LLVM 22.0.0git
Host.cpp
Go to the documentation of this file.
1//===-- Host.cpp - Implement OS Host Detection ------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the operating system Host detection.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/Bitfields.h"
18#include "llvm/ADT/StringMap.h"
19#include "llvm/ADT/StringRef.h"
21#include "llvm/Config/llvm-config.h"
27#include <string.h>
28
29// Include the platform-specific parts of this class.
30#ifdef LLVM_ON_UNIX
31#include "Unix/Host.inc"
32#include <sched.h>
33#endif
34#ifdef _WIN32
35#include "Windows/Host.inc"
36#endif
37#ifdef _MSC_VER
38#include <intrin.h>
39#endif
40#ifdef __MVS__
41#include "llvm/Support/BCD.h"
42#endif
43#if defined(__APPLE__)
44#include <mach/host_info.h>
45#include <mach/mach.h>
46#include <mach/mach_host.h>
47#include <mach/machine.h>
48#include <sys/param.h>
49#include <sys/sysctl.h>
50#endif
51#ifdef _AIX
52#include <sys/systemcfg.h>
53#endif
54#if defined(__sun__) && defined(__svr4__)
55#include <kstat.h>
56#endif
57#if defined(__GNUC__) || defined(__clang__)
58#if (defined(__i386__) || defined(__x86_64__)) && !defined(_MSC_VER)
59#include <cpuid.h>
60#endif
61#endif
62
63#define DEBUG_TYPE "host-detection"
64
65//===----------------------------------------------------------------------===//
66//
67// Implementations of the CPU detection routines
68//
69//===----------------------------------------------------------------------===//
70
71using namespace llvm;
72
73[[maybe_unused]] static std::unique_ptr<llvm::MemoryBuffer>
75 const char *CPUInfoFile = "/proc/cpuinfo";
76 if (const char *CpuinfoIntercept = std::getenv("LLVM_CPUINFO"))
77 CPUInfoFile = CpuinfoIntercept;
80
81 if (std::error_code EC = Text.getError()) {
82 llvm::errs() << "Can't read " << CPUInfoFile << ": " << EC.message()
83 << "\n";
84 return nullptr;
85 }
86 return std::move(*Text);
87}
88
90 // Access to the Processor Version Register (PVR) on PowerPC is privileged,
91 // and so we must use an operating-system interface to determine the current
92 // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
93 const char *generic = "generic";
94
95 // The cpu line is second (after the 'processor: 0' line), so if this
96 // buffer is too small then something has changed (or is wrong).
97 StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
98 StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
99
100 StringRef::const_iterator CIP = CPUInfoStart;
101
102 StringRef::const_iterator CPUStart = nullptr;
103 size_t CPULen = 0;
104
105 // We need to find the first line which starts with cpu, spaces, and a colon.
106 // After the colon, there may be some additional spaces and then the cpu type.
107 while (CIP < CPUInfoEnd && CPUStart == nullptr) {
108 if (CIP < CPUInfoEnd && *CIP == '\n')
109 ++CIP;
110
111 if (CIP < CPUInfoEnd && *CIP == 'c') {
112 ++CIP;
113 if (CIP < CPUInfoEnd && *CIP == 'p') {
114 ++CIP;
115 if (CIP < CPUInfoEnd && *CIP == 'u') {
116 ++CIP;
117 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
118 ++CIP;
119
120 if (CIP < CPUInfoEnd && *CIP == ':') {
121 ++CIP;
122 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
123 ++CIP;
124
125 if (CIP < CPUInfoEnd) {
126 CPUStart = CIP;
127 while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
128 *CIP != ',' && *CIP != '\n'))
129 ++CIP;
130 CPULen = CIP - CPUStart;
131 }
132 }
133 }
134 }
135 }
136
137 if (CPUStart == nullptr)
138 while (CIP < CPUInfoEnd && *CIP != '\n')
139 ++CIP;
140 }
141
142 if (CPUStart == nullptr)
143 return generic;
144
145 return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
146 .Case("604e", "604e")
147 .Case("604", "604")
148 .Case("7400", "7400")
149 .Case("7410", "7400")
150 .Case("7447", "7400")
151 .Case("7455", "7450")
152 .Case("G4", "g4")
153 .Case("POWER4", "970")
154 .Case("PPC970FX", "970")
155 .Case("PPC970MP", "970")
156 .Case("G5", "g5")
157 .Case("POWER5", "g5")
158 .Case("A2", "a2")
159 .Case("POWER6", "pwr6")
160 .Case("POWER7", "pwr7")
161 .Case("POWER8", "pwr8")
162 .Case("POWER8E", "pwr8")
163 .Case("POWER8NVL", "pwr8")
164 .Case("POWER9", "pwr9")
165 .Case("POWER10", "pwr10")
166 .Case("POWER11", "pwr11")
167 // FIXME: If we get a simulator or machine with the capabilities of
168 // mcpu=future, we should revisit this and add the name reported by the
169 // simulator/machine.
170 .Default(generic);
171}
172
175 StringRef Part, ArrayRef<StringRef> Parts,
176 function_ref<unsigned()> GetVariant) {
177
178 auto MatchBigLittle = [](auto const &Parts, StringRef Big, StringRef Little) {
179 if (Parts.size() == 2)
180 return (Parts[0] == Big && Parts[1] == Little) ||
181 (Parts[1] == Big && Parts[0] == Little);
182 return false;
183 };
184
185 if (Implementer == "0x41") { // ARM Ltd.
186 // MSM8992/8994 may give cpu part for the core that the kernel is running on,
187 // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
188 if (Hardware.ends_with("MSM8994") || Hardware.ends_with("MSM8996"))
189 return "cortex-a53";
190
191 // Detect big.LITTLE systems.
192 if (MatchBigLittle(Parts, "0xd85", "0xd87"))
193 return "cortex-x925";
194
195 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
196 // values correspond to the "Part number" in the CP15/c0 register. The
197 // contents are specified in the various processor manuals.
198 // This corresponds to the Main ID Register in Technical Reference Manuals.
199 // and is used in programs like sys-utils
200 return StringSwitch<const char *>(Part)
201 .Case("0x926", "arm926ej-s")
202 .Case("0xb02", "mpcore")
203 .Case("0xb36", "arm1136j-s")
204 .Case("0xb56", "arm1156t2-s")
205 .Case("0xb76", "arm1176jz-s")
206 .Case("0xc05", "cortex-a5")
207 .Case("0xc07", "cortex-a7")
208 .Case("0xc08", "cortex-a8")
209 .Case("0xc09", "cortex-a9")
210 .Case("0xc0f", "cortex-a15")
211 .Case("0xc0e", "cortex-a17")
212 .Case("0xc20", "cortex-m0")
213 .Case("0xc23", "cortex-m3")
214 .Case("0xc24", "cortex-m4")
215 .Case("0xc27", "cortex-m7")
216 .Case("0xd20", "cortex-m23")
217 .Case("0xd21", "cortex-m33")
218 .Case("0xd24", "cortex-m52")
219 .Case("0xd22", "cortex-m55")
220 .Case("0xd23", "cortex-m85")
221 .Case("0xc18", "cortex-r8")
222 .Case("0xd13", "cortex-r52")
223 .Case("0xd16", "cortex-r52plus")
224 .Case("0xd15", "cortex-r82")
225 .Case("0xd14", "cortex-r82ae")
226 .Case("0xd02", "cortex-a34")
227 .Case("0xd04", "cortex-a35")
228 .Case("0xd8f", "cortex-a320")
229 .Case("0xd03", "cortex-a53")
230 .Case("0xd05", "cortex-a55")
231 .Case("0xd46", "cortex-a510")
232 .Case("0xd80", "cortex-a520")
233 .Case("0xd88", "cortex-a520ae")
234 .Case("0xd07", "cortex-a57")
235 .Case("0xd06", "cortex-a65")
236 .Case("0xd43", "cortex-a65ae")
237 .Case("0xd08", "cortex-a72")
238 .Case("0xd09", "cortex-a73")
239 .Case("0xd0a", "cortex-a75")
240 .Case("0xd0b", "cortex-a76")
241 .Case("0xd0e", "cortex-a76ae")
242 .Case("0xd0d", "cortex-a77")
243 .Case("0xd41", "cortex-a78")
244 .Case("0xd42", "cortex-a78ae")
245 .Case("0xd4b", "cortex-a78c")
246 .Case("0xd47", "cortex-a710")
247 .Case("0xd4d", "cortex-a715")
248 .Case("0xd81", "cortex-a720")
249 .Case("0xd89", "cortex-a720ae")
250 .Case("0xd87", "cortex-a725")
251 .Case("0xd44", "cortex-x1")
252 .Case("0xd4c", "cortex-x1c")
253 .Case("0xd48", "cortex-x2")
254 .Case("0xd4e", "cortex-x3")
255 .Case("0xd82", "cortex-x4")
256 .Case("0xd85", "cortex-x925")
257 .Case("0xd4a", "neoverse-e1")
258 .Case("0xd0c", "neoverse-n1")
259 .Case("0xd49", "neoverse-n2")
260 .Case("0xd8e", "neoverse-n3")
261 .Case("0xd40", "neoverse-v1")
262 .Case("0xd4f", "neoverse-v2")
263 .Case("0xd84", "neoverse-v3")
264 .Case("0xd83", "neoverse-v3ae")
265 .Default("generic");
266 }
267
268 if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
269 return StringSwitch<const char *>(Part)
270 .Case("0x516", "thunderx2t99")
271 .Case("0x0516", "thunderx2t99")
272 .Case("0xaf", "thunderx2t99")
273 .Case("0x0af", "thunderx2t99")
274 .Case("0xa1", "thunderxt88")
275 .Case("0x0a1", "thunderxt88")
276 .Default("generic");
277 }
278
279 if (Implementer == "0x46") { // Fujitsu Ltd.
280 return StringSwitch<const char *>(Part)
281 .Case("0x001", "a64fx")
282 .Case("0x003", "fujitsu-monaka")
283 .Default("generic");
284 }
285
286 if (Implementer == "0x4e") { // NVIDIA Corporation
287 return StringSwitch<const char *>(Part)
288 .Case("0x004", "carmel")
289 .Case("0x10", "olympus")
290 .Case("0x010", "olympus")
291 .Default("generic");
292 }
293
294 if (Implementer == "0x48") // HiSilicon Technologies, Inc.
295 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
296 // values correspond to the "Part number" in the CP15/c0 register. The
297 // contents are specified in the various processor manuals.
298 return StringSwitch<const char *>(Part)
299 .Case("0xd01", "tsv110")
300 .Default("generic");
301
302 if (Implementer == "0x51") // Qualcomm Technologies, Inc.
303 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
304 // values correspond to the "Part number" in the CP15/c0 register. The
305 // contents are specified in the various processor manuals.
306 return StringSwitch<const char *>(Part)
307 .Case("0x06f", "krait") // APQ8064
308 .Case("0x201", "kryo")
309 .Case("0x205", "kryo")
310 .Case("0x211", "kryo")
311 .Case("0x800", "cortex-a73") // Kryo 2xx Gold
312 .Case("0x801", "cortex-a73") // Kryo 2xx Silver
313 .Case("0x802", "cortex-a75") // Kryo 3xx Gold
314 .Case("0x803", "cortex-a75") // Kryo 3xx Silver
315 .Case("0x804", "cortex-a76") // Kryo 4xx Gold
316 .Case("0x805", "cortex-a76") // Kryo 4xx/5xx Silver
317 .Case("0xc00", "falkor")
318 .Case("0xc01", "saphira")
319 .Case("0x001", "oryon-1")
320 .Default("generic");
321 if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
322 // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
323 // any predictive pattern across variants and parts.
324
325 // Look for the CPU variant line, whose value is a 1 digit hexadecimal
326 // number, corresponding to the Variant bits in the CP15/C0 register.
327 unsigned Variant = GetVariant();
328
329 // Convert the CPU part line, whose value is a 3 digit hexadecimal number,
330 // corresponding to the PartNum bits in the CP15/C0 register.
331 unsigned PartAsInt;
332 Part.getAsInteger(0, PartAsInt);
333
334 unsigned Exynos = (Variant << 12) | PartAsInt;
335 switch (Exynos) {
336 default:
337 // Default by falling through to Exynos M3.
338 [[fallthrough]];
339 case 0x1002:
340 return "exynos-m3";
341 case 0x1003:
342 return "exynos-m4";
343 }
344 }
345
346 if (Implementer == "0x61") { // Apple
347 return StringSwitch<const char *>(Part)
348 .Case("0x020", "apple-m1")
349 .Case("0x021", "apple-m1")
350 .Case("0x022", "apple-m1")
351 .Case("0x023", "apple-m1")
352 .Case("0x024", "apple-m1")
353 .Case("0x025", "apple-m1")
354 .Case("0x028", "apple-m1")
355 .Case("0x029", "apple-m1")
356 .Case("0x030", "apple-m2")
357 .Case("0x031", "apple-m2")
358 .Case("0x032", "apple-m2")
359 .Case("0x033", "apple-m2")
360 .Case("0x034", "apple-m2")
361 .Case("0x035", "apple-m2")
362 .Case("0x038", "apple-m2")
363 .Case("0x039", "apple-m2")
364 .Case("0x049", "apple-m3")
365 .Case("0x048", "apple-m3")
366 .Default("generic");
367 }
368
369 if (Implementer == "0x63") { // Arm China.
