LLVM 19.0.0git
IndVarSimplify.cpp
Go to the documentation of this file.
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This transformation analyzes and transforms the induction variables (and
10// computations derived from them) into simpler forms suitable for subsequent
11// analysis and transformation.
12//
13// If the trip count of a loop is computable, this pass also makes the following
14// changes:
15// 1. The exit condition for the loop is canonicalized to compare the
16// induction value against the exit value. This turns loops like:
17// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18// 2. Any use outside of the loop of an expression derived from the indvar
19// is changed to compute the derived value outside of the loop, eliminating
20// the dependence on the exit value of the induction variable. If the only
21// purpose of the loop is to compute the exit value of some derived
22// expression, this transformation will make the loop dead.
23//
24//===----------------------------------------------------------------------===//
25
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/Statistic.h"
44#include "llvm/IR/BasicBlock.h"
45#include "llvm/IR/Constant.h"
47#include "llvm/IR/Constants.h"
48#include "llvm/IR/DataLayout.h"
50#include "llvm/IR/Dominators.h"
51#include "llvm/IR/Function.h"
52#include "llvm/IR/IRBuilder.h"
53#include "llvm/IR/InstrTypes.h"
54#include "llvm/IR/Instruction.h"
57#include "llvm/IR/Intrinsics.h"
58#include "llvm/IR/Module.h"
59#include "llvm/IR/Operator.h"
60#include "llvm/IR/PassManager.h"
62#include "llvm/IR/Type.h"
63#include "llvm/IR/Use.h"
64#include "llvm/IR/User.h"
65#include "llvm/IR/Value.h"
66#include "llvm/IR/ValueHandle.h"
70#include "llvm/Support/Debug.h"
79#include <cassert>
80#include <cstdint>
81#include <utility>
82
83using namespace llvm;
84using namespace PatternMatch;
85
86#define DEBUG_TYPE "indvars"
87
88STATISTIC(NumWidened , "Number of indvars widened");
89STATISTIC(NumReplaced , "Number of exit values replaced");
90STATISTIC(NumLFTR , "Number of loop exit tests replaced");
91STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
92STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
93
95 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
96 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
98 clEnumValN(NeverRepl, "never", "never replace exit value"),
100 "only replace exit value when the cost is cheap"),
102 UnusedIndVarInLoop, "unusedindvarinloop",
103 "only replace exit value when it is an unused "
104 "induction variable in the loop and has cheap replacement cost"),
105 clEnumValN(NoHardUse, "noharduse",
106 "only replace exit values when loop def likely dead"),
107 clEnumValN(AlwaysRepl, "always",
108 "always replace exit value whenever possible")));
109
111 "indvars-post-increment-ranges", cl::Hidden,
112 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
113 cl::init(true));
114
115static cl::opt<bool>
116DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
117 cl::desc("Disable Linear Function Test Replace optimization"));
118
119static cl::opt<bool>
120LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
121 cl::desc("Predicate conditions in read only loops"));
122
123static cl::opt<bool>
124AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
125 cl::desc("Allow widening of indvars to eliminate s/zext"));
126
127namespace {
128
129class IndVarSimplify {
130 LoopInfo *LI;
131 ScalarEvolution *SE;
132 DominatorTree *DT;
133 const DataLayout &DL;
136 std::unique_ptr<MemorySSAUpdater> MSSAU;
137
139 bool WidenIndVars;
140
141 bool RunUnswitching = false;
142
143 bool handleFloatingPointIV(Loop *L, PHINode *PH);
144 bool rewriteNonIntegerIVs(Loop *L);
145
146 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
147 /// Try to improve our exit conditions by converting condition from signed
148 /// to unsigned or rotating computation out of the loop.
149 /// (See inline comment about why this is duplicated from simplifyAndExtend)
150 bool canonicalizeExitCondition(Loop *L);
151 /// Try to eliminate loop exits based on analyzeable exit counts
152 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
153 /// Try to form loop invariant tests for loop exits by changing how many
154 /// iterations of the loop run when that is unobservable.
155 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
156
157 bool rewriteFirstIterationLoopExitValues(Loop *L);
158
159 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
160 const SCEV *ExitCount,
161 PHINode *IndVar, SCEVExpander &Rewriter);
162
163 bool sinkUnusedInvariants(Loop *L);
164
165public:
166 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
167 const DataLayout &DL, TargetLibraryInfo *TLI,
168 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
169 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
170 WidenIndVars(WidenIndVars) {
171 if (MSSA)
172 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
173 }
174
175 bool run(Loop *L);
176
177 bool runUnswitching() const { return RunUnswitching; }
178};
179
180} // end anonymous namespace
181
182//===----------------------------------------------------------------------===//
183// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
184//===----------------------------------------------------------------------===//
185
186/// Convert APF to an integer, if possible.
187static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
188 bool isExact = false;
189 // See if we can convert this to an int64_t
190 uint64_t UIntVal;
191 if (APF.convertToInteger(MutableArrayRef(UIntVal), 64, true,
192 APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
193 !isExact)
194 return false;
195 IntVal = UIntVal;
196 return true;
197}
198
199/// If the loop has floating induction variable then insert corresponding
200/// integer induction variable if possible.
201/// For example,
202/// for(double i = 0; i < 10000; ++i)
203/// bar(i)
204/// is converted into
205/// for(int i = 0; i < 10000; ++i)
206/// bar((double)i);
207bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
208 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
209 unsigned BackEdge = IncomingEdge^1;
210
211 // Check incoming value.
212 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
213
214 int64_t InitValue;
215 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
216 return false;
217
218 // Check IV increment. Reject this PN if increment operation is not
219 // an add or increment value can not be represented by an integer.
220 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
221 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
222
223 // If this is not an add of the PHI with a constantfp, or if the constant fp
224 // is not an integer, bail out.
225 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
226 int64_t IncValue;
227 if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
228 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
229 return false;
230
231 // Check Incr uses. One user is PN and the other user is an exit condition
232 // used by the conditional terminator.
233 Value::user_iterator IncrUse = Incr->user_begin();
234 Instruction *U1 = cast<Instruction>(*IncrUse++);
235 if (IncrUse == Incr->user_end()) return false;
236 Instruction *U2 = cast<Instruction>(*IncrUse++);
237 if (IncrUse != Incr->user_end()) return false;
238
239 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
240 // only used by a branch, we can't transform it.
241 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
242 if (!Compare)
243 Compare = dyn_cast<FCmpInst>(U2);
244 if (!Compare || !Compare->hasOneUse() ||
245 !isa<BranchInst>(Compare->user_back()))
246 return false;
247
248 BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
249
250 // We need to verify that the branch actually controls the iteration count
251 // of the loop. If not, the new IV can overflow and no one will notice.
252 // The branch block must be in the loop and one of the successors must be out
253 // of the loop.
254 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
255 if (!L->contains(TheBr->getParent()) ||
256 (L->contains(TheBr->getSuccessor(0)) &&
257 L->contains(TheBr->getSuccessor(1))))
258 return false;
259
260 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
261 // transform it.
262 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
263 int64_t ExitValue;
264 if (ExitValueVal == nullptr ||
265 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
266 return false;
267
268 // Find new predicate for integer comparison.
270 switch (Compare->getPredicate()) {
271 default: return false; // Unknown comparison.
273 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
275 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
277 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
279 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
281 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
283 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
284 }
285
286 // We convert the floating point induction variable to a signed i32 value if
287 // we can. This is only safe if the comparison will not overflow in a way
288 // that won't be trapped by the integer equivalent operations. Check for this
289 // now.
290 // TODO: We could use i64 if it is native and the range requires it.
291
292 // The start/stride/exit values must all fit in signed i32.
293 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
294 return false;
295
296 // If not actually striding (add x, 0.0), avoid touching the code.
297 if (IncValue == 0)
298 return false;
299
300 // Positive and negative strides have different safety conditions.
301 if (IncValue > 0) {
302 // If we have a positive stride, we require the init to be less than the
303 // exit value.
304 if (InitValue >= ExitValue)
305 return false;
306
307 uint32_t Range = uint32_t(ExitValue-InitValue);
308 // Check for infinite loop, either:
309 // while (i <= Exit) or until (i > Exit)
310 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
311 if (++Range == 0) return false; // Range overflows.
312 }
313
314 unsigned Leftover = Range % uint32_t(IncValue);
315
316 // If this is an equality comparison, we require that the strided value
317 // exactly land on the exit value, otherwise the IV condition will wrap
318 // around and do things the fp IV wouldn't.
319 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
320 Leftover != 0)
321 return false;
322
323 // If the stride would wrap around the i32 before exiting, we can't
324 // transform the IV.
325 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
326 return false;
327 } else {
328 // If we have a negative stride, we require the init to be greater than the
329 // exit value.
330 if (InitValue <= ExitValue)
331 return false;
332
333 uint32_t Range = uint32_t(InitValue-ExitValue);
334 // Check for infinite loop, either:
335 // while (i >= Exit) or until (i < Exit)
336 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
337 if (++Range == 0) return false; // Range overflows.
338 }
339
340 unsigned Leftover = Range % uint32_t(-IncValue);
341
342 // If this is an equality comparison, we require that the strided value
343 // exactly land on the exit value, otherwise the IV condition will wrap
344 // around and do things the fp IV wouldn't.
345 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
346 Leftover != 0)
347 return false;
348
349 // If the stride would wrap around the i32 before exiting, we can't
350 // transform the IV.
351 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
352 return false;
353 }
354
356
357 // Insert new integer induction variable.
358 PHINode *NewPHI =
359 PHINode::Create(Int32Ty, 2, PN->getName() + ".int", PN->getIterator());
360 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
361 PN->getIncomingBlock(IncomingEdge));
362 NewPHI->setDebugLoc(PN->getDebugLoc());
363
364 Instruction *NewAdd =
365 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
366 Incr->getName() + ".int", Incr->getIterator());
367 NewAdd->setDebugLoc(Incr->getDebugLoc());
368 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
369
370 ICmpInst *NewCompare =
371 new ICmpInst(TheBr->getIterator(), NewPred, NewAdd,
372 ConstantInt::get(Int32Ty, ExitValue), Compare->getName());
373 NewCompare->setDebugLoc(Compare->getDebugLoc());
374
375 // In the following deletions, PN may become dead and may be deleted.
