LLVM 20.0.0git
X86MCTargetDesc.cpp
Go to the documentation of this file.
1//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides X86 specific target descriptions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86MCTargetDesc.h"
15#include "X86ATTInstPrinter.h"
16#include "X86BaseInfo.h"
17#include "X86IntelInstPrinter.h"
18#include "X86MCAsmInfo.h"
19#include "X86TargetStreamer.h"
20#include "llvm/ADT/APInt.h"
22#include "llvm/MC/MCDwarf.h"
24#include "llvm/MC/MCInstrInfo.h"
26#include "llvm/MC/MCStreamer.h"
32
33using namespace llvm;
34
35#define GET_REGINFO_MC_DESC
36#include "X86GenRegisterInfo.inc"
37
38#define GET_INSTRINFO_MC_DESC
39#define GET_INSTRINFO_MC_HELPERS
40#define ENABLE_INSTR_PREDICATE_VERIFIER
41#include "X86GenInstrInfo.inc"
42
43#define GET_SUBTARGETINFO_MC_DESC
44#include "X86GenSubtargetInfo.inc"
45
46std::string X86_MC::ParseX86Triple(const Triple &TT) {
47 std::string FS;
48 // SSE2 should default to enabled in 64-bit mode, but can be turned off
49 // explicitly.
50 if (TT.isArch64Bit())
51 FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
52 else if (TT.getEnvironment() != Triple::CODE16)
53 FS = "-64bit-mode,+32bit-mode,-16bit-mode";
54 else
55 FS = "-64bit-mode,-32bit-mode,+16bit-mode";
56
57 return FS;
58}
59
60unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
61 if (TT.getArch() == Triple::x86_64)
63
64 if (TT.isOSDarwin())
66 if (TT.isOSCygMing())
67 // Unsupported by now, just quick fallback
70}
71
73 return MI.getFlags() & X86::IP_HAS_LOCK;
74}
75
76static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
77 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
78 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
79 const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
80
81 return (Base.isReg() && Base.getReg() && RC.contains(Base.getReg())) ||
82 (Index.isReg() && Index.getReg() && RC.contains(Index.getReg()));
83}
84
85bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
86 const MCSubtargetInfo &STI) {
87 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
88 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
89
90 if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && !Base.getReg() &&
91 Index.isReg() && !Index.getReg())
92 return true;
93 return isMemOperand(MI, Op, X86::GR16RegClassID);
94}
95
96bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
97 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
98 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
99 if (Base.isReg() && Base.getReg() == X86::EIP) {
100 assert(Index.isReg() && !Index.getReg() && "Invalid eip-based address");
101 return true;
102 }
103 if (Index.isReg() && Index.getReg() == X86::EIZ)
104 return true;
105 return isMemOperand(MI, Op, X86::GR32RegClassID);
106}
107
108#ifndef NDEBUG
109bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
110 return isMemOperand(MI, Op, X86::GR64RegClassID);
111}
112#endif
113
115 const MCSubtargetInfo &STI,
116 int MemoryOperand, uint64_t TSFlags) {
117 uint64_t AdSize = TSFlags & X86II::AdSizeMask;
118 bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
119 bool Is32BitMode = STI.hasFeature(X86::Is32Bit);
120 bool Is64BitMode = STI.hasFeature(X86::Is64Bit);
121 if ((Is16BitMode && AdSize == X86II::AdSize32) ||
122 (Is32BitMode && AdSize == X86II::AdSize16) ||
123 (Is64BitMode && AdSize == X86II::AdSize32))
124 return true;
125 uint64_t Form = TSFlags & X86II::FormMask;
126 switch (Form) {
127 default:
128 break;
129 case X86II::RawFrmDstSrc: {
130 MCRegister siReg = MI.getOperand(1).getReg();
131 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
132 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
133 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
134 "SI and DI register sizes do not match");
135 return (!Is32BitMode && siReg == X86::ESI) ||
136 (Is32BitMode && siReg == X86::SI);
137 }
138 case X86II::RawFrmSrc: {
139 MCRegister siReg = MI.getOperand(0).getReg();
140 return (!Is32BitMode && siReg == X86::ESI) ||
141 (Is32BitMode && siReg == X86::SI);
142 }
143 case X86II::RawFrmDst: {
144 MCRegister siReg = MI.getOperand(0).getReg();
145 return (!Is32BitMode && siReg == X86::EDI) ||
146 (Is32BitMode && siReg == X86::DI);
147 }
148 }
149
150 // Determine where the memory operand starts, if present.
