70    "jump-is-expensive", 
cl::init(
false),
 
   71    cl::desc(
"Do not create extra branches to split comparison logic."),
 
   76   cl::desc(
"Set minimum number of entries to use a jump table."));
 
   80   cl::desc(
"Set maximum size of jump tables."));
 
   85                     cl::desc(
"Minimum density for building a jump table in " 
   86                              "a normal function"));
 
   91    cl::desc(
"Minimum density for building a jump table in " 
   92             "an optsize function"));
 
   96    cl::desc(
"Set minimum of largest number of comparisons " 
   97             "to use bit test for switch."));
 
  104       cl::desc(
"Don't mutate strict-float node to a legalize node"),
 
  110                                   RTLIB::Libcall Call_F32,
 
  111                                   RTLIB::Libcall Call_F64,
 
  112                                   RTLIB::Libcall Call_F80,
 
  113                                   RTLIB::Libcall Call_F128,
 
  114                                   RTLIB::Libcall Call_PPCF128) {
 
  116    VT == MVT::f32 ? Call_F32 :
 
  117    VT == MVT::f64 ? Call_F64 :
 
  118    VT == MVT::f80 ? Call_F80 :
 
  119    VT == MVT::f128 ? Call_F128 :
 
  120    VT == MVT::ppcf128 ? Call_PPCF128 :
 
  121    RTLIB::UNKNOWN_LIBCALL;
 
  127  if (OpVT == MVT::f16) {
 
  128    if (RetVT == MVT::f32)
 
  129      return FPEXT_F16_F32;
 
  130    if (RetVT == MVT::f64)
 
  131      return FPEXT_F16_F64;
 
  132    if (RetVT == MVT::f80)
 
  133      return FPEXT_F16_F80;
 
  134    if (RetVT == MVT::f128)
 
  135      return FPEXT_F16_F128;
 
  136  } 
else if (OpVT == MVT::f32) {
 
  137    if (RetVT == MVT::f64)
 
  138      return FPEXT_F32_F64;
 
  139    if (RetVT == MVT::f128)
 
  140      return FPEXT_F32_F128;
 
  141    if (RetVT == MVT::ppcf128)
 
  142      return FPEXT_F32_PPCF128;
 
  143  } 
else if (OpVT == MVT::f64) {
 
  144    if (RetVT == MVT::f128)
 
  145      return FPEXT_F64_F128;
 
  146    else if (RetVT == MVT::ppcf128)
 
  147      return FPEXT_F64_PPCF128;
 
  148  } 
else if (OpVT == MVT::f80) {
 
  149    if (RetVT == MVT::f128)
 
  150      return FPEXT_F80_F128;
 
  151  } 
else if (OpVT == MVT::bf16) {
 
  152    if (RetVT == MVT::f32)
 
  153      return FPEXT_BF16_F32;
 
  156  return UNKNOWN_LIBCALL;
 
 
  162  if (RetVT == MVT::f16) {
 
  163    if (OpVT == MVT::f32)
 
  164      return FPROUND_F32_F16;
 
  165    if (OpVT == MVT::f64)
 
  166      return FPROUND_F64_F16;
 
  167    if (OpVT == MVT::f80)
 
  168      return FPROUND_F80_F16;
 
  169    if (OpVT == MVT::f128)
 
  170      return FPROUND_F128_F16;
 
  171    if (OpVT == MVT::ppcf128)
 
  172      return FPROUND_PPCF128_F16;
 
  173  } 
else if (RetVT == MVT::bf16) {
 
  174    if (OpVT == MVT::f32)
 
  175      return FPROUND_F32_BF16;
 
  176    if (OpVT == MVT::f64)
 
  177      return FPROUND_F64_BF16;
 
  178    if (OpVT == MVT::f80)
 
  179      return FPROUND_F80_BF16;
 
  180    if (OpVT == MVT::f128)
 
  181      return FPROUND_F128_BF16;
 
  182  } 
else if (RetVT == MVT::f32) {
 
  183    if (OpVT == MVT::f64)
 
  184      return FPROUND_F64_F32;
 
  185    if (OpVT == MVT::f80)
 
  186      return FPROUND_F80_F32;
 
  187    if (OpVT == MVT::f128)
 
  188      return FPROUND_F128_F32;
 
  189    if (OpVT == MVT::ppcf128)
 
  190      return FPROUND_PPCF128_F32;
 
  191  } 
else if (RetVT == MVT::f64) {
 
  192    if (OpVT == MVT::f80)
 
  193      return FPROUND_F80_F64;
 
  194    if (OpVT == MVT::f128)
 
  195      return FPROUND_F128_F64;
 
  196    if (OpVT == MVT::ppcf128)
 
  197      return FPROUND_PPCF128_F64;
 
  198  } 
else if (RetVT == MVT::f80) {
 
  199    if (OpVT == MVT::f128)
 
