40    "inliner-interactive-channel-base", 
cl::Hidden,
 
   42        "Base file path for the interactive mode. The incoming filename should " 
   43        "have the name <inliner-interactive-channel-base>.in, while the " 
   44        "outgoing name should be <inliner-interactive-channel-base>.out"));
 
   46    (
Twine(
"In interactive mode, also send the default policy decision: ") +
 
   59                          "if-caller-not-cold", 
"if the caller is not cold")));
 
   67#if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL) 
   69#include "InlinerSizeModel.h"  
   75std::unique_ptr<InlineAdvisor>
 
   77                            std::function<
bool(
CallBase &)> GetDefaultAdvice) {
 
   81  auto RunnerFactory = [&](
const std::vector<TensorSpec> &
InputFeatures)
 
   82      -> std::unique_ptr<MLModelRunner> {
 
   83    std::unique_ptr<MLModelRunner> AOTRunner;
 
   85      AOTRunner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
 
   89      AOTRunner = std::make_unique<InteractiveModelRunner>(
 
   96  return std::make_unique<MLInlineAdvisor>(M, 
MAM, RunnerFactory,
 
 
  100#define DEBUG_TYPE "inline-ml" 
  103    "ml-advisor-size-increase-threshold", 
cl::Hidden,
 
  104    cl::desc(
"Maximum factor by which expected native size may increase before " 
  105             "blocking any further inlining."),
 
  111        "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
 
  117#define POPULATE_NAMES(DTYPE, SHAPE, NAME, __) TensorSpec::createSpec<DTYPE>(#NAME, SHAPE), 
 
  139    if (
Function *Callee = CS->getCalledFunction()) {
 
  140      if (!Callee->isDeclaration()) {
 
 
  150        std::unique_ptr<MLModelRunner>(
const std::vector<TensorSpec> &)>
 
  158      InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize),
 
  168    const std::vector<CallGraphNode *> &CGNodes = *
I;
 
  170    for (
auto *CGNode : CGNodes) {
 
  172      if (!
F || 
F->isDeclaration())
 
  176          auto *Called = CS->getCalledFunction();
 
  177          auto Pos = FunctionLevels.find(&CG.get(*Called));
 
  181          if (Pos == FunctionLevels.end())
 
  183          Level = std::max(Level, Pos->second + 1);
 
  187    for (
auto *CGNode : CGNodes) {
 
  189      if (
F && !
F->isDeclaration())
 
  190        FunctionLevels[&CG.get(*
F)] = Level;
 
  193  for (
auto KVP : FunctionLevels) {
 
  194    AllNodes.insert(KVP.first);
 
  197  NodeCount = AllNodes.size();
 
  200    if (!IR2VecVocabResult->isValid()) {
 
  201      M.getContext().emitError(
"IR2VecVocabAnalysis is not valid");
 
  205    auto IR2VecDim = IR2VecVocabResult->getDimension();
 
  216    M.getContext().emitError(
"Could not create model runner");
 
 
  224  return CG.lookup(
F) ? FunctionLevels.at(CG.lookup(
F)) : 0;
 
 
  228  if (!CurSCC || ForceStop)
 
  248  while (!NodesInLastSCC.empty()) {
 
  249    const auto *
N = *NodesInLastSCC.begin();
 
  251    NodesInLastSCC.erase(
N);
 
  253    const auto NLevel = FunctionLevels.at(
N);
 
  254    for (
const auto &E : *(*
N)) {
 
  255      const auto *AdjNode = &E.getNode();
 
  256      assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
 
  257      auto I = AllNodes.insert(AdjNode);
 
  261        NodesInLastSCC.insert(AdjNode);
 
  262        FunctionLevels[AdjNode] = NLevel;
 
  267  EdgeCount -= EdgesOfLastSeenNodes;
 
  268  EdgesOfLastSeenNodes = 0;
 
  272  assert(NodesInLastSCC.empty());
 
  273  for (
const auto &
N : *CurSCC)
 
  274    NodesInLastSCC.insert(&
N);
 
 
  281  if (!CurSCC || ForceStop)
 
  286  EdgesOfLastSeenNodes = 0;
 
  295  for (
const auto &
N : *CurSCC) {
 
  297    auto I = NodesInLastSCC.insert(&
N);
 
  301  assert(NodeCount >= NodesInLastSCC.size());
 
  302  assert(EdgeCount >= EdgesOfLastSeenNodes);
 
 
  315                                           bool CalleeWasDeleted) {
 
  324    FAM.invalidate(*Caller, PA);
 
  327  if (Caller == Callee) {
 
  328    assert(!CalleeWasDeleted);
 