151 if (MemoryOperand < 0)
152 return false;
153
154 if (STI.hasFeature(X86::Is64Bit)) {
155 assert(!is16BitMemOperand(MI, MemoryOperand, STI));
156 return is32BitMemOperand(MI, MemoryOperand);
157 }
158 if (STI.hasFeature(X86::Is32Bit)) {
159 assert(!is64BitMemOperand(MI, MemoryOperand));
160 return is16BitMemOperand(MI, MemoryOperand, STI);
161 }
162 assert(STI.hasFeature(X86::Is16Bit));
163 assert(!is64BitMemOperand(MI, MemoryOperand));
164 return !is16BitMemOperand(MI, MemoryOperand, STI);
165}
166
168 // FIXME: TableGen these.
169 for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
170 unsigned SEH = MRI->getEncodingValue(Reg);
171 MRI->mapLLVMRegToSEHReg(Reg, SEH);
172 }
173
174 // Mapping from CodeView to MC register id.
175 static const struct {
177 MCPhysReg Reg;
178 } RegMap[] = {
179 {codeview::RegisterId::AL, X86::AL},
180 {codeview::RegisterId::CL, X86::CL},
181 {codeview::RegisterId::DL, X86::DL},
182 {codeview::RegisterId::BL, X86::BL},
183 {codeview::RegisterId::AH, X86::AH},
184 {codeview::RegisterId::CH, X86::CH},
185 {codeview::RegisterId::DH, X86::DH},
186 {codeview::RegisterId::BH, X86::BH},
187 {codeview::RegisterId::AX, X86::AX},
188 {codeview::RegisterId::CX, X86::CX},
189 {codeview::RegisterId::DX, X86::DX},
190 {codeview::RegisterId::BX, X86::BX},
191 {codeview::RegisterId::SP, X86::SP},
192 {codeview::RegisterId::BP, X86::BP},
193 {codeview::RegisterId::SI, X86::SI},
194 {codeview::RegisterId::DI, X86::DI},
195 {codeview::RegisterId::EAX, X86::EAX},
196 {codeview::RegisterId::ECX, X86::ECX},
197 {codeview::RegisterId::EDX, X86::EDX},
198 {codeview::RegisterId::EBX, X86::EBX},
199 {codeview::RegisterId::ESP, X86::ESP},
200 {codeview::RegisterId::EBP, X86::EBP},
201 {codeview::RegisterId::ESI, X86::ESI},
202 {codeview::RegisterId::EDI, X86::EDI},
203
204 {codeview::RegisterId::EFLAGS, X86::EFLAGS},
205
206 {codeview::RegisterId::ST0, X86::ST0},
207 {codeview::RegisterId::ST1, X86::ST1},
208 {codeview::RegisterId::ST2, X86::ST2},
209 {codeview::RegisterId::ST3, X86::ST3},
210 {codeview::RegisterId::ST4, X86::ST4},
211 {codeview::RegisterId::ST5, X86::ST5},
212 {codeview::RegisterId::ST6, X86::ST6},
213 {codeview::RegisterId::ST7, X86::ST7},
214
215 {codeview::RegisterId::ST0, X86::FP0},
216 {codeview::RegisterId::ST1, X86::FP1},
217 {codeview::RegisterId::ST2, X86::FP2},
218 {codeview::RegisterId::ST3, X86::FP3},
219 {codeview::RegisterId::ST4, X86::FP4},
220 {codeview::RegisterId::ST5, X86::FP5},
221 {codeview::RegisterId::ST6, X86::FP6},
222 {codeview::RegisterId::ST7, X86::FP7},
223
224 {codeview::RegisterId::MM0, X86::MM0},
225 {codeview::RegisterId::MM1, X86::MM1},
226 {codeview::RegisterId::MM2, X86::MM2},
227 {codeview::RegisterId::MM3, X86::MM3},
228 {codeview::RegisterId::MM4, X86::MM4},
229 {codeview::RegisterId::MM5, X86::MM5},
230 {codeview::RegisterId::MM6, X86::MM6},
231 {codeview::RegisterId::MM7, X86::MM7},
232
233 {codeview::RegisterId::XMM0, X86::XMM0},
234 {codeview::RegisterId::XMM1, X86::XMM1},
235 {codeview::RegisterId::XMM2, X86::XMM2},
236 {codeview::RegisterId::XMM3, X86::XMM3},
237 {codeview::RegisterId::XMM4, X86::XMM4},
238 {codeview::RegisterId::XMM5, X86::XMM5},
239 {codeview::RegisterId::XMM6, X86::XMM6},
240 {codeview::RegisterId::XMM7, X86::XMM7},
241
242 {codeview::RegisterId::XMM8, X86::XMM8},
243 {codeview::RegisterId::XMM9, X86::XMM9},
244 {codeview::RegisterId::XMM10, X86::XMM10},
245 {codeview::RegisterId::XMM11, X86::XMM11},
246 {codeview::RegisterId::XMM12, X86::XMM12},
247 {codeview::RegisterId::XMM13, X86::XMM13},
248 {codeview::RegisterId::XMM14, X86::XMM14},
249 {codeview::RegisterId::XMM15, X86::XMM15},
250
251 {codeview::RegisterId::SIL, X86::SIL},
252 {codeview::RegisterId::DIL, X86::DIL},
253 {codeview::RegisterId::BPL, X86::BPL},
254 {codeview::RegisterId::SPL, X86::SPL},
255 {codeview::RegisterId::RAX, X86::RAX},
256 {codeview::RegisterId::RBX, X86::RBX},
257 {codeview::RegisterId::RCX, X86::RCX},
258 {codeview::RegisterId::RDX, X86::RDX},
259 {codeview::RegisterId::RSI, X86::RSI},
260 {codeview::RegisterId::RDI, X86::RDI},
261 {codeview::RegisterId::RBP, X86::RBP},
262 {codeview::RegisterId::RSP, X86::RSP},
263 {codeview::RegisterId::R8, X86::R8},
264 {codeview::RegisterId::R9, X86::R9},
265 {codeview::RegisterId::R10, X86::R10},
266 {codeview::RegisterId::R11, X86::R11},
267 {codeview::RegisterId::R12, X86::R12},
268 {codeview::RegisterId::R13, X86::R13},
269 {codeview::RegisterId::R14, X86::R14},
270 {codeview::RegisterId::R15, X86::R15},
271 {codeview::RegisterId::R8B, X86::R8B},
272 {codeview::RegisterId::R9B, X86::R9B},
273 {codeview::RegisterId::R10B, X86::R10B},
274 {codeview::RegisterId::R11B, X86::R11B},
275 {codeview::RegisterId::R12B, X86::R12B},
276 {codeview::RegisterId::R13B, X86::R13B},
277 {codeview::RegisterId::R14B, X86::R14B},
278 {codeview::RegisterId::R15B, X86::R15B},
279 {codeview::RegisterId::R8W, X86::R8W},
280 {codeview::RegisterId::R9W, X86::R9W},
281 {codeview::RegisterId::R10W, X86::R10W},
282 {codeview::RegisterId::R11W, X86::R11W},
283 {codeview::RegisterId::R12W, X86::R12W},
284 {codeview::RegisterId::R13W, X86::R13W},
285 {codeview::RegisterId::R14W, X86::R14W},
286 {codeview::RegisterId::R15W, X86::R15W},
287 {codeview::RegisterId::R8D, X86::R8D},
288 {codeview::RegisterId::R9D, X86::R9D},
289 {codeview::RegisterId::R10D, X86::R10D},
290 {codeview::RegisterId::R11D, X86::R11D},
291 {codeview::RegisterId::R12D, X86::R12D},
292 {codeview::RegisterId::R13D, X86::R13D},
293 {codeview::RegisterId::R14D, X86::R14D},
294 {codeview::RegisterId::R15D, X86::R15D},
