002 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11005void SelectionDAGBuilder::visitVectorReduce(
const CallInst &
I,
11007 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
11010 if (
I.arg_size() > 1)
11015 SDNodeFlags SDFlags;
11019 switch (Intrinsic) {
11020 case Intrinsic::vector_reduce_fadd:
11023 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11026 Res =
DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11028 case Intrinsic::vector_reduce_fmul:
11031 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11034 Res =
DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11036 case Intrinsic::vector_reduce_add:
11037 Res =
DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11039 case Intrinsic::vector_reduce_mul:
11040 Res =
DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11042 case Intrinsic::vector_reduce_and:
11043 Res =
DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11045 case Intrinsic::vector_reduce_or:
11046 Res =
DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11048 case Intrinsic::vector_reduce_xor:
11049 Res =
DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11051 case Intrinsic::vector_reduce_smax:
11052 Res =
DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11054 case Intrinsic::vector_reduce_smin:
11055 Res =
DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11057 case Intrinsic::vector_reduce_umax:
11058 Res =
DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11060 case Intrinsic::vector_reduce_umin:
11061 Res =
DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11063 case Intrinsic::vector_reduce_fmax:
11064 Res =
DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11066 case Intrinsic::vector_reduce_fmin:
11067 Res =
DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11069 case Intrinsic::vector_reduce_fmaximum:
11070 Res =
DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11072 case Intrinsic::vector_reduce_fminimum:
11073 Res =
DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11086 Attrs.push_back(Attribute::SExt);
11088 Attrs.push_back(Attribute::ZExt);
11090 Attrs.push_back(Attribute::InReg);
11092 return AttributeList::get(CLI.
RetTy->
getContext(), AttributeList::ReturnIndex,
11100std::pair<SDValue, SDValue>
11114 "Only supported for non-aggregate returns");
11117 for (
Type *Ty : RetOrigTys)
11126 RetOrigTys.
swap(OldRetOrigTys);
11127 RetVTs.
swap(OldRetVTs);
11128 Offsets.swap(OldOffsets);
11130 for (
size_t i = 0, e = OldRetVTs.
size(); i != e; ++i) {
11131 EVT RetVT = OldRetVTs[i];
11135 unsigned RegisterVTByteSZ = RegisterVT.
getSizeInBits() / 8;
11136 RetOrigTys.
append(NumRegs, OldRetOrigTys[i]);
11137 RetVTs.
append(NumRegs, RegisterVT);
11138 for (
unsigned j = 0; j != NumRegs; ++j)
11151 int DemoteStackIdx = -100;
11164 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11165 Entry.IsSRet =
true;
11166 Entry.Alignment = Alignment;
11178 for (
unsigned I = 0, E = RetVTs.
size();
I != E; ++
I) {
11180 if (NeedsRegBlock) {
11181 Flags.setInConsecutiveRegs();
11182 if (
I == RetVTs.
size() - 1)
11183 Flags.setInConsecutiveRegsLast();
11185 EVT VT = RetVTs[
I];
11189 for (
unsigned i = 0; i != NumRegs; ++i) {
11193 Ret.Flags.setPointer();
11194 Ret.Flags.setPointerAddrSpace(
11198 Ret.Flags.setSExt();
11200 Ret.Flags.setZExt();
11202 Ret.Flags.setInReg();
11203 CLI.
Ins.push_back(Ret);
11212 if (Arg.IsSwiftError) {
11218 CLI.
Ins.push_back(Ret);
11226 for (
unsigned i = 0, e = Args.size(); i != e; ++i) {
11230 Type *FinalType = Args[i].Ty;
11231 if (Args[i].IsByVal)
11232 FinalType = Args[i].IndirectType;
11235 for (
unsigned Value = 0, NumValues = OrigArgTys.
