LLVM 20.0.0git
X86Disassembler.cpp
Go to the documentation of this file.
1//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is part of the X86 Disassembler.
10// It contains code to translate the data produced by the decoder into
11// MCInsts.
12//
13//
14// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15// 64-bit X86 instruction sets. The main decode sequence for an assembly
16// instruction in this disassembler is:
17//
18// 1. Read the prefix bytes and determine the attributes of the instruction.
19// These attributes, recorded in enum attributeBits
20// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
21// provides a mapping from bitmasks to contexts, which are represented by
22// enum InstructionContext (ibid.).
23//
24// 2. Read the opcode, and determine what kind of opcode it is. The
25// disassembler distinguishes four kinds of opcodes, which are enumerated in
26// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
29//
30// 3. Depending on the opcode type, look in one of four ClassDecision structures
31// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
32// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
33// a ModRMDecision (ibid.).
34//
35// 4. Some instructions, such as escape opcodes or extended opcodes, or even
36// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
38// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39// ModR/M byte is required and how to interpret it.
40//
41// 5. After resolving the ModRMDecision, the disassembler has a unique ID
42// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
43// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44// meanings of its operands.
45//
46// 6. For each operand, its encoding is an entry from OperandEncoding
47// (X86DisassemblerDecoderCommon.h) and its type is an entry from
48// OperandType (ibid.). The encoding indicates how to read it from the
49// instruction; the type indicates how to interpret the value once it has
50// been read. For example, a register operand could be stored in the R/M
51// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
53// register, for instance). Given this information, the operands can be
54// extracted and interpreted.
55//
56// 7. As the last step, the disassembler translates the instruction information
57// and operands into a format understandable by the client - in this case, an
58// MCInst for use by the MC infrastructure.
59//
60// The disassembler is broken broadly into two parts: the table emitter that
61// emits the instruction decode tables discussed above during compilation, and
62// the disassembler itself. The table emitter is documented in more detail in
63// utils/TableGen/X86DisassemblerEmitter.h.
64//
65// X86Disassembler.cpp contains the code responsible for step 7, and for
66// invoking the decoder to execute steps 1-6.
67// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68// table emitter and the disassembler.
69// X86DisassemblerDecoder.h contains the public interface of the decoder,
70// factored out into C for possible use by other projects.
71// X86DisassemblerDecoder.c contains the source code of the decoder, which is
72// responsible for steps 1-6.
73//
74//===----------------------------------------------------------------------===//
75
80#include "llvm/MC/MCContext.h"
82#include "llvm/MC/MCExpr.h"
83#include "llvm/MC/MCInst.h"
84#include "llvm/MC/MCInstrInfo.h"
87#include "llvm/Support/Debug.h"
88#include "llvm/Support/Format.h"
90
91using namespace llvm;
92using namespace llvm::X86Disassembler;
93
94#define DEBUG_TYPE "x86-disassembler"
95
96#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97
98// Specifies whether a ModR/M byte is needed and (if so) which
99// instruction each possible value of the ModR/M byte corresponds to. Once
100// this information is known, we have narrowed down to a single instruction.
104};
105
106// Specifies which set of ModR/M->instruction tables to look at
107// given a particular opcode.
110};
111
112// Specifies which opcode->instruction tables to look at given
113// a particular context (set of attributes). Since there are many possible
114// contexts, the decoder first uses CONTEXTS_SYM to determine which context
115// applies given a specific set of attributes. Hence there are only IC_max
116// entries in this table, rather than 2^(ATTR_max).
119};
120
121#include "X86GenDisassemblerTables.inc"
122
124 uint8_t opcode, uint8_t modRM) {
125 const struct ModRMDecision *dec;
126
127 switch (type) {
128 case ONEBYTE:
129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130 break;
131 case TWOBYTE:
132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133 break;
134 case THREEBYTE_38:
135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136 break;
137 case THREEBYTE_3A:
138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139 break;
140 case XOP8_MAP:
141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142 break;
143 case XOP9_MAP:
144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145 break;
146 case XOPA_MAP:
147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148 break;
149 case THREEDNOW_MAP:
150 dec =
151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152 break;
153 case MAP4:
154 dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155 break;
156 case MAP5:
157 dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158 break;
159 case MAP6:
160 dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161 break;
162 case MAP7:
163 dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
164 break;
165 }
166
167 switch (dec->modrm_type) {
168 default:
169 llvm_unreachable("Corrupt table! Unknown modrm_type");
170 return 0;
171 case MODRM_ONEENTRY:
172 return modRMTable[dec->instructionIDs];
173 case MODRM_SPLITRM:
174 if (modFromModRM(modRM) == 0x3)
175 return modRMTable[dec->instructionIDs + 1];
176 return modRMTable[dec->instructionIDs];
177 case MODRM_SPLITREG:
178 if (modFromModRM(modRM) == 0x3)
179 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
180 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
181 case MODRM_SPLITMISC:
182 if (modFromModRM(modRM) == 0x3)
183 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
184 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
185 case MODRM_FULL:
186 return modRMTable[dec->instructionIDs + modRM];
187 }
188}
189
190static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
191 uint64_t offset = insn->readerCursor - insn->startLocation;
192 if (offset >= insn->bytes.size())
193 return true;
194 byte = insn->bytes[offset];
195 return false;
196}
197
198template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
199 auto r = insn->bytes;
200 uint64_t offset = insn->readerCursor - insn->startLocation;
201 if (offset + sizeof(T) > r.size())
202 return true;
203 ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
204 insn->readerCursor += sizeof(T);
205 return false;
206}
207
208static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
209 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
210}
211
212static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
213 return insn->mode == MODE_64BIT && prefix == 0xd5;
214}
215
216// Consumes all of an instruction's prefix bytes, and marks the
217// instruction as having them. Also sets the instruction's default operand,
218// address, and other relevant data sizes to report operands correctly.
219//
220// insn must not be empty.
221static int readPrefixes(struct InternalInstruction *insn) {
222 bool isPrefix = true;
223 uint8_t byte = 0;
225
226 LLVM_DEBUG(dbgs() << "readPrefixes()");
227
228 while (isPrefix) {
229 // If we fail reading prefixes, just stop here and let the opcode reader
230 // deal with it.
231 if (consume(insn, byte))
232 break;
233
234 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
235 // break and let it be disassembled as a normal "instruction".
236 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
237 break;
238
239 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
240 // If the byte is 0xf2 or 0xf3, and any of the following conditions are
241 // met:
242 // - it is followed by a LOCK (0xf0) prefix
243 // - it is followed by an xchg instruction
244 // then it should be disassembled as a xacquire/xrelease not repne/rep.
245 if (((nextByte == 0xf0) ||
246 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
247 insn->xAcquireRelease = true;
248 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
249 break;
250 }
251 // Also if the byte is 0xf3, and the following condition is met:
252 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
253 // "mov mem, imm" (opcode 0xc6/0xc7) instructions.
254 // then it should be disassembled as an xrelease not rep.
255 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
256 nextByte == 0xc6 || nextByte == 0xc7)) {
257 insn->xAcquireRelease = true;
258 break;
259 }
260 if (isREX(insn, nextByte)) {
261 uint8_t nnextByte;
262 // Go to REX prefix after the current one
263 if (consume(insn, nnextByte))
264 return -1;
265 // We should be able to read next byte after REX prefix
266 if (peek(insn, nnextByte))
267 return -1;
268 --insn->readerCursor;
269 }
270 }
271
272 switch (byte) {
273 case 0xf0: // LOCK
274 insn->hasLockPrefix = true;
275 break;
276 case 0xf2: // REPNE/REPNZ
277 case 0xf3: { // REP or REPE/REPZ
279 if (peek(insn, nextByte))
280 break;
281 // TODO:
282 // 1. There could be several 0x66
283 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
284 // it's not mandatory prefix
285 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
286 // 0x0f exactly after it to be mandatory prefix
287 // 4. if (nextByte == 0xd5) it's REX2 and we need
288 // 0x0f exactly after it to be mandatory prefix
289 if (isREX(insn, nextByte) || isREX2(insn, nextByte) || nextByte == 0x0f ||
290 nextByte == 0x66)
291 // The last of 0xf2 /0xf3 is mandatory prefix
292 insn->mandatoryPrefix = byte;
293 insn->repeatPrefix = byte;
294 break;
295 }
296 case 0x2e: // CS segment override -OR- Branch not taken
298 break;
299 case 0x36: // SS segment override -OR- Branch taken
301 break;
302 case 0x3e: // DS segment override
304 break;
305 case 0x26: // ES segment override
307 break;
308 case 0x64: // FS segment override
310 break;
311 case 0x65: // GS segment override
313 break;
314 case 0x66: { // Operand-size override {
316 insn->hasOpSize = true;
317 if (peek(insn, nextByte))
318 break;
319 // 0x66 can't overwrite existing mandatory prefix and should be ignored
320 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
321 insn->mandatoryPrefix = byte;
322 break;
323 }
324 case 0x67: // Address-size override
325 insn->hasAdSize = true;
326 break;
327 default: // Not a prefix byte
328 isPrefix = false;
329 break;
330 }
331
332 if (isREX(insn, byte)) {
333 insn->rexPrefix = byte;
334 isPrefix = true;
335 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
336 } else if (isPrefix) {
337 insn->rexPrefix = 0;
338 }
339
340 if (isPrefix)
