36#define GET_REGINFO_MC_DESC
37#include "X86GenRegisterInfo.inc"
39#define GET_INSTRINFO_MC_DESC
40#define GET_INSTRINFO_MC_HELPERS
41#define ENABLE_INSTR_PREDICATE_VERIFIER
42#include "X86GenInstrInfo.inc"
44#define GET_SUBTARGETINFO_MC_DESC
45#include "X86GenSubtargetInfo.inc"
52 FS =
"+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
54 FS =
"-64bit-mode,+32bit-mode,-16bit-mode";
56 FS =
"-64bit-mode,-32bit-mode,+16bit-mode";
100 if (
Base.isReg() &&
Base.getReg() == X86::EIP) {
101 assert(
Index.isReg() &&
Index.getReg() == 0 &&
"Invalid eip-based address");
104 if (
Index.isReg() &&
Index.getReg() == X86::EIZ)
117 int MemoryOperand,
uint64_t TSFlags) {
119 bool Is16BitMode = STI.
hasFeature(X86::Is16Bit);
120 bool Is32BitMode = STI.
hasFeature(X86::Is32Bit);
121 bool Is64BitMode = STI.
hasFeature(X86::Is64Bit);
131 unsigned siReg =
MI.getOperand(1).getReg();
132 assert(((siReg == X86::SI &&
MI.getOperand(0).getReg() == X86::DI) ||
133 (siReg == X86::ESI &&
MI.getOperand(0).getReg() == X86::EDI) ||
134 (siReg == X86::RSI &&
MI.getOperand(0).getReg() == X86::RDI)) &&
135 "SI and DI register sizes do not match");
136 return (!Is32BitMode && siReg == X86::ESI) ||
137 (Is32BitMode && siReg == X86::SI);
140 unsigned siReg =
MI.getOperand(0).getReg();
141 return (!Is32BitMode && siReg == X86::ESI) ||
142 (Is32BitMode && siReg == X86::SI);
145 unsigned siReg =
MI.getOperand(0).getReg();
146 return (!Is32BitMode && siReg == X86::EDI) ||
147 (Is32BitMode && siReg == X86::DI);
152 if (MemoryOperand < 0)
170 for (
unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
171 unsigned SEH =
MRI->getEncodingValue(Reg);
172 MRI->mapLLVMRegToSEHReg(Reg, SEH);
176 static const struct {
180 {codeview::RegisterId::AL, X86::AL},
181 {codeview::RegisterId::CL, X86::CL},
182 {codeview::RegisterId::DL, X86::DL},
183 {codeview::RegisterId::BL, X86::BL},
184 {codeview::RegisterId::AH, X86::AH},
185 {codeview::RegisterId::CH, X86::CH},
186 {codeview::RegisterId::DH, X86::DH},
187 {codeview::RegisterId::BH, X86::BH},
188 {codeview::RegisterId::AX, X86::AX},
189 {codeview::RegisterId::CX, X86::CX},
190 {codeview::RegisterId::DX, X86::DX},
191 {codeview::RegisterId::BX, X86::BX},
192 {codeview::RegisterId::SP, X86::SP},
193 {codeview::RegisterId::BP, X86::BP},
194 {codeview::RegisterId::SI, X86::SI},
195 {codeview::RegisterId::DI, X86::DI},
196 {codeview::RegisterId::EAX, X86::EAX},
197 {codeview::RegisterId::ECX, X86::ECX},
198 {codeview::RegisterId::EDX, X86::EDX},
199 {codeview::RegisterId::EBX, X86::EBX},
200 {codeview::RegisterId::ESP, X86::ESP},
201 {codeview::RegisterId::EBP, X86::EBP},
202 {codeview::RegisterId::ESI, X86::ESI},
203 {codeview::RegisterId::EDI, X86::EDI},
205 {codeview::RegisterId::EFLAGS, X86::EFLAGS},
207 {codeview::RegisterId::ST0, X86::ST0},
208 {codeview::RegisterId::ST1, X86::ST1},
209 {codeview::RegisterId::ST2, X86::ST2},
210 {codeview::RegisterId::ST3, X86::ST3},
211 {codeview::RegisterId::ST4, X86::ST4},
212 {codeview::RegisterId::ST5, X86::ST5},
213 {codeview::RegisterId::ST6, X86::ST6},
214 {codeview::RegisterId::ST7, X86::ST7},
216 {codeview::RegisterId::ST0, X86::FP0},
217 {codeview::RegisterId::ST1, X86::FP1},
218 {codeview::RegisterId::ST2, X86::FP2},
219 {codeview::RegisterId::ST3, X86::FP3},
220 {codeview::RegisterId::ST4, X86::FP4},
221 {codeview::RegisterId::ST5, X86::FP5},
222 {codeview::RegisterId::ST6, X86::FP6},
223 {codeview::RegisterId::ST7, X86::FP7},
225 {codeview::RegisterId::MM0, X86::MM0},
226 {codeview::RegisterId::MM1, X86::MM1},
227 {codeview::RegisterId::MM2, X86::MM2},
228 {codeview::RegisterId::MM3, X86::MM3},
229 {codeview::RegisterId::MM4, X86::MM4},
230 {codeview::RegisterId::MM5, X86::MM5},
231 {codeview::RegisterId::MM6, X86::MM6},
232 {codeview::RegisterId::MM7, X86::MM7},
234 {codeview::RegisterId::XMM0, X86::XMM0},
235 {codeview::RegisterId::XMM1, X86::XMM1},
236 {codeview::RegisterId::XMM2, X86::XMM2},
237 {codeview::RegisterId::XMM3, X86::XMM3},
238 {codeview::RegisterId::XMM4, X86::XMM4},
239 {codeview::RegisterId::XMM5, X86::XMM5},