size();
Value != NumValues;
11238 Type *ArgTy = OrigArgTy;
11239 if (Args[i].Ty != Args[i].OrigTy) {
11240 assert(
Value == 0 &&
"Only supported for non-aggregate arguments");
11241 ArgTy = Args[i].Ty;
11246 Args[i].Node.getResNo() +
Value);
11253 Flags.setOrigAlign(OriginalAlignment);
11258 Flags.setPointer();
11261 if (Args[i].IsZExt)
11263 if (Args[i].IsSExt)
11265 if (Args[i].IsNoExt)
11267 if (Args[i].IsInReg) {
11274 Flags.setHvaStart();
11280 if (Args[i].IsSRet)
11282 if (Args[i].IsSwiftSelf)
11283 Flags.setSwiftSelf();
11284 if (Args[i].IsSwiftAsync)
11285 Flags.setSwiftAsync();
11286 if (Args[i].IsSwiftError)
11287 Flags.setSwiftError();
11288 if (Args[i].IsCFGuardTarget)
11289 Flags.setCFGuardTarget();
11290 if (Args[i].IsByVal)
11292 if (Args[i].IsByRef)
11294 if (Args[i].IsPreallocated) {
11295 Flags.setPreallocated();
11303 if (Args[i].IsInAlloca) {
11304 Flags.setInAlloca();
11313 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11314 unsigned FrameSize =
DL.getTypeAllocSize(Args[i].IndirectType);
11315 Flags.setByValSize(FrameSize);
11318 if (
auto MA = Args[i].Alignment)
11322 }
else if (
auto MA = Args[i].Alignment) {
11325 MemAlign = OriginalAlignment;
11327 Flags.setMemAlign(MemAlign);
11328 if (Args[i].IsNest)
11331 Flags.setInConsecutiveRegs();
11334 unsigned NumParts =
11339 if (Args[i].IsSExt)
11341 else if (Args[i].IsZExt)
11346 if (Args[i].IsReturned && !
Op.getValueType().isVector() &&
11351 Args[i].Ty->getPointerAddressSpace())) &&
11352 RetVTs.
size() == NumValues &&
"unexpected use of 'returned'");
11365 CLI.
RetZExt == Args[i].IsZExt))
11366 Flags.setReturned();
11372 for (
unsigned j = 0; j != NumParts; ++j) {
11378 j * Parts[j].
getValueType().getStoreSize().getKnownMinValue());
11379 if (NumParts > 1 && j == 0)
11383 if (j == NumParts - 1)
11387 CLI.
Outs.push_back(MyFlags);
11388 CLI.
OutVals.push_back(Parts[j]);
11391 if (NeedsRegBlock &&
Value == NumValues - 1)
11392 CLI.
Outs[CLI.
Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11404 "LowerCall didn't return a valid chain!");
11406 "LowerCall emitted a return value for a tail call!");
11408 "LowerCall didn't emit the correct number of values!");
11420 for (
unsigned i = 0, e = CLI.
Ins.size(); i != e; ++i) {
11421 assert(InVals[i].
getNode() &&
"LowerCall emitted a null value!");
11422 assert(
EVT(CLI.
Ins[i].VT) == InVals[i].getValueType() &&
11423 "LowerCall emitted a value with the wrong type!");
11433 unsigned NumValues = RetVTs.
size();
11434 ReturnValues.
resize(NumValues);
11441 for (
unsigned i = 0; i < NumValues; ++i) {
11448 DemoteStackIdx, Offsets[i]),
11450 ReturnValues[i] = L;
11451 Chains[i] = L.getValue(1);
11458 std::optional<ISD::NodeType> AssertOp;
11463 unsigned CurReg = 0;
11464 for (
EVT VT : RetVTs) {
11470 CLI.
DAG, CLI.
DL, &InVals[CurReg], NumRegs, RegisterVT, VT,
nullptr,
11478 if (ReturnValues.
empty())
11484 return std::make_pair(Res, CLI.
Chain);
11501 if (
N->getNumValues() == 1) {
11509 "Lowering returned the wrong number of results!");
11512 for (
unsigned I = 0, E =
N->getNumValues();
I != E; ++
I)
11526 "Copy from a reg to the same reg!");
11527 assert(!Reg.isPhysical() &&
"Is a physreg");
11533 RegsForValue RFV(V->getContext(), TLI,
DAG.getDataLayout(), Reg, V->getType(),
11538 auto PreferredExtendIt =
FuncInfo.PreferredExtendType.find(V);
11539 if (PreferredExtendIt !=
FuncInfo.PreferredExtendType.end())
11540 ExtendType = PreferredExtendIt->second;
11543 PendingExports.push_back(Chain);
11555 return A->use_empty();
11557 const BasicBlock &Entry =
A->getParent()->front();
11558 for (
const User *U :
A->users())
11567 std::pair<const AllocaInst *, const StoreInst *>>;
11579 enum StaticAllocaInfo {
Unknown, Clobbered, Elidable };
11581 unsigned NumArgs = FuncInfo->
Fn->
arg_size();