376 // Use a WeakTrackingVH to observe whether this happens.
377 WeakTrackingVH WeakPH = PN;
378
379 // Delete the old floating point exit comparison. The branch starts using the
380 // new comparison.
381 NewCompare->takeName(Compare);
382 Compare->replaceAllUsesWith(NewCompare);
383 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
384
385 // Delete the old floating point increment.
386 Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType()));
387 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
388
389 // If the FP induction variable still has uses, this is because something else
390 // in the loop uses its value. In order to canonicalize the induction
391 // variable, we chose to eliminate the IV and rewrite it in terms of an
392 // int->fp cast.
393 //
394 // We give preference to sitofp over uitofp because it is faster on most
395 // platforms.
396 if (WeakPH) {
397 Instruction *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
399 Conv->setDebugLoc(PN->getDebugLoc());
400 PN->replaceAllUsesWith(Conv);
401 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
402 }
403 return true;
404}
405
406bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
407 // First step. Check to see if there are any floating-point recurrences.
408 // If there are, change them into integer recurrences, permitting analysis by
409 // the SCEV routines.
410 BasicBlock *Header = L->getHeader();
411
413 for (PHINode &PN : Header->phis())
414 PHIs.push_back(&PN);
415
416 bool Changed = false;
417 for (WeakTrackingVH &PHI : PHIs)
418 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHI))
419 Changed |= handleFloatingPointIV(L, PN);
420
421 // If the loop previously had floating-point IV, ScalarEvolution
422 // may not have been able to compute a trip count. Now that we've done some
423 // re-writing, the trip count may be computable.
424 if (Changed)
425 SE->forgetLoop(L);
426 return Changed;
427}
428
429//===---------------------------------------------------------------------===//
430// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
431// they will exit at the first iteration.
432//===---------------------------------------------------------------------===//
433
434/// Check to see if this loop has loop invariant conditions which lead to loop
435/// exits. If so, we know that if the exit path is taken, it is at the first
436/// loop iteration. This lets us predict exit values of PHI nodes that live in
437/// loop header.
438bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
439 // Verify the input to the pass is already in LCSSA form.
440 assert(L->isLCSSAForm(*DT));
441
443 L->getUniqueExitBlocks(ExitBlocks);
444
445 bool MadeAnyChanges = false;
446 for (auto *ExitBB : ExitBlocks) {
447 // If there are no more PHI nodes in this exit block, then no more
448 // values defined inside the loop are used on this path.
449 for (PHINode &PN : ExitBB->phis()) {
450 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
451 IncomingValIdx != E; ++IncomingValIdx) {
452 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
453
454 // Can we prove that the exit must run on the first iteration if it
455 // runs at all? (i.e. early exits are fine for our purposes, but
456 // traces which lead to this exit being taken on the 2nd iteration
457 // aren't.) Note that this is about whether the exit branch is
458 // executed, not about whether it is taken.
459 if (!L->getLoopLatch() ||
460 !DT->dominates(IncomingBB, L->getLoopLatch()))
461 continue;
462
463 // Get condition that leads to the exit path.
464 auto *TermInst = IncomingBB->getTerminator();
465
466 Value *Cond = nullptr;
467 if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
468 // Must be a conditional branch, otherwise the block
469 // should not be in the loop.
470 Cond = BI->getCondition();
471 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
472 Cond = SI->getCondition();
473 else
474 continue;
475
476 if (!L->isLoopInvariant(Cond))
477 continue;
478
479 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
480
481 // Only deal with PHIs in the loop header.
482 if (!ExitVal || ExitVal->getParent() != L->getHeader())
483 continue;
484
485 // If ExitVal is a PHI on the loop header, then we know its
486 // value along this exit because the exit can only be taken
487 // on the first iteration.
488 auto *LoopPreheader = L->getLoopPreheader();
489 assert(LoopPreheader && "Invalid loop");
490 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
491 if (PreheaderIdx != -1) {
492 assert(ExitVal->getParent() == L->getHeader() &&
493 "ExitVal must be in loop header");
494 MadeAnyChanges = true;
495 PN.setIncomingValue(IncomingValIdx,
496 ExitVal->getIncomingValue(PreheaderIdx));
497 SE->forgetValue(&PN);
498 }
499 }
500 }
501 }
502 return MadeAnyChanges;
503}
504
505//===----------------------------------------------------------------------===//
506// IV Widening - Extend the width of an IV to cover its widest uses.
507//===----------------------------------------------------------------------===//
508
509/// Update information about the induction variable that is extended by this
510/// sign or zero extend operation. This is used to determine the final width of
511/// the IV before actually widening it.
512static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
513 ScalarEvolution *SE,
514 const TargetTransformInfo *TTI) {
515 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
516 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
517 return;
518
519 Type *Ty = Cast->getType();
520 uint64_t Width = SE->getTypeSizeInBits(Ty);
521 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
522 return;
523
524 // Check that `Cast` actually extends the induction variable (we rely on this
525 // later). This takes care of cases where `Cast` is extending a truncation of
526 // the narrow induction variable, and thus can end up being narrower than the
527 // "narrow" induction variable.
528 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
529 if (NarrowIVWidth >= Width)
530 return;
531
532 // Cast is either an sext or zext up to this point.
533 // We should not widen an indvar if arithmetics on the wider indvar are more
534 // expensive than those on the narrower indvar. We check only the cost of ADD
535 // because at least an ADD is required to increment the induction variable. We
536 // could compute more comprehensively the cost of all instructions on the
537 // induction variable when necessary.
538 if (TTI &&
539 TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
540 TTI->getArithmeticInstrCost(Instruction::Add,
541 Cast->getOperand(0)->getType())) {
542 return;
543 }
544
545 if (!WI.WidestNativeType ||
546 Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
548 WI.IsSigned = IsSigned;
549 return;
550 }
551
552 // We extend the IV to satisfy the sign of its user(s), or 'signed'
553 // if there are multiple users with both sign- and zero extensions,
554 // in order not to introduce nondeterministic behaviour based on the
555 // unspecified order of a PHI nodes' users-iterator.
556 WI.IsSigned |= IsSigned;
557}
558
559//===----------------------------------------------------------------------===//
560// Live IV Reduction - Minimize IVs live across the loop.
561//===----------------------------------------------------------------------===//
562
563//===----------------------------------------------------------------------===//
564// Simplification of IV users based on SCEV evaluation.
565//===----------------------------------------------------------------------===//
566
567namespace {
568
569class IndVarSimplifyVisitor : public IVVisitor {
570 ScalarEvolution *SE;
572 PHINode *IVPhi;
573
574public:
575 WideIVInfo WI;
576
577 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
579 const DominatorTree *DTree)
580 : SE(SCEV), TTI(TTI), IVPhi(IV) {
581 DT = DTree;
582 WI.NarrowIV = IVPhi;
583 }
584
585 // Implement the interface used by simplifyUsersOfIV.
586 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
587};
588
589} // end anonymous namespace
590
591/// Iteratively perform simplification on a worklist of IV users. Each
592/// successive simplification may push more users which may themselves be
593/// candidates for simplification.
594///
595/// Sign/Zero extend elimination is interleaved with IV simplification.
596bool IndVarSimplify::simplifyAndExtend(Loop *L,
597 SCEVExpander &Rewriter,
598 LoopInfo *LI) {
600
601 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
602 Intrinsic::getName(Intrinsic::experimental_guard));
603 bool HasGuards = GuardDecl && !GuardDecl->use_empty();
604
606 for (PHINode &PN : L->getHeader()->phis())
607 LoopPhis.push_back(&PN);
608
609 // Each round of simplification iterates through the SimplifyIVUsers worklist
610 // for all current phis, then determines whether any IVs can be
611 // widened. Widening adds new phis to LoopPhis, inducing another round of
612 // simplification on the wide IVs.
613 bool Changed = false;
614 while (!LoopPhis.empty()) {
615 // Evaluate as many IV expressions as possible before widening any IVs. This
616 // forces SCEV to set no-wrap flags before evaluating sign/zero
617 // extension. The first time SCEV attempts to normalize sign/zero extension,
618 // the result becomes final. So for the most predictable results, we delay
619 // evaluation of sign/zero extend evaluation until needed, and avoid running
620 // other SCEV based analysis prior to simplifyAndExtend.
621 do {
622 PHINode *CurrIV = LoopPhis.pop_back_val();
623
624 // Information about sign/zero extensions of CurrIV.
625 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
626
627 const auto &[C, U] = simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts,
628 Rewriter, &Visitor);
629
630 Changed |= C;
631 RunUnswitching |= U;
632 if (Visitor.WI.WidestNativeType) {
633 WideIVs.push_back(Visitor.WI);
634 }
635 } while(!LoopPhis.empty());
636
637 // Continue if we disallowed widening.
638 if (!WidenIndVars)
639 continue;
640
641 for (; !WideIVs.empty(); WideIVs.pop_back()) {
642 unsigned ElimExt;
643 unsigned Widened;
644 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
645 DT, DeadInsts, ElimExt, Widened,
646 HasGuards, UsePostIncrementRanges)) {
647 NumElimExt += ElimExt;
648 NumWidened += Widened;
649 Changed = true;
650 LoopPhis.push_back(WidePhi);
651 }
652 }
653 }
654 return Changed;
655}
656
657//===----------------------------------------------------------------------===//
658// linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
659//===----------------------------------------------------------------------===//
660
661/// Given an Value which is hoped to be part of an add recurance in the given
662/// loop, return the associated Phi node if so. Otherwise, return null. Note
663/// that this is less general than SCEVs AddRec checking.