295 {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
296 {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
297 {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
298 {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
299 {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
300 {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
301 {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
302 {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
303 {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
304 {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
305 {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
306 {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
307 {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
308 {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
309 {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
310 {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
311 {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
312 {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
313 {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
314 {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
315 {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
316 {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
317 {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
318 {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
319 {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
320 {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
321 {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
322 {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
323 {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
324 {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
325 {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
326 {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
327 {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
328 {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
329 {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
330 {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
331 {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
332 {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
333 {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
334 {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
335 {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
336 {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
337 {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
338 {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
339 {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
340 {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
341 {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
342 {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
343 {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
344 {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
345 {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
346 {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
347 {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
348 {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
349 {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
350 {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
351 {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
352 {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
353 {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
354 {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
355 {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
356 {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
357 {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
358 {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
359 {codeview::RegisterId::AMD64_K0, X86::K0},
360 {codeview::RegisterId::AMD64_K1, X86::K1},
361 {codeview::RegisterId::AMD64_K2, X86::K2},
362 {codeview::RegisterId::AMD64_K3, X86::K3},
363 {codeview::RegisterId::AMD64_K4, X86::K4},
364 {codeview::RegisterId::AMD64_K5, X86::K5},
365 {codeview::RegisterId::AMD64_K6, X86::K6},
366 {codeview::RegisterId::AMD64_K7, X86::K7},
367 {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
368 {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
369 {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
370 {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
371 {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
372 {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
373 {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
374 {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
375 {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
376 {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
377 {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
378 {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
379 {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
380 {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
381 {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
382 {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
383
384 };
385 for (const auto &I : RegMap)
386 MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
387}
388
390 StringRef CPU, StringRef FS) {
391 std::string ArchFS = X86_MC::ParseX86Triple(TT);
392 assert(!ArchFS.empty() && "Failed to parse X86 triple");
393 if (!FS.empty())
394 ArchFS = (Twine(ArchFS) + "," + FS).str();
395
396 if (CPU.empty())
397 CPU = "generic";
398
399 size_t posNoEVEX512 = FS.rfind("-evex512");
400 // Make sure we won't be cheated by "-avx512fp16".