341 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
342 }
343
345
346 if (byte == 0x62) {
347 uint8_t byte1, byte2;
348 if (consume(insn, byte1)) {
349 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
350 return -1;
351 }
352
353 if (peek(insn, byte2)) {
354 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
355 return -1;
356 }
357
358 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
360 } else {
361 --insn->readerCursor; // unconsume byte1
362 --insn->readerCursor; // unconsume byte
363 }
364
365 if (insn->vectorExtensionType == TYPE_EVEX) {
366 insn->vectorExtensionPrefix[0] = byte;
367 insn->vectorExtensionPrefix[1] = byte1;
368 if (consume(insn, insn->vectorExtensionPrefix[2])) {
369 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
370 return -1;
371 }
372 if (consume(insn, insn->vectorExtensionPrefix[3])) {
373 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
374 return -1;
375 }
376
377 if (insn->mode == MODE_64BIT) {
378 // We simulate the REX prefix for simplicity's sake
379 insn->rexPrefix = 0x40 |
380 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
381 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
382 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
383 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
384
385 // We simulate the REX2 prefix for simplicity's sake
386 insn->rex2ExtensionPrefix[1] =
387 (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
388 (uFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
389 (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
390 }
391
393 dbgs() << format(
394 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
396 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
397 }
398 } else if (byte == 0xc4) {
399 uint8_t byte1;
400 if (peek(insn, byte1)) {
401 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
402 return -1;
403 }
404
405 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
407 else
408 --insn->readerCursor;
409
410 if (insn->vectorExtensionType == TYPE_VEX_3B) {
411 insn->vectorExtensionPrefix[0] = byte;
412 consume(insn, insn->vectorExtensionPrefix[1]);
413 consume(insn, insn->vectorExtensionPrefix[2]);
414
415 // We simulate the REX prefix for simplicity's sake
416
417 if (insn->mode == MODE_64BIT)
418 insn->rexPrefix = 0x40 |
419 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
420 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
421 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
422 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
423
424 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
425 insn->vectorExtensionPrefix[0],
426 insn->vectorExtensionPrefix[1],
427 insn->vectorExtensionPrefix[2]));
428 }
429 } else if (byte == 0xc5) {
430 uint8_t byte1;
431 if (peek(insn, byte1)) {
432 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
433 return -1;
434 }
435
436 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
438 else
439 --insn->readerCursor;
440
441 if (insn->vectorExtensionType == TYPE_VEX_2B) {
442 insn->vectorExtensionPrefix[0] = byte;
443 consume(insn, insn->vectorExtensionPrefix[1]);
444
445 if (insn->mode == MODE_64BIT)
446 insn->rexPrefix =
447 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
448
449 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
450 default:
451 break;
452 case VEX_PREFIX_66:
453 insn->hasOpSize = true;
454 break;
455 }
456
457 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
458 insn->vectorExtensionPrefix[0],
459 insn->vectorExtensionPrefix[1]));
460 }
461 } else if (byte == 0x8f) {
462 uint8_t byte1;
463 if (peek(insn, byte1)) {
464 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
465 return -1;
466 }
467
468 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
470 else
471 --insn->readerCursor;
472
473 if (insn->vectorExtensionType == TYPE_XOP) {
474 insn->vectorExtensionPrefix[0] = byte;
475 consume(insn, insn->vectorExtensionPrefix[1]);
476 consume(insn, insn->vectorExtensionPrefix[2]);
477
478 // We simulate the REX prefix for simplicity's sake
479
480 if (insn->mode == MODE_64BIT)
481 insn->rexPrefix = 0x40 |
482 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
483 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
484 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
485 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
486
487 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
488 default:
489 break;
490 case VEX_PREFIX_66:
491 insn->hasOpSize = true;
492 break;
493 }
494
495 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
496 insn->vectorExtensionPrefix[0],
497 insn->vectorExtensionPrefix[1],
498 insn->vectorExtensionPrefix[2]));
499 }
500 } else if (isREX2(insn, byte)) {
501 uint8_t byte1;
502 if (peek(insn, byte1)) {
503 LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
504 return -1;
505 }
506 insn->rex2ExtensionPrefix[0] = byte;
507 consume(insn, insn->rex2ExtensionPrefix[1]);
508
509 // We simulate the REX prefix for simplicity's sake
510 insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
511 (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
512 (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
513 (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
514 LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
515 insn->rex2ExtensionPrefix[0],
516 insn->rex2ExtensionPrefix[1]));
517 } else
518 --insn->readerCursor;
519
520 if (insn->mode == MODE_16BIT) {
521 insn->registerSize = (insn->hasOpSize ? 4 : 2);
522 insn->addressSize = (insn->hasAdSize ? 4 : 2);
523 insn->displacementSize = (insn->hasAdSize ? 4 : 2);
524 insn->immediateSize = (insn->hasOpSize ? 4 : 2);
525 } else if (insn->mode == MODE_32BIT) {
526 insn->registerSize = (insn->hasOpSize ? 2 : 4);
527 insn->addressSize = (insn->hasAdSize ? 2 : 4);
528 insn->displacementSize = (insn->hasAdSize ? 2 : 4);
529 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
530 } else if (insn->mode == MODE_64BIT) {
531 insn->displacementSize = 4;
532 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
533 insn->registerSize = 8;
534 insn->addressSize = (insn->hasAdSize ? 4 : 8);
535 insn->immediateSize = 4;
536 insn->hasOpSize = false;
537 } else {
538 insn->registerSize = (insn->hasOpSize ? 2 : 4);
539 insn->addressSize = (insn->hasAdSize ? 4 : 8);
540 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
541 }
542 }
543
544 return 0;
545}
546
547// Consumes the SIB byte to determine addressing information.
548static int readSIB(struct InternalInstruction *insn) {
549 SIBBase sibBaseBase = SIB_BASE_NONE;
550 uint8_t index, base;
551
552 LLVM_DEBUG(dbgs() << "readSIB()");
553 switch (insn->addressSize) {
554 case 2:
555 default:
556 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
557 case 4:
558 insn->sibIndexBase = SIB_INDEX_EAX;
559 sibBaseBase = SIB_BASE_EAX;
560 break;
561 case 8:
562 insn->sibIndexBase = SIB_INDEX_RAX;
563 sibBaseBase = SIB_BASE_RAX;
564 break;
565 }
566
567 if (consume(insn, insn->sib))
568 return -1;
569
570 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
571 (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
572
573 if (index == 0x4) {
574 insn->sibIndex = SIB_INDEX_NONE;
575 } else {
576 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
577 }
578
579 insn->sibScale = 1 << scaleFromSIB(insn->sib);
580
581 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
582 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
583
584 switch (base) {
585 case 0x5:
586 case 0xd:
587 switch (modFromModRM(insn->modRM)) {
588 case 0x0:
590 insn->sibBase = SIB_BASE_NONE;
591 break;
592 case 0x1:
594 insn->sibBase = (SIBBase)(sibBaseBase + base);
595 break;
596 case 0x2:
598 insn->sibBase = (SIBBase)(sibBaseBase + base);
599 break;
600 default:
601 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
602 }
603 break;
604 default:
605 insn->sibBase = (SIBBase)(sibBaseBase + base);
606 break;
607 }
608
609 return 0;
610}
611
612static int readDisplacement(struct InternalInstruction *insn) {
613 int8_t d8;
614 int16_t d16;
615 int32_t d32;
616 LLVM_DEBUG(dbgs() << "readDisplacement()");
617
618 insn->displacementOffset = insn->readerCursor - insn->startLocation;
619 switch (insn->eaDisplacement) {
620 case EA_DISP_NONE:
621 break;
622 case EA_DISP_8:
623 if (consume(insn, d8))
624 return -1;
625 insn->displacement = d8;
626 break;
627 case EA_DISP_16:
628 if (consume(insn, d16))
629 return -1;
630 insn->displacement = d16;
631 break;
632 case EA_DISP_32:
633 if (consume(insn, d32))
634 return -1;
635 insn->displacement = d32;
636 break;
637 }
638
639 return 0;
640}
641
642// Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
643static int readModRM(struct InternalInstruction *insn) {
644 uint8_t mod, rm, reg;
645 LLVM_DEBUG(dbgs() << "readModRM()");
646
647 if (insn->consumedModRM)
648 return 0;
649
650 if (consume(insn, insn->modRM))
651 return -1;
652 insn->consumedModRM = true;
653
654 mod = modFromModRM(insn->modRM);
655 rm = rmFromModRM(insn->modRM);
656 reg = regFromModRM(insn->modRM);
657
658 // This goes by insn->registerSize to pick the correct register, which messes
659 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
660 // fixupReg().
661 switch (insn->registerSize) {
662 case 2:
663 insn->regBase = MODRM_REG_AX;
664 insn->eaRegBase = EA_REG_AX;
665 break;
666 case 4:
667 insn->regBase = MODRM_REG_EAX;
668 insn->eaRegBase = EA_REG_EAX;
669 break;
670 case 8:
671 insn->regBase = MODRM_REG_RAX;
672 insn->eaRegBase = EA_REG_RAX;
673 break;
674 }
675
676 reg |= (rFromREX(insn->rexPrefix) << 3) |
677 (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
678 rm |= (bFromREX(insn->rexPrefix) << 3) |
679 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
680
681 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
682 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
683
684 insn->reg = (Reg)(insn->regBase + reg);
685
686 switch (insn->addressSize) {
687 case 2: {
688 EABase eaBaseBase = EA_BASE_BX_SI;
689
690 switch (mod) {
691 case 0x0:
692 if (rm == 0x6) {
693 insn->eaBase = EA_BASE_NONE;
695 if (readDisplacement(insn))
696 return -1;
697 } else {
698 insn->eaBase = (EABase)(eaBaseBase + rm);
700 }
701 break;
702 case 0x1:
703 insn->eaBase = (EABase)(eaBaseBase + rm);
705 insn->displacementSize = 1;
706 if (readDisplacement(insn))
707 return -1;
708 break;
709 case 0x2:
710 insn->eaBase = (EABase)(eaBaseBase + rm);
712 if (readDisplacement(insn))
713 return -1;
714 break;
715 case 0x3:
716 insn->eaBase = (EABase)(insn->eaRegBase + rm);
717 if (readDisplacement(insn))
718 return -1;
719 break;
720 }
721 break;
722 }
723 case 4:
724 case 8: {
725 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
726
727 switch (mod) {
728 case 0x0:
729 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
730 // In determining whether RIP-relative mode is used (rm=5),
731 // or whether a SIB byte is present (rm=4),
732 // the extension bits (REX.b and EVEX.x) are ignored.
