LLVM 22.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/Loads.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/CallingConv.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <cstring>
62#include <string>
63#include <tuple>
64#include <utility>
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81/// Minimum jump table density for normal functions.
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87/// Minimum jump table density for -Os or -Oz functions.
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
94 "min-bit-test-cmps", cl::init(2), cl::Hidden,
95 cl::desc("Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
97
98// FIXME: This option is only to test if the strict fp operation processed
99// correctly by preventing mutating strict fp operation to normal fp operation
100// during development. When the backend supports strict float operation, this
101// option will be meaningless.
102static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
103 cl::desc("Don't mutate strict-float node to a legalize node"),
104 cl::init(false), cl::Hidden);
105
106LLVM_ABI RTLIB::Libcall RTLIB::getSHL(EVT VT) {
107 if (VT == MVT::i16)
108 return RTLIB::SHL_I16;
109 if (VT == MVT::i32)
110 return RTLIB::SHL_I32;
111 if (VT == MVT::i64)
112 return RTLIB::SHL_I64;
113 if (VT == MVT::i128)
114 return RTLIB::SHL_I128;
115
116 return RTLIB::UNKNOWN_LIBCALL;
117}
118
119LLVM_ABI RTLIB::Libcall RTLIB::getSRL(EVT VT) {
120 if (VT == MVT::i16)
121 return RTLIB::SRL_I16;
122 if (VT == MVT::i32)
123 return RTLIB::SRL_I32;
124 if (VT == MVT::i64)
125 return RTLIB::SRL_I64;
126 if (VT == MVT::i128)
127 return RTLIB::SRL_I128;
128
129 return RTLIB::UNKNOWN_LIBCALL;
130}
131
132LLVM_ABI RTLIB::Libcall RTLIB::getSRA(EVT VT) {
133 if (VT == MVT::i16)
134 return RTLIB::SRA_I16;
135 if (VT == MVT::i32)
136 return RTLIB::SRA_I32;
137 if (VT == MVT::i64)
138 return RTLIB::SRA_I64;
139 if (VT == MVT::i128)
140 return RTLIB::SRA_I128;
141
142 return RTLIB::UNKNOWN_LIBCALL;
143}
144
145LLVM_ABI RTLIB::Libcall RTLIB::getMUL(EVT VT) {
146 if (VT == MVT::i16)
147 return RTLIB::MUL_I16;
148 if (VT == MVT::i32)
149 return RTLIB::MUL_I32;
150 if (VT == MVT::i64)
151 return RTLIB::MUL_I64;
152 if (VT == MVT::i128)
153 return RTLIB::MUL_I128;
154 return RTLIB::UNKNOWN_LIBCALL;
155}
156
157LLVM_ABI RTLIB::Libcall RTLIB::getMULO(EVT VT) {
158 if (VT == MVT::i32)
159 return RTLIB::MULO_I32;
160 if (VT == MVT::i64)
161 return RTLIB::MULO_I64;
162 if (VT == MVT::i128)
163 return RTLIB::MULO_I128;
164 return RTLIB::UNKNOWN_LIBCALL;
165}
166
167LLVM_ABI RTLIB::Libcall RTLIB::getSDIV(EVT VT) {
168 if (VT == MVT::i16)
169 return RTLIB::SDIV_I16;
170 if (VT == MVT::i32)
171 return RTLIB::SDIV_I32;
172 if (VT == MVT::i64)
173 return RTLIB::SDIV_I64;
174 if (VT == MVT::i128)
175 return RTLIB::SDIV_I128;
176 return RTLIB::UNKNOWN_LIBCALL;
177}
178
179LLVM_ABI RTLIB::Libcall RTLIB::getUDIV(EVT VT) {
180 if (VT == MVT::i16)
181 return RTLIB::UDIV_I16;
182 if (VT == MVT::i32)
183 return RTLIB::UDIV_I32;
184 if (VT == MVT::i64)
185 return RTLIB::UDIV_I64;
186 if (VT == MVT::i128)
187 return RTLIB::UDIV_I128;
188 return RTLIB::UNKNOWN_LIBCALL;
189}
190
191LLVM_ABI RTLIB::Libcall RTLIB::getSREM(EVT VT) {
192 if (VT == MVT::i16)
193 return RTLIB::SREM_I16;
194 if (VT == MVT::i32)
195 return RTLIB::SREM_I32;
196 if (VT == MVT::i64)
197 return RTLIB::SREM_I64;
198 if (VT == MVT::i128)
199 return RTLIB::SREM_I128;
200 return RTLIB::UNKNOWN_LIBCALL;
201}
202
203LLVM_ABI RTLIB::Libcall RTLIB::getUREM(EVT VT) {
204 if (VT == MVT::i16)
205 return RTLIB::UREM_I16;
206 if (VT == MVT::i32)
207 return RTLIB::UREM_I32;
208 if (VT == MVT::i64)
209 return RTLIB::UREM_I64;
210 if (VT == MVT::i128)
211 return RTLIB::UREM_I128;
212 return RTLIB::UNKNOWN_LIBCALL;
213}
214
215LLVM_ABI RTLIB::Libcall RTLIB::getCTPOP(EVT VT) {
216 if (VT == MVT::i32)
217 return RTLIB::CTPOP_I32;
218 if (VT == MVT::i64)
219 return RTLIB::CTPOP_I64;
220 if (VT == MVT::i128)
221 return RTLIB::CTPOP_I128;
222 return RTLIB::UNKNOWN_LIBCALL;
223}
224
225/// GetFPLibCall - Helper to return the right libcall for the given floating
226/// point type, or UNKNOWN_LIBCALL if there is none.
227RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
228 RTLIB::Libcall Call_F32,
229 RTLIB::Libcall Call_F64,
230 RTLIB::Libcall Call_F80,
231 RTLIB::Libcall Call_F128,
232 RTLIB::Libcall Call_PPCF128) {
233 return
234 VT == MVT::f32 ? Call_F32 :
235 VT == MVT::f64 ? Call_F64 :
236 VT == MVT::f80 ? Call_F80 :
237 VT == MVT::f128 ? Call_F128 :
238 VT == MVT::ppcf128 ? Call_PPCF128 :
239 RTLIB::UNKNOWN_LIBCALL;
240}
241
242/// getFPEXT - Return the FPEXT_*_* value for the given types, or
243/// UNKNOWN_LIBCALL if there is none.
244RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
245 if (OpVT == MVT::f16) {
246 if (RetVT == MVT::f32)
247 return FPEXT_F16_F32;
248 if (RetVT == MVT::f64)
249 return FPEXT_F16_F64;
250 if (RetVT == MVT::f80)
251 return FPEXT_F16_F80;
252 if (RetVT == MVT::f128)
253 return FPEXT_F16_F128;
254 } else if (OpVT == MVT::f32) {
255 if (RetVT == MVT::f64)
256 return FPEXT_F32_F64;
257 if (RetVT == MVT::f128)
258 return FPEXT_F32_F128;
259 if (RetVT == MVT::ppcf128)
260 return FPEXT_F32_PPCF128;
261 } else if (OpVT == MVT::f64) {
262 if (RetVT == MVT::f128)
263 return FPEXT_F64_F128;
264 else if (RetVT == MVT::ppcf128)
265 return FPEXT_F64_PPCF128;
266 } else if (OpVT == MVT::f80) {
267 if (RetVT == MVT::f128)
268 return FPEXT_F80_F128;
269 } else if (OpVT == MVT::bf16) {
270 if (RetVT == MVT::f32)
271 return FPEXT_BF16_F32;
272 }
273
274 return UNKNOWN_LIBCALL;
275}
276
277/// getFPROUND - Return the FPROUND_*_* value for the given types, or
278/// UNKNOWN_LIBCALL if there is none.
279RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
280 if (RetVT == MVT::f16) {
281 if (OpVT == MVT::f32)
282 return FPROUND_F32_F16;
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F16;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F16;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F16;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F16;
291 } else if (RetVT == MVT::bf16) {
292 if (OpVT == MVT::f32)
293 return FPROUND_F32_BF16;
294 if (OpVT == MVT::f64)
295 return FPROUND_F64_BF16;
296 if (OpVT == MVT::f80)
297 return FPROUND_F80_BF16;
298 if (OpVT == MVT::f128)
299 return FPROUND_F128_BF16;
300 } else if (RetVT == MVT::f32) {
301 if (OpVT == MVT::f64)
302 return FPROUND_F64_F32;
303 if (OpVT == MVT::f80)
304 return FPROUND_F80_F32;
305 if (OpVT == MVT::f128)
306 return FPROUND_F128_F32;
307 if (OpVT == MVT::ppcf128)
308 return FPROUND_PPCF128_F32;
309 } else if (RetVT == MVT::f64) {
310 if (OpVT == MVT::f80)
311 return FPROUND_F80_F64;
312 if (OpVT == MVT::f128)
313 return FPROUND_F128_F64;
314 if (OpVT == MVT::ppcf128)
315 return FPROUND_PPCF128_F64;
316 } else if (RetVT == MVT::f80) {
317 if (OpVT == MVT::f128)
318 return FPROUND_F128_F80;
319 }
320
321 return UNKNOWN_LIBCALL;
322}
323
324/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
325/// UNKNOWN_LIBCALL if there is none.
326RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
327 if (OpVT == MVT::f16) {
328 if (RetVT == MVT::i32)
329 return FPTOSINT_F16_I32;
330 if (RetVT == MVT::i64)
331 return FPTOSINT_F16_I64;
332 if (RetVT == MVT::i128)
333 return FPTOSINT_F16_I128;
334 } else if (OpVT == MVT::f32) {
335 if (RetVT == MVT::i32)
336 return FPTOSINT_F32_I32;
337 if (RetVT == MVT::i64)
338 return FPTOSINT_F32_I64;
339 if (RetVT == MVT::i128)
340 return FPTOSINT_F32_I128;
341 } else if (OpVT == MVT::f64) {
342 if (RetVT == MVT::i32)
343 return FPTOSINT_F64_I32;
344 if (RetVT == MVT::i64)
345 return FPTOSINT_F64_I64;
346 if (RetVT == MVT::i128)
347 return FPTOSINT_F64_I128;
348 } else if (OpVT == MVT::f80) {
349 if (RetVT == MVT::i32)
350 return FPTOSINT_F80_I32;
351 if (RetVT == MVT::i64)
352 return FPTOSINT_F80_I64;
353 if (RetVT == MVT::i128)
354 return FPTOSINT_F80_I128;
355 } else if (OpVT == MVT::f128) {
356 if (RetVT == MVT::i32)
357 return FPTOSINT_F128_I32;
358 if (RetVT == MVT::i64)
359 return FPTOSINT_F128_I64;
360 if (RetVT == MVT::i128)
361 return FPTOSINT_F128_I128;
362 } else if (OpVT == MVT::ppcf128) {
363 if (RetVT == MVT::i32)
364 return FPTOSINT_PPCF128_I32;
365 if (RetVT == MVT::i64)
366 return FPTOSINT_PPCF128_I64;
367 if (RetVT == MVT::i128)
368 return FPTOSINT_PPCF128_I128;
369 }
370 return UNKNOWN_LIBCALL;
371}
372
373/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
374/// UNKNOWN_LIBCALL if there is none.
375RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
376 if (OpVT == MVT::f16) {
377 if (RetVT == MVT::i32)
378 return FPTOUINT_F16_I32;
379 if (RetVT == MVT::i64)
380 return FPTOUINT_F16_I64;
381 if (RetVT == MVT::i128)
382 return FPTOUINT_F16_I128;
383 } else if (OpVT == MVT::f32) {
384 if (RetVT == MVT::i32)
385 return FPTOUINT_F32_I32;
386 if (RetVT == MVT::i64)
387 return FPTOUINT_F32_I64;
388 if (RetVT == MVT::i128)
389 return FPTOUINT_F32_I128;
390 } else if (OpVT == MVT::f64) {
391 if (RetVT == MVT::i32)
392 return FPTOUINT_F64_I32;
393 if (RetVT == MVT::i64)
394 return FPTOUINT_F64_I64;
395 if (RetVT == MVT::i128)
396 return FPTOUINT_F64_I128;
397 } else if (OpVT == MVT::f80) {
398 if (RetVT == MVT::i32)
399 return FPTOUINT_F80_I32;
400 if (RetVT == MVT::i64)
401 return FPTOUINT_F80_I64;
402 if (RetVT == MVT::i128)
403 return FPTOUINT_F80_I128;
404 } else if (OpVT == MVT::f128) {
405 if (RetVT == MVT::i32)
406 return FPTOUINT_F128_I32;
407 if (RetVT == MVT::i64)
408 return FPTOUINT_F128_I64;
409 if (RetVT == MVT::i128)
410 return FPTOUINT_F128_I128;
411 } else if (OpVT == MVT::ppcf128) {
412 if (RetVT == MVT::i32)
413 return FPTOUINT_PPCF128_I32;
414 if (RetVT == MVT::i64)
415 return FPTOUINT_PPCF128_I64;
416 if (RetVT == MVT::i128)
417 return FPTOUINT_PPCF128_I128;
418 }
419 return UNKNOWN_LIBCALL;
420}
421
422/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
423/// UNKNOWN_LIBCALL if there is none.
424RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
425 if (OpVT == MVT::i32) {
426 if (RetVT == MVT::f16)
427 return SINTTOFP_I32_F16;
428 if (RetVT == MVT::f32)
429 return SINTTOFP_I32_F32;
430 if (RetVT == MVT::f64)
431 return SINTTOFP_I32_F64;
432 if (RetVT == MVT::f80)
433 return SINTTOFP_I32_F80;
434 if (RetVT == MVT::f128)
435 return SINTTOFP_I32_F128;
436 if (RetVT == MVT::ppcf128)
437 return SINTTOFP_I32_PPCF128;
438 } else if (OpVT == MVT::i64) {
439 if (RetVT == MVT::bf16)
440 return SINTTOFP_I64_BF16;
441 if (RetVT == MVT::f16)
442 return SINTTOFP_I64_F16;
443 if (RetVT == MVT::f32)
444 return SINTTOFP_I64_F32;
445 if (RetVT == MVT::f64)
446 return SINTTOFP_I64_F64;
447 if (RetVT == MVT::f80)
448 return SINTTOFP_I64_F80;
449 if (RetVT == MVT::f128)
450 return SINTTOFP_I64_F128;
451 if (RetVT == MVT::ppcf128)
452 return SINTTOFP_I64_PPCF128;
453 } else if (OpVT == MVT::i128) {
454 if (RetVT == MVT::f16)
455 return SINTTOFP_I128_F16;
456 if (RetVT == MVT::f32)
457 return SINTTOFP_I128_F32;
458 if (RetVT == MVT::f64)
459 return SINTTOFP_I128_F64;
460 if (RetVT == MVT::f80)
461 return SINTTOFP_I128_F80;
462 if (RetVT == MVT::f128)
463 return SINTTOFP_I128_F128;
464 if (RetVT == MVT::ppcf128)
465 return SINTTOFP_I128_PPCF128;
466 }
467 return UNKNOWN_LIBCALL;
468}
469
470/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
471/// UNKNOWN_LIBCALL if there is none.
472RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
473 if (OpVT == MVT::i32) {
474 if (RetVT == MVT::f16)
475 return UINTTOFP_I32_F16;
476 if (RetVT == MVT::f32)
477 return UINTTOFP_I32_F32;
478 if (RetVT == MVT::f64)
479 return UINTTOFP_I32_F64;
480 if (RetVT == MVT::f80)
481 return UINTTOFP_I32_F80;
482 if (RetVT == MVT::f128)
483 return UINTTOFP_I32_F128;
484 if (RetVT == MVT::ppcf128)
485 return UINTTOFP_I32_PPCF128;
486 } else if (OpVT == MVT::i64) {
487 if (RetVT == MVT::bf16)
488 return UINTTOFP_I64_BF16;
489 if (RetVT == MVT::f16)
490 return UINTTOFP_I64_F16;
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I64_F32;
493 if (RetVT == MVT::f64)
494 return UINTTOFP_I64_F64;
495 if (RetVT == MVT::f80)
496 return UINTTOFP_I64_F80;
497 if (RetVT == MVT::f128)
498 return UINTTOFP_I64_F128;
499 if (RetVT == MVT::ppcf128)
500 return UINTTOFP_I64_PPCF128;
501 } else if (OpVT == MVT::i128) {
502 if (RetVT == MVT::f16)
503 return UINTTOFP_I128_F16;
504 if (RetVT == MVT::f32)
505 return UINTTOFP_I128_F32;
506 if (RetVT == MVT::f64)
507 return UINTTOFP_I128_F64;
508 if (RetVT == MVT::f80)
509 return UINTTOFP_I128_F80;
510 if (RetVT == MVT::f128)
511 return UINTTOFP_I128_F128;
512 if (RetVT == MVT::ppcf128)
513 return UINTTOFP_I128_PPCF128;
514 }
515 return UNKNOWN_LIBCALL;
516}
517
518RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
519 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
520 POWI_PPCF128);
521}
522
523RTLIB::Libcall RTLIB::getPOW(EVT RetVT) {
524 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
525}
526
527RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
528 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
529 LDEXP_PPCF128);
530}
531
532RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
533 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
534 FREXP_PPCF128);
535}
536
537RTLIB::Libcall RTLIB::getSIN(EVT RetVT) {
538 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
539}
540
541RTLIB::Libcall RTLIB::getCOS(EVT RetVT) {
542 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
543}
544
545RTLIB::Libcall RTLIB::getSINCOS(EVT RetVT) {
546 // TODO: Tablegen should generate this function
547 if (RetVT.isVector()) {
548 if (!RetVT.isSimple())
549 return RTLIB::UNKNOWN_LIBCALL;
550 switch (RetVT.getSimpleVT().SimpleTy) {
551 case MVT::v4f32:
552 return RTLIB::SINCOS_V4F32;
553 case MVT::v2f64:
554 return RTLIB::SINCOS_V2F64;
555 case MVT::nxv4f32:
556 return RTLIB::SINCOS_NXV4F32;
557 case MVT::nxv2f64:
558 return RTLIB::SINCOS_NXV2F64;
559 default:
560 return RTLIB::UNKNOWN_LIBCALL;
561 }
562 }
563
564 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
565 SINCOS_PPCF128);
566}
567
568RTLIB::Libcall RTLIB::getSINCOSPI(EVT RetVT) {
569 // TODO: Tablegen should generate this function
570 if (RetVT.isVector()) {
571 if (!RetVT.isSimple())
572 return RTLIB::UNKNOWN_LIBCALL;
573 switch (RetVT.getSimpleVT().SimpleTy) {
574 case MVT::v4f32:
575 return RTLIB::SINCOSPI_V4F32;
576 case MVT::v2f64:
577 return RTLIB::SINCOSPI_V2F64;
578 case MVT::nxv4f32:
579 return RTLIB::SINCOSPI_NXV4F32;
580 case MVT::nxv2f64:
581 return RTLIB::SINCOSPI_NXV2F64;
582 default:
583 return RTLIB::UNKNOWN_LIBCALL;
584 }
585 }
586
587 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
588 SINCOSPI_F128, SINCOSPI_PPCF128);
589}
590
591RTLIB::Libcall RTLIB::getSINCOS_STRET(EVT RetVT) {
592 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
593 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
594}
595
596RTLIB::Libcall RTLIB::getREM(EVT VT) {
597 // TODO: Tablegen should generate this function
598 if (VT.isVector()) {
599 if (!VT.isSimple())
600 return RTLIB::UNKNOWN_LIBCALL;
601 switch (VT.getSimpleVT().SimpleTy) {
602 case MVT::v4f32:
603 return RTLIB::REM_V4F32;
604 case MVT::v2f64:
605 return RTLIB::REM_V2F64;
606 case MVT::nxv4f32:
607 return RTLIB::REM_NXV4F32;
608 case MVT::nxv2f64:
609 return RTLIB::REM_NXV2F64;
610 default:
611 return RTLIB::UNKNOWN_LIBCALL;
612 }
613 }
614
615 return getFPLibCall(VT, REM_F32, REM_F64, REM_F80, REM_F128, REM_PPCF128);
616}
617
618RTLIB::Libcall RTLIB::getMODF(EVT RetVT) {
619 // TODO: Tablegen should generate this function
620 if (RetVT.isVector()) {
621 if (!RetVT.isSimple())
622 return RTLIB::UNKNOWN_LIBCALL;
623 switch (RetVT.getSimpleVT().SimpleTy) {
624 case MVT::v4f32:
625 return RTLIB::MODF_V4F32;
626 case MVT::v2f64:
627 return RTLIB::MODF_V2F64;
628 case MVT::nxv4f32:
629 return RTLIB::MODF_NXV4F32;
630 case MVT::nxv2f64:
631 return RTLIB::MODF_NXV2F64;
632 default:
633 return RTLIB::UNKNOWN_LIBCALL;
634 }
635 }
636
637 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
638 MODF_PPCF128);
639}
640
641RTLIB::Libcall RTLIB::getLROUND(EVT VT) {
642 if (VT == MVT::f32)
643 return RTLIB::LROUND_F32;
644 if (VT == MVT::f64)
645 return RTLIB::LROUND_F64;
646 if (VT == MVT::f80)
647 return RTLIB::LROUND_F80;
648 if (VT == MVT::f128)
649 return RTLIB::LROUND_F128;
650 if (VT == MVT::ppcf128)
651 return RTLIB::LROUND_PPCF128;
652
653 return RTLIB::UNKNOWN_LIBCALL;
654}
655
656RTLIB::Libcall RTLIB::getLLROUND(EVT VT) {
657 if (VT == MVT::f32)
658 return RTLIB::LLROUND_F32;
659 if (VT == MVT::f64)
660 return RTLIB::LLROUND_F64;
661 if (VT == MVT::f80)
662 return RTLIB::LLROUND_F80;
663 if (VT == MVT::f128)
664 return RTLIB::LLROUND_F128;
665 if (VT == MVT::ppcf128)
666 return RTLIB::LLROUND_PPCF128;
667
668 return RTLIB::UNKNOWN_LIBCALL;
669}
670
671RTLIB::Libcall RTLIB::getLRINT(EVT VT) {
672 if (VT == MVT::f32)
673 return RTLIB::LRINT_F32;
674 if (VT == MVT::f64)
675 return RTLIB::LRINT_F64;
676 if (VT == MVT::f80)
677 return RTLIB::LRINT_F80;
678 if (VT == MVT::f128)
679 return RTLIB::LRINT_F128;
680 if (VT == MVT::ppcf128)
681 return RTLIB::LRINT_PPCF128;
682 return RTLIB::UNKNOWN_LIBCALL;
683}
684
685RTLIB::Libcall RTLIB::getLLRINT(EVT VT) {
686 if (VT == MVT::f32)