370 return StringSwitch<const char *>(Part)
371 .Case("0x132", "star-mc1")
372 .Default("generic");
373 }
374
375 if (Implementer == "0x6d") { // Microsoft Corporation.
376 // The Microsoft Azure Cobalt 100 CPU is handled as a Neoverse N2.
377 return StringSwitch<const char *>(Part)
378 .Case("0xd49", "neoverse-n2")
379 .Default("generic");
380 }
381
382 if (Implementer == "0xc0") { // Ampere Computing
383 return StringSwitch<const char *>(Part)
384 .Case("0xac3", "ampere1")
385 .Case("0xac4", "ampere1a")
386 .Case("0xac5", "ampere1b")
387 .Default("generic");
388 }
389
390 return "generic";
391}
392
394 // The cpuid register on arm is not accessible from user space. On Linux,
395 // it is exposed through the /proc/cpuinfo file.
396
397 // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
398 // in all cases.
400 ProcCpuinfoContent.split(Lines, '\n');
401
402 // Look for the CPU implementer and hardware lines, and store the CPU part
403 // numbers found.
404 StringRef Implementer;
405 StringRef Hardware;
407 for (StringRef Line : Lines) {
408 if (Line.consume_front("CPU implementer"))
409 Implementer = Line.ltrim("\t :");
410 else if (Line.consume_front("Hardware"))
411 Hardware = Line.ltrim("\t :");
412 else if (Line.consume_front("CPU part"))
413 Parts.emplace_back(Line.ltrim("\t :"));
414 }
415
416 // Last `Part' seen, in case we don't analyse all `Parts' parsed.
417 StringRef Part = Parts.empty() ? StringRef() : Parts.back();
418
419 // Remove duplicate `Parts'.
420 llvm::sort(Parts);
421 Parts.erase(llvm::unique(Parts), Parts.end());
422
423 auto GetVariant = [&]() {
424 unsigned Variant = 0;
425 for (auto I : Lines)
426 if (I.consume_front("CPU variant"))
427 I.ltrim("\t :").getAsInteger(0, Variant);
428 return Variant;
429 };
430
431 return getHostCPUNameForARMFromComponents(Implementer, Hardware, Part, Parts,
432 GetVariant);
433}
434
436 ArrayRef<uint64_t> UniqueCpuInfos) {
437 // On Windows, the registry provides cached copied of the MIDR_EL1 register.
439 using Implementer = Bitfield::Element<uint16_t, 24, 8>;
441
442 SmallVector<std::string> PartsHolder;
443 PartsHolder.reserve(UniqueCpuInfos.size());
444 for (auto Info : UniqueCpuInfos)
445 PartsHolder.push_back("0x" + utohexstr(Bitfield::get<PartNum>(Info),
446 /*LowerCase*/ true,
447 /*Width*/ 3));
448
450 Parts.reserve(PartsHolder.size());
451 for (const auto &Part : PartsHolder)
452 Parts.push_back(Part);
453
455 "0x" + utohexstr(Bitfield::get<Implementer>(PrimaryCpuInfo),
456 /*LowerCase*/ true,
457 /*Width*/ 2),
458 /*Hardware*/ "",
459 "0x" + utohexstr(Bitfield::get<PartNum>(PrimaryCpuInfo),
460 /*LowerCase*/ true,
461 /*Width*/ 3),
462 Parts, [=]() { return Bitfield::get<Variant>(PrimaryCpuInfo); });
463}
464
465namespace {
466StringRef getCPUNameFromS390Model(unsigned int Id, bool HaveVectorSupport) {
467 switch (Id) {
468 case 2064: // z900 not supported by LLVM
469 case 2066:
470 case 2084: // z990 not supported by LLVM
471 case 2086:
472 case 2094: // z9-109 not supported by LLVM
473 case 2096:
474 return "generic";
475 case 2097:
476 case 2098:
477 return "z10";
478 case 2817:
479 case 2818:
480 return "z196";
481 case 2827:
482 case 2828:
483 return "zEC12";
484 case 2964:
485 case 2965:
486 return HaveVectorSupport? "z13" : "zEC12";
487 case 3906:
488 case 3907:
489 return HaveVectorSupport? "z14" : "zEC12";
490 case 8561:
491 case 8562:
492 return HaveVectorSupport? "z15" : "zEC12";
493 case 3931:
494 case 3932:
495 return HaveVectorSupport? "z16" : "zEC12";
496 case 9175:
497 case 9176:
498 default:
499 return HaveVectorSupport? "z17" : "zEC12";
500 }
501}
502} // end anonymous namespace
503
505 // STIDP is a privileged operation, so use /proc/cpuinfo instead.
506
507 // The "processor 0:" line comes after a fair amount of other information,
508 // including a cache breakdown, but this should be plenty.
510 ProcCpuinfoContent.split(Lines, '\n');
511
512 // Look for the CPU features.
513 SmallVector<StringRef, 32> CPUFeatures;
514 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
515 if (Lines[I].starts_with("features")) {
516 size_t Pos = Lines[I].find(':');
517 if (Pos != StringRef::npos) {
518 Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
519 break;
520 }
521 }
522
523 // We need to check for the presence of vector support independently of
524 // the machine type, since we may only use the vector register set when
525 // supported by the kernel (and hypervisor).
526 bool HaveVectorSupport = false;
527 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
528 if (CPUFeatures[I] == "vx")
529 HaveVectorSupport = true;
530 }
531
532 // Now check the processor machine type.
533 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
534 if (Lines[I].starts_with("processor ")) {
535 size_t Pos = Lines[I].find("machine = ");
536 if (Pos != StringRef::npos) {
537 Pos += sizeof("machine = ") - 1;
538 unsigned int Id;
539 if (!Lines[I].drop_front(Pos).getAsInteger(10, Id))
540 return getCPUNameFromS390Model(Id, HaveVectorSupport);
541 }
542 break;
543 }
544 }
545
546 return "generic";
547}
548
550 // There are 24 lines in /proc/cpuinfo
552 ProcCpuinfoContent.split(Lines, '\n');
553
554 // Look for uarch line to determine cpu name
555 StringRef UArch;
556 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
557 if (Lines[I].starts_with("uarch")) {
558 UArch = Lines[I].substr(5).ltrim("\t :");
559 break;
560 }
561 }
562
563 return StringSwitch<const char *>(UArch)
564 .Case("eswin,eic770x", "sifive-p550")
565 .Case("sifive,u74-mc", "sifive-u74")
566 .Case("sifive,bullet0", "sifive-u74")
567 .Default("");
568}
569
571#if !defined(__linux__) || !defined(__x86_64__)
572 return "generic";
573#else
574 uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
575 /* BPF_MOV64_IMM(BPF_REG_0, 0) */
576 { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
577 /* BPF_MOV64_IMM(BPF_REG_2, 1) */
578 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
579 /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
580 0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
581 /* BPF_MOV64_IMM(BPF_REG_0, 1) */
582 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
583 /* BPF_EXIT_INSN() */
584 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
585
586 uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
587 /* BPF_MOV64_IMM(BPF_REG_0, 0) */
588 { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
589 /* BPF_MOV64_IMM(BPF_REG_2, 1) */
590 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
591 /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
592 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
593 /* BPF_MOV64_IMM(BPF_REG_0, 1) */
594 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
595 /* BPF_EXIT_INSN() */
596 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
597
598 struct bpf_prog_load_attr {
599 uint32_t prog_type;
600 uint32_t insn_cnt;
601 uint64_t insns;
602 uint64_t license;
603 uint32_t log_level;
604 uint32_t log_size;
605 uint64_t log_buf;
606 uint32_t kern_version;
607 uint32_t prog_flags;
608 } attr = {};
609 attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
610 attr.insn_cnt = 5;
611 attr.insns = (uint64_t)v3_insns;
612 attr.license = (uint64_t)"DUMMY";
613
614 int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
615 sizeof(attr));
616 if (fd >= 0) {
617 close(fd);
618 return "v3";
619 }
620
621 /* Clear the whole attr in case its content changed by syscall. */
622 memset(&attr, 0, sizeof(attr));
623 attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
624 attr.insn_cnt = 5;
625 attr.insns = (uint64_t)v2_insns;
626 attr.license = (uint64_t)"DUMMY";
627 fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
628 if (fd >= 0) {
629 close(fd);
630 return "v2";
631 }
632 return "v1";
633#endif
634}
635
636#if (defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
637 defined(_M_X64)) && \
638 !defined(_M_ARM64EC)
639
640/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
641/// the specified arguments. If we can't run cpuid on the host, return true.
642static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
643 unsigned *rECX, unsigned *rEDX) {
644#if (defined(__i386__) || defined(__x86_64__)) && !defined(_MSC_VER)
645 return !__get_cpuid(value, rEAX, rEBX, rECX, rEDX);
646#elif defined(_MSC_VER)
647 // The MSVC intrinsic is portable across x86 and x64.
648 int registers[4];
649 __cpuid(registers, value);
650 *rEAX = registers[0];
651 *rEBX = registers[1];
652 *rECX = registers[2];
653 *rEDX = registers[3];
654 return false;
655#else
656 return true;
657#endif
658}
659
660namespace llvm {
661namespace sys {
662namespace detail {
663namespace x86 {
664
665VendorSignatures getVendorSignature(unsigned *MaxLeaf) {
666 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
667 if (MaxLeaf == nullptr)
668 MaxLeaf = &EAX;
669 else
670 *MaxLeaf = 0;
671
672 if (getX86CpuIDAndInfo(0, MaxLeaf, &EBX, &ECX, &EDX) || *MaxLeaf < 1)
673 return VendorSignatures::UNKNOWN;
674
675 // "Genu ineI ntel"
676 if (EBX == 0x756e6547 && EDX == 0x49656e69 && ECX == 0x6c65746e)
677 return VendorSignatures::GENUINE_INTEL;
678
679 // "Auth enti cAMD"
680 if (EBX == 0x68747541 && EDX == 0x69746e65 && ECX == 0x444d4163)
681 return VendorSignatures::AUTHENTIC_AMD;
682
683 return VendorSignatures::UNKNOWN;
684}
685
686} // namespace x86
687} // namespace detail
688} // namespace sys
689} // namespace llvm
690
691using namespace llvm::sys::detail::x86;
692
693/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
694/// the 4 values in the specified arguments. If we can't run cpuid on the host,
695/// return true.
696static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
697 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
698 unsigned *rEDX) {
699 // TODO(boomanaiden154): When the minimum toolchain versions for gcc and clang
700 // are such that __cpuidex is defined within cpuid.h for both, we can remove
701 // the __get_cpuid_count function and share the MSVC implementation between
702 // all three.
703#if (defined(__i386__) || defined(__x86_64__)) && !defined(_MSC_VER)
704 return !__get_cpuid_count(value, subleaf, rEAX, rEBX, rECX, rEDX);
705#elif defined(_MSC_VER)
706 int registers[4];
707 __cpuidex(registers, value, subleaf);
708 *rEAX = registers[0];
709 *rEBX = registers[1];
710 *rECX = registers[2];
711 *rEDX = registers[3];
712 return false;
713#else
714 return true;
715#endif
716}
717
718// Read control register 0 (XCR0). Used to detect features such as AVX.
719static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
720 // TODO(boomanaiden154): When the minimum toolchain versions for gcc and clang
721 // are such that _xgetbv is supported by both, we can unify the implementation
722 // with MSVC and remove all inline assembly.
723#if defined(__GNUC__) || defined(__clang__)
724 // Check xgetbv; this uses a .byte sequence instead of the instruction
725 // directly because older assemblers do not include support for xgetbv and
726 // there is no easy way to conditionally compile based on the assembler used.
727 __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
728 return false;
729#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
730 unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
731 *rEAX = Result;
732 *rEDX = Result >> 32;
733 return false;
734#else
735 return true;
736#endif
737}
738
739static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
740 unsigned *Model) {
741 *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
742 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
743 if (*Family == 6 || *Family == 0xf) {
744 if (*Family == 0xf)
745 // Examine extended family ID if family ID is F.
746 *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
747 // Examine extended model ID if family ID is 6 or F.
748 *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
749 }
750}
751
752#define testFeature(F) (Features[F / 32] & (1 << (F % 32))) != 0
753
754static StringRef getIntelProcessorTypeAndSubtype(unsigned Family,
755 unsigned Model,
756 const unsigned *Features,
757 unsigned *Type,
758 unsigned *Subtype) {
759 StringRef CPU;
760
761 switch (Family) {
762 case 0x3:
763 CPU = "i386";
764 break;
765 case 0x4:
766 CPU = "i486";
767 break;
768 case 0x5:
769 if (testFeature(X86::FEATURE_MMX)) {
770 CPU = "pentium-mmx";
771 break;
772 }
773 CPU = "pentium";
774 break;
775 case 0x6:
776 switch (Model) {
777 case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
778 // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
779 // mobile processor, Intel Core 2 Extreme processor, Intel
780 // Pentium Dual-Core processor, Intel Xeon processor, model
781 // 0Fh. All processors are manufactured using the 65 nm process.
