LLVM 20.0.0git
FunctionPropertiesAnalysis.cpp
Go to the documentation of this file.
1//===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis
10// classes used to extract function properties.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SetVector.h"
18#include "llvm/IR/CFG.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Dominators.h"
24#include <deque>
25
26using namespace llvm;
27
28namespace llvm {
30 "enable-detailed-function-properties", cl::Hidden, cl::init(false),
31 cl::desc("Whether or not to compute detailed function properties."));
32
34 "big-basic-block-instruction-threshold", cl::Hidden, cl::init(500),
35 cl::desc("The minimum number of instructions a basic block should contain "
36 "before being considered big."));
37
39 "medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15),
40 cl::desc("The minimum number of instructions a basic block should contain "
41 "before being considered medium-sized."));
42} // namespace llvm
43
45 "call-with-many-arguments-threshold", cl::Hidden, cl::init(4),
46 cl::desc("The minimum number of arguments a function call must have before "
47 "it is considered having many arguments."));
48
49namespace {
50int64_t getNumBlocksFromCond(const BasicBlock &BB) {
51 int64_t Ret = 0;
52 if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
53 if (BI->isConditional())
54 Ret += BI->getNumSuccessors();
55 } else if (const auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
56 Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest()));
57 }
58 return Ret;
59}
60
61int64_t getUses(const Function &F) {
62 return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses();
63}
64} // namespace
65
66void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) {
67 updateForBB(BB, +1);
68}
69
70void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB,
71 int64_t Direction) {
72 assert(Direction == 1 || Direction == -1);
75 (Direction * getNumBlocksFromCond(BB));
76 for (const auto &I : BB) {
77 if (auto *CS = dyn_cast<CallBase>(&I)) {
78 const auto *Callee = CS->getCalledFunction();
79 if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration())
81 }
82 if (I.getOpcode() == Instruction::Load) {
84 } else if (I.getOpcode() == Instruction::Store) {
86 }
87 }
88 TotalInstructionCount += Direction * BB.sizeWithoutDebug();
89
91 unsigned SuccessorCount = succ_size(&BB);
92 if (SuccessorCount == 1)
94 else if (SuccessorCount == 2)
96 else if (SuccessorCount > 2)
98
99 unsigned PredecessorCount = pred_size(&BB);
100 if (PredecessorCount == 1)
102 else if (PredecessorCount == 2)
104 else if (PredecessorCount > 2)
106
111 else
113
114 // Calculate critical edges by looking through all successors of a basic
115 // block that has multiple successors and finding ones that have multiple
116 // predecessors, which represent critical edges.
117 if (SuccessorCount > 1) {
118 for (const auto *Successor : successors(&BB)) {
119 if (pred_size(Successor) > 1)
121 }
122 }
123
124 ControlFlowEdgeCount += Direction * SuccessorCount;
125
126 if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
127 if (!BI->isConditional())
129 }
130
131 for (const Instruction &I : BB.instructionsWithoutDebug()) {
132 if (I.isCast())
134
135 if (I.getType()->isFloatTy())
137 else if (I.getType()->isIntegerTy())
139
140 if (isa<IntrinsicInst>(I))
142
143 if (const auto *Call = dyn_cast<CallInst>(&I)) {
144 if (Call->isIndirectCall())
146 else
148
149 if (Call->getType()->isIntegerTy())
151 else if (Call->getType()->isFloatingPointTy())
153 else if (Call->getType()->isPointerTy())
155 else if (Call->getType()->isVectorTy()) {
156 if (Call->getType()->getScalarType()->isIntegerTy())
158 else if (Call->getType()->getScalarType()->isFloatingPointTy())
160 else if (Call->getType()->getScalarType()->isPointerTy())
162 }
163
164 if (Call->arg_size() > CallWithManyArgumentsThreshold)
166
167 for (const auto &Arg : Call->args()) {
168 if (Arg->getType()->isPointerTy()) {
170 break;
171 }
172 }
173 }
174
175#define COUNT_OPERAND(OPTYPE) \
176 if (isa<OPTYPE>(Operand)) { \
177 OPTYPE##OperandCount += Direction; \
178 continue; \
179 }
180
181 for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands();
182 ++OperandIndex) {
183 Value *Operand = I.getOperand(OperandIndex);
192
193 // We only get to this point if we haven't matched any of the other
194 // operand types.