733 switch (rm & 7) {
734 case 0x4: // SIB byte is present
735 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
736 if (readSIB(insn) || readDisplacement(insn))
737 return -1;
738 break;
739 case 0x5: // RIP-relative
740 insn->eaBase = EA_BASE_NONE;
742 if (readDisplacement(insn))
743 return -1;
744 break;
745 default:
746 insn->eaBase = (EABase)(eaBaseBase + rm);
747 break;
748 }
749 break;
750 case 0x1:
751 insn->displacementSize = 1;
752 [[fallthrough]];
753 case 0x2:
754 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
755 switch (rm & 7) {
756 case 0x4: // SIB byte is present
757 insn->eaBase = EA_BASE_sib;
758 if (readSIB(insn) || readDisplacement(insn))
759 return -1;
760 break;
761 default:
762 insn->eaBase = (EABase)(eaBaseBase + rm);
763 if (readDisplacement(insn))
764 return -1;
765 break;
766 }
767 break;
768 case 0x3:
770 insn->eaBase = (EABase)(insn->eaRegBase + rm);
771 break;
772 }
773 break;
774 }
775 } // switch (insn->addressSize)
776
777 return 0;
778}
779
780#define GENERIC_FIXUP_FUNC(name, base, prefix) \
781 static uint16_t name(struct InternalInstruction *insn, OperandType type, \
782 uint8_t index, uint8_t *valid) { \
783 *valid = 1; \
784 switch (type) { \
785 default: \
786 debug("Unhandled register type"); \
787 *valid = 0; \
788 return 0; \
789 case TYPE_Rv: \
790 return base + index; \
791 case TYPE_R8: \
792 if (insn->rexPrefix && index >= 4 && index <= 7) \
793 return prefix##_SPL + (index - 4); \
794 else \
795 return prefix##_AL + index; \
796 case TYPE_R16: \
797 return prefix##_AX + index; \
798 case TYPE_R32: \
799 return prefix##_EAX + index; \
800 case TYPE_R64: \
801 return prefix##_RAX + index; \
802 case TYPE_ZMM: \
803 return prefix##_ZMM0 + index; \
804 case TYPE_YMM: \
805 return prefix##_YMM0 + index; \
806 case TYPE_XMM: \
807 return prefix##_XMM0 + index; \
808 case TYPE_TMM: \
809 if (index > 7) \
810 *valid = 0; \
811 return prefix##_TMM0 + index; \
812 case TYPE_TMM_PAIR: \
813 if (index > 7) \
814 *valid = 0; \
815 return prefix##_TMM0_TMM1 + (index / 2); \
816 case TYPE_VK: \
817 index &= 0xf; \
818 if (index > 7) \
819 *valid = 0; \
820 return prefix##_K0 + index; \
821 case TYPE_VK_PAIR: \
822 if (index > 7) \
823 *valid = 0; \
824 return prefix##_K0_K1 + (index / 2); \
825 case TYPE_MM64: \
826 return prefix##_MM0 + (index & 0x7); \
827 case TYPE_SEGMENTREG: \
828 if ((index & 7) > 5) \
829 *valid = 0; \
830 return prefix##_ES + (index & 7); \
831 case TYPE_DEBUGREG: \
832 if (index > 15) \
833 *valid = 0; \
834 return prefix##_DR0 + index; \
835 case TYPE_CONTROLREG: \
836 if (index > 15) \
837 *valid = 0; \
838 return prefix##_CR0 + index; \
839 case TYPE_MVSIBX: \
840 return prefix##_XMM0 + index; \
841 case TYPE_MVSIBY: \
842 return prefix##_YMM0 + index; \
843 case TYPE_MVSIBZ: \
844 return prefix##_ZMM0 + index; \
845 } \
846 }
847
848// Consult an operand type to determine the meaning of the reg or R/M field. If
849// the operand is an XMM operand, for example, an operand would be XMM0 instead
850// of AX, which readModRM() would otherwise misinterpret it as.
851//
852// @param insn - The instruction containing the operand.
853// @param type - The operand type.
854// @param index - The existing value of the field as reported by readModRM().
855// @param valid - The address of a uint8_t. The target is set to 1 if the
856// field is valid for the register class; 0 if not.
857// @return - The proper value.
858GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
859GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
860
861// Consult an operand specifier to determine which of the fixup*Value functions
862// to use in correcting readModRM()'ss interpretation.
863//
864// @param insn - See fixup*Value().
865// @param op - The operand specifier.
866// @return - 0 if fixup was successful; -1 if the register returned was
867// invalid for its class.
868static int fixupReg(struct InternalInstruction *insn,
869 const struct OperandSpecifier *op) {
870 uint8_t valid;
871 LLVM_DEBUG(dbgs() << "fixupReg()");
872
873 switch ((OperandEncoding)op->encoding) {
874 default:
875 debug("Expected a REG or R/M encoding in fixupReg");
876 return -1;
877 case ENCODING_VVVV:
878 insn->vvvv =
879 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
880 if (!valid)
881 return -1;
882 break;
883 case ENCODING_REG:
884 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
885 insn->reg - insn->regBase, &valid);
886 if (!valid)
887 return -1;
888 break;
890 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
891 modFromModRM(insn->modRM) == 3) {
892 // EVEX_X can extend the register id to 32 for a non-GPR register that is
893 // encoded in RM.
894 // mode : MODE_64_BIT
895 // Only 8 vector registers are available in 32 bit mode
896 // mod : 3
897 // RM encodes a register
898 switch (op->type) {
899 case TYPE_Rv:
900 case TYPE_R8:
901 case TYPE_R16:
902 case TYPE_R32:
903 case TYPE_R64:
904 break;
905 default:
906 insn->eaBase =
907 (EABase)(insn->eaBase +
908 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
909 break;
910 }
911 }
912 [[fallthrough]];
913 case ENCODING_SIB:
914 if (insn->eaBase >= insn->eaRegBase) {
915 insn->eaBase = (EABase)fixupRMValue(
916 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
917 if (!valid)
918 return -1;
919 }
920 break;
921 }
922
923 return 0;
924}
925
926// Read the opcode (except the ModR/M byte in the case of extended or escape
927// opcodes).
928static bool readOpcode(struct InternalInstruction *insn) {
929 uint8_t current;
930 LLVM_DEBUG(dbgs() << "readOpcode()");
931
932 insn->opcodeType = ONEBYTE;
933 if (insn->vectorExtensionType == TYPE_EVEX) {
934 switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
935 default:
937 dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
939 return true;
940 case VEX_LOB_0F:
941 insn->opcodeType = TWOBYTE;
942 return consume(insn, insn->opcode);
943 case VEX_LOB_0F38:
944 insn->opcodeType = THREEBYTE_38;
945 return consume(insn, insn->opcode);
946 case VEX_LOB_0F3A:
947 insn->opcodeType = THREEBYTE_3A;
948 return consume(insn, insn->opcode);
949 case VEX_LOB_MAP4:
950 insn->opcodeType = MAP4;
951 return consume(insn, insn->opcode);
952 case VEX_LOB_MAP5:
953 insn->opcodeType = MAP5;
954 return consume(insn, insn->opcode);
955 case VEX_LOB_MAP6:
956 insn->opcodeType = MAP6;
957 return consume(insn, insn->opcode);
958 case VEX_LOB_MAP7:
959 insn->opcodeType = MAP7;
960 return consume(insn, insn->opcode);
961 }
962 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
963 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
964 default:
966 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
968 return true;
969 case VEX_LOB_0F:
970 insn->opcodeType = TWOBYTE;
971 return consume(insn, insn->opcode);
972 case VEX_LOB_0F38:
973 insn->opcodeType = THREEBYTE_38;
974 return consume(insn, insn->opcode);
975 case VEX_LOB_0F3A:
976 insn->opcodeType = THREEBYTE_3A;
977 return consume(insn, insn->opcode);
978 case VEX_LOB_MAP5:
979 insn->opcodeType = MAP5;
980 return consume(insn, insn->opcode);
981 case VEX_LOB_MAP6:
982 insn->opcodeType = MAP6;
983 return consume(insn, insn->opcode);
984 case VEX_LOB_MAP7:
985 insn->opcodeType = MAP7;
986 return consume(insn, insn->opcode);
987 }
988 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
989 insn->opcodeType = TWOBYTE;
990 return consume(insn, insn->opcode);
991 } else if (insn->vectorExtensionType == TYPE_XOP) {
992 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
993 default:
995 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
997 return true;
998 case XOP_MAP_SELECT_8:
999 insn->opcodeType = XOP8_MAP;
1000 return consume(insn, insn->opcode);
1001 case XOP_MAP_SELECT_9:
1002 insn->opcodeType = XOP9_MAP;
1003 return consume(insn, insn->opcode);
1004 case XOP_MAP_SELECT_A:
1005 insn->opcodeType = XOPA_MAP;
1006 return consume(insn, insn->opcode);
1007 }
1008 } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
1009 // m bit indicates opcode map 1
1010 insn->opcodeType = TWOBYTE;
1011 return consume(insn, insn->opcode);
1012 }
1013
1014 if (consume(insn, current))
1015 return true;
1016
1017 if (current == 0x0f) {
1018 LLVM_DEBUG(
1019 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
1020 if (consume(insn, current))
1021 return true;
1022
1023 if (current == 0x38) {
1024 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1025 current));
1026 if (consume(insn, current))
1027 return true;
1028
1029 insn->opcodeType = THREEBYTE_38;
1030 } else if (current == 0x3a) {
1031 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1032 current));
1033 if (consume(insn, current))
1034 return true;
1035
1036 insn->opcodeType = THREEBYTE_3A;
1037 } else if (current == 0x0f) {
1038 LLVM_DEBUG(
1039 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
1040
1041 // Consume operands before the opcode to comply with the 3DNow encoding
1042 if (readModRM(insn))
1043 return true;
1044
1045 if (consume(insn, current))
1046 return true;
1047
1048 insn->opcodeType = THREEDNOW_MAP;
1049 } else {
1050 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
1051 insn->opcodeType = TWOBYTE;
1052 }
1053 } else if (insn->mandatoryPrefix)
1054 // The opcode with mandatory prefix must start with opcode escape.
1055 // If not it's legacy repeat prefix
1056 insn->mandatoryPrefix = 0;
1057
1058 // At this point we have consumed the full opcode.
1059 // Anything we consume from here on must be unconsumed.
1060 insn->opcode = current;
1061
1062 return false;
1063}
1064
1065// Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1066static bool is16BitEquivalent(const char *orig, const char *equiv) {
1067 for (int i = 0;; i++) {
1068 if (orig[i] == '\0' && equiv[i] == '\0')
1069 return true;
1070 if (orig[i] == '\0' || equiv[i] == '\0')
1071 return false;
1072 if (orig[i] != equiv[i]) {
1073 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1074 continue;
1075 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1076 continue;
1077 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1078 continue;
1079 return false;
1080 }
1081 }
1082}
1083
1084// Determine whether this instruction is a 64-bit instruction.
1085static bool is64Bit(const char *name) {
1086 for (int i = 0;; ++i) {
1087 if (name[i] == '\0')
1088 return false;
1089 if (name[i] == '6' && name[i + 1] == '4')
1090 return true;
1091 }
1092}
1093
1094// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1095// for extended and escape opcodes, and using a supplied attribute mask.
