LLVM  6.0.0svn
MCAssembler.cpp
Go to the documentation of this file.
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/MC/MCAssembler.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/MC/MCAsmBackend.h"
18 #include "llvm/MC/MCAsmInfo.h"
19 #include "llvm/MC/MCAsmLayout.h"
20 #include "llvm/MC/MCCodeEmitter.h"
21 #include "llvm/MC/MCCodeView.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDwarf.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixup.h"
27 #include "llvm/MC/MCFragment.h"
28 #include "llvm/MC/MCInst.h"
29 #include "llvm/MC/MCObjectWriter.h"
30 #include "llvm/MC/MCSection.h"
31 #include "llvm/MC/MCSectionELF.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/MC/MCValue.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/LEB128.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "assembler"
49 
50 namespace {
51 namespace stats {
52 
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55  "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57  "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59  "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61  "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63  "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65  "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 STATISTIC(PaddingFragmentsRelaxations,
72  "Number of Padding Fragments relaxations");
73 STATISTIC(PaddingFragmentsBytes,
74  "Total size of all padding from adding Fragments");
75 
76 } // end namespace stats
77 } // end anonymous namespace
78 
79 // FIXME FIXME FIXME: There are number of places in this file where we convert
80 // what is a 64-bit assembler value used for computation into a value in the
81 // object file, which may truncate it. We should detect that truncation where
82 // invalid and report errors back.
83 
84 /* *** */
85 
87  MCCodeEmitter &Emitter, MCObjectWriter &Writer)
88  : Context(Context), Backend(Backend), Emitter(Emitter), Writer(Writer),
89  BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
90  IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
91  VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
92 }
93 
94 MCAssembler::~MCAssembler() = default;
95 
97  Sections.clear();
98  Symbols.clear();
99  IndirectSymbols.clear();
100  DataRegions.clear();
101  LinkerOptions.clear();
102  FileNames.clear();
103  ThumbFuncs.clear();
104  BundleAlignSize = 0;
105  RelaxAll = false;
106  SubsectionsViaSymbols = false;
107  IncrementalLinkerCompatible = false;
108  ELFHeaderEFlags = 0;
109  LOHContainer.reset();
110  VersionMinInfo.Major = 0;
111 
112  // reset objects owned by us
113  getBackend().reset();
114  getEmitter().reset();
115  getWriter().reset();
117 }
118 
120  if (Section.isRegistered())
121  return false;
122  Sections.push_back(&Section);
123  Section.setIsRegistered(true);
124  return true;
125 }
126 
128  if (ThumbFuncs.count(Symbol))
129  return true;
130 
131  if (!Symbol->isVariable())
132  return false;
133 
134  const MCExpr *Expr = Symbol->getVariableValue();
135 
136  MCValue V;
137  if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
138  return false;
139 
140  if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
141  return false;
142 
143  const MCSymbolRefExpr *Ref = V.getSymA();
144  if (!Ref)
145  return false;
146 
147  if (Ref->getKind() != MCSymbolRefExpr::VK_None)
148  return false;
149 
150  const MCSymbol &Sym = Ref->getSymbol();
151  if (!isThumbFunc(&Sym))
152  return false;
153 
154  ThumbFuncs.insert(Symbol); // Cache it.
155  return true;
156 }
157 
159  // Non-temporary labels should always be visible to the linker.
160  if (!Symbol.isTemporary())
161  return true;
162 
163  // Absolute temporary labels are never visible.
164  if (!Symbol.isInSection())
165  return false;
166 
167  if (Symbol.isUsedInReloc())
168  return true;
169 
170  return false;
171 }
172 
173 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
174  // Linker visible symbols define atoms.
175  if (isSymbolLinkerVisible(S))
176  return &S;
177 
178  // Absolute and undefined symbols have no defining atom.
179  if (!S.isInSection())
180  return nullptr;
181 
182  // Non-linker visible symbols in sections which can't be atomized have no
183  // defining atom.
185  *S.getFragment()->getParent()))
186  return nullptr;
187 
188  // Otherwise, return the atom for the containing fragment.
189  return S.getFragment()->getAtom();
190 }
191 
192 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
193  const MCFixup &Fixup, const MCFragment *DF,
194  MCValue &Target, uint64_t &Value) const {
195  ++stats::evaluateFixup;
196 
197  // FIXME: This code has some duplication with recordRelocation. We should
198  // probably merge the two into a single callback that tries to evaluate a
199  // fixup and records a relocation if one is needed.
200 
201  // On error claim to have completely evaluated the fixup, to prevent any
202  // further processing from being done.
203  const MCExpr *Expr = Fixup.getValue();
204  MCContext &Ctx = getContext();
205  Value = 0;
206  if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
207  Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
208  return true;
209  }
210  if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
211  if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
212  Ctx.reportError(Fixup.getLoc(),
213  "unsupported subtraction of qualified symbol");
214  return true;
215  }
216  }
217 
218  bool IsPCRel = Backend.getFixupKindInfo(
219  Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
220 
221  bool IsResolved;
222  if (IsPCRel) {
223  if (Target.getSymB()) {
224  IsResolved = false;
225  } else if (!Target.getSymA()) {
226  IsResolved = false;
227  } else {
228  const MCSymbolRefExpr *A = Target.getSymA();
229  const MCSymbol &SA = A->getSymbol();
230  if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
231  IsResolved = false;
232  } else {
234  *this, SA, *DF, false, true);
235  }
236  }
237  } else {
238  IsResolved = Target.isAbsolute();
239  }
240 
241  Value = Target.getConstant();
242 
243  if (const MCSymbolRefExpr *A = Target.getSymA()) {
244  const MCSymbol &Sym = A->getSymbol();
245  if (Sym.isDefined())
246  Value += Layout.getSymbolOffset(Sym);
247  }
248  if (const MCSymbolRefExpr *B = Target.getSymB()) {
249  const MCSymbol &Sym = B->getSymbol();
250  if (Sym.isDefined())
251  Value -= Layout.getSymbolOffset(Sym);
252  }
253 
254  bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
256  assert((ShouldAlignPC ? IsPCRel : true) &&
257  "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
258 
259  if (IsPCRel) {
260  uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
261 
262  // A number of ARM fixups in Thumb mode require that the effective PC
263  // address be determined as the 32-bit aligned version of the actual offset.