  200      return FPROUND_F128_F80;
 
  203  return UNKNOWN_LIBCALL;
 
 
  209  if (OpVT == MVT::f16) {
 
  210    if (RetVT == MVT::i32)
 
  211      return FPTOSINT_F16_I32;
 
  212    if (RetVT == MVT::i64)
 
  213      return FPTOSINT_F16_I64;
 
  214    if (RetVT == MVT::i128)
 
  215      return FPTOSINT_F16_I128;
 
  216  } 
else if (OpVT == MVT::f32) {
 
  217    if (RetVT == MVT::i32)
 
  218      return FPTOSINT_F32_I32;
 
  219    if (RetVT == MVT::i64)
 
  220      return FPTOSINT_F32_I64;
 
  221    if (RetVT == MVT::i128)
 
  222      return FPTOSINT_F32_I128;
 
  223  } 
else if (OpVT == MVT::f64) {
 
  224    if (RetVT == MVT::i32)
 
  225      return FPTOSINT_F64_I32;
 
  226    if (RetVT == MVT::i64)
 
  227      return FPTOSINT_F64_I64;
 
  228    if (RetVT == MVT::i128)
 
  229      return FPTOSINT_F64_I128;
 
  230  } 
else if (OpVT == MVT::f80) {
 
  231    if (RetVT == MVT::i32)
 
  232      return FPTOSINT_F80_I32;
 
  233    if (RetVT == MVT::i64)
 
  234      return FPTOSINT_F80_I64;
 
  235    if (RetVT == MVT::i128)
 
  236      return FPTOSINT_F80_I128;
 
  237  } 
else if (OpVT == MVT::f128) {
 
  238    if (RetVT == MVT::i32)
 
  239      return FPTOSINT_F128_I32;
 
  240    if (RetVT == MVT::i64)
 
  241      return FPTOSINT_F128_I64;
 
  242    if (RetVT == MVT::i128)
 
  243      return FPTOSINT_F128_I128;
 
  244  } 
else if (OpVT == MVT::ppcf128) {
 
  245    if (RetVT == MVT::i32)
 
  246      return FPTOSINT_PPCF128_I32;
 
  247    if (RetVT == MVT::i64)
 
  248      return FPTOSINT_PPCF128_I64;
 
  249    if (RetVT == MVT::i128)
 
  250      return FPTOSINT_PPCF128_I128;
 
  252  return UNKNOWN_LIBCALL;
 
 
  258  if (OpVT == MVT::f16) {
 
  259    if (RetVT == MVT::i32)
 
  260      return FPTOUINT_F16_I32;
 
  261    if (RetVT == MVT::i64)
 
  262      return FPTOUINT_F16_I64;
 
  263    if (RetVT == MVT::i128)
 
  264      return FPTOUINT_F16_I128;
 
  265  } 
else if (OpVT == MVT::f32) {
 
  266    if (RetVT == MVT::i32)
 
  267      return FPTOUINT_F32_I32;
 
  268    if (RetVT == MVT::i64)
 
  269      return FPTOUINT_F32_I64;
 
  270    if (RetVT == MVT::i128)
 
  271      return FPTOUINT_F32_I128;
 
  272  } 
else if (OpVT == MVT::f64) {
 
  273    if (RetVT == MVT::i32)
 
  274      return FPTOUINT_F64_I32;
 
  275    if (RetVT == MVT::i64)
 
  276      return FPTOUINT_F64_I64;
 
  277    if (RetVT == MVT::i128)
 
  278      return FPTOUINT_F64_I128;
 
  279  } 
else if (OpVT == MVT::f80) {
 
  280    if (RetVT == MVT::i32)
 
  281      return FPTOUINT_F80_I32;
 
  282    if (RetVT == MVT::i64)
 
  283      return FPTOUINT_F80_I64;
 
  284    if (RetVT == MVT::i128)
 
  285      return FPTOUINT_F80_I128;
 
  286  } 
else if (OpVT == MVT::f128) {
 
  287    if (RetVT == MVT::i32)
 
  288      return FPTOUINT_F128_I32;
 
  289    if (RetVT == MVT::i64)
 
  290      return FPTOUINT_F128_I64;
 
  291    if (RetVT == MVT::i128)
 
  292      return FPTOUINT_F128_I128;
 
  293  } 
else if (OpVT == MVT::ppcf128) {
 
  294    if (RetVT == MVT::i32)
 
  295      return FPTOUINT_PPCF128_I32;
 
  296    if (RetVT == MVT::i64)
 
  297      return FPTOUINT_PPCF128_I64;
 
  298    if (RetVT == MVT::i128)
 
  299      return FPTOUINT_PPCF128_I128;
 
  301  return UNKNOWN_LIBCALL;
 
