94#define DEBUG_TYPE "x86-disassembler"
96#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
121#include "X86GenDisassemblerTables.inc"
129 dec = &
ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
132 dec = &
TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
135 dec = &
THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
138 dec = &
THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
141 dec = &
XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
144 dec = &
XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
147 dec = &
XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
154 dec = &
MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
157 dec = &
MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
160 dec = &
MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
163 dec = &
MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
179 return modRMTable[dec->
instructionIDs + ((modRM & 0x38) >> 3) + 8];
181 case MODRM_SPLITMISC:
194 byte = insn->
bytes[offset];
199 auto r = insn->
bytes;
201 if (offset +
sizeof(
T) > r.size())
209 return insn->
mode ==
MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
239 if ((
byte == 0xf2 ||
byte == 0xf3) && !
peek(insn,
nextByte)) {
248 if (!(
byte == 0xf3 &&
nextByte == 0x90))
266 if (
peek(insn, nnextByte))
332 if (
isREX(insn,
byte)) {
353 if (
peek(insn, byte2)) {
394 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
398 }
else if (
byte == 0xc4) {
400 if (
peek(insn, byte1)) {
429 }
else if (
byte == 0xc5) {
431 if (
peek(insn, byte1)) {
461 }
else if (
byte == 0x8f) {
463 if (
peek(insn, byte1)) {
468 if ((byte1 & 0x38) != 0x0)
500 }
else if (
isREX2(insn,
byte)) {
502 if (
peek(insn, byte1)) {
559 sibBaseBase = SIB_BASE_EAX;
563 sibBaseBase = SIB_BASE_RAX;
688 EABase eaBaseBase = EA_BASE_BX_SI;
757 insn->
eaBase = EA_BASE_sib;
780#define GENERIC_FIXUP_FUNC(name, base, prefix) \
781 static uint16_t name(struct InternalInstruction *insn, OperandType type, \
782 uint8_t index, uint8_t *valid) { \
786 debug("Unhandled register type"); \
790 return base + index; \
792 if (insn->rexPrefix && index >= 4 && index <= 7) \
793 return prefix##_SPL + (index - 4); \
795 return prefix##_AL + index; \
797 return prefix##_AX + index; \
799 return prefix##_EAX + index; \
801 return prefix##_RAX + index; \
803 return prefix##_ZMM0 + index; \
805 return prefix##_YMM0 + index; \
807 return prefix##_XMM0 + index; \
811 return prefix##_TMM0 + index; \
812 case TYPE_TMM_PAIR: \
815 return prefix##_TMM0_TMM1 + (index / 2); \
820 return prefix##_K0 + index; \
824 return prefix##_K0_K1 + (index / 2); \
826 return prefix##_MM0 + (index & 0x7); \
827 case TYPE_SEGMENTREG: \
828 if ((index & 7) > 5) \
830 return prefix##_ES + (index & 7); \
831 case TYPE_DEBUGREG: \
834 return prefix##_DR0 + index; \
835 case TYPE_CONTROLREG: \
838 return prefix##_CR0 + index; \