401 size_t posNoAVX512F =
402 FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,");
403 size_t posEVEX512 = FS.rfind("+evex512");
404 size_t posAVX512F = FS.rfind("+avx512"); // Any AVX512XXX will enable AVX512F.
405
406 if (posAVX512F != StringRef::npos &&
407 (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
408 if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
409 ArchFS += ",+evex512";
410
411 return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
412}
413
415 MCInstrInfo *X = new MCInstrInfo();
416 InitX86MCInstrInfo(X);
417 return X;
418}
419
421 unsigned RA = (TT.getArch() == Triple::x86_64)
422 ? X86::RIP // Should have dwarf #16.
423 : X86::EIP; // Should have dwarf #8.
424
426 InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
427 X86_MC::getDwarfRegFlavour(TT, true), RA);
429 return X;
430}
431
433 const Triple &TheTriple,
434 const MCTargetOptions &Options) {
435 bool is64Bit = TheTriple.getArch() == Triple::x86_64;
436
437 MCAsmInfo *MAI;
438 if (TheTriple.isOSBinFormatMachO()) {
439 if (is64Bit)
440 MAI = new X86_64MCAsmInfoDarwin(TheTriple);
441 else
442 MAI = new X86MCAsmInfoDarwin(TheTriple);
443 } else if (TheTriple.isOSBinFormatELF()) {
444 // Force the use of an ELF container.
445 MAI = new X86ELFMCAsmInfo(TheTriple);
446 } else if (TheTriple.isWindowsMSVCEnvironment() ||
447 TheTriple.isWindowsCoreCLREnvironment()) {
448 if (Options.getAssemblyLanguage().equals_insensitive("masm"))
449 MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
450 else
451 MAI = new X86MCAsmInfoMicrosoft(TheTriple);
452 } else if (TheTriple.isOSCygMing() ||
453 TheTriple.isWindowsItaniumEnvironment()) {
454 MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
455 } else if (TheTriple.isUEFI()) {
456 MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
457 } else {
458 // The default is ELF.
459 MAI = new X86ELFMCAsmInfo(TheTriple);
460 }
461
462 // Initialize initial frame state.
463 // Calculate amount of bytes used for return address storing
464 int stackGrowth = is64Bit ? -8 : -4;
465
466 // Initial state of the frame pointer is esp+stackGrowth.
467 unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
469 nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
470 MAI->addInitialFrameState(Inst);
471
472 // Add return address to move list
473 unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
475 nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
476 MAI->addInitialFrameState(Inst2);
477
478 return MAI;
479}
480
482 unsigned SyntaxVariant,
483 const MCAsmInfo &MAI,
484 const MCInstrInfo &MII,
485 const MCRegisterInfo &MRI) {
486 if (SyntaxVariant == 0)
487 return new X86ATTInstPrinter(MAI, MII, MRI);
488 if (SyntaxVariant == 1)
489 return new X86IntelInstPrinter(MAI, MII, MRI);
490 return nullptr;
491}
492
494 MCContext &Ctx) {
495 // Default to the stock relocation info.
496 return llvm::createMCRelocationInfo(TheTriple, Ctx);
497}
498
499namespace llvm {
500namespace X86_MC {
501
503 X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
504 X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
505 virtual ~X86MCInstrAnalysis() = default;
506
507public:
509
510#define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
511#include "X86GenSubtargetInfo.inc"
512
513 bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
514 APInt &Mask) const override;
515 std::vector<std::pair<uint64_t, uint64_t>>
516 findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
517 const Triple &TargetTriple) const override;
518
519 bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
520 uint64_t &Target) const override;
521 std::optional<uint64_t>
523 uint64_t Addr, uint64_t Size) const override;
524 std::optional<uint64_t>
526 uint64_t Size) const override;
527};
528
529#define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
530#include "X86GenSubtargetInfo.inc"
531
533 const MCInst &Inst,
534 APInt &Mask) const {
535 const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
536 unsigned NumDefs = Desc.getNumDefs();
537 unsigned NumImplicitDefs = Desc.implicit_defs().size();
538 assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
539 "Unexpected number of bits in the mask!");
540
541 bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
542 bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
543 bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
544
545 const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
546 const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
547 const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
548
549 auto ClearsSuperReg = [=](unsigned RegID) {
550 // On X86-64, a general purpose integer register is viewed as a 64-bit
551 // register internal to the processor.
552 // An update to the lower 32 bits of a 64 bit integer register is
553 // architecturally defined to zero extend the upper 32 bits.
554 if (GR32RC.contains(RegID))
555 return true;
556
557 // Early exit if this instruction has no vex/evex/xop prefix.