 
  307  if (OpVT == MVT::i32) {
 
  308    if (RetVT == MVT::f16)
 
  309      return SINTTOFP_I32_F16;
 
  310    if (RetVT == MVT::f32)
 
  311      return SINTTOFP_I32_F32;
 
  312    if (RetVT == MVT::f64)
 
  313      return SINTTOFP_I32_F64;
 
  314    if (RetVT == MVT::f80)
 
  315      return SINTTOFP_I32_F80;
 
  316    if (RetVT == MVT::f128)
 
  317      return SINTTOFP_I32_F128;
 
  318    if (RetVT == MVT::ppcf128)
 
  319      return SINTTOFP_I32_PPCF128;
 
  320  } 
else if (OpVT == MVT::i64) {
 
  321    if (RetVT == MVT::bf16)
 
  322      return SINTTOFP_I64_BF16;
 
  323    if (RetVT == MVT::f16)
 
  324      return SINTTOFP_I64_F16;
 
  325    if (RetVT == MVT::f32)
 
  326      return SINTTOFP_I64_F32;
 
  327    if (RetVT == MVT::f64)
 
  328      return SINTTOFP_I64_F64;
 
  329    if (RetVT == MVT::f80)
 
  330      return SINTTOFP_I64_F80;
 
  331    if (RetVT == MVT::f128)
 
  332      return SINTTOFP_I64_F128;
 
  333    if (RetVT == MVT::ppcf128)
 
  334      return SINTTOFP_I64_PPCF128;
 
  335  } 
else if (OpVT == MVT::i128) {
 
  336    if (RetVT == MVT::f16)
 
  337      return SINTTOFP_I128_F16;
 
  338    if (RetVT == MVT::f32)
 
  339      return SINTTOFP_I128_F32;
 
  340    if (RetVT == MVT::f64)
 
  341      return SINTTOFP_I128_F64;
 
  342    if (RetVT == MVT::f80)
 
  343      return SINTTOFP_I128_F80;
 
  344    if (RetVT == MVT::f128)
 
  345      return SINTTOFP_I128_F128;
 
  346    if (RetVT == MVT::ppcf128)
 
  347      return SINTTOFP_I128_PPCF128;
 
  349  return UNKNOWN_LIBCALL;
 
 
  355  if (OpVT == MVT::i32) {
 
  356    if (RetVT == MVT::f16)
 
  357      return UINTTOFP_I32_F16;
 
  358    if (RetVT == MVT::f32)
 
  359      return UINTTOFP_I32_F32;
 
  360    if (RetVT == MVT::f64)
 
  361      return UINTTOFP_I32_F64;
 
  362    if (RetVT == MVT::f80)
 
  363      return UINTTOFP_I32_F80;
 
  364    if (RetVT == MVT::f128)
 
  365      return UINTTOFP_I32_F128;
 
  366    if (RetVT == MVT::ppcf128)
 
  367      return UINTTOFP_I32_PPCF128;
 
  368  } 
else if (OpVT == MVT::i64) {
 
  369    if (RetVT == MVT::bf16)
 
  370      return UINTTOFP_I64_BF16;
 
  371    if (RetVT == MVT::f16)
 
  372      return UINTTOFP_I64_F16;
 
  373    if (RetVT == MVT::f32)
 
  374      return UINTTOFP_I64_F32;
 
  375    if (RetVT == MVT::f64)
 
  376      return UINTTOFP_I64_F64;
 
  377    if (RetVT == MVT::f80)
 
  378      return UINTTOFP_I64_F80;
 
  379    if (RetVT == MVT::f128)
 
  380      return UINTTOFP_I64_F128;
 
  381    if (RetVT == MVT::ppcf128)
 
  382      return UINTTOFP_I64_PPCF128;
 
  383  } 
else if (OpVT == MVT::i128) {
 
  384    if (RetVT == MVT::f16)
 
  385      return UINTTOFP_I128_F16;
 
  386    if (RetVT == MVT::f32)
 
  387      return UINTTOFP_I128_F32;
 
  388    if (RetVT == MVT::f64)
 
  389      return UINTTOFP_I128_F64;
 
  390    if (RetVT == MVT::f80)
 
  391      return UINTTOFP_I128_F80;
 
  392    if (RetVT == MVT::f128)
 
  393      return UINTTOFP_I128_F128;
 
  394    if (RetVT == MVT::ppcf128)
 
  395      return UINTTOFP_I128_PPCF128;
 
  397  return UNKNOWN_LIBCALL;
 
 
  401  return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
 
 
  406  return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
 
 
  410  return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
 
 
  415  return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
 
 
  420  return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
 
 
  424  return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
 
 
  428  return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
 
 
  433  return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
 
  434                      SINCOSPI_F128, SINCOSPI_PPCF128);
 
 
  438  return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
 
  439                      UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
 
 
  443  return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
 
 
  450  unsigned ModeN, ModelN;
 