782 case 0x16: // Intel Celeron processor model 16h. All processors are
783 // manufactured using the 65 nm process
784 CPU = "core2";
785 *Type = X86::INTEL_CORE2;
786 break;
787 case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
788 // 17h. All processors are manufactured using the 45 nm process.
789 //
790 // 45nm: Penryn , Wolfdale, Yorkfield (XE)
791 case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
792 // the 45 nm process.
793 CPU = "penryn";
794 *Type = X86::INTEL_CORE2;
795 break;
796 case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
797 // processors are manufactured using the 45 nm process.
798 case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
799 // As found in a Summer 2010 model iMac.
800 case 0x1f:
801 case 0x2e: // Nehalem EX
802 CPU = "nehalem";
803 *Type = X86::INTEL_COREI7;
804 *Subtype = X86::INTEL_COREI7_NEHALEM;
805 break;
806 case 0x25: // Intel Core i7, laptop version.
807 case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
808 // processors are manufactured using the 32 nm process.
809 case 0x2f: // Westmere EX
810 CPU = "westmere";
811 *Type = X86::INTEL_COREI7;
812 *Subtype = X86::INTEL_COREI7_WESTMERE;
813 break;
814 case 0x2a: // Intel Core i7 processor. All processors are manufactured
815 // using the 32 nm process.
816 case 0x2d:
817 CPU = "sandybridge";
818 *Type = X86::INTEL_COREI7;
819 *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
820 break;
821 case 0x3a:
822 case 0x3e: // Ivy Bridge EP
823 CPU = "ivybridge";
824 *Type = X86::INTEL_COREI7;
825 *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
826 break;
827
828 // Haswell:
829 case 0x3c:
830 case 0x3f:
831 case 0x45:
832 case 0x46:
833 CPU = "haswell";
834 *Type = X86::INTEL_COREI7;
835 *Subtype = X86::INTEL_COREI7_HASWELL;
836 break;
837
838 // Broadwell:
839 case 0x3d:
840 case 0x47:
841 case 0x4f:
842 case 0x56:
843 CPU = "broadwell";
844 *Type = X86::INTEL_COREI7;
845 *Subtype = X86::INTEL_COREI7_BROADWELL;
846 break;
847
848 // Skylake:
849 case 0x4e: // Skylake mobile
850 case 0x5e: // Skylake desktop
851 case 0x8e: // Kaby Lake mobile
852 case 0x9e: // Kaby Lake desktop
853 case 0xa5: // Comet Lake-H/S
854 case 0xa6: // Comet Lake-U
855 CPU = "skylake";
856 *Type = X86::INTEL_COREI7;
857 *Subtype = X86::INTEL_COREI7_SKYLAKE;
858 break;
859
860 // Rocketlake:
861 case 0xa7:
862 CPU = "rocketlake";
863 *Type = X86::INTEL_COREI7;
864 *Subtype = X86::INTEL_COREI7_ROCKETLAKE;
865 break;
866
867 // Skylake Xeon:
868 case 0x55:
869 *Type = X86::INTEL_COREI7;
870 if (testFeature(X86::FEATURE_AVX512BF16)) {
871 CPU = "cooperlake";
872 *Subtype = X86::INTEL_COREI7_COOPERLAKE;
873 } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
874 CPU = "cascadelake";
875 *Subtype = X86::INTEL_COREI7_CASCADELAKE;
876 } else {
877 CPU = "skylake-avx512";
878 *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
879 }
880 break;
881
882 // Cannonlake:
883 case 0x66:
884 CPU = "cannonlake";
885 *Type = X86::INTEL_COREI7;
886 *Subtype = X86::INTEL_COREI7_CANNONLAKE;
887 break;
888
889 // Icelake:
890 case 0x7d:
891 case 0x7e:
892 CPU = "icelake-client";
893 *Type = X86::INTEL_COREI7;
894 *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
895 break;
896
897 // Tigerlake:
898 case 0x8c:
899 case 0x8d:
900 CPU = "tigerlake";
901 *Type = X86::INTEL_COREI7;
902 *Subtype = X86::INTEL_COREI7_TIGERLAKE;
903 break;
904
905 // Alderlake:
906 case 0x97:
907 case 0x9a:
908 CPU = "alderlake";
909 *Type = X86::INTEL_COREI7;
910 *Subtype = X86::INTEL_COREI7_ALDERLAKE;
911 break;
912
913 // Gracemont
914 case 0xbe:
915 CPU = "gracemont";
916 *Type = X86::INTEL_COREI7;
917 *Subtype = X86::INTEL_COREI7_ALDERLAKE;
918 break;
919
920 // Raptorlake:
921 case 0xb7:
922 case 0xba:
923 case 0xbf:
924 CPU = "raptorlake";
925 *Type = X86::INTEL_COREI7;
926 *Subtype = X86::INTEL_COREI7_ALDERLAKE;
927 break;
928
929 // Meteorlake:
930 case 0xaa:
931 case 0xac:
932 CPU = "meteorlake";
933 *Type = X86::INTEL_COREI7;
934 *Subtype = X86::INTEL_COREI7_ALDERLAKE;
935 break;
936
937 // Arrowlake:
938 case 0xc5:
939 // Arrowlake U:
940 case 0xb5:
941 CPU = "arrowlake";
942 *Type = X86::INTEL_COREI7;
943 *Subtype = X86::INTEL_COREI7_ARROWLAKE;
944 break;
945
946 // Arrowlake S:
947 case 0xc6:
948 CPU = "arrowlake-s";
949 *Type = X86::INTEL_COREI7;
950 *Subtype = X86::INTEL_COREI7_ARROWLAKE_S;
951 break;
952
953 // Lunarlake:
954 case 0xbd:
955 CPU = "lunarlake";
956 *Type = X86::INTEL_COREI7;
957 *Subtype = X86::INTEL_COREI7_ARROWLAKE_S;
958 break;
959
960 // Pantherlake:
961 case 0xcc:
962 CPU = "pantherlake";
963 *Type = X86::INTEL_COREI7;
964 *Subtype = X86::INTEL_COREI7_PANTHERLAKE;
965 break;
966
967 // Wildcatlake:
968 case 0xd5:
969 CPU = "wildcatlake";
970 *Type = X86::INTEL_COREI7;
971 *Subtype = X86::INTEL_COREI7_PANTHERLAKE;
972 break;
973
974 // Graniterapids:
975 case 0xad:
976 CPU = "graniterapids";
977 *Type = X86::INTEL_COREI7;
978 *Subtype = X86::INTEL_COREI7_GRANITERAPIDS;
979 break;
980
981 // Granite Rapids D:
982 case 0xae:
983 CPU = "graniterapids-d";
984 *Type = X86::INTEL_COREI7;
985 *Subtype = X86::INTEL_COREI7_GRANITERAPIDS_D;
986 break;
987
988 // Icelake Xeon:
989 case 0x6a:
990 case 0x6c:
991 CPU = "icelake-server";
992 *Type = X86::INTEL_COREI7;
993 *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER;
994 break;
995
996 // Emerald Rapids:
997 case 0xcf:
998 CPU = "emeraldrapids";
999 *Type = X86::INTEL_COREI7;
1000 *Subtype = X86::INTEL_COREI7_SAPPHIRERAPIDS;
1001 break;
1002
1003 // Sapphire Rapids:
1004 case 0x8f:
1005 CPU = "sapphirerapids";
1006 *Type = X86::INTEL_COREI7;
1007 *Subtype = X86::INTEL_COREI7_SAPPHIRERAPIDS;
1008 break;
1009
1010 case 0x1c: // Most 45 nm Intel Atom processors
1011 case 0x26: // 45 nm Atom Lincroft
1012 case 0x27: // 32 nm Atom Medfield
1013 case 0x35: // 32 nm Atom Midview
1014 case 0x36: // 32 nm Atom Midview
1015 CPU = "bonnell";
1016 *Type = X86::INTEL_BONNELL;
1017 break;
1018
1019 // Atom Silvermont codes from the Intel software optimization guide.
1020 case 0x37:
1021 case 0x4a:
1022 case 0x4d:
1023 case 0x5a:
1024 case 0x5d:
1025 case 0x4c: // really airmont
1026 CPU = "silvermont";
1027 *Type = X86::INTEL_SILVERMONT;
1028 break;
1029 // Goldmont:
1030 case 0x5c: // Apollo Lake
1031 case 0x5f: // Denverton
1032 CPU = "goldmont";
1033 *Type = X86::INTEL_GOLDMONT;
1034 break;
1035 case 0x7a:
1036 CPU = "goldmont-plus";
1037 *Type = X86::INTEL_GOLDMONT_PLUS;
1038 break;
1039 case 0x86:
1040 case 0x8a: // Lakefield
1041 case 0x96: // Elkhart Lake
1042 case 0x9c: // Jasper Lake
1043 CPU = "tremont";
1044 *Type = X86::INTEL_TREMONT;
1045 break;
1046
1047 // Sierraforest:
1048 case 0xaf:
1049 CPU = "sierraforest";
1050 *Type = X86::INTEL_SIERRAFOREST;
1051 break;
1052
1053 // Grandridge:
1054 case 0xb6:
1055 CPU = "grandridge";
1056 *Type = X86::INTEL_GRANDRIDGE;
1057 break;
1058
1059 // Clearwaterforest:
1060 case 0xdd:
1061 CPU = "clearwaterforest";
1062 *Type = X86::INTEL_CLEARWATERFOREST;
1063 break;
1064
1065 // Xeon Phi (Knights Landing + Knights Mill):
1066 case 0x57:
1067 CPU = "knl";
1068 *Type = X86::INTEL_KNL;
1069 break;
1070 case 0x85:
1071 CPU = "knm";
1072 *Type = X86::INTEL_KNM;
1073 break;
1074
1075 default: // Unknown family 6 CPU, try to guess.
1076 // Don't both with Type/Subtype here, they aren't used by the caller.
1077 // They're used above to keep the code in sync with compiler-rt.
1078 // TODO detect tigerlake host from model
1079 if (testFeature(X86::FEATURE_AVX512VP2INTERSECT)) {
1080 CPU = "tigerlake";
1081 } else if (testFeature(X86::FEATURE_AVX512VBMI2)) {
1082 CPU = "icelake-client";
1083 } else if (testFeature(X86::FEATURE_AVX512VBMI)) {
1084 CPU = "cannonlake";
1085 } else if (testFeature(X86::FEATURE_AVX512BF16)) {
1086 CPU = "cooperlake";
1087 } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
1088 CPU = "cascadelake";
1089 } else if (testFeature(X86::FEATURE_AVX512VL)) {
1090 CPU = "skylake-avx512";
1091 } else if (testFeature(X86::FEATURE_CLFLUSHOPT)) {
1092 if (testFeature(X86::FEATURE_SHA))
1093 CPU = "goldmont";
1094 else
1095 CPU = "skylake";
1096 } else if (testFeature(X86::FEATURE_ADX)) {
1097 CPU = "broadwell";
1098 } else if (testFeature(X86::FEATURE_AVX2)) {
1099 CPU = "haswell";
1100 } else if (testFeature(X86::FEATURE_AVX)) {
1101 CPU = "sandybridge";
1102 } else if (testFeature(X86::FEATURE_SSE4_2)) {
1103 if (testFeature(X86::FEATURE_MOVBE))
1104 CPU = "silvermont";
1105 else
1106 CPU = "nehalem";
1107 } else if (testFeature(X86::FEATURE_SSE4_1)) {
1108 CPU = "penryn";
1109 } else if (testFeature(X86::FEATURE_SSSE3)) {
1110 if (testFeature(X86::FEATURE_MOVBE))
1111 CPU = "bonnell";
1112 else
1113 CPU = "core2";
1114 } else if (testFeature(X86::FEATURE_64BIT)) {
1115 CPU = "core2";
1116 } else if (testFeature(X86::FEATURE_SSE3)) {
1117 CPU = "yonah";
1118 } else if (testFeature(X86::FEATURE_SSE2)) {
1119 CPU = "pentium-m";
1120 } else if (testFeature(X86::FEATURE_SSE)) {
1121 CPU = "pentium3";
1122 } else if (testFeature(X86::FEATURE_MMX)) {
1123 CPU = "pentium2";
1124 } else {
1125 CPU = "pentiumpro";
1126 }
1127 break;
1128 }
1129 break;
1130 case 0xf: {
1131 if (testFeature(X86::FEATURE_64BIT)) {
1132 CPU = "nocona";
1133 break;
1134 }
1135 if (testFeature(X86::FEATURE_SSE3)) {
1136 CPU = "prescott";
1137 break;
1138 }
1139 CPU = "pentium4";
1140 break;
1141 }
1142 case 0x13:
1143 switch (Model) {
1144 // Diamond Rapids:
1145 case 0x01:
1146 CPU = "diamondrapids";
1147 *Type = X86::INTEL_COREI7;
1148 *Subtype = X86::INTEL_COREI7_DIAMONDRAPIDS;
1149 break;
1150
1151 default: // Unknown family 19 CPU.
1152 break;
1153 }
1154 break;
1155 default:
1156 break; // Unknown.