264  if (ShouldAlignPC) Offset &= ~0x3;
265  Value -= Offset;
266  }
267 
268  // Let the backend force a relocation if needed.
269  if (IsResolved && Backend.shouldForceRelocation(*this, Fixup, Target))
270  IsResolved = false;
271 
272  return IsResolved;
273 }
274 
276  const MCFragment &F) const {
277  switch (F.getKind()) {
278  case MCFragment::FT_Data:
279  return cast<MCDataFragment>(F).getContents().size();
281  return cast<MCRelaxableFragment>(F).getContents().size();
283  return cast<MCCompactEncodedInstFragment>(F).getContents().size();
284  case MCFragment::FT_Fill:
285  return cast<MCFillFragment>(F).getSize();
286 
287  case MCFragment::FT_LEB:
288  return cast<MCLEBFragment>(F).getContents().size();
289 
291  return cast<MCPaddingFragment>(F).getSize();
292 
294  return 4;
295 
296  case MCFragment::FT_Align: {
297  const MCAlignFragment &AF = cast<MCAlignFragment>(F);
298  unsigned Offset = Layout.getFragmentOffset(&AF);
299  unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
300  // If we are padding with nops, force the padding to be larger than the
301  // minimum nop size.
302  if (Size > 0 && AF.hasEmitNops()) {
303  while (Size % getBackend().getMinimumNopSize())
304  Size += AF.getAlignment();
305  }
306  if (Size > AF.getMaxBytesToEmit())
307  return 0;
308  return Size;
309  }
310 
311  case MCFragment::FT_Org: {
312  const MCOrgFragment &OF = cast<MCOrgFragment>(F);
313  MCValue Value;
314  if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
316  "expected assembly-time absolute expression");
317  return 0;
318  }
319 
320  uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
321  int64_t TargetLocation = Value.getConstant();
322  if (const MCSymbolRefExpr *A = Value.getSymA()) {
323  uint64_t Val;
324  if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
325  getContext().reportError(OF.getLoc(), "expected absolute expression");
326  return 0;
327  }
328  TargetLocation += Val;
329  }
330  int64_t Size = TargetLocation - FragmentOffset;
331  if (Size < 0 || Size >= 0x40000000) {
333  OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
334  "' (at offset '" + Twine(FragmentOffset) + "')");
335  return 0;
336  }
337  return Size;
338  }
339 
341  return cast<MCDwarfLineAddrFragment>(F).getContents().size();
343  return cast<MCDwarfCallFrameFragment>(F).getContents().size();
345  return cast<MCCVInlineLineTableFragment>(F).getContents().size();
347  return cast<MCCVDefRangeFragment>(F).getContents().size();
349  llvm_unreachable("Should not have been added");
350  }
351 
352  llvm_unreachable("invalid fragment kind");
353 }
354 
356  MCFragment *Prev = F->getPrevNode();
357 
358  // We should never try to recompute something which is valid.
359  assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
360  // We should never try to compute the fragment layout if its predecessor
361  // isn't valid.
362  assert((!Prev || isFragmentValid(Prev)) &&
363  "Attempt to compute fragment before its predecessor!");
364 
365  ++stats::FragmentLayouts;
366 
367  // Compute fragment offset and size.
368  if (Prev)
369  F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
370  else
371  F->Offset = 0;
372  LastValidFragment[F->getParent()] = F;
373 
374  // If bundling is enabled and this fragment has instructions in it, it has to
375  // obey the bundling restrictions. With padding, we'll have:
376  //
377  //
378  // BundlePadding
379  // |||
380  // -------------------------------------
381  // Prev |##########| F |
382  // -------------------------------------
383  // ^
384  // |
385  // F->Offset
386  //
387  // The fragment's offset will point to after the padding, and its computed
388  // size won't include the padding.
389  //
390  // When the -mc-relax-all flag is used, we optimize bundling by writting the
391  // padding directly into fragments when the instructions are emitted inside
392  // the streamer. When the fragment is larger than the bundle size, we need to
393  // ensure that it's bundle aligned. This means that if we end up with
394  // multiple fragments, we must emit bundle padding between fragments.
395  //
396  // ".align N" is an example of a directive that introduces multiple
397  // fragments. We could add a special case to handle ".align N" by emitting
398  // within-fragment padding (which would produce less padding when N is less
399  // than the bundle size), but for now we don't.
400  //
401  if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
402  assert(isa<MCEncodedFragment>(F) &&
403  "Only MCEncodedFragment implementations have instructions");
404  uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
405 
406  if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
407  report_fatal_error("Fragment can't be larger than a bundle size");
408 
409  uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
410  F->Offset, FSize);
411  if (RequiredBundlePadding > UINT8_MAX)
412  report_fatal_error("Padding cannot exceed 255 bytes");
413  F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
414  F->Offset += RequiredBundlePadding;
415  }
416 }
417 
418 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
419  bool New = !Symbol.isRegistered();
420  if (Created)
421  *Created = New;
422  if (New) {
423  Symbol.setIsRegistered(true);
424  Symbols.push_back(&Symbol);
425  }
426 }
427 
428 void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
429  MCObjectWriter *OW) const {
430  // Should NOP padding be written out before this fragment?