  468    return RTLIB::UNKNOWN_LIBCALL;
 
  486    return UNKNOWN_LIBCALL;
 
  489  return LC[ModeN][ModelN];
 
 
  495    return UNKNOWN_LIBCALL;
 
  498#define LCALLS(A, B)                                                           \ 
  499  { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 
  501  LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 
  503  case ISD::ATOMIC_CMP_SWAP: {
 
  504    const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_CAS)};
 
  507  case ISD::ATOMIC_SWAP: {
 
  508    const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_SWP)};
 
  511  case ISD::ATOMIC_LOAD_ADD: {
 
  512    const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDADD)};
 
  515  case ISD::ATOMIC_LOAD_OR: {
 
  516    const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDSET)};
 
  519  case ISD::ATOMIC_LOAD_CLR: {
 
  520    const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDCLR)};
 
  523  case ISD::ATOMIC_LOAD_XOR: {
 
  524    const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDEOR)};
 
  528    return UNKNOWN_LIBCALL;
 
 
  535#define OP_TO_LIBCALL(Name, Enum)                                              \ 
  537    switch (VT.SimpleTy) {                                                     \ 
  539      return UNKNOWN_LIBCALL;                                                  \ 
  554    OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
 
  569  return UNKNOWN_LIBCALL;
 
 
  573  switch (ElementSize) {
 
  575    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
 
  577    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
 
  579    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
 
  581    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
 
  583    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
 
  585    return UNKNOWN_LIBCALL;
 
 
  590  switch (ElementSize) {
 
  592    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
 
  594    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
 
  596    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
 
  598    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
 
  600    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
 
  602    return UNKNOWN_LIBCALL;
 
 
  607  switch (ElementSize) {
 
  609    return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
 
  611    return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
 
  613    return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
 
  615    return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
 
  617    return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
 
  619    return UNKNOWN_LIBCALL;
 
 
  624    RTLIB::LibcallImpl Impl)
 const {
 
  626  case RTLIB::impl___aeabi_dcmpeq__une:
 
  627  case RTLIB::impl___aeabi_fcmpeq__une:
 
  630  case RTLIB::impl___aeabi_dcmpeq__oeq:
 
  631  case RTLIB::impl___aeabi_fcmpeq__oeq:
 
  634  case RTLIB::impl___aeabi_dcmplt:
 
  635  case RTLIB::impl___aeabi_dcmple:
 
  636  case RTLIB::impl___aeabi_dcmpge:
 
  637  case RTLIB::impl___aeabi_dcmpgt:
 
  638  case RTLIB::impl___aeabi_dcmpun:
 
  639  case RTLIB::impl___aeabi_fcmplt:
 
  640  case RTLIB::impl___aeabi_fcmple:
 
  641  case RTLIB::impl___aeabi_fcmpge:
 
  642  case RTLIB::impl___aeabi_fcmpgt:
 
  660  case RTLIB::OEQ_F128:
 
  661  case RTLIB::OEQ_PPCF128:
 
  665  case RTLIB::UNE_F128:
 
  666  case RTLIB::UNE_PPCF128:
 
  670  case RTLIB::OGE_F128:
 
  671  case RTLIB::OGE_PPCF128:
 
  675  case RTLIB::OLT_F128:
 
  676  case RTLIB::OLT_PPCF128:
 
  680  case RTLIB::OLE_F128:
 
  681  case RTLIB::OLE_PPCF128:
 
  685  case RTLIB::OGT_F128:
 
  686  case RTLIB::OGT_PPCF128:
 
  691  case RTLIB::UO_PPCF128:
 
 
  700    : TM(tm), Libcalls(TM.getTargetTriple(), TM.
Options.ExceptionModel,
 
  702                       TM.
Options.MCOptions.getABIName()) {
 
  711  HasExtractBitsInsn = 
false;
 
  715  StackPointerRegisterToSaveRestore = 0;
 
  722  MaxBytesForAlignment = 0;
 
  723  MaxAtomicSizeInBitsSupported = 0;
 
  727  MaxDivRemBitWidthSupported = 128;
 
  731  MinCmpXchgSizeInBits = 0;
 
  732  SupportsUnalignedAtomics = 
false;
 
 
  743  memset(OpActions, 0, 
sizeof(OpActions));
 
  744  memset(LoadExtActions, 0, 
sizeof(LoadExtActions));
 
  745  memset(TruncStoreActions, 0, 
sizeof(TruncStoreActions));
 
  746  memset(IndexedModeActions, 0, 
sizeof(IndexedModeActions));
 
  747  memset(CondCodeActions, 0, 
sizeof(CondCodeActions));
 
  761    for (
MVT VT : {MVT::i2, MVT::i4})
 