240 {codeview::RegisterId::XMM6, X86::XMM6},
241 {codeview::RegisterId::XMM7, X86::XMM7},
243 {codeview::RegisterId::XMM8, X86::XMM8},
244 {codeview::RegisterId::XMM9, X86::XMM9},
245 {codeview::RegisterId::XMM10, X86::XMM10},
246 {codeview::RegisterId::XMM11, X86::XMM11},
247 {codeview::RegisterId::XMM12, X86::XMM12},
248 {codeview::RegisterId::XMM13, X86::XMM13},
249 {codeview::RegisterId::XMM14, X86::XMM14},
250 {codeview::RegisterId::XMM15, X86::XMM15},
252 {codeview::RegisterId::SIL, X86::SIL},
253 {codeview::RegisterId::DIL, X86::DIL},
254 {codeview::RegisterId::BPL, X86::BPL},
255 {codeview::RegisterId::SPL, X86::SPL},
256 {codeview::RegisterId::RAX, X86::RAX},
257 {codeview::RegisterId::RBX, X86::RBX},
258 {codeview::RegisterId::RCX, X86::RCX},
259 {codeview::RegisterId::RDX, X86::RDX},
260 {codeview::RegisterId::RSI, X86::RSI},
261 {codeview::RegisterId::RDI, X86::RDI},
262 {codeview::RegisterId::RBP, X86::RBP},
263 {codeview::RegisterId::RSP, X86::RSP},
264 {codeview::RegisterId::R8, X86::R8},
265 {codeview::RegisterId::R9, X86::R9},
266 {codeview::RegisterId::R10, X86::R10},
267 {codeview::RegisterId::R11, X86::R11},
268 {codeview::RegisterId::R12, X86::R12},
269 {codeview::RegisterId::R13, X86::R13},
270 {codeview::RegisterId::R14, X86::R14},
271 {codeview::RegisterId::R15, X86::R15},
272 {codeview::RegisterId::R8B, X86::R8B},
273 {codeview::RegisterId::R9B, X86::R9B},
274 {codeview::RegisterId::R10B, X86::R10B},
275 {codeview::RegisterId::R11B, X86::R11B},
276 {codeview::RegisterId::R12B, X86::R12B},
277 {codeview::RegisterId::R13B, X86::R13B},
278 {codeview::RegisterId::R14B, X86::R14B},
279 {codeview::RegisterId::R15B, X86::R15B},
280 {codeview::RegisterId::R8W, X86::R8W},
281 {codeview::RegisterId::R9W, X86::R9W},
282 {codeview::RegisterId::R10W, X86::R10W},
283 {codeview::RegisterId::R11W, X86::R11W},
284 {codeview::RegisterId::R12W, X86::R12W},
285 {codeview::RegisterId::R13W, X86::R13W},
286 {codeview::RegisterId::R14W, X86::R14W},
287 {codeview::RegisterId::R15W, X86::R15W},
288 {codeview::RegisterId::R8D, X86::R8D},
289 {codeview::RegisterId::R9D, X86::R9D},
290 {codeview::RegisterId::R10D, X86::R10D},
291 {codeview::RegisterId::R11D, X86::R11D},
292 {codeview::RegisterId::R12D, X86::R12D},
293 {codeview::RegisterId::R13D, X86::R13D},
294 {codeview::RegisterId::R14D, X86::R14D},
295 {codeview::RegisterId::R15D, X86::R15D},
296 {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
297 {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
298 {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
299 {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
300 {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
301 {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
302 {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
303 {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
304 {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
305 {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
306 {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
307 {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
308 {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
309 {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
310 {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
311 {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
312 {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
313 {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
314 {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
315 {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
316 {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
317 {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
318 {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
319 {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
320 {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
321 {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
322 {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
323 {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
324 {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