1157 }
1158
1159 return CPU;
1160}
1161
1162static const char *getAMDProcessorTypeAndSubtype(unsigned Family,
1163 unsigned Model,
1164 const unsigned *Features,
1165 unsigned *Type,
1166 unsigned *Subtype) {
1167 const char *CPU = 0;
1168
1169 switch (Family) {
1170 case 4:
1171 CPU = "i486";
1172 break;
1173 case 5:
1174 CPU = "pentium";
1175 switch (Model) {
1176 case 6:
1177 case 7:
1178 CPU = "k6";
1179 break;
1180 case 8:
1181 CPU = "k6-2";
1182 break;
1183 case 9:
1184 case 13:
1185 CPU = "k6-3";
1186 break;
1187 case 10:
1188 CPU = "geode";
1189 break;
1190 }
1191 break;
1192 case 6:
1193 if (testFeature(X86::FEATURE_SSE)) {
1194 CPU = "athlon-xp";
1195 break;
1196 }
1197 CPU = "athlon";
1198 break;
1199 case 15:
1200 if (testFeature(X86::FEATURE_SSE3)) {
1201 CPU = "k8-sse3";
1202 break;
1203 }
1204 CPU = "k8";
1205 break;
1206 case 16:
1207 case 18:
1208 CPU = "amdfam10";
1209 *Type = X86::AMDFAM10H; // "amdfam10"
1210 switch (Model) {
1211 case 2:
1212 *Subtype = X86::AMDFAM10H_BARCELONA;
1213 break;
1214 case 4:
1215 *Subtype = X86::AMDFAM10H_SHANGHAI;
1216 break;
1217 case 8:
1218 *Subtype = X86::AMDFAM10H_ISTANBUL;
1219 break;
1220 }
1221 break;
1222 case 20:
1223 CPU = "btver1";
1224 *Type = X86::AMD_BTVER1;
1225 break;
1226 case 21:
1227 CPU = "bdver1";
1228 *Type = X86::AMDFAM15H;
1229 if (Model >= 0x60 && Model <= 0x7f) {
1230 CPU = "bdver4";
1231 *Subtype = X86::AMDFAM15H_BDVER4;
1232 break; // 60h-7Fh: Excavator
1233 }
1234 if (Model >= 0x30 && Model <= 0x3f) {
1235 CPU = "bdver3";
1236 *Subtype = X86::AMDFAM15H_BDVER3;
1237 break; // 30h-3Fh: Steamroller
1238 }
1239 if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
1240 CPU = "bdver2";
1241 *Subtype = X86::AMDFAM15H_BDVER2;
1242 break; // 02h, 10h-1Fh: Piledriver
1243 }
1244 if (Model <= 0x0f) {
1245 *Subtype = X86::AMDFAM15H_BDVER1;
1246 break; // 00h-0Fh: Bulldozer
1247 }
1248 break;
1249 case 22:
1250 CPU = "btver2";
1251 *Type = X86::AMD_BTVER2;
1252 break;
1253 case 23:
1254 CPU = "znver1";
1255 *Type = X86::AMDFAM17H;
1256 if ((Model >= 0x30 && Model <= 0x3f) || (Model == 0x47) ||
1257 (Model >= 0x60 && Model <= 0x67) || (Model >= 0x68 && Model <= 0x6f) ||
1258 (Model >= 0x70 && Model <= 0x7f) || (Model >= 0x84 && Model <= 0x87) ||
1259 (Model >= 0x90 && Model <= 0x97) || (Model >= 0x98 && Model <= 0x9f) ||
1260 (Model >= 0xa0 && Model <= 0xaf)) {
1261 // Family 17h Models 30h-3Fh (Starship) Zen 2
1262 // Family 17h Models 47h (Cardinal) Zen 2
1263 // Family 17h Models 60h-67h (Renoir) Zen 2
1264 // Family 17h Models 68h-6Fh (Lucienne) Zen 2
1265 // Family 17h Models 70h-7Fh (Matisse) Zen 2
1266 // Family 17h Models 84h-87h (ProjectX) Zen 2
1267 // Family 17h Models 90h-97h (VanGogh) Zen 2
1268 // Family 17h Models 98h-9Fh (Mero) Zen 2
1269 // Family 17h Models A0h-AFh (Mendocino) Zen 2
1270 CPU = "znver2";
1271 *Subtype = X86::AMDFAM17H_ZNVER2;
1272 break;
1273 }
1274 if ((Model >= 0x10 && Model <= 0x1f) || (Model >= 0x20 && Model <= 0x2f)) {
1275 // Family 17h Models 10h-1Fh (Raven1) Zen
1276 // Family 17h Models 10h-1Fh (Picasso) Zen+
1277 // Family 17h Models 20h-2Fh (Raven2 x86) Zen
1278 *Subtype = X86::AMDFAM17H_ZNVER1;
1279 break;
1280 }
1281 break;
1282 case 25:
1283 CPU = "znver3";
1284 *Type = X86::AMDFAM19H;
1285 if (Model <= 0x0f || (Model >= 0x20 && Model <= 0x2f) ||
1286 (Model >= 0x30 && Model <= 0x3f) || (Model >= 0x40 && Model <= 0x4f) ||
1287 (Model >= 0x50 && Model <= 0x5f)) {
1288 // Family 19h Models 00h-0Fh (Genesis, Chagall) Zen 3
1289 // Family 19h Models 20h-2Fh (Vermeer) Zen 3
1290 // Family 19h Models 30h-3Fh (Badami) Zen 3
1291 // Family 19h Models 40h-4Fh (Rembrandt) Zen 3+
1292 // Family 19h Models 50h-5Fh (Cezanne) Zen 3
1293 *Subtype = X86::AMDFAM19H_ZNVER3;
1294 break;
1295 }
1296 if ((Model >= 0x10 && Model <= 0x1f) || (Model >= 0x60 && Model <= 0x6f) ||
1297 (Model >= 0x70 && Model <= 0x77) || (Model >= 0x78 && Model <= 0x7f) ||
1298 (Model >= 0xa0 && Model <= 0xaf)) {
1299 // Family 19h Models 10h-1Fh (Stones; Storm Peak) Zen 4
1300 // Family 19h Models 60h-6Fh (Raphael) Zen 4
1301 // Family 19h Models 70h-77h (Phoenix, Hawkpoint1) Zen 4
1302 // Family 19h Models 78h-7Fh (Phoenix 2, Hawkpoint2) Zen 4
1303 // Family 19h Models A0h-AFh (Stones-Dense) Zen 4
1304 CPU = "znver4";
1305 *Subtype = X86::AMDFAM19H_ZNVER4;
1306 break; // "znver4"
1307 }
1308 break; // family 19h
1309 case 26:
1310 CPU = "znver5";
1311 *Type = X86::AMDFAM1AH;
1312 if (Model <= 0x4f || (Model >= 0x60 && Model <= 0x77) ||
1313 (Model >= 0xd0 && Model <= 0xd7)) {
1314 // Models 00h-0Fh (Breithorn).
1315 // Models 10h-1Fh (Breithorn-Dense).
1316 // Models 20h-2Fh (Strix 1).
1317 // Models 30h-37h (Strix 2).
1318 // Models 38h-3Fh (Strix 3).
1319 // Models 40h-4Fh (Granite Ridge).
1320 // Models 60h-6Fh (Krackan1).
1321 // Models 70h-77h (Sarlak).
1322 // Models D0h-D7h (Annapurna).
1323 CPU = "znver5";
1324 *Subtype = X86::AMDFAM1AH_ZNVER5;
1325 break; // "znver5"
1326 }
1327 break;
1328
1329 default:
1330 break; // Unknown AMD CPU.
1331 }
1332
1333 return CPU;
1334}
1335
1336#undef testFeature
1337
1338static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
1339 unsigned *Features) {
1340 unsigned EAX, EBX;
1341
1342 auto setFeature = [&](unsigned F) {
1343 Features[F / 32] |= 1U << (F % 32);
1344 };
1345
1346 if ((EDX >> 15) & 1)
1347 setFeature(X86::FEATURE_CMOV);
1348 if ((EDX >> 23) & 1)
1349 setFeature(X86::FEATURE_MMX);
1350 if ((EDX >> 25) & 1)
1351 setFeature(X86::FEATURE_SSE);
1352 if ((EDX >> 26) & 1)
1353 setFeature(X86::FEATURE_SSE2);
1354
1355 if ((ECX >> 0) & 1)
1356 setFeature(X86::FEATURE_SSE3);
1357 if ((ECX >> 1) & 1)
1358 setFeature(X86::FEATURE_PCLMUL);
1359 if ((ECX >> 9) & 1)
1360 setFeature(X86::FEATURE_SSSE3);
1361 if ((ECX >> 12) & 1)
1362 setFeature(X86::FEATURE_FMA);
1363 if ((ECX >> 19) & 1)
1364 setFeature(X86::FEATURE_SSE4_1);
1365 if ((ECX >> 20) & 1) {
1366 setFeature(X86::FEATURE_SSE4_2);
1367 setFeature(X86::FEATURE_CRC32);
1368 }
1369 if ((ECX >> 23) & 1)
1370 setFeature(X86::FEATURE_POPCNT);
1371 if ((ECX >> 25) & 1)
1372 setFeature(X86::FEATURE_AES);
1373
1374 if ((ECX >> 22) & 1)
1375 setFeature(X86::FEATURE_MOVBE);
1376
1377 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1378 // indicates that the AVX registers will be saved and restored on context
1379 // switch, then we have full AVX support.
1380 const unsigned AVXBits = (1 << 27) | (1 << 28);
1381 bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
1382 ((EAX & 0x6) == 0x6);
1383#if defined(__APPLE__)
1384 // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1385 // save the AVX512 context if we use AVX512 instructions, even the bit is not
1386 // set right now.
1387 bool HasAVX512Save = true;
1388#else
1389 // AVX512 requires additional context to be saved by the OS.
1390 bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
1391#endif
1392
1393 if (HasAVX)
1394 setFeature(X86::FEATURE_AVX);
1395
1396 bool HasLeaf7 =
1397 MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1398
1399 if (HasLeaf7 && ((EBX >> 3) & 1))
1400 setFeature(X86::FEATURE_BMI);
1401 if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
1402 setFeature(X86::FEATURE_AVX2);
1403 if (HasLeaf7 && ((EBX >> 8) & 1))
1404 setFeature(X86::FEATURE_BMI2);
1405 if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) {
1406 setFeature(X86::FEATURE_AVX512F);
1407 }
1408 if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
1409 setFeature(X86::FEATURE_AVX512DQ);
1410 if (HasLeaf7 && ((EBX >> 19) & 1))
1411 setFeature(X86::FEATURE_ADX);
1412 if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
1413 setFeature(X86::FEATURE_AVX512IFMA);
1414 if (HasLeaf7 && ((EBX >> 23) & 1))
1415 setFeature(X86::FEATURE_CLFLUSHOPT);
1416 if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
1417 setFeature(X86::FEATURE_AVX512CD);
1418 if (HasLeaf7 && ((EBX >> 29) & 1))
1419 setFeature(X86::FEATURE_SHA);
1420 if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
1421 setFeature(X86::FEATURE_AVX512BW);
1422 if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
1423 setFeature(X86::FEATURE_AVX512VL);
1424
1425 if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
1426 setFeature(X86::FEATURE_AVX512VBMI);
1427 if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
1428 setFeature(X86::FEATURE_AVX512VBMI2);
1429 if (HasLeaf7 && ((ECX >> 8) & 1))
1430 setFeature(X86::FEATURE_GFNI);
1431 if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
1432 setFeature(X86::FEATURE_VPCLMULQDQ);
1433 if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
1434 setFeature(X86::FEATURE_AVX512VNNI);
1435 if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
1436 setFeature(X86::FEATURE_AVX512BITALG);
1437 if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
1438 setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
1439
1440 if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
1441 setFeature(X86::FEATURE_AVX5124VNNIW);
1442 if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
1443 setFeature(X86::FEATURE_AVX5124FMAPS);
1444 if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
1445 setFeature(X86::FEATURE_AVX512VP2INTERSECT);
1446
1447 // EAX from subleaf 0 is the maximum subleaf supported. Some CPUs don't
1448 // return all 0s for invalid subleaves so check the limit.
1449 bool HasLeaf7Subleaf1 =
1450 HasLeaf7 && EAX >= 1 &&
1451 !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1452 if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
1453 setFeature(X86::FEATURE_AVX512BF16);
1454
1455 unsigned MaxExtLevel;
1456 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1457
1458 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1459 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1460 if (HasExtLeaf1 && ((ECX >> 6) & 1))
1461 setFeature(X86::FEATURE_SSE4_A);
1462 if (HasExtLeaf1 && ((ECX >> 11) & 1))
1463 setFeature(X86::FEATURE_XOP);
1464 if (HasExtLeaf1 && ((ECX >> 16) & 1))
1465 setFeature(X86::FEATURE_FMA4);
1466
1467 if (HasExtLeaf1 && ((EDX >> 29) & 1))
1468 setFeature(X86::FEATURE_64BIT);
1469}
1470
1472 unsigned MaxLeaf = 0;
1473 const VendorSignatures Vendor = getVendorSignature(&MaxLeaf);
1474 if (Vendor == VendorSignatures::UNKNOWN)
1475 return "generic";
1476
1477 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1478 getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
1479
1480 unsigned Family = 0, Model = 0;
1481 unsigned Features[(X86::CPU_FEATURE_MAX + 31) / 32] = {0};
1482 detectX86FamilyModel(EAX, &Family, &Model);
1483 getAvailableFeatures(ECX, EDX, MaxLeaf, Features);
1484
1485 // These aren't consumed in this file, but we try to keep some source code the
1486 // same or similar to compiler-rt.
