LLVM 18.0.0git
ConstraintSystem.cpp
Go to the documentation of this file.
1//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
13#include "llvm/IR/Value.h"
14#include "llvm/Support/Debug.h"
15
16#include <string>
17
18using namespace llvm;
19
20#define DEBUG_TYPE "constraint-system"
21
22bool ConstraintSystem::eliminateUsingFM() {
23 // Implementation of Fourier–Motzkin elimination, with some tricks from the
24 // paper Pugh, William. "The Omega test: a fast and practical integer
25 // programming algorithm for dependence
26 // analysis."
27 // Supercomputing'91: Proceedings of the 1991 ACM/
28 // IEEE conference on Supercomputing. IEEE, 1991.
29 assert(!Constraints.empty() &&
30 "should only be called for non-empty constraint systems");
31
32 uint32_t NewGCD = 1;
33 unsigned LastIdx = NumVariables - 1;
34
35 // First, either remove the variable in place if it is 0 or add the row to
36 // RemainingRows and remove it from the system.
37 SmallVector<SmallVector<Entry, 8>, 4> RemainingRows;
38 for (unsigned R1 = 0; R1 < Constraints.size();) {
39 SmallVector<Entry, 8> &Row1 = Constraints[R1];
40 if (getLastCoefficient(Row1, LastIdx) == 0) {
41 if (Row1.size() > 0 && Row1.back().Id == LastIdx)
42 Row1.pop_back();
43 R1++;
44 } else {
45 std::swap(Constraints[R1], Constraints.back());
46 RemainingRows.push_back(std::move(Constraints.back()));
47 Constraints.pop_back();
48 }
49 }
50
51 // Process rows where the variable is != 0.
52 unsigned NumRemainingConstraints = RemainingRows.size();
53 for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) {
54 // FIXME do not use copy
55 for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) {
56 if (R1 == R2)
57 continue;
58
59 int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx);
60 int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx);
61 assert(
62 UpperLast != 0 && LowerLast != 0 &&
63 "RemainingRows should only contain rows where the variable is != 0");
64
65 if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0))
66 continue;
67
68 unsigned LowerR = R1;
69 unsigned UpperR = R2;
70 if (UpperLast < 0) {
71 std::swap(LowerR, UpperR);
72 std::swap(LowerLast, UpperLast);
73 }
74
76 unsigned IdxUpper = 0;
77 unsigned IdxLower = 0;
78 auto &LowerRow = RemainingRows[LowerR];
79 auto &UpperRow = RemainingRows[UpperR];
80 while (true) {
81 if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size())
82 break;
83 int64_t M1, M2, N;
84 int64_t UpperV = 0;
85 int64_t LowerV = 0;
86 uint16_t CurrentId = std::numeric_limits<uint16_t>::max();
87 if (IdxUpper < UpperRow.size()) {
88 CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId);
89 }
90 if (IdxLower < LowerRow.size()) {
91 CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId);
92 }
93
94 if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) {
95 UpperV = UpperRow[IdxUpper].Coefficient;
96 IdxUpper++;
97 }
98
99 if (MulOverflow(UpperV, ((-1) * LowerLast / GCD), M1))
100 return false;
101 if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) {
102 LowerV = LowerRow[IdxLower].Coefficient;
103 IdxLower++;
104 }
105
106 if (MulOverflow(LowerV, (UpperLast / GCD), M2))
107 return false;
108 if (AddOverflow(M1, M2, N))
109 return false;
110 if (N == 0)
111 continue;
112 NR.emplace_back(N, CurrentId);
113
114 NewGCD =
115 APIntOps::GreatestCommonDivisor({32, (uint32_t)N}, {32, NewGCD})
116 .getZExtValue();
117 }
118 if (NR.empty())
119 continue;
120 Constraints.push_back(std::move(NR));
121 // Give up if the new system gets too big.