325 {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
326 {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
327 {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
328 {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
329 {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
330 {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
331 {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
332 {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
333 {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
334 {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
335 {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
336 {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
337 {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
338 {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
339 {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
340 {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
341 {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
342 {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
343 {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
344 {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
345 {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
346 {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
347 {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
348 {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
349 {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
350 {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
351 {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
352 {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
353 {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
354 {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
355 {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
356 {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
357 {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
358 {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
359 {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
360 {codeview::RegisterId::AMD64_K0, X86::K0},
361 {codeview::RegisterId::AMD64_K1, X86::K1},
362 {codeview::RegisterId::AMD64_K2, X86::K2},
363 {codeview::RegisterId::AMD64_K3, X86::K3},
364 {codeview::RegisterId::AMD64_K4, X86::K4},
365 {codeview::RegisterId::AMD64_K5, X86::K5},
366 {codeview::RegisterId::AMD64_K6, X86::K6},
367 {codeview::RegisterId::AMD64_K7, X86::K7},
368 {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
369 {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
370 {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
371 {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
372 {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
373 {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
374 {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
375 {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
376 {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
377 {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
378 {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
379 {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
380 {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
381 {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
382 {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
383 {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
386 for (
const auto &
I : RegMap)
387 MRI->mapLLVMRegToCVReg(
I.Reg,
static_cast<int>(
I.CVReg));
393 assert(!ArchFS.empty() &&
"Failed to parse X86 triple");
395 ArchFS = (
Twine(ArchFS) +
"," + FS).str();
400 size_t posNoEVEX512 = FS.rfind(
"-evex512");
402 size_t posNoAVX512F =
403 FS.ends_with(
"-avx512f") ? FS.size() - 8 : FS.rfind(
"-avx512f,");
404 size_t posEVEX512 = FS.rfind(
"+evex512");
405 size_t posAVX512F = FS.rfind(
"+avx512");
410 ArchFS +=
",+evex512";
412 return createX86MCSubtargetInfoImpl(TT, CPU, CPU, ArchFS);
417 InitX86MCInstrInfo(
X);
449 if (
Options.getAssemblyLanguage().equals_insensitive(
"masm"))
456 }
else if (TheTriple.