  762      OpActions[(
unsigned)VT.SimpleTy][NT] = 
Expand;
 
  765    for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
 
  773    for (
MVT VT : {MVT::i2, MVT::i4}) {
 
  805                        ISD::FMINNUM,        ISD::FMAXNUM,
 
  806                        ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
 
  807                        ISD::FMINIMUM,       ISD::FMAXIMUM,
 
  808                        ISD::FMINIMUMNUM,    ISD::FMAXIMUMNUM,
 
  822                        ISD::FLOG,           ISD::FLOG2,
 
  823                        ISD::FLOG10,         ISD::FEXP,
 
  824                        ISD::FEXP2,          ISD::FEXP10,
 
  825                        ISD::FFLOOR,         ISD::FNEARBYINT,
 
  826                        ISD::FCEIL,          ISD::FRINT,
 
  827                        ISD::FTRUNC,         ISD::FROUNDEVEN,
 
  828                        ISD::FTAN,           ISD::FACOS,
 
  829                        ISD::FASIN,          ISD::FATAN,
 
  830                        ISD::FCOSH,          ISD::FSINH,
 
  831                        ISD::FTANH,          ISD::FATAN2,
 
  873                        ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
 
  882                          ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
 
  886#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \ 
  887    setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 
  888#include "llvm/IR/ConstrainedOps.def" 
  895        {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
 
  896         ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
 
  897         ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
 
  898         ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
 
  899         ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
 
  900         ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
 
  910#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \ 
  911    setOperationAction(ISD::SDOPC, VT, Expand); 
  912#include "llvm/IR/VPIntrinsics.def" 
  941                     {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
 
  946                     {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, 
Expand);
 
  950                     {MVT::f32, MVT::f64, MVT::f128}, 
LibCall);
 
  953                      ISD::FSINH, ISD::FTANH, ISD::FATAN2},
 
  967  for (
MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
 
 
  994         "ShiftVT is still too small!");
 
 
 1012                                             unsigned DestAS)
 const {
 
 1013  return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
 
 
 1021  if (EC.isScalable())
 
 
 1037    JumpIsExpensive = isExpensive;
 
 
 1053           "Promote may not follow Expand or Promote");
 
 1056      return LegalizeKind(LA, 
EVT(SVT).getHalfNumVectorElementsVT(Context));
 
 1069      assert(NVT != VT && 
"Unable to round integer VT");
 
 1118    EVT OldEltVT = EltVT;
 
 1135      if (NVT != 
MVT() && ValueTypeActions.getTypeAction(NVT) == 
TypeLegal)
 
 1157    if (LargerVector == 
MVT())
 
 1161    if (ValueTypeActions.getTypeAction(LargerVector) == 
TypeLegal)
 
 
 1181                                          unsigned &NumIntermediates,
 
 1188  unsigned NumVectorRegs = 1;
 
 1194        "Splitting or widening of non-power-of-2 MVTs is not implemented.");
 
 1200    NumVectorRegs = EC.getKnownMinValue();
 
 1207  while (EC.getKnownMinValue() > 1 &&
 
 1209    EC = EC.divideCoefficientBy(2);
 
 1210    NumVectorRegs <<= 1;
 
 1213  NumIntermediates = NumVectorRegs;
 
 1218  IntermediateVT = NewVT;
 
 1226  RegisterVT = DestVT;
 
 1227  if (
EVT(DestVT).bitsLT(NewVT))    
 
 1232  return NumVectorRegs;
 
 
 1239  for (
const auto *
I = 
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
 
 
 1275  for (
unsigned i = 0; i < 
MI->getNumOperands(); ++i) {
 
 1282      unsigned TiedTo = i;
 
 1284        TiedTo = 
MI->findTiedOperandIdx(i);
 
 1301      assert(
MI->getOpcode() == TargetOpcode::STATEPOINT && 
"sanity");
 
 1302      MIB.
addImm(StackMaps::IndirectMemRefOp);
 
 1309      MIB.
addImm(StackMaps::DirectMemRefOp);
 
 1314    assert(MIB->
mayLoad() && 
"Folded a stackmap use to a non-load!");
 
 1321    if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
 
 1330  MI->eraseFromParent();
 
 
 1340std::pair<const TargetRegisterClass *, uint8_t>
 
 1345    return std::make_pair(RC, 0);
 
 1354  for (
unsigned i : SuperRegRC.
set_bits()) {
 
 1357    if (
TRI->getSpillSize(*SuperRC) <= 
TRI->getSpillSize(*BestRC))
 
 1363  return std::make_pair(BestRC, 1);
 
 
 1372    NumRegistersForVT[i] = 1;
 
 1376  NumRegistersForVT[MVT::isVoid] = 0;
 
 1379  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
 
 1380  for (; RegClassForVT[LargestIntReg] == 
nullptr; --LargestIntReg)
 
 1381    assert(LargestIntReg != MVT::i1 && 
"No integer registers defined!");
 