431  unsigned BundlePadding = F.getBundlePadding();
432  if (BundlePadding > 0) {
434  "Writing bundle padding with disabled bundling");
435  assert(F.hasInstructions() &&
436  "Writing bundle padding for a fragment without instructions");
437 
438  unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
439  if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
440  // If the padding itself crosses a bundle boundary, it must be emitted
441  // in 2 pieces, since even nop instructions must not cross boundaries.
442  // v--------------v <- BundleAlignSize
443  // v---------v <- BundlePadding
444  // ----------------------------
445  // | Prev |####|####| F |
446  // ----------------------------
447  // ^-------------------^ <- TotalLength
448  unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
449  if (!getBackend().writeNopData(DistanceToBoundary, OW))
450  report_fatal_error("unable to write NOP sequence of " +
451  Twine(DistanceToBoundary) + " bytes");
452  BundlePadding -= DistanceToBoundary;
453  }
454  if (!getBackend().writeNopData(BundlePadding, OW))
455  report_fatal_error("unable to write NOP sequence of " +
456  Twine(BundlePadding) + " bytes");
457  }
458 }
459 
460 /// \brief Write the fragment \p F to the output file.
461 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
462  const MCFragment &F) {
463  MCObjectWriter *OW = &Asm.getWriter();
464 
465  // FIXME: Embed in fragments instead?
466  uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
467 
468  Asm.writeFragmentPadding(F, FragmentSize, OW);
469 
470  // This variable (and its dummy usage) is to participate in the assert at
471  // the end of the function.
472  uint64_t Start = OW->getStream().tell();
473  (void) Start;
474 
475  ++stats::EmittedFragments;
476 
477  switch (F.getKind()) {
478  case MCFragment::FT_Align: {
479  ++stats::EmittedAlignFragments;
480  const MCAlignFragment &AF = cast<MCAlignFragment>(F);
481  assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
482 
483  uint64_t Count = FragmentSize / AF.getValueSize();
484 
485  // FIXME: This error shouldn't actually occur (the front end should emit
486  // multiple .align directives to enforce the semantics it wants), but is
487  // severe enough that we want to report it. How to handle this?
488  if (Count * AF.getValueSize() != FragmentSize)
489  report_fatal_error("undefined .align directive, value size '" +
490  Twine(AF.getValueSize()) +
491  "' is not a divisor of padding size '" +
492  Twine(FragmentSize) + "'");
493 
494  // See if we are aligning with nops, and if so do that first to try to fill
495  // the Count bytes. Then if that did not fill any bytes or there are any
496  // bytes left to fill use the Value and ValueSize to fill the rest.
497  // If we are aligning with nops, ask that target to emit the right data.
498  if (AF.hasEmitNops()) {
499  if (!Asm.getBackend().writeNopData(Count, OW))
500  report_fatal_error("unable to write nop sequence of " +
501  Twine(Count) + " bytes");
502  break;
503  }
504 
505  // Otherwise, write out in multiples of the value size.
506  for (uint64_t i = 0; i != Count; ++i) {
507  switch (AF.getValueSize()) {
508  default: llvm_unreachable("Invalid size!");
509  case 1: OW->write8 (uint8_t (AF.getValue())); break;
510  case 2: OW->write16(uint16_t(AF.getValue())); break;
511  case 4: OW->write32(uint32_t(AF.getValue())); break;
512  case 8: OW->write64(uint64_t(AF.getValue())); break;
513  }
514  }
515  break;
516  }
517 
518  case MCFragment::FT_Data:
519  ++stats::EmittedDataFragments;
520  OW->writeBytes(cast<MCDataFragment>(F).getContents());
521  break;
522 
524  ++stats::EmittedRelaxableFragments;
525  OW->writeBytes(cast<MCRelaxableFragment>(F).getContents());
526  break;
527 
529  ++stats::EmittedCompactEncodedInstFragments;
530  OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents());
531  break;
532 
533  case MCFragment::FT_Fill: {
534  ++stats::EmittedFillFragments;
535  const MCFillFragment &FF = cast<MCFillFragment>(F);
536  uint8_t V = FF.getValue();
537  const unsigned MaxChunkSize = 16;
538  char Data[MaxChunkSize];
539  memcpy(Data, &V, 1);
540  for (unsigned I = 1; I < MaxChunkSize; ++I)
541  Data[I] = Data[0];
542 
543  uint64_t Size = FF.getSize();
544  for (unsigned ChunkSize = MaxChunkSize; ChunkSize; ChunkSize /= 2) {
545  StringRef Ref(Data, ChunkSize);
546  for (uint64_t I = 0, E = Size / ChunkSize; I != E; ++I)
547  OW->writeBytes(Ref);
548  Size = Size % ChunkSize;
549  }
550  break;
551  }
552 
553  case MCFragment::FT_LEB: {
554  const MCLEBFragment &LF = cast<MCLEBFragment>(F);
555  OW->writeBytes(LF.getContents());
556  break;
557  }
558 
559  case MCFragment::FT_Padding: {
560  if (!Asm.getBackend().writeNopData(FragmentSize, OW))
561  report_fatal_error("unable to write nop sequence of " +
562  Twine(FragmentSize) + " bytes");
563  break;
564  }
565 
567  const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
568  OW->write32(SF.getSymbol()->getIndex());
569  break;
570  }
571 
572  case MCFragment::FT_Org: {
573  ++stats::EmittedOrgFragments;
574  const MCOrgFragment &OF = cast<MCOrgFragment>(F);
575 
576  for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
577  OW->write8(uint8_t(OF.getValue()));
578 
579  break;
580  }
581 
582  case MCFragment::FT_Dwarf: {
583  const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
584  OW->writeBytes(OF.getContents());
585  break;
586  }
588  const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
589  OW->writeBytes(CF.getContents());
590  break;
591  }
593  const auto &OF = cast<MCCVInlineLineTableFragment>(F);
594  OW->writeBytes(OF.getContents());
595  break;
596  }
598  const auto &DRF = cast<MCCVDefRangeFragment>(F);
599  OW->writeBytes(DRF.getContents());
600  break;
601  }
603  llvm_unreachable("Should not have been added");
604  }
605 
606  assert(OW->getStream().tell() - Start == FragmentSize &&
607  "The stream should advance by fragment size");
608 }
609 
611  const MCAsmLayout &Layout) const {
612  // Ignore virtual sections.