665 Instruction *IncI = dyn_cast<Instruction>(IncV);
666 if (!IncI)
667 return nullptr;
668
669 switch (IncI->getOpcode()) {
670 case Instruction::Add:
671 case Instruction::Sub:
672 break;
673 case Instruction::GetElementPtr:
674 // An IV counter must preserve its type.
675 if (IncI->getNumOperands() == 2)
676 break;
677 [[fallthrough]];
678 default:
679 return nullptr;
680 }
681
682 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
683 if (Phi && Phi->getParent() == L->getHeader()) {
684 if (L->isLoopInvariant(IncI->getOperand(1)))
685 return Phi;
686 return nullptr;
687 }
688 if (IncI->getOpcode() == Instruction::GetElementPtr)
689 return nullptr;
690
691 // Allow add/sub to be commuted.
692 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
693 if (Phi && Phi->getParent() == L->getHeader()) {
694 if (L->isLoopInvariant(IncI->getOperand(0)))
695 return Phi;
696 }
697 return nullptr;
698}
699
700/// Whether the current loop exit test is based on this value. Currently this
701/// is limited to a direct use in the loop condition.
702static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
703 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
704 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
705 // TODO: Allow non-icmp loop test.
706 if (!ICmp)
707 return false;
708
709 // TODO: Allow indirect use.
710 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
711}
712
713/// linearFunctionTestReplace policy. Return true unless we can show that the
714/// current exit test is already sufficiently canonical.
715static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
716 assert(L->getLoopLatch() && "Must be in simplified form");
717
718 // Avoid converting a constant or loop invariant test back to a runtime
719 // test. This is critical for when SCEV's cached ExitCount is less precise
720 // than the current IR (such as after we've proven a particular exit is
721 // actually dead and thus the BE count never reaches our ExitCount.)
722 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
723 if (L->isLoopInvariant(BI->getCondition()))
724 return false;
725
726 // Do LFTR to simplify the exit condition to an ICMP.
727 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
728 if (!Cond)
729 return true;
730
731 // Do LFTR to simplify the exit ICMP to EQ/NE
732 ICmpInst::Predicate Pred = Cond->getPredicate();
733 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
734 return true;
735
736 // Look for a loop invariant RHS
737 Value *LHS = Cond->getOperand(0);
738 Value *RHS = Cond->getOperand(1);
739 if (!L->isLoopInvariant(RHS)) {
740 if (!L->isLoopInvariant(LHS))
741 return true;
742 std::swap(LHS, RHS);
743 }
744 // Look for a simple IV counter LHS
745 PHINode *Phi = dyn_cast<PHINode>(LHS);
746 if (!Phi)
747 Phi = getLoopPhiForCounter(LHS, L);
748
749 if (!Phi)
750 return true;
751
752 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
753 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
754 if (Idx < 0)
755 return true;
756
757 // Do LFTR if the exit condition's IV is *not* a simple counter.
758 Value *IncV = Phi->getIncomingValue(Idx);
759 return Phi != getLoopPhiForCounter(IncV, L);
760}
761
762/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
763/// down to checking that all operands are constant and listing instructions
764/// that may hide undef.
766 unsigned Depth) {
767 if (isa<Constant>(V))
768 return !isa<UndefValue>(V);
769
770 if (Depth >= 6)
771 return false;
772
773 // Conservatively handle non-constant non-instructions. For example, Arguments
774 // may be undef.
775 Instruction *I = dyn_cast<Instruction>(V);
776 if (!I)
777 return false;
778
779 // Load and return values may be undef.
780 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
781 return false;
782
783 // Optimistically handle other instructions.
784 for (Value *Op : I->operands()) {
785 if (!Visited.insert(Op).second)
786 continue;
787 if (!hasConcreteDefImpl(Op, Visited, Depth+1))
788 return false;
789 }
790 return true;
791}
792
793/// Return true if the given value is concrete. We must prove that undef can
794/// never reach it.
795///
796/// TODO: If we decide that this is a good approach to checking for undef, we
797/// may factor it into a common location.
798static bool hasConcreteDef(Value *V) {
800 Visited.insert(V);
801 return hasConcreteDefImpl(V, Visited, 0);
802}
803
804/// Return true if the given phi is a "counter" in L. A counter is an
805/// add recurance (of integer or pointer type) with an arbitrary start, and a
806/// step of 1. Note that L must have exactly one latch.
807static bool isLoopCounter(PHINode* Phi, Loop *L,
808 ScalarEvolution *SE) {
809 assert(Phi->getParent() == L->getHeader());
810 assert(L->getLoopLatch());
811
812 if (!SE->isSCEVable(Phi->getType()))
813 return false;
814
815 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
816 if (!AR || AR->getLoop() != L || !AR->isAffine())
817 return false;
818
819 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
820 if (!Step || !Step->isOne())
821 return false;
822
823 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
824 Value *IncV = Phi->getIncomingValue(LatchIdx);
825 return (getLoopPhiForCounter(IncV, L) == Phi &&
826 isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
827}
828
829/// Search the loop header for a loop counter (anadd rec w/step of one)
830/// suitable for use by LFTR. If multiple counters are available, select the
831/// "best" one based profitable heuristics.
832///
833/// BECount may be an i8* pointer type. The pointer difference is already
834/// valid count without scaling the address stride, so it remains a pointer
835/// expression as far as SCEV is concerned.
836static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
837 const SCEV *BECount,
839 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
840
841 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
842
843 // Loop over all of the PHI nodes, looking for a simple counter.
844 PHINode *BestPhi = nullptr;
845 const SCEV *BestInit = nullptr;
846 BasicBlock *LatchBlock = L->getLoopLatch();
847 assert(LatchBlock && "Must be in simplified form");
848 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
849
850 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
851 PHINode *Phi = cast<PHINode>(I);
852 if (!isLoopCounter(Phi, L, SE))
853 continue;
854
855 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
856
857 // AR may be a pointer type, while BECount is an integer type.
858 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
859 // AR may not be a narrower type, or we may never exit.
860 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
861 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
862 continue;
863
864 // Avoid reusing a potentially undef value to compute other values that may
865 // have originally had a concrete definition.
866 if (!hasConcreteDef(Phi)) {
867 // We explicitly allow unknown phis as long as they are already used by
868 // the loop exit test. This is legal since performing LFTR could not
869 // increase the number of undef users.
870 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
871 if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
872 !isLoopExitTestBasedOn(IncPhi, ExitingBB))
873 continue;
874 }
875
876 // Avoid introducing undefined behavior due to poison which didn't exist in
877 // the original program. (Annoyingly, the rules for poison and undef
878 // propagation are distinct, so this does NOT cover the undef case above.)
879 // We have to ensure that we don't introduce UB by introducing a use on an
880 // iteration where said IV produces poison. Our strategy here differs for
881 // pointers and integer IVs. For integers, we strip and reinfer as needed,
882 // see code in linearFunctionTestReplace. For pointers, we restrict
883 // transforms as there is no good way to reinfer inbounds once lost.
884 if (!Phi->getType()->isIntegerTy() &&
885 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
886 continue;
887
888 const SCEV *Init = AR->getStart();
889
890 if (BestPhi && !isAlmostDeadIV(BestPhi, LatchBlock, Cond)) {
891 // Don't force a live loop counter if another IV can be used.
892 if (isAlmostDeadIV(Phi, LatchBlock, Cond))
893 continue;
894
895 // Prefer to count-from-zero. This is a more "canonical" counter form. It
896 // also prefers integer to pointer IVs.
897 if (BestInit->isZero() != Init->isZero()) {
898 if (BestInit->isZero())
899 continue;
900 }
901 // If two IVs both count from zero or both count from nonzero then the
902 // narrower is likely a dead phi that has been widened. Use the wider phi
903 // to allow the other to be eliminated.
904 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
905 continue;
906 }
907 BestPhi = Phi;
908 BestInit = Init;
909 }
910 return BestPhi;
911}
912
913/// Insert an IR expression which computes the value held by the IV IndVar
914/// (which must be an loop counter w/unit stride) after the backedge of loop L
915/// is taken ExitCount times.
916static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
917 const SCEV *ExitCount, bool UsePostInc, Loop *L,
918 SCEVExpander &Rewriter, ScalarEvolution *SE) {
919 assert(isLoopCounter(IndVar, L, SE));
920 assert(ExitCount->getType()->isIntegerTy() && "exit count must be integer");
921 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
922 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
923
924 // For integer IVs, truncate the IV before computing the limit unless we
925 // know apriori that the limit must be a constant when evaluated in the
926 // bitwidth of the IV. We prefer (potentially) keeping a truncate of the
927 // IV in the loop over a (potentially) expensive expansion of the widened
928 // exit count add(zext(add)) expression.
929 if (IndVar->getType()->isIntegerTy() &&
930 SE->getTypeSizeInBits(AR->getType()) >
931 SE->getTypeSizeInBits(ExitCount->getType())) {
932 const SCEV *IVInit = AR->getStart();
933 if (!isa<SCEVConstant>(IVInit) || !isa<SCEVConstant>(ExitCount))
934 AR = cast<SCEVAddRecExpr>(SE->getTruncateExpr(AR, ExitCount->getType()));
935 }
936
937 const SCEVAddRecExpr *ARBase = UsePostInc ? AR->getPostIncExpr(*SE) : AR;
938 const SCEV *IVLimit = ARBase->evaluateAtIteration(ExitCount, *SE);
939 assert(SE->isLoopInvariant(IVLimit, L) &&
940 "Computed iteration count is not loop invariant!");
941 return Rewriter.expandCodeFor(IVLimit, ARBase->getType(),
942 ExitingBB->getTerminator());
943}
944
945/// This method rewrites the exit condition of the loop to be a canonical !=
946/// comparison against the incremented loop induction variable. This pass is
947/// able to rewrite the exit tests of any loop where the SCEV analysis can
948/// determine a loop-invariant trip count of the loop, which is actually a much
949/// broader range than just linear tests.
