LLVM 23.0.0git
ControlFlowUtils.cpp
Go to the documentation of this file.
1//===- ControlFlowUtils.cpp - Control Flow Utilities -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Utilities to manipulate the CFG and restore SSA for the new control flow.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/SetVector.h"
17#include "llvm/IR/Constants.h"
19#include "llvm/IR/ValueHandle.h"
21
22#define DEBUG_TYPE "control-flow-hub"
23
24using namespace llvm;
25
28
29// Redirects the terminator of the incoming block to the first guard block in
30// the hub. Returns the branch condition from `BB` if it exits.
31// - If only one of Succ0 or Succ1 is not null, the corresponding branch
32// successor is redirected to the FirstGuardBlock.
33// - Else both are not null, and branch is replaced with an unconditional
34// branch to the FirstGuardBlock.
36 BasicBlock *Succ1, BasicBlock *FirstGuardBlock) {
38 "Only support branch terminator.");
39 auto *Branch = cast<BranchInst>(BB->getTerminator());
40 auto *Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
41
42 assert(Succ0 || Succ1);
43
44 if (Branch->isUnconditional()) {
45 assert(Succ0 == Branch->getSuccessor(0));
46 assert(!Succ1);
47 Branch->setSuccessor(0, FirstGuardBlock);
48 } else {
49 assert(!Succ1 || Succ1 == Branch->getSuccessor(1));
50 if (Succ0 && !Succ1) {
51 Branch->setSuccessor(0, FirstGuardBlock);
52 } else if (Succ1 && !Succ0) {
53 Branch->setSuccessor(1, FirstGuardBlock);
54 } else {
55 Branch->eraseFromParent();
56 BranchInst::Create(FirstGuardBlock, BB);
57 }
58 }
59
60 return Condition;
61}
62
63// Setup the branch instructions for guard blocks.
64//
65// Each guard block terminates in a conditional branch that transfers
66// control to the corresponding outgoing block or the next guard
67// block. The last guard block has two outgoing blocks as successors.
70 BBPredicates &GuardPredicates) {
71 assert(Outgoing.size() > 1);
72 assert(GuardBlocks.size() == Outgoing.size() - 1);
73 int I = 0;
74 for (int E = GuardBlocks.size() - 1; I != E; ++I) {
75 BasicBlock *Out = Outgoing[I];
76 BranchInst::Create(Out, GuardBlocks[I + 1], GuardPredicates[Out],
77 GuardBlocks[I]);
78 }
79 BasicBlock *Out = Outgoing[I];
80 BranchInst::Create(Out, Outgoing[I + 1], GuardPredicates[Out],
81 GuardBlocks[I]);
82}
83
84// Assign an index to each outgoing block. At the corresponding guard
85// block, compute the branch condition by comparing this index.
88 ArrayRef<BasicBlock *> GuardBlocks,
89 BBPredicates &GuardPredicates) {
90 LLVMContext &Context = GuardBlocks.front()->getContext();
91 BasicBlock *FirstGuardBlock = GuardBlocks.front();
92 Type *Int32Ty = Type::getInt32Ty(Context);
93
94 auto *Phi = PHINode::Create(Int32Ty, Branches.size(), "merged.bb.idx",
95 FirstGuardBlock);
96
97 for (auto [BB, Succ0, Succ1] : Branches) {
98 Value *Condition = redirectToHub(BB, Succ0, Succ1, FirstGuardBlock);
99 Value *IncomingId = nullptr;
100 if (Succ0 && Succ1 && Succ0 != Succ1) {
101 auto Succ0Iter = find(Outgoing, Succ0);
102 auto Succ1Iter = find(Outgoing, Succ1);
103 Value *Id0 =
104 ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), Succ0Iter));
105 Value *Id1 =
106 ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), Succ1Iter));
107 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
108 BB->getTerminator()->getIterator());
109 } else {
110 // Get the index of the non-null successor, or when both successors
111 // are the same block, use that block's index directly.