 1385  for (
unsigned ExpandedReg = LargestIntReg + 1;
 
 1386       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
 
 1387    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
 
 1396  unsigned LegalIntReg = LargestIntReg;
 
 1397  for (
unsigned IntReg = LargestIntReg - 1;
 
 1398       IntReg >= (
unsigned)MVT::i1; --IntReg) {
 
 1401      LegalIntReg = IntReg;
 
 1403      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
 
 1412      NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
 
 1413      RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
 
 1414      TransformToType[MVT::ppcf128] = MVT::f64;
 
 1417      NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
 
 1418      RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
 
 1419      TransformToType[MVT::ppcf128] = MVT::i128;
 
 1427    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
 
 1428    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
 
 1429    TransformToType[MVT::f128] = MVT::i128;
 
 1436    NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
 
 1437    RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
 
 1438    TransformToType[MVT::f80] = MVT::i32;
 
 1445    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
 
 1446    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
 
 1447    TransformToType[MVT::f64] = MVT::i64;
 
 1454    NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
 
 1455    RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
 
 1456    TransformToType[MVT::f32] = MVT::i32;
 
 1468    if (!UseFPRegsForHalfType) {
 
 1469      NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
 
 1470      RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
 
 1472      NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
 
 1473      RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
 
 1475    TransformToType[MVT::f16] = MVT::f32;
 
 1476    if (SoftPromoteHalfType) {
 
 1487    NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
 
 1488    RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
 
 1489    TransformToType[MVT::bf16] = MVT::f32;
 
 1494  for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
 
 1495       i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 
 1502    bool IsLegalWiderType = 
false;
 
 1505    switch (PreferredAction) {
 
 1508                                   MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
 
 1509                                   MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
 
 1512      for (
unsigned nVT = i + 1;
 
 1519          TransformToType[i] = SVT;
 
 1520          RegisterTypeForVT[i] = SVT;
 
 1521          NumRegistersForVT[i] = 1;
 
 1523          IsLegalWiderType = 
true;
 
 1527      if (IsLegalWiderType)
 
 1535        for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
 
 1540                  EC.getKnownMinValue() &&
 
 1542            TransformToType[i] = SVT;
 
 1543            RegisterTypeForVT[i] = SVT;
 
 1544            NumRegistersForVT[i] = 1;
 
 1546            IsLegalWiderType = 
true;
 
 1550        if (IsLegalWiderType)
 
 1556          TransformToType[i] = NVT;
 
 1558          RegisterTypeForVT[i] = NVT;
 
 1559          NumRegistersForVT[i] = 1;
 
 1569      unsigned NumIntermediates;
 
 1571          NumIntermediates, RegisterVT, 
this);
 
 1572      NumRegistersForVT[i] = NumRegisters;
 
 1573      assert(NumRegistersForVT[i] == NumRegisters &&
 
 1574             "NumRegistersForVT size cannot represent NumRegisters!");
 
 1575      RegisterTypeForVT[i] = RegisterVT;
 
 1580        TransformToType[i] = MVT::Other;
 
 1585        else if (EC.getKnownMinValue() > 1)
 
 1588          ValueTypeActions.setTypeAction(VT, EC.isScalable()
 
 1592        TransformToType[i] = NVT;
 
 1611    RepRegClassForVT[i] = RRC;
 
 1612    RepRegClassCostForVT[i] = 
Cost;
 
 
 1635                                                    EVT VT, 
EVT &IntermediateVT,
 
 1636                                                    unsigned &NumIntermediates,
 
 1637                                                    MVT &RegisterVT)
 const {
 
 1650      IntermediateVT = RegisterEVT;
 
 1652      NumIntermediates = 1;
 
 1660  unsigned NumVectorRegs = 1;
 
 1675          "Don't know how to legalize this scalable vector type");
 
 1681    IntermediateVT = PartVT;
 
 1683    return NumIntermediates;
 
 1698    NumVectorRegs <<= 1;
 
 1701  NumIntermediates = NumVectorRegs;
 
 1706  IntermediateVT = NewVT;
 
 1709  RegisterVT = DestVT;
 
 1711  if (
EVT(DestVT).bitsLT(NewVT)) {  
 
 1721  return NumVectorRegs;
 
 
 1734  const bool OptForSize =
 
 1741  return (OptForSize || 
Range <= MaxJumpTableSize) &&
 
 1742         (NumCases * 100 >= 
Range * MinDensity);
 
 
 1746                                                        EVT ConditionVT)
 const {
 
 
 1760  unsigned NumValues = Types.size();
 
 1761  if (NumValues == 0) 
return;
 
 1763  for (
Type *Ty : Types) {
 
 1767    if (attr.hasRetAttr(Attribute::SExt))
 
 1769    else if (attr.hasRetAttr(Attribute::ZExt))
 