687 return RTLIB::LLRINT_F32;
688 if (VT == MVT::f64)
689 return RTLIB::LLRINT_F64;
690 if (VT == MVT::f80)
691 return RTLIB::LLRINT_F80;
692 if (VT == MVT::f128)
693 return RTLIB::LLRINT_F128;
694 if (VT == MVT::ppcf128)
695 return RTLIB::LLRINT_PPCF128;
696 return RTLIB::UNKNOWN_LIBCALL;
697}
698
699RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
700 AtomicOrdering Order,
701 uint64_t MemSize) {
702 unsigned ModeN, ModelN;
703 switch (MemSize) {
704 case 1:
705 ModeN = 0;
706 break;
707 case 2:
708 ModeN = 1;
709 break;
710 case 4:
711 ModeN = 2;
712 break;
713 case 8:
714 ModeN = 3;
715 break;
716 case 16:
717 ModeN = 4;
718 break;
719 default:
720 return RTLIB::UNKNOWN_LIBCALL;
721 }
722
723 switch (Order) {
725 ModelN = 0;
726 break;
728 ModelN = 1;
729 break;
731 ModelN = 2;
732 break;
735 ModelN = 3;
736 break;
737 default:
738 return UNKNOWN_LIBCALL;
739 }
740
741 return LC[ModeN][ModelN];
742}
743
744RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
745 MVT VT) {
746 if (!VT.isScalarInteger())
747 return UNKNOWN_LIBCALL;
748 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
749
750#define LCALLS(A, B) \
751 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
752#define LCALL5(A) \
753 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
754 switch (Opc) {
756 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
757 return getOutlineAtomicHelper(LC, Order, MemSize);
758 }
759 case ISD::ATOMIC_SWAP: {
760 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
761 return getOutlineAtomicHelper(LC, Order, MemSize);
762 }
764 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
765 return getOutlineAtomicHelper(LC, Order, MemSize);
766 }
767 case ISD::ATOMIC_LOAD_OR: {
768 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
769 return getOutlineAtomicHelper(LC, Order, MemSize);
770 }
772 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
773 return getOutlineAtomicHelper(LC, Order, MemSize);
774 }
776 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
777 return getOutlineAtomicHelper(LC, Order, MemSize);
778 }
779 default:
780 return UNKNOWN_LIBCALL;
781 }
782#undef LCALLS
783#undef LCALL5
784}
785
786RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
787#define OP_TO_LIBCALL(Name, Enum) \
788 case Name: \
789 switch (VT.SimpleTy) { \
790 default: \
791 return UNKNOWN_LIBCALL; \
792 case MVT::i8: \
793 return Enum##_1; \
794 case MVT::i16: \
795 return Enum##_2; \
796 case MVT::i32: \
797 return Enum##_4; \
798 case MVT::i64: \
799 return Enum##_8; \
800 case MVT::i128: \
801 return Enum##_16; \
802 }
803
804 switch (Opc) {
805 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
806 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
807 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
808 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
809 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
810 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
811 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
812 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
813 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
814 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
815 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
816 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
817 }
818
819#undef OP_TO_LIBCALL
820
821 return UNKNOWN_LIBCALL;
822}
823
825 switch (ElementSize) {
826 case 1:
827 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
828 case 2:
829 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
830 case 4:
831 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
832 case 8:
833 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
834 case 16:
835 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
836 default:
837 return UNKNOWN_LIBCALL;
838 }
839}
840
842 switch (ElementSize) {
843 case 1:
844 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
845 case 2:
846 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
847 case 4:
848 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
849 case 8:
850 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
851 case 16:
852 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
853 default:
854 return UNKNOWN_LIBCALL;
855 }
856}
857
859 switch (ElementSize) {
860 case 1:
861 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
862 case 2:
863 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
864 case 4:
865 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
866 case 8:
867 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
868 case 16:
869 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
870 default:
871 return UNKNOWN_LIBCALL;
872 }
873}
874
876 RTLIB::LibcallImpl Impl) const {
877 switch (Impl) {
878 case RTLIB::impl___aeabi_dcmpeq__une:
879 case RTLIB::impl___aeabi_fcmpeq__une:
880 // Usage in the eq case, so we have to invert the comparison.
881 return ISD::SETEQ;
882 case RTLIB::impl___aeabi_dcmpeq__oeq:
883 case RTLIB::impl___aeabi_fcmpeq__oeq:
884 // Normal comparison to boolean value.
885 return ISD::SETNE;
886 case RTLIB::impl___aeabi_dcmplt:
887 case RTLIB::impl___aeabi_dcmple:
888 case RTLIB::impl___aeabi_dcmpge:
889 case RTLIB::impl___aeabi_dcmpgt:
890 case RTLIB::impl___aeabi_dcmpun:
891 case RTLIB::impl___aeabi_fcmplt:
892 case RTLIB::impl___aeabi_fcmple:
893 case RTLIB::impl___aeabi_fcmpge:
894 case RTLIB::impl___aeabi_fcmpgt:
895 /// The AEABI versions return a typical boolean value, so we can compare
896 /// against the integer result as simply != 0.
897 return ISD::SETNE;
898 default:
899 break;
900 }
901
902 // Assume libgcc/compiler-rt behavior. Most of the cases are really aliases of
903 // each other, and return a 3-way comparison style result of -1, 0, or 1
904 // depending on lt/eq/gt.
905 //
906 // FIXME: It would be cleaner to directly express this as a 3-way comparison
907 // soft FP libcall instead of individual compares.
908 RTLIB::Libcall LC = RTLIB::RuntimeLibcallsInfo::getLibcallFromImpl(Impl);
909 switch (LC) {
910 case RTLIB::OEQ_F32:
911 case RTLIB::OEQ_F64:
912 case RTLIB::OEQ_F128:
913 case RTLIB::OEQ_PPCF128:
914 return ISD::SETEQ;
915 case RTLIB::UNE_F32:
916 case RTLIB::UNE_F64:
917 case RTLIB::UNE_F128:
918 case RTLIB::UNE_PPCF128:
919 return ISD::SETNE;
920 case RTLIB::OGE_F32:
921 case RTLIB::OGE_F64:
922 case RTLIB::OGE_F128:
923 case RTLIB::OGE_PPCF128:
924 return ISD::SETGE;
925 case RTLIB::OLT_F32:
926 case RTLIB::OLT_F64:
927 case RTLIB::OLT_F128:
928 case RTLIB::OLT_PPCF128:
929 return ISD::SETLT;
930 case RTLIB::OLE_F32:
931 case RTLIB::OLE_F64:
932 case RTLIB::OLE_F128:
933 case RTLIB::OLE_PPCF128:
934 return ISD::SETLE;
935 case RTLIB::OGT_F32:
936 case RTLIB::OGT_F64:
937 case RTLIB::OGT_F128:
938 case RTLIB::OGT_PPCF128:
939 return ISD::SETGT;
940 case RTLIB::UO_F32:
941 case RTLIB::UO_F64:
942 case RTLIB::UO_F128:
943 case RTLIB::UO_PPCF128:
944 return ISD::SETNE;
945 default:
946 llvm_unreachable("not a compare libcall");
947 }
948}
949
950/// NOTE: The TargetMachine owns TLOF.
952 const TargetSubtargetInfo &STI)
953 : TM(tm),
954 RuntimeLibcallInfo(TM.getTargetTriple(), TM.Options.ExceptionModel,
955 TM.Options.FloatABIType, TM.Options.EABIVersion,
956 TM.Options.MCOptions.getABIName(), TM.Options.VecLib),
957 Libcalls(RuntimeLibcallInfo, STI) {
958 initActions();
959
960 // Perform these initializations only once.
966 HasExtractBitsInsn = false;
967 JumpIsExpensive = JumpIsExpensiveOverride;
969 EnableExtLdPromotion = false;
970 StackPointerRegisterToSaveRestore = 0;
971 BooleanContents = UndefinedBooleanContent;
972 BooleanFloatContents = UndefinedBooleanContent;
973 BooleanVectorContents = UndefinedBooleanContent;
974 SchedPreferenceInfo = Sched::ILP;
977 MaxBytesForAlignment = 0;
978 MaxAtomicSizeInBitsSupported = 0;
979
980 // Assume that even with libcalls, no target supports wider than 128 bit
981 // division.
982 MaxDivRemBitWidthSupported = 128;
983
984 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
985
986 MinCmpXchgSizeInBits = 0;
987 SupportsUnalignedAtomics = false;
988
989 MinimumBitTestCmps = MinimumBitTestCmpsOverride;
990}
991
992// Define the virtual destructor out-of-line to act as a key method to anchor
993// debug info (see coding standards).
995
997 // All operations default to being supported.
998 memset(OpActions, 0, sizeof(OpActions));
999 memset(LoadExtActions, 0, sizeof(LoadExtActions));
1000 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
1001 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
1002 memset(CondCodeActions, 0, sizeof(CondCodeActions));
1003 llvm::fill(RegClassForVT, nullptr);
1004 llvm::fill(TargetDAGCombineArray, 0);
1005
1006 // Let extending atomic loads be unsupported by default.