1096static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1097 struct InternalInstruction *insn,
1098 uint16_t attrMask) {
1099 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1100 const ContextDecision *decision;
1101 switch (insn->opcodeType) {
1102 case ONEBYTE:
1103 decision = &ONEBYTE_SYM;
1104 break;
1105 case TWOBYTE:
1106 decision = &TWOBYTE_SYM;
1107 break;
1108 case THREEBYTE_38:
1109 decision = &THREEBYTE38_SYM;
1110 break;
1111 case THREEBYTE_3A:
1112 decision = &THREEBYTE3A_SYM;
1113 break;
1114 case XOP8_MAP:
1115 decision = &XOP8_MAP_SYM;
1116 break;
1117 case XOP9_MAP:
1118 decision = &XOP9_MAP_SYM;
1119 break;
1120 case XOPA_MAP:
1121 decision = &XOPA_MAP_SYM;
1122 break;
1123 case THREEDNOW_MAP:
1124 decision = &THREEDNOW_MAP_SYM;
1125 break;
1126 case MAP4:
1127 decision = &MAP4_SYM;
1128 break;
1129 case MAP5:
1130 decision = &MAP5_SYM;
1131 break;
1132 case MAP6:
1133 decision = &MAP6_SYM;
1134 break;
1135 case MAP7:
1136 decision = &MAP7_SYM;
1137 break;
1138 }
1139
1140 if (decision->opcodeDecisions[insnCtx]
1141 .modRMDecisions[insn->opcode]
1142 .modrm_type != MODRM_ONEENTRY) {
1143 if (readModRM(insn))
1144 return -1;
1145 *instructionID =
1146 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1147 } else {
1148 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1149 }
1150
1151 return 0;
1152}
1153
1155 if (insn->opcodeType != MAP4)
1156 return false;
1157 if (insn->opcode == 0x83 && regFromModRM(insn->modRM) == 7)
1158 return true;
1159 switch (insn->opcode & 0xfe) {
1160 default:
1161 return false;
1162 case 0x38:
1163 case 0x3a:
1164 case 0x84:
1165 return true;
1166 case 0x80:
1167 return regFromModRM(insn->modRM) == 7;
1168 case 0xf6:
1169 return regFromModRM(insn->modRM) == 0;
1170 }
1171}
1172
1173static bool isNF(InternalInstruction *insn) {
1175 return false;
1176 if (insn->opcodeType == MAP4)
1177 return true;
1178 // Below NF instructions are not in map4.
1179 if (insn->opcodeType == THREEBYTE_38 &&
1181 switch (insn->opcode) {
1182 case 0xf2: // ANDN
1183 case 0xf3: // BLSI, BLSR, BLSMSK
1184 case 0xf5: // BZHI
1185 case 0xf7: // BEXTR
1186 return true;
1187 default:
1188 break;
1189 }
1190 }
1191 return false;
1192}
1193
1194// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1195// for extended and escape opcodes. Determines the attributes and context for
1196// the instruction before doing so.
1198 const MCInstrInfo *mii) {
1199 uint16_t attrMask;
1200 uint16_t instructionID;
1201
1202 LLVM_DEBUG(dbgs() << "getID()");
1203
1204 attrMask = ATTR_NONE;
1205
1206 if (insn->mode == MODE_64BIT)
1207 attrMask |= ATTR_64BIT;
1208
1209 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1210 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1211
1212 if (insn->vectorExtensionType == TYPE_EVEX) {
1213 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1214 case VEX_PREFIX_66:
1215 attrMask |= ATTR_OPSIZE;
1216 break;
1217 case VEX_PREFIX_F3:
1218 attrMask |= ATTR_XS;
1219 break;
1220 case VEX_PREFIX_F2:
1221 attrMask |= ATTR_XD;
1222 break;
1223 }
1224
1226 attrMask |= ATTR_EVEXKZ;
1227 if (isNF(insn) && !readModRM(insn) &&
1228 !isCCMPOrCTEST(insn)) // NF bit is the MSB of aaa.
1229 attrMask |= ATTR_EVEXNF;
1230 // aaa is not used a opmask in MAP4
1231 else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]) &&
1232 (insn->opcodeType != MAP4))
1233 attrMask |= ATTR_EVEXK;
1234 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) {
1235 attrMask |= ATTR_EVEXB;
1236 if (uFromEVEX3of4(insn->vectorExtensionPrefix[2]) && !readModRM(insn) &&
1237 modFromModRM(insn->modRM) == 3)
1238 attrMask |= ATTR_EVEXU;
1239 }
1241 attrMask |= ATTR_VEXL;
1243 attrMask |= ATTR_EVEXL2;
1244 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1245 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1246 case VEX_PREFIX_66:
1247 attrMask |= ATTR_OPSIZE;
1248 break;
1249 case VEX_PREFIX_F3:
1250 attrMask |= ATTR_XS;
1251 break;
1252 case VEX_PREFIX_F2:
1253 attrMask |= ATTR_XD;
1254 break;
1255 }
1256
1257 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1258 attrMask |= ATTR_VEXL;
1259 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1260 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1261 case VEX_PREFIX_66:
1262 attrMask |= ATTR_OPSIZE;
1263 if (insn->hasAdSize)
1264 attrMask |= ATTR_ADSIZE;
1265 break;
1266 case VEX_PREFIX_F3:
1267 attrMask |= ATTR_XS;
1268 break;
1269 case VEX_PREFIX_F2:
1270 attrMask |= ATTR_XD;
1271 break;
1272 }
1273
1274 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1275 attrMask |= ATTR_VEXL;
1276 } else if (insn->vectorExtensionType == TYPE_XOP) {
1277 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1278 case VEX_PREFIX_66:
1279 attrMask |= ATTR_OPSIZE;
1280 break;
1281 case VEX_PREFIX_F3:
1282 attrMask |= ATTR_XS;
1283 break;
1284 case VEX_PREFIX_F2:
1285 attrMask |= ATTR_XD;
1286 break;
1287 }
1288
1289 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1290 attrMask |= ATTR_VEXL;
1291 } else {
1292 return -1;
1293 }
1294 } else if (!insn->mandatoryPrefix) {
1295 // If we don't have mandatory prefix we should use legacy prefixes here
1296 if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1297 attrMask |= ATTR_OPSIZE;
1298 if (insn->hasAdSize)
1299 attrMask |= ATTR_ADSIZE;
1300 if (insn->opcodeType == ONEBYTE) {
1301 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1302 // Special support for PAUSE
1303 attrMask |= ATTR_XS;
1304 } else {
1305 if (insn->repeatPrefix == 0xf2)
1306 attrMask |= ATTR_XD;
1307 else if (insn->repeatPrefix == 0xf3)
1308 attrMask |= ATTR_XS;
1309 }
1310 } else {
1311 switch (insn->mandatoryPrefix) {
1312 case 0xf2:
1313 attrMask |= ATTR_XD;
1314 break;
1315 case 0xf3:
1316 attrMask |= ATTR_XS;
1317 break;
1318 case 0x66:
1319 if (insn->mode != MODE_16BIT)
1320 attrMask |= ATTR_OPSIZE;
1321 if (insn->hasAdSize)
1322 attrMask |= ATTR_ADSIZE;
1323 break;
1324 case 0x67:
1325 attrMask |= ATTR_ADSIZE;
1326 break;
1327 }
1328 }
1329
1330 if (insn->rexPrefix & 0x08) {
1331 attrMask |= ATTR_REXW;
1332 attrMask &= ~ATTR_ADSIZE;
1333 }
1334
1335 // Absolute jump and pushp/popp need special handling
1336 if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
1337 (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
1338 attrMask |= ATTR_REX2;
1339
1340 if (insn->mode == MODE_16BIT) {
1341 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1342 // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1343 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1344 attrMask ^= ATTR_ADSIZE;
1345 // If we're in 16-bit mode and this is one of the relative jumps and opsize
1346 // prefix isn't present, we need to force the opsize attribute since the
1347 // prefix is inverted relative to 32-bit mode.
1348 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1349 (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1350 attrMask |= ATTR_OPSIZE;
1351
1352 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1353 insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1354 attrMask |= ATTR_OPSIZE;
1355 }
1356
1357
1358 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1359 return -1;
1360
1361 // The following clauses compensate for limitations of the tables.
1362
1363 if (insn->mode != MODE_64BIT &&
1365 // The tables can't distinquish between cases where the W-bit is used to
1366 // select register size and cases where its a required part of the opcode.
1367 if ((insn->vectorExtensionType == TYPE_EVEX &&
1369 (insn->vectorExtensionType == TYPE_VEX_3B &&
1371 (insn->vectorExtensionType == TYPE_XOP &&
1373
1374 uint16_t instructionIDWithREXW;
1375 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1376 attrMask | ATTR_REXW)) {
1377 insn->instructionID = instructionID;
1378 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1379 return 0;
1380 }
1381
1382 auto SpecName = mii->getName(instructionIDWithREXW);
1383 // If not a 64-bit instruction. Switch the opcode.
1384 if (!is64Bit(SpecName.data())) {
1385 insn->instructionID = instructionIDWithREXW;
1386 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1387 return 0;
1388 }
1389 }
1390 }
1391
1392 // Absolute moves, umonitor, and movdir64b need special handling.
1393 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1394 // inverted w.r.t.
1395 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1396 // any position.
1397 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1398 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1399 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
1400 (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
1401 // Make sure we observed the prefixes in any position.
1402 if (insn->hasAdSize)
1403 attrMask |= ATTR_ADSIZE;
1404 if (insn->hasOpSize)
1405 attrMask |= ATTR_OPSIZE;
1406
1407 // In 16-bit, invert the attributes.
1408 if (insn->mode == MODE_16BIT) {
1409 attrMask ^= ATTR_ADSIZE;
1410
1411 // The OpSize attribute is only valid with the absolute moves.
1412 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1413 attrMask ^= ATTR_OPSIZE;
1414 }
1415
1416 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1417 return -1;
1418
1419 insn->instructionID = instructionID;
1420 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1421 return 0;
1422 }
1423
1424 if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1425 !(attrMask & ATTR_OPSIZE)) {
1426 // The instruction tables make no distinction between instructions that
1427 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1428 // particular spot (i.e., many MMX operations). In general we're
1429 // conservative, but in the specific case where OpSize is present but not in
1430 // the right place we check if there's a 16-bit operation.