950bool IndVarSimplify::
951linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
952 const SCEV *ExitCount,
953 PHINode *IndVar, SCEVExpander &Rewriter) {
954 assert(L->getLoopLatch() && "Loop no longer in simplified form?");
955 assert(isLoopCounter(IndVar, L, SE));
956 Instruction * const IncVar =
957 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
958
959 // Initialize CmpIndVar to the preincremented IV.
960 Value *CmpIndVar = IndVar;
961 bool UsePostInc = false;
962
963 // If the exiting block is the same as the backedge block, we prefer to
964 // compare against the post-incremented value, otherwise we must compare
965 // against the preincremented value.
966 if (ExitingBB == L->getLoopLatch()) {
967 // For pointer IVs, we chose to not strip inbounds which requires us not
968 // to add a potentially UB introducing use. We need to either a) show
969 // the loop test we're modifying is already in post-inc form, or b) show
970 // that adding a use must not introduce UB.
971 bool SafeToPostInc =
972 IndVar->getType()->isIntegerTy() ||
973 isLoopExitTestBasedOn(IncVar, ExitingBB) ||
974 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
975 if (SafeToPostInc) {
976 UsePostInc = true;
977 CmpIndVar = IncVar;
978 }
979 }
980
981 // It may be necessary to drop nowrap flags on the incrementing instruction
982 // if either LFTR moves from a pre-inc check to a post-inc check (in which
983 // case the increment might have previously been poison on the last iteration
984 // only) or if LFTR switches to a different IV that was previously dynamically
985 // dead (and as such may be arbitrarily poison). We remove any nowrap flags
986 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
987 // check), because the pre-inc addrec flags may be adopted from the original
988 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
989 // TODO: This handling is inaccurate for one case: If we switch to a
990 // dynamically dead IV that wraps on the first loop iteration only, which is
991 // not covered by the post-inc addrec. (If the new IV was not dynamically
992 // dead, it could not be poison on the first iteration in the first place.)
993 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
994 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
995 if (BO->hasNoUnsignedWrap())
996 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
997 if (BO->hasNoSignedWrap())
998 BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
999 }
1000
1001 Value *ExitCnt = genLoopLimit(
1002 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1003 assert(ExitCnt->getType()->isPointerTy() ==
1004 IndVar->getType()->isPointerTy() &&
1005 "genLoopLimit missed a cast");
1006
1007 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1008 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1010 if (L->contains(BI->getSuccessor(0)))
1011 P = ICmpInst::ICMP_NE;
1012 else
1013 P = ICmpInst::ICMP_EQ;
1014
1015 IRBuilder<> Builder(BI);
1016
1017 // The new loop exit condition should reuse the debug location of the
1018 // original loop exit condition.
1019 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1020 Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1021
1022 // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1023 // avoid the expensive expansion of the limit expression in the wider type,
1024 // emit a truncate to narrow the IV to the ExitCount type. This is safe
1025 // since we know (from the exit count bitwidth), that we can't self-wrap in
1026 // the narrower type.
1027 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1028 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1029 if (CmpIndVarSize > ExitCntSize) {
1030 assert(!CmpIndVar->getType()->isPointerTy() &&
1031 !ExitCnt->getType()->isPointerTy());
1032
1033 // Before resorting to actually inserting the truncate, use the same
1034 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1035 // the other side of the comparison instead. We still evaluate the limit
1036 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1037 // a truncate within in.
1038 bool Extended = false;
1039 const SCEV *IV = SE->getSCEV(CmpIndVar);
1040 const SCEV *TruncatedIV = SE->getTruncateExpr(IV, ExitCnt->getType());
1041 const SCEV *ZExtTrunc =
1042 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1043
1044 if (ZExtTrunc == IV) {
1045 Extended = true;
1046 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1047 "wide.trip.count");
1048 } else {
1049 const SCEV *SExtTrunc =
1050 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1051 if (SExtTrunc == IV) {
1052 Extended = true;
1053 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1054 "wide.trip.count");
1055 }
1056 }
1057
1058 if (Extended) {
1059 bool Discard;
1060 L->makeLoopInvariant(ExitCnt, Discard);
1061 } else
1062 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1063 "lftr.wideiv");
1064 }
1065 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1066 << " LHS:" << *CmpIndVar << '\n'
1067 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1068 << "\n"
1069 << " RHS:\t" << *ExitCnt << "\n"
1070 << "ExitCount:\t" << *ExitCount << "\n"
1071 << " was: " << *BI->getCondition() << "\n");
1072
1073 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1074 Value *OrigCond = BI->getCondition();
1075 // It's tempting to use replaceAllUsesWith here to fully replace the old
1076 // comparison, but that's not immediately safe, since users of the old
1077 // comparison may not be dominated by the new comparison. Instead, just
1078 // update the branch to use the new comparison; in the common case this
1079 // will make old comparison dead.
1080 BI->setCondition(Cond);
1081 DeadInsts.emplace_back(OrigCond);
1082
1083 ++NumLFTR;
1084 return true;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1089//===----------------------------------------------------------------------===//
1090
1091/// If there's a single exit block, sink any loop-invariant values that
1092/// were defined in the preheader but not used inside the loop into the
1093/// exit block to reduce register pressure in the loop.
1094bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1095 BasicBlock *ExitBlock = L->getExitBlock();
1096 if (!ExitBlock) return false;
1097
1098 BasicBlock *Preheader = L->getLoopPreheader();
1099 if (!Preheader) return false;
1100
1101 bool MadeAnyChanges = false;
1102 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1103 BasicBlock::iterator I(Preheader->getTerminator());
1104 while (I != Preheader->begin()) {
1105 --I;
1106 // New instructions were inserted at the end of the preheader.
1107 if (isa<PHINode>(I))
1108 break;
1109
1110 // Don't move instructions which might have side effects, since the side
1111 // effects need to complete before instructions inside the loop. Also don't
1112 // move instructions which might read memory, since the loop may modify
1113 // memory. Note that it's okay if the instruction might have undefined
1114 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1115 // block.
1116 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1117 continue;
1118
1119 // Skip debug info intrinsics.
1120 if (isa<DbgInfoIntrinsic>(I))
1121 continue;
1122
1123 // Skip eh pad instructions.
1124 if (I->isEHPad())
1125 continue;
1126
1127 // Don't sink alloca: we never want to sink static alloca's out of the
1128 // entry block, and correctly sinking dynamic alloca's requires
1129 // checks for stacksave/stackrestore intrinsics.
1130 // FIXME: Refactor this check somehow?
1131 if (isa<AllocaInst>(I))
1132 continue;
1133
1134 // Determine if there is a use in or before the loop (direct or
1135 // otherwise).
1136 bool UsedInLoop = false;
1137 for (Use &U : I->uses()) {
1138 Instruction *User = cast<Instruction>(U.getUser());
1139 BasicBlock *UseBB = User->getParent();
1140 if (PHINode *P = dyn_cast<PHINode>(User)) {
1141 unsigned i =
1143 UseBB = P->getIncomingBlock(i);
1144 }
1145 if (UseBB == Preheader || L->contains(UseBB)) {
1146 UsedInLoop = true;
1147 break;
1148 }
1149 }
1150
1151 // If there is, the def must remain in the preheader.
1152 if (UsedInLoop)
1153 continue;
1154
1155 // Otherwise, sink it to the exit block.
1156 Instruction *ToMove = &*I;
1157 bool Done = false;
1158
1159 if (I != Preheader->begin()) {
1160 // Skip debug info intrinsics.
1161 do {
1162 --I;
1163 } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1164
1165 if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1166 Done = true;
1167 } else {
1168 Done = true;
1169 }
1170
1171 MadeAnyChanges = true;
1172 ToMove->moveBefore(*ExitBlock, InsertPt);
1173 SE->forgetValue(ToMove);
1174 if (Done) break;
1175 InsertPt = ToMove->getIterator();
1176 }
1177
1178 return MadeAnyChanges;
1179}
1180
1181static void replaceExitCond(BranchInst *BI, Value *NewCond,
1183 auto *OldCond = BI->getCondition();
1184 LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI
1185 << " with " << *NewCond << "\n");
1186 BI->setCondition(NewCond);
1187 if (OldCond->use_empty())
1188 DeadInsts.emplace_back(OldCond);
1189}
1190
1191static Constant *createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB,
1192 bool IsTaken) {
1193 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1194 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1195 auto *OldCond = BI->getCondition();
1196 return ConstantInt::get(OldCond->getType(),
1197 IsTaken ? ExitIfTrue : !ExitIfTrue);
1198}
1199
1200static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1202 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1203 auto *NewCond = createFoldedExitCond(L, ExitingBB, IsTaken);
1204 replaceExitCond(BI, NewCond, DeadInsts);
1205}
1206
1208 LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1209 ScalarEvolution &SE) {
1210 assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1211 auto *LoopPreheader = L->getLoopPreheader();
1212 auto *LoopHeader = L->getHeader();
1214 for (auto &PN : LoopHeader->phis()) {
1215 auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1216 for (User *U : PN.users())
1217 Worklist.push_back(cast<Instruction>(U));
1218 SE.forgetValue(&PN);
1219 PN.replaceAllUsesWith(PreheaderIncoming);
1220 DeadInsts.emplace_back(&PN);
1221 }
1222
1223 // Replacing with the preheader value will often allow IV users to simplify
1224 // (especially if the preheader value is a constant).
1226 while (!Worklist.empty()) {
1227 auto *I = cast<Instruction>(Worklist.pop_back_val());
1228 if (!Visited.insert(I).second)
1229 continue;
1230
1231 // Don't simplify instructions outside the loop.