1007 for (MVT ValVT : MVT::all_valuetypes())
1008 for (MVT MemVT : MVT::all_valuetypes())
1010 Expand);
1011
1012 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
1013 // remove this and targets should individually set these types if not legal.
1016 for (MVT VT : {MVT::i2, MVT::i4})
1017 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
1018 }
1019 for (MVT AVT : MVT::all_valuetypes()) {
1020 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1021 setTruncStoreAction(AVT, VT, Expand);
1024 }
1025 }
1026 for (unsigned IM = (unsigned)ISD::PRE_INC;
1027 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1028 for (MVT VT : {MVT::i2, MVT::i4}) {
1033 }
1034 }
1035
1036 for (MVT VT : MVT::fp_valuetypes()) {
1037 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
1038 if (IntVT.isValid()) {
1041 }
1042 }
1043
1044 // If f16 fma is not natively supported, the value must be promoted to an f64
1045 // (and not to f32!) to prevent double rounding issues.
1046 AddPromotedToType(ISD::FMA, MVT::f16, MVT::f64);
1047 AddPromotedToType(ISD::STRICT_FMA, MVT::f16, MVT::f64);
1048
1049 // Set default actions for various operations.
1050 for (MVT VT : MVT::all_valuetypes()) {
1051 // Default all indexed load / store to expand.
1052 for (unsigned IM = (unsigned)ISD::PRE_INC;
1053 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1058 }
1059
1060 // Most backends expect to see the node which just returns the value loaded.
1062
1063 // These operations default to expand.
1092 ISD::FMULADD},
1093 VT, Expand);
1094
1095 // Overflow operations default to expand
1098 VT, Expand);
1099
1100 // Carry-using overflow operations default to expand.
1103 VT, Expand);
1104
1105 // ADDC/ADDE/SUBC/SUBE default to expand.
1107 Expand);
1108
1109 // [US]CMP default to expand
1111
1112 // Halving adds
1115 Expand);
1116
1117 // Absolute difference
1119
1120 // Saturated trunc
1124
1125 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
1127 Expand);
1128
1130
1131 // These library functions default to expand.
1134 VT, Expand);
1135
1136 // These operations default to expand for vector types.
1137 if (VT.isVector())
1143 VT, Expand);
1144
1145 // Constrained floating-point operations default to expand.
1146#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1147 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1148#include "llvm/IR/ConstrainedOps.def"
1149
1150 // For most targets @llvm.get.dynamic.area.offset just returns 0.
1152
1153 // Vector reduction default to expand.
1161 VT, Expand);
1162
1163 // Named vector shuffles default to expand.
1165
1166 // Only some target support this vector operation. Most need to expand it.
1168
1169 // VP operations default to expand.
1170#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
1171 setOperationAction(ISD::SDOPC, VT, Expand);
1172#include "llvm/IR/VPIntrinsics.def"
1173
1174 // Masked vector extracts default to expand.
1176
1179
1180 // FP environment operations default to expand.
1184
1186 }
1187
1188 // Most targets ignore the @llvm.prefetch intrinsic.
1190
1191 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
1193
1194 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
1196
1197 // ConstantFP nodes default to expand. Targets can either change this to
1198 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
1199 // to optimize expansions for certain constants.
1201 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1202 Expand);
1203
1204 // Insert custom handling default for llvm.canonicalize.*.
1206 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
1207
1208 // FIXME: Query RuntimeLibCalls to make the decision.
1210 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
1211
1214 MVT::f16, Promote);
1215 // Default ISD::TRAP to expand (which turns it into abort).
1216 setOperationAction(ISD::TRAP, MVT::Other, Expand);
1217
1218 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
1219 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
1221
1223
1226
1227 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1230 }
1232
1233 // This one by default will call __clear_cache unless the target
1234 // wants something different.
1236}
1237
1239 EVT) const {
1240 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1241}
1242
1244 const DataLayout &DL) const {
1245 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1246 if (LHSTy.isVector())
1247 return LHSTy;
1248 MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
1249 // If any possible shift value won't fit in the prefered type, just use
1250 // something safe. Assume it will be legalized when the shift is expanded.
1251 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1252 ShiftVT = MVT::i32;
1253 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1254 "ShiftVT is still too small!");
1255 return ShiftVT;
1256}
1257
1258bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1259 assert(isTypeLegal(VT));
1260 switch (Op) {
1261 default:
1262 return false;
1263 case ISD::SDIV:
1264 case ISD::UDIV:
1265 case ISD::SREM:
1266 case ISD::UREM:
1267 return true;
1268 }
1269}
1270
1272 unsigned DestAS) const {
1273 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1274}
1275
1277 Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1278 const ConstantRange *VScaleRange) const {
1279 // Find the smallest "sensible" element type to use for the expansion.
1280 ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1281 if (EC.isScalable())
1282 CR = CR.umul_sat(*VScaleRange);
1283
1284 if (ZeroIsPoison)
1285 CR = CR.subtract(APInt(64, 1));
1286
1287 unsigned EltWidth = RetTy->getScalarSizeInBits();
1288 EltWidth = std::min(EltWidth, CR.getActiveBits());
1289 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1290
1291 return EltWidth;
1292}
1293
1295 // If the command-line option was specified, ignore this request.
1296 if (!JumpIsExpensiveOverride.getNumOccurrences())
1297 JumpIsExpensive = isExpensive;
1298}
1299
1302 // If this is a simple type, use the ComputeRegisterProp mechanism.
1303 if (VT.isSimple()) {
1304 MVT SVT = VT.getSimpleVT();
1305 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1306 MVT NVT = TransformToType[SVT.SimpleTy];
1307 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1308
1309 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1310 LA == TypeSoftPromoteHalf ||
1311 (NVT.isVector() ||
1312 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1313 "Promote may not follow Expand or Promote");
1314
1315 if (LA == TypeSplitVector)
1316 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1317 if (LA == TypeScalarizeVector)
1318 return LegalizeKind(LA, SVT.getVectorElementType());
1319 return LegalizeKind(LA, NVT);
1320 }
1321
1322 // Handle Extended Scalar Types.
1323 if (!VT.isVector()) {
1324 assert(VT.isInteger() && "Float types must be simple");
1325 unsigned BitSize = VT.getSizeInBits();
1326 // First promote to a power-of-two size, then expand if necessary.
1327 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1328 EVT NVT = VT.getRoundIntegerType(Context);
1329 assert(NVT != VT && "Unable to round integer VT");
1330 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1331 // Avoid multi-step promotion.
1332 if (NextStep.first == TypePromoteInteger)
1333 return NextStep;
1334 // Return rounded integer type.
1335 return LegalizeKind(TypePromoteInteger, NVT);
1336 }
1337
1339 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1340 }
1341
1342 // Handle vector types.
1343 ElementCount NumElts = VT.getVectorElementCount();
1344 EVT EltVT = VT.getVectorElementType();
1345
1346 // Vectors with only one element are always scalarized.
1347 if (NumElts.isScalar())
1348 return LegalizeKind(TypeScalarizeVector, EltVT);
1349
1350 // Try to widen vector elements until the element type is a power of two and
1351 // promote it to a legal type later on, for example:
1352 // <3 x i8> -> <4 x i8> -> <4 x i32>
1353 if (EltVT.isInteger()) {
1354 // Vectors with a number of elements that is not a power of two are always
1355 // widened, for example <3 x i8> -> <4 x i8>.
1356 if (!VT.isPow2VectorType()) {
1357 NumElts = NumElts.coefficientNextPowerOf2();
1358 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1359 return LegalizeKind(TypeWidenVector, NVT);
1360 }
1361
1362 // Examine the element type.
1363 LegalizeKind LK = getTypeConversion(Context, EltVT);
1364
1365 // If type is to be expanded, split the vector.
1366 // <4 x i140> -> <2 x i140>
1367 if (LK.first == TypeExpandInteger) {
1368 if (NumElts.isScalable() && NumElts.getKnownMinValue() == 1)
1371 VT.getHalfNumVectorElementsVT(Context));
1372 }
1373
1374 // Promote the integer element types until a legal vector type is found
1375 // or until the element integer type is too big. If a legal type was not
1376 // found, fallback to the usual mechanism of widening/splitting the
1377 // vector.
1378 EVT OldEltVT = EltVT;
1379 while (true) {
1380 // Increase the bitwidth of the element to the next pow-of-two
1381 // (which is greater than 8 bits).
1382 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1383 .getRoundIntegerType(Context);
1384
1385 // Stop trying when getting a non-simple element type.
1386 // Note that vector elements may be greater than legal vector element
1387 // types. Example: X86 XMM registers hold 64bit element on 32bit
1388 // systems.
1389 if (!EltVT.isSimple())
1390 break;
1391
1392 // Build a new vector type and check if it is legal.
1393 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1394 // Found a legal promoted vector type.
1395 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1397 EVT::getVectorVT(Context, EltVT, NumElts));
1398 }
1399
1400 // Reset the type to the unexpanded type if we did not find a legal vector
1401 // type with a promoted vector element type.
1402 EltVT = OldEltVT;
1403 }
1404
1405 // Try to widen the vector until a legal type is found.
1406 // If there is no wider legal type, split the vector.
1407 while (true) {
1408 // Round up to the next power of 2.
1409 NumElts = NumElts.coefficientNextPowerOf2();
1410
1411 // If there is no simple vector type with this many elements then there
1412 // cannot be a larger legal vector type. Note that this assumes that
1413 // there are no skipped intermediate vector types in the simple types.
1414 if (!EltVT.isSimple())
1415 break;
1416 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1417 if (LargerVector == MVT())
1418 break;
1419
1420 // If this type is legal then widen the vector.
1421 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1422 return LegalizeKind(TypeWidenVector, LargerVector);
1423 }
1424
1425 // Widen odd vectors to next power of two.
1426 if (!VT.isPow2VectorType()) {
1427 EVT NVT = VT.getPow2VectorType(Context);
1428 return LegalizeKind(TypeWidenVector, NVT);
1429 }
1430
1433
1434 // Vectors with illegal element types are expanded.
1435 EVT NVT = EVT::getVectorVT(Context, EltVT,
1437 return LegalizeKind(TypeSplitVector, NVT);
1438}
1439
1440static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1441 unsigned &NumIntermediates,
1442 MVT &RegisterVT,
1443 TargetLoweringBase *TLI) {
1444 // Figure out the right, legal destination reg to copy into.
1446 MVT EltTy = VT.getVectorElementType();
1447
1448 unsigned NumVectorRegs = 1;
1449
1450 // Scalable vectors cannot be scalarized, so splitting or widening is
1451 // required.
1452 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1454 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1455
1456 // FIXME: We don't support non-power-of-2-sized vectors for now.