840 return prefix##_XMM0 + index; \
842 return prefix##_YMM0 + index; \
844 return prefix##_ZMM0 + index; \
875 debug(
"Expected a REG or R/M encoding in fixupReg");
885 insn->reg - insn->regBase, &valid);
914 if (insn->eaBase >= insn->eaRegBase) {
915 insn->eaBase = (
EABase)fixupRMValue(
916 insn, (
OperandType)
op->type, insn->eaBase - insn->eaRegBase, &valid);
937 dbgs() <<
format(
"Unhandled mmm field for instruction (0x%hhx)",
966 dbgs() <<
format(
"Unhandled m-mmmm field for instruction (0x%hhx)",
995 dbgs() <<
format(
"Unhandled m-mmmm field for instruction (0x%hhx)",
1017 if (current == 0x0f) {
1019 dbgs() <<
format(
"Found a two-byte escape prefix (0x%hhx)", current));
1023 if (current == 0x38) {
1030 }
else if (current == 0x3a) {
1037 }
else if (current == 0x0f) {
1039 dbgs() <<
format(
"Found a 3dnow escape prefix (0x%hhx)", current));
1067 for (
int i = 0;; i++) {
1068 if (orig[i] ==
'\0' && equiv[i] ==
'\0')
1070 if (orig[i] ==
'\0' || equiv[i] ==
'\0')
1072 if (orig[i] != equiv[i]) {
1073 if ((orig[i] ==
'Q' || orig[i] ==
'L') && equiv[i] ==
'W')
1075 if ((orig[i] ==
'6' || orig[i] ==
'3') && equiv[i] ==
'1')
1077 if ((orig[i] ==
'4' || orig[i] ==
'2') && equiv[i] ==
'6')
1086 for (
int i = 0;; ++i) {
1087 if (
name[i] ==
'\0')
1089 if (
name[i] ==
'6' &&
name[i + 1] ==
'4')
1159 switch (insn->
opcode & 0xfe) {
1332 attrMask &= ~ATTR_ADSIZE;
1337 (insn->
opcode == 0xA1 || (insn->
opcode & 0xf0) == 0x50))
1382 auto SpecName = mii->
getName(instructionIDWithREXW);
1384 if (!
is64Bit(SpecName.data())) {
1446 specName = mii->
getName(instructionID);
1447 specWithOpSizeName = mii->
getName(instructionIDWithOpsize);
1465 uint16_t instructionIDWithNewOpcode;
1488 insn->
spec = specWithNewOpcode;
1513 auto setOpcodeRegister = [&](
unsigned base) {
1522 setOpcodeRegister(MODRM_REG_AL);
1531 setOpcodeRegister(MODRM_REG_AX);
1534 setOpcodeRegister(MODRM_REG_EAX);
1537 setOpcodeRegister(MODRM_REG_RAX);
1614 insn->
vvvv =
static_cast<Reg>(vvvv);
1636 int hasVVVV, needVVVV;
1643 needVVVV = hasVVVV && (insn->
vvvv != 0);
1646 switch (
Op.encoding) {
1654 needVVVV = hasVVVV & ((insn->
vvvv & 0xf) != 0);
1659 if (insn->
eaBase != EA_BASE_sib && insn->
eaBase != EA_BASE_sib64)
1674 debug(
"Unhandled VSIB index type");
1696 if (insn->
eaBase != EA_BASE_sib && insn->
eaBase != EA_BASE_sib64)
1724 if (
Op.type == TYPE_XMM ||
Op.type == TYPE_YMM)
1792 case ENCODING_WRITEMASK:
1799 LLVM_DEBUG(
dbgs() <<
"Encountered an operand with an unknown encoding.");
1839 std::unique_ptr<const MCInstrInfo> MII;
1842 std::unique_ptr<const MCInstrInfo> MII);
1854X86GenericDisassembler::X86GenericDisassembler(
1857 std::unique_ptr<const MCInstrInfo> MII)
1860 if (FB[X86::Is16Bit]) {
1863 }
else if (FB[X86::Is32Bit]) {
1866 }
else if (FB[X86::Is64Bit]) {
1877 CommentStream = &CStream;
1893 Insn.operands = x86OperandSets[
Insn.spec->operands];
1904 if (!