1232 if (!L->contains(I))
1233 continue;
1234
1235 Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout());
1236 if (Res && LI->replacementPreservesLCSSAForm(I, Res)) {
1237 for (User *U : I->users())
1238 Worklist.push_back(cast<Instruction>(U));
1239 I->replaceAllUsesWith(Res);
1240 DeadInsts.emplace_back(I);
1241 }
1242 }
1243}
1244
1245static Value *
1248 SCEVExpander &Rewriter) {
1249 ICmpInst::Predicate InvariantPred = LIP.Pred;
1250 BasicBlock *Preheader = L->getLoopPreheader();
1251 assert(Preheader && "Preheader doesn't exist");
1252 Rewriter.setInsertPoint(Preheader->getTerminator());
1253 auto *LHSV = Rewriter.expandCodeFor(LIP.LHS);
1254 auto *RHSV = Rewriter.expandCodeFor(LIP.RHS);
1255 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1256 if (ExitIfTrue)
1257 InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1258 IRBuilder<> Builder(Preheader->getTerminator());
1259 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1260 return Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1261 BI->getCondition()->getName());
1262}
1263
1264static std::optional<Value *>
1265createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB,
1266 const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1267 ScalarEvolution *SE, SCEVExpander &Rewriter) {
1268 ICmpInst::Predicate Pred = ICmp->getPredicate();
1269 Value *LHS = ICmp->getOperand(0);
1270 Value *RHS = ICmp->getOperand(1);
1271
1272 // 'LHS pred RHS' should now mean that we stay in loop.
1273 auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1274 if (Inverted)
1275 Pred = CmpInst::getInversePredicate(Pred);
1276
1277 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1278 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1279 // Can we prove it to be trivially true or false?
1280 if (auto EV = SE->evaluatePredicateAt(Pred, LHSS, RHSS, BI))
1281 return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ !*EV);
1282
1283 auto *ARTy = LHSS->getType();
1284 auto *MaxIterTy = MaxIter->getType();
1285 // If possible, adjust types.
1286 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1287 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1288 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1289 const SCEV *MinusOne = SE->getMinusOne(ARTy);
1290 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1291 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1292 MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1293 }
1294
1295 if (SkipLastIter) {
1296 // Semantically skip last iter is "subtract 1, do not bother about unsigned
1297 // wrap". getLoopInvariantExitCondDuringFirstIterations knows how to deal
1298 // with umin in a smart way, but umin(a, b) - 1 will likely not simplify.
1299 // So we manually construct umin(a - 1, b - 1).
1301 if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) {
1302 for (auto *Op : UMin->operands())
1303 Elements.push_back(SE->getMinusSCEV(Op, SE->getOne(Op->getType())));
1304 MaxIter = SE->getUMinFromMismatchedTypes(Elements);
1305 } else
1306 MaxIter = SE->getMinusSCEV(MaxIter, SE->getOne(MaxIter->getType()));
1307 }
1308
1309 // Check if there is a loop-invariant predicate equivalent to our check.
1310 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1311 L, BI, MaxIter);
1312 if (!LIP)
1313 return std::nullopt;
1314
1315 // Can we prove it to be trivially true?
1316 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1317 return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ false);
1318 else
1319 return createInvariantCond(L, ExitingBB, *LIP, Rewriter);
1320}
1321
1323 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter,
1324 bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter,
1326 assert(
1327 (L->contains(BI->getSuccessor(0)) != L->contains(BI->getSuccessor(1))) &&
1328 "Not a loop exit!");
1329
1330 // For branch that stays in loop by TRUE condition, go through AND. For branch
1331 // that stays in loop by FALSE condition, go through OR. Both gives the
1332 // similar logic: "stay in loop iff all conditions are true(false)".
1333 bool Inverted = L->contains(BI->getSuccessor(1));
1334 SmallVector<ICmpInst *, 4> LeafConditions;
1335 SmallVector<Value *, 4> Worklist;
1337 Value *OldCond = BI->getCondition();
1338 Visited.insert(OldCond);
1339 Worklist.push_back(OldCond);
1340
1341 auto GoThrough = [&](Value *V) {
1342 Value *LHS = nullptr, *RHS = nullptr;
1343 if (Inverted) {
1344 if (!match(V, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
1345 return false;
1346 } else {
1347 if (!match(V, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
1348 return false;
1349 }
1350 if (Visited.insert(LHS).second)
1351 Worklist.push_back(LHS);
1352 if (Visited.insert(RHS).second)
1353 Worklist.push_back(RHS);
1354 return true;
1355 };
1356
1357 do {
1358 Value *Curr = Worklist.pop_back_val();
1359 // Go through AND/OR conditions. Collect leaf ICMPs. We only care about
1360 // those with one use, to avoid instruction duplication.
1361 if (Curr->hasOneUse())
1362 if (!GoThrough(Curr))
1363 if (auto *ICmp = dyn_cast<ICmpInst>(Curr))
1364 LeafConditions.push_back(ICmp);
1365 } while (!Worklist.empty());
1366
1367 // If the current basic block has the same exit count as the whole loop, and
1368 // it consists of multiple icmp's, try to collect all icmp's that give exact
1369 // same exit count. For all other icmp's, we could use one less iteration,
1370 // because their value on the last iteration doesn't really matter.
1371 SmallPtrSet<ICmpInst *, 4> ICmpsFailingOnLastIter;
1372 if (!SkipLastIter && LeafConditions.size() > 1 &&
1373 SE->getExitCount(L, ExitingBB,
1374 ScalarEvolution::ExitCountKind::SymbolicMaximum) ==
1375 MaxIter)
1376 for (auto *ICmp : LeafConditions) {
1377 auto EL = SE->computeExitLimitFromCond(L, ICmp, Inverted,
1378 /*ControlsExit*/ false);
1379 auto *ExitMax = EL.SymbolicMaxNotTaken;
1380 if (isa<SCEVCouldNotCompute>(ExitMax))
1381 continue;
1382 // They could be of different types (specifically this happens after
1383 // IV widening).
1384 auto *WiderType =
1385 SE->getWiderType(ExitMax->getType(), MaxIter->getType());
1386 auto *WideExitMax = SE->getNoopOrZeroExtend(ExitMax, WiderType);
1387 auto *WideMaxIter = SE->getNoopOrZeroExtend(MaxIter, WiderType);
1388 if (WideExitMax == WideMaxIter)
1389 ICmpsFailingOnLastIter.insert(ICmp);
1390 }
1391
1392 bool Changed = false;
1393 for (auto *OldCond : LeafConditions) {
1394 // Skip last iteration for this icmp under one of two conditions:
1395 // - We do it for all conditions;
1396 // - There is another ICmp that would fail on last iter, so this one doesn't
1397 // really matter.
1398 bool OptimisticSkipLastIter = SkipLastIter;
1399 if (!OptimisticSkipLastIter) {
1400 if (ICmpsFailingOnLastIter.size() > 1)
1401 OptimisticSkipLastIter = true;
1402 else if (ICmpsFailingOnLastIter.size() == 1)
1403 OptimisticSkipLastIter = !ICmpsFailingOnLastIter.count(OldCond);
1404 }
1405 if (auto Replaced =
1406 createReplacement(OldCond, L, ExitingBB, MaxIter, Inverted,
1407 OptimisticSkipLastIter, SE, Rewriter)) {
1408 Changed = true;
1409 auto *NewCond = *Replaced;
1410 if (auto *NCI = dyn_cast<Instruction>(NewCond)) {
1411 NCI->setName(OldCond->getName() + ".first_iter");
1412 }
1413 LLVM_DEBUG(dbgs() << "Unknown exit count: Replacing " << *OldCond
1414 << " with " << *NewCond << "\n");
1415 assert(OldCond->hasOneUse() && "Must be!");
1416 OldCond->replaceAllUsesWith(NewCond);
1417 DeadInsts.push_back(OldCond);
1418 // Make sure we no longer consider this condition as failing on last
1419 // iteration.
1420 ICmpsFailingOnLastIter.erase(OldCond);
1421 }
1422 }
1423 return Changed;
1424}
1425
1426bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1427 // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1428 // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1429 // never reaches the icmp since the zext doesn't fold to an AddRec unless
1430 // it already has flags. The alternative to this would be to extending the
1431 // set of "interesting" IV users to include the icmp, but doing that
1432 // regresses results in practice by querying SCEVs before trip counts which
1433 // rely on them which results in SCEV caching sub-optimal answers. The
1434 // concern about caching sub-optimal results is why we only query SCEVs of
1435 // the loop invariant RHS here.
1436 SmallVector<BasicBlock*, 16> ExitingBlocks;
1437 L->getExitingBlocks(ExitingBlocks);
1438 bool Changed = false;
1439 for (auto *ExitingBB : ExitingBlocks) {
1440 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1441 if (!BI)
1442 continue;
1443 assert(BI->isConditional() && "exit branch must be conditional");
1444
1445 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1446 if (!ICmp || !ICmp->hasOneUse())
1447 continue;
1448
1449 auto *LHS = ICmp->getOperand(0);
1450 auto *RHS = ICmp->getOperand(1);
1451 // For the range reasoning, avoid computing SCEVs in the loop to avoid
1452 // poisoning cache with sub-optimal results. For the must-execute case,
1453 // this is a neccessary precondition for correctness.
1454 if (!L->isLoopInvariant(RHS)) {
1455 if (!L->isLoopInvariant(LHS))
1456 continue;
1457 // Same logic applies for the inverse case
1458 std::swap(LHS, RHS);
1459 }
1460
1461 // Match (icmp signed-cond zext, RHS)
1462 Value *LHSOp = nullptr;
1463 if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1464 continue;
1465
1466 const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1467 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1468 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1469 auto FullCR = ConstantRange::getFull(InnerBitWidth);
1470 FullCR = FullCR.zeroExtend(OuterBitWidth);
1471 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1472 if (FullCR.contains(RHSCR)) {
1473 // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1474 // replace the signed condition with the unsigned version.
1475 ICmp->setPredicate(ICmp->getUnsignedPredicate());
1476 Changed = true;
1477 // Note: No SCEV invalidation needed. We've changed the predicate, but
1478 // have not changed exit counts, or the values produced by the compare.