 1782    if (attr.hasRetAttr(Attribute::InReg))
 
 1786    if (attr.hasRetAttr(Attribute::SExt))
 
 1788    else if (attr.hasRetAttr(Attribute::ZExt))
 
 1791    for (
unsigned i = 0; i < NumParts; ++i)
 
 
 1798  return DL.getABITypeAlign(Ty);
 
 
 1810  if (VT.
isZeroSized() || Alignment >= 
DL.getABITypeAlign(Ty)) {
 
 1812    if (
Fast != 
nullptr)
 
 
 1830                                            unsigned AddrSpace, 
Align Alignment,
 
 1832                                            unsigned *
Fast)
 const {
 
 
 1840                                            unsigned *
Fast)
 const {
 
 
 1848                                            unsigned *
Fast)
 const {
 
 
 1859  enum InstructionOpcodes {
 
 1860#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 
 1861#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 
 1862#include "llvm/IR/Instruction.def" 
 1864  switch (
static_cast<InstructionOpcodes
>(Opcode)) {
 
 1867  case Switch:         
return 0;
 
 1868  case IndirectBr:     
return 0;
 
 1869  case Invoke:         
return 0;
 
 1870  case CallBr:         
return 0;
 
 1871  case Resume:         
return 0;
 
 1872  case Unreachable:    
return 0;
 
 1873  case CleanupRet:     
return 0;
 
 1874  case CatchRet:       
return 0;
 
 1875  case CatchPad:       
return 0;
 
 1876  case CatchSwitch:    
return 0;
 
 1877  case CleanupPad:     
return 0;
 
 1878  case FNeg:           
return ISD::FNEG;
 
 1897  case Alloca:         
return 0;
 
 1898  case Load:           
return ISD::LOAD;
 
 1899  case Store:          
return ISD::STORE;
 
 1900  case GetElementPtr:  
return 0;
 
 1901  case Fence:          
return 0;
 
 1902  case AtomicCmpXchg:  
return 0;
 
 1903  case AtomicRMW:      
return 0;
 
 1912  case FPExt:          
return ISD::FP_EXTEND;
 
 1913  case PtrToAddr:      
return ISD::BITCAST;
 
 1914  case PtrToInt:       
return ISD::BITCAST;
 
 1915  case IntToPtr:       
return ISD::BITCAST;
 
 1916  case BitCast:        
return ISD::BITCAST;
 
 1917  case AddrSpaceCast:  
return ISD::ADDRSPACECAST;
 
 1921  case Call:           
return 0;
 
 1923  case UserOp1:        
return 0;
 
 1924  case UserOp2:        
return 0;
 
 1925  case VAArg:          
return 0;
 
 1931  case LandingPad:     
return 0;
 
 
 1940  case Intrinsic::exp:
 
 1942  case Intrinsic::exp2:
 
 1944  case Intrinsic::log:
 
 
 1953                                                       bool UseTLS)
 const {
 
 1957  const char *UnsafeStackPtrVar = 
"__safestack_unsafe_stack_ptr";
 
 1958  auto UnsafeStackPtr =
 
 1962  PointerType *StackPtrTy = 
DL.getAllocaPtrType(M->getContext());
 
 1964  if (!UnsafeStackPtr) {
 
 1973        UnsafeStackPtrVar, 
nullptr, 
TLSModel);
 
 1978    if (UnsafeStackPtr->getValueType() != StackPtrTy)
 
 1980    if (UseTLS != UnsafeStackPtr->isThreadLocal())
 
 1982                         (UseTLS ? 
"" : 
"not ") + 
"be thread-local");
 
 1984  return UnsafeStackPtr;
 
 
 1991  if (!TM.getTargetTriple().isAndroid())
 
 1997  const char *SafestackPointerAddressName =
 
 1999  if (!SafestackPointerAddressName) {
 
 2000    M->getContext().emitError(
 
 2001        "no libcall available for safestack pointer address");
 
 2008      M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
 
 
 2079  RTLIB::LibcallImpl StackGuardImpl = 
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
 
 2080  if (StackGuardImpl == RTLIB::Unsupported)
 
 2084  M.getOrInsertGlobal(
 
 2086        auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
 
 2087                                      false, GlobalVariable::ExternalLinkage,
 
 2088                                      nullptr, StackGuardVarName);
 
 2091        if (M.getDirectAccessExternalData() &&
 
 2092            !TM.getTargetTriple().isOSCygMing() &&
 
 2093            !(TM.getTargetTriple().isPPC64() &&
 
 2094              TM.getTargetTriple().isOSFreeBSD()) &&
 
 2095            (!TM.getTargetTriple().isOSDarwin() ||
 
 2096             TM.getRelocationModel() == Reloc::Static))
 
 2097          GV->setDSOLocal(true);
 
 
 2106  RTLIB::LibcallImpl GuardVarImpl = 
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
 
 2107  if (GuardVarImpl == RTLIB::Unsupported)
 