112 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
113 IncomingId =
114 ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), SuccIter));
115 }
116 Phi->addIncoming(IncomingId, BB);
117 }
118
119 for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
120 BasicBlock *Out = Outgoing[I];
121 LLVM_DEBUG(dbgs() << "Creating integer guard for " << Out->getName()
122 << "\n");
123 auto *Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
124 ConstantInt::get(Int32Ty, I),
125 Out->getName() + ".predicate", GuardBlocks[I]);
126 GuardPredicates[Out] = Cmp;
127 }
128}
129
130// Determine the branch condition to be used at each guard block from the
131// original boolean values.
134 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
135 SmallVectorImpl<WeakVH> &DeletionCandidates) {
136 LLVMContext &Context = GuardBlocks.front()->getContext();
137 auto *BoolTrue = ConstantInt::getTrue(Context);
138 auto *BoolFalse = ConstantInt::getFalse(Context);
139 BasicBlock *FirstGuardBlock = GuardBlocks.front();
140
141 // The predicate for the last outgoing is trivially true, and so we
142 // process only the first N-1 successors.
143 for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
144 BasicBlock *Out = Outgoing[I];
145 LLVM_DEBUG(dbgs() << "Creating boolean guard for " << Out->getName()
146 << "\n");
147
148 auto *Phi =
149 PHINode::Create(Type::getInt1Ty(Context), Branches.size(),
150 StringRef("Guard.") + Out->getName(), FirstGuardBlock);
151 GuardPredicates[Out] = Phi;
152 }
153
154 for (auto [BB, Succ0, Succ1] : Branches) {
155 Value *Condition = redirectToHub(BB, Succ0, Succ1, FirstGuardBlock);
156
157 // Optimization: Consider an incoming block A with both successors
158 // Succ0 and Succ1 in the set of outgoing blocks. The predicates
159 // for Succ0 and Succ1 complement each other. If Succ0 is visited
160 // first in the loop below, control will branch to Succ0 using the
161 // corresponding predicate. But if that branch is not taken, then
162 // control must reach Succ1, which means that the incoming value of
163 // the predicate from `BB` is true for Succ1.
164 bool OneSuccessorDone = false;
165 for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
166 BasicBlock *Out = Outgoing[I];
167 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
168 if (Out != Succ0 && Out != Succ1) {
169 Phi->addIncoming(BoolFalse, BB);
170 } else if (!Succ0 || !Succ1 || Succ0 == Succ1 || OneSuccessorDone) {
171 // Optimization: When only one successor is an outgoing block,
172 // or both successors are the same block, the incoming predicate
173 // from `BB` is always true.
174 Phi->addIncoming(BoolTrue, BB);
175 } else {
176 assert(Succ0 && Succ1);
177 if (Out == Succ0) {
178 Phi->addIncoming(Condition, BB);
179 } else {
180 Value *Inverted = invertCondition(Condition);
181 DeletionCandidates.push_back(Condition);
182 Phi->addIncoming(Inverted, BB);
183 }
184 OneSuccessorDone = true;
185 }
186 }
187 }
188}
189
190// Capture the existing control flow as guard predicates, and redirect
191// control flow from \p Incoming block through the \p GuardBlocks to the
192// \p Outgoing blocks.
193//
194// There is one guard predicate for each outgoing block OutBB. The
195// predicate represents whether the hub should transfer control flow
196// to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
197// them in the same order as the Outgoing set-vector, and control
198// branches to the first outgoing block whose predicate evaluates to true.
199//
200// The last guard block has two outgoing blocks as successors since the
201// condition for the final outgoing block is trivially true. So we create one
202// less block (including the first guard block) than the number of outgoing
203// blocks.
207 SmallVectorImpl<WeakVH> &DeletionCandidates, const StringRef Prefix,
208 std::optional<unsigned> MaxControlFlowBooleans) {
209 BBPredicates GuardPredicates;
210 Function *F = Outgoing.front()->getParent();
211
212 for (int I = 0, E = Outgoing.size() - 1; I != E; ++I)
213 GuardBlocks.push_back(
214 BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
215
216 // When we are using an integer to record which target block to jump to, we
217 // are creating less live values, actually we are using one single integer to
218 // store the index of the target block. When we are using booleans to store
219 // the branching information, we need (N-1) boolean values, where N is the
220 // number of outgoing block.