1479 continue;
1480 }
1481 }
1482
1483 // Now that we've canonicalized the condition to match the extend,
1484 // see if we can rotate the extend out of the loop.
1485 for (auto *ExitingBB : ExitingBlocks) {
1486 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1487 if (!BI)
1488 continue;
1489 assert(BI->isConditional() && "exit branch must be conditional");
1490
1491 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1492 if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1493 continue;
1494
1495 bool Swapped = false;
1496 auto *LHS = ICmp->getOperand(0);
1497 auto *RHS = ICmp->getOperand(1);
1498 if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1499 // Nothing to rotate
1500 continue;
1501 if (L->isLoopInvariant(LHS)) {
1502 // Same logic applies for the inverse case until we actually pick
1503 // which operand of the compare to update.
1504 Swapped = true;
1505 std::swap(LHS, RHS);
1506 }
1507 assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1508
1509 // Match (icmp unsigned-cond zext, RHS)
1510 // TODO: Extend to handle corresponding sext/signed-cmp case
1511 // TODO: Extend to other invertible functions
1512 Value *LHSOp = nullptr;
1513 if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1514 continue;
1515
1516 // In general, we only rotate if we can do so without increasing the number
1517 // of instructions. The exception is when we have an zext(add-rec). The
1518 // reason for allowing this exception is that we know we need to get rid
1519 // of the zext for SCEV to be able to compute a trip count for said loops;
1520 // we consider the new trip count valuable enough to increase instruction
1521 // count by one.
1522 if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1523 continue;
1524
1525 // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1526 // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1527 // when zext is loop varying and RHS is loop invariant. This converts
1528 // loop varying work to loop-invariant work.
1529 auto doRotateTransform = [&]() {
1530 assert(ICmp->isUnsigned() && "must have proven unsigned already");
1531 auto *NewRHS = CastInst::Create(
1532 Instruction::Trunc, RHS, LHSOp->getType(), "",
1533 L->getLoopPreheader()->getTerminator()->getIterator());
1534 ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1535 ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1536 if (LHS->use_empty())
1537 DeadInsts.push_back(LHS);
1538 };
1539
1540
1541 const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1542 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1543 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1544 auto FullCR = ConstantRange::getFull(InnerBitWidth);
1545 FullCR = FullCR.zeroExtend(OuterBitWidth);
1546 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1547 if (FullCR.contains(RHSCR)) {
1548 doRotateTransform();
1549 Changed = true;
1550 // Note, we are leaving SCEV in an unfortunately imprecise case here
1551 // as rotation tends to reveal information about trip counts not
1552 // previously visible.
1553 continue;
1554 }
1555 }
1556
1557 return Changed;
1558}
1559
1560bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1561 SmallVector<BasicBlock*, 16> ExitingBlocks;
1562 L->getExitingBlocks(ExitingBlocks);
1563
1564 // Remove all exits which aren't both rewriteable and execute on every
1565 // iteration.
1566 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1567 // If our exitting block exits multiple loops, we can only rewrite the
1568 // innermost one. Otherwise, we're changing how many times the innermost
1569 // loop runs before it exits.
1570 if (LI->getLoopFor(ExitingBB) != L)
1571 return true;
1572
1573 // Can't rewrite non-branch yet.
1574 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1575 if (!BI)
1576 return true;
1577
1578 // Likewise, the loop latch must be dominated by the exiting BB.
1579 if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1580 return true;
1581
1582 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
1583 // If already constant, nothing to do. However, if this is an
1584 // unconditional exit, we can still replace header phis with their
1585 // preheader value.
1586 if (!L->contains(BI->getSuccessor(CI->isNullValue())))
1587 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
1588 return true;
1589 }
1590
1591 return false;
1592 });
1593
1594 if (ExitingBlocks.empty())
1595 return false;
1596
1597 // Get a symbolic upper bound on the loop backedge taken count.
1598 const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L);
1599 if (isa<SCEVCouldNotCompute>(MaxBECount))
1600 return false;
1601
1602 // Visit our exit blocks in order of dominance. We know from the fact that
1603 // all exits must dominate the latch, so there is a total dominance order
1604 // between them.
1605 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1606 // std::sort sorts in ascending order, so we want the inverse of
1607 // the normal dominance relation.
1608 if (A == B) return false;
1609 if (DT->properlyDominates(A, B))
1610 return true;
1611 else {
1612 assert(DT->properlyDominates(B, A) &&
1613 "expected total dominance order!");
1614 return false;
1615 }
1616 });
1617#ifdef ASSERT
1618 for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1619 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1620 }
1621#endif
1622
1623 bool Changed = false;
1624 bool SkipLastIter = false;
1625 const SCEV *CurrMaxExit = SE->getCouldNotCompute();
1626 auto UpdateSkipLastIter = [&](const SCEV *MaxExitCount) {
1627 if (SkipLastIter || isa<SCEVCouldNotCompute>(MaxExitCount))
1628 return;
1629 if (isa<SCEVCouldNotCompute>(CurrMaxExit))
1630 CurrMaxExit = MaxExitCount;
1631 else
1632 CurrMaxExit = SE->getUMinFromMismatchedTypes(CurrMaxExit, MaxExitCount);
1633 // If the loop has more than 1 iteration, all further checks will be
1634 // executed 1 iteration less.
1635 if (CurrMaxExit == MaxBECount)
1636 SkipLastIter = true;
1637 };
1638 SmallSet<const SCEV *, 8> DominatingExactExitCounts;
1639 for (BasicBlock *ExitingBB : ExitingBlocks) {
1640 const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBB);
1641 const SCEV *MaxExitCount = SE->getExitCount(
1642 L, ExitingBB, ScalarEvolution::ExitCountKind::SymbolicMaximum);
1643 if (isa<SCEVCouldNotCompute>(ExactExitCount)) {
1644 // Okay, we do not know the exit count here. Can we at least prove that it
1645 // will remain the same within iteration space?
1646 auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1647 auto OptimizeCond = [&](bool SkipLastIter) {
1648 return optimizeLoopExitWithUnknownExitCount(L, BI, ExitingBB,
1649 MaxBECount, SkipLastIter,
1650 SE, Rewriter, DeadInsts);
1651 };
1652
1653 // TODO: We might have proved that we can skip the last iteration for
1654 // this check. In this case, we only want to check the condition on the
1655 // pre-last iteration (MaxBECount - 1). However, there is a nasty
1656 // corner case:
1657 //
1658 // for (i = len; i != 0; i--) { ... check (i ult X) ... }
1659 //
1660 // If we could not prove that len != 0, then we also could not prove that
1661 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1662 // OptimizeCond will likely not prove anything for it, even if it could
1663 // prove the same fact for len.
1664 //
1665 // As a temporary solution, we query both last and pre-last iterations in
1666 // hope that we will be able to prove triviality for at least one of
1667 // them. We can stop querying MaxBECount for this case once SCEV
1668 // understands that (MaxBECount - 1) will not overflow here.
1669 if (OptimizeCond(false))
1670 Changed = true;
1671 else if (SkipLastIter && OptimizeCond(true))
1672 Changed = true;
1673 UpdateSkipLastIter(MaxExitCount);
1674 continue;
1675 }
1676
1677 UpdateSkipLastIter(ExactExitCount);
1678
1679 // If we know we'd exit on the first iteration, rewrite the exit to
1680 // reflect this. This does not imply the loop must exit through this
1681 // exit; there may be an earlier one taken on the first iteration.
1682 // We know that the backedge can't be taken, so we replace all
1683 // the header PHIs with values coming from the preheader.
1684 if (ExactExitCount->isZero()) {
1685 foldExit(L, ExitingBB, true, DeadInsts);
1686 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
1687 Changed = true;
1688 continue;
1689 }
1690
1691 assert(ExactExitCount->getType()->isIntegerTy() &&
1692 MaxBECount->getType()->isIntegerTy() &&
1693 "Exit counts must be integers");
1694
1695 Type *WiderType =
1696 SE->getWiderType(MaxBECount->getType(), ExactExitCount->getType());
1697 ExactExitCount = SE->getNoopOrZeroExtend(ExactExitCount, WiderType);
1698 MaxBECount = SE->getNoopOrZeroExtend(MaxBECount, WiderType);
1699 assert(MaxBECount->getType() == ExactExitCount->getType());
1700
1701 // Can we prove that some other exit must be taken strictly before this
1702 // one?
1703 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, MaxBECount,
1704 ExactExitCount)) {
1705 foldExit(L, ExitingBB, false, DeadInsts);
1706 Changed = true;
1707 continue;
1708 }
1709
1710 // As we run, keep track of which exit counts we've encountered. If we
1711 // find a duplicate, we've found an exit which would have exited on the
1712 // exiting iteration, but (from the visit order) strictly follows another
1713 // which does the same and is thus dead.
1714 if (!DominatingExactExitCounts.insert(ExactExitCount).second) {
1715 foldExit(L, ExitingBB, false, DeadInsts);
1716 Changed = true;
1717 continue;
1718 }
1719
1720 // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1721 // here. If we kept track of the min of dominanting exits so far, we could
1722 // discharge exits with EC >= MDEC. This is less powerful than the existing
1723 // transform (since later exits aren't considered), but potentially more
1724 // powerful for any case where SCEV can prove a >=u b, but neither a == b
1725 // or a >u b. Such a case is not currently known.
1726 }
1727 return Changed;
1728}
1729
1730bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1731 SmallVector<BasicBlock*, 16> ExitingBlocks;
1732 L->getExitingBlocks(ExitingBlocks);
1733
1734 // Finally, see if we can rewrite our exit conditions into a loop invariant
1735 // form. If we have a read-only loop, and we can tell that we must exit down
1736 // a path which does not need any of the values computed within the loop, we
1737 // can rewrite the loop to exit on the first iteration. Note that this
1738 // doesn't either a) tell us the loop exits on the first iteration (unless
1739 // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1740 // This transformation looks a lot like a restricted form of dead loop
1741 // elimination, but restricted to read-only loops and without neccesssarily
1742 // needing to kill the loop entirely.