558 if (!HasEVEX && !HasVEX && !HasXOP)
559 return false;
560
561 // All VEX and EVEX encoded instructions are defined to zero the high bits
562 // of the destination register up to VLMAX (i.e. the maximum vector register
563 // width pertaining to the instruction).
564 // We assume the same behavior for XOP instructions too.
565 return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
566 };
567
568 Mask.clearAllBits();
569 for (unsigned I = 0, E = NumDefs; I < E; ++I) {
570 const MCOperand &Op = Inst.getOperand(I);
571 if (ClearsSuperReg(Op.getReg()))
572 Mask.setBit(I);
573 }
574
575 for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
576 const MCPhysReg Reg = Desc.implicit_defs()[I];
577 if (ClearsSuperReg(Reg))
578 Mask.setBit(NumDefs + I);
579 }
580
581 return Mask.getBoolValue();
582}
583
584static std::vector<std::pair<uint64_t, uint64_t>>
585findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
586 // Do a lightweight parsing of PLT entries.
587 std::vector<std::pair<uint64_t, uint64_t>> Result;
588 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
589 // Recognize a jmp.
590 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
591 // The jmp instruction at the beginning of each PLT entry jumps to the
592 // address of the base of the .got.plt section plus the immediate.
593 // Set the 1 << 32 bit to let ELFObjectFileBase::getPltEntries convert the
594 // offset to an address. Imm may be a negative int32_t if the GOT entry is
595 // in .got.
596 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
597 Result.emplace_back(PltSectionVA + Byte, Imm | (uint64_t(1) << 32));
598 Byte += 6;
599 } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
600 // The jmp instruction at the beginning of each PLT entry jumps to the
601 // immediate.
602 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
603 Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
604 Byte += 6;
605 } else
606 Byte++;
607 }
608 return Result;
609}
610
611static std::vector<std::pair<uint64_t, uint64_t>>
613 // Do a lightweight parsing of PLT entries.
614 std::vector<std::pair<uint64_t, uint64_t>> Result;
615 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
616 // Recognize a jmp.
617 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
618 // The jmp instruction at the beginning of each PLT entry jumps to the
619 // address of the next instruction plus the immediate.
620 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
621 Result.push_back(
622 std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
623 Byte += 6;
624 } else
625 Byte++;
626 }
627 return Result;
628}
629
630std::vector<std::pair<uint64_t, uint64_t>>
632 ArrayRef<uint8_t> PltContents,
633 const Triple &TargetTriple) const {
634 switch (TargetTriple.getArch()) {
635 case Triple::x86:
636 return findX86PltEntries(PltSectionVA, PltContents);
637 case Triple::x86_64:
638 return findX86_64PltEntries(PltSectionVA, PltContents);
639 default:
640 return {};
641 }
642}
643
645 uint64_t Size, uint64_t &Target) const {
646 if (Inst.getNumOperands() == 0 ||
647 Info->get(Inst.getOpcode()).operands()[0].OperandType !=
649 return false;
650 Target = Addr + Size + Inst.getOperand(0).getImm();
651 return true;
652}
653
655 const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
656 uint64_t Size) const {
657 const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
658 int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
659 if (MemOpStart == -1)
660 return std::nullopt;
661 MemOpStart += X86II::getOperandBias(MCID);
662
663 const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
664 const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
665 const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
666 const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
667 const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
668 if (SegReg.getReg() || IndexReg.getReg() || ScaleAmt.getImm() != 1 ||
669 !Disp.isImm())
670 return std::nullopt;
671
672 // RIP-relative addressing.
673 if (BaseReg.getReg() == X86::RIP)
674 return Addr + Size + Disp.getImm();
675
676 return std::nullopt;
677}
678
679std::optional<uint64_t>
681 uint64_t Size) const {
682 if (Inst.getOpcode() != X86::LEA64r)
683 return std::nullopt;
684 const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
685 int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
686 if (MemOpStart == -1)
687 return std::nullopt;
688 MemOpStart += X86II::getOperandBias(MCID);
689 const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
690 const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
691 const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
692 const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
693 const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
694 // Must be a simple rip-relative address.
695 if (BaseReg.getReg() != X86::RIP || SegReg.getReg() || IndexReg.getReg() ||
696 ScaleAmt.getImm() != 1 || !Disp.isImm())
697 return std::nullopt;
698 // rip-relative ModR/M immediate is 32 bits.
699 assert(Size > 4 && "invalid instruction size for rip-relative lea");
700 return Size - 4;
701}
702
703} // end of namespace X86_MC
704
705} // end of namespace llvm
706
709}
710
711// Force static initialization.
714 // Register the MC asm info.
716
717 // Register the MC instruction info.
719
720 // Register the MC register info.
722
723 // Register the MC subtarget info.
726
727 // Register the MC instruction analyzer.
729
730 // Register the code emitter.
732
733 // Register the obj target streamer.
736
737 // Register the asm target streamer.