11582 StaticAllocas.
reserve(NumArgs * 2);
11584 auto GetInfoIfStaticAlloca = [&](
const Value *V) -> StaticAllocaInfo * {
11587 V = V->stripPointerCasts();
11589 if (!AI || !AI->isStaticAlloca() || !FuncInfo->
StaticAllocaMap.count(AI))
11592 return &Iter.first->second;
11609 if (
I.isDebugOrPseudoInst())
11613 for (
const Use &U :
I.operands()) {
11614 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(U))
11615 *
Info = StaticAllocaInfo::Clobbered;
11621 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(
SI->getValueOperand()))
11622 *
Info = StaticAllocaInfo::Clobbered;
11625 const Value *Dst =
SI->getPointerOperand()->stripPointerCasts();
11626 StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(Dst);
11632 if (*
Info != StaticAllocaInfo::Unknown)
11640 const Value *Val =
SI->getValueOperand()->stripPointerCasts();
11642 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11646 !
DL.typeSizeEqualsStoreSize(Arg->
getType()) ||
11647 ArgCopyElisionCandidates.count(Arg)) {
11648 *
Info = StaticAllocaInfo::Clobbered;
11652 LLVM_DEBUG(
dbgs() <<
"Found argument copy elision candidate: " << *AI
11656 *
Info = StaticAllocaInfo::Elidable;
11657 ArgCopyElisionCandidates.insert({Arg, {AI,
SI}});
11662 if (ArgCopyElisionCandidates.size() == NumArgs)
11686 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11687 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11688 const AllocaInst *AI = ArgCopyIter->second.first;
11689 int FixedIndex = FINode->getIndex();
11691 int OldIndex = AllocaIndex;
11695 dbgs() <<
" argument copy elision failed due to bad fixed stack "
11701 LLVM_DEBUG(
dbgs() <<
" argument copy elision failed: alignment of alloca "
11702 "greater than stack argument alignment ("
11703 <<
DebugStr(RequiredAlignment) <<
" vs "
11711 dbgs() <<
"Eliding argument copy from " << Arg <<
" to " << *AI <<
'\n'
11712 <<
" Replacing frame index " << OldIndex <<
" with " << FixedIndex
11718 AllocaIndex = FixedIndex;
11719 ArgCopyElisionFrameIndexMap.
insert({OldIndex, FixedIndex});
11720 for (
SDValue ArgVal : ArgVals)
11724 const StoreInst *
SI = ArgCopyIter->second.second;
11737void SelectionDAGISel::LowerArguments(
const Function &
F) {
11738 SelectionDAG &DAG =
SDB->DAG;
11739 SDLoc dl =
SDB->getCurSDLoc();
11744 if (
F.hasFnAttribute(Attribute::Naked))
11749 MVT ValueVT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11751 ISD::ArgFlagsTy
Flags;
11753 MVT RegisterVT =
TLI->getRegisterType(*DAG.
getContext(), ValueVT);
11754 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT,
F.getReturnType(),
true,
11756 Ins.push_back(RetArg);
11764 ArgCopyElisionCandidates);
11767 for (
const Argument &Arg :
F.args()) {
11768 unsigned ArgNo = Arg.getArgNo();
11771 bool isArgValueUsed = !Arg.