1743 if (!LoopPredication)
1744 return false;
1745
1746 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1747 // through *explicit* control flow. We have to eliminate the possibility of
1748 // implicit exits (see below) before we know it's truly exact.
1749 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1750 if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC))
1751 return false;
1752
1753 assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1754 assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1755
1756 auto BadExit = [&](BasicBlock *ExitingBB) {
1757 // If our exiting block exits multiple loops, we can only rewrite the
1758 // innermost one. Otherwise, we're changing how many times the innermost
1759 // loop runs before it exits.
1760 if (LI->getLoopFor(ExitingBB) != L)
1761 return true;
1762
1763 // Can't rewrite non-branch yet.
1764 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1765 if (!BI)
1766 return true;
1767
1768 // If already constant, nothing to do.
1769 if (isa<Constant>(BI->getCondition()))
1770 return true;
1771
1772 // If the exit block has phis, we need to be able to compute the values
1773 // within the loop which contains them. This assumes trivially lcssa phis
1774 // have already been removed; TODO: generalize
1775 BasicBlock *ExitBlock =
1776 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1777 if (!ExitBlock->phis().empty())
1778 return true;
1779
1780 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1781 if (isa<SCEVCouldNotCompute>(ExitCount) ||
1782 !Rewriter.isSafeToExpand(ExitCount))
1783 return true;
1784
1785 assert(SE->isLoopInvariant(ExitCount, L) &&
1786 "Exit count must be loop invariant");
1787 assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1788 return false;
1789 };
1790
1791 // If we have any exits which can't be predicated themselves, than we can't
1792 // predicate any exit which isn't guaranteed to execute before it. Consider
1793 // two exits (a) and (b) which would both exit on the same iteration. If we
1794 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1795 // we could convert a loop from exiting through (a) to one exiting through
1796 // (b). Note that this problem exists only for exits with the same exit
1797 // count, and we could be more aggressive when exit counts are known inequal.
1798 llvm::sort(ExitingBlocks,
1799 [&](BasicBlock *A, BasicBlock *B) {
1800 // std::sort sorts in ascending order, so we want the inverse of
1801 // the normal dominance relation, plus a tie breaker for blocks
1802 // unordered by dominance.
1803 if (DT->properlyDominates(A, B)) return true;
1804 if (DT->properlyDominates(B, A)) return false;
1805 return A->getName() < B->getName();
1806 });
1807 // Check to see if our exit blocks are a total order (i.e. a linear chain of
1808 // exits before the backedge). If they aren't, reasoning about reachability
1809 // is complicated and we choose not to for now.
1810 for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1811 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1812 return false;
1813
1814 // Given our sorted total order, we know that exit[j] must be evaluated
1815 // after all exit[i] such j > i.
1816 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1817 if (BadExit(ExitingBlocks[i])) {
1818 ExitingBlocks.resize(i);
1819 break;
1820 }
1821
1822 if (ExitingBlocks.empty())
1823 return false;
1824
1825 // We rely on not being able to reach an exiting block on a later iteration
1826 // then it's statically compute exit count. The implementaton of
1827 // getExitCount currently has this invariant, but assert it here so that
1828 // breakage is obvious if this ever changes..
1829 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1830 return DT->dominates(ExitingBB, L->getLoopLatch());
1831 }));
1832
1833 // At this point, ExitingBlocks consists of only those blocks which are
1834 // predicatable. Given that, we know we have at least one exit we can
1835 // predicate if the loop is doesn't have side effects and doesn't have any
1836 // implicit exits (because then our exact BTC isn't actually exact).
1837 // @Reviewers - As structured, this is O(I^2) for loop nests. Any
1838 // suggestions on how to improve this? I can obviously bail out for outer
1839 // loops, but that seems less than ideal. MemorySSA can find memory writes,
1840 // is that enough for *all* side effects?
1841 for (BasicBlock *BB : L->blocks())
1842 for (auto &I : *BB)
1843 // TODO:isGuaranteedToTransfer
1844 if (I.mayHaveSideEffects())
1845 return false;
1846
1847 bool Changed = false;
1848 // Finally, do the actual predication for all predicatable blocks. A couple
1849 // of notes here:
1850 // 1) We don't bother to constant fold dominated exits with identical exit
1851 // counts; that's simply a form of CSE/equality propagation and we leave
1852 // it for dedicated passes.
1853 // 2) We insert the comparison at the branch. Hoisting introduces additional
1854 // legality constraints and we leave that to dedicated logic. We want to
1855 // predicate even if we can't insert a loop invariant expression as
1856 // peeling or unrolling will likely reduce the cost of the otherwise loop
1857 // varying check.
1858 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1859 IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1860 Value *ExactBTCV = nullptr; // Lazily generated if needed.
1861 for (BasicBlock *ExitingBB : ExitingBlocks) {
1862 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1863
1864 auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1865 Value *NewCond;
1866 if (ExitCount == ExactBTC) {
1867 NewCond = L->contains(BI->getSuccessor(0)) ?
1868 B.getFalse() : B.getTrue();
1869 } else {
1870 Value *ECV = Rewriter.expandCodeFor(ExitCount);
1871 if (!ExactBTCV)
1872 ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1873 Value *RHS = ExactBTCV;
1874 if (ECV->getType() != RHS->getType()) {
1875 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1876 ECV = B.CreateZExt(ECV, WiderTy);
1877 RHS = B.CreateZExt(RHS, WiderTy);
1878 }
1879 auto Pred = L->contains(BI->getSuccessor(0)) ?
1880 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1881 NewCond = B.CreateICmp(Pred, ECV, RHS);
1882 }
1883 Value *OldCond = BI->getCondition();
1884 BI->setCondition(NewCond);
1885 if (OldCond->use_empty())
1886 DeadInsts.emplace_back(OldCond);
1887 Changed = true;
1888 RunUnswitching = true;
1889 }
1890
1891 return Changed;
1892}
1893
1894//===----------------------------------------------------------------------===//
1895// IndVarSimplify driver. Manage several subpasses of IV simplification.
1896//===----------------------------------------------------------------------===//
1897
1898bool IndVarSimplify::run(Loop *L) {
1899 // We need (and expect!) the incoming loop to be in LCSSA.
1900 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1901 "LCSSA required to run indvars!");
1902
1903 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1904 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1905 // canonicalization can be a pessimization without LSR to "clean up"
1906 // afterwards.
1907 // - We depend on having a preheader; in particular,
1908 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1909 // and we're in trouble if we can't find the induction variable even when
1910 // we've manually inserted one.
1911 // - LFTR relies on having a single backedge.
1912 if (!L->isLoopSimplifyForm())
1913 return false;
1914
1915 bool Changed = false;
1916 // If there are any floating-point recurrences, attempt to
1917 // transform them to use integer recurrences.
1918 Changed |= rewriteNonIntegerIVs(L);
1919
1920 // Create a rewriter object which we'll use to transform the code with.
1921 SCEVExpander Rewriter(*SE, DL, "indvars");
1922#ifndef NDEBUG
1923 Rewriter.setDebugType(DEBUG_TYPE);
1924#endif
1925
1926 // Eliminate redundant IV users.
1927 //
1928 // Simplification works best when run before other consumers of SCEV. We
1929 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1930 // other expressions involving loop IVs have been evaluated. This helps SCEV
1931 // set no-wrap flags before normalizing sign/zero extension.
1932 Rewriter.disableCanonicalMode();
1933 Changed |= simplifyAndExtend(L, Rewriter, LI);
1934
1935 // Check to see if we can compute the final value of any expressions
1936 // that are recurrent in the loop, and substitute the exit values from the
1937 // loop into any instructions outside of the loop that use the final values
1938 // of the current expressions.
1939 if (ReplaceExitValue != NeverRepl) {
1940 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1941 ReplaceExitValue, DeadInsts)) {
1942 NumReplaced += Rewrites;
1943 Changed = true;
1944 }
1945 }
1946
1947 // Eliminate redundant IV cycles.
1948 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
1949
1950 // Try to convert exit conditions to unsigned and rotate computation
1951 // out of the loop. Note: Handles invalidation internally if needed.
1952 Changed |= canonicalizeExitCondition(L);
1953
1954 // Try to eliminate loop exits based on analyzeable exit counts
1955 if (optimizeLoopExits(L, Rewriter)) {
1956 Changed = true;
1957 // Given we've changed exit counts, notify SCEV
1958 // Some nested loops may share same folded exit basic block,
1959 // thus we need to notify top most loop.
1960 SE->forgetTopmostLoop(L);
1961 }
1962
1963 // Try to form loop invariant tests for loop exits by changing how many
1964 // iterations of the loop run when that is unobservable.
1965 if (predicateLoopExits(L, Rewriter)) {
1966 Changed = true;
1967 // Given we've changed exit counts, notify SCEV
1968 SE->forgetLoop(L);
1969 }
1970
1971 // If we have a trip count expression, rewrite the loop's exit condition
1972 // using it.
1973 if (!DisableLFTR) {
1974 BasicBlock *PreHeader = L->getLoopPreheader();
1975
1976 SmallVector<BasicBlock*, 16> ExitingBlocks;
1977 L->getExitingBlocks(ExitingBlocks);
1978 for (BasicBlock *ExitingBB : ExitingBlocks) {
1979 // Can't rewrite non-branch yet.
1980 if (!isa<BranchInst>(ExitingBB->getTerminator()))
1981 continue;
1982
1983 // If our exitting block exits multiple loops, we can only rewrite the
1984 // innermost one. Otherwise, we're changing how many times the innermost
1985 // loop runs before it exits.
1986 if (LI->getLoopFor(ExitingBB) != L)
1987 continue;
1988
1989 if (!needsLFTR(L, ExitingBB))
1990 continue;
1991
1992 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1993 if (isa<SCEVCouldNotCompute>(ExitCount))
1994 continue;
1995
1996 // This was handled above, but as we form SCEVs, we can sometimes refine
1997 // existing ones; this allows exit counts to be folded to zero which
1998 // weren't when optimizeLoopExits saw them. Arguably, we should iterate
1999 // until stable to handle cases like this better.