196 }
197
198#undef CHECK_OPERAND
199 }
200 }
201}
202
203void FunctionPropertiesInfo::updateAggregateStats(const Function &F,
204 const LoopInfo &LI) {
205
206 Uses = getUses(F);
208 MaxLoopDepth = 0;
209 std::deque<const Loop *> Worklist;
210 llvm::append_range(Worklist, LI);
211 while (!Worklist.empty()) {
212 const auto *L = Worklist.front();
214 std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth()));
215 Worklist.pop_front();
216 llvm::append_range(Worklist, L->getSubLoops());
217 }
218}
219
224}
225
227 const Function &F, const DominatorTree &DT, const LoopInfo &LI) {
228
230 for (const auto &BB : F)
231 if (DT.isReachableFromEntry(&BB))
232 FPI.reIncludeBB(BB);
233 FPI.updateAggregateStats(F, LI);
234 return FPI;
235}
236
238#define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";
239
249
286 }
287
288#undef PRINT_PROPERTY
289
290 OS << "\n";
291}
292
294
298}
299
302 OS << "Printing analysis results of CFA for function "
303 << "'" << F.getName() << "':"
304 << "\n";
306 return PreservedAnalyses::all();
307}
308
311 : FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) {
312 assert(isa<CallInst>(CB) || isa<InvokeInst>(CB));
313 // For BBs that are likely to change, we subtract from feature totals their
314 // contribution. Some features, like max loop counts or depths, are left
315 // invalid, as they will be updated post-inlining.
316 SmallPtrSet<const BasicBlock *, 4> LikelyToChangeBBs;
317 // The CB BB will change - it'll either be split or the callee's body (single
318 // BB) will be pasted in.
319 LikelyToChangeBBs.insert(&CallSiteBB);
320
321 // The caller's entry BB may change due to new alloca instructions.
322 LikelyToChangeBBs.insert(&*Caller.begin());
323
324 // The successors may become unreachable in the case of `invoke` inlining.
325 // We track successors separately, too, because they form a boundary, together
326 // with the CB BB ('Entry') between which the inlined callee will be pasted.
327 Successors.insert(succ_begin(&CallSiteBB), succ_end(&CallSiteBB));
328
329 // the outcome of the inlining may be that some edges get lost (DCEd BBs
330 // because inlining brought some constant, for example). We don't know which
331 // edges will be removed, so we list all of them as potentially removable.
332 // Some BBs have (at this point) duplicate edges. Remove duplicates, otherwise
333 // the DT updater will not apply changes correctly.
335 for (auto *Succ : successors(&CallSiteBB))
336 if (Inserted.insert(Succ).second)
337 DomTreeUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
338 const_cast<BasicBlock *>(&CallSiteBB),
339 const_cast<BasicBlock *>(Succ));
340 // Reuse Inserted (which has some allocated capacity at this point) below, if
341 // we have an invoke.
342 Inserted.clear();
343 // Inlining only handles invoke and calls. If this is an invoke, and inlining
344 // it pulls another invoke, the original landing pad may get split, so as to
345 // share its content with other potential users. So the edge up to which we
346 // need to invalidate and then re-account BB data is the successors of the
347 // current landing pad. We can leave the current lp, too - if it doesn't get
348 // split, then it will be the place traversal stops. Either way, the
349 // discounted BBs will be checked if reachable and re-added.
350 if (const auto *II = dyn_cast<InvokeInst>(&CB)) {
351 const auto *UnwindDest = II->getUnwindDest();
352 Successors.insert(succ_begin(UnwindDest), succ_end(UnwindDest));
353 // Same idea as above, we pretend we lose all these edges.