use_empty();
11772 unsigned PartBase = 0;
11774 if (Arg.hasAttribute(Attribute::ByVal))
11775 FinalType = Arg.getParamByValType();
11776 bool NeedsRegBlock =
TLI->functionArgumentNeedsConsecutiveRegisters(
11777 FinalType,
F.getCallingConv(),
F.isVarArg(),
DL);
11778 for (
unsigned Value = 0, NumValues =
Types.size();
Value != NumValues;
11781 EVT VT =
TLI->getValueType(
DL, ArgTy);
11782 ISD::ArgFlagsTy
Flags;
11785 Flags.setPointer();
11788 if (Arg.hasAttribute(Attribute::ZExt))
11790 if (Arg.hasAttribute(Attribute::SExt))
11792 if (Arg.hasAttribute(Attribute::InReg)) {
11799 Flags.setHvaStart();
11805 if (Arg.hasAttribute(Attribute::StructRet))
11807 if (Arg.hasAttribute(Attribute::SwiftSelf))
11808 Flags.setSwiftSelf();
11809 if (Arg.hasAttribute(Attribute::SwiftAsync))
11810 Flags.setSwiftAsync();
11811 if (Arg.hasAttribute(Attribute::SwiftError))
11812 Flags.setSwiftError();
11813 if (Arg.hasAttribute(Attribute::ByVal))
11815 if (Arg.hasAttribute(Attribute::ByRef))
11817 if (Arg.hasAttribute(Attribute::InAlloca)) {
11818 Flags.setInAlloca();
11826 if (Arg.hasAttribute(Attribute::Preallocated)) {
11827 Flags.setPreallocated();
11839 const Align OriginalAlignment(
11840 TLI->getABIAlignmentForCallingConv(ArgTy,
DL));
11841 Flags.setOrigAlign(OriginalAlignment);
11844 Type *ArgMemTy =
nullptr;
11845 if (
Flags.isByVal() ||
Flags.isInAlloca() ||
Flags.isPreallocated() ||
11848 ArgMemTy = Arg.getPointeeInMemoryValueType();
11850 uint64_t MemSize =
DL.getTypeAllocSize(ArgMemTy);
11855 if (
auto ParamAlign = Arg.getParamStackAlign())
11856 MemAlign = *ParamAlign;
11857 else if ((ParamAlign = Arg.getParamAlign()))
11858 MemAlign = *ParamAlign;
11860 MemAlign =
TLI->getByValTypeAlignment(ArgMemTy,
DL);
11861 if (
Flags.isByRef())
11862 Flags.setByRefSize(MemSize);
11864 Flags.setByValSize(MemSize);
11865 }
else if (
auto ParamAlign = Arg.getParamStackAlign()) {
11866 MemAlign = *ParamAlign;
11868 MemAlign = OriginalAlignment;
11870 Flags.setMemAlign(MemAlign);
11872 if (Arg.hasAttribute(Attribute::Nest))
11875 Flags.setInConsecutiveRegs();
11876 if (ArgCopyElisionCandidates.count(&Arg))
11877 Flags.setCopyElisionCandidate();
11878 if (Arg.hasAttribute(Attribute::Returned))
11879 Flags.setReturned();
11881 MVT RegisterVT =
TLI->getRegisterTypeForCallingConv(
11882 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11883 unsigned NumRegs =
TLI->getNumRegistersForCallingConv(
11884 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11885 for (
unsigned i = 0; i != NumRegs; ++i) {
11889 ISD::InputArg MyFlags(
11890 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11892 if (NumRegs > 1 && i == 0)
11893 MyFlags.Flags.setSplit();
11896 MyFlags.Flags.setOrigAlign(
Align(1));
11897 if (i == NumRegs - 1)
11898 MyFlags.Flags.setSplitEnd();
11900 Ins.push_back(MyFlags);
11902 if (NeedsRegBlock &&
Value == NumValues - 1)
11903 Ins[
Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11910 SDValue NewRoot =
TLI->LowerFormalArguments(
11911 DAG.
getRoot(),
F.getCallingConv(),
F.isVarArg(), Ins, dl, DAG, InVals);
11915 "LowerFormalArguments didn't return a valid chain!");
11917 "LowerFormalArguments didn't emit the correct number of values!");
11919 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
11921 "LowerFormalArguments emitted a null value!");
11923 "LowerFormalArguments emitted a value with the wrong type!");
11935 MVT VT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11936 MVT RegVT =
TLI->getRegisterType(*
CurDAG->getContext(), VT);
11937 std::optional<ISD::NodeType> AssertOp;
11940 F.getCallingConv(), AssertOp);
11942 MachineFunction&
MF =
SDB->DAG.getMachineFunction();
11943 MachineRegisterInfo&
RegInfo =
MF.getRegInfo();
11945 RegInfo.createVirtualRegister(
TLI->getRegClassFor(RegVT));
11946 FuncInfo->DemoteRegister = SRetReg;
11948 SDB->DAG.getCopyToReg(NewRoot,
SDB->getCurSDLoc(), SRetReg, ArgValue);
11956 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11957 for (
const Argument &Arg :
F.args()) {
11961 unsigned NumValues = ValueVTs.
size();
11962 if (NumValues == 0)
11969 if (Ins[i].
