LLVM 20.0.0git
X86CompressEVEX.cpp
Go to the documentation of this file.
1//===- X86CompressEVEX.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
10// when possible in order to reduce code size or facilitate HW decoding.
11//
12// Possible compression:
13// a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
14// b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
15// c. NDD (EVEX) -> non-NDD (legacy)
16// d. NF_ND (EVEX) -> NF (EVEX)
17// e. NonNF (EVEX) -> NF (EVEX)
18//
19// Compression a, b and c can always reduce code size, with some exceptions
20// such as promoted 16-bit CRC32 which is as long as the legacy version.
21//
22// legacy:
23// crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
24// promoted:
25// crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
26//
27// From performance perspective, these should be same (same uops and same EXE
28// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
29// can execute in more places (broader HW install base). So we will still do
30// the compression.
31//
32// Compression d can help hardware decode (HW may skip reading the NDD
33// register) although the instruction length remains unchanged.
34//
35// Compression e can help hardware skip updating EFLAGS although the instruction
36// length remains unchanged.
37//===----------------------------------------------------------------------===//
38
40#include "X86.h"
41#include "X86InstrInfo.h"
42#include "X86Subtarget.h"
43#include "llvm/ADT/StringRef.h"
48#include "llvm/MC/MCInstrDesc.h"
49#include "llvm/Pass.h"
50#include <atomic>
51#include <cassert>
52#include <cstdint>
53
54using namespace llvm;
55
56#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
57#define COMP_EVEX_NAME "x86-compress-evex"
58
59#define DEBUG_TYPE COMP_EVEX_NAME
60
61namespace {
62// Including the generated EVEX compression tables.
63#define GET_X86_COMPRESS_EVEX_TABLE
64#include "X86GenInstrMapping.inc"
65
66class CompressEVEXPass : public MachineFunctionPass {
67public:
68 static char ID;
69 CompressEVEXPass() : MachineFunctionPass(ID) {}
70 StringRef getPassName() const override { return COMP_EVEX_DESC; }
71
72 bool runOnMachineFunction(MachineFunction &MF) override;
73
74 // This pass runs after regalloc and doesn't support VReg operands.
77 MachineFunctionProperties::Property::NoVRegs);
78 }
79};
80
81} // end anonymous namespace
82
83char CompressEVEXPass::ID = 0;
84
86 auto isHiRegIdx = [](unsigned Reg) {
87 // Check for XMM register with indexes between 16 - 31.
88 if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
89 return true;
90 // Check for YMM register with indexes between 16 - 31.
91 if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
92 return true;
93 // Check for GPR with indexes between 16 - 31.
95 return true;
96 return false;
97 };
98
99 // Check that operands are not ZMM regs or
100 // XMM/YMM regs with hi indexes between 16 - 31.
101 for (const MachineOperand &MO : MI.explicit_operands()) {
102 if (!MO.isReg())
103 continue;
104
105 Register Reg = MO.getReg();
106 assert(!X86II::isZMMReg(Reg) &&
107 "ZMM instructions should not be in the EVEX->VEX tables");
108 if (isHiRegIdx(Reg))
109 return true;
110 }
111
112 return false;
113}
114
115// Do any custom cleanup needed to finalize the conversion.
116static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
117 (void)NewOpc;
118 unsigned Opc = MI.getOpcode();
119 switch (Opc) {
120 case X86::VALIGNDZ128rri:
121 case X86::VALIGNDZ128rmi:
122 case X86::VALIGNQZ128rri:
123 case X86::VALIGNQZ128rmi: {
124 assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
125 "Unexpected new opcode!");
126 unsigned Scale =
127 (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
128 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
129 Imm.setImm(Imm.getImm() * Scale);
130 break;
131 }
132 case X86::VSHUFF32X4Z256rmi:
133 case X86::VSHUFF32X4Z256rri:
134 case X86::VSHUFF64X2Z256rmi:
135 case X86::VSHUFF64X2Z256rri:
136 case X86::VSHUFI32X4Z256rmi:
137 case X86::VSHUFI32X4Z256rri:
138 case X86::VSHUFI64X2Z256rmi:
139 case X86::VSHUFI64X2Z256rri: {
140 assert((NewOpc == X86::VPERM2F128rri || NewOpc == X86::VPERM2I128rri ||
141 NewOpc == X86::VPERM2F128rmi || NewOpc == X86::VPERM2I128rmi) &&
142 "Unexpected new opcode!");
143 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
144 int64_t ImmVal = Imm.getImm();
145 // Set bit 5, move bit 1 to bit 4, copy bit 0.
146 Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
147 break;
148 }
149 case X86::VRNDSCALEPDZ128rri:
150 case X86::VRNDSCALEPDZ128rmi:
151 case X86::VRNDSCALEPSZ128rri:
152 case X86::VRNDSCALEPSZ128rmi:
153 case X86::VRNDSCALEPDZ256rri:
154 case X86::VRNDSCALEPDZ256rmi:
155 case X86::VRNDSCALEPSZ256rri:
156 case X86::VRNDSCALEPSZ256rmi:
157 case X86::VRNDSCALESDZrri:
158 case X86::VRNDSCALESDZrmi:
159 case X86::VRNDSCALESSZrri:
160 case X86::VRNDSCALESSZrmi:
161 case X86::VRNDSCALESDZrri_Int:
162 case X86::VRNDSCALESDZrmi_Int:
163 case X86::VRNDSCALESSZrri_Int:
164 case X86::VRNDSCALESSZrmi_Int:
165 const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
166 int64_t ImmVal = Imm.getImm();
167 // Ensure that only bits 3:0 of the immediate are used.