  337    int64_t IRSizeAfter =
 
  346    int64_t NewCallerAndCalleeEdges =
 
  352    if (CalleeWasDeleted) {
 
  354      NodesInLastSCC.erase(CG.lookup(*Callee));
 
  355      DeadFunctions.insert(Callee);
 
  357      NewCallerAndCalleeEdges +=
 
  365  assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
 
 
  368int64_t MLInlineAdvisor::getModuleIRSize()
 const {
 
  371    if (!
F.isDeclaration())
 
  377  auto InsertPair = FPICache.try_emplace(&
F);
 
  378  if (!InsertPair.second)
 
  379    return InsertPair.first->second;
 
  381  return InsertPair.first->second;
 
 
  385  if (
auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
 
  398    if (!PSI.isFunctionEntryCold(&Caller)) {
 
  404      return ForceStop ? std::make_unique<InlineAdvice>(
this, CB, ORE,
 
  406                       : std::make_unique<MLInlineAdvice>(
this, CB, ORE,
 
  427             << 
"Won't attempt inlining because module size grew too much.";
 
  429    return std::make_unique<InlineAdvice>(
this, CB, ORE, Mandatory);
 
  432  int CostEstimate = 0;
 
  434    auto IsCallSiteInlinable =
 
  436    if (!IsCallSiteInlinable) {
 
  440      return std::make_unique<InlineAdvice>(
this, CB, ORE, 
false);
 
  442    CostEstimate = *IsCallSiteInlinable;
 
  445  const auto CostFeatures =
 
  448    return std::make_unique<InlineAdvice>(
this, CB, ORE, 
false);
 
  454  auto NumCtantParams = 0;
 
  462  *
ModelRunner->getTensor<int64_t>(FeatureIndex::callee_basic_block_count) =
 
  463      CalleeBefore.BasicBlockCount;
 
  464  *
ModelRunner->getTensor<int64_t>(FeatureIndex::callsite_height) =
 
  466  *
ModelRunner->getTensor<int64_t>(FeatureIndex::node_count) = NodeCount;
 
  467  *
ModelRunner->getTensor<int64_t>(FeatureIndex::nr_ctant_params) =
 
  469  *
ModelRunner->getTensor<int64_t>(FeatureIndex::edge_count) = EdgeCount;
 
  470  *
ModelRunner->getTensor<int64_t>(FeatureIndex::caller_users) =
 
  473      FeatureIndex::caller_conditionally_executed_blocks) =
 
  474      CallerBefore.BlocksReachedFromConditionalInstruction;
 
  475  *
ModelRunner->getTensor<int64_t>(FeatureIndex::caller_basic_block_count) =
 
  476      CallerBefore.BasicBlockCount;
 
  478      FeatureIndex::callee_conditionally_executed_blocks) =
 
  479      CalleeBefore.BlocksReachedFromConditionalInstruction;
 
  480  *
ModelRunner->getTensor<int64_t>(FeatureIndex::callee_users) =
 
  482  *
ModelRunner->getTensor<int64_t>(FeatureIndex::cost_estimate) = CostEstimate;
 
  483  *
ModelRunner->getTensor<int64_t>(FeatureIndex::is_callee_avail_external) =
 
  484      Callee.hasAvailableExternallyLinkage();
 
  485  *
ModelRunner->getTensor<int64_t>(FeatureIndex::is_caller_avail_external) =
 
  486      Caller.hasAvailableExternallyLinkage();
 
  495                      [](
double Val) { return static_cast<float>(Val); });
 
  498    setEmbedding(CalleeBefore.getFunctionEmbedding(),
 
  500    setEmbedding(CallerBefore.getFunctionEmbedding(),
 
 
  517std::unique_ptr<MLInlineAdvice>
 
  520  return std::make_unique<MLInlineAdvice>(
 
  521      this, CB, ORE, 
static_cast<bool>(
ModelRunner->evaluate<int64_t>()));
 
 
  524std::unique_ptr<InlineAdvice>
 
  525MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(
CallBase &CB) {
 
  528    return std::make_unique<InlineAdvice>(
this, CB, 
getCallerORE(CB), 
false);
 
  535  if (
auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
 
  537  if (Advice && !ForceStop)
 
  544  return std::make_unique<InlineAdvice>(
this, CB, 
getCallerORE(CB), Advice);
 
 
  547std::unique_ptr<MLInlineAdvice>
 
  549  return std::make_unique<MLInlineAdvice>(
this, CB, 
getCallerORE(CB), 
true);
 