isUEFI()) {
465 int stackGrowth =
is64Bit ? -8 : -4;
468 unsigned StackPtr =
is64Bit ? X86::RSP : X86::ESP;
470 nullptr,
MRI.getDwarfRegNum(StackPtr,
true), -stackGrowth);
474 unsigned InstPtr =
is64Bit ? X86::RIP : X86::EIP;
476 nullptr,
MRI.getDwarfRegNum(InstPtr,
true), stackGrowth);
483 unsigned SyntaxVariant,
487 if (SyntaxVariant == 0)
489 if (SyntaxVariant == 1)
511#define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
512#include "X86GenSubtargetInfo.inc"
515 APInt &Mask)
const override;
516 std::vector<std::pair<uint64_t, uint64_t>>
518 const Triple &TargetTriple)
const override;
522 std::optional<uint64_t>
525 std::optional<uint64_t>
530#define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
531#include "X86GenSubtargetInfo.inc"
537 unsigned NumDefs =
Desc.getNumDefs();
538 unsigned NumImplicitDefs =
Desc.implicit_defs().size();
539 assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
540 "Unexpected number of bits in the mask!");
550 auto ClearsSuperReg = [=](
unsigned RegID) {
559 if (!HasEVEX && !HasVEX && !HasXOP)
570 for (
unsigned I = 0, E = NumDefs;
I < E; ++
I) {
572 if (ClearsSuperReg(
Op.getReg()))
576 for (
unsigned I = 0, E = NumImplicitDefs;
I < E; ++
I) {
578 if (ClearsSuperReg(Reg))
579 Mask.setBit(NumDefs +
I);
582 return Mask.getBoolValue();
585static std::vector<std::pair<uint64_t, uint64_t>>
588 std::vector<std::pair<uint64_t, uint64_t>> Result;
591 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
598 Result.emplace_back(PltSectionVA + Byte, Imm | (
uint64_t(1) << 32));
600 }
else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
604 Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
612static std::vector<std::pair<uint64_t, uint64_t>>
615 std::vector<std::pair<uint64_t, uint64_t>> Result;
618 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
623 std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
631std::vector<std::pair<uint64_t, uint64_t>>
634 const Triple &TargetTriple)
const {
635 switch (TargetTriple.
getArch()) {
660 if (MemOpStart == -1)
674 if (BaseReg.
getReg() == X86::RIP)
680std::optional<uint64_t>
687 if (MemOpStart == -1)
696 if (BaseReg.
getReg() != X86::RIP || SegReg.
getReg() != 0 ||
700 assert(
Size > 4 &&
"invalid instruction size for rip-relative lea");
763#define DEFAULT_NOREG \
765 return X86::NoRegister;
766#define SUB_SUPER(R1, R2, R3, R4, R) \
772#define A_SUB_SUPER(R) \
774 SUB_SUPER(AL, AX, EAX, RAX, R)
775#define D_SUB_SUPER(R) \
777 SUB_SUPER(DL, DX, EDX, RDX, R)
778#define C_SUB_SUPER(R) \
780 SUB_SUPER(CL, CX, ECX, RCX, R)
781#define B_SUB_SUPER(R) \
783 SUB_SUPER(BL, BX, EBX, RBX, R)
784#define SI_SUB_SUPER(R) SUB_SUPER(SIL, SI, ESI, RSI, R)
785#define DI_SUB_SUPER(R) SUB_SUPER(DIL, DI, EDI, RDI, R)
786#define BP_SUB_SUPER(R) SUB_SUPER(BPL, BP, EBP, RBP, R)
787#define SP_SUB_SUPER(R) SUB_SUPER(SPL, SP, ESP, RSP, R)
788#define NO_SUB_SUPER(NO, REG) \
789 SUB_SUPER(R##NO##B, R##NO##W, R##NO##D, R##NO, REG)
790#define NO_SUB_SUPER_B(NO) NO_SUB_SUPER(NO, R##NO##B)
791#define NO_SUB_SUPER_W(NO) NO_SUB_SUPER(NO, R##NO##W)
792#define NO_SUB_SUPER_D(NO) NO_SUB_SUPER(NO, R##NO##D)
793#define NO_SUB_SUPER_Q(NO) NO_SUB_SUPER(NO, R##NO)
unsigned const MachineRegisterInfo * MRI
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Analysis containing CSE Info
#define LLVM_EXTERNAL_VISIBILITY
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SI optimize exec mask operations pre RA
static bool is64Bit(const char *name)
#define NO_SUB_SUPER_W(NO)
#define NO_SUB_SUPER_Q(NO)
LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC()
static MCRelocationInfo * createX86MCRelocationInfo(const Triple &TheTriple, MCContext &Ctx)
static MCInstrInfo * createX86MCInstrInfo()
#define NO_SUB_SUPER_D(NO)
static MCRegisterInfo * createX86MCRegisterInfo(const Triple &TT)
static MCInstPrinter * createX86MCInstPrinter(const Triple &T, unsigned SyntaxVariant, const MCAsmInfo &MAI, const MCInstrInfo &MII, const MCRegisterInfo &MRI)
static MCInstrAnalysis * createX86MCInstrAnalysis(const MCInstrInfo *Info)
#define NO_SUB_SUPER_B(NO)
static MCAsmInfo * createX86MCAsmInfo(const MCRegisterInfo &MRI, const Triple &TheTriple, const MCTargetOptions &Options)
static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID)
Class for arbitrary precision integers.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
This class represents an Operation in the Expression.