1431 const struct InstructionSpecifier *spec;
1432 uint16_t instructionIDWithOpsize;
1433 llvm::StringRef specName, specWithOpSizeName;
1434
1435 spec = &INSTRUCTIONS_SYM[instructionID];
1436
1437 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1438 attrMask | ATTR_OPSIZE)) {
1439 // ModRM required with OpSize but not present. Give up and return the
1440 // version without OpSize set.
1441 insn->instructionID = instructionID;
1442 insn->spec = spec;
1443 return 0;
1444 }
1445
1446 specName = mii->getName(instructionID);
1447 specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1448
1449 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1450 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1451 insn->instructionID = instructionIDWithOpsize;
1452 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1453 } else {
1454 insn->instructionID = instructionID;
1455 insn->spec = spec;
1456 }
1457 return 0;
1458 }
1459
1460 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1461 insn->rexPrefix & 0x01) {
1462 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1463 // as XCHG %r8, %eax.
1464 const struct InstructionSpecifier *spec;
1465 uint16_t instructionIDWithNewOpcode;
1466 const struct InstructionSpecifier *specWithNewOpcode;
1467
1468 spec = &INSTRUCTIONS_SYM[instructionID];
1469
1470 // Borrow opcode from one of the other XCHGar opcodes
1471 insn->opcode = 0x91;
1472
1473 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1474 attrMask)) {
1475 insn->opcode = 0x90;
1476
1477 insn->instructionID = instructionID;
1478 insn->spec = spec;
1479 return 0;
1480 }
1481
1482 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1483
1484 // Change back
1485 insn->opcode = 0x90;
1486
1487 insn->instructionID = instructionIDWithNewOpcode;
1488 insn->spec = specWithNewOpcode;
1489
1490 return 0;
1491 }
1492
1493 insn->instructionID = instructionID;
1494 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1495
1496 return 0;
1497}
1498
1499// Read an operand from the opcode field of an instruction and interprets it
1500// appropriately given the operand width. Handles AddRegFrm instructions.
1501//
1502// @param insn - the instruction whose opcode field is to be read.
1503// @param size - The width (in bytes) of the register being specified.
1504// 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1505// RAX.
1506// @return - 0 on success; nonzero otherwise.
1507static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1508 LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1509
1510 if (size == 0)
1511 size = insn->registerSize;
1512
1513 auto setOpcodeRegister = [&](unsigned base) {
1514 insn->opcodeRegister =
1515 (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
1516 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
1517 (insn->opcode & 7)));
1518 };
1519
1520 switch (size) {
1521 case 1:
1522 setOpcodeRegister(MODRM_REG_AL);
1523 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1524 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1525 insn->opcodeRegister =
1526 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1527 }
1528
1529 break;
1530 case 2:
1531 setOpcodeRegister(MODRM_REG_AX);
1532 break;
1533 case 4:
1534 setOpcodeRegister(MODRM_REG_EAX);
1535 break;
1536 case 8:
1537 setOpcodeRegister(MODRM_REG_RAX);
1538 break;
1539 }
1540
1541 return 0;
1542}
1543
1544// Consume an immediate operand from an instruction, given the desired operand
1545// size.
1546//
1547// @param insn - The instruction whose operand is to be read.
1548// @param size - The width (in bytes) of the operand.
1549// @return - 0 if the immediate was successfully consumed; nonzero
1550// otherwise.
1551static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1552 uint8_t imm8;
1553 uint16_t imm16;
1554 uint32_t imm32;
1555 uint64_t imm64;
1556
1557 LLVM_DEBUG(dbgs() << "readImmediate()");
1558
1559 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1560
1561 insn->immediateSize = size;
1562 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1563
1564 switch (size) {
1565 case 1:
1566 if (consume(insn, imm8))
1567 return -1;
1568 insn->immediates[insn->numImmediatesConsumed] = imm8;
1569 break;
1570 case 2:
1571 if (consume(insn, imm16))
1572 return -1;
1573 insn->immediates[insn->numImmediatesConsumed] = imm16;
1574 break;
1575 case 4:
1576 if (consume(insn, imm32))
1577 return -1;
1578 insn->immediates[insn->numImmediatesConsumed] = imm32;
1579 break;
1580 case 8:
1581 if (consume(insn, imm64))
1582 return -1;
1583 insn->immediates[insn->numImmediatesConsumed] = imm64;
1584 break;
1585 default:
1586 llvm_unreachable("invalid size");
1587 }
1588
1589 insn->numImmediatesConsumed++;
1590
1591 return 0;
1592}
1593
1594// Consume vvvv from an instruction if it has a VEX prefix.
1595static int readVVVV(struct InternalInstruction *insn) {
1596 LLVM_DEBUG(dbgs() << "readVVVV()");
1597
1598 int vvvv;
1599 if (insn->vectorExtensionType == TYPE_EVEX)
1600 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1602 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1603 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1604 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1605 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1606 else if (insn->vectorExtensionType == TYPE_XOP)
1607 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1608 else
1609 return -1;
1610
1611 if (insn->mode != MODE_64BIT)
1612 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1613
1614 insn->vvvv = static_cast<Reg>(vvvv);
1615 return 0;
1616}
1617
1618// Read an mask register from the opcode field of an instruction.
1619//
1620// @param insn - The instruction whose opcode field is to be read.
1621// @return - 0 on success; nonzero otherwise.
1622static int readMaskRegister(struct InternalInstruction *insn) {
1623 LLVM_DEBUG(dbgs() << "readMaskRegister()");
1624
1625 if (insn->vectorExtensionType != TYPE_EVEX)
1626 return -1;
1627
1628 insn->writemask =
1629 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1630 return 0;
1631}
1632
1633// Consults the specifier for an instruction and consumes all
1634// operands for that instruction, interpreting them as it goes.
1635static int readOperands(struct InternalInstruction *insn) {
1636 int hasVVVV, needVVVV;
1637 int sawRegImm = 0;
1638
1639 LLVM_DEBUG(dbgs() << "readOperands()");
1640
1641 // If non-zero vvvv specified, make sure one of the operands uses it.
1642 hasVVVV = !readVVVV(insn);
1643 needVVVV = hasVVVV && (insn->vvvv != 0);
1644
1645 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1646 switch (Op.encoding) {
1647 case ENCODING_NONE:
1648 case ENCODING_SI:
1649 case ENCODING_DI:
1650 break;
1652 // VSIB can use the V2 bit so check only the other bits.
1653 if (needVVVV)
1654 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1655 if (readModRM(insn))
1656 return -1;
1657
1658 // Reject if SIB wasn't used.
1659 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1660 return -1;
1661
1662 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1663 if (insn->sibIndex == SIB_INDEX_NONE)
1664 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1665
1666 // If EVEX.v2 is set this is one of the 16-31 registers.
1667 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1669 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1670
1671 // Adjust the index register to the correct size.
1672 switch ((OperandType)Op.type) {
1673 default:
1674 debug("Unhandled VSIB index type");
1675 return -1;
1676 case TYPE_MVSIBX:
1677 insn->sibIndex =
1678 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1679 break;
1680 case TYPE_MVSIBY:
1681 insn->sibIndex =
1682 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1683 break;
1684 case TYPE_MVSIBZ:
1685 insn->sibIndex =
1686 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1687 break;
1688 }
1689
1690 // Apply the AVX512 compressed displacement scaling factor.
1691 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1692 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1693 break;
1694 case ENCODING_SIB:
1695 // Reject if SIB wasn't used.
1696 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1697 return -1;
1698 if (readModRM(insn))
1699 return -1;
1700 if (fixupReg(insn, &Op))
1701 return -1;
1702 break;
1703 case ENCODING_REG:
1705 if (readModRM(insn))
1706 return -1;
1707 if (fixupReg(insn, &Op))
1708 return -1;
1709 // Apply the AVX512 compressed displacement scaling factor.
1710 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1711 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1712 break;
1713 case ENCODING_IB:
1714 if (sawRegImm) {
1715 // Saw a register immediate so don't read again and instead split the
1716 // previous immediate. FIXME: This is a hack.
1717 insn->immediates[insn->numImmediatesConsumed] =
1718 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1719 ++insn->numImmediatesConsumed;
1720 break;
1721 }
1722 if (readImmediate(insn, 1))
1723 return -1;
1724 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1725 sawRegImm = 1;
1726 break;
1727 case ENCODING_IW:
1728 if (readImmediate(insn, 2))
1729 return -1;
1730 break;
1731 case ENCODING_ID:
1732 if (readImmediate(insn, 4))
1733 return -1;
1734 break;
1735 case ENCODING_IO:
1736 if (readImmediate(insn, 8))
1737 return -1;
1738 break;
1739 case ENCODING_Iv:
1740 if (readImmediate(insn, insn->immediateSize))
1741 return -1;
1742 break;
1743 case ENCODING_Ia:
1744 if (readImmediate(insn, insn->addressSize))
1745 return -1;
1746 break;
1747 case ENCODING_IRC:
1748 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1750 break;
1751 case ENCODING_RB:
1752 if (readOpcodeRegister(insn, 1))
1753 return -1;
1754 break;
1755 case ENCODING_RW:
1756 if (readOpcodeRegister(insn, 2))
1757 return -1;
1758 break;
1759 case ENCODING_RD:
1760 if (readOpcodeRegister(insn, 4))
1761 return -1;
1762 break;
1763 case ENCODING_RO:
1764 if (readOpcodeRegister(insn, 8))
1765 return -1;
1766 break;
1767 case ENCODING_Rv:
1768 if (readOpcodeRegister(insn, 0))
1769 return -1;
1770 break;
1771 case ENCODING_CF:
1773 needVVVV = false; // oszc shares the same bits with VVVV
1774 break;
1775 case ENCODING_CC:
1776 if (isCCMPOrCTEST(insn))
1777 insn->immediates[2] = scFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1778 else
1779 insn->immediates[1] = insn->opcode & 0xf;
1780 break;
1781 case ENCODING_FP:
1782 break;
1783 case ENCODING_VVVV:
1784 needVVVV = 0; // Mark that we have found a VVVV operand.
