LLVM 20.0.0git
R600ControlFlowFinalizer.cpp
Go to the documentation of this file.
1//===- R600ControlFlowFinalizer.cpp - Finalize Control Flow Inst ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This pass compute turns all control flow pseudo instructions into native one
11/// computing their address on the fly; it also sets STACK_SIZE info.
12//
13//===----------------------------------------------------------------------===//
14
16#include "R600.h"
18#include "R600Subtarget.h"
20#include <set>
21
22using namespace llvm;
23
24#define DEBUG_TYPE "r600cf"
25
26namespace {
27
28struct CFStack {
29 enum StackItem {
30 ENTRY = 0,
31 SUB_ENTRY = 1,
32 FIRST_NON_WQM_PUSH = 2,
33 FIRST_NON_WQM_PUSH_W_FULL_ENTRY = 3
34 };
35
36 const R600Subtarget *ST;
37 std::vector<StackItem> BranchStack;
38 std::vector<StackItem> LoopStack;
39 unsigned MaxStackSize;
40 unsigned CurrentEntries = 0;
41 unsigned CurrentSubEntries = 0;
42
43 CFStack(const R600Subtarget *st, CallingConv::ID cc) : ST(st),
44 // We need to reserve a stack entry for CALL_FS in vertex shaders.
45 MaxStackSize(cc == CallingConv::AMDGPU_VS ? 1 : 0) {}
46
47 unsigned getLoopDepth();
48 bool branchStackContains(CFStack::StackItem);
49 bool requiresWorkAroundForInst(unsigned Opcode);
50 unsigned getSubEntrySize(CFStack::StackItem Item);
51 void updateMaxStackSize();
52 void pushBranch(unsigned Opcode, bool isWQM = false);
53 void pushLoop();
54 void popBranch();
55 void popLoop();
56};
57
58unsigned CFStack::getLoopDepth() {
59 return LoopStack.size();
60}
61
62bool CFStack::branchStackContains(CFStack::StackItem Item) {
63 return llvm::is_contained(BranchStack, Item);
64}
65
66bool CFStack::requiresWorkAroundForInst(unsigned Opcode) {
67 if (Opcode == R600::CF_ALU_PUSH_BEFORE && ST->hasCaymanISA() &&
68 getLoopDepth() > 1)
69 return true;
70
71 if (!ST->hasCFAluBug())
72 return false;
73
74 switch(Opcode) {
75 default: return false;
76 case R600::CF_ALU_PUSH_BEFORE:
77 case R600::CF_ALU_ELSE_AFTER:
78 case R600::CF_ALU_BREAK:
79 case R600::CF_ALU_CONTINUE:
80 if (CurrentSubEntries == 0)
81 return false;
82 if (ST->getWavefrontSize() == 64) {
83 // We are being conservative here. We only require this work-around if
84 // CurrentSubEntries > 3 &&
85 // (CurrentSubEntries % 4 == 3 || CurrentSubEntries % 4 == 0)
86 //
87 // We have to be conservative, because we don't know for certain that
88 // our stack allocation algorithm for Evergreen/NI is correct. Applying this
89 // work-around when CurrentSubEntries > 3 allows us to over-allocate stack
90 // resources without any problems.
91 return CurrentSubEntries > 3;
92 }
93 assert(ST->getWavefrontSize() == 32);
94 // We are being conservative here. We only require the work-around if
95 // CurrentSubEntries > 7 &&
96 // (CurrentSubEntries % 8 == 7 || CurrentSubEntries % 8 == 0)
97 // See the comment on the wavefront size == 64 case for why we are
98 // being conservative.
99 return CurrentSubEntries > 7;
100 }
101}
102
103unsigned CFStack::getSubEntrySize(CFStack::StackItem Item) {
104 switch(Item) {
105 default:
106 return 0;
107 case CFStack::FIRST_NON_WQM_PUSH:
108 assert(!ST->hasCaymanISA());
109 if (ST->getGeneration() <= AMDGPUSubtarget::R700) {
110 // +1 For the push operation.
111 // +2 Extra space required.
112 return 3;
113 }
114 // Some documentation says that this is not necessary on Evergreen,
115 // but experimentation has show that we need to allocate 1 extra
116 // sub-entry for the first non-WQM push.
117 // +1 For the push operation.
118 // +1 Extra space required.
119 return 2;
120 case CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY:
121 assert(ST->getGeneration() >= AMDGPUSubtarget::EVERGREEN);
122 // +1 For the push operation.