354 for (auto *Succ : successors(UnwindDest))
355 if (Inserted.insert(Succ).second)
356 DomTreeUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
357 const_cast<BasicBlock *>(UnwindDest),
358 const_cast<BasicBlock *>(Succ));
359 }
360
361 // Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop).
362 // We are only interested in BBs the graph moves past the callsite BB to
363 // define the frontier past which we don't want to re-process BBs. Including
364 // the callsite BB in this case would prematurely stop the traversal in
365 // finish().
366 Successors.erase(&CallSiteBB);
367
368 for (const auto *BB : Successors)
369 LikelyToChangeBBs.insert(BB);
370
371 // Commit the change. While some of the BBs accounted for above may play dual
372 // role - e.g. caller's entry BB may be the same as the callsite BB - set
373 // insertion semantics make sure we account them once. This needs to be
374 // followed in `finish`, too.
375 for (const auto *BB : LikelyToChangeBBs)
376 FPI.updateForBB(*BB, -1);
377}
378
379DominatorTree &FunctionPropertiesUpdater::getUpdatedDominatorTree(
381 auto &DT =
382 FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(Caller));
383
385
387 for (auto *Succ : successors(&CallSiteBB))
388 if (Inserted.insert(Succ).second)
389 FinalDomTreeUpdates.push_back({DominatorTree::UpdateKind::Insert,
390 const_cast<BasicBlock *>(&CallSiteBB),
391 const_cast<BasicBlock *>(Succ)});
392
393 // Perform the deletes last, so that any new nodes connected to nodes
394 // participating in the edge deletion are known to the DT.
395 for (auto &Upd : DomTreeUpdates)
396 if (!llvm::is_contained(successors(Upd.getFrom()), Upd.getTo()))
397 FinalDomTreeUpdates.push_back(Upd);
398
399 DT.applyUpdates(FinalDomTreeUpdates);
400#ifdef EXPENSIVE_CHECKS
401 assert(DT.verify(DominatorTree::VerificationLevel::Full));
402#endif
403 return DT;
404}
405
407 // Update feature values from the BBs that were copied from the callee, or
408 // might have been modified because of inlining. The latter have been
409 // subtracted in the FunctionPropertiesUpdater ctor.
410 // There could be successors that were reached before but now are only
411 // reachable from elsewhere in the CFG.
412 // One example is the following diamond CFG (lines are arrows pointing down):
413 // A
414 // / \
415 // B C
416 // | |
417 // | D
418 // | |
419 // | E
420 // \ /
421 // F
422 // There's a call site in C that is inlined. Upon doing that, it turns out
423 // it expands to
424 // call void @llvm.trap()
425 // unreachable
426 // F isn't reachable from C anymore, but we did discount it when we set up
427 // FunctionPropertiesUpdater, so we need to re-include it here.
428 // At the same time, D and E were reachable before, but now are not anymore,
429 // so we need to leave D out (we discounted it at setup), and explicitly
430 // remove E.
433 auto &DT = getUpdatedDominatorTree(FAM);
434
435 if (&CallSiteBB != &*Caller.begin())
436 Reinclude.insert(&*Caller.begin());
437
438 // Distribute the successors to the 2 buckets.
439 for (const auto *Succ : Successors)
440 if (DT.isReachableFromEntry(Succ))
441 Reinclude.insert(Succ);
442 else
443 Unreachable.insert(Succ);
444
445 // For reinclusion, we want to stop at the reachable successors, who are at
446 // the beginning of the worklist; but, starting from the callsite bb and
447 // ending at those successors, we also want to perform a traversal.
448 // IncludeSuccessorsMark is the index after which we include successors.