Insn.mandatoryPrefix) {
1907 if (
Insn.repeatPrefix == 0xf2)
1909 else if (
Insn.repeatPrefix == 0xf3 &&
1911 Insn.opcode != 0x90)
1913 if (
Insn.hasLockPrefix)
1916 Instr.setFlags(Flags);
1931#define ENTRY(x) X86::x,
1935 MCPhysReg llvmRegnum = llvmRegnums[reg];
1957 baseRegNo = insn.
hasAdSize ? X86::ESI : X86::RSI;
1959 baseRegNo = insn.
hasAdSize ? X86::SI : X86::ESI;
1962 baseRegNo = insn.
hasAdSize ? X86::ESI : X86::SI;
1982 baseRegNo = insn.
hasAdSize ? X86::EDI : X86::RDI;
1984 baseRegNo = insn.
hasAdSize ? X86::DI : X86::EDI;
1987 baseRegNo = insn.
hasAdSize ? X86::EDI : X86::DI;
2010 if (type == TYPE_REL) {
2021 if(immediate & 0x80)
2022 immediate |= ~(0xffull);
2025 if(immediate & 0x8000)
2026 immediate |= ~(0xffffull);
2029 if(immediate & 0x80000000)
2030 immediate |= ~(0xffffffffull);
2037 if(immediate & 0x80)
2038 immediate |= ~(0xffull);
2041 if(immediate & 0x8000)
2042 immediate |= ~(0xffffull);
2045 if(immediate & 0x80000000)
2046 immediate |= ~(0xffffffffull);
2051 else if (type == TYPE_IMM) {
2056 if(immediate & 0x80)
2057 immediate |= ~(0xffull);
2060 if(immediate & 0x8000)
2061 immediate |= ~(0xffffull);
2064 if(immediate & 0x80000000)
2065 immediate |= ~(0xffffffffull);
2092 if (type == TYPE_MOFFS) {
2107 if (insn.
eaBase == EA_BASE_sib || insn.
eaBase == EA_BASE_sib64) {
2108 debug(
"A R/M register operand may not have a SIB byte");
2114 debug(
"Unexpected EA base register");
2117 debug(
"EA_BASE_NONE for ModR/M base");
2119#define ENTRY(x) case EA_BASE_##x:
2122 debug(
"A R/M register operand may not have a base; "
2123 "the operand must be a register.");
2127 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2146 bool ForceSIB =
false) {
2166 if (insn.
eaBase == EA_BASE_sib || insn.
eaBase == EA_BASE_sib64) {
2170 debug(
"Unexpected sibBase");
2173 case SIB_BASE_##x: \
2174 baseReg = MCOperand::createReg(X86::x); break;
2185 debug(
"Unexpected sibIndex");
2188 case SIB_INDEX_##x: \
2189 indexReg = MCOperand::createReg(X86::x); break;
2210 insn.
sibBase != SIB_BASE_R12D && insn.
sibBase != SIB_BASE_R12))) {
2222 debug(
"EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2259 debug(
"Unexpected eaBase");
2267 baseReg = MCOperand::createReg(X86::x); break;
2270#define ENTRY(x) case EA_REG_##x:
2273 debug(
"A R/M memory operand may not be a register; "
2274 "the base field must be a base.");
2311 switch (operand.
type) {
2313 debug(
"Unexpected type for a R/M operand");
2329 case TYPE_CONTROLREG:
2360 if (maskRegNum >= 8) {
2361 debug(
"Invalid mask register number");
2381 debug(
"Unhandled operand encoding during translation");
2386 case ENCODING_WRITEMASK:
2449 debug(
"Instruction has no specification");
2459 if(mcInst.
getOpcode() == X86::REP_PREFIX)
2461 else if(mcInst.
getOpcode() == X86::REPNE_PREFIX)
2468 if (
Op.encoding != ENCODING_NONE) {
2481 std::unique_ptr<const MCInstrInfo> MII(
T.createMCInstrInfo());
2482 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
static bool isBranch(unsigned Opcode)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static uint8_t readOpcode(WasmObjectFile::ReadContext &Ctx)
static int nextByte(ArrayRef< uint8_t > Bytes, uint64_t &Size)
static bool isPrefix(unsigned Opcode, const MCInstrInfo &MCII)
Check if the instruction is a prefix.