2000 if (ExitCount->isZero())
2001 continue;
2002
2003 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2004 if (!IndVar)
2005 continue;
2006
2007 // Avoid high cost expansions. Note: This heuristic is questionable in
2008 // that our definition of "high cost" is not exactly principled.
2009 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
2010 TTI, PreHeader->getTerminator()))
2011 continue;
2012
2013 if (!Rewriter.isSafeToExpand(ExitCount))
2014 continue;
2015
2016 Changed |= linearFunctionTestReplace(L, ExitingBB,
2017 ExitCount, IndVar,
2018 Rewriter);
2019 }
2020 }
2021 // Clear the rewriter cache, because values that are in the rewriter's cache
2022 // can be deleted in the loop below, causing the AssertingVH in the cache to
2023 // trigger.
2024 Rewriter.clear();
2025
2026 // Now that we're done iterating through lists, clean up any instructions
2027 // which are now dead.
2028 while (!DeadInsts.empty()) {
2029 Value *V = DeadInsts.pop_back_val();
2030
2031 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2032 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2033 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2034 Changed |=
2035 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2036 }
2037
2038 // The Rewriter may not be used from this point on.
2039
2040 // Loop-invariant instructions in the preheader that aren't used in the
2041 // loop may be sunk below the loop to reduce register pressure.
2042 Changed |= sinkUnusedInvariants(L);
2043
2044 // rewriteFirstIterationLoopExitValues does not rely on the computation of
2045 // trip count and therefore can further simplify exit values in addition to
2046 // rewriteLoopExitValues.
2047 Changed |= rewriteFirstIterationLoopExitValues(L);
2048
2049 // Clean up dead instructions.
2050 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2051
2052 // Check a post-condition.
2053 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2054 "Indvars did not preserve LCSSA!");
2055 if (VerifyMemorySSA && MSSAU)
2056 MSSAU->getMemorySSA()->verifyMemorySSA();
2057
2058 return Changed;
2059}
2060
2063 LPMUpdater &) {
2064 Function *F = L.getHeader()->getParent();
2065 const DataLayout &DL = F->getParent()->getDataLayout();
2066
2067 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2068 WidenIndVars && AllowIVWidening);
2069 if (!IVS.run(&L))
2070 return PreservedAnalyses::all();
2071
2072 auto PA = getLoopPassPreservedAnalyses();
2073 PA.preserveSet<CFGAnalyses>();
2074 if (IVS.runUnswitching()) {
2076 PA.preserve<ShouldRunExtraSimpleLoopUnswitch>();
2077 }
2078
2079 if (AR.MSSA)
2080 PA.preserve<MemorySSAAnalysis>();
2081 return PA;
2082}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:693
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
static Value * genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, const SCEV *ExitCount, bool UsePostInc, Loop *L, SCEVExpander &Rewriter, ScalarEvolution *SE)
Insert an IR expression which computes the value held by the IV IndVar (which must be an loop counter...
static void replaceExitCond(BranchInst *BI, Value *NewCond, SmallVectorImpl< WeakTrackingVH > &DeadInsts)
static cl::opt< bool > DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), cl::desc("Disable Linear Function Test Replace optimization"))
static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB)
Whether the current loop exit test is based on this value.
static cl::opt< ReplaceExitVal > ReplaceExitValue("replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible")))
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, const TargetTransformInfo *TTI)
Update information about the induction variable that is extended by this sign or zero extend operatio...
static void replaceLoopPHINodesWithPreheaderValues(LoopInfo *LI, Loop *L, SmallVectorImpl< WeakTrackingVH > &DeadInsts, ScalarEvolution &SE)
static bool needsLFTR(Loop *L, BasicBlock *ExitingBB)
linearFunctionTestReplace policy.
static bool optimizeLoopExitWithUnknownExitCount(const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter, bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter, SmallVectorImpl< WeakTrackingVH > &DeadInsts)
static Value * createInvariantCond(const Loop *L, BasicBlock *ExitingBB, const ScalarEvolution::LoopInvariantPredicate &LIP, SCEVExpander &Rewriter)
static bool isLoopCounter(PHINode *Phi, Loop *L, ScalarEvolution *SE)
Return true if the given phi is a "counter" in L.
static std::optional< Value * > createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB, const SCEV *MaxIter, bool Inverted, bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter)
static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl< Value * > &Visited, unsigned Depth)
Recursive helper for hasConcreteDef().
static bool hasConcreteDef(Value *V)
Return true if the given value is concrete.
static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, SmallVectorImpl< WeakTrackingVH > &DeadInsts)
static PHINode * getLoopPhiForCounter(Value *IncV, Loop *L)
Given an Value which is hoped to be part of an add recurance in the given loop, return the associated...
static Constant * createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB, bool IsTaken)
static cl::opt< bool > UsePostIncrementRanges("indvars-post-increment-ranges", cl::Hidden, cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), cl::init(true))
#define DEBUG_TYPE
static PHINode * FindLoopCounter(Loop *L, BasicBlock *ExitingBB, const SCEV *BECount, ScalarEvolution *SE, DominatorTree *DT)
Search the loop header for a loop counter (anadd rec w/step of one) suitable for use by LFTR.
static cl::opt< bool > AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), cl::desc("Allow widening of indvars to eliminate s/zext"))
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal)
Convert APF to an integer, if possible.
static cl::opt< bool > LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), cl::desc("Predicate conditions in read only loops"))
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Module.h This file contains the declarations for the Module class.
IntegerType * Int32Ty
#define P(N)
if(VerifyEach)
This header defines various interfaces for pass management in LLVM.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
This pass exposes codegen information to IR-level passes.
This defines the Use class.
Virtual Register Rewriter
Definition: VirtRegMap.cpp:237
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition: APFloat.h:1185
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:321
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:473
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:430
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:499
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:409
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:165
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:221
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:289
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:70
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:601
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:930
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:996
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:1022
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:1023
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:999
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:1008
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:997
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:998
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:1020
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:1007
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:1001
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:1004
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:1018
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:1005
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:1000
@ ICMP_EQ
equal
Definition: InstrTypes.h:1014
@ ICMP_NE
not equal
Definition: InstrTypes.h:1015
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:1021
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:1009
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:1006
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:1129
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:1105
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:268
const APFloat & getValueAPF() const
Definition: Constants.h:311
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU.
Definition: DataLayout.h:260
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
This instruction compares its operands according to the predicate given to the constructor.
This instruction compares its operands according to the predicate given to the constructor.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2351
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2666
Interface for visiting interesting IV users that are recognized but not simplified by this utility.
virtual void visitCast(CastInst *Cast)=0
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:454
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:83
const BasicBlock * getParent() const
Definition: Instruction.h:152
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:252
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:451
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Class to represent integer types.
Definition: DerivedTypes.h:40
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Definition: LoopInfo.h:439
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:928
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:701
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition: Module.h:293
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:307
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock::iterator InsertBefore)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
static unsigned getIncomingValueNumForOperand(unsigned i)
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1827
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:109
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:115
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const
Return the value of this chain of recurrences at the specified iteration number.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const SCEVAddRecExpr * getPostIncExpr(ScalarEvolution &SE) const
Return an expression representing the value of this expression one iteration of the loop ahead.
This class uses information about analyze scalars to rewrite expressions in canonical form.
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
This class represents a cast from signed integer to floating point.
The main scalar evolution driver.
Type * getWiderType(Type *Ty1, Type *Ty2) const
const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
std::optional< bool > evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
bool erase(PtrType Ptr)
erase - If the set contains the specified pointer, remove it and return true, otherwise return false.
Definition: SmallPtrSet.h:356
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void resize(size_type N)
Definition: SmallVector.h:651
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
unsigned getNumOperands() const
Definition: User.h:191
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
bool use_empty() const
Definition: Value.h:344
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1074
user_iterator_impl< User > user_iterator
Definition: Value.h:390
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:204
self_iterator getIterator()
Definition: ilist_node.h:109
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
Definition: Function.cpp:1029
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:718
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:540
@ Done
Definition: Threading.h:61
PHINode * createWideIV(const WideIVInfo &WI, LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, DominatorTree *DT, SmallVectorImpl< WeakTrackingVH > &DeadInsts, unsigned &NumElimExt, unsigned &NumWidened, bool HasGuards, bool UsePostIncrementRanges)
Widen Induction Variables - Extend the width of an IV to cover its widest uses.
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
cl::opt< unsigned > SCEVCheapExpansionBudget
std::pair< bool, bool > simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, const TargetTransformInfo *TTI, SmallVectorImpl< WeakTrackingVH > &Dead, SCEVExpander &Rewriter, IVVisitor *V=nullptr)
simplifyUsersOfIV - Simplify instructions that use this induction variable by using ScalarEvolution t...
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
TargetTransformInfo TTI
bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition: MemorySSA.cpp:84
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2051
bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
Definition: LoopUtils.cpp:469
int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, ScalarEvolution *SE, const TargetTransformInfo *TTI, SCEVExpander &Rewriter, DominatorTree *DT, ReplaceExitVal ReplaceExitValue, SmallVector< WeakTrackingVH, 16 > &DeadInsts)
If the final value of any expressions that are recurrent in the loop can be computed,...
Definition: LoopUtils.cpp:1404
bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is an effectively dead PHI node, due to being a def-use chain of single-use no...
Definition: Local.cpp:651
@ UnusedIndVarInLoop
Definition: LoopUtils.h:456
@ OnlyCheapRepl
Definition: LoopUtils.h:454
@ NeverRepl
Definition: LoopUtils.h:453
@ NoHardUse
Definition: LoopUtils.h:455
@ AlwaysRepl
Definition: LoopUtils.h:457
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
Collect information about induction variables that are used by sign/zero extend operations.
PHINode * NarrowIV