 
 2114  RTLIB::LibcallImpl SecurityCheckCookieLibcall =
 
 2116  if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
 
 
 2146  return MinimumBitTestCmps;
 
 
 2150  MinimumBitTestCmps = Val;
 
 
 2154  if (TM.Options.LoopAlignment)
 
 2155    return Align(TM.Options.LoopAlignment);
 
 2156  return PrefLoopAlignment;
 
 
 2161  return MaxBytesForAlignment;
 
 
 2172  return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
 
 
 2180  std::string Name = VT.
isVector() ? 
"vec-" : 
"";
 
 2182  Name += IsSqrt ? 
"sqrt" : 
"div";
 
 2191           "Unexpected FP type for reciprocal estimate");
 
 
 2203  const char RefStepToken = 
':';
 
 2204  Position = In.find(RefStepToken);
 
 2208  StringRef RefStepString = In.substr(Position + 1);
 
 2211  if (RefStepString.
size() == 1) {
 
 2212    char RefStepChar = RefStepString[0];
 
 2214      Value = RefStepChar - 
'0';
 
 
 2225  if (Override.
empty())
 
 2229  Override.
split(OverrideVector, 
',');
 
 2230  unsigned NumArgs = OverrideVector.
size();
 
 2240      Override = Override.
substr(0, RefPos);
 
 2244    if (Override == 
"all")
 
 2248    if (Override == 
"none")
 
 2252    if (Override == 
"default")
 
 2258  std::string VTNameNoSize = VTName;
 
 2259  VTNameNoSize.pop_back();
 
 2260  static const char DisabledPrefix = 
'!';
 
 2262  for (
StringRef RecipType : OverrideVector) {
 
 2266      RecipType = RecipType.substr(0, RefPos);
 
 2269    bool IsDisabled = RecipType[0] == DisabledPrefix;
 
 2271      RecipType = RecipType.substr(1);
 
 2273    if (RecipType == VTName || RecipType == VTNameNoSize)
 
 
 2285  if (Override.
empty())
 
 2289  Override.
split(OverrideVector, 
',');
 
 2290  unsigned NumArgs = OverrideVector.
size();
 
 2302    Override = Override.
substr(0, RefPos);
 
 2303    assert(Override != 
"none" &&
 
 2304           "Disabled reciprocals, but specifed refinement steps?");
 
 2307    if (Override == 
"all" || Override == 
"default")
 
 2313  std::string VTNameNoSize = VTName;
 
 2314  VTNameNoSize.pop_back();
 
 2316  for (
StringRef RecipType : OverrideVector) {
 
 2322    RecipType = RecipType.substr(0, RefPos);
 
 2323    if (RecipType == VTName || RecipType == VTNameNoSize)
 
 
 2392  if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
 
 
 2409  if (
SI.isVolatile())
 
 2412  if (
SI.hasMetadata(LLVMContext::MD_nontemporal))
 
 
 2426    if (RMW->isVolatile())
 
 2429    if (CmpX->isVolatile())
 
 
 2447                     "for it, but support must be explicitly enabled");
 
 2448  case Intrinsic::vp_load:
 
 2449  case Intrinsic::vp_gather:
 
 2450  case Intrinsic::experimental_vp_strided_load:
 
 2453  case Intrinsic::vp_store:
 
 2454  case Intrinsic::vp_scatter:
 
 2455  case Intrinsic::experimental_vp_strided_store:
 
 2460  if (VPIntrin.
hasMetadata(LLVMContext::MD_nontemporal))
 
 
 2471    return Builder.CreateFence(Ord);
 
 
 2480    return Builder.CreateFence(Ord);
 
 
 2491  auto &MF = *
MI.getMF();
 
 2492  auto &
MRI = MF.getRegInfo();
 
 2499  auto maxUses = [](
unsigned RematCost) {
 
 2502      return std::numeric_limits<unsigned>::max();
 
 2512  switch (
MI.getOpcode()) {
 
 2517  case TargetOpcode::G_CONSTANT:
 
 2518  case TargetOpcode::G_FCONSTANT:
 
 2519  case TargetOpcode::G_FRAME_INDEX:
 
 2520  case TargetOpcode::G_INTTOPTR:
 
 2522  case TargetOpcode::G_GLOBAL_VALUE: {
 
 2523    unsigned RematCost = 
TTI->getGISelRematGlobalCost();
 
 2525    unsigned MaxUses = maxUses(RematCost);
 
 2526    if (MaxUses == UINT_MAX)
 
 2528    return MRI.hasAtMostUserInstrs(Reg, MaxUses);
 
 
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file defines the SmallVector class.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
static constexpr size_t npos
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual ~TargetLoweringBase()
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...