#define CASE_ENCODING_VSIB
#define THREEDNOW_MAP_SYM
#define rFromEVEX2of4(evex)
#define lFromEVEX4of4(evex)
#define l2FromEVEX4of4(evex)
#define rFromVEX2of3(vex)
#define zFromEVEX4of4(evex)
#define bFromXOP2of3(xop)
#define xFromVEX2of3(vex)
#define mmmmmFromVEX2of3(vex)
#define rmFromModRM(modRM)
#define bFromEVEX4of4(evex)
#define rFromVEX2of2(vex)
#define ppFromEVEX3of4(evex)
#define v2FromEVEX4of4(evex)
#define modFromModRM(modRM)
#define rFromXOP2of3(xop)
#define lFromXOP3of3(xop)
#define lFromVEX2of2(vex)
#define scFromEVEX4of4(evex)
#define scaleFromSIB(sib)
#define regFromModRM(modRM)
#define b2FromEVEX2of4(evex)
#define vvvvFromVEX2of2(vex)
#define nfFromEVEX4of4(evex)
#define ppFromXOP3of3(xop)
#define vvvvFromVEX3of3(vex)
#define r2FromEVEX2of4(evex)
#define uFromEVEX3of4(evex)
#define xFromXOP2of3(xop)
#define wFromEVEX3of4(evex)
#define bFromVEX2of3(vex)
#define wFromVEX3of3(vex)
#define mmmmmFromXOP2of3(xop)
#define aaaFromEVEX4of4(evex)
#define lFromVEX3of3(vex)
#define mmmFromEVEX2of4(evex)
#define ppFromVEX3of3(vex)
#define bFromEVEX2of4(evex)
#define xFromEVEX2of4(evex)
#define ppFromVEX2of2(vex)
#define indexFromSIB(sib)
#define vvvvFromXOP3of3(xop)
#define wFromXOP3of3(xop)
#define oszcFromEVEX3of4(evex)
#define vvvvFromEVEX3of4(evex)
static void translateRegister(MCInst &mcInst, Reg reg)
translateRegister - Translates an internal register to the appropriate LLVM register,...
static bool isREX2(struct InternalInstruction *insn, uint8_t prefix)
static int getInstructionID(struct InternalInstruction *insn, const MCInstrInfo *mii)
static bool readOpcode(struct InternalInstruction *insn)
static MCDisassembler * createX86Disassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx)
static bool translateMaskRegister(MCInst &mcInst, uint8_t maskRegNum)
translateMaskRegister - Translates a 3-bit mask register number to LLVM form, and appends it to an MC...
static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn)
translateDstIndex - Appends a destination index operand to an MCInst.
static void translateImmediate(MCInst &mcInst, uint64_t immediate, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateImmediate - Appends an immediate operand to an MCInst.
static int readOperands(struct InternalInstruction *insn)
static void translateFPRegister(MCInst &mcInst, uint8_t stackPos)
translateFPRegister - Translates a stack position on the FPU stack to its LLVM form,...
static bool is64Bit(const char *name)
static const uint8_t segmentRegnums[SEG_OVERRIDE_max]
static int readImmediate(struct InternalInstruction *insn, uint8_t size)
static int getInstructionIDWithAttrMask(uint16_t *instructionID, struct InternalInstruction *insn, uint16_t attrMask)
static int readSIB(struct InternalInstruction *insn)
static bool isREX(struct InternalInstruction *insn, uint8_t prefix)
static int readVVVV(struct InternalInstruction *insn)
static bool isNF(InternalInstruction *insn)
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn)
translateSrcIndex - Appends a source index operand to an MCInst.