1457 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1458 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1459 // Split EC to unit size (scalable property is preserved).
1460 NumVectorRegs = EC.getKnownMinValue();
1461 EC = ElementCount::getFixed(1);
1462 }
1463
1464 // Divide the input until we get to a supported size. This will
1465 // always end up with an EC that represent a scalar or a scalable
1466 // scalar.
1467 while (EC.getKnownMinValue() > 1 &&
1468 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1469 EC = EC.divideCoefficientBy(2);
1470 NumVectorRegs <<= 1;
1471 }
1472
1473 NumIntermediates = NumVectorRegs;
1474
1475 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1476 if (!TLI->isTypeLegal(NewVT))
1477 NewVT = EltTy;
1478 IntermediateVT = NewVT;
1479
1480 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1481
1482 // Convert sizes such as i33 to i64.
1483 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1484
1485 MVT DestVT = TLI->getRegisterType(NewVT);
1486 RegisterVT = DestVT;
1487 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1488 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1489
1490 // Otherwise, promotion or legal types use the same number of registers as
1491 // the vector decimated to the appropriate level.
1492 return NumVectorRegs;
1493}
1494
1495/// isLegalRC - Return true if the value types that can be represented by the
1496/// specified register class are all legal.
1498 const TargetRegisterClass &RC) const {
1499 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1500 if (isTypeLegal(*I))
1501 return true;
1502 return false;
1503}
1504
1505/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1506/// sequence of memory operands that is recognized by PrologEpilogInserter.
1509 MachineBasicBlock *MBB) const {
1510 MachineInstr *MI = &InitialMI;
1511 MachineFunction &MF = *MI->getMF();
1512 MachineFrameInfo &MFI = MF.getFrameInfo();
1513
1514 // We're handling multiple types of operands here:
1515 // PATCHPOINT MetaArgs - live-in, read only, direct
1516 // STATEPOINT Deopt Spill - live-through, read only, indirect
1517 // STATEPOINT Deopt Alloca - live-through, read only, direct
1518 // (We're currently conservative and mark the deopt slots read/write in
1519 // practice.)
1520 // STATEPOINT GC Spill - live-through, read/write, indirect
1521 // STATEPOINT GC Alloca - live-through, read/write, direct
1522 // The live-in vs live-through is handled already (the live through ones are
1523 // all stack slots), but we need to handle the different type of stackmap
1524 // operands and memory effects here.
1525
1526 if (llvm::none_of(MI->operands(),
1527 [](MachineOperand &Operand) { return Operand.isFI(); }))
1528 return MBB;
1529
1530 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1531
1532 // Inherit previous memory operands.
1533 MIB.cloneMemRefs(*MI);
1534
1535 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1536 MachineOperand &MO = MI->getOperand(i);
1537 if (!MO.isFI()) {
1538 // Index of Def operand this Use it tied to.
1539 // Since Defs are coming before Uses, if Use is tied, then
1540 // index of Def must be smaller that index of that Use.
1541 // Also, Defs preserve their position in new MI.
1542 unsigned TiedTo = i;
1543 if (MO.isReg() && MO.isTied())
1544 TiedTo = MI->findTiedOperandIdx(i);
1545 MIB.add(MO);
1546 if (TiedTo < i)
1547 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1548 continue;
1549 }
1550
1551 // foldMemoryOperand builds a new MI after replacing a single FI operand
1552 // with the canonical set of five x86 addressing-mode operands.
1553 int FI = MO.getIndex();
1554
1555 // Add frame index operands recognized by stackmaps.cpp
1557 // indirect-mem-ref tag, size, #FI, offset.
1558 // Used for spills inserted by StatepointLowering. This codepath is not
1559 // used for patchpoints/stackmaps at all, for these spilling is done via
1560 // foldMemoryOperand callback only.
1561 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1562 MIB.addImm(StackMaps::IndirectMemRefOp);
1563 MIB.addImm(MFI.getObjectSize(FI));
1564 MIB.add(MO);
1565 MIB.addImm(0);
1566 } else {
1567 // direct-mem-ref tag, #FI, offset.
1568 // Used by patchpoint, and direct alloca arguments to statepoints
1569 MIB.addImm(StackMaps::DirectMemRefOp);
1570 MIB.add(MO);
1571 MIB.addImm(0);
1572 }
1573
1574 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1575
1576 // Add a new memory operand for this FI.
1577 assert(MFI.getObjectOffset(FI) != -1);
1578
1579 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1580 // PATCHPOINT should be updated to do the same. (TODO)
1581 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1582 auto Flags = MachineMemOperand::MOLoad;
1584 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1586 MIB->addMemOperand(MF, MMO);
1587 }
1588 }
1589 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1590 MI->eraseFromParent();
1591 return MBB;
1592}
1593
1594/// findRepresentativeClass - Return the largest legal super-reg register class
1595/// of the register class for the specified type and its associated "cost".
1596// This function is in TargetLowering because it uses RegClassForVT which would
1597// need to be moved to TargetRegisterInfo and would necessitate moving
1598// isTypeLegal over as well - a massive change that would just require
1599// TargetLowering having a TargetRegisterInfo class member that it would use.
1600std::pair<const TargetRegisterClass *, uint8_t>
1602 MVT VT) const {
1603 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1604 if (!RC)
1605 return std::make_pair(RC, 0);
1606
1607 // Compute the set of all super-register classes.
1608 BitVector SuperRegRC(TRI->getNumRegClasses());
1609 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1610 SuperRegRC.setBitsInMask(RCI.getMask());
1611
1612 // Find the first legal register class with the largest spill size.
1613 const TargetRegisterClass *BestRC = RC;
1614 for (unsigned i : SuperRegRC.set_bits()) {
1615 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1616 // We want the largest possible spill size.
1617 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1618 continue;
1619 if (!isLegalRC(*TRI, *SuperRC))
1620 continue;
1621 BestRC = SuperRC;
1622 }
1623 return std::make_pair(BestRC, 1);
1624}
1625
1626/// computeRegisterProperties - Once all of the register classes are added,
1627/// this allows us to compute derived properties we expose.
1629 const TargetRegisterInfo *TRI) {
1630 // Everything defaults to needing one register.
1631 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1632 NumRegistersForVT[i] = 1;
1633 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1634 }
1635 // ...except isVoid, which doesn't need any registers.
1636 NumRegistersForVT[MVT::isVoid] = 0;
1637
1638 // Find the largest integer register class.
1639 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1640 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1641 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1642
1643 // Every integer value type larger than this largest register takes twice as
1644 // many registers to represent as the previous ValueType.
1645 for (unsigned ExpandedReg = LargestIntReg + 1;
1646 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1647 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1648 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1649 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1650 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1652 }
1653
1654 // Inspect all of the ValueType's smaller than the largest integer
1655 // register to see which ones need promotion.
1656 unsigned LegalIntReg = LargestIntReg;
1657 for (unsigned IntReg = LargestIntReg - 1;
1658 IntReg >= (unsigned)MVT::i1; --IntReg) {
1659 MVT IVT = (MVT::SimpleValueType)IntReg;
1660 if (isTypeLegal(IVT)) {
1661 LegalIntReg = IntReg;
1662 } else {
1663 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1664 (MVT::SimpleValueType)LegalIntReg;
1665 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1666 }
1667 }
1668
1669 // ppcf128 type is really two f64's.
1670 if (!isTypeLegal(MVT::ppcf128)) {
1671 if (isTypeLegal(MVT::f64)) {
1672 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1673 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1674 TransformToType[MVT::ppcf128] = MVT::f64;
1675 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1676 } else {
1677 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1678 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1679 TransformToType[MVT::ppcf128] = MVT::i128;
1680 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1681 }
1682 }
1683
1684 // Decide how to handle f128. If the target does not have native f128 support,
1685 // expand it to i128 and we will be generating soft float library calls.
1686 if (!isTypeLegal(MVT::f128)) {
1687 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1688 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1689 TransformToType[MVT::f128] = MVT::i128;
1690 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1691 }
1692
1693 // Decide how to handle f80. If the target does not have native f80 support,
1694 // expand it to i96 and we will be generating soft float library calls.
1695 if (!isTypeLegal(MVT::f80)) {
1696 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1697 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1698 TransformToType[MVT::f80] = MVT::i32;
1699 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1700 }
1701
1702 // Decide how to handle f64. If the target does not have native f64 support,
1703 // expand it to i64 and we will be generating soft float library calls.
1704 if (!isTypeLegal(MVT::f64)) {
1705 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1706 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1707 TransformToType[MVT::f64] = MVT::i64;
1708 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1709 }
1710
1711 // Decide how to handle f32. If the target does not have native f32 support,
1712 // expand it to i32 and we will be generating soft float library calls.
1713 if (!isTypeLegal(MVT::f32)) {
1714 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1715 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1716 TransformToType[MVT::f32] = MVT::i32;
1717 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1718 }
1719
1720 // Decide how to handle f16. If the target does not have native f16 support,
1721 // promote it to f32, because there are no f16 library calls (except for
1722 // conversions).
1723 if (!isTypeLegal(MVT::f16)) {
1724 // Allow targets to control how we legalize half.
1725 bool SoftPromoteHalfType = softPromoteHalfType();
1726 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1727
1728 if (!UseFPRegsForHalfType) {
1729 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1730 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1731 } else {
1732 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1733 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1734 }
1735 TransformToType[MVT::f16] = MVT::f32;
1736 if (SoftPromoteHalfType) {
1737 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1738 } else {
1739 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1740 }
1741 }
1742
1743 // Decide how to handle bf16. If the target does not have native bf16 support,
1744 // promote it to f32, because there are no bf16 library calls (except for
1745 // converting from f32 to bf16).
1746 if (!isTypeLegal(MVT::bf16)) {
1747 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1748 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1749 TransformToType[MVT::bf16] = MVT::f32;
1750 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1751 }
1752
1753 // Loop over all of the vector value types to see which need transformations.
1754 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1755 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1756 MVT VT = (MVT::SimpleValueType) i;
1757 if (isTypeLegal(VT))
1758 continue;
1759
1760 MVT EltVT = VT.getVectorElementType();
1762 bool IsLegalWiderType = false;
1763 bool IsScalable = VT.isScalableVector();
1764 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1765 switch (PreferredAction) {
1766 case TypePromoteInteger: {
1767 MVT::SimpleValueType EndVT = IsScalable ?
1768 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1769 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1770 // Try to promote the elements of integer vectors. If no legal
1771 // promotion was found, fall through to the widen-vector method.
1772 for (unsigned nVT = i + 1;
1773 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1774 MVT SVT = (MVT::SimpleValueType) nVT;
1775 // Promote vectors of integers to vectors with the same number
1776 // of elements, with a wider element type.