221 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
222 calcPredicateUsingBooleans(Branches, Outgoing, GuardBlocks, GuardPredicates,
223 DeletionCandidates);
224 else
225 calcPredicateUsingInteger(Branches, Outgoing, GuardBlocks, GuardPredicates);
226
227 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
228}
229
230// After creating a control flow hub, the operands of PHINodes in an outgoing
231// block Out no longer match the predecessors of that block. Predecessors of Out
232// that are incoming blocks to the hub are now replaced by just one edge from
233// the hub. To match this new control flow, the corresponding values from each
234// PHINode must now be moved a new PHINode in the first guard block of the hub.
235//
236// This operation cannot be performed with SSAUpdater, because it involves one
237// new use: If the block Out is in the list of Incoming blocks, then the newly
238// created PHI in the Hub will use itself along that edge from Out to Hub.
239static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
241 BasicBlock *FirstGuardBlock) {
242 auto I = Out->begin();
243 while (I != Out->end() && isa<PHINode>(I)) {
244 auto *Phi = cast<PHINode>(I);
245 auto *NewPhi =
246 PHINode::Create(Phi->getType(), Incoming.size(),
247 Phi->getName() + ".moved", FirstGuardBlock->begin());
248 bool AllUndef = true;
249 for (auto [BB, Succ0, Succ1] : Incoming) {
250 Value *V = PoisonValue::get(Phi->getType());
251 if (Phi->getBasicBlockIndex(BB) != -1) {
252 V = Phi->removeIncomingValue(BB, false);
253 // When both successors are the same (Succ0 == Succ1), there are two
254 // edges from BB to Out, so we need to remove the second PHI entry too.
255 if (Succ0 && Succ1 && Succ0 == Succ1 &&
256 Phi->getBasicBlockIndex(BB) != -1)
257 Phi->removeIncomingValue(BB, false);
258 if (BB == Out) {
259 V = NewPhi;
260 }
261 AllUndef &= isa<UndefValue>(V);
262 }
263
264 NewPhi->addIncoming(V, BB);
265 }
266 assert(NewPhi->getNumIncomingValues() == Incoming.size());
267 Value *NewV = NewPhi;
268 if (AllUndef) {
269 NewPhi->eraseFromParent();
270 NewV = PoisonValue::get(Phi->getType());
271 }
272 if (Phi->getNumOperands() == 0) {
273 Phi->replaceAllUsesWith(NewV);
274 I = Phi->eraseFromParent();
275 continue;
276 }
277 Phi->addIncoming(NewV, GuardBlock);
278 ++I;
279 }
280}
281
282std::pair<BasicBlock *, bool> ControlFlowHub::finalize(
284 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
285#ifndef NDEBUG
287#endif
289
290 for (auto [BB, Succ0, Succ1] : Branches) {
291#ifndef NDEBUG
292 assert(
293 (Incoming.insert(BB).second || isa<CallBrInst>(BB->getTerminator())) &&
294 "Duplicate entry for incoming block.");
295#endif
296 if (Succ0)
297 Outgoing.insert(Succ0);
298 if (Succ1)
299 Outgoing.insert(Succ1);
300 }
301
302 if (Outgoing.size() < 2)
303 return {Outgoing.front(), false};
304
306 if (DTU) {
307 for (auto [BB, Succ0, Succ1] : Branches) {
308 if (Succ0)
309 Updates.push_back({DominatorTree::Delete, BB, Succ0});
310 // Only add Succ1 if it's different from Succ0 to avoid duplicate updates
311 if (Succ1 && Succ1 != Succ0)
312 Updates.push_back({DominatorTree::Delete, BB, Succ1});
313 }
314 }
315
316 SmallVector<WeakVH, 8> DeletionCandidates;
317 convertToGuardPredicates(Branches, Outgoing.getArrayRef(), GuardBlocks,
318 DeletionCandidates, Prefix, MaxControlFlowBooleans);
319 BasicBlock *FirstGuardBlock = GuardBlocks.front();
320
321 // Update the PHINodes in each outgoing block to match the new control flow.