1487 unsigned Type = 0;
1488 unsigned Subtype = 0;
1489
1490 StringRef CPU;
1491
1492 if (Vendor == VendorSignatures::GENUINE_INTEL) {
1493 CPU = getIntelProcessorTypeAndSubtype(Family, Model, Features, &Type,
1494 &Subtype);
1495 } else if (Vendor == VendorSignatures::AUTHENTIC_AMD) {
1496 CPU = getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type,
1497 &Subtype);
1498 }
1499
1500 if (!CPU.empty())
1501 return CPU;
1502
1503 return "generic";
1504}
1505
1506#elif defined(_M_ARM64) || defined(_M_ARM64EC)
1507
1509 constexpr char CentralProcessorKeyName[] =
1510 "HARDWARE\\DESCRIPTION\\System\\CentralProcessor";
1511 // Sub keys names are simple numbers ("0", "1", etc.) so 10 chars should be
1512 // enough for the slash and name.
1513 constexpr size_t SubKeyNameMaxSize = ARRAYSIZE(CentralProcessorKeyName) + 10;
1514
1515 SmallVector<uint64_t> Values;
1516 uint64_t PrimaryCpuInfo;
1517 char PrimaryPartKeyName[SubKeyNameMaxSize];
1518 DWORD PrimaryPartKeyNameSize = 0;
1519 HKEY CentralProcessorKey;
1520 if (RegOpenKeyExA(HKEY_LOCAL_MACHINE, CentralProcessorKeyName, 0, KEY_READ,
1521 &CentralProcessorKey) == ERROR_SUCCESS) {
1522 for (unsigned Index = 0; Index < UINT32_MAX; ++Index) {
1523 char SubKeyName[SubKeyNameMaxSize];
1524 DWORD SubKeySize = SubKeyNameMaxSize;
1525 HKEY SubKey;
1526 if ((RegEnumKeyExA(CentralProcessorKey, Index, SubKeyName, &SubKeySize,
1527 nullptr, nullptr, nullptr,
1528 nullptr) == ERROR_SUCCESS) &&
1529 (RegOpenKeyExA(CentralProcessorKey, SubKeyName, 0, KEY_READ,
1530 &SubKey) == ERROR_SUCCESS)) {
1531 // The "CP 4000" registry key contains a cached copy of the MIDR_EL1
1532 // register.
1533 uint64_t RegValue;
1534 DWORD ActualType;
1535 DWORD RegValueSize = sizeof(RegValue);
1536 if ((RegQueryValueExA(SubKey, "CP 4000", nullptr, &ActualType,
1537 (PBYTE)&RegValue,
1538 &RegValueSize) == ERROR_SUCCESS) &&
1539 (ActualType == REG_QWORD) && RegValueSize == sizeof(RegValue)) {
1540 // Assume that the part with the "highest" reg key name is the primary
1541 // part (to match the way that Linux's cpuinfo is written). Win32
1542 // makes no guarantees about the order of sub keys, so we have to
1543 // compare the names.
1544 if (PrimaryPartKeyNameSize < SubKeySize ||
1545 (PrimaryPartKeyNameSize == SubKeySize &&
1546 ::memcmp(SubKeyName, PrimaryPartKeyName, SubKeySize) > 0)) {
1547 PrimaryCpuInfo = RegValue;
1548 ::memcpy(PrimaryPartKeyName, SubKeyName, SubKeySize + 1);
1549 PrimaryPartKeyNameSize = SubKeySize;
1550 }
1551 if (!llvm::is_contained(Values, RegValue)) {
1552 Values.push_back(RegValue);
1553 }
1554 }
1555 RegCloseKey(SubKey);
1556 } else {
1557 // No more sub keys.
1558 break;
1559 }
1560 }
1561 RegCloseKey(CentralProcessorKey);
1562 }
1563
1564 if (Values.empty()) {
1565 return "generic";
1566 }
1567
1568 // Win32 makes no guarantees about the order of sub keys, so sort to ensure
1569 // reproducibility.
1570 llvm::sort(Values);
1571
1572 return detail::getHostCPUNameForARM(PrimaryCpuInfo, Values);
1573}
1574
1575#elif defined(__APPLE__) && defined(__powerpc__)
1577 host_basic_info_data_t hostInfo;
1578 mach_msg_type_number_t infoCount;
1579
1580 infoCount = HOST_BASIC_INFO_COUNT;
1581 mach_port_t hostPort = mach_host_self();
1582 host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1583 &infoCount);
1584 mach_port_deallocate(mach_task_self(), hostPort);
1585
1586 if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1587 return "generic";
1588
1589 switch (hostInfo.cpu_subtype) {
1591 return "601";
1593 return "602";
1595 return "603";
1597 return "603e";
1599 return "603ev";
1601 return "604";
1603 return "604e";
1605 return "620";
1607 return "750";
1609 return "7400";
1611 return "7450";
1613 return "970";
1614 default:;
1615 }
1616
1617 return "generic";
1618}
1619#elif defined(__linux__) && defined(__powerpc__)
1621 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1622 StringRef Content = P ? P->getBuffer() : "";
1623 return detail::getHostCPUNameForPowerPC(Content);
1624}
1625#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1627 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1628 StringRef Content = P ? P->getBuffer() : "";
1629 return detail::getHostCPUNameForARM(Content);
1630}
1631#elif defined(__linux__) && defined(__s390x__)
1633 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1634 StringRef Content = P ? P->getBuffer() : "";
1635 return detail::getHostCPUNameForS390x(Content);
1636}
1637#elif defined(__MVS__)
1639 // Get pointer to Communications Vector Table (CVT).
1640 // The pointer is located at offset 16 of the Prefixed Save Area (PSA).
1641 // It is stored as 31 bit pointer and will be zero-extended to 64 bit.
1642 int *StartToCVTOffset = reinterpret_cast<int *>(0x10);
1643 // Since its stored as a 31-bit pointer, get the 4 bytes from the start
1644 // of address.
1645 int ReadValue = *StartToCVTOffset;
1646 // Explicitly clear the high order bit.
1647 ReadValue = (ReadValue & 0x7FFFFFFF);
1648 char *CVT = reinterpret_cast<char *>(ReadValue);
1649 // The model number is located in the CVT prefix at offset -6 and stored as
1650 // signless packed decimal.
1651 uint16_t Id = *(uint16_t *)&CVT[-6];
1652 // Convert number to integer.
1653 Id = decodePackedBCD<uint16_t>(Id, false);
1654 // Check for vector support. It's stored in field CVTFLAG5 (offset 244),
1655 // bit CVTVEF (X'80'). The facilities list is part of the PSA but the vector
1656 // extension can only be used if bit CVTVEF is on.
1657 bool HaveVectorSupport = CVT[244] & 0x80;
1658 return getCPUNameFromS390Model(Id, HaveVectorSupport);
1659}
1660#elif defined(__APPLE__) && (defined(__arm__) || defined(__aarch64__))
1661// Copied from <mach/machine.h> in the macOS SDK.
1662//
1663// Also available here, though usually not as up-to-date:
1664// https://github.com/apple-oss-distributions/xnu/blob/xnu-11215.41.3/osfmk/mach/machine.h#L403-L452.
1665#define CPUFAMILY_UNKNOWN 0
1666#define CPUFAMILY_ARM_9 0xe73283ae
1667#define CPUFAMILY_ARM_11 0x8ff620d8
1668#define CPUFAMILY_ARM_XSCALE 0x53b005f5
1669#define CPUFAMILY_ARM_12 0xbd1b0ae9
1670#define CPUFAMILY_ARM_13 0x0cc90e64
1671#define CPUFAMILY_ARM_14 0x96077ef1
1672#define CPUFAMILY_ARM_15 0xa8511bca
1673#define CPUFAMILY_ARM_SWIFT 0x1e2d6381
1674#define CPUFAMILY_ARM_CYCLONE 0x37a09642
1675#define CPUFAMILY_ARM_TYPHOON 0x2c91a47e
1676#define CPUFAMILY_ARM_TWISTER 0x92fb37c8
1677#define CPUFAMILY_ARM_HURRICANE 0x67ceee93
1678#define CPUFAMILY_ARM_MONSOON_MISTRAL 0xe81e7ef6
1679#define CPUFAMILY_ARM_VORTEX_TEMPEST 0x07d34b9f
1680#define CPUFAMILY_ARM_LIGHTNING_THUNDER 0x462504d2
1681#define CPUFAMILY_ARM_FIRESTORM_ICESTORM 0x1b588bb3
1682#define CPUFAMILY_ARM_BLIZZARD_AVALANCHE 0xda33d83d
1683#define CPUFAMILY_ARM_EVEREST_SAWTOOTH 0x8765edea
1684#define CPUFAMILY_ARM_IBIZA 0xfa33415e
1685#define CPUFAMILY_ARM_PALMA 0x72015832
1686#define CPUFAMILY_ARM_COLL 0x2876f5b5
1687#define CPUFAMILY_ARM_LOBOS 0x5f4dea93
1688#define CPUFAMILY_ARM_DONAN 0x6f5129ac
1689#define CPUFAMILY_ARM_BRAVA 0x17d5b93a
1690#define CPUFAMILY_ARM_TAHITI 0x75d4acb9
1691#define CPUFAMILY_ARM_TUPAI 0x204526d0
1692
1694 uint32_t Family;
1695 size_t Length = sizeof(Family);
1696 sysctlbyname("hw.cpufamily", &Family, &Length, NULL, 0);
1697
1698 // This is found by testing on actual hardware, and by looking at:
1699 // https://github.com/apple-oss-distributions/xnu/blob/xnu-11215.41.3/osfmk/arm/cpuid.c#L109-L231.
1700 //
1701 // Another great resource is
1702 // https://github.com/AsahiLinux/docs/wiki/Codenames.
1703 //
1704 // NOTE: We choose to return `apple-mX` instead of `apple-aX`, since the M1,
1705 // M2, M3 etc. aliases are more widely known to users than A14, A15, A16 etc.
1706 // (and this code is basically only used on host macOS anyways).
1707 switch (Family) {
1708 case CPUFAMILY_UNKNOWN:
1709 return "generic";
1710 case CPUFAMILY_ARM_9:
1711 return "arm920t"; // or arm926ej-s
1712 case CPUFAMILY_ARM_11:
1713 return "arm1136jf-s";
1714 case CPUFAMILY_ARM_XSCALE:
1715 return "xscale";
1716 case CPUFAMILY_ARM_12: // Seems unused by the kernel
1717 return "generic";
1718 case CPUFAMILY_ARM_13:
1719 return "cortex-a8";
1720 case CPUFAMILY_ARM_14:
1721 return "cortex-a9";
1722 case CPUFAMILY_ARM_15:
1723 return "cortex-a7";
1724 case CPUFAMILY_ARM_SWIFT:
1725 return "swift";
1726 case CPUFAMILY_ARM_CYCLONE:
1727 return "apple-a7";
1728 case CPUFAMILY_ARM_TYPHOON:
1729 return "apple-a8";
1730 case CPUFAMILY_ARM_TWISTER:
1731 return "apple-a9";
1732 case CPUFAMILY_ARM_HURRICANE:
1733 return "apple-a10";
1734 case CPUFAMILY_ARM_MONSOON_MISTRAL:
1735 return "apple-a11";
1736 case CPUFAMILY_ARM_VORTEX_TEMPEST:
1737 return "apple-a12";
1738 case CPUFAMILY_ARM_LIGHTNING_THUNDER:
1739 return "apple-a13";
1740 case CPUFAMILY_ARM_FIRESTORM_ICESTORM: // A14 / M1
1741 return "apple-m1";
1742 case CPUFAMILY_ARM_BLIZZARD_AVALANCHE: // A15 / M2
1743 return "apple-m2";
1744 case CPUFAMILY_ARM_EVEREST_SAWTOOTH: // A16
1745 case CPUFAMILY_ARM_IBIZA: // M3
1746 case CPUFAMILY_ARM_PALMA: // M3 Max
1747 case CPUFAMILY_ARM_LOBOS: // M3 Pro
1748 return "apple-m3";
1749 case CPUFAMILY_ARM_COLL: // A17 Pro
1750 return "apple-a17";
1751 case CPUFAMILY_ARM_DONAN: // M4
1752 case CPUFAMILY_ARM_BRAVA: // M4 Max
1753 case CPUFAMILY_ARM_TAHITI: // A18 Pro
1754 case CPUFAMILY_ARM_TUPAI: // A18
1755 return "apple-m4";
1756 default:
1757 // Default to the newest CPU we know about.
1758 return "apple-m4";
1759 }
1760}
1761#elif defined(_AIX)
1763 switch (_system_configuration.implementation) {
1764 case POWER_4:
1765 if (_system_configuration.version == PV_4_3)
1766 return "970";
1767 return "pwr4";
1768 case POWER_5:
1769 if (_system_configuration.version == PV_5)
1770 return "pwr5";
1771 return "pwr5x";
1772 case POWER_6:
1773 if (_system_configuration.version == PV_6_Compat)
1774 return "pwr6";
1775 return "pwr6x";
1776 case POWER_7:
1777 return "pwr7";
1778 case POWER_8:
1779 return "pwr8";
1780 case POWER_9:
1781 return "pwr9";
1782// TODO: simplify this once the macro is available in all OS levels.