Flags.isCopyElisionCandidate()) {
11970 unsigned NumParts = 0;
11971 for (EVT VT : ValueVTs)
11972 NumParts +=
TLI->getNumRegistersForCallingConv(*
CurDAG->getContext(),
11973 F.getCallingConv(), VT);
11977 ArrayRef(&InVals[i], NumParts), ArgHasUses);
11982 bool isSwiftErrorArg =
11983 TLI->supportSwiftError() &&
11984 Arg.hasAttribute(Attribute::SwiftError);
11985 if (!ArgHasUses && !isSwiftErrorArg) {
11986 SDB->setUnusedArgValue(&Arg, InVals[i]);
11989 if (FrameIndexSDNode *FI =
11991 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11994 for (
unsigned Val = 0; Val != NumValues; ++Val) {
11995 EVT VT = ValueVTs[Val];
11996 MVT PartVT =
TLI->getRegisterTypeForCallingConv(*
CurDAG->getContext(),
11997 F.getCallingConv(), VT);
11998 unsigned NumParts =
TLI->getNumRegistersForCallingConv(
11999 *
CurDAG->getContext(),
F.getCallingConv(), VT);
12004 if (ArgHasUses || isSwiftErrorArg) {
12005 std::optional<ISD::NodeType> AssertOp;
12006 if (Arg.hasAttribute(Attribute::SExt))
12008 else if (Arg.hasAttribute(Attribute::ZExt))
12013 NewRoot,
F.getCallingConv(), AssertOp);
12016 if (NoFPClass !=
fcNone) {
12018 static_cast<uint64_t
>(NoFPClass), dl, MVT::i32);
12020 OutVal, SDNoFPClass);
12029 if (ArgValues.
empty())
12033 if (FrameIndexSDNode *FI =
12035 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12038 SDB->getCurSDLoc());
12040 SDB->setValue(&Arg, Res);
12050 if (LoadSDNode *LNode =
12052 if (FrameIndexSDNode *FI =
12054 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12082 FuncInfo->InitializeRegForValue(&Arg);
12083 SDB->CopyToExportRegsIfNeeded(&Arg);
12087 if (!Chains.
empty()) {
12094 assert(i == InVals.
size() &&
"Argument register count mismatch!");
12098 if (!ArgCopyElisionFrameIndexMap.
empty()) {
12099 for (MachineFunction::VariableDbgInfo &VI :
12100 MF->getInStackSlotVariableDbgInfo()) {
12101 auto I = ArgCopyElisionFrameIndexMap.
find(
VI.getStackSlot());
12102 if (
I != ArgCopyElisionFrameIndexMap.
end())
12103 VI.updateStackSlot(
I->second);
12118SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(
const BasicBlock *LLVMBB) {
12119 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12121 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12127 MachineBasicBlock *SuccMBB =
FuncInfo.getMBB(SuccBB);
12131 if (!SuccsHandled.
insert(SuccMBB).second)
12139 for (
const PHINode &PN : SuccBB->phis()) {
12141 if (PN.use_empty())
12145 if (PN.getType()->isEmptyTy())
12149 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12154 RegOut =
FuncInfo.CreateRegs(&PN);
12172 "Didn't codegen value into a register!??");
12182 for (EVT VT : ValueVTs) {
12184 for (
unsigned i = 0; i != NumRegisters; ++i)
12186 Reg += NumRegisters;
12206void SelectionDAGBuilder::updateDAGForMaybeTailCall(
SDValue MaybeTC) {
12208 if (MaybeTC.
getNode() !=
nullptr)
12209 DAG.setRoot(MaybeTC);
12214void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W,
Value *
Cond,
12217 MachineFunction *CurMF =
FuncInfo.MF;
12218 MachineBasicBlock *NextMBB =
nullptr;
12223 unsigned Size =
W.LastCluster -
W.FirstCluster + 1;
12225 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12227 if (
Size == 2 &&
W.MBB == SwitchMBB) {
12235 CaseCluster &
Small = *
W.FirstCluster;
12236 CaseCluster &
Big = *
W.LastCluster;
12240 const APInt &SmallValue =
Small.Low->getValue();
12241 const APInt &BigValue =
Big.Low->getValue();
12244 APInt CommonBit = BigValue ^ SmallValue;
12251 DAG.getConstant(CommonBit,
DL, VT));
12253 DL, MVT::i1,
Or,
DAG.getConstant(BigValue | SmallValue,
DL, VT),
12259 addSuccessorWithProb(SwitchMBB,
Small.MBB,
Small.Prob +
Big.Prob);
12261 addSuccessorWithProb(
12262 SwitchMBB, DefaultMBB,
12266 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12273 BrCond =
DAG.getNode(ISD::BR,
DL, MVT::Other, BrCond,
12274 DAG.getBasicBlock(DefaultMBB));
12276 DAG.setRoot(BrCond);
12288 [](
const CaseCluster &a,
const CaseCluster &b) {
12289 return a.Prob != b.Prob ?