739
740 // Register the null streamer.
742
745
746 // Register the MCInstPrinter.
748
749 // Register the MC relocation info.
751 }
752
753 // Register the asm backend.
758}
759
761 bool High) {
762#define DEFAULT_NOREG \
763 default: \
764 return X86::NoRegister;
765#define SUB_SUPER(R1, R2, R3, R4, R) \
766 case X86::R1: \
767 case X86::R2: \
768 case X86::R3: \
769 case X86::R4: \
770 return X86::R;
771#define A_SUB_SUPER(R) \
772 case X86::AH: \
773 SUB_SUPER(AL, AX, EAX, RAX, R)
774#define D_SUB_SUPER(R) \
775 case X86::DH: \
776 SUB_SUPER(DL, DX, EDX, RDX, R)
777#define C_SUB_SUPER(R) \
778 case X86::CH: \
779 SUB_SUPER(CL, CX, ECX, RCX, R)
780#define B_SUB_SUPER(R) \
781 case X86::BH: \
782 SUB_SUPER(BL, BX, EBX, RBX, R)
783#define SI_SUB_SUPER(R) SUB_SUPER(SIL, SI, ESI, RSI, R)
784#define DI_SUB_SUPER(R) SUB_SUPER(DIL, DI, EDI, RDI, R)
785#define BP_SUB_SUPER(R) SUB_SUPER(BPL, BP, EBP, RBP, R)
786#define SP_SUB_SUPER(R) SUB_SUPER(SPL, SP, ESP, RSP, R)
787#define NO_SUB_SUPER(NO, REG) \
788 SUB_SUPER(R##NO##B, R##NO##W, R##NO##D, R##NO, REG)
789#define NO_SUB_SUPER_B(NO) NO_SUB_SUPER(NO, R##NO##B)
790#define NO_SUB_SUPER_W(NO) NO_SUB_SUPER(NO, R##NO##W)
791#define NO_SUB_SUPER_D(NO) NO_SUB_SUPER(NO, R##NO##D)
792#define NO_SUB_SUPER_Q(NO) NO_SUB_SUPER(NO, R##NO)
793 switch (Size) {
794 default:
795 llvm_unreachable("illegal register size");
796 case 8:
797 if (High) {
798 switch (Reg.id()) {
800 A_SUB_SUPER(AH)
801 D_SUB_SUPER(DH)
803 B_SUB_SUPER(BH)
804 }
805 } else {
806 switch (Reg.id()) {
808 A_SUB_SUPER(AL)
810 C_SUB_SUPER(CL)
811 B_SUB_SUPER(BL)
812 SI_SUB_SUPER(SIL)
813 DI_SUB_SUPER(DIL)
814 BP_SUB_SUPER(BPL)
815 SP_SUB_SUPER(SPL)
840 }
841 }
842 case 16:
843 switch (Reg.id()) {
845 A_SUB_SUPER(AX)
846 D_SUB_SUPER(DX)
847 C_SUB_SUPER(CX)
848 B_SUB_SUPER(BX)
849 SI_SUB_SUPER(SI)
850 DI_SUB_SUPER(DI)
851 BP_SUB_SUPER(BP)
852 SP_SUB_SUPER(SP)
877 }
878 case 32:
879 switch (Reg.id()) {
881 A_SUB_SUPER(EAX)
882 D_SUB_SUPER(EDX)
883 C_SUB_SUPER(ECX)
884 B_SUB_SUPER(EBX)
885 SI_SUB_SUPER(ESI)
886 DI_SUB_SUPER(EDI)
887 BP_SUB_SUPER(EBP)
888 SP_SUB_SUPER(ESP)
913 }
914 case 64:
915 switch (Reg.id()) {
917 A_SUB_SUPER(RAX)
918 D_SUB_SUPER(RDX)
919 C_SUB_SUPER(RCX)
920 B_SUB_SUPER(RBX)
921 SI_SUB_SUPER(RSI)
922 DI_SUB_SUPER(RDI)
923 BP_SUB_SUPER(RBP)
924 SP_SUB_SUPER(RSP)
949 }
950 }
951}
unsigned const MachineRegisterInfo * MRI
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
#define LLVM_C_ABI
Definition: Compiler.h:218
uint64_t Addr
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
IRTranslator LLVM IR MI
static LVOptions Options
Definition: LVOptions.cpp:25
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t High
#define CH(x, y, z)
Definition: SHA256.cpp:34
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SI optimize exec mask operations pre RA
static bool is64Bit(const char *name)
#define NO_SUB_SUPER_W(NO)
#define NO_SUB_SUPER_Q(NO)
static MCRelocationInfo * createX86MCRelocationInfo(const Triple &TheTriple, MCContext &Ctx)
static MCInstrInfo * createX86MCInstrInfo()
#define C_SUB_SUPER(R)
#define NO_SUB_SUPER_D(NO)
#define DEFAULT_NOREG
static MCRegisterInfo * createX86MCRegisterInfo(const Triple &TT)
#define SP_SUB_SUPER(R)
static MCInstPrinter * createX86MCInstPrinter(const Triple &T, unsigned SyntaxVariant, const MCAsmInfo &MAI, const MCInstrInfo &MII, const MCRegisterInfo &MRI)
static MCInstrAnalysis * createX86MCInstrAnalysis(const MCInstrInfo *Info)
#define SI_SUB_SUPER(R)
#define BP_SUB_SUPER(R)
#define B_SUB_SUPER(R)
LLVM_C_ABI void LLVMInitializeX86TargetMC()
#define DI_SUB_SUPER(R)
#define NO_SUB_SUPER_B(NO)
#define A_SUB_SUPER(R)
#define D_SUB_SUPER(R)
static MCAsmInfo * createX86MCAsmInfo(const MCRegisterInfo &MRI, const Triple &TheTriple, const MCTargetOptions &Options)
static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID)
Class for arbitrary precision integers.