123 // +1 Extra space required.
124 return 2;
125 case CFStack::SUB_ENTRY:
126 return 1;
127 }
128}
129
130void CFStack::updateMaxStackSize() {
131 unsigned CurrentStackSize = CurrentEntries + divideCeil(CurrentSubEntries, 4);
132 MaxStackSize = std::max(CurrentStackSize, MaxStackSize);
133}
134
135void CFStack::pushBranch(unsigned Opcode, bool isWQM) {
136 CFStack::StackItem Item = CFStack::ENTRY;
137 switch(Opcode) {
138 case R600::CF_PUSH_EG:
139 case R600::CF_ALU_PUSH_BEFORE:
140 if (!isWQM) {
141 if (!ST->hasCaymanISA() &&
142 !branchStackContains(CFStack::FIRST_NON_WQM_PUSH))
143 Item = CFStack::FIRST_NON_WQM_PUSH; // May not be required on Evergreen/NI
144 // See comment in
145 // CFStack::getSubEntrySize()
146 else if (CurrentEntries > 0 &&
147 ST->getGeneration() > AMDGPUSubtarget::EVERGREEN &&
148 !ST->hasCaymanISA() &&
149 !branchStackContains(CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY))
150 Item = CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY;
151 else
152 Item = CFStack::SUB_ENTRY;
153 } else
154 Item = CFStack::ENTRY;
155 break;
156 }
157 BranchStack.push_back(Item);
158 if (Item == CFStack::ENTRY)
159 CurrentEntries++;
160 else
161 CurrentSubEntries += getSubEntrySize(Item);
162 updateMaxStackSize();
163}
164
165void CFStack::pushLoop() {
166 LoopStack.push_back(CFStack::ENTRY);
167 CurrentEntries++;
168 updateMaxStackSize();
169}
170
171void CFStack::popBranch() {
172 CFStack::StackItem Top = BranchStack.back();
173 if (Top == CFStack::ENTRY)
174 CurrentEntries--;
175 else
176 CurrentSubEntries-= getSubEntrySize(Top);
177 BranchStack.pop_back();
178}
179
180void CFStack::popLoop() {
181 CurrentEntries--;
182 LoopStack.pop_back();
183}
184
185class R600ControlFlowFinalizer : public MachineFunctionPass {
186private:
187 using ClauseFile = std::pair<MachineInstr *, std::vector<MachineInstr *>>;
188
189 enum ControlFlowInstruction {
190 CF_TC,
191 CF_VC,
192 CF_CALL_FS,
193 CF_WHILE_LOOP,
194 CF_END_LOOP,
195 CF_LOOP_BREAK,
196 CF_LOOP_CONTINUE,
197 CF_JUMP,
198 CF_ELSE,
199 CF_POP,
200 CF_END
201 };
202
203 const R600InstrInfo *TII = nullptr;
204 const R600RegisterInfo *TRI = nullptr;
205 unsigned MaxFetchInst;
206 const R600Subtarget *ST = nullptr;
207
208 bool IsTrivialInst(MachineInstr &MI) const {
209 switch (MI.getOpcode()) {
210 case R600::KILL:
211 case R600::RETURN:
212 return true;
213 default:
214 return false;
215 }
216 }
217
218 const MCInstrDesc &getHWInstrDesc(ControlFlowInstruction CFI) const {
219 unsigned Opcode = 0;
220 bool isEg = (ST->getGeneration() >= AMDGPUSubtarget::EVERGREEN);
221 switch (CFI) {
222 case CF_TC:
223 Opcode = isEg ? R600::CF_TC_EG : R600::CF_TC_R600;
224 break;
225 case CF_VC:
226 Opcode = isEg ? R600::CF_VC_EG : R600::CF_VC_R600;
227 break;
228 case CF_CALL_FS:
229 Opcode = isEg ? R600::CF_CALL_FS_EG : R600::CF_CALL_FS_R600;
230 break;
231 case CF_WHILE_LOOP:
232 Opcode = isEg ? R600::WHILE_LOOP_EG : R600::WHILE_LOOP_R600;
233 break;
234 case CF_END_LOOP:
235 Opcode = isEg ? R600::END_LOOP_EG : R600::END_LOOP_R600;
236 break;
237 case CF_LOOP_BREAK:
238 Opcode = isEg ? R600::LOOP_BREAK_EG : R600::LOOP_BREAK_R600;
239 break;
240 case CF_LOOP_CONTINUE:
241 Opcode = isEg ? R600::CF_CONTINUE_EG : R600::CF_CONTINUE_R600;
242 break;
243 case CF_JUMP:
244 Opcode = isEg ? R600::CF_JUMP_EG : R600::CF_JUMP_R600;
245 break;
246 case CF_ELSE:
247 Opcode = isEg ? R600::CF_ELSE_EG : R600::CF_ELSE_R600;