168 if ((ImmVal & 0xf) != ImmVal)
169 return false;
170 break;
171 }
172
173 return true;
174}
175
177 uint64_t TSFlags = MI.getDesc().TSFlags;
178
179 // Check for EVEX instructions only.
180 if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
181 return false;
182
183 // Instructions with mask or 512-bit vector can't be converted to VEX.
184 if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
185 return false;
186
187 auto IsRedundantNewDataDest = [&](unsigned &Opc) {
188 // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
189 // ->
190 // $rbx = ADD64rr $rbx, $rax
191 const MCInstrDesc &Desc = MI.getDesc();
192 Register Reg0 = MI.getOperand(0).getReg();
193 const MachineOperand &Op1 = MI.getOperand(1);
194 if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
195 X86::isCFCMOVCC(MI.getOpcode()))
196 return false;
197 Register Reg1 = Op1.getReg();
198 if (Reg1 == Reg0)
199 return true;
200
201 // Op1 and Op2 may be commutable for ND instructions.
202 if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
203 !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
204 return false;
205 // Opcode may change after commute, e.g. SHRD -> SHLD
206 ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
207 Opc = MI.getOpcode();
208 return true;
209 };
210
211 // EVEX_B has several meanings.
212 // AVX512:
213 // register form: rounding control or SAE
214 // memory form: broadcast
215 //
216 // APX:
217 // MAP4: NDD
218 //
219 // For AVX512 cases, EVEX prefix is needed in order to carry this information
220 // thus preventing the transformation to VEX encoding.
221 bool IsND = X86II::hasNewDataDest(TSFlags);
222 if (TSFlags & X86II::EVEX_B && !IsND)
223 return false;
224 unsigned Opc = MI.getOpcode();
225 // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
226 bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
227 bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;
228
229 auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
230 ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
231 const auto I = llvm::lower_bound(Table, Opc);
232 if (I == Table.end() || I->OldOpc != Opc)
233 return 0;
234
235 if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
236 !performCustomAdjustments(MI, I->NewOpc))
237 return 0;
238 return I->NewOpc;
239 };
240 // NonNF -> NF only if it's not a compressible NDD instruction and eflags is
241 // dead.
242 unsigned NewOpc = IsRedundantNDD
244 : ((IsNDLike && ST.hasNF() &&
245 MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
246 ? X86::getNFVariant(Opc)
247 : GetCompressedOpc(Opc));
248
249 if (!NewOpc)
250 return false;
251
252 const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
253 MI.setDesc(NewDesc);
254 unsigned AsmComment;
255 switch (NewDesc.TSFlags & X86II::EncodingMask) {
256 case X86II::LEGACY:
257 AsmComment = X86::AC_EVEX_2_LEGACY;
258 break;
259 case X86II::VEX:
260 AsmComment = X86::AC_EVEX_2_VEX;
261 break;
262 case X86II::EVEX:
263 AsmComment = X86::AC_EVEX_2_EVEX;
264 assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
265 "Unknown EVEX2EVEX compression");
266 break;
267 default:
268 llvm_unreachable("Unknown EVEX compression");
269 }
270 MI.setAsmPrinterFlag(AsmComment);
271 if (IsRedundantNDD)
272 MI.tieOperands(0, 1);
273
274 return true;
275}
276
277bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
278#ifndef NDEBUG
279 // Make sure the tables are sorted.
280 static std::atomic<bool> TableChecked(false);
281 if (!TableChecked.load(std::memory_order_relaxed)) {
282 assert(llvm::is_sorted(X86CompressEVEXTable) &&
283 "X86CompressEVEXTable is not sorted!");
284 TableChecked.store(true, std::memory_order_relaxed);
285 }
286#endif
288 if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
289 return false;
290
291 bool Changed = false;
292
293 for (MachineBasicBlock &MBB : MF) {
294 // Traverse the basic block.
295 for (MachineInstr &MI : MBB)
296 Changed |= CompressEVEXImpl(MI, ST);
297 }
298
299 return Changed;
300}
301
302INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
303
305 return new CompressEVEXPass();
306}
MachineBasicBlock & MBB
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
#define COMP_EVEX_DESC
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc)
#define COMP_EVEX_NAME
static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST)
static bool usesExtendedRegister(const MachineInstr &MI)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:157
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
Definition: X86BaseInfo.h:825
@ VEX
VEX - encoding using 0xC4/0xC5.
Definition: X86BaseInfo.h:818
@ LEGACY
LEGACY - encoding using REX/REX2 or w/o opcode prefix.
Definition: X86BaseInfo.h:816
bool isZMMReg(MCRegister Reg)
Definition: X86BaseInfo.h:1179
bool hasNewDataDest(uint64_t TSFlags)
Definition: X86BaseInfo.h:1001
bool isApxExtendedReg(MCRegister Reg)
Definition: X86BaseInfo.h:1186
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
unsigned getNonNDVariant(unsigned Opc)
@ AC_EVEX_2_EVEX
Definition: X86InstrInfo.h:43
@ AC_EVEX_2_LEGACY
Definition: X86InstrInfo.h:39
unsigned getNFVariant(unsigned Opc)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
FunctionPass * createX86CompressEVEXPass()
This pass compress instructions from EVEX space to legacy/VEX/EVEX space when possible in order to re...
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition: STLExtras.h:1926
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1978
Description of the encoding of one expression Op.