 
  552void MLInlineAdvisor::print(
raw_ostream &OS)
 const {
 
  553  OS << 
"[MLInlineAdvisor] Nodes: " << NodeCount << 
" Edges: " << EdgeCount
 
  554     << 
" EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << 
"\n";
 
  555  OS << 
"[MLInlineAdvisor] FPI:\n";
 
  556  for (
auto I : FPICache) {
 
  557    OS << 
I.first->getName() << 
":\n";
 
  562  OS << 
"[MLInlineAdvisor] FuncLevels:\n";
 
  563  for (
auto I : FunctionLevels)
 
  564    OS << (DeadFunctions.
contains(&
I.first->getFunction())
 
  566               : 
I.first->getFunction().getName())
 
  567       << 
" : " << 
I.second << 
"\n";
 
  587void MLInlineAdvice::reportContextForRemark(
 
  592    OR << NV(getAdvisor()->getFeatureMap()[
I].
name(),
 
  593             *getAdvisor()->getModelRunner().getTensor<int64_t>(
I));
 
  604    reportContextForRemark(R);
 
  607  getAdvisor()->onSuccessfulInlining(*
this,  
false);
 
 
  614    reportContextForRemark(R);
 
  617  getAdvisor()->onSuccessfulInlining(*
this,  
true);
 
 
  622  getAdvisor()->getCachedFPI(*
Caller) = PreInlineCallerFPI;
 
  626    reportContextForRemark(R);
 
 
  634    reportContextForRemark(R);
 