248 break;
249 case CF_POP:
250 Opcode = isEg ? R600::POP_EG : R600::POP_R600;
251 break;
252 case CF_END:
253 if (ST->hasCaymanISA()) {
254 Opcode = R600::CF_END_CM;
255 break;
256 }
257 Opcode = isEg ? R600::CF_END_EG : R600::CF_END_R600;
258 break;
259 }
260 assert (Opcode && "No opcode selected");
261 return TII->get(Opcode);
262 }
263
264 bool isCompatibleWithClause(const MachineInstr &MI,
265 std::set<unsigned> &DstRegs) const {
266 unsigned DstMI, SrcMI;
267 for (MachineInstr::const_mop_iterator I = MI.operands_begin(),
268 E = MI.operands_end();
269 I != E; ++I) {
270 const MachineOperand &MO = *I;
271 if (!MO.isReg())
272 continue;
273 if (MO.isDef()) {
274 Register Reg = MO.getReg();
275 if (R600::R600_Reg128RegClass.contains(Reg))
276 DstMI = Reg;
277 else
278 DstMI = TRI->getMatchingSuperReg(Reg,
280 &R600::R600_Reg128RegClass);
281 }
282 if (MO.isUse()) {
283 Register Reg = MO.getReg();
284 if (R600::R600_Reg128RegClass.contains(Reg))
285 SrcMI = Reg;
286 else
287 SrcMI = TRI->getMatchingSuperReg(Reg,
289 &R600::R600_Reg128RegClass);
290 }
291 }
292 if ((DstRegs.find(SrcMI) == DstRegs.end())) {
293 DstRegs.insert(DstMI);
294 return true;
295 }
296 return false;
297 }
298
299 ClauseFile
301 const {
302 MachineBasicBlock::iterator ClauseHead = I;
303 std::vector<MachineInstr *> ClauseContent;
304 unsigned AluInstCount = 0;
305 bool IsTex = TII->usesTextureCache(*ClauseHead);
306 std::set<unsigned> DstRegs;
307 for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
308 if (IsTrivialInst(*I))
309 continue;
310 if (AluInstCount >= MaxFetchInst)
311 break;
312 if ((IsTex && !TII->usesTextureCache(*I)) ||
313 (!IsTex && !TII->usesVertexCache(*I)))
314 break;
315 if (!isCompatibleWithClause(*I, DstRegs))
316 break;
317 AluInstCount ++;
318 ClauseContent.push_back(&*I);
319 }
320 MachineInstr *MIb = BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead),
321 getHWInstrDesc(IsTex?CF_TC:CF_VC))
322 .addImm(0) // ADDR
323 .addImm(AluInstCount - 1); // COUNT
324 return ClauseFile(MIb, std::move(ClauseContent));
325 }
326
327 void getLiteral(MachineInstr &MI, std::vector<MachineOperand *> &Lits) const {
328 static const unsigned LiteralRegs[] = {
329 R600::ALU_LITERAL_X,
330 R600::ALU_LITERAL_Y,
331 R600::ALU_LITERAL_Z,
332 R600::ALU_LITERAL_W
333 };
335 TII->getSrcs(MI);
336 for (const auto &Src:Srcs) {
337 if (Src.first->getReg() != R600::ALU_LITERAL_X)
338 continue;
339 int64_t Imm = Src.second;
340 std::vector<MachineOperand *>::iterator It =
341 llvm::find_if(Lits, [&](MachineOperand *val) {
342 return val->isImm() && (val->getImm() == Imm);
343 });
344
345 // Get corresponding Operand
346 MachineOperand &Operand = MI.getOperand(
347 TII->getOperandIdx(MI.getOpcode(), R600::OpName::literal));
348
349 if (It != Lits.end()) {
350 // Reuse existing literal reg
351 unsigned Index = It - Lits.begin();
352 Src.first->setReg(LiteralRegs[Index]);
353 } else {
354 // Allocate new literal reg
355 assert(Lits.size() < 4 && "Too many literals in Instruction Group");
356 Src.first->setReg(LiteralRegs[Lits.size()]);
357 Lits.push_back(&Operand);
358 }
359 }
360 }
361
362 MachineBasicBlock::iterator insertLiterals(
364 const std::vector<unsigned> &Literals) const {
365 MachineBasicBlock *MBB = InsertPos->getParent();
366 for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
367 unsigned LiteralPair0 = Literals[i];
368 unsigned LiteralPair1 = (i + 1 < e)?Literals[i + 1]:0;