613  if (Sec->isVirtualSection()) {
614  assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
615 
616  // Check that contents are only things legal inside a virtual section.
617  for (const MCFragment &F : *Sec) {
618  switch (F.getKind()) {
619  default: llvm_unreachable("Invalid fragment in virtual section!");
620  case MCFragment::FT_Data: {
621  // Check that we aren't trying to write a non-zero contents (or fixups)
622  // into a virtual section. This is to support clients which use standard
623  // directives to fill the contents of virtual sections.
624  const MCDataFragment &DF = cast<MCDataFragment>(F);
625  if (DF.fixup_begin() != DF.fixup_end())
626  report_fatal_error("cannot have fixups in virtual section!");
627  for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
628  if (DF.getContents()[i]) {
629  if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
630  report_fatal_error("non-zero initializer found in section '" +
631  ELFSec->getSectionName() + "'");
632  else
633  report_fatal_error("non-zero initializer found in virtual section");
634  }
635  break;
636  }
638  // Check that we aren't trying to write a non-zero value into a virtual
639  // section.
640  assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
641  cast<MCAlignFragment>(F).getValue() == 0) &&
642  "Invalid align in virtual section!");
643  break;
644  case MCFragment::FT_Fill:
645  assert((cast<MCFillFragment>(F).getValue() == 0) &&
646  "Invalid fill in virtual section!");
647  break;
648  }
649  }
650 
651  return;
652  }
653 
654  uint64_t Start = getWriter().getStream().tell();
655  (void)Start;
656 
657  for (const MCFragment &F : *Sec)
658  writeFragment(*this, Layout, F);
659 
660  assert(getWriter().getStream().tell() - Start ==
661  Layout.getSectionAddressSize(Sec));
662 }
663 
664 std::tuple<MCValue, uint64_t, bool>
665 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
666  const MCFixup &Fixup) {
667  // Evaluate the fixup.
668  MCValue Target;
669  uint64_t FixedValue;
670  bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue);
671  if (!IsResolved) {
672  // The fixup was unresolved, we need a relocation. Inform the object
673  // writer of the relocation, and give it an opportunity to adjust the
674  // fixup value if need be.
675  getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
676  }
677  return std::make_tuple(Target, FixedValue, IsResolved);
678 }
679 
681  DEBUG_WITH_TYPE("mc-dump", {
682  errs() << "assembler backend - pre-layout\n--\n";
683  dump(); });
684 
685  // Create dummy fragments and assign section ordinals.
686  unsigned SectionIndex = 0;
687  for (MCSection &Sec : *this) {
688  // Create dummy fragments to eliminate any empty sections, this simplifies
689  // layout.
690  if (Sec.getFragmentList().empty())
691  new MCDataFragment(&Sec);
692 
693  Sec.setOrdinal(SectionIndex++);
694  }
695 
696  // Assign layout order indices to sections and fragments.
697  for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
698  MCSection *Sec = Layout.getSectionOrder()[i];
699  Sec->setLayoutOrder(i);
700 
701  unsigned FragmentIndex = 0;
702  for (MCFragment &Frag : *Sec)
703  Frag.setLayoutOrder(FragmentIndex++);
704  }
705 
706  // Layout until everything fits.
707  while (layoutOnce(Layout))
708  if (getContext().hadError())
709  return;
710 
711  DEBUG_WITH_TYPE("mc-dump", {
712  errs() << "assembler backend - post-relaxation\n--\n";
713  dump(); });
714 
715  // Finalize the layout, including fragment lowering.
716  finishLayout(Layout);
717 
718  DEBUG_WITH_TYPE("mc-dump", {
719  errs() << "assembler backend - final-layout\n--\n";
720  dump(); });
721 
722  // Allow the object writer a chance to perform post-layout binding (for
723  // example, to set the index fields in the symbol data).
724  getWriter().executePostLayoutBinding(*this, Layout);
725 
726  // Evaluate and apply the fixups, generating relocation entries as necessary.
727  for (MCSection &Sec : *this) {
728  for (MCFragment &Frag : Sec) {
729  // Data and relaxable fragments both have fixups. So only process
730  // those here.
731  // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
732  // being templated makes this tricky.