122 if (Constraints.size() > 500)
123 return false;
124 }
125 }
126 NumVariables -= 1;
127 GCD = NewGCD;
128
129 return true;
130}
131
132bool ConstraintSystem::mayHaveSolutionImpl() {
133 while (!Constraints.empty() && NumVariables > 1) {
134 if (!eliminateUsingFM())
135 return true;
136 }
137
138 if (Constraints.empty() || NumVariables > 1)
139 return true;
140
141 return all_of(Constraints, [](auto &R) {
142 if (R.empty())
143 return true;
144 if (R[0].Id == 0)
145 return R[0].Coefficient >= 0;
146 return true;
147 });
148}
149
150SmallVector<std::string> ConstraintSystem::getVarNamesList() const {
151 SmallVector<std::string> Names(Value2Index.size(), "");
152#ifndef NDEBUG
153 for (auto &[V, Index] : Value2Index) {
154 std::string OperandName;
155 if (V->getName().empty())
156 OperandName = V->getNameOrAsOperand();
157 else
158 OperandName = std::string("%") + V->getName().str();
159 Names[Index - 1] = OperandName;
160 }
161#endif
162 return Names;
163}
164
166#ifndef NDEBUG
167 if (Constraints.empty())
168 return;
169 SmallVector<std::string> Names = getVarNamesList();
170 for (const auto &Row : Constraints) {
172 for (unsigned I = 0, S = Row.size(); I < S; ++I) {
173 if (Row[I].Id >= NumVariables)
174 break;
175 if (Row[I].Id == 0)
176 continue;
177 std::string Coefficient;
178 if (Row[I].Coefficient != 1)
179 Coefficient = std::to_string(Row[I].Coefficient) + " * ";
180 Parts.push_back(Coefficient + Names[Row[I].Id - 1]);
181 }
182 // assert(!Parts.empty() && "need to have at least some parts");
183 int64_t ConstPart = 0;
184 if (Row[0].Id == 0)
185 ConstPart = Row[0].Coefficient;
186 LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
187 << " <= " << std::to_string(ConstPart) << "\n");
188 }
189#endif
190}
191
193 LLVM_DEBUG(dbgs() << "---\n");
194 LLVM_DEBUG(dump());
195 bool HasSolution = mayHaveSolutionImpl();
196 LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
197 return HasSolution;
198}
199
201 // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
202 // 0, R is always true, regardless of the system.
203 if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
204 return R[0] >= 0;
205
206 // If there is no solution with the negation of R added to the system, the
207 // condition must hold based on the existing constraints.
209 if (R.empty())
210 return false;
211
212 auto NewSystem = *this;
213 NewSystem.addVariableRow(R);
214 return !NewSystem.mayHaveSolution();
215}
#define LLVM_DEBUG(X)
Definition: Debug.h:101
#define I(x, y, z)
Definition: MD5.cpp:58
#define R2(n)
if(VerifyEach)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
static SmallVector< int64_t, 8 > negate(SmallVector< int64_t, 8 > R)
bool mayHaveSolution()
Returns true if there may be a solution for the constraints in the system.
bool isConditionImplied(SmallVector< int64_t, 8 > R) const
void dump() const
Print the constraints in the system.
unsigned size() const
Definition: DenseMap.h:99
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:941
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
APInt GreatestCommonDivisor(APInt A, APInt B)
Compute GCD of two unsigned APInt values.
Definition: APInt.cpp:767
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
std::enable_if_t< std::is_signed_v< T >, T > MulOverflow(T X, T Y, T &Result)
Multiply two signed integers, computing the two's complement truncated result, returning true if an o...
Definition: MathExtras.h:623
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1726
unsigned M1(unsigned Val)
Definition: VE.h:376
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
std::enable_if_t< std::is_signed_v< T >, T > AddOverflow(T X, T Y, T &Result)
Add two signed integers, computing the two's complement truncated result, returning true if overflow ...
Definition: MathExtras.h:571
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N