Definition: APInt.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
const T * data() const
Definition: ArrayRef.h:165
This class represents an Operation in the Expression.
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
void addInitialFrameState(const MCCFIInstruction &Inst)
Definition: MCAsmInfo.cpp:75
static MCCFIInstruction cfiDefCfa(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_def_cfa defines a rule for computing CFA as: take address from Register and add Offset to it.
Definition: MCDwarf.h:575
static MCCFIInstruction createOffset(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_offset Previous value of Register is saved at offset Offset from CFA.
Definition: MCDwarf.h:617
Context object for machine code objects.
Definition: MCContext.h:83
This is an instance of a target assembly language printer that converts an MCInst to valid target ass...
Definition: MCInstPrinter.h:46
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
unsigned getNumOperands() const
Definition: MCInst.h:209
unsigned getOpcode() const
Definition: MCInst.h:199
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:207
const MCInstrInfo * Info
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
ArrayRef< MCOperandInfo > operands() const
Definition: MCInstrDesc.h:239
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:37
int64_t getImm() const
Definition: MCInst.h:81
bool isImm() const
Definition: MCInst.h:63
MCRegister getReg() const
Returns the register number.
Definition: MCInst.h:70
MCRegisterClass - Base class of TargetRegisterClass.
bool contains(MCRegister Reg) const
contains - Return true if the specified register is included in this register class.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Create MCExprs from relocations found in an object file.
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
static constexpr size_t npos
Definition: StringRef.h:53
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
bool isOSCygMing() const
Tests for either Cygwin or MinGW OS.
Definition: Triple.h:673
bool isOSBinFormatMachO() const
Tests whether the environment is MachO.
Definition: Triple.h:743
bool isWindowsCoreCLREnvironment() const
Definition: Triple.h:656
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition: Triple.h:383
bool isUEFI() const
Tests whether the OS is UEFI.
Definition: Triple.h:630
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Definition: Triple.h:730
bool isWindowsMSVCEnvironment() const
Checks if the environment could be MSVC.
Definition: Triple.h:645
bool isWindowsItaniumEnvironment() const
Definition: Triple.h:660
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, uint64_t &Target) const override
Given a branch instruction try to get the address the branch targets.
X86MCInstrAnalysis(const MCInstrInfo *MCII)
std::optional< uint64_t > evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr, uint64_t Size) const override
Given an instruction tries to get the address of a memory operand.
std::optional< uint64_t > getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const override
Given an instruction with a memory operand that could require relocation, returns the offset within t...
bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, APInt &Mask) const override
Returns true if at least one of the register writes performed by.
std::vector< std::pair< uint64_t, uint64_t > > findPltEntries(uint64_t PltSectionVA, ArrayRef< uint8_t > PltContents, const Triple &TargetTriple) const override
Returns (PLT virtual address, GOT virtual address) pairs for PLT entries.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ RawFrmDstSrc
RawFrmDstSrc - This form is for instructions that use the source index register SI/ESI/RSI with a pos...
Definition: X86BaseInfo.h:518
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
Definition: X86BaseInfo.h:825
@ RawFrmDst
RawFrmDst - This form is for instructions that use the destination index register DI/EDI/RDI.
Definition: X86BaseInfo.h:514
@ VEX
VEX - encoding using 0xC4/0xC5.
Definition: X86BaseInfo.h:818
@ XOP
XOP - Opcode prefix used by XOP instructions.
Definition: X86BaseInfo.h:820
@ RawFrmSrc
RawFrmSrc - This form is for instructions that use the source index register SI/ESI/RSI with a possib...