1777 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1778 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1779 TransformToType[i] = SVT;
1780 RegisterTypeForVT[i] = SVT;
1781 NumRegistersForVT[i] = 1;
1782 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1783 IsLegalWiderType = true;
1784 break;
1785 }
1786 }
1787 if (IsLegalWiderType)
1788 break;
1789 [[fallthrough]];
1790 }
1791
1792 case TypeWidenVector:
1793 if (isPowerOf2_32(EC.getKnownMinValue())) {
1794 // Try to widen the vector.
1795 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1796 MVT SVT = (MVT::SimpleValueType) nVT;
1797 if (SVT.getVectorElementType() == EltVT &&
1798 SVT.isScalableVector() == IsScalable &&
1800 EC.getKnownMinValue() &&
1801 isTypeLegal(SVT)) {
1802 TransformToType[i] = SVT;
1803 RegisterTypeForVT[i] = SVT;
1804 NumRegistersForVT[i] = 1;
1805 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1806 IsLegalWiderType = true;
1807 break;
1808 }
1809 }
1810 if (IsLegalWiderType)
1811 break;
1812 } else {
1813 // Only widen to the next power of 2 to keep consistency with EVT.
1814 MVT NVT = VT.getPow2VectorType();
1815 if (isTypeLegal(NVT)) {
1816 TransformToType[i] = NVT;
1817 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1818 RegisterTypeForVT[i] = NVT;
1819 NumRegistersForVT[i] = 1;
1820 break;
1821 }
1822 }
1823 [[fallthrough]];
1824
1825 case TypeSplitVector:
1826 case TypeScalarizeVector: {
1827 MVT IntermediateVT;
1828 MVT RegisterVT;
1829 unsigned NumIntermediates;
1830 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1831 NumIntermediates, RegisterVT, this);
1832 NumRegistersForVT[i] = NumRegisters;
1833 assert(NumRegistersForVT[i] == NumRegisters &&
1834 "NumRegistersForVT size cannot represent NumRegisters!");
1835 RegisterTypeForVT[i] = RegisterVT;
1836
1837 MVT NVT = VT.getPow2VectorType();
1838 if (NVT == VT) {
1839 // Type is already a power of 2. The default action is to split.
1840 TransformToType[i] = MVT::Other;
1841 if (PreferredAction == TypeScalarizeVector)
1842 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1843 else if (PreferredAction == TypeSplitVector)
1844 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1845 else if (EC.getKnownMinValue() > 1)
1846 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1847 else
1848 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1851 } else {
1852 TransformToType[i] = NVT;
1853 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1854 }
1855 break;
1856 }
1857 default:
1858 llvm_unreachable("Unknown vector legalization action!");
1859 }
1860 }
1861
1862 // Determine the 'representative' register class for each value type.
1863 // An representative register class is the largest (meaning one which is
1864 // not a sub-register class / subreg register class) legal register class for
1865 // a group of value types. For example, on i386, i8, i16, and i32
1866 // representative would be GR32; while on x86_64 it's GR64.
1867 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1868 const TargetRegisterClass* RRC;
1869 uint8_t Cost;
1871 RepRegClassForVT[i] = RRC;
1872 RepRegClassCostForVT[i] = Cost;
1873 }
1874}
1875
1877 EVT VT) const {
1878 assert(!VT.isVector() && "No default SetCC type for vectors!");
1879 return getPointerTy(DL).SimpleTy;
1880}
1881
1883 return MVT::i32; // return the default value
1884}
1885
1886/// getVectorTypeBreakdown - Vector types are broken down into some number of
1887/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1888/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1889/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1890///
1891/// This method returns the number of registers needed, and the VT for each
1892/// register. It also returns the VT and quantity of the intermediate values
1893/// before they are promoted/expanded.
1895 EVT VT, EVT &IntermediateVT,
1896 unsigned &NumIntermediates,
1897 MVT &RegisterVT) const {
1898 ElementCount EltCnt = VT.getVectorElementCount();
1899
1900 // If there is a wider vector type with the same element type as this one,
1901 // or a promoted vector type that has the same number of elements which
1902 // are wider, then we should convert to that legal vector type.
1903 // This handles things like <2 x float> -> <4 x float> and
1904 // <4 x i1> -> <4 x i32>.
1905 LegalizeTypeAction TA = getTypeAction(Context, VT);
1906 if (!EltCnt.isScalar() &&
1907 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1908 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1909 if (isTypeLegal(RegisterEVT)) {
1910 IntermediateVT = RegisterEVT;
1911 RegisterVT = RegisterEVT.getSimpleVT();
1912 NumIntermediates = 1;
1913 return 1;
1914 }
1915 }
1916
1917 // Figure out the right, legal destination reg to copy into.
1918 EVT EltTy = VT.getVectorElementType();
1919
1920 unsigned NumVectorRegs = 1;
1921
1922 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1923 // types like done elsewhere in SelectionDAG.
1924 if (EltCnt.isScalable()) {
1925 LegalizeKind LK;
1926 EVT PartVT = VT;
1927 do {
1928 // Iterate until we've found a legal (part) type to hold VT.
1929 LK = getTypeConversion(Context, PartVT);
1930 PartVT = LK.second;
1931 } while (LK.first != TypeLegal);
1932
1933 if (!PartVT.isVector()) {
1935 "Don't know how to legalize this scalable vector type");
1936 }
1937
1938 NumIntermediates =
1941 IntermediateVT = PartVT;
1942 RegisterVT = getRegisterType(Context, IntermediateVT);
1943 return NumIntermediates;
1944 }
1945
1946 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1947 // we could break down into LHS/RHS like LegalizeDAG does.
1948 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1949 NumVectorRegs = EltCnt.getKnownMinValue();
1950 EltCnt = ElementCount::getFixed(1);
1951 }
1952
1953 // Divide the input until we get to a supported size. This will always
1954 // end with a scalar if the target doesn't support vectors.
1955 while (EltCnt.getKnownMinValue() > 1 &&
1956 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1957 EltCnt = EltCnt.divideCoefficientBy(2);
1958 NumVectorRegs <<= 1;
1959 }
1960
1961 NumIntermediates = NumVectorRegs;
1962
1963 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1964 if (!isTypeLegal(NewVT))
1965 NewVT = EltTy;
1966 IntermediateVT = NewVT;
1967
1968 MVT DestVT = getRegisterType(Context, NewVT);
1969 RegisterVT = DestVT;
1970
1971 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1972 TypeSize NewVTSize = NewVT.getSizeInBits();
1973 // Convert sizes such as i33 to i64.
1975 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1976 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1977 }
1978
1979 // Otherwise, promotion or legal types use the same number of registers as
1980 // the vector decimated to the appropriate level.
1981 return NumVectorRegs;
1982}
1983
1985 uint64_t NumCases,
1987 ProfileSummaryInfo *PSI,
1988 BlockFrequencyInfo *BFI) const {
1989 // FIXME: This function check the maximum table size and density, but the
1990 // minimum size is not checked. It would be nice if the minimum size is
1991 // also combined within this function. Currently, the minimum size check is
1992 // performed in findJumpTable() in SelectionDAGBuiler and
1993 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1994 const bool OptForSize =
1995 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1996 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1997 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1998
1999 // Check whether the number of cases is small enough and
2000 // the range is dense enough for a jump table.
2001 return (OptForSize || Range <= MaxJumpTableSize) &&
2002 (NumCases * 100 >= Range * MinDensity);
2003}
2004
2006 EVT ConditionVT) const {
2007 return getRegisterType(Context, ConditionVT);
2008}
2009
2010/// Get the EVTs and ArgFlags collections that represent the legalized return
2011/// type of the given function. This does not require a DAG or a return value,
2012/// and is suitable for use before any DAGs for the function are constructed.
2013/// TODO: Move this out of TargetLowering.cpp.
2015 AttributeList attr,
2017 const TargetLowering &TLI, const DataLayout &DL) {
2019 ComputeValueTypes(DL, ReturnType, Types);
2020 unsigned NumValues = Types.size();
2021 if (NumValues == 0) return;
2022
2023 for (Type *Ty : Types) {
2024 EVT VT = TLI.getValueType(DL, Ty);
2025 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2026
2027 if (attr.hasRetAttr(Attribute::SExt))
2028 ExtendKind = ISD::SIGN_EXTEND;
2029 else if (attr.hasRetAttr(Attribute::ZExt))
2030 ExtendKind = ISD::ZERO_EXTEND;
2031
2032 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2033 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
2034
2035 unsigned NumParts =
2036 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
2037 MVT PartVT =
2038 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
2039
2040 // 'inreg' on function refers to return value
2042 if (attr.hasRetAttr(Attribute::InReg))
2043 Flags.setInReg();
2044
2045 // Propagate extension type if any
2046 if (attr.hasRetAttr(Attribute::SExt))
2047 Flags.setSExt();
2048 else if (attr.hasRetAttr(Attribute::ZExt))
2049 Flags.setZExt();
2050
2051 for (unsigned i = 0; i < NumParts; ++i)
2052 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, Ty, 0, 0));
2053 }
2054}
2055
2057 const DataLayout &DL) const {
2058 return DL.getABITypeAlign(Ty);
2059}
2060
2062 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
2063 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
2064 // Check if the specified alignment is sufficient based on the data layout.
2065 // TODO: While using the data layout works in practice, a better solution
2066 // would be to implement this check directly (make this a virtual function).
2067 // For example, the ABI alignment may change based on software platform while
2068 // this function should only be affected by hardware implementation.
2069 Type *Ty = VT.getTypeForEVT(Context);
2070 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
2071 // Assume that an access that meets the ABI-specified alignment is fast.
2072 if (Fast != nullptr)
2073 *Fast = 1;
2074 return true;
2075 }
2076
2077 // This is a misaligned access.