733  if (isa<MCEncodedFragment>(&Frag) &&
734  isa<MCCompactEncodedInstFragment>(&Frag))
735  continue;
736  if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag))
737  continue;
739  MutableArrayRef<char> Contents;
740  if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
741  Fixups = FragWithFixups->getFixups();
742  Contents = FragWithFixups->getContents();
743  } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
744  Fixups = FragWithFixups->getFixups();
745  Contents = FragWithFixups->getContents();
746  } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
747  Fixups = FragWithFixups->getFixups();
748  Contents = FragWithFixups->getContents();
749  } else
750  llvm_unreachable("Unknown fragment with fixups!");
751  for (const MCFixup &Fixup : Fixups) {
752  uint64_t FixedValue;
753  bool IsResolved;
754  MCValue Target;
755  std::tie(Target, FixedValue, IsResolved) =
756  handleFixup(Layout, Frag, Fixup);
757  getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
758  IsResolved);
759  }
760  }
761  }
762 }
763 
765  // Create the layout object.
766  MCAsmLayout Layout(*this);
767  layout(Layout);
768 
769  raw_ostream &OS = getWriter().getStream();
770  uint64_t StartOffset = OS.tell();
771 
772  // Write the object file.
773  getWriter().writeObject(*this, Layout);
774 
775  stats::ObjectBytes += OS.tell() - StartOffset;
776 }
777 
778 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
779  const MCRelaxableFragment *DF,
780  const MCAsmLayout &Layout) const {
781  MCValue Target;
782  uint64_t Value;
783  bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value);
784  if (Target.getSymA() &&
786  Fixup.getKind() == FK_Data_1)
787  return false;
788  return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
789  Layout);
790 }
791 
792 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
793  const MCAsmLayout &Layout) const {
794  // If this inst doesn't ever need relaxation, ignore it. This occurs when we
795  // are intentionally pushing out inst fragments, or because we relaxed a
796  // previous instruction to one that doesn't need relaxation.
797  if (!getBackend().mayNeedRelaxation(F->getInst()))
798  return false;
799 
800  for (const MCFixup &Fixup : F->getFixups())
801  if (fixupNeedsRelaxation(Fixup, F, Layout))
802  return true;
803 
804  return false;
805 }
806 
807 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
808  MCRelaxableFragment &F) {
809  if (!fragmentNeedsRelaxation(&F, Layout))
810  return false;
811 
812  ++stats::RelaxedInstructions;
813 
814  // FIXME-PERF: We could immediately lower out instructions if we can tell
815  // they are fully resolved, to avoid retesting on later passes.
816 
817  // Relax the fragment.
818 
819  MCInst Relaxed;
821 
822  // Encode the new instruction.
823  //
824  // FIXME-PERF: If it matters, we could let the target do this. It can
825  // probably do so more efficiently in many cases.
827  SmallString<256> Code;
828  raw_svector_ostream VecOS(Code);
829  getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
830 
831  // Update the fragment.
832  F.setInst(Relaxed);
833  F.getContents() = Code;
834  F.getFixups() = Fixups;
835 
836  return true;
837 }
838 
839 bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
840  MCPaddingFragment &PF) {
841  uint64_t OldSize = PF.getSize();
842  if (!getBackend().relaxFragment(&PF, Layout))
843  return false;
844  uint64_t NewSize = PF.getSize();
845 
846  ++stats::PaddingFragmentsRelaxations;
847  stats::PaddingFragmentsBytes += NewSize;
848  stats::PaddingFragmentsBytes -= OldSize;
849  return true;
850 }
851 
852 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
853  uint64_t OldSize = LF.getContents().size();
854  int64_t Value;
855  bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
856  if (!Abs)
857  report_fatal_error("sleb128 and uleb128 expressions must be absolute");
859  Data.clear();
860  raw_svector_ostream OSE(Data);
861  if (LF.isSigned())
862  encodeSLEB128(Value, OSE);
863  else
864  encodeULEB128(Value, OSE);
865  return OldSize != LF.getContents().size();
866 }
867 
868 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
870  MCContext &Context = Layout.getAssembler().getContext();
871  uint64_t OldSize = DF.getContents().size();
872  int64_t AddrDelta;
873  bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
874  assert(Abs && "We created a line delta with an invalid expression");
875  (void) Abs;
876  int64_t LineDelta;
877  LineDelta = DF.getLineDelta();
879  Data.clear();
880  raw_svector_ostream OSE(Data);
881  MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
882  AddrDelta, OSE);
883  return OldSize != Data.size();
884 }
885 
886 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
888  MCContext &Context = Layout.getAssembler().getContext();
889  uint64_t OldSize = DF.getContents().size();
890  int64_t AddrDelta;
891  bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
892  assert(Abs && "We created call frame with an invalid expression");
893  (void) Abs;
895  Data.clear();
896  raw_svector_ostream OSE(Data);
897  MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
898  return OldSize != Data.size();
899 }
900 
901 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
903  unsigned OldSize = F.getContents().size();
905  return OldSize != F.getContents().size();
906 }
907 
908 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
910  unsigned OldSize = F.getContents().size();
911  getContext().getCVContext().encodeDefRange(Layout, F);
912  return OldSize != F.getContents().size();
913 }
914 
915 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
916  // Holds the first fragment which needed relaxing during this layout. It will
917  // remain NULL if none were relaxed.
918  // When a fragment is relaxed, all the fragments following it should get
919  // invalidated because their offset is going to change.
920  MCFragment *FirstRelaxedFragment = nullptr;
921 
922  // Attempt to relax all the fragments in the section.
923  for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
924  // Check if this is a fragment that needs relaxation.