322 for (int I = 0, E = GuardBlocks.size(); I != E; ++I)
323 reconnectPhis(Outgoing[I], GuardBlocks[I], Branches, FirstGuardBlock);
324 // Process the Nth (last) outgoing block with the (N-1)th (last) guard block.
325 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Branches, FirstGuardBlock);
326
327 if (DTU) {
328 int NumGuards = GuardBlocks.size();
329
330 for (auto [BB, Succ0, Succ1] : Branches)
331 Updates.push_back({DominatorTree::Insert, BB, FirstGuardBlock});
332
333 for (int I = 0; I != NumGuards - 1; ++I) {
334 Updates.push_back({DominatorTree::Insert, GuardBlocks[I], Outgoing[I]});
335 Updates.push_back(
336 {DominatorTree::Insert, GuardBlocks[I], GuardBlocks[I + 1]});
337 }
338 // The second successor of the last guard block is an outgoing block instead
339 // of having a "next" guard block.
340 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
341 Outgoing[NumGuards - 1]});
342 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
343 Outgoing[NumGuards]});
344 DTU->applyUpdates(Updates);
345 }
346
347 for (auto I : DeletionCandidates) {
348 if (I->use_empty())
349 if (auto *Inst = dyn_cast_or_null<Instruction>(I))
350 Inst->eraseFromParent();
351 }
352
353 return {FirstGuardBlock, true};
354}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static void calcPredicateUsingBooleans(ArrayRef< EdgeDescriptor > Branches, ArrayRef< BasicBlock * > Outgoing, SmallVectorImpl< BasicBlock * > &GuardBlocks, BBPredicates &GuardPredicates, SmallVectorImpl< WeakVH > &DeletionCandidates)
static void setupBranchForGuard(ArrayRef< BasicBlock * > GuardBlocks, ArrayRef< BasicBlock * > Outgoing, BBPredicates &GuardPredicates)
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, ArrayRef< EdgeDescriptor > Incoming, BasicBlock *FirstGuardBlock)
static void calcPredicateUsingInteger(ArrayRef< EdgeDescriptor > Branches, ArrayRef< BasicBlock * > Outgoing, ArrayRef< BasicBlock * > GuardBlocks, BBPredicates &GuardPredicates)
DenseMap< BasicBlock *, Instruction * > BBPredicates
static Value * redirectToHub(BasicBlock *BB, BasicBlock *Succ0, BasicBlock *Succ1, BasicBlock *FirstGuardBlock)
static void convertToGuardPredicates(ArrayRef< EdgeDescriptor > Branches, ArrayRef< BasicBlock * > Outgoing, SmallVectorImpl< BasicBlock * > &GuardBlocks, SmallVectorImpl< WeakVH > &DeletionCandidates, const StringRef Prefix, std::optional< unsigned > MaxControlFlowBooleans)
ControlFlowHub::BranchDescriptor EdgeDescriptor
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a set that has insertion order iteration characteristics.
#define LLVM_DEBUG(...)
Definition Debug.h:114
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
const T & front() const
front - Get the first element.
Definition ArrayRef.h:145
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
iterator begin() const
Definition ArrayRef.h:130
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:483
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:470
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
A vector that has set insertion semantics.
Definition SetVector.h:57
ArrayRef< value_type > getArrayRef() const
Definition SetVector.h:91
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:103
const value_type & front() const
Return the first element of the SetVector.
Definition SetVector.h:132
const value_type & back() const
Return the last element of the SetVector.
Definition SetVector.h:138
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
LLVM Value Representation.
Definition Value.h:75
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1763
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
Definition InstrProf.h:296
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Value * invertCondition(Value *Condition)
Invert the given true/false value, possibly reusing an existing copy.
Definition Local.cpp:3965
std::pair< BasicBlock *, bool > finalize(DomTreeUpdater *DTU, SmallVectorImpl< BasicBlock * > &GuardBlocks, const StringRef Prefix, std::optional< unsigned > MaxControlFlowBooleans=std::nullopt)
Return the unified loop exit block and a flag indicating if the CFG was changed at all.
SmallVector< BranchDescriptor > Branches
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...