369 InsertPos = BuildMI(MBB, InsertPos->getDebugLoc(),
370 TII->get(R600::LITERALS))
371 .addImm(LiteralPair0)
372 .addImm(LiteralPair1);
373 }
374 return InsertPos;
375 }
376
377 ClauseFile
379 const {
380 MachineInstr &ClauseHead = *I;
381 std::vector<MachineInstr *> ClauseContent;
382 I++;
384 if (IsTrivialInst(*I)) {
385 ++I;
386 continue;
387 }
388 if (!I->isBundle() && !TII->isALUInstr(I->getOpcode()))
389 break;
390 std::vector<MachineOperand *>Literals;
391 if (I->isBundle()) {
392 MachineInstr &DeleteMI = *I;
393 MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
394 while (++BI != E && BI->isBundledWithPred()) {
395 BI->unbundleFromPred();
396 for (MachineOperand &MO : BI->operands()) {
397 if (MO.isReg() && MO.isInternalRead())
398 MO.setIsInternalRead(false);
399 }
400 getLiteral(*BI, Literals);
401 ClauseContent.push_back(&*BI);
402 }
403 I = BI;
404 DeleteMI.eraseFromParent();
405 } else {
406 getLiteral(*I, Literals);
407 ClauseContent.push_back(&*I);
408 I++;
409 }
410 for (unsigned i = 0, e = Literals.size(); i < e; i += 2) {
411 MachineInstrBuilder MILit = BuildMI(MBB, I, I->getDebugLoc(),
412 TII->get(R600::LITERALS));
413 if (Literals[i]->isImm()) {
414 MILit.addImm(Literals[i]->getImm());
415 } else {
416 MILit.addGlobalAddress(Literals[i]->getGlobal(),
417 Literals[i]->getOffset());
418 }
419 if (i + 1 < e) {
420 if (Literals[i + 1]->isImm()) {
421 MILit.addImm(Literals[i + 1]->getImm());
422 } else {
423 MILit.addGlobalAddress(Literals[i + 1]->getGlobal(),
424 Literals[i + 1]->getOffset());
425 }
426 } else
427 MILit.addImm(0);
428 ClauseContent.push_back(MILit);
429 }
430 }
431 assert(ClauseContent.size() < 128 && "ALU clause is too big");
432 ClauseHead.getOperand(7).setImm(ClauseContent.size() - 1);
433 return ClauseFile(&ClauseHead, std::move(ClauseContent));
434 }
435
436 void EmitFetchClause(MachineBasicBlock::iterator InsertPos,
437 const DebugLoc &DL, ClauseFile &Clause,
438 unsigned &CfCount) {
439 CounterPropagateAddr(*Clause.first, CfCount);
440 MachineBasicBlock *BB = Clause.first->getParent();
441 BuildMI(BB, DL, TII->get(R600::FETCH_CLAUSE)).addImm(CfCount);
442 for (MachineInstr *MI : Clause.second)
443 BB->splice(InsertPos, BB, MI);
444 CfCount += 2 * Clause.second.size();
445 }
446
447 void EmitALUClause(MachineBasicBlock::iterator InsertPos, const DebugLoc &DL,
448 ClauseFile &Clause, unsigned &CfCount) {
449 Clause.first->getOperand(0).setImm(0);
450 CounterPropagateAddr(*Clause.first, CfCount);
451 MachineBasicBlock *BB = Clause.first->getParent();
452 BuildMI(BB, DL, TII->get(R600::ALU_CLAUSE)).addImm(CfCount);
453 for (MachineInstr *MI : Clause.second)
454 BB->splice(InsertPos, BB, MI);
455 CfCount += Clause.second.size();
456 }
457
458 void CounterPropagateAddr(MachineInstr &MI, unsigned Addr) const {
459 MI.getOperand(0).setImm(Addr + MI.getOperand(0).getImm());
460 }
461 void CounterPropagateAddr(const std::set<MachineInstr *> &MIs,
462 unsigned Addr) const {
463 for (MachineInstr *MI : MIs) {
464 CounterPropagateAddr(*MI, Addr);
465 }
466 }
467
468public:
469 static char ID;
470
471 R600ControlFlowFinalizer() : MachineFunctionPass(ID) {}
472
473 bool runOnMachineFunction(MachineFunction &MF) override {
474 ST = &MF.getSubtarget<R600Subtarget>();
475 MaxFetchInst = ST->getTexVTXClauseSize();
476 TII = ST->getInstrInfo();
477 TRI = ST->getRegisterInfo();
478
480