449 const auto IncludeSuccessorsMark = Reinclude.size();
450 bool CSInsertion = Reinclude.insert(&CallSiteBB);
451 (void)CSInsertion;
452 assert(CSInsertion);
453 for (size_t I = 0; I < Reinclude.size(); ++I) {
454 const auto *BB = Reinclude[I];
455 FPI.reIncludeBB(*BB);
456 if (I >= IncludeSuccessorsMark)
457 Reinclude.insert(succ_begin(BB), succ_end(BB));
458 }
459
460 // For exclusion, we don't need to exclude the set of BBs that were successors
461 // before and are now unreachable, because we already did that at setup. For
462 // the rest, as long as a successor is unreachable, we want to explicitly
463 // exclude it.
464 const auto AlreadyExcludedMark = Unreachable.size();
465 for (size_t I = 0; I < Unreachable.size(); ++I) {
466 const auto *U = Unreachable[I];
467 if (I >= AlreadyExcludedMark)
468 FPI.updateForBB(*U, -1);
469 for (const auto *Succ : successors(U))
470 if (!DT.isReachableFromEntry(Succ))
471 Unreachable.insert(Succ);
472 }
473
474 const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(Caller));
475 FPI.updateAggregateStats(Caller, LI);
476#ifdef EXPENSIVE_CHECKS
477 assert(isUpdateValid(Caller, FPI, FAM));
478#endif
479}
480
481bool FunctionPropertiesUpdater::isUpdateValid(Function &F,
482 const FunctionPropertiesInfo &FPI,
484 if (!FAM.getResult<DominatorTreeAnalysis>(F).verify(
485 DominatorTree::VerificationLevel::Full))
486 return false;
487 DominatorTree DT(F);
488 LoopInfo LI(DT);
490 return FPI == Fresh;
491}
static const Function * getParent(const Value *V)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define PRINT_PROPERTY(PROP_NAME)
static cl::opt< unsigned > CallWithManyArgumentsThreshold("call-with-many-arguments-threshold", cl::Hidden, cl::init(4), cl::desc("The minimum number of arguments a function call must have before " "it is considered having many arguments."))
#define COUNT_OPERAND(OPTYPE)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file implements a set that has insertion order iteration characteristics.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1120
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:271
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
This is an important base class in LLVM.
Definition: Constant.h:42
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void applyUpdates(ArrayRef< UpdateType > Updates)
Inform the dominator tree about a sequence of CFG edge insertions and deletions and perform a batch u...
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
FunctionPropertiesInfo run(Function &F, FunctionAnalysisManager &FAM)
int64_t BasicBlockCount
Number of basic blocks.
int64_t Uses
Number of uses of this function, plus 1 if the function is callable outside the module.
int64_t BlocksReachedFromConditionalInstruction
Number of blocks reached from a conditional instruction, or that are 'cases' of a SwitchInstr.
static FunctionPropertiesInfo getFunctionPropertiesInfo(const Function &F, const DominatorTree &DT, const LoopInfo &LI)
int64_t DirectCallsToDefinedFunctions
Number of direct calls made from this function to other functions defined in this module.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
FunctionPropertiesUpdater(FunctionPropertiesInfo &FPI, CallBase &CB)
void finish(FunctionAnalysisManager &FAM) const
iterator begin()
Definition: Function.h:853
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:566
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
A vector that has set insertion semantics.
Definition: SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
auto successors(const MachineBasicBlock *BB)
cl::opt< bool > EnableDetailedFunctionProperties("enable-detailed-function-properties", cl::Hidden, cl::init(false), cl::desc("Whether or not to compute detailed function properties."))
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
auto pred_size(const MachineBasicBlock *BB)
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
auto succ_size(const MachineBasicBlock *BB)
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
cl::opt< unsigned > BigBasicBlockInstructionThreshold("big-basic-block-instruction-threshold", cl::Hidden, cl::init(500), cl::desc("The minimum number of instructions a basic block should contain " "before being considered big."))
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
cl::opt< unsigned > MediumBasicBlockInstructionThreshold("medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15), cl::desc("The minimum number of instructions a basic block should contain " "before being considered medium-sized."))
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:28
Direction
An enum for the direction of the loop.
Definition: LoopInfo.h:215