925  bool RelaxedFrag = false;
926  switch(I->getKind()) {
927  default:
928  break;
930  assert(!getRelaxAll() &&
931  "Did not expect a MCRelaxableFragment in RelaxAll mode");
932  RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
933  break;
935  RelaxedFrag = relaxDwarfLineAddr(Layout,
936  *cast<MCDwarfLineAddrFragment>(I));
937  break;
939  RelaxedFrag =
940  relaxDwarfCallFrameFragment(Layout,
941  *cast<MCDwarfCallFrameFragment>(I));
942  break;
943  case MCFragment::FT_LEB:
944  RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
945  break;
947  RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
948  break;
950  RelaxedFrag =
951  relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
952  break;
954  RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
955  break;
956  }
957  if (RelaxedFrag && !FirstRelaxedFragment)
958  FirstRelaxedFragment = &*I;
959  }
960  if (FirstRelaxedFragment) {
961  Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
962  return true;
963  }
964  return false;
965 }
966 
967 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
968  ++stats::RelaxationSteps;
969 
970  bool WasRelaxed = false;
971  for (iterator it = begin(), ie = end(); it != ie; ++it) {
972  MCSection &Sec = *it;
973  while (layoutSectionOnce(Layout, Sec))
974  WasRelaxed = true;
975  }
976 
977  return WasRelaxed;
978 }
979 
980 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
981  // The layout is done. Mark every fragment as valid.
982  for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
983  MCSection &Section = *Layout.getSectionOrder()[i];
984  Layout.getFragmentOffset(&*Section.rbegin());
985  computeFragmentSize(Layout, *Section.rbegin());
986  }
987  getBackend().finishLayout(*this, Layout);
988 }
const MCAsmInfo * getAsmInfo() const
Definition: MCContext.h:283
Instances of this class represent a uniqued identifier for a section in the current translation unit...
Definition: MCSection.h:39
Fragment for adding required padding.
Definition: MCFragment.h:333
void encodeDefRange(MCAsmLayout &Layout, MCCVDefRangeFragment &F)
Definition: MCCodeView.cpp:519
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
uint32_t getIndex() const
Get the (implementation defined) index.
Definition: MCSymbol.h:311
bool alignToBundleEnd() const
Should this fragment be placed at the end of an aligned bundle?
Definition: MCFragment.h:118
LLVMContext & Context
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:115
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
bool isVariable() const
isVariable - Check if this is a variable symbol.
Definition: MCSymbol.h:295
raw_pwrite_stream & getStream()
void write64(uint64_t Value)
This represents an "assembler immediate".
Definition: MCValue.h:40
uint64_t getSectionAddressSize(const MCSection *Sec) const
Get the address space size of the given section, as it effects layout.
Definition: MCFragment.cpp:175
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
VariantKind getKind() const
Definition: MCExpr.h:320
virtual void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI, MCInst &Res) const =0
Relax the instruction in the given fragment to the next wider instruction.
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:136
iterator begin()
Definition: MCAssembler.h:305
SmallString< 8 > & getContents()
Definition: MCFragment.h:616
void setLayoutOrder(unsigned Value)
Definition: MCSection.h:124
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
virtual void executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout)=0
Perform any late binding of symbols (for example, to assign symbol indices for use when generating re...
int64_t getValue() const
Definition: MCFragment.h:312
uint64_t getSize() const
Definition: MCFragment.h:411
virtual void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout)=0
Write the object file.
bool isAbsolute() const
Is this an absolute (as opposed to relocatable) value.
Definition: MCValue.h:53
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:489
void registerSymbol(const MCSymbol &Symbol, bool *Created=nullptr)
FragmentType getKind() const
Definition: MCFragment.h:102
STATISTIC(NumFunctions, "Total number of functions")
F(f)
const MCSubtargetInfo & getSubtargetInfo()
Definition: MCFragment.h:274
const MCExpr & getOffset() const
Definition: MCFragment.h:457
void dump() const
Definition: MCFragment.cpp:467
bool isBundlingEnabled() const
Definition: MCAssembler.h:292
Defines the object file and target independent interfaces used by the assembler backend to write nati...
void write8(uint8_t Value)
static void Encode(MCContext &Context, MCDwarfLineTableParams Params, int64_t LineDelta, uint64_t AddrDelta, raw_ostream &OS)
Utility function to encode a Dwarf pair of LineDelta and AddrDeltas.
Definition: MCDwarf.cpp:437
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition: MCFixup.h:66
unsigned getBundleAlignSize() const
Definition: MCAssembler.h:294
Is this fixup kind PCrelative? This is used by the assembler backend to evaluate fixup values in a ta...
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:64
MCContext & getContext() const
Definition: MCAssembler.h:259
int64_t getConstant() const
Definition: MCValue.h:47
const MCSymbolRefExpr * getSymB() const
Definition: MCValue.h:49
virtual void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef< char > Data, uint64_t Value, bool IsResolved) const =0
Apply the Value for given Fixup into the provided data fragment, at the offset specified by the fixup...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
MCDwarfLineTableParams getDWARFLinetableParams() const
Definition: MCAssembler.h:267
Encapsulates the layout of an assembly file at a particular point in time.
Definition: MCAsmLayout.h:29
bool isSymbolLinkerVisible(const MCSymbol &SD) const
Check whether a particular symbol is visible to the linker and is required in the symbol table...
MCCodeEmitter & getEmitter() const
Definition: MCAssembler.h:263
virtual void encodeInstruction(const MCInst &Inst, raw_ostream &OS, SmallVectorImpl< MCFixup > &Fixups, const MCSubtargetInfo &STI) const =0
EncodeInstruction - Encode the given Inst to bytes on the output stream OS.
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:36
bool registerSection(MCSection &Section)
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:165
MCObjectWriter & getWriter() const
Definition: MCAssembler.h:265
SMLoc getLoc() const
Definition: MCFragment.h:461
void writeSectionData(const MCSection *Section, const MCAsmLayout &Layout) const
Emit the section contents using the given object writer.
Context object for machine code objects.