1785 if (!hasVVVV)
1786 return -1;
1787 if (insn->mode != MODE_64BIT)
1788 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1789 if (fixupReg(insn, &Op))
1790 return -1;
1791 break;
1792 case ENCODING_WRITEMASK:
1793 if (readMaskRegister(insn))
1794 return -1;
1795 break;
1796 case ENCODING_DUP:
1797 break;
1798 default:
1799 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1800 return -1;
1801 }
1802 }
1803
1804 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1805 if (needVVVV)
1806 return -1;
1807
1808 return 0;
1809}
1810
1811namespace llvm {
1812
1813// Fill-ins to make the compiler happy. These constants are never actually
1814// assigned; they are just filler to make an automatically-generated switch
1815// statement work.
1816namespace X86 {
1817 enum {
1818 BX_SI = 500,
1819 BX_DI = 501,
1820 BP_SI = 502,
1821 BP_DI = 503,
1822 sib = 504,
1823 sib64 = 505
1825} // namespace X86
1826
1827} // namespace llvm
1828
1829static bool translateInstruction(MCInst &target,
1830 InternalInstruction &source,
1831 const MCDisassembler *Dis);
1832
1833namespace {
1834
1835/// Generic disassembler for all X86 platforms. All each platform class should
1836/// have to do is subclass the constructor, and provide a different
1837/// disassemblerMode value.
1838class X86GenericDisassembler : public MCDisassembler {
1839 std::unique_ptr<const MCInstrInfo> MII;
1840public:
1841 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1842 std::unique_ptr<const MCInstrInfo> MII);
1843public:
1845 ArrayRef<uint8_t> Bytes, uint64_t Address,
1846 raw_ostream &cStream) const override;
1847
1848private:
1849 DisassemblerMode fMode;
1850};
1851
1852} // namespace
1853
1854X86GenericDisassembler::X86GenericDisassembler(
1855 const MCSubtargetInfo &STI,
1856 MCContext &Ctx,
1857 std::unique_ptr<const MCInstrInfo> MII)
1858 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1859 const FeatureBitset &FB = STI.getFeatureBits();
1860 if (FB[X86::Is16Bit]) {
1861 fMode = MODE_16BIT;
1862 return;
1863 } else if (FB[X86::Is32Bit]) {
1864 fMode = MODE_32BIT;
1865 return;
1866 } else if (FB[X86::Is64Bit]) {
1867 fMode = MODE_64BIT;
1868 return;
1869 }
1870
1871 llvm_unreachable("Invalid CPU mode");
1872}
1873
1874MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1876 raw_ostream &CStream) const {
1877 CommentStream = &CStream;
1878
1880 memset(&Insn, 0, sizeof(InternalInstruction));
1881 Insn.bytes = Bytes;
1882 Insn.startLocation = Address;
1883 Insn.readerCursor = Address;
1884 Insn.mode = fMode;
1885
1886 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1887 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1888 readOperands(&Insn)) {
1889 Size = Insn.readerCursor - Address;
1890 return Fail;
1891 }
1892
1893 Insn.operands = x86OperandSets[Insn.spec->operands];
1894 Insn.length = Insn.readerCursor - Insn.startLocation;
1895 Size = Insn.length;
1896 if (Size > 15)
1897 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1898
1899 bool Ret = translateInstruction(Instr, Insn, this);
1900 if (!Ret) {
1901 unsigned Flags = X86::IP_NO_PREFIX;
1902 if (Insn.hasAdSize)
1904 if (!Insn.mandatoryPrefix) {
1905 if (Insn.hasOpSize)
1907 if (Insn.repeatPrefix == 0xf2)
1909 else if (Insn.repeatPrefix == 0xf3 &&
1910 // It should not be 'pause' f3 90
1911 Insn.opcode != 0x90)
1913 if (Insn.hasLockPrefix)
1915 }
1916 Instr.setFlags(Flags);
1917 }
1918 return (!Ret) ? Success : Fail;
1919}
1920
1921//
1922// Private code that translates from struct InternalInstructions to MCInsts.
1923//
1924
1925/// translateRegister - Translates an internal register to the appropriate LLVM
1926/// register, and appends it as an operand to an MCInst.
1927///
1928/// @param mcInst - The MCInst to append to.
1929/// @param reg - The Reg to append.
1930static void translateRegister(MCInst &mcInst, Reg reg) {
1931#define ENTRY(x) X86::x,
1932 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1933#undef ENTRY
1934
1935 MCPhysReg llvmRegnum = llvmRegnums[reg];
1936 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1937}
1938
1940 0, // SEG_OVERRIDE_NONE
1941 X86::CS,
1942 X86::SS,
1943 X86::DS,
1944 X86::ES,
1945 X86::FS,
1946 X86::GS
1947};
1948
1949/// translateSrcIndex - Appends a source index operand to an MCInst.
1950///
1951/// @param mcInst - The MCInst to append to.
1952/// @param insn - The internal instruction.
1953static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1954 unsigned baseRegNo;
1955
1956 if (insn.mode == MODE_64BIT)
1957 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1958 else if (insn.mode == MODE_32BIT)
1959 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1960 else {
1961 assert(insn.mode == MODE_16BIT);
1962 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1963 }
1964 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1965 mcInst.addOperand(baseReg);
1966
1967 MCOperand segmentReg;
1969 mcInst.addOperand(segmentReg);
1970 return false;
1971}
1972
1973/// translateDstIndex - Appends a destination index operand to an MCInst.
1974///
1975/// @param mcInst - The MCInst to append to.
1976/// @param insn - The internal instruction.
1977
1978static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1979 unsigned baseRegNo;
1980
1981 if (insn.mode == MODE_64BIT)
1982 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1983 else if (insn.mode == MODE_32BIT)
1984 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1985 else {
1986 assert(insn.mode == MODE_16BIT);
1987 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1988 }
1989 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1990 mcInst.addOperand(baseReg);
1991 return false;
1992}
1993
1994/// translateImmediate - Appends an immediate operand to an MCInst.
1995///
1996/// @param mcInst - The MCInst to append to.
1997/// @param immediate - The immediate value to append.
1998/// @param operand - The operand, as stored in the descriptor table.
1999/// @param insn - The internal instruction.
2000static void translateImmediate(MCInst &mcInst, uint64_t immediate,
2001 const OperandSpecifier &operand,
2002 InternalInstruction &insn,
2003 const MCDisassembler *Dis) {
2004 // Sign-extend the immediate if necessary.
2005
2006 OperandType type = (OperandType)operand.type;
2007
2008 bool isBranch = false;
2009 uint64_t pcrel = 0;
2010 if (type == TYPE_REL) {
2011 isBranch = true;
2012 pcrel = insn.startLocation + insn.length;
2013 switch (operand.encoding) {
2014 default:
2015 break;
2016 case ENCODING_Iv:
2017 switch (insn.displacementSize) {
2018 default:
2019 break;
2020 case 1:
2021 if(immediate & 0x80)
2022 immediate |= ~(0xffull);
2023 break;
2024 case 2:
2025 if(immediate & 0x8000)
2026 immediate |= ~(0xffffull);
2027 break;
2028 case 4:
2029 if(immediate & 0x80000000)
2030 immediate |= ~(0xffffffffull);
2031 break;
2032 case 8:
2033 break;
2034 }
2035 break;
2036 case ENCODING_IB:
2037 if(immediate & 0x80)
2038 immediate |= ~(0xffull);
2039 break;
2040 case ENCODING_IW:
2041 if(immediate & 0x8000)
2042 immediate |= ~(0xffffull);
2043 break;
2044 case ENCODING_ID:
2045 if(immediate & 0x80000000)
2046 immediate |= ~(0xffffffffull);
2047 break;
2048 }
2049 }
2050 // By default sign-extend all X86 immediates based on their encoding.
2051 else if (type == TYPE_IMM) {
2052 switch (operand.encoding) {
2053 default:
2054 break;
2055 case ENCODING_IB:
2056 if(immediate & 0x80)
2057 immediate |= ~(0xffull);
2058 break;
2059 case ENCODING_IW:
2060 if(immediate & 0x8000)
2061 immediate |= ~(0xffffull);
2062 break;
2063 case ENCODING_ID:
2064 if(immediate & 0x80000000)
2065 immediate |= ~(0xffffffffull);
2066 break;
2067 case ENCODING_IO:
2068 break;
2069 }
2070 }
2071
2072 switch (type) {
2073 case TYPE_XMM:
2074 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
2075 return;
2076 case TYPE_YMM:
2077 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
2078 return;
2079 case TYPE_ZMM:
2080 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
2081 return;
2082 default:
2083 // operand is 64 bits wide. Do nothing.
2084 break;
2085 }
2086
2087 if (!Dis->tryAddingSymbolicOperand(
2088 mcInst, immediate + pcrel, insn.startLocation, isBranch,
2089 insn.immediateOffset, insn.immediateSize, insn.length))
2090 mcInst.addOperand(MCOperand::createImm(immediate));
2091
2092 if (type == TYPE_MOFFS) {
2093 MCOperand segmentReg;
2095 mcInst.addOperand(segmentReg);
2096 }
2097}
2098
2099/// translateRMRegister - Translates a register stored in the R/M field of the
2100/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2101/// @param mcInst - The MCInst to append to.
2102/// @param insn - The internal instruction to extract the R/M field
2103/// from.
2104/// @return - 0 on success; -1 otherwise
2105static bool translateRMRegister(MCInst &mcInst,
2106 InternalInstruction &insn) {
2107 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2108 debug("A R/M register operand may not have a SIB byte");
2109 return true;
2110 }
2111
2112 switch (insn.eaBase) {
2113 default:
2114 debug("Unexpected EA base register");
2115 return true;
2116 case EA_BASE_NONE:
2117 debug("EA_BASE_NONE for ModR/M base");
2118 return true;
2119#define ENTRY(x) case EA_BASE_##x:
2121#undef ENTRY
2122 debug("A R/M register operand may not have a base; "
2123 "the operand must be a register.");
2124 return true;
2125#define ENTRY(x) \
2126 case EA_REG_##x: \
2127 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2128 ALL_REGS
2129#undef ENTRY
2130 }
2131
2132 return false;
2133}
2134
2135/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2136/// fields of an internal instruction (and possibly its SIB byte) to a memory
2137/// operand in LLVM's format, and appends it to an MCInst.
2138///
2139/// @param mcInst - The MCInst to append to.
2140/// @param insn - The instruction to extract Mod, R/M, and SIB fields
2141/// from.
2142/// @param ForceSIB - The instruction must use SIB.