2078 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
2079}
2080
2082 LLVMContext &Context, const DataLayout &DL, EVT VT,
2083 const MachineMemOperand &MMO, unsigned *Fast) const {
2084 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
2085 MMO.getAlign(), MMO.getFlags(), Fast);
2086}
2087
2089 const DataLayout &DL, EVT VT,
2090 unsigned AddrSpace, Align Alignment,
2092 unsigned *Fast) const {
2093 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
2094 Flags, Fast);
2095}
2096
2098 const DataLayout &DL, EVT VT,
2099 const MachineMemOperand &MMO,
2100 unsigned *Fast) const {
2101 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2102 MMO.getFlags(), Fast);
2103}
2104
2106 const DataLayout &DL, LLT Ty,
2107 const MachineMemOperand &MMO,
2108 unsigned *Fast) const {
2109 EVT VT = getApproximateEVTForLLT(Ty, Context);
2110 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2111 MMO.getFlags(), Fast);
2112}
2113
2114//===----------------------------------------------------------------------===//
2115// TargetTransformInfo Helpers
2116//===----------------------------------------------------------------------===//
2117
2119 enum InstructionOpcodes {
2120#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2121#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2122#include "llvm/IR/Instruction.def"
2123 };
2124 switch (static_cast<InstructionOpcodes>(Opcode)) {
2125 case Ret: return 0;
2126 case Br: return 0;
2127 case Switch: return 0;
2128 case IndirectBr: return 0;
2129 case Invoke: return 0;
2130 case CallBr: return 0;
2131 case Resume: return 0;
2132 case Unreachable: return 0;
2133 case CleanupRet: return 0;
2134 case CatchRet: return 0;
2135 case CatchPad: return 0;
2136 case CatchSwitch: return 0;
2137 case CleanupPad: return 0;
2138 case FNeg: return ISD::FNEG;
2139 case Add: return ISD::ADD;
2140 case FAdd: return ISD::FADD;
2141 case Sub: return ISD::SUB;
2142 case FSub: return ISD::FSUB;
2143 case Mul: return ISD::MUL;
2144 case FMul: return ISD::FMUL;
2145 case UDiv: return ISD::UDIV;
2146 case SDiv: return ISD::SDIV;
2147 case FDiv: return ISD::FDIV;
2148 case URem: return ISD::UREM;
2149 case SRem: return ISD::SREM;
2150 case FRem: return ISD::FREM;
2151 case Shl: return ISD::SHL;
2152 case LShr: return ISD::SRL;
2153 case AShr: return ISD::SRA;
2154 case And: return ISD::AND;
2155 case Or: return ISD::OR;
2156 case Xor: return ISD::XOR;
2157 case Alloca: return 0;
2158 case Load: return ISD::LOAD;
2159 case Store: return ISD::STORE;
2160 case GetElementPtr: return 0;
2161 case Fence: return 0;
2162 case AtomicCmpXchg: return 0;
2163 case AtomicRMW: return 0;
2164 case Trunc: return ISD::TRUNCATE;
2165 case ZExt: return ISD::ZERO_EXTEND;
2166 case SExt: return ISD::SIGN_EXTEND;
2167 case FPToUI: return ISD::FP_TO_UINT;
2168 case FPToSI: return ISD::FP_TO_SINT;
2169 case UIToFP: return ISD::UINT_TO_FP;
2170 case SIToFP: return ISD::SINT_TO_FP;
2171 case FPTrunc: return ISD::FP_ROUND;
2172 case FPExt: return ISD::FP_EXTEND;
2173 case PtrToAddr: return ISD::BITCAST;
2174 case PtrToInt: return ISD::BITCAST;
2175 case IntToPtr: return ISD::BITCAST;
2176 case BitCast: return ISD::BITCAST;
2177 case AddrSpaceCast: return ISD::ADDRSPACECAST;
2178 case ICmp: return ISD::SETCC;
2179 case FCmp: return ISD::SETCC;
2180 case PHI: return 0;
2181 case Call: return 0;
2182 case Select: return ISD::SELECT;
2183 case UserOp1: return 0;
2184 case UserOp2: return 0;
2185 case VAArg: return 0;
2186 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
2187 case InsertElement: return ISD::INSERT_VECTOR_ELT;
2188 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
2189 case ExtractValue: return ISD::MERGE_VALUES;
2190 case InsertValue: return ISD::MERGE_VALUES;
2191 case LandingPad: return 0;
2192 case Freeze: return ISD::FREEZE;
2193 }
2194
2195 llvm_unreachable("Unknown instruction type encountered!");
2196}
2197
2199 switch (ID) {
2200 case Intrinsic::exp:
2201 return ISD::FEXP;
2202 case Intrinsic::exp2:
2203 return ISD::FEXP2;
2204 case Intrinsic::log:
2205 return ISD::FLOG;
2206 default:
2207 return ISD::DELETED_NODE;
2208 }
2209}
2210
2211Value *
2213 bool UseTLS) const {
2214 // compiler-rt provides a variable with a magic name. Targets that do not
2215 // link with compiler-rt may also provide such a variable.
2216 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2217 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
2218 auto UnsafeStackPtr =
2219 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
2220
2221 const DataLayout &DL = M->getDataLayout();
2222 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
2223
2224 if (!UnsafeStackPtr) {
2225 auto TLSModel = UseTLS ?
2228 // The global variable is not defined yet, define it ourselves.
2229 // We use the initial-exec TLS model because we do not support the
2230 // variable living anywhere other than in the main executable.
2231 UnsafeStackPtr = new GlobalVariable(
2232 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
2233 UnsafeStackPtrVar, nullptr, TLSModel);
2234 } else {
2235 // The variable exists, check its type and attributes.
2236 //
2237 // FIXME: Move to IR verifier.
2238 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2239 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
2240 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2241 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
2242 (UseTLS ? "" : "not ") + "be thread-local");
2243 }
2244 return UnsafeStackPtr;
2245}
2246
2247Value *
2249 // FIXME: Can this triple check be replaced with SAFESTACK_POINTER_ADDRESS
2250 // being available?
2251 if (!TM.getTargetTriple().isAndroid())
2252 return getDefaultSafeStackPointerLocation(IRB, true);
2253
2254 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2255 auto *PtrTy = PointerType::getUnqual(M->getContext());
2256
2257 const char *SafestackPointerAddressName =
2258 getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
2259 if (!SafestackPointerAddressName) {
2260 M->getContext().emitError(
2261 "no libcall available for safestack pointer address");
2262 return PoisonValue::get(PtrTy);
2263 }
2264
2265 // Android provides a libc function to retrieve the address of the current
2266 // thread's unsafe stack pointer.
2267 FunctionCallee Fn =
2268 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2269 return IRB.CreateCall(Fn);
2270}
2271
2272//===----------------------------------------------------------------------===//
2273// Loop Strength Reduction hooks
2274//===----------------------------------------------------------------------===//
2275
2276/// isLegalAddressingMode - Return true if the addressing mode represented
2277/// by AM is legal for this target, for a load/store of the specified type.
2279 const AddrMode &AM, Type *Ty,
2280 unsigned AS, Instruction *I) const {
2281 // The default implementation of this implements a conservative RISCy, r+r and
2282 // r+i addr mode.
2283
2284 // Scalable offsets not supported
2285 if (AM.ScalableOffset)
2286 return false;
2287
2288 // Allows a sign-extended 16-bit immediate field.
2289 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2290 return false;
2291
2292 // No global is ever allowed as a base.
2293 if (AM.BaseGV)
2294 return false;
2295
2296 // Only support r+r,
2297 switch (AM.Scale) {
2298 case 0: // "r+i" or just "i", depending on HasBaseReg.
2299 break;
2300 case 1:
2301 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2302 return false;
2303 // Otherwise we have r+r or r+i.
2304 break;
2305 case 2:
2306 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2307 return false;
2308 // Allow 2*r as r+r.
2309 break;
2310 default: // Don't allow n * r
2311 return false;
2312 }
2313
2314 return true;
2315}
2316
2317//===----------------------------------------------------------------------===//
2318// Stack Protector
2319//===----------------------------------------------------------------------===//
2320
2321// For OpenBSD return its special guard variable. Otherwise return nullptr,
2322// so that SelectionDAG handle SSP.
2324 RTLIB::LibcallImpl GuardLocalImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2325 if (GuardLocalImpl != RTLIB::impl___guard_local)
2326 return nullptr;
2327
2328 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2329 const DataLayout &DL = M.getDataLayout();
2330 PointerType *PtrTy =
2331 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2332 GlobalVariable *G =
2333 M.getOrInsertGlobal(getLibcallImplName(GuardLocalImpl), PtrTy);
2334 G->setVisibility(GlobalValue::HiddenVisibility);
2335 return G;
2336}
2337
2338// Currently only support "standard" __stack_chk_guard.
2339// TODO: add LOAD_STACK_GUARD support.
2341 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2342 if (StackGuardImpl == RTLIB::Unsupported)
2343 return;
2344
2345 StringRef StackGuardVarName = getLibcallImplName(StackGuardImpl);
2346 M.getOrInsertGlobal(
2347 StackGuardVarName, PointerType::getUnqual(M.getContext()), [=, &M]() {
2348 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2349 false, GlobalVariable::ExternalLinkage,
2350 nullptr, StackGuardVarName);
2351
2352 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2353 if (M.getDirectAccessExternalData() &&
2354 !TM.getTargetTriple().isOSCygMing() &&
2355 !(TM.getTargetTriple().isPPC64() &&
2356 TM.getTargetTriple().isOSFreeBSD()) &&
2357 (!TM.getTargetTriple().isOSDarwin() ||
2358 TM.getRelocationModel() == Reloc::Static))
2359 GV->setDSOLocal(true);
2360
2361 return GV;
2362 });
2363}
2364
2365// Currently only support "standard" __stack_chk_guard.
2366// TODO: add LOAD_STACK_GUARD support.
2368 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2369 if (GuardVarImpl == RTLIB::Unsupported)
2370 return nullptr;
2371 return M.getNamedValue(getLibcallImplName(GuardVarImpl));
2372}
2373
2375 // MSVC CRT has a function to validate security cookie.
2376 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2377 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
2378 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2379 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2380 return nullptr;
2381}
2382
2386
2390
2391unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2392 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2393}
2394
2398
2402
2406
2408 return MinimumBitTestCmps;
2409}
2410
2412 MinimumBitTestCmps = Val;
2413}
2414
2416 if (TM.Options.LoopAlignment)
2417 return Align(TM.Options.LoopAlignment);
2418 return PrefLoopAlignment;
2419}
2420
2422 MachineBasicBlock *MBB) const {
2423 return MaxBytesForAlignment;
2424}
2425
2426//===----------------------------------------------------------------------===//
2427// Reciprocal Estimates
2428//===----------------------------------------------------------------------===//
2429
2430/// Get the reciprocal estimate attribute string for a function that will
2431/// override the target defaults.
2433 const Function &F = MF.getFunction();
2434 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2435}
2436
2437/// Construct a string for the given reciprocal operation of the given type.
2438/// This string should match the corresponding option to the front-end's
2439/// "-mrecip" flag assuming those strings have been passed through in an
2440/// attribute string. For example, "vec-divf" for a division of a vXf32.
2441static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2442 std::string Name = VT.isVector() ? "vec-" : "";
2443
2444 Name += IsSqrt ? "sqrt" : "div";
2445
2446 // TODO: Handle other float types?