Definition: X86BaseInfo.h:511
int getMemoryOperandNo(uint64_t TSFlags)
Definition: X86BaseInfo.h:1011
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
Definition: X86BaseInfo.h:968
bool is32BitMemOperand(const MCInst &MI, unsigned Op)
bool is16BitMemOperand(const MCInst &MI, unsigned Op, const MCSubtargetInfo &STI)
bool hasLockPrefix(const MCInst &MI)
Returns true if this instruction has a LOCK prefix.
void initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI)
static std::vector< std::pair< uint64_t, uint64_t > > findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef< uint8_t > PltContents)
static std::vector< std::pair< uint64_t, uint64_t > > findX86PltEntries(uint64_t PltSectionVA, ArrayRef< uint8_t > PltContents)
bool needsAddressSizeOverride(const MCInst &MI, const MCSubtargetInfo &STI, int MemoryOperand, uint64_t TSFlags)
Returns true if this instruction needs an Address-Size override prefix.
std::string ParseX86Triple(const Triple &TT)
MCSubtargetInfo * createX86MCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS)
Create a X86 MCSubtargetInfo instance.
bool is64BitMemOperand(const MCInst &MI, unsigned Op)
unsigned getDwarfRegFlavour(const Triple &TT, bool isEH)
@ AddrScaleAmt
Definition: X86BaseInfo.h:30
@ AddrSegmentReg
Definition: X86BaseInfo.h:34
@ AddrIndexReg
Definition: X86BaseInfo.h:31
uint32_t read32le(const void *P)
Definition: Endian.h:425
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MCTargetStreamer * createX86ObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI)
Implements X86-only directives for object files.
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
MCAsmBackend * createX86_64AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
MCTargetStreamer * createX86AsmTargetStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter *InstPrinter)
Implements X86-only directives for assembly emission.
MCCodeEmitter * createX86MCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx)
Target & getTheX86_32Target()
MCRelocationInfo * createMCRelocationInfo(const Triple &TT, MCContext &Ctx)
MCStreamer * createX86ELFStreamer(const Triple &T, MCContext &Context, std::unique_ptr< MCAsmBackend > &&MAB, std::unique_ptr< MCObjectWriter > &&MOW, std::unique_ptr< MCCodeEmitter > &&MCE)
MCStreamer * createX86WinCOFFStreamer(MCContext &C, std::unique_ptr< MCAsmBackend > &&AB, std::unique_ptr< MCObjectWriter > &&OW, std::unique_ptr< MCCodeEmitter > &&CE)
Construct an X86 Windows COFF machine code streamer which will generate PE/COFF format object files.
MCAsmBackend * createX86_32AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
Target & getTheX86_64Target()
MCTargetStreamer * createX86NullTargetStreamer(MCStreamer &S)
Implements X86-only null emission.
Description of the encoding of one expression Op.
RegisterMCAsmInfoFn - Helper template for registering a target assembly info implementation.
static void RegisterMCRegInfo(Target &T, Target::MCRegInfoCtorFnTy Fn)
RegisterMCRegInfo - Register a MCRegisterInfo implementation for the given target.
static void RegisterMCAsmBackend(Target &T, Target::MCAsmBackendCtorTy Fn)
RegisterMCAsmBackend - Register a MCAsmBackend implementation for the given target.
static void RegisterMCCodeEmitter(Target &T, Target::MCCodeEmitterCtorTy Fn)
RegisterMCCodeEmitter - Register a MCCodeEmitter implementation for the given target.
static void RegisterMCSubtargetInfo(Target &T, Target::MCSubtargetInfoCtorFnTy Fn)
RegisterMCSubtargetInfo - Register a MCSubtargetInfo implementation for the given target.
static void RegisterObjectTargetStreamer(Target &T, Target::ObjectTargetStreamerCtorTy Fn)
static void RegisterMCInstrAnalysis(Target &T, Target::MCInstrAnalysisCtorFnTy Fn)
RegisterMCInstrAnalysis - Register a MCInstrAnalysis implementation for the given target.
static void RegisterELFStreamer(Target &T, Target::ELFStreamerCtorTy Fn)
static void RegisterNullTargetStreamer(Target &T, Target::NullTargetStreamerCtorTy Fn)
static void RegisterMCInstPrinter(Target &T, Target::MCInstPrinterCtorTy Fn)
RegisterMCInstPrinter - Register a MCInstPrinter implementation for the given target.
static void RegisterCOFFStreamer(Target &T, Target::COFFStreamerCtorTy Fn)
static void RegisterMCInstrInfo(Target &T, Target::MCInstrInfoCtorFnTy Fn)
RegisterMCInstrInfo - Register a MCInstrInfo implementation for the given target.
static void RegisterAsmTargetStreamer(Target &T, Target::AsmTargetStreamerCtorTy Fn)
static void RegisterMCRelocationInfo(Target &T, Target::MCRelocationInfoCtorTy Fn)
RegisterMCRelocationInfo - Register an MCRelocationInfo implementation for the given target.