This class is intended to be used as a base class for asm properties and features specific to the tar...
void addInitialFrameState(const MCCFIInstruction &Inst)
static MCCFIInstruction cfiDefCfa(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_def_cfa defines a rule for computing CFA as: take address from Register and add Offset to it.
static MCCFIInstruction createOffset(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_offset Previous value of Register is saved at offset Offset from CFA.
Context object for machine code objects.
This is an instance of a target assembly language printer that converts an MCInst to valid target ass...
Instances of this class represent a single low-level machine instruction.
unsigned getNumOperands() const
unsigned getOpcode() const
const MCOperand & getOperand(unsigned i) const
Describe properties that are true of each instruction in the target description file.
ArrayRef< MCOperandInfo > operands() const
Interface to description of machine instruction set.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Instances of this class represent operands of the MCInst class.
unsigned getReg() const
Returns the register number.
MCRegisterClass - Base class of TargetRegisterClass.
bool contains(MCRegister Reg) const
contains - Return true if the specified register is included in this register class.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Create MCExprs from relocations found in an object file.
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
static constexpr size_t npos
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
bool isOSCygMing() const
Tests for either Cygwin or MinGW OS.
bool isOSBinFormatMachO() const
Tests whether the environment is MachO.
bool isWindowsCoreCLREnvironment() const
ArchType getArch() const
Get the parsed architecture type of this triple.
bool isUEFI() const
Tests whether the OS is UEFI.
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
bool isWindowsMSVCEnvironment() const
Checks if the environment could be MSVC.
bool isWindowsItaniumEnvironment() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, uint64_t &Target) const override
Given a branch instruction try to get the address the branch targets.
X86MCInstrAnalysis(const MCInstrInfo *MCII)
std::optional< uint64_t > evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr, uint64_t Size) const override
Given an instruction tries to get the address of a memory operand.
std::optional< uint64_t > getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const override
Given an instruction with a memory operand that could require relocation, returns the offset within t...
bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, APInt &Mask) const override
Returns true if at least one of the register writes performed by.
std::vector< std::pair< uint64_t, uint64_t > > findPltEntries(uint64_t PltSectionVA, ArrayRef< uint8_t > PltContents, const Triple &TargetTriple) const override
Returns (PLT virtual address, GOT virtual address) pairs for PLT entries.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
int getMemoryOperandNo(uint64_t TSFlags)
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
@ RawFrmDstSrc
RawFrmDstSrc - This form is for instructions that use the source index register SI/ESI/RSI with a pos...
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
@ RawFrmDst
RawFrmDst - This form is for instructions that use the destination index register DI/EDI/RDI.
@ VEX
VEX - encoding using 0xC4/0xC5.
@ XOP
XOP - Opcode prefix used by XOP instructions.
@ RawFrmSrc
RawFrmSrc - This form is for instructions that use the source index register SI/ESI/RSI with a possib...
bool is32BitMemOperand(const MCInst &MI, unsigned Op)
bool is16BitMemOperand(const MCInst &MI, unsigned Op, const MCSubtargetInfo &STI)
bool hasLockPrefix(const MCInst &MI)
Returns true if this instruction has a LOCK prefix.
void initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI)
static std::vector< std::pair< uint64_t, uint64_t > > findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef< uint8_t > PltContents)
static std::vector< std::pair< uint64_t, uint64_t > > findX86PltEntries(uint64_t PltSectionVA, ArrayRef< uint8_t > PltContents)
bool needsAddressSizeOverride(const MCInst &MI, const MCSubtargetInfo &STI, int MemoryOperand, uint64_t TSFlags)
Returns true if this instruction needs an Address-Size override prefix.
std::string ParseX86Triple(const Triple &TT)
MCSubtargetInfo * createX86MCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS)
Create a X86 MCSubtargetInfo instance.
bool is64BitMemOperand(const MCInst &MI, unsigned Op)
unsigned getDwarfRegFlavour(const Triple &TT, bool isEH)
uint32_t read32le(const void *P)
This is an optimization pass for GlobalISel generic memory operations.
MCTargetStreamer * createX86ObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI)
Implements X86-only directives for object files.
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
MCAsmBackend * createX86_64AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
MCTargetStreamer * createX86AsmTargetStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter *InstPrinter)
Implements X86-only directives for assembly emission.
MCCodeEmitter * createX86MCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx)
Target & getTheX86_32Target()
MCRelocationInfo * createMCRelocationInfo(const Triple &TT, MCContext &Ctx)
MCStreamer * createX86ELFStreamer(const Triple &T, MCContext &Context, std::unique_ptr< MCAsmBackend > &&MAB, std::unique_ptr< MCObjectWriter > &&MOW, std::unique_ptr< MCCodeEmitter > &&MCE)
MCStreamer * createX86WinCOFFStreamer(MCContext &C, std::unique_ptr< MCAsmBackend > &&AB, std::unique_ptr< MCObjectWriter > &&OW, std::unique_ptr< MCCodeEmitter > &&CE)
Construct an X86 Windows COFF machine code streamer which will generate PE/COFF format object files.
MCAsmBackend * createX86_32AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
Target & getTheX86_64Target()
MCTargetStreamer * createX86NullTargetStreamer(MCStreamer &S)
Implements X86-only null emission.
Description of the encoding of one expression Op.
RegisterMCAsmInfoFn - Helper template for registering a target assembly info implementation.
static void RegisterMCRegInfo(Target &T, Target::MCRegInfoCtorFnTy Fn)
RegisterMCRegInfo - Register a MCRegisterInfo implementation for the given target.
static void RegisterMCAsmBackend(Target &T, Target::MCAsmBackendCtorTy Fn)
RegisterMCAsmBackend - Register a MCAsmBackend implementation for the given target.
static void RegisterMCCodeEmitter(Target &T, Target::MCCodeEmitterCtorTy Fn)
RegisterMCCodeEmitter - Register a MCCodeEmitter implementation for the given target.
static void RegisterMCSubtargetInfo(Target &T, Target::MCSubtargetInfoCtorFnTy Fn)
RegisterMCSubtargetInfo - Register a MCSubtargetInfo implementation for the given target.
static void RegisterObjectTargetStreamer(Target &T, Target::ObjectTargetStreamerCtorTy Fn)
static void RegisterMCInstrAnalysis(Target &T, Target::MCInstrAnalysisCtorFnTy Fn)
RegisterMCInstrAnalysis - Register a MCInstrAnalysis implementation for the given target.
static void RegisterELFStreamer(Target &T, Target::ELFStreamerCtorTy Fn)
static void RegisterNullTargetStreamer(Target &T, Target::NullTargetStreamerCtorTy Fn)
static void RegisterMCInstPrinter(Target &T, Target::MCInstPrinterCtorTy Fn)
RegisterMCInstPrinter - Register a MCInstPrinter implementation for the given target.
static void RegisterCOFFStreamer(Target &T, Target::COFFStreamerCtorTy Fn)
static void RegisterMCInstrInfo(Target &T, Target::MCInstrInfoCtorFnTy Fn)
RegisterMCInstrInfo - Register a MCInstrInfo implementation for the given target.
static void RegisterAsmTargetStreamer(Target &T, Target::AsmTargetStreamerCtorTy Fn)
static void RegisterMCRelocationInfo(Target &T, Target::MCRelocationInfoCtorTy Fn)
RegisterMCRelocationInfo - Register an MCRelocationInfo implementation for the given target.