2143/// @return - 0 on success; nonzero otherwise
2145 const MCDisassembler *Dis,
2146 bool ForceSIB = false) {
2147 // Addresses in an MCInst are represented as five operands:
2148 // 1. basereg (register) The R/M base, or (if there is a SIB) the
2149 // SIB base
2150 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
2151 // scale amount
2152 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
2153 // the index (which is multiplied by the
2154 // scale amount)
2155 // 4. displacement (immediate) 0, or the displacement if there is one
2156 // 5. segmentreg (register) x86_registerNONE for now, but could be set
2157 // if we have segment overrides
2158
2159 MCOperand baseReg;
2160 MCOperand scaleAmount;
2161 MCOperand indexReg;
2162 MCOperand displacement;
2163 MCOperand segmentReg;
2164 uint64_t pcrel = 0;
2165
2166 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2167 if (insn.sibBase != SIB_BASE_NONE) {
2168 switch (insn.sibBase) {
2169 default:
2170 debug("Unexpected sibBase");
2171 return true;
2172#define ENTRY(x) \
2173 case SIB_BASE_##x: \
2174 baseReg = MCOperand::createReg(X86::x); break;
2176#undef ENTRY
2177 }
2178 } else {
2179 baseReg = MCOperand::createReg(X86::NoRegister);
2180 }
2181
2182 if (insn.sibIndex != SIB_INDEX_NONE) {
2183 switch (insn.sibIndex) {
2184 default:
2185 debug("Unexpected sibIndex");
2186 return true;
2187#define ENTRY(x) \
2188 case SIB_INDEX_##x: \
2189 indexReg = MCOperand::createReg(X86::x); break;
2192 REGS_XMM
2193 REGS_YMM
2194 REGS_ZMM
2195#undef ENTRY
2196 }
2197 } else {
2198 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2199 // but no index is used and modrm alone should have been enough.
2200 // -No base register in 32-bit mode. In 64-bit mode this is used to
2201 // avoid rip-relative addressing.
2202 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2203 // base always requires a SIB byte.
2204 // -A scale other than 1 is used.
2205 if (!ForceSIB &&
2206 (insn.sibScale != 1 ||
2207 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2208 (insn.sibBase != SIB_BASE_NONE &&
2209 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2210 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2211 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2212 X86::RIZ);
2213 } else
2214 indexReg = MCOperand::createReg(X86::NoRegister);
2215 }
2216
2217 scaleAmount = MCOperand::createImm(insn.sibScale);
2218 } else {
2219 switch (insn.eaBase) {
2220 case EA_BASE_NONE:
2221 if (insn.eaDisplacement == EA_DISP_NONE) {
2222 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2223 return true;
2224 }
2225 if (insn.mode == MODE_64BIT){
2226 pcrel = insn.startLocation + insn.length;
2228 insn.startLocation +
2229 insn.displacementOffset);
2230 // Section 2.2.1.6
2231 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2232 X86::RIP);
2233 }
2234 else
2235 baseReg = MCOperand::createReg(X86::NoRegister);
2236
2237 indexReg = MCOperand::createReg(X86::NoRegister);
2238 break;
2239 case EA_BASE_BX_SI:
2240 baseReg = MCOperand::createReg(X86::BX);
2241 indexReg = MCOperand::createReg(X86::SI);
2242 break;
2243 case EA_BASE_BX_DI:
2244 baseReg = MCOperand::createReg(X86::BX);
2245 indexReg = MCOperand::createReg(X86::DI);
2246 break;
2247 case EA_BASE_BP_SI:
2248 baseReg = MCOperand::createReg(X86::BP);
2249 indexReg = MCOperand::createReg(X86::SI);
2250 break;
2251 case EA_BASE_BP_DI:
2252 baseReg = MCOperand::createReg(X86::BP);
2253 indexReg = MCOperand::createReg(X86::DI);
2254 break;
2255 default:
2256 indexReg = MCOperand::createReg(X86::NoRegister);
2257 switch (insn.eaBase) {
2258 default:
2259 debug("Unexpected eaBase");
2260 return true;
2261 // Here, we will use the fill-ins defined above. However,
2262 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2263 // sib and sib64 were handled in the top-level if, so they're only
2264 // placeholders to keep the compiler happy.
2265#define ENTRY(x) \
2266 case EA_BASE_##x: \
2267 baseReg = MCOperand::createReg(X86::x); break;
2269#undef ENTRY
2270#define ENTRY(x) case EA_REG_##x:
2271 ALL_REGS
2272#undef ENTRY
2273 debug("A R/M memory operand may not be a register; "
2274 "the base field must be a base.");
2275 return true;
2276 }
2277 }
2278
2279 scaleAmount = MCOperand::createImm(1);
2280 }
2281
2282 displacement = MCOperand::createImm(insn.displacement);
2283
2285
2286 mcInst.addOperand(baseReg);
2287 mcInst.addOperand(scaleAmount);
2288 mcInst.addOperand(indexReg);
2289
2290 const uint8_t dispSize =
2291 (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2292
2294 mcInst, insn.displacement + pcrel, insn.startLocation, false,
2295 insn.displacementOffset, dispSize, insn.length))
2296 mcInst.addOperand(displacement);
2297 mcInst.addOperand(segmentReg);
2298 return false;
2299}
2300
2301/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2302/// byte of an instruction to LLVM form, and appends it to an MCInst.
2303///
2304/// @param mcInst - The MCInst to append to.
2305/// @param operand - The operand, as stored in the descriptor table.
2306/// @param insn - The instruction to extract Mod, R/M, and SIB fields
2307/// from.
2308/// @return - 0 on success; nonzero otherwise
2309static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2310 InternalInstruction &insn, const MCDisassembler *Dis) {
2311 switch (operand.type) {
2312 default:
2313 debug("Unexpected type for a R/M operand");
2314 return true;
2315 case TYPE_R8:
2316 case TYPE_R16:
2317 case TYPE_R32:
2318 case TYPE_R64:
2319 case TYPE_Rv:
2320 case TYPE_MM64:
2321 case TYPE_XMM:
2322 case TYPE_YMM:
2323 case TYPE_ZMM:
2324 case TYPE_TMM:
2325 case TYPE_TMM_PAIR:
2326 case TYPE_VK_PAIR:
2327 case TYPE_VK:
2328 case TYPE_DEBUGREG:
2329 case TYPE_CONTROLREG:
2330 case TYPE_BNDR:
2331 return translateRMRegister(mcInst, insn);
2332 case TYPE_M:
2333 case TYPE_MVSIBX:
2334 case TYPE_MVSIBY:
2335 case TYPE_MVSIBZ:
2336 return translateRMMemory(mcInst, insn, Dis);
2337 case TYPE_MSIB:
2338 return translateRMMemory(mcInst, insn, Dis, true);
2339 }
2340}
2341
2342/// translateFPRegister - Translates a stack position on the FPU stack to its
2343/// LLVM form, and appends it to an MCInst.
2344///
2345/// @param mcInst - The MCInst to append to.
2346/// @param stackPos - The stack position to translate.
2347static void translateFPRegister(MCInst &mcInst,
2348 uint8_t stackPos) {
2349 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2350}
2351
2352/// translateMaskRegister - Translates a 3-bit mask register number to
2353/// LLVM form, and appends it to an MCInst.
2354///
2355/// @param mcInst - The MCInst to append to.
2356/// @param maskRegNum - Number of mask register from 0 to 7.
2357/// @return - false on success; true otherwise.
2358static bool translateMaskRegister(MCInst &mcInst,
2359 uint8_t maskRegNum) {
2360 if (maskRegNum >= 8) {
2361 debug("Invalid mask register number");
2362 return true;
2363 }
2364
2365 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2366 return false;
2367}
2368
2369/// translateOperand - Translates an operand stored in an internal instruction
2370/// to LLVM's format and appends it to an MCInst.
2371///
2372/// @param mcInst - The MCInst to append to.
2373/// @param operand - The operand, as stored in the descriptor table.
2374/// @param insn - The internal instruction.
2375/// @return - false on success; true otherwise.
2376static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2377 InternalInstruction &insn,
2378 const MCDisassembler *Dis) {
2379 switch (operand.encoding) {
2380 default:
2381 debug("Unhandled operand encoding during translation");
2382 return true;
2383 case ENCODING_REG:
2384 translateRegister(mcInst, insn.reg);
2385 return false;
2386 case ENCODING_WRITEMASK:
2387 return translateMaskRegister(mcInst, insn.writemask);
2388 case ENCODING_SIB:
2391 return translateRM(mcInst, operand, insn, Dis);
2392 case ENCODING_IB:
2393 case ENCODING_IW:
2394 case ENCODING_ID:
2395 case ENCODING_IO:
2396 case ENCODING_Iv:
2397 case ENCODING_Ia:
2398 translateImmediate(mcInst,
2400 operand,
2401 insn,
2402 Dis);
2403 return false;
2404 case ENCODING_IRC:
2405 mcInst.addOperand(MCOperand::createImm(insn.RC));
2406 return false;
2407 case ENCODING_SI:
2408 return translateSrcIndex(mcInst, insn);
2409 case ENCODING_DI:
2410 return translateDstIndex(mcInst, insn);
2411 case ENCODING_RB:
2412 case ENCODING_RW:
2413 case ENCODING_RD:
2414 case ENCODING_RO:
2415 case ENCODING_Rv:
2416 translateRegister(mcInst, insn.opcodeRegister);
2417 return false;
2418 case ENCODING_CF:
2420 return false;
2421 case ENCODING_CC:
2422 if (isCCMPOrCTEST(&insn))
2424 else
2426 return false;
2427 case ENCODING_FP:
2428 translateFPRegister(mcInst, insn.modRM & 7);
2429 return false;
2430 case ENCODING_VVVV:
2431 translateRegister(mcInst, insn.vvvv);
2432 return false;
2433 case ENCODING_DUP:
2434 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2435 insn, Dis);
2436 }
2437}
2438
2439/// translateInstruction - Translates an internal instruction and all its
2440/// operands to an MCInst.
2441///
2442/// @param mcInst - The MCInst to populate with the instruction's data.
2443/// @param insn - The internal instruction.
2444/// @return - false on success; true otherwise.
2445static bool translateInstruction(MCInst &mcInst,
2446 InternalInstruction &insn,
2447 const MCDisassembler *Dis) {
2448 if (!insn.spec) {
2449 debug("Instruction has no specification");
2450 return true;
2451 }
2452
2453 mcInst.clear();
2454 mcInst.setOpcode(insn.instructionID);
2455 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2456 // prefix bytes should be disassembled as xrelease and xacquire then set the
2457 // opcode to those instead of the rep and repne opcodes.