#define GENERIC_FIXUP_FUNC(name, base, prefix)
static int readMaskRegister(struct InternalInstruction *insn)
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateRM - Translates an operand stored in the R/M (and possibly SIB) byte of an instruction to LL...
static InstrUID decode(OpcodeType type, InstructionContext insnContext, uint8_t opcode, uint8_t modRM)
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size)
static int readDisplacement(struct InternalInstruction *insn)
static bool isCCMPOrCTEST(InternalInstruction *insn)
LLVM_C_ABI void LLVMInitializeX86Disassembler()
static int fixupReg(struct InternalInstruction *insn, const struct OperandSpecifier *op)
static int readModRM(struct InternalInstruction *insn)
static bool is16BitEquivalent(const char *orig, const char *equiv)
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, const MCDisassembler *Dis, bool ForceSIB=false)
translateRMMemory - Translates a memory operand stored in the Mod and R/M fields of an internal instr...
static bool translateInstruction(MCInst &target, InternalInstruction &source, const MCDisassembler *Dis)
translateInstruction - Translates an internal instruction and all its operands to an MCInst.
static bool translateRMRegister(MCInst &mcInst, InternalInstruction &insn)
translateRMRegister - Translates a register stored in the R/M field of the ModR/M byte to its LLVM eq...
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateOperand - Translates an operand stored in an internal instruction to LLVM's format and appen...
static int readPrefixes(struct InternalInstruction *insn)
static bool peek(struct InternalInstruction *insn, uint8_t &byte)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This class represents an Operation in the Expression.
Container class for subtarget features.
Context object for machine code objects.
Superclass for all disassemblers.
bool tryAddingSymbolicOperand(MCInst &Inst, int64_t Value, uint64_t Address, bool IsBranch, uint64_t Offset, uint64_t OpSize, uint64_t InstSize) const
void tryAddingPcLoadReferenceComment(int64_t Value, uint64_t Address) const
DecodeStatus
Ternary decode status.
virtual DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size, ArrayRef< uint8_t > Bytes, uint64_t Address, raw_ostream &CStream) const =0
Returns the disassembly of a single instruction.
Instances of this class represent a single low-level machine instruction.
unsigned getOpcode() const
void addOperand(const MCOperand Op)
void setOpcode(unsigned Op)
Interface to description of machine instruction set.
StringRef getName(unsigned Opcode) const
Returns the name for the instructions with the given opcode.
Instances of this class represent operands of the MCInst class.
static MCOperand createReg(MCRegister Reg)
static MCOperand createImm(int64_t Val)
Generic base class for all target subtargets.
const FeatureBitset & getFeatureBits() const
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Target - Wrapper for Target specific information.
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ X86
Windows x64, Windows Itanium (IA-64)
EABase
All possible values of the base field for effective-address computations, a.k.a.
Reg
All possible values of the reg field in the ModR/M byte.
DisassemblerMode
Decoding mode for the Intel disassembler.
SIBBase
All possible values of the SIB base field.
SIBIndex
All possible values of the SIB index field.
NodeAddr< InstrNode * > Instr
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt mod(const DynamicAPInt &LHS, const DynamicAPInt &RHS)
is always non-negative.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Target & getTheX86_32Target()
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Target & getTheX86_64Target()
Implement std::hash so that hash_code can be used in STL containers.
OpcodeDecision opcodeDecisions[IC_max]
ModRMDecision modRMDecisions[256]
static void RegisterMCDisassembler(Target &T, Target::MCDisassemblerCtorTy Fn)
RegisterMCDisassembler - Register a MCDisassembler implementation for the given target.
The specification for how to extract and interpret a full instruction and its operands.
The x86 internal instruction, which is produced by the decoder.
ArrayRef< OperandSpecifier > operands
EADisplacement eaDisplacement
uint8_t rex2ExtensionPrefix[2]
uint8_t vectorExtensionPrefix[4]
SegmentOverride segmentOverride
uint8_t numImmediatesConsumed
llvm::ArrayRef< uint8_t > bytes
uint8_t numImmediatesTranslated
const InstructionSpecifier * spec
VectorExtensionType vectorExtensionType
uint8_t displacementOffset
The specification for how to extract and interpret one operand.