12291 a.Low->getValue().slt(b.Low->getValue());
12298 if (
I->Prob >
W.LastCluster->Prob)
12300 if (
I->Kind ==
CC_Range &&
I->MBB == NextMBB) {
12308 BranchProbability DefaultProb =
W.DefaultProb;
12309 BranchProbability UnhandledProbs = DefaultProb;
12311 UnhandledProbs +=
I->Prob;
12313 MachineBasicBlock *CurMBB =
W.MBB;
12315 bool FallthroughUnreachable =
false;
12316 MachineBasicBlock *Fallthrough;
12317 if (
I ==
W.LastCluster) {
12319 Fallthrough = DefaultMBB;
12324 CurMF->
insert(BBI, Fallthrough);
12328 UnhandledProbs -=
I->Prob;
12333 JumpTableHeader *JTH = &
SL->JTCases[
I->JTCasesIndex].first;
12334 SwitchCG::JumpTable *
JT = &
SL->JTCases[
I->JTCasesIndex].second;
12337 MachineBasicBlock *JumpMBB =
JT->MBB;
12338 CurMF->
insert(BBI, JumpMBB);
12340 auto JumpProb =
I->Prob;
12341 auto FallthroughProb = UnhandledProbs;
12349 if (*SI == DefaultMBB) {
12350 JumpProb += DefaultProb / 2;
12351 FallthroughProb -= DefaultProb / 2;
12369 if (FallthroughUnreachable) {
12376 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12377 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12383 JT->Default = Fallthrough;
12386 if (CurMBB == SwitchMBB) {
12394 BitTestBlock *BTB = &
SL->BitTestCases[
I->BTCasesIndex];
12397 for (BitTestCase &BTC : BTB->
Cases)
12409 BTB->
Prob += DefaultProb / 2;
12413 if (FallthroughUnreachable)
12417 if (CurMBB == SwitchMBB) {
12424 const Value *
RHS, *
LHS, *MHS;
12426 if (
I->Low ==
I->High) {
12441 if (FallthroughUnreachable)
12445 CaseBlock CB(CC,
LHS,
RHS, MHS,
I->MBB, Fallthrough, CurMBB,
12448 if (CurMBB == SwitchMBB)
12451 SL->SwitchCases.push_back(CB);
12456 CurMBB = Fallthrough;
12460void SelectionDAGBuilder::splitWorkItem(
SwitchWorkList &WorkList,
12461 const SwitchWorkListItem &W,
12464 assert(
W.FirstCluster->Low->getValue().slt(
W.LastCluster->Low->getValue()) &&
12465 "Clusters not sorted?");
12466 assert(
W.LastCluster -
W.FirstCluster + 1 >= 2 &&
"Too small to split!");
12468 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12469 SL->computeSplitWorkItemInfo(W);
12474 assert(PivotCluster >
W.FirstCluster);
12475 assert(PivotCluster <=
W.LastCluster);
12480 const ConstantInt *Pivot = PivotCluster->Low;
12489 MachineBasicBlock *LeftMBB;
12490 if (FirstLeft == LastLeft && FirstLeft->Kind ==
CC_Range &&
12491 FirstLeft->Low ==
W.GE &&
12492 (FirstLeft->High->getValue() + 1LL) == Pivot->
getValue()) {
12493 LeftMBB = FirstLeft->MBB;
12495 LeftMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12496 FuncInfo.MF->insert(BBI, LeftMBB);
12498 {LeftMBB, FirstLeft, LastLeft,
W.GE, Pivot,
W.DefaultProb / 2});
12506 MachineBasicBlock *RightMBB;
12507 if (FirstRight == LastRight && FirstRight->Kind ==
CC_Range &&
12508 W.LT && (FirstRight->High->getValue() + 1ULL) ==
W.LT->getValue()) {
12509 RightMBB = FirstRight->MBB;
12511 RightMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12512 FuncInfo.MF->insert(BBI, RightMBB);
12514 {RightMBB, FirstRight, LastRight, Pivot,
W.LT,
W.DefaultProb / 2});
12520 CaseBlock CB(
ISD::SETLT,
Cond, Pivot,
nullptr, LeftMBB, RightMBB,
W.MBB,
12523 if (
W.MBB == SwitchMBB)
12526 SL->SwitchCases.push_back(CB);
12551 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12559 unsigned PeeledCaseIndex = 0;
12560 bool SwitchPeeled =
false;
12561 for (
unsigned Index = 0;
Index < Clusters.size(); ++
Index) {
12562 CaseCluster &CC = Clusters[
Index];
12563 if (CC.