 
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Expand Atomic instructions
This file provides interfaces used to build and manipulate a call graph, which is a very useful tool ...
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
#define INLINE_COST_FEATURE_ITERATOR(M)
#define INLINE_FEATURE_ITERATOR(M)
Implements a lazy call graph analysis and related passes for the new pass manager.
static cl::opt< bool > KeepFPICache("ml-advisor-keep-fpi-cache", cl::Hidden, cl::desc("For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"), cl::init(false))
static cl::opt< std::string > ModelSelector("ml-inliner-model-selector", cl::Hidden, cl::init(""))
CallBase * getInlinableCS(Instruction &I)
NoopSavedModelImpl CompiledModelType
static cl::opt< std::string > InteractiveChannelBaseName("inliner-interactive-channel-base", cl::Hidden, cl::desc("Base file path for the interactive mode. The incoming filename should " "have the name <inliner-interactive-channel-base>.in, while the " "outgoing name should be <inliner-interactive-channel-base>.out"))
#define POPULATE_NAMES(DTYPE, SHAPE, NAME, __)
static cl::opt< bool > StopImmediatelyForTest("ml-inliner-stop-immediately", cl::Hidden)
static cl::opt< float > SizeIncreaseThreshold("ml-advisor-size-increase-threshold", cl::Hidden, cl::desc("Maximum factor by which expected native size may increase before " "blocking any further inlining."), cl::init(2.0))
static const std::string InclDefaultMsg
static cl::opt< SkipMLPolicyCriteria > SkipPolicy("ml-inliner-skip-policy", cl::Hidden, cl::init(SkipMLPolicyCriteria::Never), cl::values(clEnumValN(SkipMLPolicyCriteria::Never, "never", "never"), clEnumValN(SkipMLPolicyCriteria::IfCallerIsNotCold, "if-caller-not-cold", "if the caller is not cold")))
static cl::opt< bool > InteractiveIncludeDefault("inliner-interactive-include-default", cl::Hidden, cl::desc(InclDefaultMsg))
FunctionAnalysisManager FAM
ModuleAnalysisManager MAM
This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected components (SCCs) of a ...
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
The basic data container for the call graph of a Module of IR.
Common features for diagnostics dealing with optimization remarks that are used by both IR and MIR pa...
Analysis pass which computes a DominatorTree.
int64_t DirectCallsToDefinedFunctions
Number of direct calls made from this function to other functions defined in this module.
This analysis provides the vocabulary for IR2Vec.
Function *const Caller
Caller and Callee are pre-inlining.
const BasicBlock *const Block
OptimizationRemarkEmitter & ORE
InlineAdvisor *const Advisor
LLVM_ABI InlineAdvice(InlineAdvisor *Advisor, CallBase &CB, OptimizationRemarkEmitter &ORE, bool IsInliningRecommended)
bool isInliningRecommended() const
Get the inlining recommendation.
OptimizationRemarkEmitter & getCallerORE(CallBase &CB)
FunctionAnalysisManager & FAM
static MandatoryInliningKind getMandatoryKind(CallBase &CB, FunctionAnalysisManager &FAM, OptimizationRemarkEmitter &ORE)
InlineAdvisor(InlineAdvisor &&)=delete
InlineResult is basically true or false.
An analysis pass which computes the call graph for a module.
A node in the call graph.
An SCC of the call graph.
Analysis pass that exposes the LoopInfo for a function.
InlineAdvice that tracks changes post inlining.
void updateCachedCallerFPI(FunctionAnalysisManager &FAM) const
const int64_t CallerIRSize
MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB, OptimizationRemarkEmitter &ORE, bool Recommendation)
const int64_t CalleeIRSize
void recordInliningImpl() override
Function * getCaller() const
const int64_t CallerAndCalleeEdges
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override
Function * getCallee() const
void recordInliningWithCalleeDeletedImpl() override
void recordUnattemptedInliningImpl() override
const std::vector< TensorSpec > & getFeatureMap() const
std::unique_ptr< MLModelRunner > ModelRunner
FunctionPropertiesInfo & getCachedFPI(Function &) const
void onPassExit(LazyCallGraph::SCC *SCC) override
This must be called when the Inliner pass is exited, as function passes may be run subsequently.
void onSuccessfulInlining(const MLInlineAdvice &Advice, bool CalleeWasDeleted)
static const std::vector< TensorSpec > & getInitialFeatureMap()
virtual std::unique_ptr< MLInlineAdvice > getMandatoryAdviceImpl(CallBase &CB)
void onPassEntry(LazyCallGraph::SCC *SCC) override
This must be called when the Inliner pass is entered, to allow the InlineAdvisor update internal stat...
MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM, std::function< std::unique_ptr< MLModelRunner >(const std::vector< TensorSpec > &)> GetModelRunner, std::function< bool(CallBase &)> GetDefaultAdvice)
int64_t getLocalCalls(Function &F)
std::vector< TensorSpec > FeatureMap
virtual std::unique_ptr< MLInlineAdvice > getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE)
int64_t getIRSize(Function &F) const
std::function< bool(CallBase &)> GetDefaultAdvice
std::unique_ptr< InlineAdvice > getAdviceImpl(CallBase &CB) override
std::unique_ptr< InlineAdvice > getMandatoryAdvice(CallBase &CB, bool Advice) override
unsigned getInitialFunctionLevel(const Function &F) const
A Module instance is used to store all the information related to an LLVM module.
A mock class satisfying the interface expected by ReleaseModeModelRunner for its TGen parameter.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & abandon()
Mark an analysis as abandoned.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis pass providing the TargetTransformInfo.
static TensorSpec createSpec(const std::string &Name, const std::vector< int64_t > &Shape, int Port=0)
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
const ParentTy * getParent() const
This class implements an extremely fast bulk output stream that can only output to a stream.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
This is an optimization pass for GlobalISel generic memory operations.
constexpr FeatureIndex inlineCostFeatureToMlFeature(InlineCostFeatureIndex Feature)
LLVM_ABI const char *const DefaultDecisionName
bool isEmbeddedModelEvaluatorValid()
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
scc_iterator< T > scc_begin(const T &G)
Construct the begin iterator for a deduced graph type T.
LLVM_ABI std::unique_ptr< InlineAdvisor > getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM, std::function< bool(CallBase &)> GetDefaultAdvice)
InnerAnalysisManagerProxy< FunctionAnalysisManager, Module > FunctionAnalysisManagerModuleProxy
Provide the FunctionAnalysisManager to Module proxy.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
LLVM_ABI const TensorSpec DefaultDecisionSpec
LLVM_ABI const char *const DecisionName
@ Never
Never set the bit.
static const std::vector< TensorSpec > InputFeatures
LLVM_ABI std::optional< InlineCostFeatures > getInliningCostFeatures(CallBase &Call, TargetTransformInfo &CalleeTTI, function_ref< AssumptionCache &(Function &)> GetAssumptionCache, function_ref< BlockFrequencyInfo &(Function &)> GetBFI=nullptr, function_ref< const TargetLibraryInfo &(Function &)> GetTLI=nullptr, ProfileSummaryInfo *PSI=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
Get the expanded cost features.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI const TensorSpec InlineDecisionSpec
LLVM_ABI const char *const RewardName
LLVM_ABI std::optional< int > getInliningCostEstimate(CallBase &Call, TargetTransformInfo &CalleeTTI, function_ref< AssumptionCache &(Function &)> GetAssumptionCache, function_ref< BlockFrequencyInfo &(Function &)> GetBFI=nullptr, function_ref< const TargetLibraryInfo &(Function &)> GetTLI=nullptr, ProfileSummaryInfo *PSI=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
Get the cost estimate ignoring thresholds.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
ReleaseModeModelRunner - production mode implementation of the MLModelRunner.
Embedding is a datatype that wraps std::vector<double>.