481 CFStack CFStack(ST, MF.getFunction().getCallingConv());
482 for (MachineFunction::iterator MB = MF.begin(), ME = MF.end(); MB != ME;
483 ++MB) {
484 MachineBasicBlock &MBB = *MB;
485 unsigned CfCount = 0;
486 std::vector<std::pair<unsigned, std::set<MachineInstr *>>> LoopStack;
487 std::vector<MachineInstr * > IfThenElseStack;
490 getHWInstrDesc(CF_CALL_FS));
491 CfCount++;
492 }
493 std::vector<ClauseFile> FetchClauses, AluClauses;
494 std::vector<MachineInstr *> LastAlu(1);
495 std::vector<MachineInstr *> ToPopAfter;
496
498 I != E;) {
499 if (TII->usesTextureCache(*I) || TII->usesVertexCache(*I)) {
500 LLVM_DEBUG(dbgs() << CfCount << ":"; I->dump(););
501 FetchClauses.push_back(MakeFetchClause(MBB, I));
502 CfCount++;
503 LastAlu.back() = nullptr;
504 continue;
505 }
506
508 if (MI->getOpcode() != R600::ENDIF)
509 LastAlu.back() = nullptr;
510 if (MI->getOpcode() == R600::CF_ALU)
511 LastAlu.back() = &*MI;
512 I++;
513 bool RequiresWorkAround =
514 CFStack.requiresWorkAroundForInst(MI->getOpcode());
515 switch (MI->getOpcode()) {
516 case R600::CF_ALU_PUSH_BEFORE:
517 if (RequiresWorkAround) {
519 << "Applying bug work-around for ALU_PUSH_BEFORE\n");
520 BuildMI(MBB, MI, MBB.findDebugLoc(MI), TII->get(R600::CF_PUSH_EG))
521 .addImm(CfCount + 1)
522 .addImm(1);
523 MI->setDesc(TII->get(R600::CF_ALU));
524 CfCount++;
525 CFStack.pushBranch(R600::CF_PUSH_EG);
526 } else
527 CFStack.pushBranch(R600::CF_ALU_PUSH_BEFORE);
528 [[fallthrough]];
529 case R600::CF_ALU:
530 I = MI;
531 AluClauses.push_back(MakeALUClause(MBB, I));
532 LLVM_DEBUG(dbgs() << CfCount << ":"; MI->dump(););
533 CfCount++;
534 break;
535 case R600::WHILELOOP: {
536 CFStack.pushLoop();
538 getHWInstrDesc(CF_WHILE_LOOP))
539 .addImm(1);
540 std::pair<unsigned, std::set<MachineInstr *>> Pair(CfCount,
541 std::set<MachineInstr *>());
542 Pair.second.insert(MIb);
543 LoopStack.push_back(std::move(Pair));
544 MI->eraseFromParent();
545 CfCount++;
546 break;
547 }
548 case R600::ENDLOOP: {
549 CFStack.popLoop();
550 std::pair<unsigned, std::set<MachineInstr *>> Pair =
551 std::move(LoopStack.back());
552 LoopStack.pop_back();
553 CounterPropagateAddr(Pair.second, CfCount);
554 BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END_LOOP))
555 .addImm(Pair.first + 1);
556 MI->eraseFromParent();
557 CfCount++;
558 break;
559 }
560 case R600::IF_PREDICATE_SET: {
561 LastAlu.push_back(nullptr);
563 getHWInstrDesc(CF_JUMP))
564 .addImm(0)
565 .addImm(0);
566 IfThenElseStack.push_back(MIb);
567 LLVM_DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
568 MI->eraseFromParent();
569 CfCount++;
570 break;
571 }
572 case R600::ELSE: {
573 MachineInstr * JumpInst = IfThenElseStack.back();
574 IfThenElseStack.pop_back();
575 CounterPropagateAddr(*JumpInst, CfCount);
577 getHWInstrDesc(CF_ELSE))
578 .addImm(0)
579 .addImm(0);
580 LLVM_DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
581 IfThenElseStack.push_back(MIb);
582 MI->eraseFromParent();
583 CfCount++;
584 break;
585 }
586 case R600::ENDIF: {
587 CFStack.popBranch();
588 if (LastAlu.back()) {
589 ToPopAfter.push_back(LastAlu.back());
590 } else {
592 getHWInstrDesc(CF_POP))
593 .addImm(CfCount + 1)
594 .addImm(1);
595 (void)MIb;
596 LLVM_DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
597 CfCount++;
598 }
599
600 MachineInstr *IfOrElseInst = IfThenElseStack.back();
601 IfThenElseStack.pop_back();
602 CounterPropagateAddr(*IfOrElseInst, CfCount);