Prob < TopCaseProb)
12565 TopCaseProb = CC.
Prob;
12566 PeeledCaseIndex =
Index;
12567 SwitchPeeled =
true;
12572 LLVM_DEBUG(
dbgs() <<
"Peeled one top case in switch stmt, prob: "
12573 << TopCaseProb <<
"\n");
12578 MachineBasicBlock *PeeledSwitchMBB =
12580 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12583 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12584 SwitchWorkListItem
W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12585 nullptr,
nullptr, TopCaseProb.
getCompl()};
12586 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12588 Clusters.erase(PeeledCaseIt);
12589 for (CaseCluster &CC : Clusters) {
12591 dbgs() <<
"Scale the probablity for one cluster, before scaling: "
12592 << CC.
Prob <<
"\n");
12596 PeeledCaseProb = TopCaseProb;
12597 return PeeledSwitchMBB;
12600void SelectionDAGBuilder::visitSwitch(
const SwitchInst &
SI) {
12602 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12604 Clusters.reserve(
SI.getNumCases());
12605 for (
auto I :
SI.cases()) {
12606 MachineBasicBlock *Succ =
FuncInfo.getMBB(
I.getCaseSuccessor());
12607 const ConstantInt *CaseVal =
I.getCaseValue();
12608 BranchProbability Prob =
12610 : BranchProbability(1,
SI.getNumCases() + 1);
12614 MachineBasicBlock *DefaultMBB =
FuncInfo.getMBB(
SI.getDefaultDest());
12623 MachineBasicBlock *PeeledSwitchMBB =
12624 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12627 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12628 if (Clusters.empty()) {
12629 assert(PeeledSwitchMBB == SwitchMBB);
12631 if (DefaultMBB != NextBlock(SwitchMBB)) {
12638 SL->findJumpTables(Clusters, &SI,
getCurSDLoc(), DefaultMBB,
DAG.getPSI(),
12640 SL->findBitTestClusters(Clusters, &SI);
12643 dbgs() <<
"Case clusters: ";
12644 for (
const CaseCluster &
C : Clusters) {
12650 C.Low->getValue().print(
dbgs(),
true);
12651 if (
C.Low !=
C.High) {
12653 C.High->getValue().print(
dbgs(),
true);
12660 assert(!Clusters.empty());
12664 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12668 DefaultMBB ==
FuncInfo.getMBB(
SI.getDefaultDest()))
12671 {PeeledSwitchMBB,
First,
Last,
nullptr,
nullptr, DefaultProb});
12673 while (!WorkList.
empty()) {
12675 unsigned NumClusters =
W.LastCluster -
W.FirstCluster + 1;
12680 splitWorkItem(WorkList, W,
SI.getCondition(), SwitchMBB);
12684 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, DefaultMBB);
12688void SelectionDAGBuilder::visitStepVector(
const CallInst &
I) {
12689 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12695void SelectionDAGBuilder::visitVectorReverse(
const CallInst &
I) {
12696 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12701 assert(VT ==
V.getValueType() &&
"Malformed vector.reverse!");
12710 SmallVector<int, 8>
Mask;
12712 for (
unsigned i = 0; i != NumElts; ++i)
12713 Mask.push_back(NumElts - 1 - i);
12718void SelectionDAGBuilder::visitVectorDeinterleave(
const CallInst &
I,
12727 EVT OutVT = ValueVTs[0];
12731 for (
unsigned i = 0; i != Factor; ++i) {
12732 assert(ValueVTs[i] == OutVT &&
"Expected VTs to be the same");
12734 DAG.getVectorIdxConstant(OutNumElts * i,
DL));
12740 SDValue Even =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12742 SDValue Odd =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12750 DAG.getVTList(ValueVTs), SubVecs);
12754void SelectionDAGBuilder::visitVectorInterleave(
const CallInst &
I,
12757 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12762 for (
unsigned i = 0; i < Factor; ++i) {
12765 "Expected VTs to be the same");
12783 for (
unsigned i = 0; i < Factor; ++i)
12790void SelectionDAGBuilder::visitFreeze(
const FreezeInst &
I) {
12794 unsigned NumValues = ValueVTs.