2447 if (VT.getScalarType() == MVT::f64) {
2448 Name += "d";
2449 } else if (VT.getScalarType() == MVT::f16) {
2450 Name += "h";
2451 } else {
2452 assert(VT.getScalarType() == MVT::f32 &&
2453 "Unexpected FP type for reciprocal estimate");
2454 Name += "f";
2455 }
2456
2457 return Name;
2458}
2459
2460/// Return the character position and value (a single numeric character) of a
2461/// customized refinement operation in the input string if it exists. Return
2462/// false if there is no customized refinement step count.
2463static bool parseRefinementStep(StringRef In, size_t &Position,
2464 uint8_t &Value) {
2465 const char RefStepToken = ':';
2466 Position = In.find(RefStepToken);
2467 if (Position == StringRef::npos)
2468 return false;
2469
2470 StringRef RefStepString = In.substr(Position + 1);
2471 // Allow exactly one numeric character for the additional refinement
2472 // step parameter.
2473 if (RefStepString.size() == 1) {
2474 char RefStepChar = RefStepString[0];
2475 if (isDigit(RefStepChar)) {
2476 Value = RefStepChar - '0';
2477 return true;
2478 }
2479 }
2480 report_fatal_error("Invalid refinement step for -recip.");
2481}
2482
2483/// For the input attribute string, return one of the ReciprocalEstimate enum
2484/// status values (enabled, disabled, or not specified) for this operation on
2485/// the specified data type.
2486static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2487 if (Override.empty())
2489
2490 SmallVector<StringRef, 4> OverrideVector;
2491 Override.split(OverrideVector, ',');
2492 unsigned NumArgs = OverrideVector.size();
2493
2494 // Check if "all", "none", or "default" was specified.
2495 if (NumArgs == 1) {
2496 // Look for an optional setting of the number of refinement steps needed
2497 // for this type of reciprocal operation.
2498 size_t RefPos;
2499 uint8_t RefSteps;
2500 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2501 // Split the string for further processing.
2502 Override = Override.substr(0, RefPos);
2503 }
2504
2505 // All reciprocal types are enabled.
2506 if (Override == "all")
2508
2509 // All reciprocal types are disabled.
2510 if (Override == "none")
2512
2513 // Target defaults for enablement are used.
2514 if (Override == "default")
2516 }
2517
2518 // The attribute string may omit the size suffix ('f'/'d').
2519 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2520 std::string VTNameNoSize = VTName;
2521 VTNameNoSize.pop_back();
2522 static const char DisabledPrefix = '!';
2523
2524 for (StringRef RecipType : OverrideVector) {
2525 size_t RefPos;
2526 uint8_t RefSteps;
2527 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2528 RecipType = RecipType.substr(0, RefPos);
2529
2530 // Ignore the disablement token for string matching.
2531 bool IsDisabled = RecipType[0] == DisabledPrefix;
2532 if (IsDisabled)
2533 RecipType = RecipType.substr(1);
2534
2535 if (RecipType == VTName || RecipType == VTNameNoSize)
2538 }
2539
2541}
2542
2543/// For the input attribute string, return the customized refinement step count
2544/// for this operation on the specified data type. If the step count does not
2545/// exist, return the ReciprocalEstimate enum value for unspecified.
2546static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2547 if (Override.empty())
2549
2550 SmallVector<StringRef, 4> OverrideVector;
2551 Override.split(OverrideVector, ',');
2552 unsigned NumArgs = OverrideVector.size();
2553
2554 // Check if "all", "default", or "none" was specified.
2555 if (NumArgs == 1) {
2556 // Look for an optional setting of the number of refinement steps needed
2557 // for this type of reciprocal operation.
2558 size_t RefPos;
2559 uint8_t RefSteps;
2560 if (!parseRefinementStep(Override, RefPos, RefSteps))
2562
2563 // Split the string for further processing.
2564 Override = Override.substr(0, RefPos);
2565 assert(Override != "none" &&
2566 "Disabled reciprocals, but specifed refinement steps?");
2567
2568 // If this is a general override, return the specified number of steps.
2569 if (Override == "all" || Override == "default")
2570 return RefSteps;
2571 }
2572
2573 // The attribute string may omit the size suffix ('f'/'d').
2574 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2575 std::string VTNameNoSize = VTName;
2576 VTNameNoSize.pop_back();
2577
2578 for (StringRef RecipType : OverrideVector) {
2579 size_t RefPos;
2580 uint8_t RefSteps;
2581 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2582 continue;
2583
2584 RecipType = RecipType.substr(0, RefPos);
2585 if (RecipType == VTName || RecipType == VTNameNoSize)
2586 return RefSteps;
2587 }
2588
2590}
2591
2596
2601
2606
2611
2613 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2614 const MachineMemOperand &MMO) const {
2615 // Single-element vectors are scalarized, so we should generally avoid having
2616 // any memory operations on such types, as they would get scalarized too.
2617 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2618 BitcastVT.getVectorNumElements() == 1)
2619 return false;
2620
2621 // Don't do if we could do an indexed load on the original type, but not on
2622 // the new one.
2623 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2624 return true;
2625
2626 MVT LoadMVT = LoadVT.getSimpleVT();
2627
2628 // Don't bother doing this if it's just going to be promoted again later, as
2629 // doing so might interfere with other combines.
2630 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2631 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2632 return false;
2633
2634 unsigned Fast = 0;
2635 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2636 MMO, &Fast) &&
2637 Fast;
2638}
2639
2643
2645 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2646 const TargetLibraryInfo *LibInfo) const {
2648 if (LI.isVolatile())
2650
2651 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2653
2654 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2656
2658 LI.getAlign(), DL, &LI, AC,
2659 /*DT=*/nullptr, LibInfo))
2661
2662 Flags |= getTargetMMOFlags(LI);
2663 return Flags;
2664}
2665
2668 const DataLayout &DL) const {
2670
2671 if (SI.isVolatile())
2673
2674 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2676
2677 // FIXME: Not preserving dereferenceable
2678 Flags |= getTargetMMOFlags(SI);
2679 return Flags;
2680}
2681
2684 const DataLayout &DL) const {
2686
2687 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2688 if (RMW->isVolatile())
2690 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2691 if (CmpX->isVolatile())
2693 } else
2694 llvm_unreachable("not an atomic instruction");
2695
2696 // FIXME: Not preserving dereferenceable
2697 Flags |= getTargetMMOFlags(AI);
2698 return Flags;
2699}
2700
2702 const VPIntrinsic &VPIntrin) const {
2704 Intrinsic::ID IntrinID = VPIntrin.getIntrinsicID();
2705
2706 switch (IntrinID) {
2707 default:
2708 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2709 "for it, but support must be explicitly enabled");
2710 case Intrinsic::vp_load:
2711 case Intrinsic::vp_gather:
2712 case Intrinsic::experimental_vp_strided_load:
2714 break;
2715 case Intrinsic::vp_store:
2716 case Intrinsic::vp_scatter:
2717 case Intrinsic::experimental_vp_strided_store:
2719 break;
2720 }
2721
2722 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2724
2725 Flags |= getTargetMMOFlags(VPIntrin);
2726 return Flags;
2727}
2728
2730 Instruction *Inst,
2731 AtomicOrdering Ord) const {
2732 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2733 return Builder.CreateFence(Ord);
2734 else
2735 return nullptr;
2736}
2737
2739 Instruction *Inst,
2740 AtomicOrdering Ord) const {
2741 if (isAcquireOrStronger(Ord))
2742 return Builder.CreateFence(Ord);
2743 else
2744 return nullptr;
2745}
2746
2747//===----------------------------------------------------------------------===//
2748// GlobalISel Hooks
2749//===----------------------------------------------------------------------===//
2750
2752 const TargetTransformInfo *TTI) const {
2753 auto &MF = *MI.getMF();
2754 auto &MRI = MF.getRegInfo();
2755 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2756 // this helper function computes the maximum number of uses we should consider
2757 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2758 // break even in terms of code size when the original MI has 2 users vs
2759 // choosing to potentially spill. Any more than 2 users we we have a net code
2760 // size increase. This doesn't take into account register pressure though.
2761 auto maxUses = [](unsigned RematCost) {
2762 // A cost of 1 means remats are basically free.
2763 if (RematCost == 1)
2764 return std::numeric_limits<unsigned>::max();
2765 if (RematCost == 2)
2766 return 2U;
2767
2768 // Remat is too expensive, only sink if there's one user.
2769 if (RematCost > 2)
2770 return 1U;
2771 llvm_unreachable("Unexpected remat cost");
2772 };
2773
2774 switch (MI.getOpcode()) {
2775 default:
2776 return false;
2777 // Constants-like instructions should be close to their users.
2778 // We don't want long live-ranges for them.
2779 case TargetOpcode::G_CONSTANT:
2780 case TargetOpcode::G_FCONSTANT:
2781 case TargetOpcode::G_FRAME_INDEX:
2782 case TargetOpcode::G_INTTOPTR:
2783 return true;
2784 case TargetOpcode::G_GLOBAL_VALUE: {
2785 unsigned RematCost = TTI->getGISelRematGlobalCost();
2786 Register Reg = MI.getOperand(0).getReg();
2787 unsigned MaxUses = maxUses(RematCost);
2788 if (MaxUses == UINT_MAX)
2789 return true; // Remats are "free" so always localize.
2790 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2791 }
2792 }
2793}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
#define LLVM_ABI
Definition Compiler.h:213
This file defines the DenseMap class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
#define LCALL5(A)
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition BitVector.h:726
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
static constexpr size_t npos
Definition StringRef.h:57
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
constexpr LeafTy coefficientNextPowerOf2() const
Definition TypeSize.h:260
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ RESET_FPENV
Set floating-point environment to default state.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:981
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:861
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:966
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ TRAP
TRAP - Trapping instruction.
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
Definition ISDOpcodes.h:985
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ VECREDUCE_FMINIMUM
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ VECREDUCE_SEQ_FMUL
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:859
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:863
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUREM(EVT VT)
LLVM_ABI Libcall getSHL(EVT VT)
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getREM(EVT VT)
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSDIV(EVT VT)
LLVM_ABI Libcall getSRL(EVT VT)
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSRA(EVT VT)
LLVM_ABI Libcall getUDIV(EVT VT)
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLLROUND(EVT VT)
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLROUND(EVT VT)
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLRINT(EVT RetVT)
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getLLRINT(EVT RetVT)
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSREM(EVT VT)
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getMUL(EVT VT)
LLVM_ABI Libcall getCTPOP(EVT VT)
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMULO(EVT VT)
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1766
constexpr bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1759
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
InstructionCost Cost
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition Sequence.h:337
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition Sequence.h:109
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
TargetTransformInfo TTI
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition ValueTypes.h:477
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition ValueTypes.h:419
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
Matching combinators.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...