603 IfOrElseInst->getOperand(1).setImm(1);
604 LastAlu.pop_back();
605 MI->eraseFromParent();
606 break;
607 }
608 case R600::BREAK: {
609 CfCount ++;
611 getHWInstrDesc(CF_LOOP_BREAK))
612 .addImm(0);
613 LoopStack.back().second.insert(MIb);
614 MI->eraseFromParent();
615 break;
616 }
617 case R600::CONTINUE: {
619 getHWInstrDesc(CF_LOOP_CONTINUE))
620 .addImm(0);
621 LoopStack.back().second.insert(MIb);
622 MI->eraseFromParent();
623 CfCount++;
624 break;
625 }
626 case R600::RETURN: {
628 BuildMI(MBB, MI, DL, getHWInstrDesc(CF_END));
629 CfCount++;
630 if (CfCount % 2) {
631 BuildMI(MBB, I, DL, TII->get(R600::PAD));
632 CfCount++;
633 }
634 MI->eraseFromParent();
635 for (ClauseFile &CF : FetchClauses)
636 EmitFetchClause(I, DL, CF, CfCount);
637 for (ClauseFile &CF : AluClauses)
638 EmitALUClause(I, DL, CF, CfCount);
639 break;
640 }
641 default:
642 if (TII->isExport(MI->getOpcode())) {
643 LLVM_DEBUG(dbgs() << CfCount << ":"; MI->dump(););
644 CfCount++;
645 }
646 break;
647 }
648 }
649 for (MachineInstr *Alu : ToPopAfter) {
651 TII->get(R600::CF_ALU_POP_AFTER))
652 .addImm(Alu->getOperand(0).getImm())
653 .addImm(Alu->getOperand(1).getImm())
654 .addImm(Alu->getOperand(2).getImm())
655 .addImm(Alu->getOperand(3).getImm())
656 .addImm(Alu->getOperand(4).getImm())
657 .addImm(Alu->getOperand(5).getImm())
658 .addImm(Alu->getOperand(6).getImm())
659 .addImm(Alu->getOperand(7).getImm())
660 .addImm(Alu->getOperand(8).getImm());
661 Alu->eraseFromParent();
662 }
663 MFI->CFStackSize = CFStack.MaxStackSize;
664 }
665
666 return false;
667 }
668
669 StringRef getPassName() const override {
670 return "R600 Control Flow Finalizer Pass";
671 }
672};
673
674} // end anonymous namespace
675
676INITIALIZE_PASS_BEGIN(R600ControlFlowFinalizer, DEBUG_TYPE,
677 "R600 Control Flow Finalizer", false, false)
678INITIALIZE_PASS_END(R600ControlFlowFinalizer, DEBUG_TYPE,
679 "R600 Control Flow Finalizer", false, false)
680
681char R600ControlFlowFinalizer::ID = 0;
682
683char &llvm::R600ControlFlowFinalizerID = R600ControlFlowFinalizer::ID;
684
686 return new R600ControlFlowFinalizer();
687}
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
#define LLVM_DEBUG(...)
Definition: Debug.h:106
uint64_t Addr
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define ENTRY(ASMNAME, ENUM)
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
#define DEBUG_TYPE
R600 Control Flow Finalizer
Provides R600 specific target descriptions.
AMDGPU R600 specific subclass of TargetSubtarget.
Annotate SI Control Flow
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI)
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:277
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
Instructions::iterator instr_iterator
instr_iterator instr_end()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
MachineOperand class - Representation of each machine instruction operand.
void setImm(int64_t immVal)
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
Register getReg() const
getReg - Returns the register number.
void dump() const
Definition: Pass.cpp:136
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
Definition: CallingConv.h:188
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:403
FunctionPass * createR600ControlFlowFinalizer()
char & R600ControlFlowFinalizerID
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
static unsigned getSubRegFromChannel(unsigned Channel)