2458 if (insn.xAcquireRelease) {
2459 if(mcInst.getOpcode() == X86::REP_PREFIX)
2460 mcInst.setOpcode(X86::XRELEASE_PREFIX);
2461 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2462 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2463 }
2464
2465 insn.numImmediatesTranslated = 0;
2466
2467 for (const auto &Op : insn.operands) {
2468 if (Op.encoding != ENCODING_NONE) {
2469 if (translateOperand(mcInst, Op, insn, Dis)) {
2470 return true;
2471 }
2472 }
2473 }
2474
2475 return false;
2476}
2477
2479 const MCSubtargetInfo &STI,
2480 MCContext &Ctx) {
2481 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2482 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2483}
2484
2486 // Register the disassembler.
2491}
#define Fail
#define Success
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
aarch64 promote const
#define LLVM_C_ABI
Definition: Compiler.h:218
#define LLVM_DEBUG(...)
Definition: Debug.h:106
uint64_t Size
#define op(i)
if(PassOpts->AAPipeline)
static bool isBranch(unsigned Opcode)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static const char * name
Definition: SMEABIPass.cpp:46
static uint8_t readOpcode(WasmObjectFile::ReadContext &Ctx)
static int nextByte(ArrayRef< uint8_t > Bytes, uint64_t &Size)
static bool isPrefix(unsigned Opcode, const MCInstrInfo &MCII)
Check if the instruction is a prefix.
#define TWOBYTE_SYM
#define MAP4_SYM
#define CASE_ENCODING_VSIB
#define XOP9_MAP_SYM
#define CASE_ENCODING_RM
#define THREEDNOW_MAP_SYM
#define INSTRUCTIONS_SYM
#define THREEBYTE3A_SYM
#define XOP8_MAP_SYM
#define THREEBYTE38_SYM
#define XOPA_MAP_SYM
#define MAP6_SYM
#define MAP7_SYM
#define ONEBYTE_SYM
#define MAP5_SYM
#define rFromEVEX2of4(evex)
#define lFromEVEX4of4(evex)
#define l2FromEVEX4of4(evex)
#define rFromVEX2of3(vex)
#define zFromEVEX4of4(evex)
#define wFromREX2(rex2)
#define rFromREX(rex)
#define bFromXOP2of3(xop)
#define xFromVEX2of3(vex)
#define mmmmmFromVEX2of3(vex)
#define rmFromModRM(modRM)
#define bFromREX2(rex2)
#define baseFromSIB(sib)
#define bFromEVEX4of4(evex)
#define rFromVEX2of2(vex)
#define ppFromEVEX3of4(evex)
#define v2FromEVEX4of4(evex)
#define modFromModRM(modRM)
#define rFromXOP2of3(xop)
#define wFromREX(rex)
#define lFromXOP3of3(xop)
#define EA_BASES_64BIT
#define lFromVEX2of2(vex)
#define REGS_YMM
#define x2FromREX2(rex2)
#define scFromEVEX4of4(evex)
#define scaleFromSIB(sib)
#define REGS_XMM
#define rFromREX2(rex2)
#define regFromModRM(modRM)
#define b2FromEVEX2of4(evex)
#define b2FromREX2(rex2)
#define vvvvFromVEX2of2(vex)
#define nfFromEVEX4of4(evex)
#define ALL_REGS
#define ppFromXOP3of3(xop)
#define ALL_SIB_BASES
#define vvvvFromVEX3of3(vex)
#define r2FromEVEX2of4(evex)
#define uFromEVEX3of4(evex)
#define xFromREX2(rex2)
#define EA_BASES_32BIT
#define xFromXOP2of3(xop)
#define wFromEVEX3of4(evex)
#define bFromVEX2of3(vex)
#define wFromVEX3of3(vex)
#define mmmmmFromXOP2of3(xop)
#define aaaFromEVEX4of4(evex)
#define lFromVEX3of3(vex)
#define mmmFromEVEX2of4(evex)
#define ppFromVEX3of3(vex)
#define bFromEVEX2of4(evex)
#define xFromEVEX2of4(evex)
#define REGS_ZMM
#define ppFromVEX2of2(vex)
#define indexFromSIB(sib)
#define ALL_EA_BASES
#define mFromREX2(rex2)
#define vvvvFromXOP3of3(xop)
#define wFromXOP3of3(xop)
#define r2FromREX2(rex2)
#define oszcFromEVEX3of4(evex)
#define vvvvFromEVEX3of4(evex)
#define xFromREX(rex)
#define bFromREX(rex)
static void translateRegister(MCInst &mcInst, Reg reg)
translateRegister - Translates an internal register to the appropriate LLVM register,...
static bool isREX2(struct InternalInstruction *insn, uint8_t prefix)
static int getInstructionID(struct InternalInstruction *insn, const MCInstrInfo *mii)
static bool readOpcode(struct InternalInstruction *insn)
static MCDisassembler * createX86Disassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx)
static bool translateMaskRegister(MCInst &mcInst, uint8_t maskRegNum)
translateMaskRegister - Translates a 3-bit mask register number to LLVM form, and appends it to an MC...
static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn)
translateDstIndex - Appends a destination index operand to an MCInst.
static void translateImmediate(MCInst &mcInst, uint64_t immediate, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateImmediate - Appends an immediate operand to an MCInst.
static int readOperands(struct InternalInstruction *insn)
static void translateFPRegister(MCInst &mcInst, uint8_t stackPos)
translateFPRegister - Translates a stack position on the FPU stack to its LLVM form,...
static bool is64Bit(const char *name)
static const uint8_t segmentRegnums[SEG_OVERRIDE_max]
static int readImmediate(struct InternalInstruction *insn, uint8_t size)
static int getInstructionIDWithAttrMask(uint16_t *instructionID, struct InternalInstruction *insn, uint16_t attrMask)
static int readSIB(struct InternalInstruction *insn)
static bool isREX(struct InternalInstruction *insn, uint8_t prefix)
static int readVVVV(struct InternalInstruction *insn)
static bool isNF(InternalInstruction *insn)
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn)
translateSrcIndex - Appends a source index operand to an MCInst.
#define GENERIC_FIXUP_FUNC(name, base, prefix)
static int readMaskRegister(struct InternalInstruction *insn)
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateRM - Translates an operand stored in the R/M (and possibly SIB) byte of an instruction to LL...
static InstrUID decode(OpcodeType type, InstructionContext insnContext, uint8_t opcode, uint8_t modRM)
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size)
static int readDisplacement(struct InternalInstruction *insn)
static bool isCCMPOrCTEST(InternalInstruction *insn)
LLVM_C_ABI void LLVMInitializeX86Disassembler()
static int fixupReg(struct InternalInstruction *insn, const struct OperandSpecifier *op)
#define debug(s)
static int readModRM(struct InternalInstruction *insn)
static bool is16BitEquivalent(const char *orig, const char *equiv)
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, const MCDisassembler *Dis, bool ForceSIB=false)
translateRMMemory - Translates a memory operand stored in the Mod and R/M fields of an internal instr...
static bool translateInstruction(MCInst &target, InternalInstruction &source, const MCDisassembler *Dis)
translateInstruction - Translates an internal instruction and all its operands to an MCInst.
static bool translateRMRegister(MCInst &mcInst, InternalInstruction &insn)
translateRMRegister - Translates a register stored in the R/M field of the ModR/M byte to its LLVM eq...
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, InternalInstruction &insn, const MCDisassembler *Dis)
translateOperand - Translates an operand stored in an internal instruction to LLVM's format and appen...
static int readPrefixes(struct InternalInstruction *insn)
static bool peek(struct InternalInstruction *insn, uint8_t &byte)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
This class represents an Operation in the Expression.
Container class for subtarget features.
Context object for machine code objects.
Definition: MCContext.h:83
Superclass for all disassemblers.
bool tryAddingSymbolicOperand(MCInst &Inst, int64_t Value, uint64_t Address, bool IsBranch, uint64_t Offset, uint64_t OpSize, uint64_t InstSize) const
void tryAddingPcLoadReferenceComment(int64_t Value, uint64_t Address) const
DecodeStatus
Ternary decode status.
virtual DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size, ArrayRef< uint8_t > Bytes, uint64_t Address, raw_ostream &CStream) const =0
Returns the disassembly of a single instruction.
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
unsigned getOpcode() const
Definition: MCInst.h:199
void addOperand(const MCOperand Op)
Definition: MCInst.h:211
void setOpcode(unsigned Op)
Definition: MCInst.h:198
void clear()
Definition: MCInst.h:216
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
StringRef getName(unsigned Opcode) const
Returns the name for the instructions with the given opcode.
Definition: MCInstrInfo.h:70
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:37
static MCOperand createReg(MCRegister Reg)
Definition: MCInst.h:135
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:142
Generic base class for all target subtargets.
const FeatureBitset & getFeatureBits() const
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:144
Target - Wrapper for Target specific information.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ X86
Windows x64, Windows Itanium (IA-64)
EABase
All possible values of the base field for effective-address computations, a.k.a.
Reg
All possible values of the reg field in the ModR/M byte.
DisassemblerMode
Decoding mode for the Intel disassembler.
SIBBase
All possible values of the SIB base field.
SIBIndex
All possible values of the SIB index field.
@ IP_HAS_AD_SIZE
Definition: X86BaseInfo.h:54
@ IP_HAS_REPEAT
Definition: X86BaseInfo.h:56
@ IP_HAS_OP_SIZE
Definition: X86BaseInfo.h:53
@ IP_NO_PREFIX
Definition: X86BaseInfo.h:52
@ IP_HAS_REPEAT_NE
Definition: X86BaseInfo.h:55
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt mod(const DynamicAPInt &LHS, const DynamicAPInt &RHS)
is always non-negative.
Definition: DynamicAPInt.h:382
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
Target & getTheX86_32Target()
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:125
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1873
Target & getTheX86_64Target()
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
OpcodeDecision opcodeDecisions[IC_max]
uint32_t instructionIDs
ModRMDecision modRMDecisions[256]
static void RegisterMCDisassembler(Target &T, Target::MCDisassemblerCtorTy Fn)
RegisterMCDisassembler - Register a MCDisassembler implementation for the given target.
The specification for how to extract and interpret a full instruction and its operands.
The x86 internal instruction, which is produced by the decoder.
The specification for how to extract and interpret one operand.