1783#ifdef POWER_10
1784 case POWER_10:
1785#else
1786 case 0x40000:
1787#endif
1788 return "pwr10";
1789#ifdef POWER_11
1790 case POWER_11:
1791#else
1792 case 0x80000:
1793#endif
1794 return "pwr11";
1795 default:
1796 return "generic";
1797 }
1798}
1799#elif defined(__loongarch__)
1801 // Use processor id to detect cpu name.
1802 uint32_t processor_id;
1803 __asm__("cpucfg %[prid], $zero\n\t" : [prid] "=r"(processor_id));
1804 // Refer PRID_SERIES_MASK in linux kernel: arch/loongarch/include/asm/cpu.h.
1805 switch (processor_id & 0xf000) {
1806 case 0xc000: // Loongson 64bit, 4-issue
1807 return "la464";
1808 case 0xd000: // Loongson 64bit, 6-issue
1809 return "la664";
1810 // TODO: Others.
1811 default:
1812 break;
1813 }
1814 return "generic";
1815}
1816#elif defined(__riscv)
1817#if defined(__linux__)
1818// struct riscv_hwprobe
1819struct RISCVHwProbe {
1820 int64_t Key;
1821 uint64_t Value;
1822};
1823#endif
1824
1826#if defined(__linux__)
1827 // Try the hwprobe way first.
1828 RISCVHwProbe Query[]{{/*RISCV_HWPROBE_KEY_MVENDORID=*/0, 0},
1829 {/*RISCV_HWPROBE_KEY_MARCHID=*/1, 0},
1830 {/*RISCV_HWPROBE_KEY_MIMPID=*/2, 0}};
1831 int Ret = syscall(/*__NR_riscv_hwprobe=*/258, /*pairs=*/Query,
1832 /*pair_count=*/std::size(Query), /*cpu_count=*/0,
1833 /*cpus=*/0, /*flags=*/0);
1834 if (Ret == 0) {
1835 RISCV::CPUModel Model{static_cast<uint32_t>(Query[0].Value), Query[1].Value,
1836 Query[2].Value};
1838 if (!Name.empty())
1839 return Name;
1840 }
1841
1842 // Then try the cpuinfo way.
1843 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1844 StringRef Content = P ? P->getBuffer() : "";
1846 if (!Name.empty())
1847 return Name;
1848#endif
1849#if __riscv_xlen == 64
1850 return "generic-rv64";
1851#elif __riscv_xlen == 32
1852 return "generic-rv32";
1853#else
1854#error "Unhandled value of __riscv_xlen"
1855#endif
1856}
1857#elif defined(__sparc__)
1858#if defined(__linux__)
1861 ProcCpuinfoContent.split(Lines, '\n');
1862
1863 // Look for cpu line to determine cpu name
1864 StringRef Cpu;
1865 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
1866 if (Lines[I].starts_with("cpu")) {
1867 Cpu = Lines[I].substr(5).ltrim("\t :");
1868 break;
1869 }
1870 }
1871
1872 return StringSwitch<const char *>(Cpu)
1873 .StartsWith("SuperSparc", "supersparc")
1874 .StartsWith("HyperSparc", "hypersparc")
1875 .StartsWith("SpitFire", "ultrasparc")
1876 .StartsWith("BlackBird", "ultrasparc")
1877 .StartsWith("Sabre", " ultrasparc")
1878 .StartsWith("Hummingbird", "ultrasparc")
1879 .StartsWith("Cheetah", "ultrasparc3")
1880 .StartsWith("Jalapeno", "ultrasparc3")
1881 .StartsWith("Jaguar", "ultrasparc3")
1882 .StartsWith("Panther", "ultrasparc3")
1883 .StartsWith("Serrano", "ultrasparc3")
1884 .StartsWith("UltraSparc T1", "niagara")
1885 .StartsWith("UltraSparc T2", "niagara2")
1886 .StartsWith("UltraSparc T3", "niagara3")
1887 .StartsWith("UltraSparc T4", "niagara4")
1888 .StartsWith("UltraSparc T5", "niagara4")
1889 .StartsWith("LEON", "leon3")
1890 // niagara7/m8 not supported by LLVM yet.
1891 .StartsWith("SPARC-M7", "niagara4" /* "niagara7" */)
1892 .StartsWith("SPARC-S7", "niagara4" /* "niagara7" */)
1893 .StartsWith("SPARC-M8", "niagara4" /* "m8" */)
1894 .Default("generic");
1895}
1896#endif
1897
1899#if defined(__linux__)
1900 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1901 StringRef Content = P ? P->getBuffer() : "";
1902 return detail::getHostCPUNameForSPARC(Content);
1903#elif defined(__sun__) && defined(__svr4__)
1904 char *buf = NULL;
1905 kstat_ctl_t *kc;
1906 kstat_t *ksp;
1907 kstat_named_t *brand = NULL;
1908
1909 kc = kstat_open();
1910 if (kc != NULL) {
1911 ksp = kstat_lookup(kc, const_cast<char *>("cpu_info"), -1, NULL);
1912 if (ksp != NULL && kstat_read(kc, ksp, NULL) != -1 &&
1913 ksp->ks_type == KSTAT_TYPE_NAMED)
1914 brand =
1915 (kstat_named_t *)kstat_data_lookup(ksp, const_cast<char *>("brand"));
1916 if (brand != NULL && brand->data_type == KSTAT_DATA_STRING)
1917 buf = KSTAT_NAMED_STR_PTR(brand);
1918 }
1919 kstat_close(kc);
1920
1921 return StringSwitch<const char *>(buf)
1922 .Case("TMS390S10", "supersparc") // Texas Instruments microSPARC I
1923 .Case("TMS390Z50", "supersparc") // Texas Instruments SuperSPARC I
1924 .Case("TMS390Z55",
1925 "supersparc") // Texas Instruments SuperSPARC I with SuperCache
1926 .Case("MB86904", "supersparc") // Fujitsu microSPARC II
1927 .Case("MB86907", "supersparc") // Fujitsu TurboSPARC
1928 .Case("RT623", "hypersparc") // Ross hyperSPARC
1929 .Case("RT625", "hypersparc")
1930 .Case("RT626", "hypersparc")
1931 .Case("UltraSPARC-I", "ultrasparc")
1932 .Case("UltraSPARC-II", "ultrasparc")
1933 .Case("UltraSPARC-IIe", "ultrasparc")
1934 .Case("UltraSPARC-IIi", "ultrasparc")
1935 .Case("SPARC64-III", "ultrasparc")
1936 .Case("SPARC64-IV", "ultrasparc")
1937 .Case("UltraSPARC-III", "ultrasparc3")
1938 .Case("UltraSPARC-III+", "ultrasparc3")
1939 .Case("UltraSPARC-IIIi", "ultrasparc3")
1940 .Case("UltraSPARC-IIIi+", "ultrasparc3")
1941 .Case("UltraSPARC-IV", "ultrasparc3")
1942 .Case("UltraSPARC-IV+", "ultrasparc3")
1943 .Case("SPARC64-V", "ultrasparc3")
1944 .Case("SPARC64-VI", "ultrasparc3")
1945 .Case("SPARC64-VII", "ultrasparc3")
1946 .Case("UltraSPARC-T1", "niagara")
1947 .Case("UltraSPARC-T2", "niagara2")
1948 .Case("UltraSPARC-T2", "niagara2")
1949 .Case("UltraSPARC-T2+", "niagara2")
1950 .Case("SPARC-T3", "niagara3")
1951 .Case("SPARC-T4", "niagara4")
1952 .Case("SPARC-T5", "niagara4")
1953 // niagara7/m8 not supported by LLVM yet.
1954 .Case("SPARC-M7", "niagara4" /* "niagara7" */)
1955 .Case("SPARC-S7", "niagara4" /* "niagara7" */)
1956 .Case("SPARC-M8", "niagara4" /* "m8" */)
1957 .Default("generic");
1958#else
1959 return "generic";
1960#endif
1961}
1962#else
1963StringRef sys::getHostCPUName() { return "generic"; }
1964namespace llvm {
1965namespace sys {
1966namespace detail {
1967namespace x86 {
1968
1971}
1972
1973} // namespace x86
1974} // namespace detail
1975} // namespace sys
1976} // namespace llvm
1977#endif
1978
1979#if (defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
1980 defined(_M_X64)) && \
1981 !defined(_M_ARM64EC)
1983 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1984 unsigned MaxLevel;
1985 StringMap<bool> Features;
1986
1987 if (getX86CpuIDAndInfo(0, &MaxLevel, &EBX, &ECX, &EDX) || MaxLevel < 1)
1988 return Features;
1989
1990 getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1991
1992 Features["cx8"] = (EDX >> 8) & 1;
1993 Features["cmov"] = (EDX >> 15) & 1;
1994 Features["mmx"] = (EDX >> 23) & 1;
1995 Features["fxsr"] = (EDX >> 24) & 1;
1996 Features["sse"] = (EDX >> 25) & 1;
1997 Features["sse2"] = (EDX >> 26) & 1;
1998
1999 Features["sse3"] = (ECX >> 0) & 1;
2000 Features["pclmul"] = (ECX >> 1) & 1;
2001 Features["ssse3"] = (ECX >> 9) & 1;
2002 Features["cx16"] = (ECX >> 13) & 1;
2003 Features["sse4.1"] = (ECX >> 19) & 1;
2004 Features["sse4.2"] = (ECX >> 20) & 1;
2005 Features["crc32"] = Features["sse4.2"];
2006 Features["movbe"] = (ECX >> 22) & 1;
2007 Features["popcnt"] = (ECX >> 23) & 1;
2008 Features["aes"] = (ECX >> 25) & 1;
2009 Features["rdrnd"] = (ECX >> 30) & 1;
2010
2011 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
2012 // indicates that the AVX registers will be saved and restored on context
2013 // switch, then we have full AVX support.
2014 bool HasXSave = ((ECX >> 27) & 1) && !getX86XCR0(&EAX, &EDX);
2015 bool HasAVXSave = HasXSave && ((ECX >> 28) & 1) && ((EAX & 0x6) == 0x6);
2016#if defined(__APPLE__)
2017 // Darwin lazily saves the AVX512 context on first use: trust that the OS will
2018 // save the AVX512 context if we use AVX512 instructions, even the bit is not
2019 // set right now.
2020 bool HasAVX512Save = true;
2021#else
2022 // AVX512 requires additional context to be saved by the OS.
2023 bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
2024#endif
2025 // AMX requires additional context to be saved by the OS.
2026 const unsigned AMXBits = (1 << 17) | (1 << 18);
2027 bool HasAMXSave = HasXSave && ((EAX & AMXBits) == AMXBits);
2028
2029 Features["avx"] = HasAVXSave;
2030 Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave;
2031 // Only enable XSAVE if OS has enabled support for saving YMM state.
2032 Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
2033 Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave;
2034
2035 unsigned MaxExtLevel;
2036 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
2037
2038 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
2039 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
2040 Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1);
2041 Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
2042 Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
2043 Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
2044 Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
2045 Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
2046 Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
2047 Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
2048 Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
2049
2050 Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1);
2051
2052 // Miscellaneous memory related features, detected by
2053 // using the 0x80000008 leaf of the CPUID instruction
2054 bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
2055 !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
2056 Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
2057 Features["rdpru"] = HasExtLeaf8 && ((EBX >> 4) & 1);
2058 Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
2059
2060 bool HasExtLeaf21 = MaxExtLevel >= 0x80000021 &&
2061 !getX86CpuIDAndInfo(0x80000021, &EAX, &EBX, &ECX, &EDX);
2062 // AMD cpuid bit for prefetchi is different from Intel
2063 Features["prefetchi"] = HasExtLeaf21 && ((EAX >> 20) & 1);
2064
2065 bool HasLeaf7 =
2066 MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
2067
2068 Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
2069 Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
2070 Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
2071 // AVX2 is only supported if we have the OS save support from AVX.
2072 Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave;
2073 Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
2074 Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1);
2075 Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
2076 // AVX512 is only supported if the OS supports the context save for it.
2077 Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
2078 Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
2079 Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
2080 Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
2081 Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
2082 Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
2083 Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
2084 Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
2085 Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
2086 Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
2087 Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
2088
2089 Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
2090 Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
2091 Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1);
2092 Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save;
2093 Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1);
2094 Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1);
2095 Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave;
2096 Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
2097 Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
2098 Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
2099 Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
2100 Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1);
2101 Features["kl"] = HasLeaf7 && ((ECX >> 23) & 1); // key locker
2102 Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1);
2103 Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1);
2104 Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1);
2105 Features["enqcmd"] = HasLeaf7 && ((ECX >> 29) & 1);
2106
2107 Features["uintr"] = HasLeaf7 && ((EDX >> 5) & 1);
2108 Features["avx512vp2intersect"] =
2109 HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save;
2110 Features["serialize"] = HasLeaf7 && ((EDX >> 14) & 1);
2111 Features["tsxldtrk"] = HasLeaf7 && ((EDX >> 16) & 1);
2112 // There are two CPUID leafs which information associated with the pconfig
2113 // instruction:
2114 // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
2115 // bit of EDX), while the EAX=0x1b leaf returns information on the
2116 // availability of specific pconfig leafs.
2117 // The target feature here only refers to the the first of these two.