size();
12795 if (NumValues == 0)
return;
12800 for (
unsigned i = 0; i != NumValues; ++i)
12805 DAG.getVTList(ValueVTs), Values));
12808void SelectionDAGBuilder::visitVectorSplice(
const CallInst &
I) {
12809 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12821 DAG.getSignedConstant(
12828 uint64_t Idx = (NumElts +
Imm) % NumElts;
12831 SmallVector<int, 8>
Mask;
12832 for (
unsigned i = 0; i < NumElts; ++i)
12833 Mask.push_back(Idx + i);
12861 assert(
MI->getOpcode() == TargetOpcode::COPY &&
12862 "start of copy chain MUST be COPY");
12863 Reg =
MI->getOperand(1).getReg();
12866 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12867 MI =
MRI.def_begin(
Reg)->getParent();
12870 if (
MI->getOpcode() == TargetOpcode::COPY) {
12871 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12872 Reg =
MI->getOperand(1).getReg();
12873 assert(
Reg.isPhysical() &&
"expected COPY of physical register");
12876 assert(
MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12877 "end of copy chain MUST be INLINEASM_BR");
12887void SelectionDAGBuilder::visitCallBrLandingPad(
const CallInst &
I) {
12893 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12894 const TargetRegisterInfo *
TRI =
DAG.getSubtarget().getRegisterInfo();
12895 MachineRegisterInfo &
MRI =
DAG.getMachineFunction().getRegInfo();
12903 for (
auto &
T : TargetConstraints) {
12904 SDISelAsmOperandInfo OpInfo(
T);
12912 switch (OpInfo.ConstraintType) {
12923 FuncInfo.MBB->addLiveIn(OriginalDef);
12931 ResultVTs.
push_back(OpInfo.ConstraintVT);
12940 ResultVTs.
push_back(OpInfo.ConstraintVT);
12948 DAG.getVTList(ResultVTs), ResultValues);
unsigned const MachineRegisterInfo * MRI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
static Value * getCondition(Instruction *I)
const HexagonInstrInfo * TII
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const fltSemantics & IEEEsingle()
Class for arbitrary precision integers.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
This class holds the attributes for a particular argument, parameter, function, or return value.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
A constant value that is initialized with an expression using other constant values.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
A signed pointer, in the ptrauth sense.
uint64_t getZExtValue() const
Constant Vector Declarations.
This is an important base class in LLVM.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
LLVM_ABI DILocation * getInlinedAt() const
iterator find(const_arg_type_t< KeyT > Val)
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
Lightweight error class with error context and mandatory checking.
Class representing an expression and its matching format.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
bool allowReassoc() const
Flag queries.
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Garbage collection metadata for a single function.
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
succ_iterator succ_begin()
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setStackProtectorIndex(int I)
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
bool hasEHFunclets() const
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
A Module instance is used to store all the information related to an LLVM module.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li)
DebugLoc getCurDebugLoc() const
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
SDLoc getCurSDLoc() const
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
void LowerDeoptimizingReturn()
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const
Return a TargetTransformInfo for a given function.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
const MCPhysReg * iterator
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
bool isVoidTy() const
Return true if this is 'void'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
@ SIGN_EXTEND
Conversion operators.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ PtrAuthGlobalAddress
A ptrauth constant.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ STRICT_FADD
Constrained versions of the binary floating point operators.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
@ ebIgnore
This corresponds to "fpexcept.ignore".
NodeAddr< FuncNode * > Func
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
auto cast_or_null(const Y &Val)
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
gep_type_iterator gep_type_end(const User *GEP)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
uint64_t getScalarStoreSize() const
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
void setOrigAlign(Align A)
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
bool isABIMangled() const
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
MachineBasicBlock * Default
BranchProbability DefaultProb
MachineBasicBlock * Parent
bool FallthroughUnreachable
MachineBasicBlock * ThisBB
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
BranchProbability TrueProb
BranchProbability FalseProb
MachineBasicBlock * TrueBB
MachineBasicBlock * FalseBB
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
bool IsPostTypeLegalization
SmallVector< SDValue, 4 > InVals
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)