Definition: MCContext.h:59
const MCExpr & getAddrDelta() const
Definition: MCFragment.h:526
bool evaluateAsRelocatable(MCValue &Res, const MCAsmLayout *Layout, const MCFixup *Fixup) const
Try to evaluate the expression to a relocatable value, i.e.
Definition: MCExpr.cpp:594
virtual bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target)
Hook to check if a relocation is needed for some target specific reason.
Definition: MCAsmBackend.h:73
cl::opt< bool > RelaxAll("mc-relax-all", cl::desc("When used with filetype=obj, " "relax all fixups in the emitted object file"))
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
const MCExpr & getAddrDelta() const
Definition: MCFragment.h:554
reverse_iterator rbegin()
Definition: MCSection.h:162
MCAssembler & getAssembler() const
Get the assembler object this is a layout for.
Definition: MCAsmLayout.h:51
void layoutFragment(MCFragment *Fragment)
Perform layout for a single fragment, assuming that the previous fragment has already been laid out c...
iterator end()
Definition: MCAssembler.h:308
SmallVectorImpl< char > & getContents()
Definition: MCFragment.h:183
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:159
virtual unsigned getMinimumNopSize() const
Returns the minimum size of a nop in bytes on this target.
Definition: MCAsmBackend.h:124
virtual bool writeNopData(uint64_t Count, MCObjectWriter *OW) const =0
Write an (optimal) nop sequence of Count bytes to the given output.
void encodeInlineLineTable(MCAsmLayout &Layout, MCCVInlineLineTableFragment &F)
Encodes the binary annotations once we have a layout.
Definition: MCCodeView.cpp:386
A relaxable fragment holds on to its MCInst, since it may need to be relaxed during the assembler lay...
Definition: MCFragment.h:257
void encodeULEB128(uint64_t Value, raw_ostream &OS, unsigned PadTo=0)
Utility function to encode a ULEB128 value to an output stream.
Definition: LEB128.h:77
void write32(uint32_t Value)
uint8_t getValue() const
Definition: MCFragment.h:431
bool evaluateKnownAbsolute(int64_t &Res, const MCAsmLayout &Layout) const
Definition: MCExpr.cpp:431
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:291
virtual void reset()
Lifetime management.
Definition: MCCodeEmitter.h:32
cl::opt< bool > IncrementalLinkerCompatible("incremental-linker-compatible", cl::desc("When used with filetype=obj, " "emit an object file which can be used with an incremental linker"))
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
void invalidateFragmentsFrom(MCFragment *F)
Invalidate the fragments starting with F because it has been resized.
Definition: MCFragment.cpp:51
MCCodeEmitter - Generic instruction encoding interface.
Definition: MCCodeEmitter.h:22
virtual void reset()
lifetime management
bool isRegistered() const
Definition: MCSection.h:140
SmallVectorImpl< MCFixup > & getFixups()
Definition: MCFragment.h:208
bool getSymbolOffset(const MCSymbol &S, uint64_t &Val) const
Get the offset of the given symbol, as computed in the current layout.
Definition: MCFragment.cpp:129
virtual bool isSectionAtomizableBySymbols(const MCSection &Section) const
True if the section is atomized using the symbols in it.
Definition: MCAsmInfo.cpp:63
const MCSymbol * getAtom(const MCSymbol &S) const
Find the symbol which defines the atom containing the given symbol, or null if there is no such symbo...
bool isTemporary() const
isTemporary - Check if this is an assembler temporary symbol.
Definition: MCSymbol.h:220
const MCSymbolRefExpr * getSymA() const
Definition: MCValue.h:48
void encodeSLEB128(int64_t Value, raw_ostream &OS, unsigned PadTo=0)
Utility function to encode a SLEB128 value to an output stream.
Definition: LEB128.h:23
void reportError(SMLoc L, const Twine &Msg)
Definition: MCContext.cpp:570
Should this fixup kind force a 4-byte aligned effective PC value?
const MCSymbol * getAtom() const
Definition: MCFragment.h:107
llvm::SmallVectorImpl< MCSection * > & getSectionOrder()
Definition: MCAsmLayout.h:66
void setIsRegistered(bool Value)
Definition: MCSection.h:141
uint32_t getOffset() const
Definition: MCFixup.h:95
Fragment representing the .cv_def_range directive.
Definition: MCFragment.h:627
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
A one-byte fixup.
Definition: MCFixup.h:24
void layout(MCAsmLayout &Layout)
const MCExpr & getValue() const
Definition: MCFragment.h:488
void write16(uint16_t Value)
uint64_t getFragmentOffset(const MCFragment *F) const
Get the offset of the given fragment inside its containing section.
Definition: MCFragment.cpp:77
PowerPC TLS Dynamic Call Fixup
void setOrdinal(unsigned Value)
Definition: MCSection.h:121
uint64_t computeBundlePadding(const MCAssembler &Assembler, const MCFragment *F, uint64_t FOffset, uint64_t FSize)
Compute the amount of padding required before the fragment F to obey bundling restrictions, where FOffset is the fragment&#39;s offset in its section and FSize is the fragment&#39;s size.
Definition: MCFragment.cpp:190
MCAssembler(MCContext &Context, MCAsmBackend &Backend, MCCodeEmitter &Emitter, MCObjectWriter &Writer)
Construct a new assembler instance.
Definition: MCAssembler.cpp:86
SMLoc getLoc() const
Definition: MCFixup.h:112
void writeFragmentPadding(const MCFragment &F, uint64_t FSize, MCObjectWriter *OW) const
Write the necessary bundle padding to the given object writer.