2118 // Users might need to check for the availability of specific pconfig
2119 // leaves using cpuid, since that information is ignored while
2120 // detecting features using the "-march=native" flag.
2121 // For more info, see X86 ISA docs.
2122 Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
2123 Features["amx-bf16"] = HasLeaf7 && ((EDX >> 22) & 1) && HasAMXSave;
2124 Features["avx512fp16"] = HasLeaf7 && ((EDX >> 23) & 1) && HasAVX512Save;
2125 Features["amx-tile"] = HasLeaf7 && ((EDX >> 24) & 1) && HasAMXSave;
2126 Features["amx-int8"] = HasLeaf7 && ((EDX >> 25) & 1) && HasAMXSave;
2127 // EAX from subleaf 0 is the maximum subleaf supported. Some CPUs don't
2128 // return all 0s for invalid subleaves so check the limit.
2129 bool HasLeaf7Subleaf1 =
2130 HasLeaf7 && EAX >= 1 &&
2131 !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
2132 Features["sha512"] = HasLeaf7Subleaf1 && ((EAX >> 0) & 1);
2133 Features["sm3"] = HasLeaf7Subleaf1 && ((EAX >> 1) & 1);
2134 Features["sm4"] = HasLeaf7Subleaf1 && ((EAX >> 2) & 1);
2135 Features["raoint"] = HasLeaf7Subleaf1 && ((EAX >> 3) & 1);
2136 Features["avxvnni"] = HasLeaf7Subleaf1 && ((EAX >> 4) & 1) && HasAVXSave;
2137 Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
2138 Features["amx-fp16"] = HasLeaf7Subleaf1 && ((EAX >> 21) & 1) && HasAMXSave;
2139 Features["cmpccxadd"] = HasLeaf7Subleaf1 && ((EAX >> 7) & 1);
2140 Features["hreset"] = HasLeaf7Subleaf1 && ((EAX >> 22) & 1);
2141 Features["avxifma"] = HasLeaf7Subleaf1 && ((EAX >> 23) & 1) && HasAVXSave;
2142 Features["movrs"] = HasLeaf7Subleaf1 && ((EAX >> 31) & 1);
2143 Features["avxvnniint8"] = HasLeaf7Subleaf1 && ((EDX >> 4) & 1) && HasAVXSave;
2144 Features["avxneconvert"] = HasLeaf7Subleaf1 && ((EDX >> 5) & 1) && HasAVXSave;
2145 Features["amx-complex"] = HasLeaf7Subleaf1 && ((EDX >> 8) & 1) && HasAMXSave;
2146 Features["avxvnniint16"] = HasLeaf7Subleaf1 && ((EDX >> 10) & 1) && HasAVXSave;
2147 Features["prefetchi"] |= HasLeaf7Subleaf1 && ((EDX >> 14) & 1);
2148 Features["usermsr"] = HasLeaf7Subleaf1 && ((EDX >> 15) & 1);
2149 bool HasAVX10 = HasLeaf7Subleaf1 && ((EDX >> 19) & 1);
2150 bool HasAPXF = HasLeaf7Subleaf1 && ((EDX >> 21) & 1);
2151 Features["egpr"] = HasAPXF;
2152 Features["push2pop2"] = HasAPXF;
2153 Features["ppx"] = HasAPXF;
2154 Features["ndd"] = HasAPXF;
2155 Features["ccmp"] = HasAPXF;
2156 Features["nf"] = HasAPXF;
2157 Features["cf"] = HasAPXF;
2158 Features["zu"] = HasAPXF;
2159
2160 bool HasLeafD = MaxLevel >= 0xd &&
2161 !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
2162
2163 // Only enable XSAVE if OS has enabled support for saving YMM state.
2164 Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
2165 Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
2166 Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
2167
2168 bool HasLeaf14 = MaxLevel >= 0x14 &&
2169 !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
2170
2171 Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
2172
2173 bool HasLeaf19 =
2174 MaxLevel >= 0x19 && !getX86CpuIDAndInfo(0x19, &EAX, &EBX, &ECX, &EDX);
2175 Features["widekl"] = HasLeaf7 && HasLeaf19 && ((EBX >> 2) & 1);
2176
2177 bool HasLeaf1E = MaxLevel >= 0x1e &&
2178 !getX86CpuIDAndInfoEx(0x1e, 0x1, &EAX, &EBX, &ECX, &EDX);
2179 Features["amx-fp8"] = HasLeaf1E && ((EAX >> 4) & 1) && HasAMXSave;
2180 Features["amx-transpose"] = HasLeaf1E && ((EAX >> 5) & 1) && HasAMXSave;
2181 Features["amx-tf32"] = HasLeaf1E && ((EAX >> 6) & 1) && HasAMXSave;
2182 Features["amx-avx512"] = HasLeaf1E && ((EAX >> 7) & 1) && HasAMXSave;
2183 Features["amx-movrs"] = HasLeaf1E && ((EAX >> 8) & 1) && HasAMXSave;
2184
2185 bool HasLeaf24 =
2186 MaxLevel >= 0x24 && !getX86CpuIDAndInfo(0x24, &EAX, &EBX, &ECX, &EDX);
2187
2188 int AVX10Ver = HasLeaf24 && (EBX & 0xff);
2189 Features["avx10.1"] = HasAVX10 && AVX10Ver >= 1;
2190 Features["avx10.2"] = HasAVX10 && AVX10Ver >= 2;
2191
2192 return Features;
2193}
2194#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
2196 StringMap<bool> Features;
2197 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
2198 if (!P)
2199 return Features;
2200
2202 P->getBuffer().split(Lines, '\n');
2203
2204 SmallVector<StringRef, 32> CPUFeatures;
2205
2206 // Look for the CPU features.
2207 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
2208 if (Lines[I].starts_with("Features")) {
2209 Lines[I].split(CPUFeatures, ' ');
2210 break;
2211 }
2212
2213#if defined(__aarch64__)
2214 // All of these are "crypto" features, but we must sift out actual features
2215 // as the former meaning of "crypto" as a single feature is no more.
2216 enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
2217 uint32_t crypto = 0;
2218#endif
2219
2220 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
2221 StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
2222#if defined(__aarch64__)
2223 .Case("asimd", "neon")
2224 .Case("fp", "fp-armv8")
2225 .Case("crc32", "crc")
2226 .Case("atomics", "lse")
2227 .Case("sha3", "sha3")
2228 .Case("sm4", "sm4")
2229 .Case("sve", "sve")
2230 .Case("sve2", "sve2")
2231 .Case("sveaes", "sve-aes")
2232 .Case("svesha3", "sve-sha3")
2233 .Case("svesm4", "sve-sm4")
2234#else
2235 .Case("half", "fp16")
2236 .Case("neon", "neon")
2237 .Case("vfpv3", "vfp3")
2238 .Case("vfpv3d16", "vfp3d16")
2239 .Case("vfpv4", "vfp4")
2240 .Case("idiva", "hwdiv-arm")
2241 .Case("idivt", "hwdiv")
2242#endif
2243 .Default("");
2244
2245#if defined(__aarch64__)
2246 // We need to check crypto separately since we need all of the crypto
2247 // extensions to enable the subtarget feature
2248 if (CPUFeatures[I] == "aes")
2249 crypto |= CAP_AES;
2250 else if (CPUFeatures[I] == "pmull")
2251 crypto |= CAP_PMULL;
2252 else if (CPUFeatures[I] == "sha1")
2253 crypto |= CAP_SHA1;
2254 else if (CPUFeatures[I] == "sha2")
2255 crypto |= CAP_SHA2;
2256#endif
2257
2258 if (LLVMFeatureStr != "")
2259 Features[LLVMFeatureStr] = true;
2260 }
2261
2262#if defined(__aarch64__)
2263 // LLVM has decided some AArch64 CPUs have all the instructions they _may_
2264 // have, as opposed to all the instructions they _must_ have, so allow runtime
2265 // information to correct us on that.
2266 uint32_t Aes = CAP_AES | CAP_PMULL;
2267 uint32_t Sha2 = CAP_SHA1 | CAP_SHA2;
2268 Features["aes"] = (crypto & Aes) == Aes;
2269 Features["sha2"] = (crypto & Sha2) == Sha2;
2270#endif
2271
2272 return Features;
2273}
2274#elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64) || \
2275 defined(__arm64ec__) || defined(_M_ARM64EC))
2277 StringMap<bool> Features;
2278
2279 // If we're asking the OS at runtime, believe what the OS says
2280 Features["neon"] =
2281 IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE);
2282 Features["crc"] =
2283 IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE);
2284
2285 // Avoid inferring "crypto" means more than the traditional AES + SHA2
2286 bool TradCrypto =
2287 IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE);
2288 Features["aes"] = TradCrypto;
2289 Features["sha2"] = TradCrypto;
2290
2291 return Features;
2292}
2293#elif defined(__linux__) && defined(__loongarch__)
2294#include <sys/auxv.h>
2296 unsigned long hwcap = getauxval(AT_HWCAP);
2297 bool HasFPU = hwcap & (1UL << 3); // HWCAP_LOONGARCH_FPU
2298 uint32_t cpucfg2 = 0x2, cpucfg3 = 0x3;
2299 __asm__("cpucfg %[cpucfg2], %[cpucfg2]\n\t" : [cpucfg2] "+r"(cpucfg2));
2300 __asm__("cpucfg %[cpucfg3], %[cpucfg3]\n\t" : [cpucfg3] "+r"(cpucfg3));
2301
2302 StringMap<bool> Features;
2303
2304 Features["f"] = HasFPU && (cpucfg2 & (1U << 1)); // CPUCFG.2.FP_SP
2305 Features["d"] = HasFPU && (cpucfg2 & (1U << 2)); // CPUCFG.2.FP_DP
2306
2307 Features["lsx"] = hwcap & (1UL << 4); // HWCAP_LOONGARCH_LSX
2308 Features["lasx"] = hwcap & (1UL << 5); // HWCAP_LOONGARCH_LASX
2309 Features["lvz"] = hwcap & (1UL << 9); // HWCAP_LOONGARCH_LVZ
2310
2311 Features["frecipe"] = cpucfg2 & (1U << 25); // CPUCFG.2.FRECIPE
2312 Features["div32"] = cpucfg2 & (1U << 26); // CPUCFG.2.DIV32
2313 Features["lam-bh"] = cpucfg2 & (1U << 27); // CPUCFG.2.LAM_BH
2314 Features["lamcas"] = cpucfg2 & (1U << 28); // CPUCFG.2.LAMCAS
2315 Features["scq"] = cpucfg2 & (1U << 30); // CPUCFG.2.SCQ
2316
2317 Features["ld-seq-sa"] = cpucfg3 & (1U << 23); // CPUCFG.3.LD_SEQ_SA
2318
2319 // TODO: Need to complete.
2320 // Features["llacq-screl"] = cpucfg2 & (1U << 29); // CPUCFG.2.LLACQ_SCREL
2321 return Features;
2322}
2323#elif defined(__linux__) && defined(__riscv)
2325 RISCVHwProbe Query[]{{/*RISCV_HWPROBE_KEY_BASE_BEHAVIOR=*/3, 0},
2326 {/*RISCV_HWPROBE_KEY_IMA_EXT_0=*/4, 0},
2327 {/*RISCV_HWPROBE_KEY_MISALIGNED_SCALAR_PERF=*/9, 0}};
2328 int Ret = syscall(/*__NR_riscv_hwprobe=*/258, /*pairs=*/Query,
2329 /*pair_count=*/std::size(Query), /*cpu_count=*/0,
2330 /*cpus=*/0, /*flags=*/0);
2331 if (Ret != 0)
2332 return {};
2333
2334 StringMap<bool> Features;
2335 uint64_t BaseMask = Query[0].Value;
2336 // Check whether RISCV_HWPROBE_BASE_BEHAVIOR_IMA is set.
2337 if (BaseMask & 1) {
2338 Features["i"] = true;
2339 Features["m"] = true;
2340 Features["a"] = true;
2341 }
2342
2343 uint64_t ExtMask = Query[1].Value;
2344 Features["f"] = ExtMask & (1 << 0); // RISCV_HWPROBE_IMA_FD
2345 Features["d"] = ExtMask & (1 << 0); // RISCV_HWPROBE_IMA_FD
2346 Features["c"] = ExtMask & (1 << 1); // RISCV_HWPROBE_IMA_C
2347 Features["v"] = ExtMask & (1 << 2); // RISCV_HWPROBE_IMA_V
2348 Features["zba"] = ExtMask & (1 << 3); // RISCV_HWPROBE_EXT_ZBA
2349 Features["zbb"] = ExtMask & (1 << 4); // RISCV_HWPROBE_EXT_ZBB
2350 Features["zbs"] = ExtMask & (1 << 5); // RISCV_HWPROBE_EXT_ZBS
2351 Features["zicboz"] = ExtMask & (1 << 6); // RISCV_HWPROBE_EXT_ZICBOZ
2352 Features["zbc"] = ExtMask & (1 << 7); // RISCV_HWPROBE_EXT_ZBC
2353 Features["zbkb"] = ExtMask & (1 << 8); // RISCV_HWPROBE_EXT_ZBKB
2354 Features["zbkc"] = ExtMask & (1 << 9); // RISCV_HWPROBE_EXT_ZBKC
2355 Features["zbkx"] = ExtMask & (1 << 10); // RISCV_HWPROBE_EXT_ZBKX
2356 Features["zknd"] = ExtMask & (1 << 11); // RISCV_HWPROBE_EXT_ZKND
2357 Features["zkne"] = ExtMask & (1 << 12); // RISCV_HWPROBE_EXT_ZKNE
2358 Features["zknh"] = ExtMask & (1 << 13); // RISCV_HWPROBE_EXT_ZKNH
2359 Features["zksed"] = ExtMask & (1 << 14); // RISCV_HWPROBE_EXT_ZKSED
2360 Features["zksh"] = ExtMask & (1 << 15); // RISCV_HWPROBE_EXT_ZKSH
2361 Features["zkt"] = ExtMask & (1 << 16); // RISCV_HWPROBE_EXT_ZKT
2362 Features["zvbb"] = ExtMask & (1 << 17); // RISCV_HWPROBE_EXT_ZVBB
2363 Features["zvbc"] = ExtMask & (1 << 18); // RISCV_HWPROBE_EXT_ZVBC
2364 Features["zvkb"] = ExtMask & (1 << 19); // RISCV_HWPROBE_EXT_ZVKB
2365 Features["zvkg"] = ExtMask & (1 << 20); // RISCV_HWPROBE_EXT_ZVKG
2366 Features["zvkned"] = ExtMask & (1 << 21); // RISCV_HWPROBE_EXT_ZVKNED
2367 Features["zvknha"] = ExtMask & (1 << 22); // RISCV_HWPROBE_EXT_ZVKNHA
2368 Features["zvknhb"] = ExtMask & (1 << 23); // RISCV_HWPROBE_EXT_ZVKNHB
2369 Features["zvksed"] = ExtMask & (1 << 24); // RISCV_HWPROBE_EXT_ZVKSED
2370 Features["zvksh"] = ExtMask & (1 << 25); // RISCV_HWPROBE_EXT_ZVKSH
2371 Features["zvkt"] = ExtMask & (1 << 26); // RISCV_HWPROBE_EXT_ZVKT
2372 Features["zfh"] = ExtMask & (1 << 27); // RISCV_HWPROBE_EXT_ZFH
2373 Features["zfhmin"] = ExtMask & (1 << 28); // RISCV_HWPROBE_EXT_ZFHMIN
2374 Features["zihintntl"] = ExtMask & (1 << 29); // RISCV_HWPROBE_EXT_ZIHINTNTL
2375 Features["zvfh"] = ExtMask & (1 << 30); // RISCV_HWPROBE_EXT_ZVFH
2376 Features["zvfhmin"] = ExtMask & (1ULL << 31); // RISCV_HWPROBE_EXT_ZVFHMIN
2377 Features["zfa"] = ExtMask & (1ULL << 32); // RISCV_HWPROBE_EXT_ZFA
2378 Features["ztso"] = ExtMask & (1ULL << 33); // RISCV_HWPROBE_EXT_ZTSO
2379 Features["zacas"] = ExtMask & (1ULL << 34); // RISCV_HWPROBE_EXT_ZACAS
2380 Features["zicond"] = ExtMask & (1ULL << 35); // RISCV_HWPROBE_EXT_ZICOND
2381 Features["zihintpause"] =
2382 ExtMask & (1ULL << 36); // RISCV_HWPROBE_EXT_ZIHINTPAUSE
2383 Features["zve32x"] = ExtMask & (1ULL << 37); // RISCV_HWPROBE_EXT_ZVE32X
2384 Features["zve32f"] = ExtMask & (1ULL << 38); // RISCV_HWPROBE_EXT_ZVE32F
2385 Features["zve64x"] = ExtMask & (1ULL << 39); // RISCV_HWPROBE_EXT_ZVE64X
2386 Features["zve64f"] = ExtMask & (1ULL << 40); // RISCV_HWPROBE_EXT_ZVE64F
2387 Features["zve64d"] = ExtMask & (1ULL << 41); // RISCV_HWPROBE_EXT_ZVE64D
2388 Features["zimop"] = ExtMask & (1ULL << 42); // RISCV_HWPROBE_EXT_ZIMOP
2389 Features["zca"] = ExtMask & (1ULL << 43); // RISCV_HWPROBE_EXT_ZCA
2390 Features["zcb"] = ExtMask & (1ULL << 44); // RISCV_HWPROBE_EXT_ZCB
2391 Features["zcd"] = ExtMask & (1ULL << 45); // RISCV_HWPROBE_EXT_ZCD
2392 Features["zcf"] = ExtMask & (1ULL << 46); // RISCV_HWPROBE_EXT_ZCF
2393 Features["zcmop"] = ExtMask & (1ULL << 47); // RISCV_HWPROBE_EXT_ZCMOP
2394 Features["zawrs"] = ExtMask & (1ULL << 48); // RISCV_HWPROBE_EXT_ZAWRS
2395
2396 // Check whether the processor supports fast misaligned scalar memory access.
2397 // NOTE: RISCV_HWPROBE_KEY_MISALIGNED_SCALAR_PERF is only available on
2398 // Linux 6.11 or later. If it is not recognized, the key field will be cleared
2399 // to -1.
2400 if (Query[2].Key != -1 &&
2401 Query[2].Value == /*RISCV_HWPROBE_MISALIGNED_SCALAR_FAST=*/3)
2402 Features["unaligned-scalar-mem"] = true;
2403
2404 return Features;
2405}
2406#else
2408#endif
2409
2410#if __APPLE__
2411/// \returns the \p triple, but with the Host's arch spliced in.
2412static Triple withHostArch(Triple T) {
2413#if defined(__arm__)
2414 T.setArch(Triple::arm);
2415 T.setArchName("arm");
2416#elif defined(__arm64e__)
2418 T.setArchName("arm64e");
2419#elif defined(__aarch64__)
2420 T.setArch(Triple::aarch64);
2421 T.setArchName("arm64");
2422#elif defined(__x86_64h__)
2423 T.setArch(Triple::x86_64);
2424 T.setArchName("x86_64h");
2425#elif defined(__x86_64__)
2426 T.setArch(Triple::x86_64);
2427 T.setArchName("x86_64");
2428#elif defined(__i386__)
2429 T.setArch(Triple::x86);
2430 T.setArchName("i386");
2431#elif defined(__powerpc__)
2432 T.setArch(Triple::ppc);
2433 T.setArchName("powerpc");
2434#else
2435# error "Unimplemented host arch fixup"
2436#endif
2437 return T;
2438}
2439#endif
2440
2442 std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
2443 Triple PT(Triple::normalize(TargetTripleString));
2444
2445#if __APPLE__
2446 /// In Universal builds, LLVM_HOST_TRIPLE will have the wrong arch in one of
2447 /// the slices. This fixes that up.
2448 PT = withHostArch(PT);
2449#endif
2450
2451 if (sizeof(void *) == 8 && PT.isArch32Bit())
2452 PT = PT.get64BitArchVariant();
2453 if (sizeof(void *) == 4 && PT.isArch64Bit())
2454 PT = PT.get32BitArchVariant();
2455
2456 return PT.str();
2457}
2458
2460#if LLVM_VERSION_PRINTER_SHOW_HOST_TARGET_INFO
2461 std::string CPU = std::string(sys::getHostCPUName());
2462 if (CPU == "generic")
2463 CPU = "(unknown)";
2464 OS << " Default target: " << sys::getDefaultTargetTriple() << '\n'
2465 << " Host CPU: " << CPU << '\n';
2466#endif
2467}
This file defines the StringMap class.
This file implements methods to test, set and extract typed bits from packed unsigned integers.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
StringRef getHostCPUNameForARMFromComponents(StringRef Implementer, StringRef Hardware, StringRef Part, ArrayRef< StringRef > Parts, function_ref< unsigned()> GetVariant)
Definition Host.cpp:174
static std::unique_ptr< llvm::MemoryBuffer > getProcCpuinfoContent()
Definition Host.cpp:74
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Merge contiguous icmps into a memcmp
#define T
#define P(N)
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
DEMANGLE_NAMESPACE_BEGIN bool starts_with(std::string_view self, char C) noexcept
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
Represents either an error or a value T.
Definition ErrorOr.h:56
static ErrorOr< std::unique_ptr< MemoryBuffer > > getFileAsStream(const Twine &Filename)
Read all of the specified file into a MemoryBuffer as a stream (i.e.
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition StringMap.h:133
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition StringRef.h:472
iterator begin() const
Definition StringRef.h:112
const char * const_iterator
Definition StringRef.h:60
StringRef ltrim(char Char) const
Return string with consecutive Char characters starting from the the left removed.
Definition StringRef.h:792
iterator end() const
Definition StringRef.h:114
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition StringRef.h:273
static constexpr size_t npos
Definition StringRef.h:57
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
StringSwitch & StartsWith(StringLiteral S, T Value)
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
LLVM_ABI llvm::Triple get32BitArchVariant() const
Form a triple with a 32-bit variant of the current architecture.
Definition Triple.cpp:1801
LLVM_ABI llvm::Triple get64BitArchVariant() const
Form a triple with a 64-bit variant of the current architecture.
Definition Triple.cpp:1884
static LLVM_ABI std::string normalize(StringRef Str, CanonicalForm Form=CanonicalForm::ANY)
Turn an arbitrary machine specification into the canonical triple form (or something sensible that th...
Definition Triple.cpp:1170
const std::string & str() const
Definition Triple.h:479
LLVM_ABI bool isArch64Bit() const
Test whether the architecture is 64-bit.
Definition Triple.cpp:1789
@ AArch64SubArch_arm64e
Definition Triple.h:153
LLVM_ABI bool isArch32Bit() const
Test whether the architecture is 32-bit.
Definition Triple.cpp:1793
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM Value Representation.
Definition Value.h:75
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
@ CPU_SUBTYPE_POWERPC_970
Definition MachO.h:1697
@ CPU_SUBTYPE_POWERPC_604e
Definition MachO.h:1692
@ CPU_SUBTYPE_POWERPC_603e
Definition MachO.h:1689
@ CPU_SUBTYPE_POWERPC_7400
Definition MachO.h:1695
@ CPU_SUBTYPE_POWERPC_604
Definition MachO.h:1691
@ CPU_SUBTYPE_POWERPC_750
Definition MachO.h:1694
@ CPU_SUBTYPE_POWERPC_601
Definition MachO.h:1686
@ CPU_SUBTYPE_POWERPC_620
Definition MachO.h:1693
@ CPU_SUBTYPE_POWERPC_603ev
Definition MachO.h:1690
@ CPU_SUBTYPE_POWERPC_603
Definition MachO.h:1688
@ CPU_SUBTYPE_POWERPC_7450
Definition MachO.h:1696
@ CPU_SUBTYPE_POWERPC_602
Definition MachO.h:1687
LLVM_ABI StringRef getCPUNameFromCPUModel(const CPUModel &Model)
Helper functions to extract CPU details from CPUID on x86.
Definition Host.h:75
LLVM_ABI VendorSignatures getVendorSignature(unsigned *MaxLeaf=nullptr)
Returns the host CPU's vendor.
Definition Host.cpp:1969
LLVM_ABI StringRef getHostCPUNameForSPARC(StringRef ProcCpuinfoContent)
LLVM_ABI StringRef getHostCPUNameForS390x(StringRef ProcCpuinfoContent)
Definition Host.cpp:504
LLVM_ABI StringRef getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent)
Helper functions to extract HostCPUName from /proc/cpuinfo on linux.
Definition Host.cpp:89
LLVM_ABI StringRef getHostCPUNameForBPF()
Definition Host.cpp:570
LLVM_ABI StringRef getHostCPUNameForARM(StringRef ProcCpuinfoContent)
Definition Host.cpp:393
LLVM_ABI StringRef getHostCPUNameForRISCV(StringRef ProcCpuinfoContent)
Definition Host.cpp:549
LLVM_ABI StringMap< bool, MallocAllocator > getHostCPUFeatures()
getHostCPUFeatures - Get the LLVM names for the host CPU features.
Definition Host.cpp:2407
LLVM_ABI StringRef getHostCPUName()
getHostCPUName - Get the LLVM name for the host CPU.
Definition Host.cpp:1963
LLVM_ABI void printDefaultTargetAndDetectedCPU(raw_ostream &OS)
This is a function compatible with cl::AddExtraVersionPrinter, which adds info about the current targ...
Definition Host.cpp:2459
LLVM_ABI std::string getDefaultTargetTriple()
getDefaultTargetTriple() - Return the default target triple the compiler has been configured to produ...
LLVM_ABI std::string getProcessTriple()
getProcessTriple() - Return an appropriate target triple for generating code to be loaded into the cu...
Definition Host.cpp:2441
This is an optimization pass for GlobalISel generic memory operations.
@ Length
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
std::string utohexstr(uint64_t X, bool LowerCase=false, unsigned Width=0)
int64_t decodePackedBCD(const uint8_t *Ptr, size_t ByteLen, bool IsSigned=true)
Definition BCD.h:26
auto unique(Range &&R, Predicate P)
Definition STLExtras.h:2076
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
Describes an element of a Bitfield.
Definition Bitfields.h:179
static Bitfield::Type get(StorageType Packed)
Unpacks the field from the Packed value.
Definition Bitfields.h:210