Iterator for intrusive lists based on ilist_node.
unsigned getMaxBytesToEmit() const
Definition: MCFragment.h:316
bool hasEmitNops() const
Definition: MCFragment.h:318
bool isInSection(bool SetUsed=true) const
isInSection - Check if this symbol is defined in some section (i.e., it is defined but not absolute)...
Definition: MCSymbol.h:255
virtual bool isVirtualSection() const =0
Check whether this section is "virtual", that is has no actual object file contents.
MCAsmBackend & getBackend() const
Definition: MCAssembler.h:261
const MCSymbol & getSymbol() const
Definition: MCExpr.h:318
virtual bool fixupNeedsRelaxationAdvanced(const MCFixup &Fixup, bool Resolved, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const
Target specific predicate for whether a given fixup requires the associated instruction to be relaxed...
bool isUndefined(bool SetUsed=true) const
isUndefined - Check if this symbol undefined (i.e., implicitly defined).
Definition: MCSymbol.h:260
MCFragment * getFragment(bool SetUsed=true) const
Definition: MCSymbol.h:383
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:864
bool isRegistered() const
Definition: MCSymbol.h:210
Represents a symbol table index fragment.
Definition: MCFragment.h:567
An iterator type that allows iterating over the pointees via some other iterator. ...
Definition: iterator.h:289
static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment &F)
Write the fragment F to the output file.
virtual void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue)=0
Record a relocation entry.
static void EncodeAdvanceLoc(MCContext &Context, uint64_t AddrDelta, raw_ostream &OS)
Definition: MCDwarf.cpp:1584
MCLOHContainer & getLOHContainer()
Definition: MCAssembler.h:392
bool getRelaxAll() const
Definition: MCAssembler.h:289
Target - Wrapper for Target specific information.
bool isThumbFunc(const MCSymbol *Func) const
Check whether a given symbol has been flagged with .thumb_func.
MCSection * getParent() const
Definition: MCFragment.h:104
bool hasInstructions() const
Does this fragment have instructions emitted into it? By default this is false, but specific fragment...
Definition: MCFragment.h:115
SmallString< 8 > & getContents()
Definition: MCFragment.h:556
void setIsRegistered(bool Value) const
Definition: MCSymbol.h:211
Fragment representing the binary annotations produced by the .cv_inline_linetable directive...
Definition: MCFragment.h:589
bool isUsedInReloc() const
Definition: MCSymbol.h:214
void setBundlePadding(uint8_t N)
Set the padding size for this fragment.
Definition: MCFragment.h:130
unsigned getValueSize() const
Definition: MCFragment.h:314
unsigned getAlignment() const
Definition: MCFragment.h:310
virtual bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, const MCSymbol &A, const MCSymbol &B, bool InSet) const
uint64_t getSize() const
Definition: MCFragment.h:432
int64_t getLineDelta() const
Definition: MCFragment.h:524
const MCInst & getInst() const
Definition: MCFragment.h:271
#define I(x, y, z)
Definition: MD5.cpp:58
bool isDefined(bool SetUsed=true) const
isDefined - Check if this symbol is defined (i.e., it has an address).
Definition: MCSymbol.h:249
bool evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const
Try to evaluate the expression to the form (a - b + constant) where neither a nor b are variables...
Definition: MCExpr.cpp:602
uint64_t computeFragmentSize(const MCAsmLayout &Layout, const MCFragment &F) const
Compute the effective fragment size assuming it is laid out at the given SectionAddress and FragmentO...
SmallString< 8 > & getContents()
Definition: MCFragment.h:492
const MCSymbol * getSymbol()
Definition: MCFragment.h:577
void writeBytes(const SmallVectorImpl< char > &ByteVec, unsigned ZeroFillSize=0)
uint32_t getRefKind() const
Definition: MCValue.h:50
CodeViewContext & getCVContext()
Definition: MCContext.cpp:560
void reset()
Reuse an assembler instance.
Definition: MCAssembler.cpp:96
Fragment for data and encoded instructions.
Definition: MCFragment.h:226
uint64_t getSectionFileSize(const MCSection *Sec) const
Get the data size of the given section, as emitted to the object file.
Definition: MCFragment.cpp:181
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
const MCExpr * getVariableValue(bool SetUsed=true) const
getVariableValue - Get the value for variable symbols.
Definition: MCSymbol.h:300
bool isSigned() const
Definition: MCFragment.h:490
LLVM Value Representation.
Definition: Value.h:73
Generic interface to target specific assembler backends.
Definition: MCAsmBackend.h:40
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align)
Returns the offset to the next integer (mod 2**64) that is greater than or equal to Value and is a mu...
Definition: MathExtras.h:719
uint64_t tell() const
tell - Return the current offset with the file.
Definition: raw_ostream.h:98
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:44
const MCExpr * getValue() const
Definition: MCFixup.h:98
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
iterator end()
Definition: MCSection.h:159
uint8_t getValue() const
Definition: MCFragment.h:459
SmallString< 8 > & getContents()
Definition: MCFragment.h:528
virtual void reset()
lifetime management
Definition: MCAsmBackend.h:53
void Finish()
Finish - Do final processing and write the object to the output stream.
MCSection::FragmentListType & getFragmentList()
Definition: MCSection.h:143
virtual void finishLayout(MCAssembler const &Asm, MCAsmLayout &Layout) const
Give backend an opportunity to finish layout after relaxation.
Definition: MCAsmBackend.h:133
void setInst(const MCInst &Value)
Definition: MCFragment.h:272
MCFixupKind getKind() const
Definition: MCFixup.h:93
iterator begin()
Definition: MCSection.h:156
uint8_t getBundlePadding() const
Get the padding size that must be inserted before this fragment.
Definition: MCFragment.h:126